* ChangeLog: Follow spelling conventions.
[official-gcc.git] / gcc / config / dsp16xx / dsp16xx.h
blobc530a02debc0b8f33aba62f7a1eb32d6b2a222d1
1 /* Definitions of target machine for GNU compiler. AT&T DSP1600.
2 Copyright (C) 1994, 1995, 1996, 1997, 1998, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Michael Collison (collison@isisinc.net).
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 extern const char *low_reg_names[];
24 extern const char *text_seg_name;
25 extern const char *rsect_text;
26 extern const char *data_seg_name;
27 extern const char *rsect_data;
28 extern const char *bss_seg_name;
29 extern const char *rsect_bss;
30 extern const char *const_seg_name;
31 extern const char *rsect_const;
32 extern const char *chip_name;
33 extern const char *save_chip_name;
34 extern GTY(()) rtx dsp16xx_compare_op0;
35 extern GTY(()) rtx dsp16xx_compare_op1;
36 extern GTY(()) rtx dsp16xx_addhf3_libcall;
37 extern GTY(()) rtx dsp16xx_subhf3_libcall;
38 extern GTY(()) rtx dsp16xx_mulhf3_libcall;
39 extern GTY(()) rtx dsp16xx_divhf3_libcall;
40 extern GTY(()) rtx dsp16xx_cmphf3_libcall;
41 extern GTY(()) rtx dsp16xx_fixhfhi2_libcall;
42 extern GTY(()) rtx dsp16xx_floathihf2_libcall;
43 extern GTY(()) rtx dsp16xx_neghf2_libcall;
44 extern GTY(()) rtx dsp16xx_mulhi3_libcall;
45 extern GTY(()) rtx dsp16xx_udivqi3_libcall;
46 extern GTY(()) rtx dsp16xx_udivhi3_libcall;
47 extern GTY(()) rtx dsp16xx_divqi3_libcall;
48 extern GTY(()) rtx dsp16xx_divhi3_libcall;
49 extern GTY(()) rtx dsp16xx_modqi3_libcall;
50 extern GTY(()) rtx dsp16xx_modhi3_libcall;
51 extern GTY(()) rtx dsp16xx_umodqi3_libcall;
52 extern GTY(()) rtx dsp16xx_umodhi3_libcall;
54 extern GTY(()) rtx dsp16xx_ashrhi3_libcall;
55 extern GTY(()) rtx dsp16xx_ashlhi3_libcall;
56 extern GTY(()) rtx dsp16xx_lshrhi3_libcall;
58 /* RUN-TIME TARGET SPECIFICATION */
59 #define DSP16XX 1
61 /* Name of the AT&T assembler */
63 #define ASM_PROG "as1600"
65 /* Name of the AT&T linker */
67 #define LD_PROG "ld1600"
69 /* Define which switches take word arguments */
70 #define WORD_SWITCH_TAKES_ARG(STR) \
71 (!strcmp (STR, "ifile") ? 1 : \
74 #undef CC1_SPEC
75 #define CC1_SPEC "%{!O*:-O}"
77 /* Define this as a spec to call the AT&T assembler */
79 #define CROSS_ASM_SPEC "%{!S:as1600 %a %i\n }"
81 /* Define this as a spec to call the AT&T linker */
83 #define CROSS_LINK_SPEC "%{!c:%{!M:%{!MM:%{!E:%{!S:ld1600 %l %X %{o*} %{m} \
84 %{r} %{s} %{t} %{u*} %{x}\
85 %{!A:%{!nostdlib:%{!nostartfiles:%S}}} %{static:}\
86 %{L*} %D %o %{!nostdlib:-le1600 %L -le1600}\
87 %{!A:%{!nostdlib:%{!nostartfiles:%E}}}\n }}}}}"
89 /* Nothing complicated here, just link with libc.a under normal
90 circumstances */
91 #define LIB_SPEC "-lc"
93 /* Specify the startup file to link with. */
94 #define STARTFILE_SPEC "%{mmap1:m1_crt0.o%s} \
95 %{mmap2:m2_crt0.o%s} \
96 %{mmap3:m3_crt0.o%s} \
97 %{mmap4:m4_crt0.o%s} \
98 %{!mmap*: %{!ifile*: m4_crt0.o%s} %{ifile*: \
99 %ea -ifile option requires a -map option}}"
101 /* Specify the end file to link with */
103 #define ENDFILE_SPEC "%{mmap1:m1_crtn.o%s} \
104 %{mmap2:m2_crtn.o%s} \
105 %{mmap3:m3_crtn.o%s} \
106 %{mmap4:m4_crtn.o%s} \
107 %{!mmap*: %{!ifile*: m4_crtn.o%s} %{ifile*: \
108 %ea -ifile option requires a -map option}}"
111 /* Tell gcc where to look for the startfile */
112 /*#define STANDARD_STARTFILE_PREFIX "/d1600/lib"*/
114 /* Tell gcc where to look for it's executables */
115 /*#define STANDARD_EXEC_PREFIX "/d1600/bin"*/
117 /* Command line options to the AT&T assembler */
118 #define ASM_SPEC "%{V} %{v:%{!V:-V}} %{g*:-g}"
120 /* Command line options for the AT&T linker */
122 #define LINK_SPEC "%{V} %{v:%{!V:-V}} %{minit:-i} \
123 %{!ifile*:%{mmap1:m1_deflt.if%s} \
124 %{mmap2:m2_deflt.if%s} \
125 %{mmap3:m3_deflt.if%s} \
126 %{mmap4:m4_deflt.if%s} \
127 %{!mmap*:m4_deflt.if%s}} \
128 %{ifile*:%*} %{r}"
130 /* Include path is determined from the environment variable */
131 #define INCLUDE_DEFAULTS \
133 { 0, 0, 0 } \
136 /* Names to predefine in the preprocessor for this target machine. */
137 #define TARGET_CPU_CPP_BUILTINS() \
138 do \
140 builtin_define_std ("dsp1600"); \
141 builtin_define_std ("DSP1600"); \
143 while (0)
145 #ifdef __MSDOS__
146 # define TARGET_OS_CPP_BUILTINS() \
147 do \
149 builtin_define_std ("MSDOS"); \
151 while (0)
152 #else
153 # define TARGET_OS_CPP_BUILTINS() \
154 do \
156 builtin_define_std ("dsp1610"); \
157 builtin_define_std ("DSP1610"); \
159 while (0)
160 #endif
162 /* Run-time compilation parameters selecting different hardware subsets. */
164 extern int target_flags;
166 /* Macros used in the machine description to test the flags. */
168 #define MASK_REGPARM 0x00000001 /* Pass parameters in registers */
169 #define MASK_NEAR_CALL 0x00000002 /* The call is on the same 4k page */
170 #define MASK_NEAR_JUMP 0x00000004 /* The jump is on the same 4k page */
171 #define MASK_BMU 0x00000008 /* Use the 'bmu' shift instructions */
172 #define MASK_MAP1 0x00000040 /* Link with map1 */
173 #define MASK_MAP2 0x00000080 /* Link with map2 */
174 #define MASK_MAP3 0x00000100 /* Link with map3 */
175 #define MASK_MAP4 0x00000200 /* Link with map4 */
176 #define MASK_YBASE_HIGH 0x00000400 /* The ybase register window starts high */
177 #define MASK_INIT 0x00000800 /* Have the linker generate tables to
178 initialize data at startup */
179 #define MASK_RESERVE_YBASE 0x00002000 /* Reserved the ybase registers */
180 #define MASK_DEBUG 0x00004000 /* Debugging turned on*/
181 #define MASK_SAVE_TEMPS 0x00008000 /* Save temps. option seen */
183 /* Compile passing first two args in regs 0 and 1.
184 This exists only to test compiler features that will
185 be needed for RISC chips. It is not usable
186 and is not intended to be usable on this cpu. */
187 #define TARGET_REGPARM (target_flags & MASK_REGPARM)
189 /* The call is on the same 4k page, so instead of loading
190 the 'pt' register and branching, we can branch directly */
192 #define TARGET_NEAR_CALL (target_flags & MASK_NEAR_CALL)
194 /* The jump is on the same 4k page, so instead of loading
195 the 'pt' register and branching, we can branch directly */
197 #define TARGET_NEAR_JUMP (target_flags & MASK_NEAR_JUMP)
199 /* Generate shift instructions to use the 1610 Bit Manipulation
200 Unit. */
201 #define TARGET_BMU (target_flags & MASK_BMU)
203 #define TARGET_YBASE_HIGH (target_flags & MASK_YBASE_HIGH)
205 /* Direct the linker to output extra info for initialized data */
206 #define TARGET_MASK_INIT (target_flags & MASK_INIT)
208 #define TARGET_INLINE_MULT (target_flags & MASK_INLINE_MULT)
210 /* Reserve the ybase registers *(0) - *(31) */
211 #define TARGET_RESERVE_YBASE (target_flags & MASK_RESERVE_YBASE)
213 /* We turn this option on internally after seeing "-g" */
214 #define TARGET_DEBUG (target_flags & MASK_DEBUG)
216 /* We turn this option on internally after seeing "-save-temps */
217 #define TARGET_SAVE_TEMPS (target_flags & MASK_SAVE_TEMPS)
220 /* Macro to define tables used to set the flags.
221 This is a list in braces of pairs in braces,
222 each pair being { "NAME", VALUE }
223 where VALUE is the bits to set or minus the bits to clear.
