* cfgcleanup.c (outgoing_edges_match): Test for exactly two edges,
[official-gcc.git] / gcc / cfgcleanup.c
blobeffaaf4b39e136239efc4a0c15ce21cbbf8c6c38
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains optimizer of the control flow. The main entry point is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to its
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "params.h"
49 #include "tm_p.h"
50 #include "target.h"
51 #include "regs.h"
52 #include "cfglayout.h"
53 #include "emit-rtl.h"
55 /* cleanup_cfg maintains following flags for each basic block. */
57 enum bb_flags
59 /* Set if BB is the forwarder block to avoid too many
60 forwarder_block_p calls. */
61 BB_FORWARDER_BLOCK = 1,
62 BB_NONTHREADABLE_BLOCK = 2
65 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
66 #define BB_SET_FLAG(BB, FLAG) \
67 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
68 #define BB_CLEAR_FLAG(BB, FLAG) \
69 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
71 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
73 /* Set to true when we are running first pass of try_optimize_cfg loop. */
74 static bool first_pass;
75 static bool try_crossjump_to_edge (int, edge, edge);
76 static bool try_crossjump_bb (int, basic_block);
77 static bool outgoing_edges_match (int, basic_block, basic_block);
78 static int flow_find_cross_jump (int, basic_block, basic_block, rtx *, rtx *);
79 static bool insns_match_p (int, rtx, rtx);
81 static void merge_blocks_move_predecessor_nojumps (basic_block, basic_block);
82 static void merge_blocks_move_successor_nojumps (basic_block, basic_block);
83 static bool try_optimize_cfg (int);
84 static bool try_simplify_condjump (basic_block);
85 static bool try_forward_edges (int, basic_block);
86 static edge thread_jump (int, edge, basic_block);
87 static bool mark_effect (rtx, bitmap);
88 static void notice_new_block (basic_block);
89 static void update_forwarder_flag (basic_block);
90 static int mentions_nonequal_regs (rtx *, void *);
91 static void merge_memattrs (rtx, rtx);
93 /* Set flags for newly created block. */
95 static void
96 notice_new_block (basic_block bb)
98 if (!bb)
99 return;
101 if (forwarder_block_p (bb))
102 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
105 /* Recompute forwarder flag after block has been modified. */
107 static void
108 update_forwarder_flag (basic_block bb)
110 if (forwarder_block_p (bb))
111 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
112 else
113 BB_CLEAR_FLAG (bb, BB_FORWARDER_BLOCK);
116 /* Simplify a conditional jump around an unconditional jump.
117 Return true if something changed. */
119 static bool
120 try_simplify_condjump (basic_block cbranch_block)
122 basic_block jump_block, jump_dest_block, cbranch_dest_block;
123 edge cbranch_jump_edge, cbranch_fallthru_edge;
124 rtx cbranch_insn;
126 /* Verify that there are exactly two successors. */
127 if (EDGE_COUNT (cbranch_block->succ) != 2)
128 return false;
130 /* Verify that we've got a normal conditional branch at the end
131 of the block. */
132 cbranch_insn = BB_END (cbranch_block);
133 if (!any_condjump_p (cbranch_insn))
134 return false;
136 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
137 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
139 /* The next block must not have multiple predecessors, must not
140 be the last block in the function, and must contain just the
141 unconditional jump. */
142 jump_block = cbranch_fallthru_edge->dest;
143 if (EDGE_COUNT (jump_block->pred) >= 2
144 || jump_block->next_bb == EXIT_BLOCK_PTR
145 || !FORWARDER_BLOCK_P (jump_block))
146 return false;
147 jump_dest_block = EDGE_0 (jump_block->succ)->dest;
149 /* If we are partitioning hot/cold basic blocks, we don't want to
150 mess up unconditional or indirect jumps that cross between hot
151 and cold sections. */
153 if (flag_reorder_blocks_and_partition
154 && (jump_block->partition != jump_dest_block->partition
155 || cbranch_jump_edge->crossing_edge))
156 return false;
158 /* The conditional branch must target the block after the
159 unconditional branch. */
160 cbranch_dest_block = cbranch_jump_edge->dest;
162 if (cbranch_dest_block == EXIT_BLOCK_PTR
163 || !can_fallthru (jump_block, cbranch_dest_block))
164 return false;
166 /* Invert the conditional branch. */
167 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
168 return false;
170 if (dump_file)
171 fprintf (dump_file, "Simplifying condjump %i around jump %i\n",
172 INSN_UID (cbranch_insn), INSN_UID (BB_END (jump_block)));
174 /* Success. Update the CFG to match. Note that after this point
175 the edge variable names appear backwards; the redirection is done
176 this way to preserve edge profile data. */
177 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
178 cbranch_dest_block);
179 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
180 jump_dest_block);
181 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
182 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
183 update_br_prob_note (cbranch_block);
185 /* Delete the block with the unconditional jump, and clean up the mess. */
186 delete_basic_block (jump_block);
187 tidy_fallthru_edge (cbranch_jump_edge);
189 return true;
192 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
193 on register. Used by jump threading. */
195 static bool
196 mark_effect (rtx exp, regset nonequal)
198 int regno;
199 rtx dest;
200 switch (GET_CODE (exp))
202 /* In case we do clobber the register, mark it as equal, as we know the
203 value is dead so it don't have to match. */
204 case CLOBBER:
205 if (REG_P (XEXP (exp, 0)))
207 dest = XEXP (exp, 0);
208 regno = REGNO (dest);
209 CLEAR_REGNO_REG_SET (nonequal, regno);
210 if (regno < FIRST_PSEUDO_REGISTER)
212 int n = hard_regno_nregs[regno][GET_MODE (dest)];
213 while (--n > 0)
214 CLEAR_REGNO_REG_SET (nonequal, regno + n);
217 return false;
219 case SET:
220 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
221 return false;
222 dest = SET_DEST (exp);
223 if (dest == pc_rtx)
224 return false;
225 if (!REG_P (dest))
226 return true;
227 regno = REGNO (dest);
228 SET_REGNO_REG_SET (nonequal, regno);
229 if (regno < FIRST_PSEUDO_REGISTER)
231 int n = hard_regno_nregs[regno][GET_MODE (dest)];
232 while (--n > 0)
233 SET_REGNO_REG_SET (nonequal, regno + n);
235 return false;
237 default:
238 return false;
242 /* Return nonzero if X is a register set in regset DATA.
243 Called via for_each_rtx. */
244 static int
245 mentions_nonequal_regs (rtx *x, void *data)
247 regset nonequal = (regset) data;
248 if (REG_P (*x))
250 int regno;
252 regno = REGNO (*x);
253 if (REGNO_REG_SET_P (nonequal, regno))
254 return 1;
255 if (regno < FIRST_PSEUDO_REGISTER)
257 int n = hard_regno_nregs[regno][GET_MODE (*x)];
258 while (--n > 0)
259 if (REGNO_REG_SET_P (nonequal, regno + n))
260 return 1;
263 return 0;
265 /* Attempt to prove that the basic block B will have no side effects and
266 always continues in the same edge if reached via E. Return the edge
267 if exist, NULL otherwise. */
269 static edge
270 thread_jump (int mode, edge e, basic_block b)
272 rtx set1, set2, cond1, cond2, insn;
273 enum rtx_code code1, code2, reversed_code2;
274 bool reverse1 = false;
275 int i;
276 regset nonequal;
277 bool failed = false;
279 if (BB_FLAGS (b) & BB_NONTHREADABLE_BLOCK)
280 return NULL;
282 /* At the moment, we do handle only conditional jumps, but later we may
283 want to extend this code to tablejumps and others. */
284 if (EDGE_COUNT (e->src->succ) != 2)
285 return NULL;
286 if (EDGE_COUNT (b->succ) != 2)
288 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
289 return NULL;
292 /* Second branch must end with onlyjump, as we will eliminate the jump. */
293 if (!any_condjump_p (BB_END (e->src)))
294 return NULL;
296 if (!any_condjump_p (BB_END (b)) || !onlyjump_p (BB_END (b)))
298 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
299 return NULL;
302 set1 = pc_set (BB_END (e->src));
303 set2 = pc_set (BB_END (b));
304 if (((e->flags & EDGE_FALLTHRU) != 0)
305 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
306 reverse1 = true;
308 cond1 = XEXP (SET_SRC (set1), 0);
309 cond2 = XEXP (SET_SRC (set2), 0);
310 if (reverse1)
311 code1 = reversed_comparison_code (cond1, BB_END (e->src));
312 else
313 code1 = GET_CODE (cond1);
315 code2 = GET_CODE (cond2);
316 reversed_code2 = reversed_comparison_code (cond2, BB_END (b));
318 if (!comparison_dominates_p (code1, code2)
319 && !comparison_dominates_p (code1, reversed_code2))
320 return NULL;
322 /* Ensure that the comparison operators are equivalent.
