1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987-2012 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains various simple utilities to analyze the CFG. */
24 #include "coretypes.h"
25 #include "basic-block.h"
32 /* Store the data structures necessary for depth-first search. */
33 struct depth_first_search_dsS
{
34 /* stack for backtracking during the algorithm */
37 /* number of edges in the stack. That is, positions 0, ..., sp-1
41 /* record of basic blocks already seen by depth-first search */
42 sbitmap visited_blocks
;
44 typedef struct depth_first_search_dsS
*depth_first_search_ds
;
46 static void flow_dfs_compute_reverse_init (depth_first_search_ds
);
47 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds
,
49 static basic_block
flow_dfs_compute_reverse_execute (depth_first_search_ds
,
51 static void flow_dfs_compute_reverse_finish (depth_first_search_ds
);
53 /* Mark the back edges in DFS traversal.
54 Return nonzero if a loop (natural or otherwise) is present.
55 Inspired by Depth_First_Search_PP described in:
57 Advanced Compiler Design and Implementation
61 and heavily borrowed from pre_and_rev_post_order_compute. */
64 mark_dfs_back_edges (void)
75 /* Allocate the preorder and postorder number arrays. */
76 pre
= XCNEWVEC (int, last_basic_block
);
77 post
= XCNEWVEC (int, last_basic_block
);
79 /* Allocate stack for back-tracking up CFG. */
80 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
83 /* Allocate bitmap to track nodes that have been visited. */
84 visited
= sbitmap_alloc (last_basic_block
);
86 /* None of the nodes in the CFG have been visited yet. */
87 sbitmap_zero (visited
);
89 /* Push the first edge on to the stack. */
90 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
98 /* Look at the edge on the top of the stack. */
100 src
= ei_edge (ei
)->src
;
101 dest
= ei_edge (ei
)->dest
;
102 ei_edge (ei
)->flags
&= ~EDGE_DFS_BACK
;
104 /* Check if the edge destination has been visited yet. */
105 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
107 /* Mark that we have visited the destination. */
108 SET_BIT (visited
, dest
->index
);
110 pre
[dest
->index
] = prenum
++;
111 if (EDGE_COUNT (dest
->succs
) > 0)
113 /* Since the DEST node has been visited for the first
114 time, check its successors. */
115 stack
[sp
++] = ei_start (dest
->succs
);
118 post
[dest
->index
] = postnum
++;
122 if (dest
!= EXIT_BLOCK_PTR
&& src
!= ENTRY_BLOCK_PTR
123 && pre
[src
->index
] >= pre
[dest
->index
]
124 && post
[dest
->index
] == 0)
125 ei_edge (ei
)->flags
|= EDGE_DFS_BACK
, found
= true;
127 if (ei_one_before_end_p (ei
) && src
!= ENTRY_BLOCK_PTR
)
128 post
[src
->index
] = postnum
++;
130 if (!ei_one_before_end_p (ei
))
131 ei_next (&stack
[sp
- 1]);
140 sbitmap_free (visited
);
145 /* Find unreachable blocks. An unreachable block will have 0 in
146 the reachable bit in block->flags. A nonzero value indicates the
147 block is reachable. */
150 find_unreachable_blocks (void)
154 basic_block
*tos
, *worklist
, bb
;
156 tos
= worklist
= XNEWVEC (basic_block
, n_basic_blocks
);
158 /* Clear all the reachability flags. */
161 bb
->flags
&= ~BB_REACHABLE
;
163 /* Add our starting points to the worklist. Almost always there will
164 be only one. It isn't inconceivable that we might one day directly
165 support Fortran alternate entry points. */
167 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
171 /* Mark the block reachable. */
172 e
->dest
->flags
|= BB_REACHABLE
;
175 /* Iterate: find everything reachable from what we've already seen. */
177 while (tos
!= worklist
)
179 basic_block b
= *--tos
;
181 FOR_EACH_EDGE (e
, ei
, b
->succs
)
183 basic_block dest
= e
->dest
;
185 if (!(dest
->flags
& BB_REACHABLE
))
188 dest
->flags
|= BB_REACHABLE
;
196 /* Functions to access an edge list with a vector representation.
197 Enough data is kept such that given an index number, the
198 pred and succ that edge represents can be determined, or
199 given a pred and a succ, its index number can be returned.