224 An empty string NAME is used to identify the default VALUE. */
227 #define TARGET_SWITCHES \
229 { "regparm", MASK_REGPARM, \
230 N_("Pass parameters in registers (default)") }, \
231 { "no-regparm", -MASK_REGPARM, \
232 N_("Don't pass parameters in registers") }, \
233 { "near-call", MASK_NEAR_JUMP, \
234 N_("Generate code for near calls") }, \
235 { "no-near-call", -MASK_NEAR_CALL, \
236 N_("Don't generate code for near calls") }, \
237 { "near-jump", MASK_NEAR_JUMP, \
238 N_("Generate code for near jumps") }, \
239 { "no-near-jump", -MASK_NEAR_JUMP, \
240 N_("Don't generate code for near jumps") }, \
241 { "bmu", MASK_BMU, \
242 N_("Generate code for a bit-manipulation unit") }, \
243 { "no-bmu", -MASK_BMU, \
244 N_("Don't generate code for a bit-manipulation unit") }, \
245 { "map1", MASK_MAP1, \
246 N_("Generate code for memory map1") }, \
247 { "map2", MASK_MAP2, \
248 N_("Generate code for memory map2") }, \
249 { "map3", MASK_MAP3, \
250 N_("Generate code for memory map3") }, \
251 { "map4", MASK_MAP4, \
252 N_("Generate code for memory map4") }, \
253 { "init", MASK_INIT, \
254 N_("Ouput extra code for initialized data") }, \
255 { "reserve-ybase", MASK_RESERVE_YBASE, \
256 N_("Don't let reg. allocator use ybase registers") }, \
257 { "debug", MASK_DEBUG, \
258 N_("Output extra debug info in Luxworks environment") }, \
259 { "save-temporaries", MASK_SAVE_TEMPS, \
260 N_("Save temp. files in Luxworks environment") }, \
261 { "", TARGET_DEFAULT, ""} \
264 /* Default target_flags if no switches are specified */
265 #ifndef TARGET_DEFAULT
266 #define TARGET_DEFAULT MASK_REGPARM|MASK_YBASE_HIGH
267 #endif
269 #define TARGET_OPTIONS \
271 { "text=", &text_seg_name, \
272 N_("Specify alternate name for text section") }, \
273 { "data=", &data_seg_name, \
274 N_("Specify alternate name for data section") }, \
275 { "bss=", &bss_seg_name, \
276 N_("Specify alternate name for bss section") }, \
277 { "const=", &const_seg_name, \
278 N_("Specify alternate name for constant section") }, \
279 { "chip=", &chip_name, \
280 N_("Specify alternate name for dsp16xx chip") }, \
283 /* Sometimes certain combinations of command options do not make sense
284 on a particular target machine. You can define a macro
285 `OVERRIDE_OPTIONS' to take account of this. This macro, if
286 defined, is executed once just after all the command options have
287 been parsed.
289 Don't use this macro to turn on various extra optimizations for
290 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
292 #define OVERRIDE_OPTIONS override_options ()
294 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
296 flag_gnu_linker = FALSE; \
298 if (LEVEL >= 2) \
300 /* The dsp16xx family has so few registers \
301 * that running the first instruction \
302 * scheduling is bad for reg. allocation \
303 * since it increases lifetimes of pseudos. \
304 * So turn of first scheduling pass. \
305 */ \
306 flag_schedule_insns = FALSE; \
310 /* STORAGE LAYOUT */
312 /* Define this if most significant bit is lowest numbered
313 in instructions that operate on numbered bit-fields.
315 #define BITS_BIG_ENDIAN 0
317 /* Define this if most significant byte of a word is the lowest numbered.
318 We define big-endian, but since the 1600 series cannot address bytes
319 it does not matter. */
320 #define BYTES_BIG_ENDIAN 1
322 /* Define this if most significant word of a multiword number is numbered.
323 For the 1600 we can decide arbitrarily since there are no machine instructions for them. */
324 #define WORDS_BIG_ENDIAN 1
326 /* number of bits in an addressable storage unit */
327 #define BITS_PER_UNIT 16
329 /* Maximum number of bits in a word. */
330 #define MAX_BITS_PER_WORD 16
332 /* Width of a word, in units (bytes). */
333 #define UNITS_PER_WORD 1
335 /* Allocation boundary (in *bits*) for storing pointers in memory. */
336 #define POINTER_BOUNDARY 16
338 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
339 #define PARM_BOUNDARY 16
341 /* Boundary (in *bits*) on which stack pointer should be aligned. */
342 #define STACK_BOUNDARY 16
344 /* Allocation boundary (in *bits*) for the code of a function. */
345 #define FUNCTION_BOUNDARY 16
347 /* Biggest alignment that any data type can require on this machine, in bits. */
348 #define BIGGEST_ALIGNMENT 16
350 /* Biggest alignment that any structure field can require on this machine, in bits */
351 #define BIGGEST_FIELD_ALIGNMENT 16
353 /* Alignment of field after `int : 0' in a structure. */
354 #define EMPTY_FIELD_BOUNDARY 16
356 /* Number of bits which any structure or union's size must be a multiple of. Each structure
357 or union's size is rounded up to a multiple of this */
358 #define STRUCTURE_SIZE_BOUNDARY 16
360 /* Define this if move instructions will actually fail to work
361 when given unaligned data. */
362 #define STRICT_ALIGNMENT 1
364 /* An integer expression for the size in bits of the largest integer machine mode that
365 should actually be used. All integer machine modes of this size or smaller can be
366 used for structures and unions with the appropriate sizes. */
367 #define MAX_FIXED_MODE_SIZE 32
369 /* LAYOUT OF SOURCE LANGUAGE DATA TYPES */
371 #define SHORT_TYPE_SIZE 16
372 #define INT_TYPE_SIZE 16
373 #define LONG_TYPE_SIZE 32
374 #define LONG_LONG_TYPE_SIZE 32
375 #define FLOAT_TYPE_SIZE 32
376 #define DOUBLE_TYPE_SIZE 32
377 #define LONG_DOUBLE_TYPE_SIZE 32
379 /* An expression whose value is 1 or 0, according to whether the type char should be
380 signed or unsigned by default. */
382 #define DEFAULT_SIGNED_CHAR 1
384 /* A C expression to determine whether to give an enum type only as many bytes
385 as it takes to represent the range of possible values of that type. A nonzero
386 value means to do that; a zero value means all enum types should be allocated
387 like int. */
389 #define DEFAULT_SHORT_ENUMS 0
391 /* A C expression for a string describing the name of the data type to use for
392 size values. */
394 #define SIZE_TYPE "unsigned int"
396 /* A C expression for a string describing the name of the data type to use for the
397 result of subtracting two pointers */
399 #define PTRDIFF_TYPE "int"
402 /* REGISTER USAGE. */
404 #define ALL_16_BIT_REGISTERS 1
406 /* Number of actual hardware registers.
407 The hardware registers are assigned numbers for the compiler
408 from 0 to FIRST_PSEUDO_REGISTER-1 */
410 #define FIRST_PSEUDO_REGISTER (REG_YBASE31 + 1)
412 /* 1 for registers that have pervasive standard uses
413 and are not available for the register allocator.
415 The registers are laid out as follows:
417 {a0,a0l,a1,a1l,x,y,yl,p,pl} - Data Arithmetic Unit
418 {r0,r1,r2,r3,j,k,ybase} - Y Space Address Arithmetic Unit
419 {pt} - X Space Address Arithmetic Unit
420 {ar0,ar1,ar2,ar3} - Bit Manipulation UNit
421 {pr} - Return Address Register
423 We reserve r2 for the Stack Pointer.
424 We specify r3 for the Frame Pointer but allow the compiler
425 to omit it when possible since we have so few pointer registers. */
427 #define REG_A0 0
428 #define REG_A0L 1
429 #define REG_A1 2
430 #define REG_A1L 3
431 #define REG_X 4
432 #define REG_Y 5
433 #define REG_YL 6
434 #define REG_PROD 7
435 #define REG_PRODL 8
436 #define REG_R0 9
437 #define REG_R1 10
438 #define REG_R2 11
439 #define REG_R3 12
440 #define REG_J 13
441 #define REG_K 14
442 #define REG_YBASE 15
443 #define REG_PT 16
444 #define REG_AR0 17
445 #define REG_AR1 18
446 #define REG_AR2 19
447 #define REG_AR3 20
448 #define REG_C0 21
449 #define REG_C1 22
450 #define REG_C2 23
451 #define REG_PR 24
452 #define REG_RB 25
453 #define REG_YBASE0 26
454 #define REG_YBASE1 27
455 #define REG_YBASE2 28
456 #define REG_YBASE3 29
457 #define REG_YBASE4 30
458 #define REG_YBASE5 31
459 #define REG_YBASE6 32
460 #define REG_YBASE7 33
461 #define REG_YBASE8 34
462 #define REG_YBASE9 35
463 #define REG_YBASE10 36
464 #define REG_YBASE11 37
465 #define REG_YBASE12 38
466 #define REG_YBASE13 39
467 #define REG_YBASE14 40
468 #define REG_YBASE15 41
469 #define REG_YBASE16 42
470 #define REG_YBASE17 43
471 #define REG_YBASE18 44
472 #define REG_YBASE19 45
473 #define REG_YBASE20 46
474 #define REG_YBASE21 47
475 #define REG_YBASE22 48
476 #define REG_YBASE23 49
477 #define REG_YBASE24 50
478 #define REG_YBASE25 51
479 #define REG_YBASE26 52
480 #define REG_YBASE27 53
481 #define REG_YBASE28 54
482 #define REG_YBASE29 55
483 #define REG_YBASE30 56
484 #define REG_YBASE31 57
486 /* Do we have an accumulator register? */
487 #define IS_ACCUM_REG(REGNO) IN_RANGE ((REGNO), REG_A0, REG_A1L)
488 #define IS_ACCUM_LOW_REG(REGNO) ((REGNO) == REG_A0L || (REGNO) == REG_A1L)
490 /* Do we have a virtual ybase register */
491 #define IS_YBASE_REGISTER_WINDOW(REGNO) ((REGNO) >= REG_YBASE0 && (REGNO) <= REG_YBASE31)
493 #define IS_YBASE_ELIGIBLE_REG(REGNO) (IS_ACCUM_REG (REGNO) || IS_ADDRESS_REGISTER(REGNO) \
494 || REGNO == REG_X || REGNO == REG_Y || REGNO == REG_YL \
495 || REGNO == REG_PROD || REGNO == REG_PRODL)
497 #define IS_ADDRESS_REGISTER(REGNO) ((REGNO) >= REG_R0 && (REGNO) <= REG_R3)
499 #define FIXED_REGISTERS \
500 {0, 0, 0, 0, 0, 0, 0, 0, 0, \
501 0, 0, 0, 1, 0, 0, 1, \
502 1, \
503 0, 0, 0, 0, \
504 1, 1, 1, \
505 1, 0, \
506 0, 0, 0, 0, 0, 0, 0, 0, \
507 0, 0, 0, 0, 0, 0, 0, 0, \
508 0, 0, 0, 0, 0, 0, 0, 0, \
509 0, 0, 0, 0, 0, 0, 0, 0}
511 /* 1 for registers not available across function calls.
