1 /* Header file for SSA dominator optimizations.
2 Copyright (C) 2013-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
24 #include "basic-block.h"
27 #include "tree-pass.h"
28 #include "tree-pretty-print.h"
29 #include "tree-ssa-scopedtables.h"
30 #include "tree-ssa-threadedge.h"
31 #include "stor-layout.h"
32 #include "fold-const.h"
34 #include "internal-fn.h"
39 static bool hashable_expr_equal_p (const struct hashable_expr
*,
40 const struct hashable_expr
*);
42 /* Initialize local stacks for this optimizer and record equivalences
43 upon entry to BB. Equivalences can come from the edge traversed to
44 reach BB or they may come from PHI nodes at the start of BB. */
46 /* Pop items off the unwinding stack, removing each from the hash table
47 until a marker is encountered. */
50 avail_exprs_stack::pop_to_marker ()
52 /* Remove all the expressions made available in this block. */
53 while (m_stack
.length () > 0)
55 std::pair
<expr_hash_elt_t
, expr_hash_elt_t
> victim
= m_stack
.pop ();
58 if (victim
.first
== NULL
)
61 /* This must precede the actual removal from the hash table,
62 as ELEMENT and the table entry may share a call argument
63 vector which will be freed during removal. */
64 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
66 fprintf (dump_file
, "<<<< ");
67 victim
.first
->print (dump_file
);
70 slot
= m_avail_exprs
->find_slot (victim
.first
, NO_INSERT
);
71 gcc_assert (slot
&& *slot
== victim
.first
);
72 if (victim
.second
!= NULL
)
75 *slot
= victim
.second
;
78 m_avail_exprs
->clear_slot (slot
);
82 /* Add <ELT1,ELT2> to the unwinding stack so they can be later removed
83 from the hash table. */
86 avail_exprs_stack::record_expr (class expr_hash_elt
*elt1
,
87 class expr_hash_elt
*elt2
,
90 if (elt1
&& dump_file
&& (dump_flags
& TDF_DETAILS
))
92 fprintf (dump_file
, "%c>>> ", type
);
93 elt1
->print (dump_file
);
96 m_stack
.safe_push (std::pair
<expr_hash_elt_t
, expr_hash_elt_t
> (elt1
, elt2
));
99 /* Helper for walk_non_aliased_vuses. Determine if we arrived at
100 the desired memory state. */
103 vuse_eq (ao_ref
*, tree vuse1
, unsigned int cnt
, void *data
)
105 tree vuse2
= (tree
) data
;
109 /* This bounds the stmt walks we perform on reference lookups
110 to O(1) instead of O(N) where N is the number of dominating
111 stores leading to a candidate. We re-use the SCCVN param
112 for this as it is basically the same complexity. */
113 if (cnt
> (unsigned) PARAM_VALUE (PARAM_SCCVN_MAX_ALIAS_QUERIES_PER_ACCESS
))
119 /* We looked for STMT in the hash table, but did not find it.
121 If STMT is an assignment from a binary operator, we may know something
122 about the operands relationship to each other which would allow
123 us to derive a constant value for the RHS of STMT. */
126 avail_exprs_stack::simplify_binary_operation (gimple
*stmt
,
127 class expr_hash_elt element
)
129 if (is_gimple_assign (stmt
))
131 struct hashable_expr
*expr
= element
.expr ();
132 if (expr
->kind
== EXPR_BINARY
)
134 enum tree_code code
= expr
->ops
.binary
.op
;
138 /* For these cases, if we know the operands
139 are equal, then we know the result. */
156 /* Build a simple equality expr and query the hash table
158 struct hashable_expr expr
;
159 expr
.type
= boolean_type_node
;
160 expr
.kind
= EXPR_BINARY
;
161 expr
.ops
.binary
.op
= EQ_EXPR
;
162 expr
.ops
.binary
.opnd0
= gimple_assign_rhs1 (stmt
);
163 expr
.ops
.binary
.opnd1
= gimple_assign_rhs2 (stmt
);
164 class expr_hash_elt
element2 (&expr
, NULL_TREE
);
166 = m_avail_exprs
->find_slot (&element2
, NO_INSERT
);
167 tree result_type
= TREE_TYPE (gimple_assign_lhs (stmt
));
169 /* If the query was successful and returned a nonzero
170 result, then we know that the operands of the binary
171 expression are the same. In many cases this allows
172 us to compute a constant result of the expression
173 at compile time, even if we do not know the exact
174 values of the operands. */
175 if (slot
&& *slot
&& integer_onep ((*slot
)->lhs ()))
183 return gimple_assign_rhs1 (stmt
);
186 /* This is unsafe for certain floats even in non-IEEE
187 formats. In IEEE, it is unsafe because it does
189 if (FLOAT_TYPE_P (result_type
)
190 && HONOR_NANS (result_type
))
198 return build_zero_cst (result_type
);
205 /* Avoid _Fract types where we can't build 1. */
206 if (ALL_FRACT_MODE_P (TYPE_MODE (result_type
)))
208 return build_one_cst (result_type
);
225 /* Search for an existing instance of STMT in the AVAIL_EXPRS_STACK table.
