1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "basic-block.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity
= 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t
*edge_to_cases
;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs
;
81 long num_merged_labels
;
84 static struct cfg_stats_d cfg_stats
;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto
;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
95 static htab_t discriminator_per_locus
;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq
);
99 static void factor_computed_gotos (void);
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block
);
104 static void make_gimple_switch_edges (basic_block
);
105 static void make_goto_expr_edges (basic_block
);
106 static void make_gimple_asm_edges (basic_block
);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t
, basic_block
);
110 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
111 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple
, gimple
);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge
);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple
first_non_label_stmt (basic_block
);
120 static bool verify_gimple_transaction (gimple
);
122 /* Flowgraph optimization and cleanup. */
123 static void gimple_merge_blocks (basic_block
, basic_block
);
124 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
125 static void remove_bb (basic_block
);
126 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
127 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
128 static edge
find_taken_edge_switch_expr (basic_block
, tree
);
129 static tree
find_case_label_for_value (gimple
, tree
);
130 static void group_case_labels_stmt (gimple
);
133 init_empty_tree_cfg_for_function (struct function
*fn
)
135 /* Initialize the basic block array. */
137 profile_status_for_function (fn
) = PROFILE_ABSENT
;
138 n_basic_blocks_for_function (fn
) = NUM_FIXED_BLOCKS
;
139 last_basic_block_for_function (fn
) = NUM_FIXED_BLOCKS
;
140 basic_block_info_for_function (fn
)
141 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
142 VEC_safe_grow_cleared (basic_block
, gc
,
143 basic_block_info_for_function (fn
),
144 initial_cfg_capacity
);
146 /* Build a mapping of labels to their associated blocks. */
147 label_to_block_map_for_function (fn
)
148 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
149 VEC_safe_grow_cleared (basic_block
, gc
,
150 label_to_block_map_for_function (fn
),
151 initial_cfg_capacity
);
153 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, ENTRY_BLOCK
,
154 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
));
155 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, EXIT_BLOCK
,
156 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
));
158 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
)->next_bb
159 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn
);
160 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
)->prev_bb
161 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
);
165 init_empty_tree_cfg (void)
167 init_empty_tree_cfg_for_function (cfun
);
170 /*---------------------------------------------------------------------------
172 ---------------------------------------------------------------------------*/
174 /* Entry point to the CFG builder for trees. SEQ is the sequence of
175 statements to be added to the flowgraph. */
178 build_gimple_cfg (gimple_seq seq
)
180 /* Register specific gimple functions. */
181 gimple_register_cfg_hooks ();
183 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
185 init_empty_tree_cfg ();
187 found_computed_goto
= 0;
190 /* Computed gotos are hell to deal with, especially if there are
191 lots of them with a large number of destinations. So we factor
192 them to a common computed goto location before we build the
193 edge list. After we convert back to normal form, we will un-factor
194 the computed gotos since factoring introduces an unwanted jump. */
195 if (found_computed_goto
)
196 factor_computed_gotos ();
198 /* Make sure there is always at least one block, even if it's empty. */
199 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
200 create_empty_bb (ENTRY_BLOCK_PTR
);
202 /* Adjust the size of the array. */
203 if (VEC_length (basic_block
, basic_block_info
) < (size_t) n_basic_blocks
)
204 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, n_basic_blocks
);
206 /* To speed up statement iterator walks, we first purge dead labels. */
207 cleanup_dead_labels ();
209 /* Group case nodes to reduce the number of edges.
210 We do this after cleaning up dead labels because otherwise we miss
211 a lot of obvious case merging opportunities. */
212 group_case_labels ();
214 /* Create the edges of the flowgraph. */
215 discriminator_per_locus
= htab_create (13, locus_map_hash
, locus_map_eq
,
218 cleanup_dead_labels ();
219 htab_delete (discriminator_per_locus
);
221 /* Debugging dumps. */
223 /* Write the flowgraph to a VCG file. */
225 int local_dump_flags
;
226 FILE *vcg_file
= dump_begin (TDI_vcg
, &local_dump_flags
);
229 gimple_cfg2vcg (vcg_file
);
230 dump_end (TDI_vcg
, vcg_file
);
236 execute_build_cfg (void)
238 gimple_seq body
= gimple_body (current_function_decl
);
240 build_gimple_cfg (body
);
241 gimple_set_body (current_function_decl
, NULL
);
242 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
244 fprintf (dump_file
, "Scope blocks:\n");
245 dump_scope_blocks (dump_file
, dump_flags
);
250 struct gimple_opt_pass pass_build_cfg
=
256 execute_build_cfg
, /* execute */
259 0, /* static_pass_number */
260 TV_TREE_CFG
, /* tv_id */
261 PROP_gimple_leh
, /* properties_required */
262 PROP_cfg
, /* properties_provided */
263 0, /* properties_destroyed */
264 0, /* todo_flags_start */
265 TODO_verify_stmts
| TODO_cleanup_cfg
/* todo_flags_finish */
270 /* Return true if T is a computed goto. */
273 computed_goto_p (gimple t
)
275 return (gimple_code (t
) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
286 factor_computed_gotos (void)
289 tree factored_label_decl
= NULL
;
291 gimple factored_computed_goto_label
= NULL
;
292 gimple factored_computed_goto
= NULL
;
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
300 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
306 last
= gsi_stmt (gsi
);
308 /* Ignore the computed goto we create when we factor the original
310 if (last
== factored_computed_goto
)
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last
))
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto
)
323 basic_block new_bb
= create_empty_bb (bb
);
324 gimple_stmt_iterator new_gsi
= gsi_start_bb (new_bb
);
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
330 var
= create_tmp_var (ptr_type_node
, "gotovar");
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl
= create_artificial_label (UNKNOWN_LOCATION
);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl
);
337 gsi_insert_after (&new_gsi
, factored_computed_goto_label
,
340 /* Build our new computed goto. */
341 factored_computed_goto
= gimple_build_goto (var
);
342 gsi_insert_after (&new_gsi
, factored_computed_goto
, GSI_NEW_STMT
);
345 /* Copy the original computed goto's destination into VAR. */
346 assignment
= gimple_build_assign (var
, gimple_goto_dest (last
));
347 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last
, factored_label_decl
);
356 /* Build a flowgraph for the sequence of stmts SEQ. */
359 make_blocks (gimple_seq seq
)
361 gimple_stmt_iterator i
= gsi_start (seq
);
363 bool start_new_block
= true;
364 bool first_stmt_of_seq
= true;
365 basic_block bb
= ENTRY_BLOCK_PTR
;
367 while (!gsi_end_p (i
))
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
377 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
379 if (!first_stmt_of_seq
)
380 seq
= gsi_split_seq_before (&i
);
381 bb
= create_basic_block (seq
, NULL
, bb
);
382 start_new_block
= false;
385 /* Now add STMT to BB and create the subgraphs for special statement
387 gimple_set_bb (stmt
, bb
);
389 if (computed_goto_p (stmt
))
390 found_computed_goto
= true;
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
394 if (stmt_ends_bb_p (stmt
))
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
401 if (gimple_has_lhs (stmt
)
402 && stmt_can_make_abnormal_goto (stmt
)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
405 tree lhs
= gimple_get_lhs (stmt
);
406 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
407 gimple s
= gimple_build_assign (lhs
, tmp
);
408 gimple_set_location (s
, gimple_location (stmt
));
409 gimple_set_block (s
, gimple_block (stmt
));
410 gimple_set_lhs (stmt
, tmp
);
411 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