512 These must include the FIXED_REGISTERS and also any
513 registers that can be used without being saved.
514 The latter must include the registers where values are returned
515 and the register where structure-value addresses are passed.
516 On the 1610 'a0' holds return values from functions. 'r0' holds
517 structure-value addresses.
519 In addition we don't save either j, k, ybase or any of the
520 bit manipulation registers. */
523 #define CALL_USED_REGISTERS \
524 {1, 1, 1, 1, 0, 1, 1, 1, 1, /* 0-8 */ \
525 1, 0, 0, 1, 1, 1, 1, /* 9-15 */ \
526 1, /* 16 */ \
527 0, 0, 1, 1, /* 17-20 */ \
528 1, 1, 1, /* 21-23 */ \
529 1, 1, /* 24-25 */ \
530 0, 0, 0, 0, 0, 0, 0, 0, /* 26-33 */ \
531 0, 0, 0, 0, 0, 0, 0, 0, /* 34-41 */ \
532 0, 0, 0, 0, 0, 0, 0, 0, /* 42-49 */ \
533 0, 0, 0, 0, 0, 0, 0, 0} /* 50-57 */
535 /* List the order in which to allocate registers. Each register must be
536 listed once, even those in FIXED_REGISTERS.
538 We allocate in the following order:
541 #if 0
542 #define REG_ALLOC_ORDER \
543 { REG_R0, REG_R1, REG_R2, REG_PROD, REG_Y, REG_X, \
544 REG_PRODL, REG_YL, REG_AR0, REG_AR1, \
545 REG_RB, REG_A0, REG_A1, REG_A0L, \
546 REG_A1L, REG_AR2, REG_AR3, \
547 REG_YBASE, REG_J, REG_K, REG_PR, REG_PT, REG_C0, \
548 REG_C1, REG_C2, REG_R3, \
549 REG_YBASE0, REG_YBASE1, REG_YBASE2, REG_YBASE3, \
550 REG_YBASE4, REG_YBASE5, REG_YBASE6, REG_YBASE7, \
551 REG_YBASE8, REG_YBASE9, REG_YBASE10, REG_YBASE11, \
552 REG_YBASE12, REG_YBASE13, REG_YBASE14, REG_YBASE15, \
553 REG_YBASE16, REG_YBASE17, REG_YBASE18, REG_YBASE19, \
554 REG_YBASE20, REG_YBASE21, REG_YBASE22, REG_YBASE23, \
555 REG_YBASE24, REG_YBASE25, REG_YBASE26, REG_YBASE27, \
556 REG_YBASE28, REG_YBASE29, REG_YBASE30, REG_YBASE31 }
557 #else
558 #define REG_ALLOC_ORDER \
560 REG_A0, REG_A0L, REG_A1, REG_A1L, REG_Y, REG_YL, \
561 REG_PROD, \
562 REG_PRODL, REG_R0, REG_J, REG_K, REG_AR2, REG_AR3, \
563 REG_X, REG_R1, REG_R2, REG_RB, REG_AR0, REG_AR1, \
564 REG_YBASE0, REG_YBASE1, REG_YBASE2, REG_YBASE3, \
565 REG_YBASE4, REG_YBASE5, REG_YBASE6, REG_YBASE7, \
566 REG_YBASE8, REG_YBASE9, REG_YBASE10, REG_YBASE11, \
567 REG_YBASE12, REG_YBASE13, REG_YBASE14, REG_YBASE15, \
568 REG_YBASE16, REG_YBASE17, REG_YBASE18, REG_YBASE19, \
569 REG_YBASE20, REG_YBASE21, REG_YBASE22, REG_YBASE23, \
570 REG_YBASE24, REG_YBASE25, REG_YBASE26, REG_YBASE27, \
571 REG_YBASE28, REG_YBASE29, REG_YBASE30, REG_YBASE31, \
572 REG_R3, REG_YBASE, REG_PT, REG_C0, REG_C1, REG_C2, \
573 REG_PR }
574 #endif
575 /* Zero or more C statements that may conditionally modify two
576 variables `fixed_regs' and `call_used_regs' (both of type `char
577 []') after they have been initialized from the two preceding
578 macros.
580 This is necessary in case the fixed or call-clobbered registers
581 depend on target flags.
583 You need not define this macro if it has no work to do.
585 If the usage of an entire class of registers depends on the target
586 flags, you may indicate this to GCC by using this macro to modify
587 `fixed_regs' and `call_used_regs' to 1 for each of the registers in
588 the classes which should not be used by GCC. Also define the macro
589 `REG_CLASS_FROM_LETTER' to return `NO_REGS' if it is called with a
590 letter for a class that shouldn't be used.
592 (However, if this class is not included in `GENERAL_REGS' and all
593 of the insn patterns whose constraints permit this class are
594 controlled by target switches, then GCC will automatically avoid
595 using these registers when the target switches are opposed to
596 them.) If the user tells us there is no BMU, we can't use
597 ar0-ar3 for register allocation */
599 #define CONDITIONAL_REGISTER_USAGE \
600 do \
602 if (!TARGET_BMU) \
604 int regno; \
606 for (regno = REG_AR0; regno <= REG_AR3; regno++) \
607 fixed_regs[regno] = call_used_regs[regno] = 1; \
609 if (TARGET_RESERVE_YBASE) \
611 int regno; \
613 for (regno = REG_YBASE0; regno <= REG_YBASE31; regno++) \
614 fixed_regs[regno] = call_used_regs[regno] = 1; \
617 while (0)
619 /* Determine which register classes are very likely used by spill registers.
620 local-alloc.c won't allocate pseudos that have these classes as their
621 preferred class unless they are "preferred or nothing". */
623 #define CLASS_LIKELY_SPILLED_P(CLASS) \
624 ((CLASS) != ALL_REGS && (CLASS) != YBASE_VIRT_REGS)
626 /* Return number of consecutive hard regs needed starting at reg REGNO
627 to hold something of mode MODE.
628 This is ordinarily the length in words of a value of mode MODE
629 but can be less for certain modes in special long registers. */
631 #define HARD_REGNO_NREGS(REGNO, MODE) \
632 (GET_MODE_SIZE(MODE))
634 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
636 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok(REGNO, MODE)
638 /* Value is 1 if it is a good idea to tie two pseudo registers
639 when one has mode MODE1 and one has mode MODE2.
640 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
641 for any hard reg, then this must be 0 for correct output. */
642 #define MODES_TIEABLE_P(MODE1, MODE2) \
643 (((MODE1) == (MODE2)) || \
644 (GET_MODE_CLASS((MODE1)) == MODE_FLOAT) \
645 == (GET_MODE_CLASS((MODE2)) == MODE_FLOAT))
647 /* Specify the registers used for certain standard purposes.
648 The values of these macros are register numbers. */
650 /* DSP1600 pc isn't overloaded on a register. */
651 /* #define PC_REGNUM */
653 /* Register to use for pushing function arguments.
654 This is r3 in our case */
655 #define STACK_POINTER_REGNUM REG_R3
657 /* Base register for access to local variables of the function.
658 This is r2 in our case */
659 #define FRAME_POINTER_REGNUM REG_R2
661 /* We can debug without the frame pointer */
662 #define CAN_DEBUG_WITHOUT_FP 1
664 /* The 1610 saves the return address in this register */
665 #define RETURN_ADDRESS_REGNUM REG_PR
667 /* Base register for access to arguments of the function. */
668 #define ARG_POINTER_REGNUM FRAME_POINTER_REGNUM
670 /* Register in which static-chain is passed to a function. */
672 #define STATIC_CHAIN_REGNUM 4
674 /* Register in which address to store a structure value
675 is passed to a function. This is 'r0' in our case */
676 #define STRUCT_VALUE_REGNUM REG_R0
678 /* Define the classes of registers for register constraints in the
679 machine description. Also define ranges of constants.
681 One of the classes must always be named ALL_REGS and include all hard regs.
682 If there is more than one class, another class must be named NO_REGS
683 and contain no registers.
685 The name GENERAL_REGS must be the name of a class (or an alias for
686 another name such as ALL_REGS). This is the class of registers
687 that is allowed by "g" or "r" in a register constraint.
688 Also, registers outside this class are allocated only when
689 instructions express preferences for them.
691 The classes must be numbered in nondecreasing order; that is,
692 a larger-numbered class must never be contained completely
693 in a smaller-numbered class.