226 If found, return its LHS. Otherwise insert STMT in the table and
229 Also, when an expression is first inserted in the table, it is also
230 is also added to AVAIL_EXPRS_STACK, so that it can be removed when
231 we finish processing this block and its children. */
234 avail_exprs_stack::lookup_avail_expr (gimple
*stmt
, bool insert
, bool tbaa_p
)
236 expr_hash_elt
**slot
;
239 /* Get LHS of phi, assignment, or call; else NULL_TREE. */
240 if (gimple_code (stmt
) == GIMPLE_PHI
)
241 lhs
= gimple_phi_result (stmt
);
243 lhs
= gimple_get_lhs (stmt
);
245 class expr_hash_elt
element (stmt
, lhs
);
247 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
249 fprintf (dump_file
, "LKUP ");
250 element
.print (dump_file
);
253 /* Don't bother remembering constant assignments and copy operations.
254 Constants and copy operations are handled by the constant/copy propagator
256 if (element
.expr()->kind
== EXPR_SINGLE
257 && (TREE_CODE (element
.expr()->ops
.single
.rhs
) == SSA_NAME
258 || is_gimple_min_invariant (element
.expr()->ops
.single
.rhs
)))
261 /* Finally try to find the expression in the main expression hash table. */
262 slot
= m_avail_exprs
->find_slot (&element
, (insert
? INSERT
: NO_INSERT
));
267 else if (*slot
== NULL
)
269 /* If we did not find the expression in the hash table, we may still
270 be able to produce a result for some expressions. */
271 tree retval
= avail_exprs_stack::simplify_binary_operation (stmt
,
274 /* We have, in effect, allocated *SLOT for ELEMENT at this point.
275 We must initialize *SLOT to a real entry, even if we found a
276 way to prove ELEMENT was a constant after not finding ELEMENT
279 An uninitialized or empty slot is an indication no prior objects
280 entered into the hash table had a hash collection with ELEMENT.
282 If we fail to do so and had such entries in the table, they
283 would become unreachable. */
284 class expr_hash_elt
*element2
= new expr_hash_elt (element
);
287 record_expr (element2
, NULL
, '2');
291 /* If we found a redundant memory operation do an alias walk to
292 check if we can re-use it. */
293 if (gimple_vuse (stmt
) != (*slot
)->vop ())
295 tree vuse1
= (*slot
)->vop ();
296 tree vuse2
= gimple_vuse (stmt
);
297 /* If we have a load of a register and a candidate in the
298 hash with vuse1 then try to reach its stmt by walking
299 up the virtual use-def chain using walk_non_aliased_vuses.
300 But don't do this when removing expressions from the hash. */
303 && gimple_assign_single_p (stmt
)
304 && TREE_CODE (gimple_assign_lhs (stmt
)) == SSA_NAME
305 && (ao_ref_init (&ref
, gimple_assign_rhs1 (stmt
)),
306 ref
.base_alias_set
= ref
.ref_alias_set
= tbaa_p
? -1 : 0, true)
307 && walk_non_aliased_vuses (&ref
, vuse2
,
308 vuse_eq
, NULL
, NULL
, vuse1
) != NULL
))
312 class expr_hash_elt
*element2
= new expr_hash_elt (element
);
314 /* Insert the expr into the hash by replacing the current
315 entry and recording the value to restore in the
316 avail_exprs_stack. */
317 record_expr (element2
, *slot
, '2');
324 /* Extract the LHS of the assignment so that it can be used as the current
325 definition of another variable. */
326 lhs
= (*slot
)->lhs ();
328 /* Valueize the result. */
329 if (TREE_CODE (lhs
) == SSA_NAME
)
331 tree tem
= SSA_NAME_VALUE (lhs
);
336 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
338 fprintf (dump_file
, "FIND: ");
339 print_generic_expr (dump_file
, lhs
);
340 fprintf (dump_file
, "\n");
346 /* Enter condition equivalence P into the hash table.
348 This indicates that a conditional expression has a known
352 avail_exprs_stack::record_cond (cond_equivalence
*p
)
354 class expr_hash_elt
*element
= new expr_hash_elt (&p
->cond
, p
->value
);
355 expr_hash_elt
**slot
;
357 slot
= m_avail_exprs
->find_slot_with_hash (element
, element
->hash (), INSERT
);
361 record_expr (element
, NULL
, '1');
367 /* Generate a hash value for a pair of expressions. This can be used
368 iteratively by passing a previous result in HSTATE.