200 This allows algorithms which consume a lot of memory to
201 represent the normally full matrix of edge (pred,succ) with a
202 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
203 wasted space in the client code due to sparse flow graphs. */
205 /* This functions initializes the edge list. Basically the entire
206 flowgraph is processed, and all edges are assigned a number,
207 and the data structure is filled in. */
210 create_edge_list (void)
212 struct edge_list
*elist
;
218 /* Determine the number of edges in the flow graph by counting successor
219 edges on each basic block. */
221 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
223 num_edges
+= EDGE_COUNT (bb
->succs
);
226 elist
= XNEW (struct edge_list
);
227 elist
->num_edges
= num_edges
;
228 elist
->index_to_edge
= XNEWVEC (edge
, num_edges
);
232 /* Follow successors of blocks, and register these edges. */
233 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
234 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
235 elist
->index_to_edge
[num_edges
++] = e
;
240 /* This function free's memory associated with an edge list. */
243 free_edge_list (struct edge_list
*elist
)
247 free (elist
->index_to_edge
);
252 /* This function provides debug output showing an edge list. */
255 print_edge_list (FILE *f
, struct edge_list
*elist
)
259 fprintf (f
, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
260 n_basic_blocks
, elist
->num_edges
);
262 for (x
= 0; x
< elist
->num_edges
; x
++)
264 fprintf (f
, " %-4d - edge(", x
);
265 if (INDEX_EDGE_PRED_BB (elist
, x
) == ENTRY_BLOCK_PTR
)
266 fprintf (f
, "entry,");
268 fprintf (f
, "%d,", INDEX_EDGE_PRED_BB (elist
, x
)->index
);
270 if (INDEX_EDGE_SUCC_BB (elist
, x
) == EXIT_BLOCK_PTR
)
271 fprintf (f
, "exit)\n");
273 fprintf (f
, "%d)\n", INDEX_EDGE_SUCC_BB (elist
, x
)->index
);
277 /* This function provides an internal consistency check of an edge list,
278 verifying that all edges are present, and that there are no
282 verify_edge_list (FILE *f
, struct edge_list
*elist
)
284 int pred
, succ
, index
;
286 basic_block bb
, p
, s
;
289 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
291 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
293 pred
= e
->src
->index
;
294 succ
= e
->dest
->index
;
295 index
= EDGE_INDEX (elist
, e
->src
, e
->dest
);
296 if (index
== EDGE_INDEX_NO_EDGE
)
298 fprintf (f
, "*p* No index for edge from %d to %d\n", pred
, succ
);
302 if (INDEX_EDGE_PRED_BB (elist
, index
)->index
!= pred
)
303 fprintf (f
, "*p* Pred for index %d should be %d not %d\n",
304 index
, pred
, INDEX_EDGE_PRED_BB (elist
, index
)->index
);
305 if (INDEX_EDGE_SUCC_BB (elist
, index
)->index
!= succ
)
306 fprintf (f
, "*p* Succ for index %d should be %d not %d\n",
307 index
, succ
, INDEX_EDGE_SUCC_BB (elist
, index
)->index
);
311 /* We've verified that all the edges are in the list, now lets make sure
312 there are no spurious edges in the list. This is an expensive check! */
314 FOR_BB_BETWEEN (p
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
315 FOR_BB_BETWEEN (s
, ENTRY_BLOCK_PTR
->next_bb
, NULL
, next_bb
)
319 FOR_EACH_EDGE (e
, ei
, p
->succs
)
326 FOR_EACH_EDGE (e
, ei
, s
->preds
)
333 if (EDGE_INDEX (elist
, p
, s
)
334 == EDGE_INDEX_NO_EDGE
&& found_edge
!= 0)
335 fprintf (f
, "*** Edge (%d, %d) appears to not have an index\n",
337 if (EDGE_INDEX (elist
, p
, s
)
338 != EDGE_INDEX_NO_EDGE
&& found_edge
== 0)
339 fprintf (f
, "*** Edge (%d, %d) has index %d, but there is no edge\n",
340 p
->index
, s
->index
, EDGE_INDEX (elist
, p
, s
));
344 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
345 If no such edge exists, return NULL. */
348 find_edge (basic_block pred
, basic_block succ
)
353 if (EDGE_COUNT (pred
->succs
) <= EDGE_COUNT (succ
->preds
))
355 FOR_EACH_EDGE (e
, ei
, pred
->succs
)
361 FOR_EACH_EDGE (e
, ei
, succ
->preds
)
369 /* This routine will determine what, if any, edge there is between
370 a specified predecessor and successor. */
373 find_edge_index (struct edge_list
*edge_list
, basic_block pred
, basic_block succ
)
377 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
378 if (INDEX_EDGE_PRED_BB (edge_list
, x
) == pred
379 && INDEX_EDGE_SUCC_BB (edge_list
, x
) == succ
)
382 return (EDGE_INDEX_NO_EDGE
);
385 /* This routine will remove any fake predecessor edges for a basic block.