413 DECL_GIMPLE_REG_P (tmp
) = 1;
414 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
416 start_new_block
= true;
420 first_stmt_of_seq
= false;
425 /* Create and return a new empty basic block after bb AFTER. */
428 create_bb (void *h
, void *e
, basic_block after
)
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
439 bb
->index
= last_basic_block
;
441 bb
->il
.gimple
= ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb
, h
? (gimple_seq
) h
: gimple_seq_alloc ());
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb
, after
);
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block
== VEC_length (basic_block
, basic_block_info
))
450 size_t new_size
= last_basic_block
+ (last_basic_block
+ 3) / 4;
451 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, new_size
);
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block
, bb
);
464 /*---------------------------------------------------------------------------
466 ---------------------------------------------------------------------------*/
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
471 fold_cond_expr_cond (void)
477 gimple stmt
= last_stmt (bb
);
479 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
481 location_t loc
= gimple_location (stmt
);
485 fold_defer_overflow_warnings ();
486 cond
= fold_binary_loc (loc
, gimple_cond_code (stmt
), boolean_type_node
,
487 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
490 zerop
= integer_zerop (cond
);
491 onep
= integer_onep (cond
);
494 zerop
= onep
= false;
496 fold_undefer_overflow_warnings (zerop
|| onep
,
498 WARN_STRICT_OVERFLOW_CONDITIONAL
);
500 gimple_cond_make_false (stmt
);
502 gimple_cond_make_true (stmt
);
507 /* Join all the blocks in the flowgraph. */
513 struct omp_region
*cur_region
= NULL
;
515 /* Create an edge from entry to the first block with executable
517 make_edge (ENTRY_BLOCK_PTR
, BASIC_BLOCK (NUM_FIXED_BLOCKS
), EDGE_FALLTHRU
);
519 /* Traverse the basic block array placing edges. */
522 gimple last
= last_stmt (bb
);
527 enum gimple_code code
= gimple_code (last
);
531 make_goto_expr_edges (bb
);
535 make_edge (bb
, EXIT_BLOCK_PTR
, 0);
539 make_cond_expr_edges (bb
);
543 make_gimple_switch_edges (bb
);
547 make_eh_edges (last
);
550 case GIMPLE_EH_DISPATCH
:
551 fallthru
= make_eh_dispatch_edges (last
);
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
558 if (stmt_can_make_abnormal_goto (last
))
559 make_abnormal_goto_edges (bb
, true);
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last
);
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
567 make_edge (bb
, EXIT_BLOCK_PTR
, 0), fallthru
= false;
568 /* Some calls are known not to return. */
570 fallthru
= !(gimple_call_flags (last
) & ECF_NORETURN
);
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
576 if (is_ctrl_altering_stmt (last
))
577 make_eh_edges (last
);
582 make_gimple_asm_edges (bb
);
586 case GIMPLE_OMP_PARALLEL
:
587 case GIMPLE_OMP_TASK
:
589 case GIMPLE_OMP_SINGLE
:
590 case GIMPLE_OMP_MASTER
:
591 case GIMPLE_OMP_ORDERED
:
592 case GIMPLE_OMP_CRITICAL
:
593 case GIMPLE_OMP_SECTION
:
594 cur_region
= new_omp_region (bb
, code
, cur_region
);
598 case GIMPLE_OMP_SECTIONS
:
599 cur_region
= new_omp_region (bb
, code
, cur_region
);
603 case GIMPLE_OMP_SECTIONS_SWITCH
:
607 case GIMPLE_OMP_ATOMIC_LOAD
:
608 case GIMPLE_OMP_ATOMIC_STORE
:
612 case GIMPLE_OMP_RETURN
:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
616 cur_region
->exit
= bb
;
617 fallthru
= cur_region
->type
!= GIMPLE_OMP_SECTION
;
618 cur_region
= cur_region
->outer
;
621 case GIMPLE_OMP_CONTINUE
:
622 cur_region
->cont
= bb
;
623 switch (cur_region
->type
)
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
629 single_succ_edge (cur_region
->entry
)->flags
|= EDGE_ABNORMAL
;
630 /* Make the loopback edge. */
631 make_edge (bb
, single_succ (cur_region
->entry
),
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region
->entry
, bb
->next_bb
, EDGE_ABNORMAL
);
638 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
| EDGE_ABNORMAL
);
642 case GIMPLE_OMP_SECTIONS
:
643 /* Wire up the edges into and out of the nested sections. */
645 basic_block switch_bb
= single_succ (cur_region
->entry
);
647 struct omp_region
*i
;
648 for (i
= cur_region
->inner
; i
; i
= i
->next
)
650 gcc_assert (i
->type
== GIMPLE_OMP_SECTION
);
651 make_edge (switch_bb
, i
->entry
, 0);
652 make_edge (i
->exit
, bb
, EDGE_FALLTHRU
);
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb
, switch_bb
, 0);
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb
, bb
->next_bb
, 0);
670 case GIMPLE_TRANSACTION
:
672 tree abort_label
= gimple_transaction_label (last
);
674 make_edge (bb
, label_to_block (abort_label
), 0);
680 gcc_assert (!stmt_ends_bb_p (last
));
689 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
691 assign_discriminator (gimple_location (last
), bb
->next_bb
);
698 /* Fold COND_EXPR_COND of each COND_EXPR. */
699 fold_cond_expr_cond ();
702 /* Trivial hash function for a location_t. ITEM is a pointer to
703 a hash table entry that maps a location_t to a discriminator. */
706 locus_map_hash (const void *item
)
708 return ((const struct locus_discrim_map
*) item
)->locus
;
711 /* Equality function for the locus-to-discriminator map. VA and VB
712 point to the two hash table entries to compare. */
715 locus_map_eq (const void *va
, const void *vb
)
717 const struct locus_discrim_map
*a
= (const struct locus_discrim_map
*) va
;
718 const struct locus_discrim_map
*b
= (const struct locus_discrim_map
*) vb
;
719 return a
->locus
== b
->locus
;
722 /* Find the next available discriminator value for LOCUS. The
723 discriminator distinguishes among several basic blocks that
724 share a common locus, allowing for more accurate sample-based
728 next_discriminator_for_locus (location_t locus
)
730 struct locus_discrim_map item
;
731 struct locus_discrim_map
**slot
;
734 item
.discriminator
= 0;
735 slot
= (struct locus_discrim_map
**)
736 htab_find_slot_with_hash (discriminator_per_locus
, (void *) &item
,
737 (hashval_t
) locus
, INSERT
);
739 if (*slot
== HTAB_EMPTY_ENTRY
)
741 *slot
= XNEW (struct locus_discrim_map
);
743 (*slot
)->locus
= locus
;
744 (*slot
)->discriminator
= 0;
746 (*slot
)->discriminator
++;
747 return (*slot
)->discriminator
;
750 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
753 same_line_p (location_t locus1
, location_t locus2
)
755 expanded_location from
, to
;
757 if (locus1
== locus2
)
760 from
= expand_location (locus1
);
761 to
= expand_location (locus2
);
763 if (from
.line
!= to
.line
)
765 if (from
.file
== to
.file
)
767 return (from
.file
!= NULL
769 && filename_cmp (from
.file
, to
.file
) == 0);
772 /* Assign a unique discriminator value to block BB if it begins at the same
773 LOCUS as its predecessor block. */
776 assign_discriminator (location_t locus
, basic_block bb
)
778 gimple first_in_to_bb
, last_in_to_bb
;
780 if (locus
== 0 || bb
->discriminator
!= 0)
783 first_in_to_bb
= first_non_label_stmt (bb
);
784 last_in_to_bb
= last_stmt (bb
);
785 if ((first_in_to_bb
&& same_line_p (locus
, gimple_location (first_in_to_bb
)))
786 || (last_in_to_bb
&& same_line_p (locus
, gimple_location (last_in_to_bb
))))
787 bb
->discriminator
= next_discriminator_for_locus (locus
);
790 /* Create the edges for a GIMPLE_COND starting at block BB. */
793 make_cond_expr_edges (basic_block bb
)
795 gimple entry
= last_stmt (bb
);
796 gimple then_stmt
, else_stmt
;
797 basic_block then_bb
, else_bb
;
798 tree then_label
, else_label
;
800 location_t entry_locus
;
803 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
805 entry_locus
= gimple_location (entry
);
807 /* Entry basic blocks for each component. */
808 then_label
= gimple_cond_true_label (entry
);
809 else_label
= gimple_cond_false_label (entry
);
810 then_bb
= label_to_block (then_label
);
811 else_bb
= label_to_block (else_label
);
812 then_stmt
= first_stmt (then_bb
);
813 else_stmt
= first_stmt (else_bb
);
815 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
816 assign_discriminator (entry_locus
, then_bb
);
817 e
->goto_locus
= gimple_location (then_stmt
);
819 e
->goto_block
= gimple_block (then_stmt
);
820 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
823 assign_discriminator (entry_locus
, else_bb
);
824 e
->goto_locus
= gimple_location (else_stmt
);
826 e
->goto_block
= gimple_block (else_stmt
);
829 /* We do not need the labels anymore. */
830 gimple_cond_set_true_label (entry
, NULL_TREE
);
831 gimple_cond_set_false_label (entry
, NULL_TREE
);
835 /* Called for each element in the hash table (P) as we delete the
836 edge to cases hash table.