370 The same hash value is always returned for a given pair of expressions,
371 regardless of the order in which they are presented. This is useful in
372 hashing the operands of commutative functions. */
378 add_expr_commutative (const_tree t1
, const_tree t2
, hash
&hstate
)
382 inchash::add_expr (t1
, one
);
383 inchash::add_expr (t2
, two
);
384 hstate
.add_commutative (one
, two
);
387 /* Compute a hash value for a hashable_expr value EXPR and a
388 previously accumulated hash value VAL. If two hashable_expr
389 values compare equal with hashable_expr_equal_p, they must
390 hash to the same value, given an identical value of VAL.
391 The logic is intended to follow inchash::add_expr in tree.c. */
394 add_hashable_expr (const struct hashable_expr
*expr
, hash
&hstate
)
399 inchash::add_expr (expr
->ops
.single
.rhs
, hstate
);
403 hstate
.add_object (expr
->ops
.unary
.op
);
405 /* Make sure to include signedness in the hash computation.
406 Don't hash the type, that can lead to having nodes which
407 compare equal according to operand_equal_p, but which
408 have different hash codes. */
409 if (CONVERT_EXPR_CODE_P (expr
->ops
.unary
.op
)
410 || expr
->ops
.unary
.op
== NON_LVALUE_EXPR
)
411 hstate
.add_int (TYPE_UNSIGNED (expr
->type
));
413 inchash::add_expr (expr
->ops
.unary
.opnd
, hstate
);
417 hstate
.add_object (expr
->ops
.binary
.op
);
418 if (commutative_tree_code (expr
->ops
.binary
.op
))
419 inchash::add_expr_commutative (expr
->ops
.binary
.opnd0
,
420 expr
->ops
.binary
.opnd1
, hstate
);
423 inchash::add_expr (expr
->ops
.binary
.opnd0
, hstate
);
424 inchash::add_expr (expr
->ops
.binary
.opnd1
, hstate
);
429 hstate
.add_object (expr
->ops
.ternary
.op
);
430 if (commutative_ternary_tree_code (expr
->ops
.ternary
.op
))
431 inchash::add_expr_commutative (expr
->ops
.ternary
.opnd0
,
432 expr
->ops
.ternary
.opnd1
, hstate
);
435 inchash::add_expr (expr
->ops
.ternary
.opnd0
, hstate
);
436 inchash::add_expr (expr
->ops
.ternary
.opnd1
, hstate
);
438 inchash::add_expr (expr
->ops
.ternary
.opnd2
, hstate
);
444 enum tree_code code
= CALL_EXPR
;
447 hstate
.add_object (code
);
448 fn_from
= expr
->ops
.call
.fn_from
;
449 if (gimple_call_internal_p (fn_from
))
450 hstate
.merge_hash ((hashval_t
) gimple_call_internal_fn (fn_from
));
452 inchash::add_expr (gimple_call_fn (fn_from
), hstate
);
453 for (i
= 0; i
< expr
->ops
.call
.nargs
; i
++)
454 inchash::add_expr (expr
->ops
.call
.args
[i
], hstate
);
462 for (i
= 0; i
< expr
->ops
.phi
.nargs
; i
++)
463 inchash::add_expr (expr
->ops
.phi
.args
[i
], hstate
);
474 /* Hashing and equality functions. We compute a value number for expressions
475 using the code of the expression and the SSA numbers of its operands. */
478 avail_expr_hash (class expr_hash_elt
*p
)
480 const struct hashable_expr
*expr
= p
->expr ();
481 inchash::hash hstate
;
483 if (expr
->kind
== EXPR_SINGLE
)
485 /* T could potentially be a switch index or a goto dest. */
486 tree t
= expr
->ops
.single
.rhs
;
487 if (TREE_CODE (t
) == MEM_REF
|| handled_component_p (t
))
489 /* Make equivalent statements of both these kinds hash together.
490 Dealing with both MEM_REF and ARRAY_REF allows us not to care
491 about equivalence with other statements not considered here. */
493 poly_int64 offset
, size
, max_size
;
494 tree base
= get_ref_base_and_extent (t
, &offset
, &size
, &max_size
,
496 /* Strictly, we could try to normalize variable-sized accesses too,
497 but here we just deal with the common case. */
498 if (known_size_p (max_size
)
499 && known_eq (size
, max_size
))
501 enum tree_code code
= MEM_REF
;
502 hstate
.add_object (code
);
503 inchash::add_expr (base
, hstate
);
504 hstate
.add_object (offset
);
505 hstate
.add_object (size
);
506 return hstate
.end ();
511 inchash::add_hashable_expr (expr
, hstate
);
513 return hstate
.end ();
516 /* Compares trees T0 and T1 to see if they are MEM_REF or ARRAY_REFs equivalent
517 to each other. (That is, they return the value of the same bit of memory.)