323 ??? This is far too pessimistic. We should allow swapped operands,
324 different CCmodes, or for example comparisons for interval, that
325 dominate even when operands are not equivalent. */
326 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
327 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
328 return NULL;
330 /* Short circuit cases where block B contains some side effects, as we can't
331 safely bypass it. */
332 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b));
333 insn = NEXT_INSN (insn))
334 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
336 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
337 return NULL;
340 cselib_init (false);
342 /* First process all values computed in the source basic block. */
343 for (insn = NEXT_INSN (BB_HEAD (e->src)); insn != NEXT_INSN (BB_END (e->src));
344 insn = NEXT_INSN (insn))
345 if (INSN_P (insn))
346 cselib_process_insn (insn);
348 nonequal = BITMAP_XMALLOC();
349 CLEAR_REG_SET (nonequal);
351 /* Now assume that we've continued by the edge E to B and continue
352 processing as if it were same basic block.
353 Our goal is to prove that whole block is an NOOP. */
355 for (insn = NEXT_INSN (BB_HEAD (b)); insn != NEXT_INSN (BB_END (b)) && !failed;
356 insn = NEXT_INSN (insn))
358 if (INSN_P (insn))
360 rtx pat = PATTERN (insn);
362 if (GET_CODE (pat) == PARALLEL)
364 for (i = 0; i < XVECLEN (pat, 0); i++)
365 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
367 else
368 failed |= mark_effect (pat, nonequal);
371 cselib_process_insn (insn);
374 /* Later we should clear nonequal of dead registers. So far we don't
375 have life information in cfg_cleanup. */
376 if (failed)
378 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
379 goto failed_exit;
382 /* cond2 must not mention any register that is not equal to the
383 former block. */
384 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
385 goto failed_exit;
387 /* In case liveness information is available, we need to prove equivalence
388 only of the live values. */
389 if (mode & CLEANUP_UPDATE_LIFE)
390 AND_REG_SET (nonequal, b->global_live_at_end);
392 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, goto failed_exit;);
394 BITMAP_XFREE (nonequal);
395 cselib_finish ();
396 if ((comparison_dominates_p (code1, code2) != 0)
397 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
398 return BRANCH_EDGE (b);
399 else
400 return FALLTHRU_EDGE (b);
402 failed_exit:
403 BITMAP_XFREE (nonequal);
404 cselib_finish ();
405 return NULL;
408 /* Attempt to forward edges leaving basic block B.
409 Return true if successful. */
411 static bool
412 try_forward_edges (int mode, basic_block b)
414 bool changed = false;
415 edge e, *threaded_edges = NULL;
416 unsigned ix;
418 /* If we are partitioning hot/cold basic blocks, we don't want to
419 mess up unconditional or indirect jumps that cross between hot
420 and cold sections. */
422 if (flag_reorder_blocks_and_partition
423 && find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX))
424 return false;
426 FOR_EACH_EDGE (e, b->succ, ix)
428 basic_block target, first;
429 int counter;
430 bool threaded = false;
431 int nthreaded_edges = 0;
432 bool may_thread = first_pass | (b->flags & BB_DIRTY);
434 /* Skip complex edges because we don't know how to update them.
436 Still handle fallthru edges, as we can succeed to forward fallthru
437 edge to the same place as the branch edge of conditional branch
438 and turn conditional branch to an unconditional branch. */
439 if (e->flags & EDGE_COMPLEX)
440 continue;
442 target = first = e->dest;
443 counter = 0;
445 while (counter < n_basic_blocks)
447 basic_block new_target = NULL;
448 bool new_target_threaded = false;
449 may_thread |= target->flags & BB_DIRTY;
451 if (FORWARDER_BLOCK_P (target)
452 && EDGE_0 (target->succ)->dest != EXIT_BLOCK_PTR)
454 /* Bypass trivial infinite loops. */
455 if (target == EDGE_0 (target->succ)->dest)
456 counter = n_basic_blocks;
457 new_target = EDGE_0 (target->succ)->dest;
460 /* Allow to thread only over one edge at time to simplify updating
461 of probabilities. */
462 else if ((mode & CLEANUP_THREADING) && may_thread)
464 edge t = thread_jump (mode, e, target);
465 if (t)
467 if (!threaded_edges)
468 threaded_edges = xmalloc (sizeof (*threaded_edges)
469 * n_basic_blocks);
470 else
472 int i;
474 /* Detect an infinite loop across blocks not
475 including the start block. */
476 for (i = 0; i < nthreaded_edges; ++i)
477 if (threaded_edges[i] == t)
478 break;
479 if (i < nthreaded_edges)
481 counter = n_basic_blocks;
482 break;
486 /* Detect an infinite loop across the start block. */
487 if (t->dest == b)
488 break;
490 if (nthreaded_edges >= n_basic_blocks)
491 abort ();
492 threaded_edges[nthreaded_edges++] = t;
494 new_target = t->dest;
495 new_target_threaded = true;
499 if (!new_target)
500 break;
502 /* Avoid killing of loop pre-headers, as it is the place loop
503 optimizer wants to hoist code to.