386 When the edge is removed, it is also removed from whatever successor
390 remove_fake_predecessors (basic_block bb
)
395 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
397 if ((e
->flags
& EDGE_FAKE
) == EDGE_FAKE
)
404 /* This routine will remove all fake edges from the flow graph. If
405 we remove all fake successors, it will automatically remove all
406 fake predecessors. */
409 remove_fake_edges (void)
413 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
->next_bb
, NULL
, next_bb
)
414 remove_fake_predecessors (bb
);
417 /* This routine will remove all fake edges to the EXIT_BLOCK. */
420 remove_fake_exit_edges (void)
422 remove_fake_predecessors (EXIT_BLOCK_PTR
);
426 /* This function will add a fake edge between any block which has no
427 successors, and the exit block. Some data flow equations require these
431 add_noreturn_fake_exit_edges (void)
436 if (EDGE_COUNT (bb
->succs
) == 0)
437 make_single_succ_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
440 /* This function adds a fake edge between any infinite loops to the
441 exit block. Some optimizations require a path from each node to
444 See also Morgan, Figure 3.10, pp. 82-83.
446 The current implementation is ugly, not attempting to minimize the
447 number of inserted fake edges. To reduce the number of fake edges
448 to insert, add fake edges from _innermost_ loops containing only
449 nodes not reachable from the exit block. */
452 connect_infinite_loops_to_exit (void)
454 basic_block unvisited_block
= EXIT_BLOCK_PTR
;
455 struct depth_first_search_dsS dfs_ds
;
457 /* Perform depth-first search in the reverse graph to find nodes
458 reachable from the exit block. */
459 flow_dfs_compute_reverse_init (&dfs_ds
);
460 flow_dfs_compute_reverse_add_bb (&dfs_ds
, EXIT_BLOCK_PTR
);
462 /* Repeatedly add fake edges, updating the unreachable nodes. */
465 unvisited_block
= flow_dfs_compute_reverse_execute (&dfs_ds
,
467 if (!unvisited_block
)
470 make_edge (unvisited_block
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
471 flow_dfs_compute_reverse_add_bb (&dfs_ds
, unvisited_block
);
474 flow_dfs_compute_reverse_finish (&dfs_ds
);
478 /* Compute reverse top sort order. This is computing a post order
479 numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then
480 ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
481 true, unreachable blocks are deleted. */
484 post_order_compute (int *post_order
, bool include_entry_exit
,
485 bool delete_unreachable
)
487 edge_iterator
*stack
;
489 int post_order_num
= 0;
493 if (include_entry_exit
)
494 post_order
[post_order_num
++] = EXIT_BLOCK
;
496 /* Allocate stack for back-tracking up CFG. */
497 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
500 /* Allocate bitmap to track nodes that have been visited. */
501 visited
= sbitmap_alloc (last_basic_block
);
503 /* None of the nodes in the CFG have been visited yet. */
504 sbitmap_zero (visited
);
506 /* Push the first edge on to the stack. */
507 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
515 /* Look at the edge on the top of the stack. */
517 src
= ei_edge (ei
)->src
;
518 dest
= ei_edge (ei
)->dest
;
520 /* Check if the edge destination has been visited yet. */
521 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
523 /* Mark that we have visited the destination. */
524 SET_BIT (visited
, dest
->index
);
526 if (EDGE_COUNT (dest
->succs
) > 0)
527 /* Since the DEST node has been visited for the first
528 time, check its successors. */
529 stack
[sp
++] = ei_start (dest
->succs
);
531 post_order
[post_order_num
++] = dest
->index
;
535 if (ei_one_before_end_p (ei
) && src
!= ENTRY_BLOCK_PTR
)
536 post_order
[post_order_num
++] = src
->index
;
538 if (!ei_one_before_end_p (ei
))
539 ei_next (&stack
[sp
- 1]);
545 if (include_entry_exit
)
547 post_order
[post_order_num
++] = ENTRY_BLOCK
;
548 count
= post_order_num
;
551 count
= post_order_num
+ 2;
553 /* Delete the unreachable blocks if some were found and we are
554 supposed to do it. */
555 if (delete_unreachable
&& (count
!= n_basic_blocks
))
559 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
; b
= next_bb
)
561 next_bb
= b
->next_bb
;
563 if (!(TEST_BIT (visited
, b
->index
)))
564 delete_basic_block (b
);
567 tidy_fallthru_edges ();
571 sbitmap_free (visited
);
572 return post_order_num
;
576 /* Helper routine for inverted_post_order_compute.