519 Return TRUE if the two are so equivalent; FALSE if not (which could still
520 mean the two are equivalent by other means). */
523 equal_mem_array_ref_p (tree t0
, tree t1
)
525 if (TREE_CODE (t0
) != MEM_REF
&& ! handled_component_p (t0
))
527 if (TREE_CODE (t1
) != MEM_REF
&& ! handled_component_p (t1
))
530 if (!types_compatible_p (TREE_TYPE (t0
), TREE_TYPE (t1
)))
533 poly_int64 off0
, sz0
, max0
;
534 tree base0
= get_ref_base_and_extent (t0
, &off0
, &sz0
, &max0
, &rev0
);
535 if (!known_size_p (max0
)
536 || maybe_ne (sz0
, max0
))
540 poly_int64 off1
, sz1
, max1
;
541 tree base1
= get_ref_base_and_extent (t1
, &off1
, &sz1
, &max1
, &rev1
);
542 if (!known_size_p (max1
)
543 || maybe_ne (sz1
, max1
))
549 /* Types were compatible, so this is a sanity check. */
550 gcc_assert (known_eq (sz0
, sz1
));
552 return known_eq (off0
, off1
) && operand_equal_p (base0
, base1
, 0);
555 /* Compare two hashable_expr structures for equivalence. They are
556 considered equivalent when the expressions they denote must
557 necessarily be equal. The logic is intended to follow that of
558 operand_equal_p in fold-const.c */
561 hashable_expr_equal_p (const struct hashable_expr
*expr0
,
562 const struct hashable_expr
*expr1
)
564 tree type0
= expr0
->type
;
565 tree type1
= expr1
->type
;
567 /* If either type is NULL, there is nothing to check. */
568 if ((type0
== NULL_TREE
) ^ (type1
== NULL_TREE
))
571 /* If both types don't have the same signedness, precision, and mode,
572 then we can't consider them equal. */
574 && (TREE_CODE (type0
) == ERROR_MARK
575 || TREE_CODE (type1
) == ERROR_MARK
576 || TYPE_UNSIGNED (type0
) != TYPE_UNSIGNED (type1
)
577 || TYPE_PRECISION (type0
) != TYPE_PRECISION (type1
)
578 || TYPE_MODE (type0
) != TYPE_MODE (type1
)))
581 if (expr0
->kind
!= expr1
->kind
)
587 return equal_mem_array_ref_p (expr0
->ops
.single
.rhs
,
588 expr1
->ops
.single
.rhs
)
589 || operand_equal_p (expr0
->ops
.single
.rhs
,
590 expr1
->ops
.single
.rhs
, 0);
592 if (expr0
->ops
.unary
.op
!= expr1
->ops
.unary
.op
)
595 if ((CONVERT_EXPR_CODE_P (expr0
->ops
.unary
.op
)
596 || expr0
->ops
.unary
.op
== NON_LVALUE_EXPR
)
597 && TYPE_UNSIGNED (expr0
->type
) != TYPE_UNSIGNED (expr1
->type
))
600 return operand_equal_p (expr0
->ops
.unary
.opnd
,
601 expr1
->ops
.unary
.opnd
, 0);
604 if (expr0
->ops
.binary
.op
!= expr1
->ops
.binary
.op
)
607 if (operand_equal_p (expr0
->ops
.binary
.opnd0
,
608 expr1
->ops
.binary
.opnd0
, 0)
609 && operand_equal_p (expr0
->ops
.binary
.opnd1
,
610 expr1
->ops
.binary
.opnd1
, 0))
613 /* For commutative ops, allow the other order. */
614 return (commutative_tree_code (expr0
->ops
.binary
.op
)
615 && operand_equal_p (expr0
->ops
.binary
.opnd0
,
616 expr1
->ops
.binary
.opnd1
, 0)
617 && operand_equal_p (expr0
->ops
.binary
.opnd1
,
618 expr1
->ops
.binary
.opnd0
, 0));
621 if (expr0
->ops
.ternary
.op
!= expr1
->ops
.ternary
.op
622 || !operand_equal_p (expr0
->ops
.ternary
.opnd2
,
623 expr1
->ops
.ternary
.opnd2
, 0))
626 /* BIT_INSERT_EXPR has an implict operand as the type precision
627 of op1. Need to check to make sure they are the same. */
628 if (expr0