695 For any two classes, it is very desirable that there be another
696 class that represents their union. */
699 enum reg_class
701 NO_REGS,
702 A0H_REG,
703 A0L_REG,
704 A0_REG,
705 A1H_REG,
706 ACCUM_HIGH_REGS,
707 A1L_REG,
708 ACCUM_LOW_REGS,
709 A1_REG,
710 ACCUM_REGS,
711 X_REG,
712 X_OR_ACCUM_LOW_REGS,
713 X_OR_ACCUM_REGS,
714 YH_REG,
715 YH_OR_ACCUM_HIGH_REGS,
716 X_OR_YH_REGS,
717 YL_REG,
718 YL_OR_ACCUM_LOW_REGS,
719 X_OR_YL_REGS,
720 X_OR_Y_REGS,
721 Y_REG,
722 ACCUM_OR_Y_REGS,
723 PH_REG,
724 X_OR_PH_REGS,
725 PL_REG,
726 PL_OR_ACCUM_LOW_REGS,
727 X_OR_PL_REGS,
728 YL_OR_PL_OR_ACCUM_LOW_REGS,
729 P_REG,
730 ACCUM_OR_P_REGS,
731 YL_OR_P_REGS,
732 ACCUM_LOW_OR_YL_OR_P_REGS,
733 Y_OR_P_REGS,
734 ACCUM_Y_OR_P_REGS,
735 NO_FRAME_Y_ADDR_REGS,
736 Y_ADDR_REGS,
737 ACCUM_LOW_OR_Y_ADDR_REGS,
738 ACCUM_OR_Y_ADDR_REGS,
739 X_OR_Y_ADDR_REGS,
740 Y_OR_Y_ADDR_REGS,
741 P_OR_Y_ADDR_REGS,
742 NON_HIGH_YBASE_ELIGIBLE_REGS,
743 YBASE_ELIGIBLE_REGS,
744 J_REG,
745 J_OR_DAU_16_BIT_REGS,
746 BMU_REGS,
747 NOHIGH_NON_ADDR_REGS,
748 NON_ADDR_REGS,
749 SLOW_MEM_LOAD_REGS,
750 NOHIGH_NON_YBASE_REGS,
751 NO_ACCUM_NON_YBASE_REGS,
752 NON_YBASE_REGS,
753 YBASE_VIRT_REGS,
754 ACCUM_LOW_OR_YBASE_REGS,
755 ACCUM_OR_YBASE_REGS,
756 X_OR_YBASE_REGS,
757 Y_OR_YBASE_REGS,
758 ACCUM_LOW_YL_PL_OR_YBASE_REGS,
759 P_OR_YBASE_REGS,
760 ACCUM_Y_P_OR_YBASE_REGS,
761 Y_ADDR_OR_YBASE_REGS,
762 YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS,
763 YBASE_OR_YBASE_ELIGIBLE_REGS,
764 NO_HIGH_ALL_REGS,
765 ALL_REGS,
766 LIM_REG_CLASSES
769 /* GENERAL_REGS must be the name of a register class */
770 #define GENERAL_REGS ALL_REGS
772 #define N_REG_CLASSES (int) LIM_REG_CLASSES
774 /* Give names of register classes as strings for dump file. */
776 #define REG_CLASS_NAMES \
778 "NO_REGS", \
779 "A0H_REG", \
780 "A0L_REG", \
781 "A0_REG", \
782 "A1H_REG", \
783 "ACCUM_HIGH_REGS", \
784 "A1L_REG", \
785 "ACCUM_LOW_REGS", \
786 "A1_REG", \
787 "ACCUM_REGS", \
788 "X_REG", \
789 "X_OR_ACCUM_LOW_REGS", \
790 "X_OR_ACCUM_REGS", \
791 "YH_REG", \
792 "YH_OR_ACCUM_HIGH_REGS", \
793 "X_OR_YH_REGS", \
794 "YL_REG", \
795 "YL_OR_ACCUM_LOW_REGS", \
796 "X_OR_YL_REGS", \
797 "X_OR_Y_REGS", \
798 "Y_REG", \
799 "ACCUM_OR_Y_REGS", \
800 "PH_REG", \
801 "X_OR_PH_REGS", \
802 "PL_REG", \
803 "PL_OR_ACCUM_LOW_REGS", \
804 "X_OR_PL_REGS", \
805 "PL_OR_YL_OR_ACCUM_LOW_REGS", \
806 "P_REG", \
807 "ACCUM_OR_P_REGS", \
808 "YL_OR_P_REGS", \
809 "ACCUM_LOW_OR_YL_OR_P_REGS", \
810 "Y_OR_P_REGS", \
811 "ACCUM_Y_OR_P_REGS", \
812 "NO_FRAME_Y_ADDR_REGS", \
813 "Y_ADDR_REGS", \
814 "ACCUM_LOW_OR_Y_ADDR_REGS", \
815 "ACCUM_OR_Y_ADDR_REGS", \
816 "X_OR_Y_ADDR_REGS", \
817 "Y_OR_Y_ADDR_REGS", \
818 "P_OR_Y_ADDR_REGS", \
819 "NON_HIGH_YBASE_ELIGIBLE_REGS", \
820 "YBASE_ELIGIBLE_REGS", \
821 "J_REG", \
822 "J_OR_DAU_16_BIT_REGS", \
823 "BMU_REGS", \
824 "NOHIGH_NON_ADDR_REGS", \
825 "NON_ADDR_REGS", \
826 "SLOW_MEM_LOAD_REGS", \
827 "NOHIGH_NON_YBASE_REGS", \
828 "NO_ACCUM_NON_YBASE_REGS", \
829 "NON_YBASE_REGS", \
830 "YBASE_VIRT_REGS", \
831 "ACCUM_LOW_OR_YBASE_REGS", \
832 "ACCUM_OR_YBASE_REGS", \
833 "X_OR_YBASE_REGS", \
834 "Y_OR_YBASE_REGS", \
835 "ACCUM_LOW_YL_PL_OR_YBASE_REGS", \
836 "P_OR_YBASE_REGS", \
837 "ACCUM_Y_P_OR_YBASE_REGS", \
838 "Y_ADDR_OR_YBASE_REGS", \
839 "YBASE_OR_NOHIGH_YBASE_ELIGIBLE_REGS", \
840 "YBASE_OR_YBASE_ELIGIBLE_REGS", \
841 "NO_HIGH_ALL_REGS", \
842 "ALL_REGS" \
845 /* Define which registers fit in which classes.
846 This is an initializer for a vector of HARD_REG_SET
847 of length N_REG_CLASSES. */
849 #define REG_CLASS_CONTENTS \
851 {0x00000000, 0x00000000}, /* no reg */ \
852 {0x00000001, 0x00000000}, /* a0h */ \
853 {0x00000002, 0x00000000}, /* a0l */ \
854 {0x00000003, 0x00000000}, /* a0h:a0l */ \
855 {0x00000004, 0x00000000}, /* a1h */ \
856 {0x00000005, 0x00000000}, /* accum high */ \
857 {0x00000008, 0x00000000}, /* a1l */ \
858 {0x0000000A, 0x00000000}, /* accum low */ \
859 {0x0000000c, 0x00000000}, /* a1h:a1l */ \
860 {0x0000000f, 0x00000000}, /* accum regs */ \
861 {0x00000010, 0x00000000}, /* x reg */ \
862 {0x0000001A, 0x00000000}, /* x & accum_low_regs */ \
863 {0x0000001f, 0x00000000}, /* x & accum regs */ \
864 {0x00000020, 0x00000000}, /* y high */ \
865 {0x00000025, 0x00000000}, /* yh, accum high */ \
866 {0x00000030, 0x00000000}, /* x & yh */ \
867 {0x00000040, 0x00000000}, /* y low */ \
868 {0x0000004A, 0x00000000}, /* y low, accum_low */ \
869 {0x00000050, 0x00000000}, /* x & yl */ \
870 {0x00000060, 0x00000000}, /* yl:yh */ \
871 {0x00000070, 0x00000000}, /* x, yh,a nd yl */ \
872 {0x0000006F, 0x00000000}, /* accum, y */ \
873 {0x00000080, 0x00000000}, /* p high */ \
874 {0x00000090, 0x00000000}, /* x & ph */ \
875 {0x00000100, 0x00000000}, /* p low */ \
876 {0x0000010A, 0x00000000}, /* p_low and accum_low */ \
877 {0x00000110, 0x00000000}, /* x & pl */ \
878 {0x0000014A, 0x00000000}, /* pl,yl,a1l,a0l */ \
879 {0x00000180, 0x00000000}, /* pl:ph */ \
880 {0x0000018F, 0x00000000}, /* accum, p */ \
881 {0x000001C0, 0x00000000}, /* pl:ph and yl */ \
882 {0x000001CA, 0x00000000}, /* pl:ph, yl, a0l, a1l */ \
883 {0x000001E0, 0x00000000}, /* y or p */ \
884 {0x000001EF, 0x00000000}, /* accum, y or p */ \
885 {0x00000E00, 0x00000000}, /* r0-r2 */ \
886 {0x00001E00, 0x00000000}, /* r0-r3 */ \
887 {0x00001E0A, 0x00000000}, /* r0-r3, accum_low */ \
888 {0x00001E0F, 0x00000000}, /* accum,r0-r3 */ \
889 {0x00001E10, 0x00000000}, /* x,r0-r3 */ \
890 {0x00001E60, 0x00000000}, /* y,r0-r3 */ \
891 {0x00001F80, 0x00000000}, /* p,r0-r3 */ \
892 {0x00001FDA, 0x00000000}, /* ph:pl, r0-r3, x,a0l,a1l */ \
893 {0x00001fff, 0x00000000}, /* accum,x,y,p,r0-r3 */ \
894 {0x00002000, 0x00000000}, /* j */ \
895 {0x00002025, 0x00000000}, /* j, yh, a1h, a0h */ \
896 {0x001E0000, 0x00000000}, /* ar0-ar3 */ \
897 {0x03FFE1DA, 0x00000000}, /* non_addr except yh,a0h,a1h */ \
898 {0x03FFE1FF, 0x00000000}, /* non_addr regs */ \
899 {0x03FFFF8F, 0x00000000}, /* non ybase except yh, yl, and x */ \
900 {0x03FFFFDA, 0x00000000}, /* non ybase regs except yh,a0h,a1h */ \
901 {0x03FFFFF0, 0x00000000}, /* non ybase except a0,a0l,a1,a1l */ \
902 {0x03FFFFFF, 0x00000000}, /* non ybase regs */ \
903 {0xFC000000, 0x03FFFFFF}, /* virt ybase regs */ \
904 {0xFC00000A, 0x03FFFFFF}, /* accum_low, virt ybase regs */ \
905 {0xFC00000F, 0x03FFFFFF}, /* accum, virt ybase regs */ \
906 {0xFC000010, 0x03FFFFFF}, /* x,virt ybase regs */ \
907 {0xFC000060, 0x03FFFFFF}, /* y,virt ybase regs */ \
908 {0xFC00014A, 0x03FFFFFF}, /* accum_low, yl, pl, ybase */ \
909 {0xFC000180, 0x03FFFFFF}, /* p,virt ybase regs */ \
910 {0xFC0001EF, 0x03FFFFFF}, /* accum,y,p,ybase regs */ \
911 {0xFC001E00, 0x03FFFFFF}, /* r0-r3, ybase regs */ \
912 {0xFC001FDA, 0x03FFFFFF}, /* r0-r3, pl:ph,yl,x,a1l,a0l */ \
913 {0xFC001FFF, 0x03FFFFFF}, /* virt ybase, ybase eligible regs */ \
914 {0xFCFFFFDA, 0x03FFFFFF}, /* all regs except yh,a0h,a1h */ \
915 {0xFFFFFFFF, 0x03FFFFFF} /* all regs */ \
919 /* The same information, inverted:
920 Return the class number of the smallest class containing
921 reg number REGNO. This could be a conditional expression
922 or could index an array. */
924 #define REGNO_REG_CLASS(REGNO) regno_reg_class(REGNO)
926 /* The class value for index registers, and the one for base regs. */
928 #define INDEX_REG_CLASS NO_REGS
929 #define BASE_REG_CLASS Y_ADDR_REGS
931 /* Get reg_class from a letter such as appears in the machine description. */
933 #define REG_CLASS_FROM_LETTER(C) \
934 dsp16xx_reg_class_from_letter(C)
936 #define SECONDARY_RELOAD_CLASS(CLASS, MODE, X) \
937 secondary_reload_class(CLASS, MODE, X)
939 /* When defined, the compiler allows registers explicitly used in the
940 rtl to be used as spill registers but prevents the compiler from
941 extending the lifetime of these registers. */
943 #define SMALL_REGISTER_CLASSES 1
945 /* Macros to check register numbers against specific register classes. */
947 /* These assume that REGNO is a hard or pseudo reg number.