577 BB has to belong to a region of CFG
578 unreachable by inverted traversal from the exit.
579 i.e. there's no control flow path from ENTRY to EXIT
580 that contains this BB.
581 This can happen in two cases - if there's an infinite loop
582 or if there's a block that has no successor
583 (call to a function with no return).
584 Some RTL passes deal with this condition by
585 calling connect_infinite_loops_to_exit () and/or
586 add_noreturn_fake_exit_edges ().
587 However, those methods involve modifying the CFG itself
588 which may not be desirable.
589 Hence, we deal with the infinite loop/no return cases
590 by identifying a unique basic block that can reach all blocks
591 in such a region by inverted traversal.
592 This function returns a basic block that guarantees
593 that all blocks in the region are reachable
594 by starting an inverted traversal from the returned block. */
597 dfs_find_deadend (basic_block bb
)
599 sbitmap visited
= sbitmap_alloc (last_basic_block
);
600 sbitmap_zero (visited
);
604 SET_BIT (visited
, bb
->index
);
605 if (EDGE_COUNT (bb
->succs
) == 0
606 || TEST_BIT (visited
, EDGE_SUCC (bb
, 0)->dest
->index
))
608 sbitmap_free (visited
);
612 bb
= EDGE_SUCC (bb
, 0)->dest
;
619 /* Compute the reverse top sort order of the inverted CFG
620 i.e. starting from the exit block and following the edges backward
621 (from successors to predecessors).
622 This ordering can be used for forward dataflow problems among others.
624 This function assumes that all blocks in the CFG are reachable
625 from the ENTRY (but not necessarily from EXIT).
627 If there's an infinite loop,
628 a simple inverted traversal starting from the blocks
629 with no successors can't visit all blocks.
630 To solve this problem, we first do inverted traversal
631 starting from the blocks with no successor.
632 And if there's any block left that's not visited by the regular
633 inverted traversal from EXIT,
634 those blocks are in such problematic region.
635 Among those, we find one block that has
636 any visited predecessor (which is an entry into such a region),
637 and start looking for a "dead end" from that block
638 and do another inverted traversal from that block. */
641 inverted_post_order_compute (int *post_order
)
644 edge_iterator
*stack
;
646 int post_order_num
= 0;
649 /* Allocate stack for back-tracking up CFG. */
650 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
653 /* Allocate bitmap to track nodes that have been visited. */
654 visited
= sbitmap_alloc (last_basic_block
);
656 /* None of the nodes in the CFG have been visited yet. */
657 sbitmap_zero (visited
);
659 /* Put all blocks that have no successor into the initial work list. */
661 if (EDGE_COUNT (bb
->succs
) == 0)
663 /* Push the initial edge on to the stack. */
664 if (EDGE_COUNT (bb
->preds
) > 0)
666 stack
[sp
++] = ei_start (bb
->preds
);
667 SET_BIT (visited
, bb
->index
);
673 bool has_unvisited_bb
= false;
675 /* The inverted traversal loop. */
681 /* Look at the edge on the top of the stack. */
683 bb
= ei_edge (ei
)->dest
;
684 pred
= ei_edge (ei
)->src
;
686 /* Check if the predecessor has been visited yet. */
687 if (! TEST_BIT (visited
, pred
->index
))
689 /* Mark that we have visited the destination. */
690 SET_BIT (visited
, pred
->index
);
692 if (EDGE_COUNT (pred
->preds
) > 0)
693 /* Since the predecessor node has been visited for the first
694 time, check its predecessors. */
695 stack
[sp
++] = ei_start (pred
->preds
);
697 post_order
[post_order_num
++] = pred
->index
;
701 if (bb
!= EXIT_BLOCK_PTR
&& ei_one_before_end_p (ei
))
702 post_order
[post_order_num
++] = bb
->index
;
704 if (!ei_one_before_end_p (ei
))
705 ei_next (&stack
[sp
- 1]);
711 /* Detect any infinite loop and activate the kludge.