->ops
.ternary
.op
== BIT_INSERT_EXPR
629 && TREE_CODE (expr0
->ops
.ternary
.opnd1
) == INTEGER_CST
630 && TREE_CODE (expr1
->ops
.ternary
.opnd1
) == INTEGER_CST
631 && TYPE_PRECISION (TREE_TYPE (expr0
->ops
.ternary
.opnd1
))
632 != TYPE_PRECISION (TREE_TYPE (expr1
->ops
.ternary
.opnd1
)))
635 if (operand_equal_p (expr0
->ops
.ternary
.opnd0
,
636 expr1
->ops
.ternary
.opnd0
, 0)
637 && operand_equal_p (expr0
->ops
.ternary
.opnd1
,
638 expr1
->ops
.ternary
.opnd1
, 0))
641 /* For commutative ops, allow the other order. */
642 return (commutative_ternary_tree_code (expr0
->ops
.ternary
.op
)
643 && operand_equal_p (expr0
->ops
.ternary
.opnd0
,
644 expr1
->ops
.ternary
.opnd1
, 0)
645 && operand_equal_p (expr0
->ops
.ternary
.opnd1
,
646 expr1
->ops
.ternary
.opnd0
, 0));
652 /* If the calls are to different functions, then they
653 clearly cannot be equal. */
654 if (!gimple_call_same_target_p (expr0
->ops
.call
.fn_from
,
655 expr1
->ops
.call
.fn_from
))
658 if (! expr0
->ops
.call
.pure
)
661 if (expr0
->ops
.call
.nargs
!= expr1
->ops
.call
.nargs
)
664 for (i
= 0; i
< expr0
->ops
.call
.nargs
; i
++)
665 if (! operand_equal_p (expr0
->ops
.call
.args
[i
],
666 expr1
->ops
.call
.args
[i
], 0))
669 if (stmt_could_throw_p (expr0
->ops
.call
.fn_from
))
671 int lp0
= lookup_stmt_eh_lp (expr0
->ops
.call
.fn_from
);
672 int lp1
= lookup_stmt_eh_lp (expr1
->ops
.call
.fn_from
);
673 if ((lp0
> 0 || lp1
> 0) && lp0
!= lp1
)
684 if (expr0
->ops
.phi
.nargs
!= expr1
->ops
.phi
.nargs
)
687 for (i
= 0; i
< expr0
->ops
.phi
.nargs
; i
++)
688 if (! operand_equal_p (expr0
->ops
.phi
.args
[i
],
689 expr1
->ops
.phi
.args
[i
], 0))
700 /* Given a statement STMT, construct a hash table element. */
702 expr_hash_elt::expr_hash_elt (gimple
*stmt
, tree orig_lhs
)
704 enum gimple_code code
= gimple_code (stmt
);
705 struct hashable_expr
*expr
= this->expr ();
707 if (code
== GIMPLE_ASSIGN
)
709 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
711 switch (get_gimple_rhs_class (subcode
))
713 case GIMPLE_SINGLE_RHS
:
714 expr
->kind
= EXPR_SINGLE
;
715 expr
->type
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
716 expr
->ops
.single
.rhs
= gimple_assign_rhs1 (stmt
);
718 case GIMPLE_UNARY_RHS
:
719 expr
->kind
= EXPR_UNARY
;
720 expr
->type
= TREE_TYPE (gimple_assign_lhs (stmt
));
721 if (CONVERT_EXPR_CODE_P (subcode
))
723 expr
->ops
.unary
.op
= subcode
;
724 expr
->ops
.unary
.opnd
= gimple_assign_rhs1 (stmt
);
726 case GIMPLE_BINARY_RHS
:
727 expr
->kind
= EXPR_BINARY
;
728 expr
->type
= TREE_TYPE (gimple_assign_lhs (stmt
));
729 expr
->ops
.binary
.op
= subcode
;
730 expr
->ops
.binary
.opnd0
= gimple_assign_rhs1 (stmt
);
731 expr
->ops
.binary
.opnd1
= gimple_assign_rhs2 (stmt
);
733 case GIMPLE_TERNARY_RHS
:
734 expr
->kind
= EXPR_TERNARY
;
735 expr
->type
= TREE_TYPE (gimple_assign_lhs (stmt
));
736 expr
->ops
.ternary
.op
= subcode
;
737 expr
->ops
.ternary
.opnd0
= gimple_assign_rhs1 (stmt
);
738 expr
->ops
.ternary
.opnd1
= gimple_assign_rhs2 (stmt
);
739 expr
->ops
.ternary
.opnd2
= gimple_assign_rhs3 (stmt
);
745 else if (code
== GIMPLE_COND
)
747 expr
->type
= boolean_type_node
;
748 expr