505 For fallthru forwarders, the LOOP_BEG note must appear between
506 the header of block and CODE_LABEL of the loop, for non forwarders
507 it must appear before the JUMP_INSN. */
508 if ((mode & CLEANUP_PRE_LOOP) && optimize)
510 rtx insn = (EDGE_0 (target->succ)->flags & EDGE_FALLTHRU
511 ? BB_HEAD (target) : prev_nonnote_insn (BB_END (target)));
513 if (!NOTE_P (insn))
514 insn = NEXT_INSN (insn);
516 for (; insn && !LABEL_P (insn) && !INSN_P (insn);
517 insn = NEXT_INSN (insn))
518 if (NOTE_P (insn)
519 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
520 break;
522 if (NOTE_P (insn))
523 break;
525 /* Do not clean up branches to just past the end of a loop
526 at this time; it can mess up the loop optimizer's
527 recognition of some patterns. */
529 insn = PREV_INSN (BB_HEAD (target));
530 if (insn && NOTE_P (insn)
531 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
532 break;
535 counter++;
536 target = new_target;
537 threaded |= new_target_threaded;
540 if (counter >= n_basic_blocks)
542 if (dump_file)
543 fprintf (dump_file, "Infinite loop in BB %i.\n",
544 target->index);
546 else if (target == first)
547 ; /* We didn't do anything. */
548 else
550 /* Save the values now, as the edge may get removed. */
551 gcov_type edge_count = e->count;
552 int edge_probability = e->probability;
553 int edge_frequency;
554 int n = 0;
556 /* Don't force if target is exit block. */
557 if (threaded && target != EXIT_BLOCK_PTR)
559 notice_new_block (redirect_edge_and_branch_force (e, target));
560 if (dump_file)
561 fprintf (dump_file, "Conditionals threaded.\n");
563 else if (!redirect_edge_and_branch (e, target))
565 if (dump_file)
566 fprintf (dump_file,
567 "Forwarding edge %i->%i to %i failed.\n",
568 b->index, e->dest->index, target->index);
569 continue;
572 /* We successfully forwarded the edge. Now update profile
573 data: for each edge we traversed in the chain, remove
574 the original edge's execution count. */
575 edge_frequency = ((edge_probability * b->frequency
576 + REG_BR_PROB_BASE / 2)
577 / REG_BR_PROB_BASE);
579 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
580 BB_SET_FLAG (b, BB_FORWARDER_BLOCK);
584 edge t;
586 first->count -= edge_count;
587 if (first->count < 0)
588 first->count = 0;
589 first->frequency -= edge_frequency;
590 if (first->frequency < 0)
591 first->frequency = 0;
592 if (EDGE_COUNT (first->succ) > 1)
594 edge e;
595 int prob;
596 if (n >= nthreaded_edges)
597 abort ();
598 t = threaded_edges [n++];
599 if (t->src != first)
600 abort ();
601 if (first->frequency)
602 prob = edge_frequency * REG_BR_PROB_BASE / first->frequency;
603 else
604 prob = 0;
605 if (prob > t->probability)
606 prob = t->probability;
607 t->probability -= prob;
608 prob = REG_BR_PROB_BASE - prob;
609 if (prob <= 0)
611 EDGE_0 (first->succ)->probability = REG_BR_PROB_BASE;
612 EDGE_1 (first->succ)->probability = 0;
614 else
616 unsigned ix;
617 FOR_EACH_EDGE (e, first->succ, ix)
618 e->probability = ((e->probability * REG_BR_PROB_BASE)
619 / (double) prob);
621 update_br_prob_note (first);
623 else
625 /* It is possible that as the result of
626 threading we've removed edge as it is
627 threaded to the fallthru edge. Avoid
628 getting out of sync. */
629 if (n < nthreaded_edges
630 && first == threaded_edges [n]->src)
631 n++;
632 t = EDGE_0 (first->succ);
635 t->count -= edge_count;
636 if (t->count < 0)
637 t->count = 0;
638 first = t->dest;
640 while (first != target);
642 changed = true;
646 if (threaded_edges)
647 free (threaded_edges);
648 return changed;
652 /* Blocks A and B are to be merged into a single block. A has no incoming
653 fallthru edge, so it can be moved before B without adding or modifying
654 any jumps (aside from the jump from A to B). */
656 static void
657 merge_blocks_move_predecessor_nojumps (basic_block a, basic_block b)
659 rtx barrier;
661 /* If we are partitioning hot/cold basic blocks, we don't want to
662 mess up unconditional or indirect jumps that cross between hot
663 and cold sections. */
665 if (flag_reorder_blocks_and_partition
666 && (a->partition != b->partition
667 || find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)))
668 return;
670 barrier = next_nonnote_insn (BB_END (a));
671 if (!BARRIER_P (barrier))
672 abort ();
673 delete_insn (barrier);
675 /* Move block and loop notes out of the chain so that we do not
676 disturb their order.
678 ??? A better solution would be to squeeze out all the non-nested notes
679 and adjust the block trees appropriately. Even better would be to have
680 a tighter connection between block trees and rtl so that this is not
681 necessary. */
682 if (squeeze_notes (&BB_HEAD (a), &BB_END (a)))
683 abort ();
685 /* Scramble the insn chain. */
686 if (BB_END (a) != PREV_INSN (BB_HEAD (b)))
687 reorder_insns_nobb (BB_HEAD (a), BB_END (a), PREV_INSN (BB_HEAD (b)));
688 a->flags |= BB_DIRTY;
690 if (dump_file)
691 fprintf (dump_file, "Moved block %d before %d and merged.\n",
692 a->index, b->index);
694 /* Swap the records for the two blocks around. */
696 unlink_block (a);
697 link_block (a, b->prev_bb);
699 /* Now blocks A and B are contiguous. Merge them. */
700 merge_blocks (a, b);
703 /* Blocks A and B are to be merged into a single block. B has no outgoing
704 fallthru edge, so it can be moved after A without adding or modifying
705 any jumps (aside from the jump from A to B). */
707 static void
708 merge_blocks_move_successor_nojumps (basic_block a, basic_block b)
710 rtx barrier, real_b_end;
711 rtx label, table;
713 /* If we are partitioning hot/cold basic blocks, we don't want to
714 mess up unconditional or indirect jumps that cross between hot
715 and cold sections. */
717 if (flag_reorder_blocks_and_partition
718 && (find_reg_note (BB_END (a), REG_CROSSING_JUMP, NULL_RTX)
719 || a->partition != b->partition))
720 return;
722 real_b_end = BB_END (b);
724 /* If there is a jump table following block B temporarily add the jump table
725 to block B so that it will also be moved to the correct location. */
726 if (tablejump_p (BB_END (b), &label, &table)
727 && prev_active_insn (label) == BB_END (b))
729 BB_END (b) = table;
732 /* There had better have been a barrier there. Delete it. */
733 barrier = NEXT_INSN (BB_END (b));
734 if (barrier && BARRIER_P (barrier))
735 delete_insn (barrier);
737 /* Move block and loop notes out of the chain so that we do not
738 disturb their order.
740 ??? A better solution would be to squeeze out all the non-nested notes
741 and adjust the block trees appropriately. Even better would be to have
742 a tighter connection between block trees and rtl so that this is not
743 necessary. */
744 if (squeeze_notes (&BB_HEAD (b), &BB_END (b)))
745 abort ();
747 /* Scramble the insn chain. */
748 reorder_insns_nobb (BB_HEAD (b), BB_END (b), BB_END (a));
750 /* Restore the real end of b. */
751 BB_END (b) = real_b_end;
753 if (dump_file)
754 fprintf (dump_file, "Moved block %d after %d and merged.\n",
755 b->index, a->index);
757 /* Now blocks A and B are contiguous. Merge them. */
758 merge_blocks (a, b);
761 /* Attempt to merge basic blocks that are potentially non-adjacent.
762 Return NULL iff the attempt failed, otherwise return basic block
763 where cleanup_cfg should continue. Because the merging commonly
764 moves basic block away or introduces another optimization
765 possibility, return basic block just before B so cleanup_cfg don't
766 need to iterate.
768 It may be good idea to return basic block before C in the case
769 C has been moved after B and originally appeared earlier in the
770 insn sequence, but we have no information available about the
771 relative ordering of these two. Hopefully it is not too common. */
773 static basic_block
774 merge_blocks_move (edge e, basic_block b, basic_block c, int mode)
776 basic_block next;
778 /* If we are partitioning hot/cold basic blocks, we don't want to
779 mess up unconditional or indirect jumps that cross between hot
780 and cold sections. */
782 if (flag_reorder_blocks_and_partition
783 && (find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
784 || find_reg_note (BB_END (c), REG_CROSSING_JUMP, NULL_RTX)
785 || b->partition != c->partition))
786 return NULL;
790 /* If B has a fallthru edge to C, no need to move anything. */
791 if (e->flags & EDGE_FALLTHRU)
793 int b_index = b->index, c_index = c->index;
794 merge_blocks (b, c);
795 update_forwarder_flag (b);
797 if (dump_file)
798 fprintf (dump_file, "Merged %d and %d without moving.\n",
799 b_index, c_index);
801 return b->prev_bb == ENTRY_BLOCK_PTR ? b : b->prev_bb;
804 /* Otherwise we will need to move code around. Do that only if expensive
805 transformations are allowed. */
806 else if (mode & CLEANUP_EXPENSIVE)
808 edge tmp_edge, b_fallthru_edge;
809 bool c_has_outgoing_fallthru;
810 bool b_has_incoming_fallthru;
811 unsigned ix;
813 /* Avoid overactive code motion, as the forwarder blocks should be
814 eliminated by edge redirection instead. One exception might have
815 been if B is a forwarder block and C has no fallthru edge, but
816 that should be cleaned up by bb-reorder instead. */
817 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
818 return NULL;
820 /* We must make sure to not munge nesting of lexical blocks,
821 and loop notes. This is done by squeezing out all the notes
822 and leaving them there to lie. Not ideal, but functional. */
824 FOR_EACH_EDGE (tmp_edge, c->succ, ix)
825 if (tmp_edge->flags & EDGE_FALLTHRU)
826 break;
828 c_has_outgoing_fallthru = (tmp_edge != NULL);
830 FOR_EACH_EDGE (tmp_edge, b->pred, ix)
831 if (tmp_edge->flags & EDGE_FALLTHRU)
832 break;
834 b_has_incoming_fallthru = (tmp_edge != NULL);
835 b_fallthru_edge = tmp_edge;
836 next = b->prev_bb;
837 if (next == c)
838 next = next->prev_bb;
840 /* Otherwise, we're going to try to move C after B. If C does
841 not have an outgoing fallthru, then it can be moved
842 immediately after B without introducing or modifying jumps. */
843 if (! c_has_outgoing_fallthru)
845 merge_blocks_move_successor_nojumps (b, c);
846 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
849 /* If B does not have an incoming fallthru, then it can be moved
850 immediately before C without introducing or modifying jumps.