838 Clear all the TREE_CHAINs to prevent problems with copying of
839 SWITCH_EXPRs and structure sharing rules, then free the hash table
843 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED
, void **value
,
844 void *data ATTRIBUTE_UNUSED
)
848 for (t
= (tree
) *value
; t
; t
= next
)
850 next
= CASE_CHAIN (t
);
851 CASE_CHAIN (t
) = NULL
;
858 /* Start recording information mapping edges to case labels. */
861 start_recording_case_labels (void)
863 gcc_assert (edge_to_cases
== NULL
);
864 edge_to_cases
= pointer_map_create ();
865 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
868 /* Return nonzero if we are recording information for case labels. */
871 recording_case_labels_p (void)
873 return (edge_to_cases
!= NULL
);
876 /* Stop recording information mapping edges to case labels and
877 remove any information we have recorded. */
879 end_recording_case_labels (void)
883 pointer_map_traverse (edge_to_cases
, edge_to_cases_cleanup
, NULL
);
884 pointer_map_destroy (edge_to_cases
);
885 edge_to_cases
= NULL
;
886 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
888 basic_block bb
= BASIC_BLOCK (i
);
891 gimple stmt
= last_stmt (bb
);
892 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
893 group_case_labels_stmt (stmt
);
896 BITMAP_FREE (touched_switch_bbs
);
899 /* If we are inside a {start,end}_recording_cases block, then return
900 a chain of CASE_LABEL_EXPRs from T which reference E.
902 Otherwise return NULL. */
905 get_cases_for_edge (edge e
, gimple t
)
910 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
911 chains available. Return NULL so the caller can detect this case. */
912 if (!recording_case_labels_p ())
915 slot
= pointer_map_contains (edge_to_cases
, e
);
919 /* If we did not find E in the hash table, then this must be the first
920 time we have been queried for information about E & T. Add all the
921 elements from T to the hash table then perform the query again. */
923 n
= gimple_switch_num_labels (t
);
924 for (i
= 0; i
< n
; i
++)
926 tree elt
= gimple_switch_label (t
, i
);
927 tree lab
= CASE_LABEL (elt
);
928 basic_block label_bb
= label_to_block (lab
);
929 edge this_edge
= find_edge (e
->src
, label_bb
);
931 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
933 slot
= pointer_map_insert (edge_to_cases
, this_edge
);
934 CASE_CHAIN (elt
) = (tree
) *slot
;
938 return (tree
) *pointer_map_contains (edge_to_cases
, e
);
941 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
944 make_gimple_switch_edges (basic_block bb
)
946 gimple entry
= last_stmt (bb
);
947 location_t entry_locus
;
950 entry_locus
= gimple_location (entry
);
952 n
= gimple_switch_num_labels (entry
);
954 for (i
= 0; i
< n
; ++i
)
956 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
957 basic_block label_bb
= label_to_block (lab
);
958 make_edge (bb
, label_bb
, 0);
959 assign_discriminator (entry_locus
, label_bb
);
964 /* Return the basic block holding label DEST. */
967 label_to_block_fn (struct function
*ifun
, tree dest
)
969 int uid
= LABEL_DECL_UID (dest
);
971 /* We would die hard when faced by an undefined label. Emit a label to
972 the very first basic block. This will hopefully make even the dataflow
973 and undefined variable warnings quite right. */
974 if (seen_error () && uid
< 0)
976 gimple_stmt_iterator gsi
= gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS
));
979 stmt
= gimple_build_label (dest
);
980 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
981 uid
= LABEL_DECL_UID (dest
);
983 if (VEC_length (basic_block
, ifun
->cfg
->x_label_to_block_map
)
984 <= (unsigned int) uid
)
986 return VEC_index (basic_block
, ifun
->cfg
->x_label_to_block_map
, uid
);
989 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
990 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
993 make_abnormal_goto_edges (basic_block bb
, bool for_call
)
995 basic_block target_bb
;
996 gimple_stmt_iterator gsi
;
998 FOR_EACH_BB (target_bb
)
999 for (gsi
= gsi_start_bb (target_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1001 gimple label_stmt
= gsi_stmt (gsi
);
1004 if (gimple_code (label_stmt
) != GIMPLE_LABEL
)
1007 target
= gimple_label_label (label_stmt
);
1009 /* Make an edge to every label block that has been marked as a
1010 potential target for a computed goto or a non-local goto. */
1011 if ((FORCED_LABEL (target
) && !for_call
)
1012 || (DECL_NONLOCAL (target
) && for_call
))
1014 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
1020 /* Create edges for a goto statement at block BB. */
1023 make_goto_expr_edges (basic_block bb
)
1025 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1026 gimple goto_t
= gsi_stmt (last
);
1028 /* A simple GOTO creates normal edges. */
1029 if (simple_goto_p (goto_t
))
1031 tree dest
= gimple_goto_dest (goto_t
);
1032 basic_block label_bb
= label_to_block (dest
);
1033 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1034 e
->goto_locus
= gimple_location (goto_t
);
1035 assign_discriminator (e
->goto_locus
, label_bb
);
1037 e
->goto_block
= gimple_block (goto_t
);
1038 gsi_remove (&last
, true);
1042 /* A computed GOTO creates abnormal edges. */
1043 make_abnormal_goto_edges (bb
, false);
1046 /* Create edges for an asm statement with labels at block BB. */
1049 make_gimple_asm_edges (basic_block bb
)
1051 gimple stmt
= last_stmt (bb
);
1052 location_t stmt_loc
= gimple_location (stmt
);
1053 int i
, n
= gimple_asm_nlabels (stmt
);
1055 for (i
= 0; i
< n
; ++i
)
1057 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1058 basic_block label_bb
= label_to_block (label
);
1059 make_edge (bb
, label_bb
, 0);
1060 assign_discriminator (stmt_loc
, label_bb
);
1064 /*---------------------------------------------------------------------------
1066 ---------------------------------------------------------------------------*/
1068 /* Cleanup useless labels in basic blocks. This is something we wish
1069 to do early because it allows us to group case labels before creating
1070 the edges for the CFG, and it speeds up block statement iterators in
1071 all passes later on.
1072 We rerun this pass after CFG is created, to get rid of the labels that
1073 are no longer referenced. After then we do not run it any more, since
1074 (almost) no new labels should be created. */
1076 /* A map from basic block index to the leading label of that block. */
1077 static struct label_record
1082 /* True if the label is referenced from somewhere. */
1086 /* Given LABEL return the first label in the same basic block. */
1089 main_block_label (tree label
)
1091 basic_block bb
= label_to_block (label
);
1092 tree main_label
= label_for_bb
[bb
->index
].label
;
1094 /* label_to_block possibly inserted undefined label into the chain. */
1097 label_for_bb
[bb
->index
].label
= label
;
1101 label_for_bb
[bb
->index
].used
= true;
1105 /* Clean up redundant labels within the exception tree. */
1108 cleanup_dead_labels_eh (void)
1115 if (cfun
->eh
== NULL
)
1118 for (i
= 1; VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, i
, lp
); ++i
)
1119 if (lp
&& lp
->post_landing_pad
)
1121 lab
= main_block_label (lp
->post_landing_pad
);
1122 if (lab
!= lp
->post_landing_pad
)
1124 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1125 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1129 FOR_ALL_EH_REGION (r
)
1133 case ERT_MUST_NOT_THROW
:
1139 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1143 c
->label
= main_block_label (lab
);
1148 case ERT_ALLOWED_EXCEPTIONS
:
1149 lab
= r
->u
.allowed
.label
;
1151 r
->u
.allowed
.label
= main_block_label (lab
);
1157 /* Cleanup redundant labels. This is a three-step process:
1158 1) Find the leading label for each block.