948 They give nonzero only if REGNO is a hard reg of the suitable class
949 or a pseudo reg currently allocated to a suitable hard reg.
950 Since they use reg_renumber, they are safe only once reg_renumber
951 has been allocated, which happens in local-alloc.c. */
953 /* A C expression which is nonzero if register REGNO is suitable for use
954 as a base register in operand addresses. It may be either a suitable
955 hard register or a pseudo register that has been allocated such a
956 hard register.
958 On the 1610 the Y address pointers can be used as a base registers */
959 #define REGNO_OK_FOR_BASE_P(REGNO) \
960 (((REGNO) >= REG_R0 && (REGNO) < REG_R3 + 1) || ((unsigned) reg_renumber[REGNO] >= REG_R0 \
961 && (unsigned) reg_renumber[REGNO] < REG_R3 + 1))
963 #define REGNO_OK_FOR_YBASE_P(REGNO) \
964 (((REGNO) == REG_YBASE) || ((unsigned) reg_renumber[REGNO] == REG_YBASE))
966 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
968 #ifdef ALL_16_BIT_REGISTERS
969 #define IS_32_BIT_REG(REGNO) 0
970 #else
971 #define IS_32_BIT_REG(REGNO) \
972 ((REGNO) == REG_A0 || (REGNO) == REG_A1 || (REGNO) == REG_Y || (REGNO) == REG_PROD)
973 #endif
975 /* Given an rtx X being reloaded into a reg required to be
976 in class CLASS, return the class of reg to actually use.
977 In general this is just CLASS; but on some machines
978 in some cases it is preferable to use a more restrictive class.
979 Also, we must ensure that a PLUS is reloaded either
980 into an accumulator or an address register. */
982 #define PREFERRED_RELOAD_CLASS(X,CLASS) preferred_reload_class (X, CLASS)
984 /* A C expression that places additional restrictions on the register
985 class to use when it is necessary to be able to hold a value of
986 mode MODE in a reload register for which class CLASS would
987 ordinarily be used.
989 Unlike `PREFERRED_RELOAD_CLASS', this macro should be used when
990 there are certain modes that simply can't go in certain reload
991 classes.
993 The value is a register class; perhaps CLASS, or perhaps another,
994 smaller class.
996 Don't define this macro unless the target machine has limitations
997 which require the macro to do something nontrivial. */
999 #if 0
1000 #define LIMIT_RELOAD_CLASS(MODE, CLASS) dsp16xx_limit_reload_class (MODE, CLASS)
1001 #endif
1003 /* A C expression for the maximum number of consecutive registers of class CLASS
1004 needed to hold a value of mode MODE */
1005 #define CLASS_MAX_NREGS(CLASS, MODE) \
1006 class_max_nregs(CLASS, MODE)
1008 /* The letters 'I' through 'P' in a register constraint string
1009 can be used to stand for particular ranges of immediate operands.
1010 This macro defines what the ranges are.
1011 C is the letter, and VALUE is a constant value.
1012 Return 1 if VALUE is in the range specified by C.
1014 For the 16xx, the following constraints are used:
1015 'I' requires a non-negative 16-bit value.
1016 'J' requires a non-negative 9-bit value
1017 'K' requires a constant 0 operand.
1018 'L' constant for use in add or sub from low 16-bits
1019 'M' 32-bit value -- low 16-bits zero
1020 'N' constant for use incrementing or decrementing an address register
1021 'O' constant for use with and'ing only high 16-bit
1022 'P' constant for use with and'ing only low 16-bit
1025 #define SMALL_INT(X) (SMALL_INTVAL (INTVAL (X)))
1026 #define SMALL_INTVAL(I) ((unsigned) (I) < 0x10000)
1027 #define SHORT_IMMEDIATE(X) (SHORT_INTVAL (INTVAL(X)))
1028 #define SHORT_INTVAL(I) ((unsigned) (I) < 0x100)
1029 #define ADD_LOW_16(I) ((I) >= 0 && (I) <= 32767)
1030 #define ADD_HIGH_16(I) (((I) & 0x0000ffff) == 0)
1031 #define AND_LOW_16(I) ((I) >= 0 && (I) <= 32767)
1032 #define AND_HIGH_16(I) (((I) & 0x0000ffff) == 0)
1034 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1035 ((C) == 'I' ? (SMALL_INTVAL(VALUE)) \
1036 : (C) == 'J' ? (SHORT_INTVAL(VALUE)) \
1037 : (C) == 'K' ? ((VALUE) == 0) \
1038 : (C) == 'L' ? ((VALUE) >= 0 && (VALUE) <= 32767) \
1039 : (C) == 'M' ? (((VALUE) & 0x0000ffff) == 0) \
1040 : (C) == 'N' ? ((VALUE) == -1 || (VALUE) == 1 \
1041 || (VALUE) == -2 || (VALUE) == 2) \
1042 : (C) == 'O' ? (((VALUE) & 0xffff0000) == 0xffff0000) \
1043 : (C) == 'P' ? (((VALUE) & 0x0000ffff) == 0xffff) \
1044 : 0)
1046 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) 1
1048 /* Optional extra constraints for this machine */
1049 #define EXTRA_CONSTRAINT(OP,C) \
1050 ((C) == 'R' ? symbolic_address_p (OP) \
1051 : 0)
1053 /* DESCRIBING STACK LAYOUT AND CALLING CONVENTIONS */
1055 /* Define this if pushing a word on the stack
1056 makes the stack pointer a smaller address. */
1057 /* #define STACK_GROWS_DOWNWARD */
1059 /* Define this if the nominal address of the stack frame
1060 is at the high-address end of the local variables;
1061 that is, each additional local variable allocated
1062 goes at a more negative offset in the frame. */
1063 /* #define FRAME_GROWS_DOWNWARD */
1065 #define ARGS_GROW_DOWNWARD
1067 /* We use post decrement on the 1600 because there isn't
1068 a pre-decrement addressing mode. This means that we
1069 assume the stack pointer always points at the next
1070 FREE location on the stack. */
1071 #define STACK_PUSH_CODE POST_INC
1073 /* Offset within stack frame to start allocating local variables at.
1074 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1075 first local allocated. Otherwise, it is the offset to the BEGINNING
1076 of the first local allocated. */
1077 #define STARTING_FRAME_OFFSET 0
1079 /* Offset from the stack pointer register to the first
1080 location at which outgoing arguments are placed. */
1081 #define STACK_POINTER_OFFSET (0)
1083 struct dsp16xx_frame_info
1085 unsigned long total_size; /* # bytes that the entire frame takes up */
1086 unsigned long var_size; /* # bytes that variables take up */
1087 unsigned long args_size; /* # bytes that outgoing arguments take up */
1088 unsigned long extra_size; /* # bytes of extra gunk */
1089 unsigned int reg_size; /* # bytes needed to store regs */
1090 long fp_save_offset; /* offset from vfp to store registers */
1091 unsigned long sp_save_offset; /* offset from new sp to store registers */
1092 int pr_save_offset; /* offset to saved PR */
1093 int initialized; /* != 0 if frame size already calculated */
1094 int num_regs; /* number of registers saved */
1095 int function_makes_calls; /* Does the function make calls */
1098 extern struct dsp16xx_frame_info current_frame_info;
1100 #define RETURN_ADDR_OFF current_frame_info.pr_save_offset
1102 /* If we generate an insn to push BYTES bytes,
1103 this says how many the stack pointer really advances by. */
1104 /* #define PUSH_ROUNDING(BYTES) ((BYTES)) */
1106 /* If defined, the maximum amount of space required for outgoing
1107 arguments will be computed and placed into the variable
1108 'current_function_outgoing_args_size'. No space will be pushed
1109 onto the stack for each call; instead, the function prologue should
1110 increase the stack frame size by this amount.
1112 It is not proper to define both 'PUSH_ROUNDING' and
1113 'ACCUMULATE_OUTGOING_ARGS'. */
1114 #define ACCUMULATE_OUTGOING_ARGS 1
1116 /* Offset of first parameter from the argument pointer
1117 register value. */
1119 #define FIRST_PARM_OFFSET(FNDECL) (0)
1121 /* Value is 1 if returning from a function call automatically
1122 pops the arguments described by the number-of-args field in the call.
1123 FUNDECL is the declaration node of the function (as a tree),
1124 FUNTYPE is the data type of the function (as a tree),
1125 or for a library call it is an identifier node for the subroutine name. */
1127 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1129 /* Define how to find the value returned by a function.