851 C cannot be the first block, so we do not have to worry about
852 accessing a non-existent block. */
854 if (b_has_incoming_fallthru)
856 basic_block bb;
858 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
859 return NULL;
860 bb = force_nonfallthru (b_fallthru_edge);
861 if (bb)
862 notice_new_block (bb);
865 merge_blocks_move_predecessor_nojumps (b, c);
866 return next == ENTRY_BLOCK_PTR ? next->next_bb : next;
869 return NULL;
873 /* Removes the memory attributes of MEM expression
874 if they are not equal. */
876 void
877 merge_memattrs (rtx x, rtx y)
879 int i;
880 int j;
881 enum rtx_code code;
882 const char *fmt;
884 if (x == y)
885 return;
886 if (x == 0 || y == 0)
887 return;
889 code = GET_CODE (x);
891 if (code != GET_CODE (y))
892 return;
894 if (GET_MODE (x) != GET_MODE (y))
895 return;
897 if (code == MEM && MEM_ATTRS (x) != MEM_ATTRS (y))
899 if (! MEM_ATTRS (x))
900 MEM_ATTRS (y) = 0;
901 else if (! MEM_ATTRS (y))
902 MEM_ATTRS (x) = 0;
903 else
905 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
907 set_mem_alias_set (x, 0);
908 set_mem_alias_set (y, 0);
911 if (! mem_expr_equal_p (MEM_EXPR (x), MEM_EXPR (y)))
913 set_mem_expr (x, 0);
914 set_mem_expr (y, 0);
915 set_mem_offset (x, 0);
916 set_mem_offset (y, 0);
918 else if (MEM_OFFSET (x) != MEM_OFFSET (y))
920 set_mem_offset (x, 0);
921 set_mem_offset (y, 0);
924 set_mem_size (x, MAX (MEM_SIZE (x), MEM_SIZE (y)));
925 set_mem_size (y, MEM_SIZE (x));
927 set_mem_align (x, MIN (MEM_ALIGN (x), MEM_ALIGN (y)));
928 set_mem_align (y, MEM_ALIGN (x));
932 fmt = GET_RTX_FORMAT (code);
933 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
935 switch (fmt[i])
937 case 'E':
938 /* Two vectors must have the same length. */
939 if (XVECLEN (x, i) != XVECLEN (y, i))
940 return;
942 for (j = 0; j < XVECLEN (x, i); j++)
943 merge_memattrs (XVECEXP (x, i, j), XVECEXP (y, i, j));
945 break;
947 case 'e':
948 merge_memattrs (XEXP (x, i), XEXP (y, i));
951 return;
955 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
957 static bool
958 insns_match_p (int mode ATTRIBUTE_UNUSED, rtx i1, rtx i2)
960 rtx p1, p2;
962 /* Verify that I1 and I2 are equivalent. */
963 if (GET_CODE (i1) != GET_CODE (i2))
964 return false;
966 p1 = PATTERN (i1);
967 p2 = PATTERN (i2);
969 if (GET_CODE (p1) != GET_CODE (p2))
970 return false;
972 /* If this is a CALL_INSN, compare register usage information.
973 If we don't check this on stack register machines, the two
974 CALL_INSNs might be merged leaving reg-stack.c with mismatching
975 numbers of stack registers in the same basic block.
976 If we don't check this on machines with delay slots, a delay slot may
977 be filled that clobbers a parameter expected by the subroutine.
979 ??? We take the simple route for now and assume that if they're
980 equal, they were constructed identically. */
982 if (CALL_P (i1)
983 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
984 CALL_INSN_FUNCTION_USAGE (i2))
985 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
986 return false;
988 #ifdef STACK_REGS
989 /* If cross_jump_death_matters is not 0, the insn's mode
990 indicates whether or not the insn contains any stack-like
991 regs. */
993 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
995 /* If register stack conversion has already been done, then
996 death notes must also be compared before it is certain that
997 the two instruction streams match. */
999 rtx note;
1000 HARD_REG_SET i1_regset, i2_regset;
1002 CLEAR_HARD_REG_SET (i1_regset);
1003 CLEAR_HARD_REG_SET (i2_regset);
1005 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1006 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1007 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1009 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1010 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
1011 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1013 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1015 return false;
1017 done:
1020 #endif
1022 if (reload_completed
1023 ? rtx_renumbered_equal_p (p1, p2) : rtx_equal_p (p1, p2))
1024 return true;
1026 /* Do not do EQUIV substitution after reload. First, we're undoing the
1027 work of reload_cse. Second, we may be undoing the work of the post-
1028 reload splitting pass. */
1029 /* ??? Possibly add a new phase switch variable that can be used by
1030 targets to disallow the troublesome insns after splitting. */
1031 if (!reload_completed)
1033 /* The following code helps take care of G++ cleanups. */
1034 rtx equiv1 = find_reg_equal_equiv_note (i1);
1035 rtx equiv2 = find_reg_equal_equiv_note (i2);
1037 if (equiv1 && equiv2
1038 /* If the equivalences are not to a constant, they may
1039 reference pseudos that no longer exist, so we can't
1040 use them. */
1041 && (! reload_completed
1042 || (CONSTANT_P (XEXP (equiv1, 0))
1043 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
1045 rtx s1 = single_set (i1);
1046 rtx s2 = single_set (i2);
1047 if (s1 != 0 && s2 != 0
1048 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1050 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1051 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1052 if (! rtx_renumbered_equal_p (p1, p2))
1053 cancel_changes (0);
1054 else if (apply_change_group ())
1055 return true;
1060 return false;
1063 /* Look through the insns at the end of BB1 and BB2 and find the longest
1064 sequence that are equivalent. Store the first insns for that sequence
1065 in *F1 and *F2 and return the sequence length.
1067 To simplify callers of this function, if the blocks match exactly,
1068 store the head of the blocks in *F1 and *F2. */
1070 static int
1071 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED, basic_block bb1,
1072 basic_block bb2, rtx *f1, rtx *f2)
1074 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1075 int ninsns = 0;
1077 /* Skip simple jumps at the end of the blocks. Complex jumps still
1078 need to be compared for equivalence, which we'll do below. */
1080 i1 = BB_END (bb1);
1081 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1082 if (onlyjump_p (i1)
1083 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1085 last1 = i1;
1086 i1 = PREV_INSN (i1);
1089 i2 = BB_END (bb2);
1090 if (onlyjump_p (i2)
1091 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1093 last2 = i2;
1094 /* Count everything except for unconditional jump as insn. */
1095 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1096 ninsns++;
1097 i2 = PREV_INSN (i2);
1100 while (true)
1102 /* Ignore notes. */
1103 while (!INSN_P (i1) && i1 != BB_HEAD (bb1))
1104 i1 = PREV_INSN (i1);
1106 while (!INSN_P (i2) && i2 != BB_HEAD (bb2))
1107 i2 = PREV_INSN (i2);
1109 if (i1 == BB_HEAD (bb1) || i2 == BB_HEAD (bb2))
1110 break;
1112 if (!insns_match_p (mode, i1, i2))
1113 break;
1115 merge_memattrs (i1, i2);
1117 /* Don't begin a cross-jump with a NOTE insn. */
1118 if (INSN_P (i1))
1120 /* If the merged insns have different REG_EQUAL notes, then
1121 remove them. */
1122 rtx equiv1 = find_reg_equal_equiv_note (i1);
1123 rtx equiv2 = find_reg_equal_equiv_note (i2);
1125 if (equiv1 && !equiv2)
1126 remove_note (i1, equiv1);
1127 else if (!equiv1 && equiv2)
1128 remove_note (i2, equiv2);
1129 else if (equiv1 && equiv2
1130 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1132 remove_note (i1, equiv1);
1133 remove_note (i2, equiv2);
1136 afterlast1 = last1, afterlast2 = last2;
1137 last1 = i1, last2 = i2;
1138 ninsns++;
1141 i1 = PREV_INSN (i1);
1142 i2 = PREV_INSN (i2);
1145 #ifdef HAVE_cc0
1146 /* Don't allow the insn after a compare to be shared by
1147 cross-jumping unless the compare is also shared. */
1148 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1149 last1 = afterlast1, last2 = afterlast2, ninsns--;
1150 #endif
1152 /* Include preceding notes and labels in the cross-jump. One,
1153 this may bring us to the head of the blocks as requested above.