712 Note that this doesn't check EXIT_BLOCK itself
713 since EXIT_BLOCK is always added after the outer do-while loop. */
714 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, EXIT_BLOCK_PTR
, next_bb
)
715 if (!TEST_BIT (visited
, bb
->index
))
717 has_unvisited_bb
= true;
719 if (EDGE_COUNT (bb
->preds
) > 0)
723 basic_block visited_pred
= NULL
;
725 /* Find an already visited predecessor. */
726 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
728 if (TEST_BIT (visited
, e
->src
->index
))
729 visited_pred
= e
->src
;
734 basic_block be
= dfs_find_deadend (bb
);
735 gcc_assert (be
!= NULL
);
736 SET_BIT (visited
, be
->index
);
737 stack
[sp
++] = ei_start (be
->preds
);
743 if (has_unvisited_bb
&& sp
== 0)
745 /* No blocks are reachable from EXIT at all.
746 Find a dead-end from the ENTRY, and restart the iteration. */
747 basic_block be
= dfs_find_deadend (ENTRY_BLOCK_PTR
);
748 gcc_assert (be
!= NULL
);
749 SET_BIT (visited
, be
->index
);
750 stack
[sp
++] = ei_start (be
->preds
);
753 /* The only case the below while fires is
754 when there's an infinite loop. */
758 /* EXIT_BLOCK is always included. */
759 post_order
[post_order_num
++] = EXIT_BLOCK
;
762 sbitmap_free (visited
);
763 return post_order_num
;
766 /* Compute the depth first search order and store in the array
767 PRE_ORDER if nonzero, marking the nodes visited in VISITED. If
768 REV_POST_ORDER is nonzero, return the reverse completion number for each
769 node. Returns the number of nodes visited. A depth first search
770 tries to get as far away from the starting point as quickly as
773 pre_order is a really a preorder numbering of the graph.
774 rev_post_order is really a reverse postorder numbering of the graph.
778 pre_and_rev_post_order_compute (int *pre_order
, int *rev_post_order
,
779 bool include_entry_exit
)
781 edge_iterator
*stack
;
783 int pre_order_num
= 0;
784 int rev_post_order_num
= n_basic_blocks
- 1;
787 /* Allocate stack for back-tracking up CFG. */
788 stack
= XNEWVEC (edge_iterator
, n_basic_blocks
+ 1);
791 if (include_entry_exit
)
794 pre_order
[pre_order_num
] = ENTRY_BLOCK
;
797 rev_post_order
[rev_post_order_num
--] = ENTRY_BLOCK
;
800 rev_post_order_num
-= NUM_FIXED_BLOCKS
;
802 /* Allocate bitmap to track nodes that have been visited. */
803 visited
= sbitmap_alloc (last_basic_block
);
805 /* None of the nodes in the CFG have been visited yet. */
806 sbitmap_zero (visited
);
808 /* Push the first edge on to the stack. */
809 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR
->succs
);
817 /* Look at the edge on the top of the stack. */
819 src
= ei_edge (ei
)->src
;
820 dest
= ei_edge (ei
)->dest
;
822 /* Check if the edge destination has been visited yet. */
823 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
825 /* Mark that we have visited the destination. */
826 SET_BIT (visited
, dest
->index
);
829 pre_order
[pre_order_num
] = dest
->index
;
833 if (EDGE_COUNT (dest
->succs
) > 0)
834 /* Since the DEST node has been visited for the first
835 time, check its successors. */
836 stack
[sp
++] = ei_start (dest
->succs
);
837 else if (rev_post_order
)
838 /* There are no successors for the DEST node so assign
839 its reverse completion number. */
840 rev_post_order
[rev_post_order_num
--] = dest
->index
;
844 if (ei_one_before_end_p (ei
) && src
!= ENTRY_BLOCK_PTR
846 /* There are no more successors for the SRC node
847 so assign its reverse completion number. */
848 rev_post_order
[rev_post_order_num
--] = src
->index
;
850 if (!ei_one_before_end_p (ei
))
851 ei_next (&stack
[sp
- 1]);
858 sbitmap_free (visited
);
860 if (include_entry_exit
)
863 pre_order
[pre_order_num
] = EXIT_BLOCK
;
866 rev_post_order
[rev_post_order_num
--] = EXIT_BLOCK
;
867 /* The number of nodes visited should be the number of blocks. */
868 gcc_assert (pre_order_num
== n_basic_blocks
);
871 /* The number of nodes visited should be the number of blocks minus
872 the entry and exit blocks which are not visited here. */
873 gcc_assert (pre_order_num
== n_basic_blocks
- NUM_FIXED_BLOCKS
);
875 return pre_order_num
;
878 /* Compute the depth first search order on the _reverse_ graph and
879 store in the array DFS_ORDER, marking the nodes visited in VISITED.