1130 VALTYPE is the data type of the value (as a tree).
1131 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1132 otherwise, FUNC is 0. On the 1610 all function return their values
1133 in a0 (i.e. the upper 16 bits). If the return value is 32-bits the
1134 entire register is significant. */
1136 #define VALUE_REGNO(MODE) (REG_Y)
1138 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1139 gen_rtx_REG (TYPE_MODE (VALTYPE), VALUE_REGNO(TYPE_MODE(VALTYPE)))
1141 /* Define how to find the value returned by a library function
1142 assuming the value has mode MODE. */
1143 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
1145 /* 1 if N is a possible register number for a function value. */
1146 #define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_Y)
1149 /* Define where to put the arguments to a function.
1150 Value is zero to push the argument on the stack,
1151 or a hard register in which to store the argument.
1153 MODE is the argument's machine mode.
1154 TYPE is the data type of the argument (as a tree).
1155 This is null for libcalls where that information may
1156 not be available.
1157 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1158 the preceding args and about the function being called.
1159 NAMED is nonzero if this argument is a named parameter
1160 (otherwise it is an extra parameter matching an ellipsis). */
1162 /* On the 1610 all args are pushed, except if -mregparm is specified
1163 then the first two words of arguments are passed in a0, a1. */
1164 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1165 dsp16xx_function_arg (CUM, MODE, TYPE, NAMED)
1167 /* Define the first register to be used for argument passing */
1168 #define FIRST_REG_FOR_FUNCTION_ARG REG_Y
1170 /* Define the profitability of saving registers around calls.
1171 NOTE: For now we turn this off because of a bug in the
1172 caller-saves code and also because i'm not sure it is helpful
1173 on the 1610. */
1175 #define CALLER_SAVE_PROFITABLE(REFS,CALLS) 0
1177 /* This indicates that an argument is to be passed with an invisible reference
1178 (i.e., a pointer to the object is passed).
1180 On the dsp16xx, we do this if it must be passed on the stack. */
1182 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1183 (MUST_PASS_IN_STACK (MODE, TYPE))
1185 /* For an arg passed partly in registers and partly in memory,
1186 this is the number of registers used.
1187 For args passed entirely in registers or entirely in memory, zero. */
1189 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
1191 /* Define a data type for recording info about an argument list
1192 during the scan of that argument list. This data type should
1193 hold all necessary information about the function itself
1194 and about the args processed so far, enough to enable macros
1195 such as FUNCTION_ARG to determine where the next arg should go. */
1196 #define CUMULATIVE_ARGS int
1198 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1199 for a call to a function whose data type is FNTYPE.
1200 For a library call, FNTYPE is 0. */
1201 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) ((CUM) = 0)
1203 /* Update the data in CUM to advance over an argument
1204 of mode MODE and data type TYPE.
1205 (TYPE is null for libcalls where that information may not be available.) */
1207 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1208 dsp16xx_function_arg_advance (&CUM, MODE,TYPE, NAMED)
1210 /* 1 if N is a possible register number for function argument passing. */
1211 #define FUNCTION_ARG_REGNO_P(N) \
1212 ((N) == REG_Y || (N) == REG_YL || (N) == REG_PROD || (N) == REG_PRODL)
1214 /* Output assembler code to FILE to increment profiler label # LABELNO
1215 for profiling a function entry. */
1217 #define FUNCTION_PROFILER(FILE, LABELNO) \
1218 internal_error ("profiling not implemented yet")
1220 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1221 the stack pointer does not matter. The value is tested only in
1222 functions that have frame pointers.
1223 No definition is equivalent to always zero. */
1225 #define EXIT_IGNORE_STACK (0)
1227 #define TRAMPOLINE_TEMPLATE(FILE) \
1228 internal_error ("trampolines not yet implemented");
1230 /* Length in units of the trampoline for entering a nested function.
1231 This is a dummy value */
1233 #define TRAMPOLINE_SIZE 20
1235 /* Emit RTL insns to initialize the variable parts of a trampoline.
1236 FNADDR is an RTX for the address of the function's pure code.
1237 CXT is an RTX for the static chain value for the function. */
1239 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1240 internal_error ("trampolines not yet implemented");
1242 /* A C expression which is nonzero if a function must have and use a
1243 frame pointer. If its value is nonzero the functions will have a
1244 frame pointer. */
1245 #define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1247 /* A C statement to store in the variable 'DEPTH' the difference
1248 between the frame pointer and the stack pointer values immediately
1249 after the function prologue. */
1250 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) \
1251 { (DEPTH) = initial_frame_pointer_offset(); \
1254 /* IMPLICIT CALLS TO LIBRARY ROUTINES */
1256 #define ADDHF3_LIBCALL "__Emulate_addhf3"
1257 #define SUBHF3_LIBCALL "__Emulate_subhf3"
1258 #define MULHF3_LIBCALL "__Emulate_mulhf3"
1259 #define DIVHF3_LIBCALL "__Emulate_divhf3"
1260 #define CMPHF3_LIBCALL "__Emulate_cmphf3"
1261 #define FIXHFHI2_LIBCALL "__Emulate_fixhfhi2"
1262 #define FLOATHIHF2_LIBCALL "__Emulate_floathihf2"
1263 #define NEGHF2_LIBCALL "__Emulate_neghf2"
1265 #define UMULHI3_LIBCALL "__Emulate_umulhi3"
1266 #define MULHI3_LIBCALL "__Emulate_mulhi3"
1267 #define UDIVQI3_LIBCALL "__Emulate_udivqi3"
1268 #define UDIVHI3_LIBCALL "__Emulate_udivhi3"
1269 #define DIVQI3_LIBCALL "__Emulate_divqi3"
1270 #define DIVHI3_LIBCALL "__Emulate_divhi3"
1271 #define MODQI3_LIBCALL "__Emulate_modqi3"
1272 #define MODHI3_LIBCALL "__Emulate_modhi3"
1273 #define UMODQI3_LIBCALL "__Emulate_umodqi3"
1274 #define UMODHI3_LIBCALL "__Emulate_umodhi3"
1275 #define ASHRHI3_LIBCALL "__Emulate_ashrhi3"
1276 #define LSHRHI3_LIBCALL "__Emulate_lshrhi3"
1277 #define ASHLHI3_LIBCALL "__Emulate_ashlhi3"
1278 #define LSHLHI3_LIBCALL "__Emulate_lshlhi3" /* NOT USED */
1280 /* Define this macro if calls to the ANSI C library functions memcpy and
1281 memset should be generated instead of the BSD function bcopy & bzero. */
1282 #define TARGET_MEM_FUNCTIONS
1285 /* ADDRESSING MODES */
1287 /* The 1610 has post-increment and decrement, but no pre-modify */
1288 #define HAVE_POST_INCREMENT 1
1289 #define HAVE_POST_DECREMENT 1
1291 /* #define HAVE_PRE_DECREMENT 0 */
1292 /* #define HAVE_PRE_INCREMENT 0 */
1294 /* Recognize any constant value that is a valid address. */
1295 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
1297 /* Maximum number of registers that can appear in a valid memory address. */
1298 #define MAX_REGS_PER_ADDRESS 1
1300 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1301 and check its validity for a certain class.
1302 We have two alternate definitions for each of them.
1303 The usual definition accepts all pseudo regs; the other rejects
1304 them unless they have been allocated suitable hard regs.
1305 The symbol REG_OK_STRICT causes the latter definition to be used.
1307 Most source files want to accept pseudo regs in the hope that
1308 they will get allocated to the class that the insn wants them to be in.
1309 Source files for reload pass need to be strict.
1310 After reload, it makes no difference, since pseudo regs have
1311 been eliminated by then. */
1313 #ifndef REG_OK_STRICT
1315 /* Nonzero if X is a hard reg that can be used as an index
1316 or if it is a pseudo reg. */
1317 #define REG_OK_FOR_INDEX_P(X) 0
1319 /* Nonzero if X is a hard reg that can be used as a base reg
1320 or if it is a pseudo reg. */
1321 #define REG_OK_FOR_BASE_P(X) \
1322 ((REGNO (X) >= REG_R0 && REGNO (X) < REG_R3 + 1 ) \
1323 || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1325 /* Nonzero if X is the 'ybase' register */
1326 #define REG_OK_FOR_YBASE_P(X) \
1327 (REGNO(X) == REG_YBASE || (REGNO (X) >= FIRST_PSEUDO_REGISTER))
1328 #else
1330 /* Nonzero if X is a hard reg that can be used as an index. */
1331 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1333 /* Nonzero if X is a hard reg that can be used as a base reg. */
1334 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1336 /* Nonzero if X is the 'ybase' register */
1337 #define REG_OK_FOR_YBASE_P(X) REGNO_OK_FOR_YBASE_P (REGNO(X))
1339 #endif
1341 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1342 that is a valid memory address for an instruction.
1343 The MODE argument is the machine mode for the MEM expression
1344 that wants to use this address.
1346 On the 1610, the actual legitimate addresses must be N (N must fit in
1347 5 bits), *rn (register indirect), *rn++, or *rn-- */
1349 #define INT_FITS_5_BITS(I) ((unsigned long) (I) < 0x20)
1350 #define INT_FITS_16_BITS(I) ((unsigned long) (I) < 0x10000)
1351 #define YBASE_CONST_OFFSET(I) ((I) >= -31 && (I) <= 0)
1352 #define YBASE_OFFSET(X) (GET_CODE (X) == CONST_INT && YBASE_CONST_OFFSET (INTVAL(X)))
1354 #define FITS_16_BITS(X) (GET_CODE (X) == CONST_INT && INT_FITS_16_BITS(INTVAL(X)))
1355 #define FITS_5_BITS(X) (GET_CODE (X) == CONST_INT && INT_FITS_5_BITS(INTVAL(X)))
1356 #define ILLEGAL_HIMODE_ADDR(MODE, CONST) ((MODE) == HImode && CONST == -31)
1358 #define INDIRECTABLE_ADDRESS_P(X) \
1359 ((GET_CODE(X) == REG && REG_OK_FOR_BASE_P(X)) \
1360 || ((GET_CODE(X) == POST_DEC || GET_CODE(X) == POST_INC) \
1361 && REG_P(XEXP(X,0)) && REG_OK_FOR_BASE_P(XEXP(X,0))) \
1362 || (GET_CODE(X) == CONST_INT && (unsigned long) (X) < 0x20))
1365 #define INDEXABLE_ADDRESS_P(X,MODE) \
1366 ((GET_CODE(X) == PLUS && GET_CODE (XEXP (X,0)) == REG && \
1367 XEXP(X,0) == stack_pointer_rtx && YBASE_OFFSET(XEXP(X,1)) && \
1368 !ILLEGAL_HIMODE_ADDR(MODE, INTVAL(XEXP(X,1)))) || \
1369 (GET_CODE(X) == PLUS && GET_CODE (XEXP (X,1)) == REG && \
1370 XEXP(X,1) == stack_pointer_rtx && YBASE_OFFSET(XEXP(X,0)) && \
1371 !ILLEGAL_HIMODE_ADDR(MODE, INTVAL(XEXP(X,0)))))
1373 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1375 if (INDIRECTABLE_ADDRESS_P(X)) \
1376 goto ADDR; \
1380 /* Try machine-dependent ways of modifying an illegitimate address
1381 to be legitimate. If we find one, return the new, valid address.