1154 Two, it keeps line number notes as matched as may be. */
1155 if (ninsns)
1157 while (last1 != BB_HEAD (bb1) && !INSN_P (PREV_INSN (last1)))
1158 last1 = PREV_INSN (last1);
1160 if (last1 != BB_HEAD (bb1) && LABEL_P (PREV_INSN (last1)))
1161 last1 = PREV_INSN (last1);
1163 while (last2 != BB_HEAD (bb2) && !INSN_P (PREV_INSN (last2)))
1164 last2 = PREV_INSN (last2);
1166 if (last2 != BB_HEAD (bb2) && LABEL_P (PREV_INSN (last2)))
1167 last2 = PREV_INSN (last2);
1169 *f1 = last1;
1170 *f2 = last2;
1173 return ninsns;
1176 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1177 the branch instruction. This means that if we commonize the control
1178 flow before end of the basic block, the semantic remains unchanged.
1180 We may assume that there exists one edge with a common destination. */
1182 static bool
1183 outgoing_edges_match (int mode, basic_block bb1, basic_block bb2)
1185 int nehedges1 = 0, nehedges2 = 0;
1186 edge fallthru1 = 0, fallthru2 = 0;
1187 edge e1, e2;
1188 unsigned ix;
1190 /* If BB1 has only one successor, we may be looking at either an
1191 unconditional jump, or a fake edge to exit. */
1192 if (EDGE_COUNT (bb1->succ) == 1
1193 && (EDGE_0 (bb1->succ)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1194 && (!JUMP_P (BB_END (bb1)) || simplejump_p (BB_END (bb1))))
1195 return (EDGE_COUNT (bb2->succ) == 1
1196 && (EDGE_0 (bb2->succ)->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0
1197 && (!JUMP_P (BB_END (bb2)) || simplejump_p (BB_END (bb2))));
1199 /* Match conditional jumps - this may get tricky when fallthru and branch
1200 edges are crossed. */
1201 if (EDGE_COUNT (bb1->succ) == 2
1202 && any_condjump_p (BB_END (bb1))
1203 && onlyjump_p (BB_END (bb1)))
1205 edge b1, f1, b2, f2;
1206 bool reverse, match;
1207 rtx set1, set2, cond1, cond2;
1208 enum rtx_code code1, code2;
1210 if (EDGE_COUNT (bb2->succ) != 2
1211 || !any_condjump_p (BB_END (bb2))
1212 || !onlyjump_p (BB_END (bb2)))
1213 return false;
1215 b1 = BRANCH_EDGE (bb1);
1216 b2 = BRANCH_EDGE (bb2);
1217 f1 = FALLTHRU_EDGE (bb1);
1218 f2 = FALLTHRU_EDGE (bb2);
1220 /* Get around possible forwarders on fallthru edges. Other cases
1221 should be optimized out already. */
1222 if (FORWARDER_BLOCK_P (f1->dest))
1223 f1 = EDGE_0 (f1->dest->succ);
1225 if (FORWARDER_BLOCK_P (f2->dest))
1226 f2 = EDGE_0 (f2->dest->succ);
1228 /* To simplify use of this function, return false if there are
1229 unneeded forwarder blocks. These will get eliminated later
1230 during cleanup_cfg. */
1231 if (FORWARDER_BLOCK_P (f1->dest)
1232 || FORWARDER_BLOCK_P (f2->dest)
1233 || FORWARDER_BLOCK_P (b1->dest)
1234 || FORWARDER_BLOCK_P (b2->dest))
1235 return false;
1237 if (f1->dest == f2->dest && b1->dest == b2->dest)
1238 reverse = false;
1239 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1240 reverse = true;
1241 else
1242 return false;
1244 set1 = pc_set (BB_END (bb1));
1245 set2 = pc_set (BB_END (bb2));
1246 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1247 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1248 reverse = !reverse;
1250 cond1 = XEXP (SET_SRC (set1), 0);
1251 cond2 = XEXP (SET_SRC (set2), 0);
1252 code1 = GET_CODE (cond1);
1253 if (reverse)
1254 code2 = reversed_comparison_code (cond2, BB_END (bb2));
1255 else
1256 code2 = GET_CODE (cond2);
1258 if (code2 == UNKNOWN)
1259 return false;
1261 /* Verify codes and operands match. */
1262 match = ((code1 == code2
1263 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1264 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1265 || (code1 == swap_condition (code2)
1266 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1267 XEXP (cond2, 0))
1268 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1269 XEXP (cond2, 1))));
1271 /* If we return true, we will join the blocks. Which means that
1272 we will only have one branch prediction bit to work with. Thus
1273 we require the existing branches to have probabilities that are
1274 roughly similar. */
1275 if (match
1276 && !optimize_size
1277 && maybe_hot_bb_p (bb1)
1278 && maybe_hot_bb_p (bb2))
1280 int prob2;
1282 if (b1->dest == b2->dest)
1283 prob2 = b2->probability;
1284 else
1285 /* Do not use f2 probability as f2 may be forwarded. */
1286 prob2 = REG_BR_PROB_BASE - b2->probability;
1288 /* Fail if the difference in probabilities is greater than 50%.
1289 This rules out two well-predicted branches with opposite
1290 outcomes. */
1291 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1293 if (dump_file)
1294 fprintf (dump_file,
1295 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1296 bb1->index, bb2->index, b1->probability, prob2);
1298 return false;
1302 if (dump_file && match)
1303 fprintf (dump_file, "Conditionals in bb %i and %i match.\n",
1304 bb1->index, bb2->index);
1306 return match;
1309 /* Generic case - we are seeing a computed jump, table jump or trapping
1310 instruction. */
1312 #ifndef CASE_DROPS_THROUGH
1313 /* Check whether there are tablejumps in the end of BB1 and BB2.