1159 2) Redirect all references to labels to the leading labels.
1160 3) Cleanup all useless labels. */
1163 cleanup_dead_labels (void)
1166 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block
);
1168 /* Find a suitable label for each block. We use the first user-defined
1169 label if there is one, or otherwise just the first label we see. */
1172 gimple_stmt_iterator i
;
1174 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1177 gimple stmt
= gsi_stmt (i
);
1179 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1182 label
= gimple_label_label (stmt
);
1184 /* If we have not yet seen a label for the current block,
1185 remember this one and see if there are more labels. */
1186 if (!label_for_bb
[bb
->index
].label
)
1188 label_for_bb
[bb
->index
].label
= label
;
1192 /* If we did see a label for the current block already, but it
1193 is an artificially created label, replace it if the current
1194 label is a user defined label. */
1195 if (!DECL_ARTIFICIAL (label
)
1196 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1198 label_for_bb
[bb
->index
].label
= label
;
1204 /* Now redirect all jumps/branches to the selected label.
1205 First do so for each block ending in a control statement. */
1208 gimple stmt
= last_stmt (bb
);
1209 tree label
, new_label
;
1214 switch (gimple_code (stmt
))
1217 label
= gimple_cond_true_label (stmt
);
1220 new_label
= main_block_label (label
);
1221 if (new_label
!= label
)
1222 gimple_cond_set_true_label (stmt
, new_label
);
1225 label
= gimple_cond_false_label (stmt
);
1228 new_label
= main_block_label (label
);
1229 if (new_label
!= label
)
1230 gimple_cond_set_false_label (stmt
, new_label
);
1236 size_t i
, n
= gimple_switch_num_labels (stmt
);
1238 /* Replace all destination labels. */
1239 for (i
= 0; i
< n
; ++i
)
1241 tree case_label
= gimple_switch_label (stmt
, i
);
1242 label
= CASE_LABEL (case_label
);
1243 new_label
= main_block_label (label
);
1244 if (new_label
!= label
)
1245 CASE_LABEL (case_label
) = new_label
;
1252 int i
, n
= gimple_asm_nlabels (stmt
);
1254 for (i
= 0; i
< n
; ++i
)
1256 tree cons
= gimple_asm_label_op (stmt
, i
);
1257 tree label
= main_block_label (TREE_VALUE (cons
));
1258 TREE_VALUE (cons
) = label
;
1263 /* We have to handle gotos until they're removed, and we don't
1264 remove them until after we've created the CFG edges. */
1266 if (!computed_goto_p (stmt
))
1268 label
= gimple_goto_dest (stmt
);
1269 new_label
= main_block_label (label
);
1270 if (new_label
!= label
)
1271 gimple_goto_set_dest (stmt
, new_label
);
1275 case GIMPLE_TRANSACTION
:
1277 tree label
= gimple_transaction_label (stmt
);
1280 tree new_label
= main_block_label (label
);
1281 if (new_label
!= label
)
1282 gimple_transaction_set_label (stmt
, new_label
);
1292 /* Do the same for the exception region tree labels. */
1293 cleanup_dead_labels_eh ();
1295 /* Finally, purge dead labels. All user-defined labels and labels that
1296 can be the target of non-local gotos and labels which have their
1297 address taken are preserved. */
1300 gimple_stmt_iterator i
;
1301 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1303 if (!label_for_this_bb
)
1306 /* If the main label of the block is unused, we may still remove it. */
1307 if (!label_for_bb
[bb
->index
].used
)
1308 label_for_this_bb
= NULL
;
1310 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1313 gimple stmt
= gsi_stmt (i
);
1315 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1318 label
= gimple_label_label (stmt
);
1320 if (label
== label_for_this_bb
1321 || !DECL_ARTIFICIAL (label
)
1322 || DECL_NONLOCAL (label
)
1323 || FORCED_LABEL (label
))
1326 gsi_remove (&i
, true);
1330 free (label_for_bb
);
1333 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1334 the ones jumping to the same label.
1335 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1338 group_case_labels_stmt (gimple stmt
)
1340 int old_size
= gimple_switch_num_labels (stmt
);
1341 int i
, j
, new_size
= old_size
;
1342 tree default_case
= NULL_TREE
;
1343 tree default_label
= NULL_TREE
;
1346 /* The default label is always the first case in a switch
1347 statement after gimplification if it was not optimized
1349 if (!CASE_LOW (gimple_switch_default_label (stmt
))
1350 && !CASE_HIGH (gimple_switch_default_label (stmt
)))
1352 default_case
= gimple_switch_default_label (stmt
);
1353 default_label
= CASE_LABEL (default_case
);
1357 has_default
= false;
1359 /* Look for possible opportunities to merge cases. */
1364 while (i
< old_size
)
1366 tree base_case
, base_label
, base_high
;
1367 base_case
= gimple_switch_label (stmt
, i
);
1369 gcc_assert (base_case
);
1370 base_label
= CASE_LABEL (base_case
);
1372 /* Discard cases that have the same destination as the
1374 if (base_label
== default_label
)
1376 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1382 base_high
= CASE_HIGH (base_case
)
1383 ? CASE_HIGH (base_case
)
1384 : CASE_LOW (base_case
);
1387 /* Try to merge case labels. Break out when we reach the end
1388 of the label vector or when we cannot merge the next case
1389 label with the current one. */
1390 while (i
< old_size
)
1392 tree merge_case
= gimple_switch_label (stmt
, i
);
1393 tree merge_label
= CASE_LABEL (merge_case
);
1394 double_int bhp1
= double_int_add (tree_to_double_int (base_high
),
1397 /* Merge the cases if they jump to the same place,
1398 and their ranges are consecutive. */
1399 if (merge_label
== base_label
1400 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case
)),
1403 base_high
= CASE_HIGH (merge_case
) ?