->kind
= EXPR_BINARY
;
749 expr
->ops
.binary
.op
= gimple_cond_code (stmt
);
750 expr
->ops
.binary
.opnd0
= gimple_cond_lhs (stmt
);
751 expr
->ops
.binary
.opnd1
= gimple_cond_rhs (stmt
);
753 else if (gcall
*call_stmt
= dyn_cast
<gcall
*> (stmt
))
755 size_t nargs
= gimple_call_num_args (call_stmt
);
758 gcc_assert (gimple_call_lhs (call_stmt
));
760 expr
->type
= TREE_TYPE (gimple_call_lhs (call_stmt
));
761 expr
->kind
= EXPR_CALL
;
762 expr
->ops
.call
.fn_from
= call_stmt
;
764 if (gimple_call_flags (call_stmt
) & (ECF_CONST
| ECF_PURE
))
765 expr
->ops
.call
.pure
= true;
767 expr
->ops
.call
.pure
= false;
769 expr
->ops
.call
.nargs
= nargs
;
770 expr
->ops
.call
.args
= XCNEWVEC (tree
, nargs
);
771 for (i
= 0; i
< nargs
; i
++)
772 expr
->ops
.call
.args
[i
] = gimple_call_arg (call_stmt
, i
);
774 else if (gswitch
*swtch_stmt
= dyn_cast
<gswitch
*> (stmt
))
776 expr
->type
= TREE_TYPE (gimple_switch_index (swtch_stmt
));
777 expr
->kind
= EXPR_SINGLE
;
778 expr
->ops
.single
.rhs
= gimple_switch_index (swtch_stmt
);
780 else if (code
== GIMPLE_GOTO
)
782 expr
->type
= TREE_TYPE (gimple_goto_dest (stmt
));
783 expr
->kind
= EXPR_SINGLE
;
784 expr
->ops
.single
.rhs
= gimple_goto_dest (stmt
);
786 else if (code
== GIMPLE_PHI
)
788 size_t nargs
= gimple_phi_num_args (stmt
);
791 expr
->type
= TREE_TYPE (gimple_phi_result (stmt
));
792 expr
->kind
= EXPR_PHI
;
793 expr
->ops
.phi
.nargs
= nargs
;
794 expr
->ops
.phi
.args
= XCNEWVEC (tree
, nargs
);
795 for (i
= 0; i
< nargs
; i
++)
796 expr
->ops
.phi
.args
[i
] = gimple_phi_arg_def (stmt
, i
);
802 m_vop
= gimple_vuse (stmt
);
803 m_hash
= avail_expr_hash (this);
807 /* Given a hashable_expr expression ORIG and an ORIG_LHS,
808 construct a hash table element. */
810 expr_hash_elt::expr_hash_elt (struct hashable_expr
*orig
, tree orig_lhs
)
815 m_hash
= avail_expr_hash (this);
819 /* Copy constructor for a hash table element. */
821 expr_hash_elt::expr_hash_elt (class expr_hash_elt
&old_elt
)
823 m_expr
= old_elt
.m_expr
;
824 m_lhs
= old_elt
.m_lhs
;
825 m_vop
= old_elt
.m_vop
;
826 m_hash
= old_elt
.m_hash
;
829 /* Now deep copy the malloc'd space for CALL and PHI args. */
830 if (old_elt
.m_expr
.kind
== EXPR_CALL
)
832 size_t nargs
= old_elt
.m_expr
.ops
.call
.nargs
;
835 m_expr
.ops
.call
.args
= XCNEWVEC (tree
, nargs
);
836 for (i
= 0; i
< nargs
; i
++)
837 m_expr
.ops
.call
.args
[i
] = old_elt
.m_expr
.ops
.call
.args
[i
];
839 else if (old_elt
.m_expr
.kind
== EXPR_PHI
)
841 size_t nargs
= old_elt
.m_expr
.ops
.phi
.nargs
;
844 m_expr
.ops
.phi
.args
= XCNEWVEC (tree
, nargs
);
845 for (i
= 0; i
< nargs
; i
++)
846 m_expr
.ops
.phi
.args
[i
] = old_elt
.m_expr
.ops
.phi
.args
[i
];
850 /* Calls and PHIs have a variable number of arguments that are allocated
851 on the heap. Thus we have to have a special dtor to release them. */
853 expr_hash_elt::~expr_hash_elt ()
855 if (m_expr
.kind
== EXPR_CALL
)
856 free (m_expr
.ops
.call
.args
);
857 else if (m_expr
.kind
== EXPR_PHI
)
858 free (m_expr
.ops
.phi
.args
);
861 /* Print a diagnostic dump of an expression hash table entry. */
864 expr_hash_elt::print (FILE *stream
)
866 fprintf (stream