1314 Return true if they are identical. */
1316 rtx label1, label2;
1317 rtx table1, table2;
1319 if (tablejump_p (BB_END (bb1), &label1, &table1)
1320 && tablejump_p (BB_END (bb2), &label2, &table2)
1321 && GET_CODE (PATTERN (table1)) == GET_CODE (PATTERN (table2)))
1323 /* The labels should never be the same rtx. If they really are same
1324 the jump tables are same too. So disable crossjumping of blocks BB1
1325 and BB2 because when deleting the common insns in the end of BB1
1326 by delete_basic_block () the jump table would be deleted too. */
1327 /* If LABEL2 is referenced in BB1->END do not do anything
1328 because we would loose information when replacing
1329 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1330 if (label1 != label2 && !rtx_referenced_p (label2, BB_END (bb1)))
1332 /* Set IDENTICAL to true when the tables are identical. */
1333 bool identical = false;
1334 rtx p1, p2;
1336 p1 = PATTERN (table1);
1337 p2 = PATTERN (table2);
1338 if (GET_CODE (p1) == ADDR_VEC && rtx_equal_p (p1, p2))
1340 identical = true;
1342 else if (GET_CODE (p1) == ADDR_DIFF_VEC
1343 && (XVECLEN (p1, 1) == XVECLEN (p2, 1))
1344 && rtx_equal_p (XEXP (p1, 2), XEXP (p2, 2))
1345 && rtx_equal_p (XEXP (p1, 3), XEXP (p2, 3)))
1347 int i;
1349 identical = true;
1350 for (i = XVECLEN (p1, 1) - 1; i >= 0 && identical; i--)
1351 if (!rtx_equal_p (XVECEXP (p1, 1, i), XVECEXP (p2, 1, i)))
1352 identical = false;
1355 if (identical)
1357 replace_label_data rr;
1358 bool match;
1360 /* Temporarily replace references to LABEL1 with LABEL2
1361 in BB1->END so that we could compare the instructions. */
1362 rr.r1 = label1;
1363 rr.r2 = label2;
1364 rr.update_label_nuses = false;
1365 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1367 match = insns_match_p (mode, BB_END (bb1), BB_END (bb2));
1368 if (dump_file && match)
1369 fprintf (dump_file,
1370 "Tablejumps in bb %i and %i match.\n",
1371 bb1->index, bb2->index);
1373 /* Set the original label in BB1->END because when deleting
1374 a block whose end is a tablejump, the tablejump referenced
1375 from the instruction is deleted too. */
1376 rr.r1 = label2;
1377 rr.r2 = label1;
1378 for_each_rtx (&BB_END (bb1), replace_label, &rr);
1380 return match;
1383 return false;
1386 #endif
1388 /* First ensure that the instructions match. There may be many outgoing
1389 edges so this test is generally cheaper. */
1390 if (!insns_match_p (mode, BB_END (bb1), BB_END (bb2)))
1391 return false;
1393 /* Search the outgoing edges, ensure that the counts do match, find possible
1394 fallthru and exception handling edges since these needs more
1395 validation. */
1396 for (ix = 0; ix < MIN (EDGE_COUNT (bb1->succ), EDGE_COUNT (bb2->succ)); ix++)
1398 e1 = EDGE_I (bb1->succ, ix);
1399 e2 = EDGE_I (bb2->succ, ix);
1401 if (e1->flags & EDGE_EH)
1402 nehedges1++;
1404 if (e2->flags & EDGE_EH)
1405 nehedges2++;
1407 if (e1->flags & EDGE_FALLTHRU)
1408 fallthru1 = e1;
1409 if (e2->flags & EDGE_FALLTHRU)
1410 fallthru2 = e2;
1413 /* If number of edges of various types does not match, fail. */
1414 if (EDGE_COUNT (bb1->succ) != EDGE_COUNT (bb2->succ)
1415 || nehedges1 != nehedges2
1416 || (fallthru1 != 0) != (fallthru2 != 0))
1417 return false;
1419 /* fallthru edges must be forwarded to the same destination. */
1420 if (fallthru1)
1422 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1423 ? EDGE_0 (fallthru1->dest->succ)->dest: fallthru1->dest);
1424 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1425 ? EDGE_0 (fallthru2->dest->succ)->dest: fallthru2->dest);
1427 if (d1 != d2)
1428 return false;
1431 /* Ensure the same EH region. */
1433 rtx n1 = find_reg_note (BB_END (bb1), REG_EH_REGION, 0);
1434 rtx n2 = find_reg_note (BB_END (bb2), REG_EH_REGION, 0);
1436 if (!n1 && n2)
1437 return false;
1439 if (n1 && (!n2 || XEXP (n1, 0) != XEXP (n2, 0)))
1440 return false;
1443 /* We don't need to match the rest of edges as above checks should be enough
1444 to ensure that they are equivalent. */
1445 return true;
1448 /* E1 and E2 are edges with the same destination block. Search their
1449 predecessors for common code. If found, redirect control flow from
1450 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1452 static bool
1453 try_crossjump_to_edge (int mode, edge e1, edge e2)
1455 int nmatch;
1456 basic_block src1 = e1->src, src2 = e2->src;
1457 basic_block redirect_to, redirect_from, to_remove;
1458 rtx newpos1, newpos2;
1459 edge s;
1460 unsigned ix;
1462 newpos1 = newpos2 = NULL_RTX;
1464 /* If we have partitioned hot/cold basic blocks, it is a bad idea
1465 to try this optimization. */
1467 if (flag_reorder_blocks_and_partition && no_new_pseudos)
1468 return false;
1470 /* Search backward through forwarder blocks. We don't need to worry
1471 about multiple entry or chained forwarders, as they will be optimized
1472 away. We do this to look past the unconditional jump following a
1473 conditional jump that is required due to the current CFG shape. */
1474 if (EDGE_COUNT (src1->pred) == 1
1475 && FORWARDER_BLOCK_P (src1))
1476 e1 = EDGE_0 (src1->pred), src1 = e1->src;
1478 if (EDGE_COUNT (src2->pred) == 1
1479 && FORWARDER_BLOCK_P (src2))
1480 e2 = EDGE_0 (src2->pred), src2 = e2->src;
1482 /* Nothing to do if we reach ENTRY, or a common source block. */
1483 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1484 return false;
1485 if (src1 == src2)
1486 return false;
1488 /* Seeing more than 1 forwarder blocks would confuse us later... */
1489 if (FORWARDER_BLOCK_P (e1->dest)
1490 && FORWARDER_BLOCK_P (EDGE_0 (e1->dest->succ)->dest))
1491 return false;
1493 if (FORWARDER_BLOCK_P (e2->dest)
1494 && FORWARDER_BLOCK_P (EDGE_0 (e2->dest->succ)->dest))
1495 return false;
1497 /* Likewise with dead code (possibly newly created by the other optimizations
1498 of cfg_cleanup). */
1499 if (!src1->pred || !src2->pred)
1500 return false;
1502 /* Look for the common insn sequence, part the first ... */
1503 if (!outgoing_edges_match (mode, src1, src2))
1504 return false;
1506 /* ... and part the second. */
1507 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1508 if (!nmatch)
1509 return false;
1511 #ifndef CASE_DROPS_THROUGH
1512 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1513 will be deleted.