880 Returns the number of nodes visited.
882 The computation is split into three pieces:
884 flow_dfs_compute_reverse_init () creates the necessary data
887 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
888 structures. The block will start the search.
890 flow_dfs_compute_reverse_execute () continues (or starts) the
891 search using the block on the top of the stack, stopping when the
894 flow_dfs_compute_reverse_finish () destroys the necessary data
897 Thus, the user will probably call ..._init(), call ..._add_bb() to
898 add a beginning basic block to the stack, call ..._execute(),
899 possibly add another bb to the stack and again call ..._execute(),
900 ..., and finally call _finish(). */
902 /* Initialize the data structures used for depth-first search on the
903 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
904 added to the basic block stack. DATA is the current depth-first
905 search context. If INITIALIZE_STACK is nonzero, there is an
906 element on the stack. */
909 flow_dfs_compute_reverse_init (depth_first_search_ds data
)
911 /* Allocate stack for back-tracking up CFG. */
912 data
->stack
= XNEWVEC (basic_block
, n_basic_blocks
);
915 /* Allocate bitmap to track nodes that have been visited. */
916 data
->visited_blocks
= sbitmap_alloc (last_basic_block
);
918 /* None of the nodes in the CFG have been visited yet. */
919 sbitmap_zero (data
->visited_blocks
);
924 /* Add the specified basic block to the top of the dfs data
925 structures. When the search continues, it will start at the
929 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data
, basic_block bb
)
931 data
->stack
[data
->sp
++] = bb
;
932 SET_BIT (data
->visited_blocks
, bb
->index
);
935 /* Continue the depth-first search through the reverse graph starting with the
936 block at the stack's top and ending when the stack is empty. Visited nodes
937 are marked. Returns an unvisited basic block, or NULL if there is none
941 flow_dfs_compute_reverse_execute (depth_first_search_ds data
,
942 basic_block last_unvisited
)
950 bb
= data
->stack
[--data
->sp
];
952 /* Perform depth-first search on adjacent vertices. */
953 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
954 if (!TEST_BIT (data
->visited_blocks
, e
->src
->index
))
955 flow_dfs_compute_reverse_add_bb (data
, e
->src
);
958 /* Determine if there are unvisited basic blocks. */
959 FOR_BB_BETWEEN (bb
, last_unvisited
, NULL
, prev_bb
)
960 if (!TEST_BIT (data
->visited_blocks
, bb
->index
))
966 /* Destroy the data structures needed for depth-first search on the
970 flow_dfs_compute_reverse_finish (depth_first_search_ds data
)
973 sbitmap_free (data
->visited_blocks
);
976 /* Performs dfs search from BB over vertices satisfying PREDICATE;
977 if REVERSE, go against direction of edges. Returns number of blocks
978 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
980 dfs_enumerate_from (basic_block bb
, int reverse
,
981 bool (*predicate
) (const_basic_block
, const void *),
982 basic_block
*rslt
, int rslt_max
, const void *data
)
984 basic_block
*st
, lbb
;
988 /* A bitmap to keep track of visited blocks. Allocating it each time
989 this function is called is not possible, since dfs_enumerate_from
990 is often used on small (almost) disjoint parts of cfg (bodies of
991 loops), and allocating a large sbitmap would lead to quadratic
993 static sbitmap visited
;
994 static unsigned v_size
;
996 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
997 #define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index))
998 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
1000 /* Resize the VISITED sbitmap if necessary. */
1001 size
= last_basic_block
;
1008 visited
= sbitmap_alloc (size
);
1009 sbitmap_zero (visited
);
1012 else if (v_size
< size
)
1014 /* Ensure that we increase the size of the sbitmap exponentially. */
1015 if (2 * v_size
> size
)
1018 visited
= sbitmap_resize (visited
, size
, 0);
1022 st
= XNEWVEC (basic_block
, rslt_max
);
1023 rslt
[tv
++] = st
[sp
++] = bb
;
1032 FOR_EACH_EDGE (e
, ei
, lbb
->preds
)
1033 if (!VISITED_P (e
->src
) && predicate (e
->src
, data
))
1035 gcc_assert (tv
!= rslt_max
);
1036 rslt
[tv
++] = st
[sp
++] = e
->src
;
1037 MARK_VISITED (e
->src
);
1042 FOR_EACH_EDGE (e
, ei
, lbb
->succs
)
1043 if (!VISITED_P (e
->dest
) && predicate (e
->dest
, data
))
1045 gcc_assert (tv
!= rslt_max
);
1046 rslt
[tv
++] = st
[sp
++] = e
->dest
;
1047 MARK_VISITED (e
->dest
);
1052 for (sp
= 0; sp
< tv
; sp
++)
1053 UNMARK_VISITED (rslt
[sp
]);
1056 #undef UNMARK_VISITED
1061 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1063 This algorithm can be found in Timothy Harvey's PhD thesis, at
1064 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1065 dominance algorithms.