, "STMT ");
870 print_generic_expr (stream
, m_lhs
);
871 fprintf (stream
, " = ");
877 print_generic_expr (stream
, m_expr
.ops
.single
.rhs
);
881 fprintf (stream
, "%s ", get_tree_code_name (m_expr
.ops
.unary
.op
));
882 print_generic_expr (stream
, m_expr
.ops
.unary
.opnd
);
886 print_generic_expr (stream
, m_expr
.ops
.binary
.opnd0
);
887 fprintf (stream
, " %s ", get_tree_code_name (m_expr
.ops
.binary
.op
));
888 print_generic_expr (stream
, m_expr
.ops
.binary
.opnd1
);
892 fprintf (stream
, " %s <", get_tree_code_name (m_expr
.ops
.ternary
.op
));
893 print_generic_expr (stream
, m_expr
.ops
.ternary
.opnd0
);
894 fputs (", ", stream
);
895 print_generic_expr (stream
, m_expr
.ops
.ternary
.opnd1
);
896 fputs (", ", stream
);
897 print_generic_expr (stream
, m_expr
.ops
.ternary
.opnd2
);
904 size_t nargs
= m_expr
.ops
.call
.nargs
;
907 fn_from
= m_expr
.ops
.call
.fn_from
;
908 if (gimple_call_internal_p (fn_from
))
909 fputs (internal_fn_name (gimple_call_internal_fn (fn_from
)),
912 print_generic_expr (stream
, gimple_call_fn (fn_from
));
913 fprintf (stream
, " (");
914 for (i
= 0; i
< nargs
; i
++)
916 print_generic_expr (stream
, m_expr
.ops
.call
.args
[i
]);
918 fprintf (stream
, ", ");
920 fprintf (stream
, ")");
927 size_t nargs
= m_expr
.ops
.phi
.nargs
;
929 fprintf (stream
, "PHI <");
930 for (i
= 0; i
< nargs
; i
++)
932 print_generic_expr (stream
, m_expr
.ops
.phi
.args
[i
]);
934 fprintf (stream
, ", ");
936 fprintf (stream
, ">");
943 fprintf (stream
, " with ");
944 print_generic_expr (stream
, m_vop
);
947 fprintf (stream
, "\n");
950 /* Pop entries off the stack until we hit the NULL marker.
951 For each entry popped, use the SRC/DEST pair to restore
952 SRC to its prior value. */
955 const_and_copies::pop_to_marker (void)
957 while (m_stack
.length () > 0)
959 tree prev_value
, dest
;
961 dest
= m_stack
.pop ();
963 /* A NULL value indicates we should stop unwinding, otherwise
964 pop off the next entry as they're recorded in pairs. */
968 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
970 fprintf (dump_file
, "<<<< COPY ");
971 print_generic_expr (dump_file
, dest
);
972 fprintf (dump_file
, " = ");
973 print_generic_expr (dump_file
, SSA_NAME_VALUE (dest
));
974 fprintf (dump_file
, "\n");
977 prev_value
= m_stack
.pop ();
978 set_ssa_name_value (dest
, prev_value
);
982 /* Record that X has the value Y and that X's previous value is PREV_X.
984 This variant does not follow the value chain for Y. */
987 const_and_copies::record_const_or_copy_raw (tree x
, tree y
, tree prev_x
)
989 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
991 fprintf (dump_file
, "0>>> COPY ");
992 print_generic_expr (dump_file
, x
);
993 fprintf (dump_file
, " = ");
994 print_generic_expr (dump_file
, y
);
995 fprintf (dump_file
, "\n");
998 set_ssa_name_value (x
, y
);
1000 m_stack
.quick_push (prev_x
);
1001 m_stack
.quick_push (x
);
1004 /* Record that X has the value Y. */
1007 const_and_copies::record_const_or_copy (tree x
, tree y
)
1009 record_const_or_copy (x
, y
, SSA_NAME_VALUE (x
));
1012 /* Record that X has the value Y and that X's previous value is PREV_X.