1514 If we have tablejumps in the end of SRC1 and SRC2
1515 they have been already compared for equivalence in outgoing_edges_match ()
1516 so replace the references to TABLE1 by references to TABLE2. */
1518 rtx label1, label2;
1519 rtx table1, table2;
1521 if (tablejump_p (BB_END (src1), &label1, &table1)
1522 && tablejump_p (BB_END (src2), &label2, &table2)
1523 && label1 != label2)
1525 replace_label_data rr;
1526 rtx insn;
1528 /* Replace references to LABEL1 with LABEL2. */
1529 rr.r1 = label1;
1530 rr.r2 = label2;
1531 rr.update_label_nuses = true;
1532 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1534 /* Do not replace the label in SRC1->END because when deleting
1535 a block whose end is a tablejump, the tablejump referenced
1536 from the instruction is deleted too. */
1537 if (insn != BB_END (src1))
1538 for_each_rtx (&insn, replace_label, &rr);
1542 #endif
1544 /* Avoid splitting if possible. */
1545 if (newpos2 == BB_HEAD (src2))
1546 redirect_to = src2;
1547 else
1549 if (dump_file)
1550 fprintf (dump_file, "Splitting bb %i before %i insns\n",
1551 src2->index, nmatch);
1552 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1555 if (dump_file)
1556 fprintf (dump_file,
1557 "Cross jumping from bb %i to bb %i; %i common insns\n",
1558 src1->index, src2->index, nmatch);
1560 redirect_to->count += src1->count;
1561 redirect_to->frequency += src1->frequency;
1562 /* We may have some registers visible trought the block. */
1563 redirect_to->flags |= BB_DIRTY;
1565 /* Recompute the frequencies and counts of outgoing edges. */
1566 FOR_EACH_EDGE (s, redirect_to->succ, ix)
1568 edge s2;
1569 unsigned ix2;
1570 basic_block d = s->dest;
1572 if (FORWARDER_BLOCK_P (d))
1573 d = EDGE_0 (d->succ)->dest;
1575 FOR_EACH_EDGE (s2, src1->succ, ix2)
1577 basic_block d2 = s2->dest;
1578 if (FORWARDER_BLOCK_P (d2))
1579 d2 = EDGE_0 (d2->succ)->dest;
1580 if (d == d2)
1581 break;
1584 s->count += s2->count;
1586 /* Take care to update possible forwarder blocks. We verified
1587 that there is no more than one in the chain, so we can't run
1588 into infinite loop. */
1589 if (FORWARDER_BLOCK_P (s->dest))
1591 EDGE_0 (s->dest->succ)->count += s2->count;
1592 s->dest->count += s2->count;
1593 s->dest->frequency += EDGE_FREQUENCY (s);
1596 if (FORWARDER_BLOCK_P (s2->dest))
1598 EDGE_0 (s2->dest->succ)->count -= s2->count;
1599 if (EDGE_0 (s2->dest->succ)->count < 0)
1600 EDGE_0 (s2->dest->succ)->count = 0;
1601 s2->dest->count -= s2->count;
1602 s2->dest->frequency -= EDGE_FREQUENCY (s);
1603 if (s2->dest->frequency < 0)
1604 s2->dest->frequency = 0;
1605 if (s2->dest->count < 0)
1606 s2->dest->count = 0;
1609 if (!redirect_to->frequency && !src1->frequency)
1610 s->probability = (s->probability + s2->probability) / 2;
1611 else
1612 s->probability
1613 = ((s->probability * redirect_to->frequency +
1614 s2->probability * src1->frequency)
1615 / (redirect_to->frequency + src1->frequency));
1618 update_br_prob_note (redirect_to);
1620 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1622 /* Skip possible basic block header. */
1623 if (LABEL_P (newpos1))
1624 newpos1 = NEXT_INSN (newpos1);
1626 if (NOTE_P (newpos1))
1627 newpos1 = NEXT_INSN (newpos1);
1629 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1630 to_remove = EDGE_0 (redirect_from->succ)->dest;
1632 redirect_edge_and_branch_force (EDGE_0 (redirect_from->succ), redirect_to);
1633 delete_basic_block (to_remove);
1635 update_forwarder_flag (redirect_from);
1637 return true;
1640 /* Search the predecessors of BB for common insn sequences. When found,
1641 share code between them by redirecting control flow. Return true if
1642 any changes made. */
1644 static bool
1645 try_crossjump_bb (int mode, basic_block bb)
1647 edge e, e2, fallthru;
1648 VEC(edge) *ev, *ev2;
1649 bool changed;
1650 unsigned n, max, ix, ix2;
1652 /* Nothing to do if there is not at least two incoming edges. */
1653 if (EDGE_COUNT (bb->pred) < 2)
1654 return false;
1656 /* If we are partitioning hot/cold basic blocks, we don't want to
1657 mess up unconditional or indirect jumps that cross between hot
1658 and cold sections. */
1660 if (flag_reorder_blocks_and_partition
1661 && (EDGE_0 (bb->pred)->src->partition != EDGE_1 (bb->pred)->src->partition
1662 || EDGE_0 (bb->pred)->crossing_edge))
1663 return false;
1665 /* It is always cheapest to redirect a block that ends in a branch to
1666 a block that falls through into BB, as that adds no branches to the
1667 program. We'll try that combination first. */
1668 fallthru = NULL;
1669 max = PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES);
1670 FOR_EACH_EDGE (e, bb->pred, n)
1672 if (e->flags & EDGE_FALLTHRU)
1673 fallthru = e;
1674 if (n > max)
1675 return false;
1678 changed = false;
1679 for (ix = 0, ev = bb->pred; ix < EDGE_COUNT (ev); )
1681 e = EDGE_I (ev, ix);
1682 ix++;
1684 /* As noted above, first try with the fallthru predecessor. */
1685 if (fallthru)
1687 /* Don't combine the fallthru edge into anything else.
1688 If there is a match, we'll do it the other way around. */
1689 if (e == fallthru)
1690 continue;
1691 /* If nothing changed since the last attempt, there is nothing
1692 we can do. */
1693 if (!first_pass
1694 && (!(e->src->flags & BB_DIRTY)
1695 && !(fallthru->src->flags & BB_DIRTY)))
1696 continue;
1698 if (try_crossjump_to_edge (mode, e, fallthru))
1700 changed = true;
1701 ix = 0;
1702 ev = bb->pred;
1703 continue;
1707 /* Non-obvious work limiting check: Recognize that we're going
1708 to call try_crossjump_bb on every basic block. So if we have
1709 two blocks with lots of outgoing edges (a switch) and they
1710 share lots of common destinations, then we would do the
1711 cross-jump check once for each common destination.
1713 Now, if the blocks actually are cross-jump candidates, then
1714 all of their destinations will be shared. Which means that
1715 we only need check them for cross-jump candidacy once. We
1716 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1717 choosing to do the check from the block for which the edge
1718 in question is the first successor of A. */
1719 if (EDGE_0 (e->src->succ) != e)
1720 continue;
1722 for (ix2 = 0, ev2 = bb->pred; ix2 < EDGE_COUNT (ev2); )
1724 e2 = EDGE_I (ev2, ix2);
1725 ix2++;
1727 if (e2 == e)
1728 continue;
1730 /* We've already checked the fallthru edge above. */
1731 if (e2 == fallthru)
1732 continue;
1734 /* The "first successor" check above only prevents multiple
1735 checks of crossjump(A,B). In order to prevent redundant
1736 checks of crossjump(B,A), require that A be the block
1737 with the lowest index. */
1738 if (e->src->index > e2->src->index)
1739 continue;
1741 /* If nothing changed since the last attempt, there is nothing
1742 we can do. */
1743 if (!first_pass
1744 && (!(e->src->flags & BB_DIRTY)
1745 && !(e2->src->flags & BB_DIRTY)))
1746 continue;
1748 if (try_crossjump_to_edge (mode, e, e2))
1750 changed = true;
1751 ev2 = bb->pred;
1752 ix = 0;
1753 break;
1758 return changed;
1761 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1762 instructions etc. Return nonzero if changes were made. */
1764 static bool
1765 try_optimize_cfg (int mode)
1767 bool changed_overall = false;
1768 bool changed;
1769 int iterations = 0;
1770 basic_block bb, b, next;
1772 if (mode & CLEANUP_CROSSJUMP)
1773 add_noreturn_fake_exit_edges ();
1775 FOR_EACH_BB (bb)
1776 update_forwarder_flag (bb);
1778 if (mode & (CLEANUP_UPDATE_LIFE | CLEANUP_CROSSJUMP | CLEANUP_THREADING))
1779 clear_bb_flags ();
1781 if (! targetm.cannot_modify_jumps_p ())