1404 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1405 CASE_HIGH (base_case
) = base_high
;
1406 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1415 /* Compress the case labels in the label vector, and adjust the
1416 length of the vector. */
1417 for (i
= 0, j
= 0; i
< new_size
; i
++)
1419 while (! gimple_switch_label (stmt
, j
))
1421 gimple_switch_set_label (stmt
, i
,
1422 gimple_switch_label (stmt
, j
++));
1425 gcc_assert (new_size
<= old_size
);
1426 gimple_switch_set_num_labels (stmt
, new_size
);
1429 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1430 and scan the sorted vector of cases. Combine the ones jumping to the
1434 group_case_labels (void)
1440 gimple stmt
= last_stmt (bb
);
1441 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1442 group_case_labels_stmt (stmt
);
1446 /* Checks whether we can merge block B into block A. */
1449 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1452 gimple_stmt_iterator gsi
;
1455 if (!single_succ_p (a
))
1458 if (single_succ_edge (a
)->flags
& (EDGE_ABNORMAL
| EDGE_EH
| EDGE_PRESERVE
))
1461 if (single_succ (a
) != b
)
1464 if (!single_pred_p (b
))
1467 if (b
== EXIT_BLOCK_PTR
)
1470 /* If A ends by a statement causing exceptions or something similar, we
1471 cannot merge the blocks. */
1472 stmt
= last_stmt (a
);
1473 if (stmt
&& stmt_ends_bb_p (stmt
))
1476 /* Do not allow a block with only a non-local label to be merged. */
1478 && gimple_code (stmt
) == GIMPLE_LABEL
1479 && DECL_NONLOCAL (gimple_label_label (stmt
)))
1482 /* Examine the labels at the beginning of B. */
1483 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1486 stmt
= gsi_stmt (gsi
);
1487 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1489 lab
= gimple_label_label (stmt
);
1491 /* Do not remove user forced labels or for -O0 any user labels. */
1492 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1496 /* Protect the loop latches. */
1497 if (current_loops
&& b
->loop_father
->latch
== b
)
1500 /* It must be possible to eliminate all phi nodes in B. If ssa form
1501 is not up-to-date and a name-mapping is registered, we cannot eliminate
1502 any phis. Symbols marked for renaming are never a problem though. */
1503 phis
= phi_nodes (b
);
1504 if (!gimple_seq_empty_p (phis
)
1505 && name_mappings_registered_p ())
1508 /* When not optimizing, don't merge if we'd lose goto_locus. */
1510 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1512 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1513 gimple_stmt_iterator prev
, next
;
1514 prev
= gsi_last_nondebug_bb (a
);
1515 next
= gsi_after_labels (b
);
1516 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1517 gsi_next_nondebug (&next
);
1518 if ((gsi_end_p (prev
)
1519 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1520 && (gsi_end_p (next
)
1521 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1528 /* Return true if the var whose chain of uses starts at PTR has no
1531 has_zero_uses_1 (const ssa_use_operand_t
*head
)
1533 const ssa_use_operand_t
*ptr
;
1535 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1536 if (!is_gimple_debug (USE_STMT (ptr
)))
1542 /* Return true if the var whose chain of uses starts at PTR has a
1543 single nondebug use. Set USE_P and STMT to that single nondebug
1544 use, if so, or to NULL otherwise. */
1546 single_imm_use_1 (const ssa_use_operand_t
*head
,
1547 use_operand_p
*use_p
, gimple
*stmt
)
1549 ssa_use_operand_t
*ptr
, *single_use
= 0;
1551 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1552 if (!is_gimple_debug (USE_STMT (ptr
)))
1563 *use_p
= single_use
;
1566 *stmt
= single_use
? single_use
->loc
.stmt
: NULL
;
1568 return !!single_use
;
1571 /* Replaces all uses of NAME by VAL. */
1574 replace_uses_by (tree name
, tree val
)
1576 imm_use_iterator imm_iter
;
1581 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1583 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1585 replace_exp (use
, val
);
1587 if (gimple_code (stmt
) == GIMPLE_PHI
)
1589 e
= gimple_phi_arg_edge (stmt
, PHI_ARG_INDEX_FROM_USE (use
));
1590 if (e
->flags
& EDGE_ABNORMAL
)
1592 /* This can only occur for virtual operands, since
1593 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1594 would prevent replacement. */
1595 gcc_checking_assert (!is_gimple_reg (name
));
1596 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1601 if (gimple_code (stmt
) != GIMPLE_PHI
)
1603 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1604 gimple orig_stmt
= stmt
;
1607 /* Mark the block if we changed the last stmt in it. */
1608 if (cfgcleanup_altered_bbs
1609 && stmt_ends_bb_p (stmt
))
1610 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1612 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1613 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1614 only change sth from non-invariant to invariant, and only
1615 when propagating constants. */
1616 if (is_gimple_min_invariant (val
))
1617 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1619 tree op
= gimple_op (stmt
, i
);
1620 /* Operands may be empty here. For example, the labels
1621 of a GIMPLE_COND are nulled out following the creation
1622 of the corresponding CFG edges. */
1623 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1624 recompute_tree_invariant_for_addr_expr (op
);
1627 if (fold_stmt (&gsi
))
1628 stmt
= gsi_stmt (gsi
);
1630 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
1631 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
1637 gcc_checking_assert (has_zero_uses (name
));
1639 /* Also update the trees stored in loop structures. */
1645 FOR_EACH_LOOP (li
, loop
, 0)
1647 substitute_in_loop_info (loop
, name
, val
);
1652 /* Merge block B into block A. */
1655 gimple_merge_blocks (basic_block a
, basic_block b
)
1657 gimple_stmt_iterator last
, gsi
, psi
;
1658 gimple_seq phis
= phi_nodes (b
);
1661 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1663 /* Remove all single-valued PHI nodes from block B of the form
1664 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1665 gsi
= gsi_last_bb (a
);
1666 for (psi
= gsi_start (phis
); !gsi_end_p (psi
); )
1668 gimple phi
= gsi_stmt (psi
);
1669 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1671 bool may_replace_uses
= !is_gimple_reg (def
)
1672 || may_propagate_copy (def
, use
);
1674 /* In case we maintain loop closed ssa form, do not propagate arguments
1675 of loop exit phi nodes. */
1677 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1678 && is_gimple_reg (def
)
1679 && TREE_CODE (use
) == SSA_NAME
1680 && a
->loop_father
!= b
->loop_father
)
1681 may_replace_uses
= false;
1683 if (!may_replace_uses
)
1685 gcc_assert (is_gimple_reg (def
));
1687 /* Note that just emitting the copies is fine -- there is no problem
1688 with ordering of phi nodes. This is because A is the single
1689 predecessor of B, therefore results of the phi nodes cannot
1690 appear as arguments of the phi nodes. */
1691 copy
= gimple_build_assign (def
, use
);
1692 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
1693 remove_phi_node (&psi
, false);
1697 /* If we deal with a PHI for virtual operands, we can simply
1698 propagate these without fussing with folding or updating
1700 if (!is_gimple_reg (def
))
1702 imm_use_iterator iter
;
1703 use_operand_p use_p
;
1706 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
1707 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1708 SET_USE (use_p
, use
);
1710 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
1711 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
1714 replace_uses_by (def
, use
);
1716 remove_phi_node (&psi
, true);
1720 /* Ensure that B follows A. */
1721 move_block_after (b
, a
);
1723 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
1724 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
1726 /* Remove labels from B and set gimple_bb to A for other statements. */
1727 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
1729 gimple stmt
= gsi_stmt (gsi
);
1730 if (gimple_code (stmt
) == GIMPLE_LABEL
)
1732 tree label
= gimple_label_label (stmt
);
1735 gsi_remove (&gsi
, false);
1737 /* Now that we can thread computed gotos, we might have
1738 a situation where we have a forced label in block B
1739 However, the label at the start of block B might still be
1740 used in other ways (think about the runtime checking for
1741 Fortran assigned gotos). So we can not just delete the
1742 label. Instead we move the label to the start of block A. */
1743 if (FORCED_LABEL (label
))
1745 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
1746 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
1748 /* Other user labels keep around in a form of a debug stmt. */
1749 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_STMTS
)
1751 gimple dbg
= gimple_build_debug_bind (label
,
1754 gimple_debug_bind_reset_value (dbg
);
1755 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
1758 lp_nr
= EH_LANDING_PAD_NR (label
);
1761 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
1762 lp
->post_landing_pad
= NULL
;
1767 gimple_set_bb (stmt
, a
);
1772 /* Merge the sequences. */
1773 last
= gsi_last_bb (a
);
1774 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
1775 set_bb_seq (b
, NULL
);
1777 if (cfgcleanup_altered_bbs
)
1778 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
1782 /* Return the one of two successors of BB that is not reachable by a
1783 complex edge, if there is one. Else, return BB. We use
1784 this in optimizations that use post-dominators for their heuristics,
1785 to catch the cases in C++ where function calls are involved. */
1788 single_noncomplex_succ (basic_block bb
)
1791 if (EDGE_COUNT (bb
->succs
) != 2)
1794 e0
= EDGE_SUCC (bb
, 0);
1795 e1
= EDGE_SUCC (bb
, 1);
1796 if (e0
->flags
& EDGE_COMPLEX
)
1798 if (e1
->flags
& EDGE_COMPLEX
)
1804 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1807 notice_special_calls (gimple call
)
1809 int flags
= gimple_call_flags (call
);
1811 if (flags
& ECF_MAY_BE_ALLOCA
)
1812 cfun
->calls_alloca
= true;
1813 if (flags
& ECF_RETURNS_TWICE
)
1814 cfun
->calls_setjmp
= true;
1818 /* Clear flags set by notice_special_calls. Used by dead code removal
1819 to update the flags. */
1822 clear_special_calls (void)
1824 cfun
->calls_alloca
= false;
1825 cfun
->calls_setjmp
= false;
1828 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1831 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
1833 /* Since this block is no longer reachable, we can just delete all
1834 of its PHI nodes. */
1835 remove_phi_nodes (bb
);
1837 /* Remove edges to BB's successors. */
1838 while (EDGE_COUNT (bb
->succs
) > 0)
1839 remove_edge (EDGE_SUCC (bb
, 0));
1843 /* Remove statements of basic block BB. */
1846 remove_bb (basic_block bb
)
1848 gimple_stmt_iterator i
;
1852 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
1853 if (dump_flags
& TDF_DETAILS
)
1855 dump_bb (bb
, dump_file
, 0);
1856 fprintf (dump_file
, "\n");
1862 struct loop
*loop
= bb
->loop_father
;
1864 /* If a loop gets removed, clean up the information associated
1866 if (loop
->latch
== bb
1867 || loop
->header
== bb
)
1868 free_numbers_of_iterations_estimates_loop (loop
);
1871 /* Remove all the instructions in the block. */
1872 if (bb_seq (bb
) != NULL
)
1874 /* Walk backwards so as to get a chance to substitute all
1875 released DEFs into debug stmts. See
1876 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1878 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
1880 gimple stmt
= gsi_stmt (i
);
1881 if (gimple_code (stmt
) == GIMPLE_LABEL
1882 && (FORCED_LABEL (gimple_label_label (stmt
))
1883 || DECL_NONLOCAL (gimple_label_label (stmt
))))
1886 gimple_stmt_iterator new_gsi
;
1888 /* A non-reachable non-local label may still be referenced.