1382 This macro is used in only one place: `memory_address' in explow.c.
1384 OLDX is the address as it was before break_out_memory_refs was called.
1385 In some cases it is useful to look at this to decide what needs to be done.
1387 MODE and WIN are passed so that this macro can use
1388 GO_IF_LEGITIMATE_ADDRESS.
1390 It is always safe for this macro to do nothing. It exists to recognize
1391 opportunities to optimize the output.
1393 For the 1610, we need not do anything. However, if we don't,
1394 `memory_address' will try lots of things to get a valid address, most of
1395 which will result in dead code and extra pseudos. So we make the address
1396 valid here.
1398 This is easy: The only valid addresses are an offset from a register
1399 and we know the address isn't valid. So just call either `force_operand'
1400 or `force_reg' unless this is a (plus (reg ...) (const_int 0)). */
1402 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1403 { if (GET_CODE (X) == PLUS && XEXP (X, 1) == const0_rtx) \
1404 X = XEXP (x, 0); \
1405 if (GET_CODE (X) == MULT || GET_CODE (X) == PLUS) \
1406 X = force_operand (X, 0); \
1407 else \
1408 X = force_reg (Pmode, X); \
1409 goto WIN; \
1412 /* Go to LABEL if ADDR (a legitimate address expression)
1413 has an effect that depends on the machine mode it is used for.
1414 On the 1610, only postdecrement and postincrement address depend thus
1415 (the amount of decrement or increment being the length of the operand). */
1417 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1418 if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == POST_DEC) goto LABEL
1420 /* Nonzero if the constant value X is a legitimate general operand.
1421 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1422 #define LEGITIMATE_CONSTANT_P(X) (1)
1425 /* CONDITION CODE INFORMATION */
1427 /* Store in cc_status the expressions
1428 that the condition codes will describe
1429 after execution of an instruction whose pattern is EXP.
1430 Do not alter them if the instruction would not alter the cc's. */
1432 #define NOTICE_UPDATE_CC(EXP, INSN) \
1433 notice_update_cc( (EXP) )
1435 /* DESCRIBING RELATIVE COSTS OF OPERATIONS */
1437 /* Compute the cost of computing a constant rtl expression RTX
1438 whose rtx-code is CODE. The body of this macro is a portion
1439 of a switch statement. If the code is computed here,
1440 return it with a return statement. */
1441 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1442 case CONST_INT: \
1443 return (unsigned) INTVAL (RTX) < 65536 ? 0 : 2; \
1444 case LABEL_REF: \
1445 case SYMBOL_REF: \
1446 case CONST: \
1447 return COSTS_N_INSNS (1); \
1449 case CONST_DOUBLE: \
1450 return COSTS_N_INSNS (2);
1452 /* Like CONST_COSTS but applies to nonconstant RTL expressions.
1453 This can be used, for example to indicate how costly a multiply
1454 instruction is. */
1455 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1456 case MEM: \
1457 return GET_MODE (X) == QImode ? COSTS_N_INSNS (2) : \
1458 COSTS_N_INSNS (4); \
1459 case DIV: \
1460 case MOD: \
1461 return COSTS_N_INSNS (38); \
1462 case MULT: \
1463 if (GET_MODE (X) == QImode) \
1464 return COSTS_N_INSNS (2); \
1465 else \
1466 return COSTS_N_INSNS (38); \
1467 case PLUS: \
1468 case MINUS: \
1469 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT) \
1471 return (1 + \
1472 rtx_cost (XEXP (X, 0), CODE) + \
1473 rtx_cost (XEXP (X, 1), CODE)); \
1475 else \
1476 return COSTS_N_INSNS (38); \
1478 case AND: case IOR: case XOR: \
1479 return (1 + \
1480 rtx_cost (XEXP (X, 0), CODE) + \
1481 rtx_cost (XEXP (X, 1), CODE)); \
1483 case NEG: case NOT: \
1484 return COSTS_N_INSNS (1); \
1485 case ASHIFT: \
1486 case ASHIFTRT: \
1487 case LSHIFTRT: \
1488 if (GET_CODE (XEXP (X,1)) == CONST_INT) \
1490 int number = INTVAL(XEXP (X,1)); \
1491 if (number == 1 || number == 4 || number == 8 || \
1492 number == 16) \
1493 return COSTS_N_INSNS (1); \
1494 else \
1496 if (TARGET_BMU) \
1497 return COSTS_N_INSNS (2); \
1498 else \
1499 return COSTS_N_INSNS (num_1600_core_shifts(number)); \
1502 if (TARGET_BMU) \
1503 return COSTS_N_INSNS (1); \
1504 else \
1505 return COSTS_N_INSNS (15);
1507 /* An expression giving the cost of an addressing mode that contains
1508 address. */
1509 #define ADDRESS_COST(ADDR) dsp16xx_address_cost (ADDR)
1511 /* A c expression for the cost of moving data from a register in
1512 class FROM to one in class TO. The classes are expressed using
1513 the enumeration values such as GENERAL_REGS. A value of 2 is
1514 the default. */
1515 #define REGISTER_MOVE_COST(MODE,FROM,TO) dsp16xx_register_move_cost (FROM, TO)
1517 /* A C expression for the cost of moving data of mode MODE between
1518 a register and memory. A value of 2 is the default. */
1519 #define MEMORY_MOVE_COST(MODE,CLASS,IN) \
1520 (GET_MODE_CLASS(MODE) == MODE_INT && MODE == QImode ? 12 \
1521 : 16)
1523 /* A C expression for the cost of a branch instruction. A value of
1524 1 is the default; */
1525 #define BRANCH_COST 1
1528 /* Define this because otherwise gcc will try to put the function address
1529 in any old pseudo register. We can only use pt. */
1530 #define NO_FUNCTION_CSE
1532 /* Define this macro as a C expression which is nonzero if accessing less
1533 than a word of memory (i.e a char or short) is no faster than accessing
1534 a word of memory, i.e if such access require more than one instruction
1535 or if ther is no difference in cost between byte and (aligned) word
1536 loads. */
1537 #define SLOW_BYTE_ACCESS 1
1539 /* Define this macro if unaligned accesses have a cost many times greater than
1540 aligned accesses, for example if they are emulated in a trap handler */
1541 /* define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) */
1543 /* Define this macro to inhibit strength reduction of memory addresses */
1544 /* #define DONT_REDUCE_ADDR */
1547 /* DIVIDING THE OUTPUT IN SECTIONS */
1548 /* Output before read-only data. */
1550 #define DEFAULT_TEXT_SEG_NAME ".text"
1551 #define TEXT_SECTION_ASM_OP rsect_text
1553 /* Output before constants and strings */
1554 #define DEFAULT_CONST_SEG_NAME ".const"
1555 #define READONLY_DATA_SECTION_ASM_OP rsect_const
1557 /* Output before writable data. */
1558 #define DEFAULT_DATA_SEG_NAME ".data"
1559 #define DATA_SECTION_ASM_OP rsect_data
1561 #define DEFAULT_BSS_SEG_NAME ".bss"
1562 #define BSS_SECTION_ASM_OP rsect_bss
1564 /* We will default to using 1610 if the user doesn't
1565 specify it. */
1566 #define DEFAULT_CHIP_NAME "1610"
1568 /* THE OVERALL FRAMEWORK OF AN ASSEMBLER FILE */
1570 /* Output at beginning of assembler file. */
1571 #define ASM_FILE_START(FILE) coff_dsp16xx_file_start (FILE)
1573 /* A C string constant describing how to begin a comment in the target
1574 assembler language. */
1575 #define ASM_COMMENT_START ""
1576 #define ASM_COMMENT_END ""
1578 /* Output to assembler file text saying following lines
1579 may contain character constants, extra white space, comments, etc. */
1580 #define ASM_APP_ON ""
1582 /* Output to assembler file text saying following lines
1583 no longer contain unusual constructs. */
1584 #define ASM_APP_OFF ""
1586 /* OUTPUT OF DATA */
1588 /* This is how we output a 'c' character string. For the 16xx
1589 assembler we have to do it one letter at a time */
1591 #define ASCII_LENGTH 10
1593 #define ASM_OUTPUT_ASCII(MYFILE, MYSTRING, MYLENGTH) \
1594 do { \
1595 FILE *_hide_asm_out_file = (MYFILE); \
1596 const unsigned char *_hide_p = (const unsigned char *) (MYSTRING); \
1597 int _hide_thissize = (MYLENGTH); \
1599 FILE *asm_out_file = _hide_asm_out_file; \
1600 const unsigned char *p = _hide_p; \
1601 int thissize = _hide_thissize; \
1602 int i; \
1604 for (i = 0; i < thissize; i++) \
1606 register int c = p[i]; \
1608 if (i % ASCII_LENGTH == 0) \
1609 fprintf (asm_out_file, "\tint "); \
1611 if (c >= ' ' && c < 0177 && c != '\'') \
1613 putc ('\'', asm_out_file); \
1614 putc (c, asm_out_file); \
1615 putc ('\'', asm_out_file); \
1617 else \
1619 fprintf (asm_out_file, "%d", c); \
1620 /* After an octal-escape, if a digit follows, \
1621 terminate one string constant and start another. \
1622 The VAX assembler fails to stop reading the escape \
1623 after three digits, so this is the only way we \
1624 can get it to parse the data properly. \
1625 if (i < thissize - 1 && ISDIGIT (p[i + 1])) \
1626 fprintf (asm_out_file, "\'\n\tint \'"); \
1627 */ \
1629 /* if: \
1630 we are not at the last char (i != thissize -1) \
1631 and (we are not at a line break multiple \
1632 but i == 0) (it will be the very first time) \
1633 then put out a comma to extend. \
1634 */ \
1635 if ((i != thissize - 1) && ((i + 1) % ASCII_LENGTH)) \
1636 fprintf(asm_out_file, ","); \
1637 if (!((i + 1) % ASCII_LENGTH)) \
1638 fprintf (asm_out_file, "\n"); \