1783 first_pass = true;
1784 /* Attempt to merge blocks as made possible by edge removal. If
1785 a block has only one successor, and the successor has only
1786 one predecessor, they may be combined. */
1789 changed = false;
1790 iterations++;
1792 if (dump_file)
1793 fprintf (dump_file,
1794 "\n\ntry_optimize_cfg iteration %i\n\n",
1795 iterations);
1797 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1799 basic_block c;
1800 edge s;
1801 bool changed_here = false;
1803 /* Delete trivially dead basic blocks. */
1804 while (EDGE_COUNT (b->pred) == 0)
1806 c = b->prev_bb;
1807 if (dump_file)
1808 fprintf (dump_file, "Deleting block %i.\n",
1809 b->index);
1811 delete_basic_block (b);
1812 if (!(mode & CLEANUP_CFGLAYOUT))
1813 changed = true;
1814 b = c;
1817 /* Remove code labels no longer used. */
1818 if (EDGE_COUNT (b->pred) == 1
1819 && (EDGE_0 (b->pred)->flags & EDGE_FALLTHRU)
1820 && !(EDGE_0 (b->pred)->flags & EDGE_COMPLEX)
1821 && LABEL_P (BB_HEAD (b))
1822 /* If the previous block ends with a branch to this
1823 block, we can't delete the label. Normally this
1824 is a condjump that is yet to be simplified, but
1825 if CASE_DROPS_THRU, this can be a tablejump with
1826 some element going to the same place as the
1827 default (fallthru). */
1828 && (EDGE_0 (b->pred)->src == ENTRY_BLOCK_PTR
1829 || !JUMP_P (BB_END (EDGE_0 (b->pred)->src))
1830 || ! label_is_jump_target_p (BB_HEAD (b),
1831 BB_END (EDGE_0 (b->pred)->src))))
1833 rtx label = BB_HEAD (b);
1835 delete_insn_chain (label, label);
1836 /* In the case label is undeletable, move it after the
1837 BASIC_BLOCK note. */
1838 if (NOTE_LINE_NUMBER (BB_HEAD (b)) == NOTE_INSN_DELETED_LABEL)
1840 rtx bb_note = NEXT_INSN (BB_HEAD (b));
1842 reorder_insns_nobb (label, label, bb_note);
1843 BB_HEAD (b) = bb_note;
1845 if (dump_file)
1846 fprintf (dump_file, "Deleted label in block %i.\n",
1847 b->index);
1850 /* If we fall through an empty block, we can remove it. */
1851 if (!(mode & CLEANUP_CFGLAYOUT)
1852 && EDGE_COUNT (b->pred) == 1
1853 && (EDGE_0 (b->pred)->flags & EDGE_FALLTHRU)
1854 && !LABEL_P (BB_HEAD (b))
1855 && FORWARDER_BLOCK_P (b)
1856 /* Note that forwarder_block_p true ensures that
1857 there is a successor for this block. */
1858 && (EDGE_0 (b->succ)->flags & EDGE_FALLTHRU)
1859 && n_basic_blocks > 1)
1861 if (dump_file)
1862 fprintf (dump_file,
1863 "Deleting fallthru block %i.\n",
1864 b->index);
1866 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1867 redirect_edge_succ_nodup (EDGE_0 (b->pred), EDGE_0 (b->succ)->dest);
1868 delete_basic_block (b);
1869 changed = true;
1870 b = c;
1873 if (EDGE_COUNT (b->succ) == 1
1874 && (s = EDGE_0 (b->succ))
1875 && !(s->flags & EDGE_COMPLEX)
1876 && (c = s->dest) != EXIT_BLOCK_PTR
1877 && EDGE_COUNT (c->pred) == 1
1878 && b != c)
1880 /* When not in cfg_layout mode use code aware of reordering
1881 INSN. This code possibly creates new basic blocks so it
1882 does not fit merge_blocks interface and is kept here in
1883 hope that it will become useless once more of compiler
1884 is transformed to use cfg_layout mode. */
1886 if ((mode & CLEANUP_CFGLAYOUT)
1887 && can_merge_blocks_p (b, c))
1889 merge_blocks (b, c);
1890 update_forwarder_flag (b);
1891 changed_here = true;
1893 else if (!(mode & CLEANUP_CFGLAYOUT)
1894 /* If the jump insn has side effects,
1895 we can't kill the edge. */
1896 && (!JUMP_P (BB_END (b))
1897 || (reload_completed
1898 ? simplejump_p (BB_END (b))
1899 : (onlyjump_p (BB_END (b))
1900 && !tablejump_p (BB_END (b),
1901 NULL, NULL))))
1902 && (next = merge_blocks_move (s, b, c, mode)))
1904 b = next;
1905 changed_here = true;
1909 /* Simplify branch over branch. */
1910 if ((mode & CLEANUP_EXPENSIVE)
1911 && !(mode & CLEANUP_CFGLAYOUT)
1912 && try_simplify_condjump (b))
1913 changed_here = true;
1915 /* If B has a single outgoing edge, but uses a
1916 non-trivial jump instruction without side-effects, we
1917 can either delete the jump entirely, or replace it
1918 with a simple unconditional jump. */
1919 if (EDGE_COUNT (b->succ) == 1
1920 && EDGE_0 (b->succ)->dest != EXIT_BLOCK_PTR
1921 && onlyjump_p (BB_END (b))
1922 && !find_reg_note (BB_END (b), REG_CROSSING_JUMP, NULL_RTX)
1923 && try_redirect_by_replacing_jump (EDGE_0 (b->succ), EDGE_0 (b->succ)->dest,
1924 (mode & CLEANUP_CFGLAYOUT) != 0))
1926 update_forwarder_flag (b);
1927 changed_here = true;
1930 /* Simplify branch to branch. */
1931 if (try_forward_edges (mode, b))
1932 changed_here = true;
1934 /* Look for shared code between blocks. */
1935 if ((mode & CLEANUP_CROSSJUMP)
1936 && try_crossjump_bb (mode, b))
1937 changed_here = true;
1939 /* Don't get confused by the index shift caused by
1940 deleting blocks. */
1941 if (!changed_here)
1942 b = b->next_bb;
1943 else
1944 changed = true;
1947 if ((mode & CLEANUP_CROSSJUMP)
1948 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
1949 changed = true;
1951 #ifdef ENABLE_CHECKING
1952 if (changed)
1953 verify_flow_info ();
1954 #endif
1956 changed_overall |= changed;
1957 first_pass = false;
1959 while (changed);
1962 if (mode & CLEANUP_CROSSJUMP)
1963 remove_fake_exit_edges ();
1965 clear_aux_for_blocks ();
1967 return changed_overall;
1970 /* Delete all unreachable basic blocks. */
1972 bool
1973 delete_unreachable_blocks (void)
1975 bool changed = false;
1976 basic_block b, next_bb;
1978 find_unreachable_blocks ();
1980 /* Delete all unreachable basic blocks. */
1982 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
1984 next_bb = b->next_bb;
1986 if (!(b->flags & BB_REACHABLE))
1988 delete_basic_block (b);
1989 changed = true;
1993 if (changed)
1994 tidy_fallthru_edges ();
1995 return changed;
1998 /* Merges sequential blocks if possible. */
2000 bool
2001 merge_seq_blocks (void)
2003 basic_block bb;
2004 bool changed = false;
2006 for (bb = ENTRY_BLOCK_PTR->next_bb; bb != EXIT_BLOCK_PTR; )
2008 if (EDGE_COUNT (bb->succ) == 1
2009 && can_merge_blocks_p (bb, EDGE_0 (bb->succ)->dest))
2011 /* Merge the blocks and retry. */
2012 merge_blocks (bb, EDGE_0 (bb->succ)->dest);
2013 changed = true;
2014 continue;
2017 bb = bb->next_bb;
2020 return changed;
2023 /* Tidy the CFG by deleting unreachable code and whatnot. */
2025 bool
2026 cleanup_cfg (int mode)
2028 bool changed = false;
2030 timevar_push (TV_CLEANUP_CFG);
2031 if (delete_unreachable_blocks ())
2033 changed = true;
2034 /* We've possibly created trivially dead code. Cleanup it right
2035 now to introduce more opportunities for try_optimize_cfg. */
2036 if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_UPDATE_LIFE))
2037 && !reload_completed)
2038 delete_trivially_dead_insns (get_insns(), max_reg_num ());
2041 compact_blocks ();
2043 while (try_optimize_cfg (mode))
2045 delete_unreachable_blocks (), changed = true;
2046 if (mode & CLEANUP_UPDATE_LIFE)
2048 /* Cleaning up CFG introduces more opportunities for dead code
2049 removal that in turn may introduce more opportunities for
2050 cleaning up the CFG. */
2051 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
2052 PROP_DEATH_NOTES
2053 | PROP_SCAN_DEAD_CODE
2054 | PROP_KILL_DEAD_CODE
2055 | ((mode & CLEANUP_LOG_LINKS)
2056 ? PROP_LOG_LINKS : 0)))
2057 break;
2059 else if (!(mode & CLEANUP_NO_INSN_DEL)
2060 && (mode & CLEANUP_EXPENSIVE)
2061 && !reload_completed)
2063 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
2064 break;
2066 else
2067 break;
2068 delete_dead_jumptables ();
2071 /* Kill the data we won't maintain. */
2072 free_EXPR_LIST_list (&label_value_list);
2073 timevar_pop (TV_CLEANUP_CFG);
2075 return changed;