1889 But it no longer needs to carry the extra semantics of
1891 if (DECL_NONLOCAL (gimple_label_label (stmt
)))
1893 DECL_NONLOCAL (gimple_label_label (stmt
)) = 0;
1894 FORCED_LABEL (gimple_label_label (stmt
)) = 1;
1897 new_bb
= bb
->prev_bb
;
1898 new_gsi
= gsi_start_bb (new_bb
);
1899 gsi_remove (&i
, false);
1900 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
1904 /* Release SSA definitions if we are in SSA. Note that we
1905 may be called when not in SSA. For example,
1906 final_cleanup calls this function via
1907 cleanup_tree_cfg. */
1908 if (gimple_in_ssa_p (cfun
))
1909 release_defs (stmt
);
1911 gsi_remove (&i
, true);
1915 i
= gsi_last_bb (bb
);
1921 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
1922 bb
->il
.gimple
= NULL
;
1926 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1927 predicate VAL, return the edge that will be taken out of the block.
1928 If VAL does not match a unique edge, NULL is returned. */
1931 find_taken_edge (basic_block bb
, tree val
)
1935 stmt
= last_stmt (bb
);
1938 gcc_assert (is_ctrl_stmt (stmt
));
1943 if (!is_gimple_min_invariant (val
))
1946 if (gimple_code (stmt
) == GIMPLE_COND
)
1947 return find_taken_edge_cond_expr (bb
, val
);
1949 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1950 return find_taken_edge_switch_expr (bb
, val
);
1952 if (computed_goto_p (stmt
))
1954 /* Only optimize if the argument is a label, if the argument is
1955 not a label then we can not construct a proper CFG.
1957 It may be the case that we only need to allow the LABEL_REF to
1958 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1959 appear inside a LABEL_EXPR just to be safe. */
1960 if ((TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
1961 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
1962 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
1969 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1970 statement, determine which of the outgoing edges will be taken out of the
1971 block. Return NULL if either edge may be taken. */
1974 find_taken_edge_computed_goto (basic_block bb
, tree val
)
1979 dest
= label_to_block (val
);
1982 e
= find_edge (bb
, dest
);
1983 gcc_assert (e
!= NULL
);
1989 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1990 statement, determine which of the two edges will be taken out of the
1991 block. Return NULL if either edge may be taken. */
1994 find_taken_edge_cond_expr (basic_block bb
, tree val
)
1996 edge true_edge
, false_edge
;
1998 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
2000 gcc_assert (TREE_CODE (val
) == INTEGER_CST
);
2001 return (integer_zerop (val
) ? false_edge
: true_edge
);
2004 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2005 statement, determine which edge will be taken out of the block. Return
2006 NULL if any edge may be taken. */
2009 find_taken_edge_switch_expr (basic_block bb
, tree val
)
2011 basic_block dest_bb
;
2016 switch_stmt
= last_stmt (bb
);
2017 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2018 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
2020 e
= find_edge (bb
, dest_bb
);
2026 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2027 We can make optimal use here of the fact that the case labels are
2028 sorted: We can do a binary search for a case matching VAL. */
2031 find_case_label_for_value (gimple switch_stmt
, tree val
)
2033 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2034 tree default_case
= gimple_switch_default_label (switch_stmt
);
2036 for (low
= 0, high
= n
; high
- low
> 1; )
2038 size_t i
= (high
+ low
) / 2;
2039 tree t
= gimple_switch_label (switch_stmt
, i
);
2042 /* Cache the result of comparing CASE_LOW and val. */
2043 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2050 if (CASE_HIGH (t
) == NULL
)
2052 /* A singe-valued case label. */
2058 /* A case range. We can only handle integer ranges. */
2059 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2064 return default_case
;
2068 /* Dump a basic block on stderr. */
2071 gimple_debug_bb (basic_block bb
)
2073 gimple_dump_bb (bb
, stderr
, 0, TDF_VOPS
|TDF_MEMSYMS
);
2077 /* Dump basic block with index N on stderr. */
2080 gimple_debug_bb_n (int n
)
2082 gimple_debug_bb (BASIC_BLOCK (n
));
2083 return BASIC_BLOCK (n
);
2087 /* Dump the CFG on stderr.
2089 FLAGS are the same used by the tree dumping functions
2090 (see TDF_* in tree-pass.h). */
2093 gimple_debug_cfg (int flags
)
2095 gimple_dump_cfg (stderr
, flags
);
2099 /* Dump the program showing basic block boundaries on the given FILE.
2101 FLAGS are the same used by the tree dumping functions (see TDF_* in
2105 gimple_dump_cfg (FILE *file
, int flags
)
2107 if (flags
& TDF_DETAILS
)
2109 dump_function_header (file
, current_function_decl
, flags
);
2110 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2111 n_basic_blocks
, n_edges
, last_basic_block
);
2113 brief_dump_cfg (file
);
2114 fprintf (file
, "\n");
2117 if (flags
& TDF_STATS
)
2118 dump_cfg_stats (file
);
2120 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2124 /* Dump CFG statistics on FILE. */
2127 dump_cfg_stats (FILE *file
)
2129 static long max_num_merged_labels
= 0;
2130 unsigned long size
, total
= 0;
2133 const char * const fmt_str
= "%-30s%-13s%12s\n";
2134 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2135 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2136 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2137 const char *funcname
2138 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2141 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2143 fprintf (file
, "---------------------------------------------------------\n");
2144 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2145 fprintf (file
, fmt_str
, "", " instances ", "used ");
2146 fprintf (file
, "---------------------------------------------------------\n");
2148 size
= n_basic_blocks
* sizeof (struct basic_block_def
);
2150 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks
,
2151 SCALE (size
), LABEL (size
));
2155 num_edges
+= EDGE_COUNT (bb
->succs
);
2156 size
= num_edges
* sizeof (struct edge_def
);
2158 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2160 fprintf (file
, "---------------------------------------------------------\n");
2161 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2163 fprintf (file
, "---------------------------------------------------------\n");
2164 fprintf (file
, "\n");
2166 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2167 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2169 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2170 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2172 fprintf (file
, "\n");
2176 /* Dump CFG statistics on stderr. Keep extern so that it's always
2177 linked in the final executable. */
2180 debug_cfg_stats (void)
2182 dump_cfg_stats (stderr
);
2186 /* Dump the flowgraph to a .vcg FILE. */
2189 gimple_cfg2vcg (FILE *file
)
2194 const char *funcname
2195 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2197 /* Write the file header. */
2198 fprintf (file
, "graph: { title: \"%s\"\n", funcname
);
2199 fprintf (file
, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2200 fprintf (file
, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2202 /* Write blocks and edges. */
2203 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
2205 fprintf (file
, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2208 if (e
->flags
& EDGE_FAKE
)
2209 fprintf (file
, " linestyle: dotted priority: 10");
2211 fprintf (file
, " linestyle: solid priority: 100");
2213 fprintf (file
, " }\n");
2219 enum gimple_code head_code
, end_code
;
2220 const char *head_name
, *end_name
;
2223 gimple first
= first_stmt (bb
);
2224 gimple last
= last_stmt (bb
);
2228 head_code
= gimple_code (first
);
2229 head_name
= gimple_code_name
[head_code
];
2230 head_line
= get_lineno (first
);
2233 head_name
= "no-statement";
2237 end_code
= gimple_code (last
);
2238 end_name
= gimple_code_name
[end_code
];
2239 end_line
= get_lineno (last
);
2242 end_name
= "no-statement";
2244 fprintf (file
, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2245 bb
->index
, bb
->index
, head_name
, head_line
, end_name
,
2248 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2250 if (e
->dest
== EXIT_BLOCK_PTR
)
2251 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb
->index
);
2253 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb
->index
, e
->dest
->index
);
2255 if (e
->flags
& EDGE_FAKE
)
2256 fprintf (file
, " priority: 10 linestyle: dotted");
2258 fprintf (file
, " priority: 100 linestyle: solid");
2260 fprintf (file
, " }\n");
2263 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
2267 fputs ("}\n\n", file
);
2272 /*---------------------------------------------------------------------------
2273 Miscellaneous helpers
2274 ---------------------------------------------------------------------------*/
2276 /* Return true if T represents a stmt that always transfers control. */
2279 is_ctrl_stmt (gimple t
)
2281 switch (gimple_code (t
))
2295 /* Return true if T is a statement that may alter the flow of control
2296 (e.g., a call to a non-returning function). */
2299 is_ctrl_altering_stmt (gimple t
)
2303 switch (gimple_code (t
))
2307 int flags
= gimple_call_flags (t
);
2309 /* A non-pure/const call alters flow control if the current
2310 function has nonlocal labels. */
2311 if (!(flags
& (ECF_CONST
| ECF_PURE
| ECF_LEAF
))
2312 && cfun
->has_nonlocal_label
)
2315 /* A call also alters control flow if it does not return. */
2316 if (flags
& ECF_NORETURN
)
2319 /* TM ending statements have backedges out of the transaction.