1067 First, we identify each join point, j (any node with more than one
1068 incoming edge is a join point).
1070 We then examine each predecessor, p, of j and walk up the dominator tree
1073 We stop the walk when we reach j's immediate dominator - j is in the
1074 dominance frontier of each of the nodes in the walk, except for j's
1075 immediate dominator. Intuitively, all of the rest of j's dominators are
1076 shared by j's predecessors as well.
1077 Since they dominate j, they will not have j in their dominance frontiers.
1079 The number of nodes touched by this algorithm is equal to the size
1080 of the dominance frontiers, no more, no less.
1085 compute_dominance_frontiers_1 (bitmap_head
*frontiers
)
1092 if (EDGE_COUNT (b
->preds
) >= 2)
1094 FOR_EACH_EDGE (p
, ei
, b
->preds
)
1096 basic_block runner
= p
->src
;
1098 if (runner
== ENTRY_BLOCK_PTR
)
1101 domsb
= get_immediate_dominator (CDI_DOMINATORS
, b
);
1102 while (runner
!= domsb
)
1104 if (!bitmap_set_bit (&frontiers
[runner
->index
],
1107 runner
= get_immediate_dominator (CDI_DOMINATORS
,
1117 compute_dominance_frontiers (bitmap_head
*frontiers
)
1119 timevar_push (TV_DOM_FRONTIERS
);
1121 compute_dominance_frontiers_1 (frontiers
);
1123 timevar_pop (TV_DOM_FRONTIERS
);
1126 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
1127 return a bitmap with all the blocks in the iterated dominance
1128 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
1129 frontier information as returned by compute_dominance_frontiers.
1131 The resulting set of blocks are the potential sites where PHI nodes
1132 are needed. The caller is responsible for freeing the memory
1133 allocated for the return value. */
1136 compute_idf (bitmap def_blocks
, bitmap_head
*dfs
)
1139 unsigned bb_index
, i
;
1140 VEC(int,heap
) *work_stack
;
1141 bitmap phi_insertion_points
;
1143 work_stack
= VEC_alloc (int, heap
, n_basic_blocks
);
1144 phi_insertion_points
= BITMAP_ALLOC (NULL
);
1146 /* Seed the work list with all the blocks in DEF_BLOCKS. We use
1147 VEC_quick_push here for speed. This is safe because we know that
1148 the number of definition blocks is no greater than the number of
1149 basic blocks, which is the initial capacity of WORK_STACK. */
1150 EXECUTE_IF_SET_IN_BITMAP (def_blocks
, 0, bb_index
, bi
)
1151 VEC_quick_push (int, work_stack
, bb_index
);
1153 /* Pop a block off the worklist, add every block that appears in
1154 the original block's DF that we have not already processed to
1155 the worklist. Iterate until the worklist is empty. Blocks
1156 which are added to the worklist are potential sites for
1158 while (VEC_length (int, work_stack
) > 0)
1160 bb_index
= VEC_pop (int, work_stack
);
1162 /* Since the registration of NEW -> OLD name mappings is done
1163 separately from the call to update_ssa, when updating the SSA
1164 form, the basic blocks where new and/or old names are defined
1165 may have disappeared by CFG cleanup calls. In this case,
1166 we may pull a non-existing block from the work stack. */
1167 gcc_assert (bb_index
< (unsigned) last_basic_block
);
1169 EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs
[bb_index
], phi_insertion_points
,
1172 /* Use a safe push because if there is a definition of VAR
1173 in every basic block, then WORK_STACK may eventually have
1174 more than N_BASIC_BLOCK entries. */
1175 VEC_safe_push (int, heap
, work_stack
, i
);
1176 bitmap_set_bit (phi_insertion_points
, i
);
1180 VEC_free (int, heap
, work_stack
);
1182 return phi_insertion_points
;
1185 /* Intersection and union of preds/succs for sbitmap based data flow
1186 solvers. All four functions defined below take the same arguments:
1187 B is the basic block to perform the operation for. DST is the
1188 target sbitmap, i.e. the result. SRC is an sbitmap vector of size
1189 last_basic_block so that it can be indexed with basic block indices.