1014 This variant follow's Y value chain. */
1017 const_and_copies::record_const_or_copy (tree x
, tree y
, tree prev_x
)
1019 /* Y may be NULL if we are invalidating entries in the table. */
1020 if (y
&& TREE_CODE (y
) == SSA_NAME
)
1022 tree tmp
= SSA_NAME_VALUE (y
);
1026 record_const_or_copy_raw (x
, y
, prev_x
);
1030 expr_elt_hasher::equal (const value_type
&p1
, const compare_type
&p2
)
1032 const struct hashable_expr
*expr1
= p1
->expr ();
1033 const struct expr_hash_elt
*stamp1
= p1
->stamp ();
1034 const struct hashable_expr
*expr2
= p2
->expr ();
1035 const struct expr_hash_elt
*stamp2
= p2
->stamp ();
1037 /* This case should apply only when removing entries from the table. */
1038 if (stamp1
== stamp2
)
1041 if (p1
->hash () != p2
->hash ())
1044 /* In case of a collision, both RHS have to be identical and have the
1045 same VUSE operands. */
1046 if (hashable_expr_equal_p (expr1
, expr2
)
1047 && types_compatible_p (expr1
->type
, expr2
->type
))
1053 /* Given a conditional expression COND as a tree, initialize
1054 a hashable_expr expression EXPR. The conditional must be a
1055 comparison or logical negation. A constant or a variable is
1059 initialize_expr_from_cond (tree cond
, struct hashable_expr
*expr
)
1061 expr
->type
= boolean_type_node
;
1063 if (COMPARISON_CLASS_P (cond
))
1065 expr
->kind
= EXPR_BINARY
;
1066 expr
->ops
.binary
.op
= TREE_CODE (cond
);
1067 expr
->ops
.binary
.opnd0
= TREE_OPERAND (cond
, 0);
1068 expr
->ops
.binary
.opnd1
= TREE_OPERAND (cond
, 1);
1070 else if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
1072 expr
->kind
= EXPR_UNARY
;
1073 expr
->ops
.unary
.op
= TRUTH_NOT_EXPR
;
1074 expr
->ops
.unary
.opnd
= TREE_OPERAND (cond
, 0);
1080 /* Build a cond_equivalence record indicating that the comparison
1081 CODE holds between operands OP0 and OP1 and push it to **P. */
1084 build_and_record_new_cond (enum tree_code code
,
1086 vec
<cond_equivalence
> *p
,
1090 struct hashable_expr
*cond
= &c
.cond
;
1092 gcc_assert (TREE_CODE_CLASS (code
) == tcc_comparison
);
1094 cond
->type
= boolean_type_node
;
1095 cond
->kind
= EXPR_BINARY
;
1096 cond
->ops
.binary
.op
= code
;
1097 cond
->ops
.binary
.opnd0
= op0
;
1098 cond
->ops
.binary
.opnd1
= op1
;
1100 c
.value
= val
? boolean_true_node
: boolean_false_node
;
1104 /* Record that COND is true and INVERTED is false into the edge information
1105 structure. Also record that any conditions dominated by COND are true
1108 For example, if a < b is true, then a <= b must also be true. */
1111 record_conditions (vec
<cond_equivalence
> *p
, tree cond
, tree inverted
)
1116 if (!COMPARISON_CLASS_P (cond
))
1119 op0
= TREE_OPERAND (cond
, 0);
1120 op1
= TREE_OPERAND (cond
, 1);
1122 switch (TREE_CODE (cond
))
1126 if (FLOAT_TYPE_P (TREE_TYPE (op0
)))
1128 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
, p
);
1129 build_and_record_new_cond (LTGT_EXPR
, op0
, op1
, p
);
1132 build_and_record_new_cond ((TREE_CODE (cond
) == LT_EXPR
1133 ? LE_EXPR
: GE_EXPR
),
1135 build_and_record_new_cond (NE_EXPR
, op0
, op1
, p
);
1136 build_and_record_new_cond (EQ_EXPR
, op0
, op1
, p
, false);
1141 if (FLOAT_TYPE_P (TREE_TYPE (op0
)))
1143 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
, p
);
1148 if (FLOAT_TYPE_P (TREE_TYPE (op0
)))
1150 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
, p
);
1152 build_and_record_new_cond (LE_EXPR
, op0
, op1
, p
);
1153 build_and_record_new_cond (GE_EXPR
, op0
, op1
, p
);
1156 case UNORDERED_EXPR
:
1157 build_and_record_new_cond (NE_EXPR
, op0
, op1
, p
);
1158 build_and_record_new_cond (UNLE_EXPR
, op0
, op1
, p
);
1159 build_and_record_new_cond (UNGE_EXPR
, op0
, op1
, p
);
1160 build_and_record_new_cond (UNEQ_EXPR
, op0
, op1
, p
);
1161 build_and_record_new_cond (UNLT_EXPR
, op0
, op1
, p
);
1162 build_and_record_new_cond (UNGT_EXPR
, op0
, op1
, p
);
1167 build_and_record_new_cond ((TREE_CODE (cond
) == UNLT_EXPR
1168 ? UNLE_EXPR
: UNGE_EXPR
),
1170 build_and_record_new_cond (NE_EXPR
, op0
, op1
, p
);
1174 build_and_record_new_cond (UNLE_EXPR
, op0
, op1
, p
);
1175 build_and_record_new_cond (UNGE_EXPR
, op0
, op1
, p
);
1179 build_and_record_new_cond (NE_EXPR
, op0
, op1
, p
);
1180 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
, p
);
1187 /* Now store the original true and false conditions into the first
1189 initialize_expr_from_cond (cond
, &c
.cond
);
1190 c
.value
= boolean_true_node
;
1193 /* It is possible for INVERTED to be the negation of a comparison,
1194 and not a valid RHS or GIMPLE_COND condition. This happens because
1195 invert_truthvalue may return such an expression when asked to invert
1196 a floating-point comparison. These comparisons are not assumed to
1197 obey the trichotomy law. */
1198 initialize_expr_from_cond (inverted
, &c
.cond
);
1199 c
.value
= boolean_false_node
;