2320 Return true so we split the basic block containing them.
2321 Note that the TM_BUILTIN test is merely an optimization. */
2322 if ((flags
& ECF_TM_BUILTIN
)
2323 && is_tm_ending_fndecl (gimple_call_fndecl (t
)))
2326 /* BUILT_IN_RETURN call is same as return statement. */
2327 if (gimple_call_builtin_p (t
, BUILT_IN_RETURN
))
2332 case GIMPLE_EH_DISPATCH
:
2333 /* EH_DISPATCH branches to the individual catch handlers at
2334 this level of a try or allowed-exceptions region. It can
2335 fallthru to the next statement as well. */
2339 if (gimple_asm_nlabels (t
) > 0)
2344 /* OpenMP directives alter control flow. */
2347 case GIMPLE_TRANSACTION
:
2348 /* A transaction start alters control flow. */
2355 /* If a statement can throw, it alters control flow. */
2356 return stmt_can_throw_internal (t
);
2360 /* Return true if T is a simple local goto. */
2363 simple_goto_p (gimple t
)
2365 return (gimple_code (t
) == GIMPLE_GOTO
2366 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2370 /* Return true if T can make an abnormal transfer of control flow.
2371 Transfers of control flow associated with EH are excluded. */
2374 stmt_can_make_abnormal_goto (gimple t
)
2376 if (computed_goto_p (t
))
2378 if (is_gimple_call (t
))
2379 return (gimple_has_side_effects (t
) && cfun
->has_nonlocal_label
2380 && !(gimple_call_flags (t
) & ECF_LEAF
));
2385 /* Return true if STMT should start a new basic block. PREV_STMT is
2386 the statement preceding STMT. It is used when STMT is a label or a
2387 case label. Labels should only start a new basic block if their
2388 previous statement wasn't a label. Otherwise, sequence of labels
2389 would generate unnecessary basic blocks that only contain a single
2393 stmt_starts_bb_p (gimple stmt
, gimple prev_stmt
)
2398 /* Labels start a new basic block only if the preceding statement
2399 wasn't a label of the same type. This prevents the creation of
2400 consecutive blocks that have nothing but a single label. */
2401 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2403 /* Nonlocal and computed GOTO targets always start a new block. */
2404 if (DECL_NONLOCAL (gimple_label_label (stmt
))
2405 || FORCED_LABEL (gimple_label_label (stmt
)))
2408 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2410 if (DECL_NONLOCAL (gimple_label_label (prev_stmt
)))
2413 cfg_stats
.num_merged_labels
++;
2424 /* Return true if T should end a basic block. */
2427 stmt_ends_bb_p (gimple t
)
2429 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2432 /* Remove block annotations and other data structures. */
2435 delete_tree_cfg_annotations (void)
2437 label_to_block_map
= NULL
;
2441 /* Return the first statement in basic block BB. */
2444 first_stmt (basic_block bb
)
2446 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2449 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2457 /* Return the first non-label statement in basic block BB. */
2460 first_non_label_stmt (basic_block bb
)
2462 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2463 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2465 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2468 /* Return the last statement in basic block BB. */
2471 last_stmt (basic_block bb
)
2473 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2476 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2484 /* Return the last statement of an otherwise empty block. Return NULL
2485 if the block is totally empty, or if it contains more than one
2489 last_and_only_stmt (basic_block bb
)
2491 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2497 last
= gsi_stmt (i
);
2498 gsi_prev_nondebug (&i
);
2502 /* Empty statements should no longer appear in the instruction stream.
2503 Everything that might have appeared before should be deleted by
2504 remove_useless_stmts, and the optimizers should just gsi_remove
2505 instead of smashing with build_empty_stmt.
2507 Thus the only thing that should appear here in a block containing
2508 one executable statement is a label. */
2509 prev
= gsi_stmt (i
);
2510 if (gimple_code (prev
) == GIMPLE_LABEL
)
2516 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2519 reinstall_phi_args (edge new_edge
, edge old_edge
)
2521 edge_var_map_vector v
;
2524 gimple_stmt_iterator phis
;
2526 v
= redirect_edge_var_map_vector (old_edge
);
2530 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2531 VEC_iterate (edge_var_map
, v
, i
, vm
) && !gsi_end_p (phis
);
2532 i
++, gsi_next (&phis
))
2534 gimple phi
= gsi_stmt (phis
);
2535 tree result
= redirect_edge_var_map_result (vm
);
2536 tree arg
= redirect_edge_var_map_def (vm
);
2538 gcc_assert (result
== gimple_phi_result (phi
));
2540 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2543 redirect_edge_var_map_clear (old_edge
);
2546 /* Returns the basic block after which the new basic block created
2547 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2548 near its "logical" location. This is of most help to humans looking
2549 at debugging dumps. */
2552 split_edge_bb_loc (edge edge_in
)
2554 basic_block dest
= edge_in
->dest
;
2555 basic_block dest_prev
= dest
->prev_bb
;
2559 edge e
= find_edge (dest_prev
, dest
);
2560 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2561 return edge_in
->src
;
2566 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2567 Abort on abnormal edges. */
2570 gimple_split_edge (edge edge_in
)
2572 basic_block new_bb
, after_bb
, dest
;
2575 /* Abnormal edges cannot be split. */
2576 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2578 dest
= edge_in
->dest
;
2580 after_bb
= split_edge_bb_loc (edge_in
);
2582 new_bb
= create_empty_bb (after_bb
);
2583 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2584 new_bb
->count
= edge_in
->count
;
2585 new_edge
= make_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2586 new_edge
->probability
= REG_BR_PROB_BASE
;
2587 new_edge
->count
= edge_in
->count
;
2589 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2590 gcc_assert (e
== edge_in
);
2591 reinstall_phi_args (new_edge
, e
);
2597 /* Verify properties of the address expression T with base object BASE. */
2600 verify_address (tree t
, tree base
)
2603 bool old_side_effects
;
2605 bool new_side_effects
;
2607 old_constant
= TREE_CONSTANT (t
);
2608 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2610 recompute_tree_invariant_for_addr_expr (t
);
2611 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2612 new_constant
= TREE_CONSTANT (t
);
2614 if (old_constant
!= new_constant
)
2616 error ("constant not recomputed when ADDR_EXPR changed");
2619 if (old_side_effects
!= new_side_effects
)
2621 error ("side effects not recomputed when ADDR_EXPR changed");
2625 if (!(TREE_CODE (base
) == VAR_DECL
2626 || TREE_CODE (base
) == PARM_DECL
2627 || TREE_CODE (base
) == RESULT_DECL
))
2630 if (DECL_GIMPLE_REG_P (base
))
2632 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2639 /* Callback for walk_tree, check that all elements with address taken are
2640 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2641 inside a PHI node. */
2644 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2651 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2652 #define CHECK_OP(N, MSG) \
2653 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2654 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2656 switch (TREE_CODE (t
))
2659 if (SSA_NAME_IN_FREE_LIST (t
))
2661 error ("SSA name in freelist but still referenced");
2667 error ("INDIRECT_REF in gimple IL");
2671 x
= TREE_OPERAND (t
, 0);
2672 if (!POINTER_TYPE_P (TREE_TYPE (x