1190 DST may be (but does not have to be) SRC[B->index]. */
1192 /* Set the bitmap DST to the intersection of SRC of successors of
1196 sbitmap_intersection_of_succs (sbitmap dst
, sbitmap
*src
,
1199 unsigned int set_size
= dst
->size
;
1203 gcc_assert (!dst
->popcount
);
1205 for (e
= NULL
, ix
= 0; ix
< EDGE_COUNT (b
->succs
); ix
++)
1207 e
= EDGE_SUCC (b
, ix
);
1208 if (e
->dest
== EXIT_BLOCK_PTR
)
1211 sbitmap_copy (dst
, src
[e
->dest
->index
]);
1218 for (++ix
; ix
< EDGE_COUNT (b
->succs
); ix
++)
1221 SBITMAP_ELT_TYPE
*p
, *r
;
1223 e
= EDGE_SUCC (b
, ix
);
1224 if (e
->dest
== EXIT_BLOCK_PTR
)
1227 p
= src
[e
->dest
->index
]->elms
;
1229 for (i
= 0; i
< set_size
; i
++)
1234 /* Set the bitmap DST to the intersection of SRC of predecessors of
1238 sbitmap_intersection_of_preds (sbitmap dst
, sbitmap
*src
,
1241 unsigned int set_size
= dst
->size
;
1245 gcc_assert (!dst
->popcount
);
1247 for (e
= NULL
, ix
= 0; ix
< EDGE_COUNT (b
->preds
); ix
++)
1249 e
= EDGE_PRED (b
, ix
);
1250 if (e
->src
== ENTRY_BLOCK_PTR
)
1253 sbitmap_copy (dst
, src
[e
->src
->index
]);
1260 for (++ix
; ix
< EDGE_COUNT (b
->preds
); ix
++)
1263 SBITMAP_ELT_TYPE
*p
, *r
;
1265 e
= EDGE_PRED (b
, ix
);
1266 if (e
->src
== ENTRY_BLOCK_PTR
)
1269 p
= src
[e
->src
->index
]->elms
;
1271 for (i
= 0; i
< set_size
; i
++)
1276 /* Set the bitmap DST to the union of SRC of successors of
1280 sbitmap_union_of_succs (sbitmap dst
, sbitmap
*src
,
1283 unsigned int set_size
= dst
->size
;
1287 gcc_assert (!dst
->popcount
);
1289 for (ix
= 0; ix
< EDGE_COUNT (b
->succs
); ix
++)
1291 e
= EDGE_SUCC (b
, ix
);
1292 if (e
->dest
== EXIT_BLOCK_PTR
)
1295 sbitmap_copy (dst
, src
[e
->dest
->index
]);
1299 if (ix
== EDGE_COUNT (b
->succs
))
1302 for (ix
++; ix
< EDGE_COUNT (b
->succs
); ix
++)
1305 SBITMAP_ELT_TYPE
*p
, *r
;
1307 e
= EDGE_SUCC (b
, ix
);
1308 if (e
->dest
== EXIT_BLOCK_PTR
)
1311 p
= src
[e
->dest
->index
]->elms
;
1313 for (i
= 0; i
< set_size
; i
++)
1318 /* Set the bitmap DST to the union of SRC of predecessors of
1322 sbitmap_union_of_preds (sbitmap dst
, sbitmap
*src
,
1325 unsigned int set_size
= dst
->size
;
1329 gcc_assert (!dst
->popcount
);
1331 for (ix
= 0; ix
< EDGE_COUNT (b
->preds
); ix
++)
1333 e
= EDGE_PRED (b
, ix
);
1334 if (e
->src
== ENTRY_BLOCK_PTR
)
1337 sbitmap_copy (dst
, src
[e
->src
->index
]);
1341 if (ix
== EDGE_COUNT (b
->preds
))
1344 for (ix
++; ix
< EDGE_COUNT (b
->preds
); ix
++)
1347 SBITMAP_ELT_TYPE
*p
, *r
;
1349 e
= EDGE_PRED (b
, ix
);
1350 if (e
->src
== ENTRY_BLOCK_PTR
)
1353 p
= src
[e
->src
->index
]->elms
;
1355 for (i
= 0; i
< set_size
; i
++)