1640 fprintf (asm_out_file, "\n"); \
1643 while (0)
1645 /* Store in OUTPUT a string (made with alloca) containing
1646 an assembler-name for a local static variable or function
1647 named NAME. LABELNO is an integer which is different for
1648 each call. */
1650 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1651 do { \
1652 int len = strlen (NAME); \
1653 char *temp = (char *) alloca (len + 3); \
1654 temp[0] = 'L'; \
1655 strcpy (&temp[1], (NAME)); \
1656 temp[len + 1] = '_'; \
1657 temp[len + 2] = 0; \
1658 (OUTPUT) = (char *) alloca (strlen (NAME) + 11); \
1659 ASM_GENERATE_INTERNAL_LABEL (OUTPUT, temp, LABELNO); \
1660 } while (0)
1662 /* OUTPUT OF UNINITIALIZED VARIABLES */
1664 /* This says how to output an assembler line
1665 to define a global common symbol. */
1667 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1668 asm_output_common (FILE, NAME, SIZE, ROUNDED);
1670 /* This says how to output an assembler line
1671 to define a local common symbol. */
1673 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1674 asm_output_local (FILE, NAME, SIZE, ROUNDED);
1676 /* OUTPUT AND GENERATION OF LABELS */
1678 /* Globalizing directive for a label. */
1679 #define GLOBAL_ASM_OP ".global "
1681 /* A C statement to output to the stdio stream any text necessary
1682 for declaring the name of an external symbol named name which
1683 is referenced in this compilation but not defined. */
1685 #define ASM_OUTPUT_EXTERNAL(FILE, DECL, NAME) \
1687 fprintf (FILE, ".extern "); \
1688 assemble_name (FILE, NAME); \
1689 fprintf (FILE, "\n"); \
1691 /* A C statement to output on stream an assembler pseudo-op to
1692 declare a library function named external. */
1694 #define ASM_OUTPUT_EXTERNAL_LIBCALL(FILE, FUN) \
1696 fprintf (FILE, ".extern "); \
1697 assemble_name (FILE, XSTR (FUN, 0)); \
1698 fprintf (FILE, "\n"); \
1701 /* The prefix to add to user-visible assembler symbols. */
1703 #define USER_LABEL_PREFIX "_"
1705 /* This is how to output an internal numbered label where
1706 PREFIX is the class of label and NUM is the number within the class. */
1707 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1708 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1710 /* This is how to store into the string LABEL
1711 the symbol_ref name of an internal numbered label where
1712 PREFIX is the class of label and NUM is the number within the class.
1713 This is suitable for output with `assemble_name'. */
1714 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1715 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1718 /* OUTPUT OF ASSEMBLER INSTRUCTIONS */
1720 /* How to refer to registers in assembler output.
1721 This sequence is indexed by compiler's hard-register-number (see above). */
1723 #define REGISTER_NAMES \
1724 {"a0", "a0l", "a1", "a1l", "x", "y", "yl", "p", "pl", \
1725 "r0", "r1", "r2", "r3", "j", "k", "ybase", "pt", \
1726 "ar0", "ar1", "ar2", "ar3", \
1727 "c0", "c1", "c2", "pr", "rb", \
1728 "*(0)", "*(1)", "*(2)", "*(3)", "*(4)", "*(5)", \
1729 "*(6)", "*(7)", "*(8)", "*(9)", "*(10)", "*(11)", \
1730 "*(12)", "*(13)", "*(14)", "*(15)", "*(16)", "*(17)", \
1731 "*(18)", "*(19)", "*(20)", "*(21)", "*(22)", "*(23)", \
1732 "*(24)", "*(25)", "*(26)", "*(27)", "*(28)", "*(29)", \
1733 "*(30)", "*(31)" }
1735 #define HIMODE_REGISTER_NAMES \
1736 {"a0", "a0", "a1", "a1", "x", "y", "y", "p", "p", \
1737 "r0", "r1", "r2", "r3", "j", "k", "ybase", "pt", \
1738 "ar0", "ar1", "ar2", "ar3", \
1739 "c0", "c1", "c2", "pr", "rb", \
1740 "*(0)", "*(1)", "*(2)", "*(3)", "*(4)", "*(5)", \
1741 "*(6)", "*(7)", "*(8)", "*(9)", "*(10)", "*(11)", \
1742 "*(12)", "*(13)", "*(14)", "*(15)", "*(16)", "*(17)", \
1743 "*(18)", "*(19)", "*(20)", "*(21)", "*(22)", "*(23)", \
1744 "*(24)", "*(25)", "*(26)", "*(27)", "*(28)", "*(29)", \
1745 "*(30)", "*(31)" }
1747 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) 0
1749 /* Print operand X (an rtx) in assembler syntax to file FILE.
1750 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1751 For `%' followed by punctuation, CODE is the punctuation and X is null.
1753 DSP1610 extensions for operand codes:
1755 %H - print lower 16 bits of constant
1756 %U - print upper 16 bits of constant
1757 %w - print low half of register (e.g 'a0l')
1758 %u - print upper half of register (e.g 'a0')
1759 %b - print high half of accumulator for F3 ALU instructions
1760 %h - print constant in decimal */
1762 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE, X, CODE)
1765 /* Print a memory address as an operand to reference that memory location. */
1767 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1769 /* This is how to output an insn to push a register on the stack.
1770 It need not be very fast code since it is used only for profiling */
1771 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1772 internal_error ("profiling not implemented yet");
1774 /* This is how to output an insn to pop a register from the stack.
1775 It need not be very fast code since it is used only for profiling */
1776 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1777 internal_error ("profiling not implemented yet");
1779 /* OUTPUT OF DISPATCH TABLES */
1781 /* This macro should be provided on machines where the addresses in a dispatch
1782 table are relative to the table's own address. */
1783 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1784 fprintf (FILE, "\tint L%d-L%d\n", VALUE, REL)
1786 /* This macro should be provided on machines where the addresses in a dispatch
1787 table are absolute. */
1788 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1789 fprintf (FILE, "\tint L%d\n", VALUE)
1791 /* ASSEMBLER COMMANDS FOR ALIGNMENT */
1793 /* This is how to output an assembler line that says to advance
1794 the location counter to a multiple of 2**LOG bytes. We should
1795 not have to do any alignment since the 1610 is a word machine. */
1796 #define ASM_OUTPUT_ALIGN(FILE,LOG)
1798 /* Define this macro if ASM_OUTPUT_SKIP should not be used in the text section
1799 because it fails to put zero1 in the bytes that are skipped. */
1800 #define ASM_NO_SKIP_IN_TEXT 1
1802 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1803 fprintf (FILE, "\t%d * int 0\n", (SIZE))
1805 /* CONTROLLING DEBUGGING INFORMATION FORMAT */
1807 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
1809 #define ASM_OUTPUT_DEF(asm_out_file, LABEL1, LABEL2) \
1810 do { \
1811 fprintf (asm_out_file, ".alias " ); \
1812 ASM_OUTPUT_LABELREF(asm_out_file, LABEL1); \
1813 fprintf (asm_out_file, "=" ); \
1814 ASM_OUTPUT_LABELREF(asm_out_file, LABEL2); \
1815 fprintf (asm_out_file, "\n" ); \
1816 } while (0)
1819 /* MISCELLANEOUS PARAMETERS */
1821 /* Specify the machine mode that this machine uses
1822 for the index in the tablejump instruction. */
1823 #define CASE_VECTOR_MODE QImode
1825 /* Define as C expression which evaluates to nonzero if the tablejump
1826 instruction expects the table to contain offsets from the address of the
1827 table.
1828 Do not define this if the table should contain absolute addresses. */
1829 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1831 /* Max number of bytes we can move from memory to memory
1832 in one reasonably fast instruction. */
1833 #define MOVE_MAX 1
1835 /* Defining this macro causes the compiler to omit a sign-extend, zero-extend,
1836 or bitwise 'and' instruction that truncates the count of a shift operation
1837 to a width equal to the number of bits needed to represent the size of the
1838 object being shifted. Do not define this macro unless the truncation applies
1839 to both shift operations and bit-field operations (if any). */
1840 /* #define SHIFT_COUNT_TRUNCATED */
1842 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1843 is done just by pretending it is already truncated. */
1844 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1846 /* When a prototype says `char' or `short', really pass an `int'. */
1847 #define PROMOTE_PROTOTYPES 1
1849 /* An alias for the machine mode used for pointers */
1850 #define Pmode QImode
1852 /* A function address in a call instruction
1853 is a byte address (for indexing purposes)
1854 so give the MEM rtx a byte's mode. */
1855 #define FUNCTION_MODE QImode
1857 #if !defined(__DATE__)
1858 #define TARGET_VERSION fprintf (stderr, " (%s)", VERSION_INFO1)
1859 #else
1860 #define TARGET_VERSION fprintf (stderr, " (%s, %s)", VERSION_INFO1, __DATE__)
1861 #endif
1863 #define VERSION_INFO1 "Lucent DSP16xx C Cross Compiler, version 1.3.0b"
1866 /* Define this as 1 if `char' should by default be signed; else as 0. */
1867 #define DEFAULT_SIGNED_CHAR 1
1869 /* Define this so gcc does not output a call to __main, since we
1870 are not currently supporting c++. */
1871 #define INIT_SECTION_ASM_OP 1