))
2673 || !is_gimple_mem_ref_addr (x
))
2675 error ("invalid first operand of MEM_REF");
2678 if (TREE_CODE (TREE_OPERAND (t
, 1)) != INTEGER_CST
2679 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
2681 error ("invalid offset operand of MEM_REF");
2682 return TREE_OPERAND (t
, 1);
2684 if (TREE_CODE (x
) == ADDR_EXPR
2685 && (x
= verify_address (x
, TREE_OPERAND (x
, 0))))
2691 x
= fold (ASSERT_EXPR_COND (t
));
2692 if (x
== boolean_false_node
)
2694 error ("ASSERT_EXPR with an always-false condition");
2700 error ("MODIFY_EXPR not expected while having tuples");
2707 gcc_assert (is_gimple_address (t
));
2709 /* Skip any references (they will be checked when we recurse down the
2710 tree) and ensure that any variable used as a prefix is marked
2712 for (x
= TREE_OPERAND (t
, 0);
2713 handled_component_p (x
);
2714 x
= TREE_OPERAND (x
, 0))
2717 if ((tem
= verify_address (t
, x
)))
2720 if (!(TREE_CODE (x
) == VAR_DECL
2721 || TREE_CODE (x
) == PARM_DECL
2722 || TREE_CODE (x
) == RESULT_DECL
))
2725 if (!TREE_ADDRESSABLE (x
))
2727 error ("address taken, but ADDRESSABLE bit not set");
2735 x
= COND_EXPR_COND (t
);
2736 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
2738 error ("non-integral used in condition");
2741 if (!is_gimple_condexpr (x
))
2743 error ("invalid conditional operand");
2748 case NON_LVALUE_EXPR
:
2749 case TRUTH_NOT_EXPR
:
2753 case FIX_TRUNC_EXPR
:
2758 CHECK_OP (0, "invalid operand to unary operator");
2765 case ARRAY_RANGE_REF
:
2767 case VIEW_CONVERT_EXPR
:
2768 /* We have a nest of references. Verify that each of the operands
2769 that determine where to reference is either a constant or a variable,
2770 verify that the base is valid, and then show we've already checked
2772 while (handled_component_p (t
))
2774 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
2775 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2776 else if (TREE_CODE (t
) == ARRAY_REF
2777 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
2779 CHECK_OP (1, "invalid array index");
2780 if (TREE_OPERAND (t
, 2))
2781 CHECK_OP (2, "invalid array lower bound");
2782 if (TREE_OPERAND (t
, 3))
2783 CHECK_OP (3, "invalid array stride");
2785 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
2787 if (!host_integerp (TREE_OPERAND (t
, 1), 1)
2788 || !host_integerp (TREE_OPERAND (t
, 2), 1))
2790 error ("invalid position or size operand to BIT_FIELD_REF");
2793 else if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
2794 && (TYPE_PRECISION (TREE_TYPE (t
))
2795 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2797 error ("integral result type precision does not match "
2798 "field size of BIT_FIELD_REF");
2801 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
2802 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t
)))
2803 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2805 error ("mode precision of non-integral result does not "
2806 "match field size of BIT_FIELD_REF");
2811 t
= TREE_OPERAND (t
, 0);
2814 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
2816 error ("invalid reference prefix");
2823 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2824 POINTER_PLUS_EXPR. */
2825 if (POINTER_TYPE_P (TREE_TYPE (t
)))
2827 error ("invalid operand to plus/minus, type is a pointer");
2830 CHECK_OP (0, "invalid operand to binary operator");
2831 CHECK_OP (1, "invalid operand to binary operator");
2834 case POINTER_PLUS_EXPR
:
2835 /* Check to make sure the first operand is a pointer or reference type. */
2836 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
2838 error ("invalid operand to pointer plus, first operand is not a pointer");
2841 /* Check to make sure the second operand is a ptrofftype. */
2842 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t
, 1))))
2844 error ("invalid operand to pointer plus, second operand is not an "
2845 "integer type of appropriate width");
2855 case UNORDERED_EXPR
:
2864 case TRUNC_DIV_EXPR
:
2866 case FLOOR_DIV_EXPR
:
2867 case ROUND_DIV_EXPR
:
2868 case TRUNC_MOD_EXPR
:
2870 case FLOOR_MOD_EXPR
:
2871 case ROUND_MOD_EXPR
:
2873 case EXACT_DIV_EXPR
:
2883 CHECK_OP (0, "invalid operand to binary operator");
2884 CHECK_OP (1, "invalid operand to binary operator");
2888 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2892 case CASE_LABEL_EXPR
:
2895 error ("invalid CASE_CHAIN");
2909 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2910 Returns true if there is an error, otherwise false. */
2913 verify_types_in_gimple_min_lval (tree expr
)
2917 if (is_gimple_id (expr
))
2920 if (TREE_CODE (expr
) != TARGET_MEM_REF
2921 && TREE_CODE (expr
) != MEM_REF
)
2923 error ("invalid expression for min lvalue");
2927 /* TARGET_MEM_REFs are strange beasts. */
2928 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2931 op
= TREE_OPERAND (expr
, 0);
2932 if (!is_gimple_val (op
))
2934 error ("invalid operand in indirect reference");
2935 debug_generic_stmt (op
);
2938 /* Memory references now generally can involve a value conversion. */
2943 /* Verify if EXPR is a valid GIMPLE reference expression. If
2944 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2945 if there is an error, otherwise false. */
2948 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
2950 while (handled_component_p (expr
))
2952 tree op
= TREE_OPERAND (expr
, 0);
2954 if (TREE_CODE (expr
) == ARRAY_REF
2955 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
2957 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
2958 || (TREE_OPERAND (expr
, 2)
2959 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
2960 || (TREE_OPERAND (expr
, 3)
2961 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
2963 error ("invalid operands to array reference");
2964 debug_generic_stmt (expr
);
2969 /* Verify if the reference array element types are compatible. */
2970 if (TREE_CODE (expr
) == ARRAY_REF
2971 && !useless_type_conversion_p (TREE_TYPE (expr
),
2972 TREE_TYPE (TREE_TYPE (op
))))
2974 error ("type mismatch in array reference");
2975 debug_generic_stmt (TREE_TYPE (expr
));
2976 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2979 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
2980 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
2981 TREE_TYPE (TREE_TYPE (op
))))
2983 error ("type mismatch in array range reference");
2984 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
2985 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2989 if ((TREE_CODE (expr
) == REALPART_EXPR
2990 || TREE_CODE (expr
) == IMAGPART_EXPR
)
2991 && !useless_type_conversion_p (TREE_TYPE (expr
),
2992 TREE_TYPE (TREE_TYPE (op
))))
2994 error ("type mismatch in real/imagpart reference");
2995 debug_generic_stmt (TREE_TYPE (expr
));
2996 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3000 if (TREE_CODE (expr
) == COMPONENT_REF
3001 && !useless_type_conversion_p (TREE_TYPE (expr
),
3002 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3004 error ("type mismatch in component reference");
3005 debug_generic_stmt (TREE_TYPE (expr
));
3006 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3010 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3012 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3013 that their operand is not an SSA name or an invariant when
3014 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3015 bug). Otherwise there is nothing to verify, gross mismatches at
3016 most invoke undefined behavior. */
3018 && (TREE_CODE (op
) == SSA_NAME
3019 || is_gimple_min_invariant (op
)))
3021 error ("conversion of an SSA_NAME on the left hand side");
3022 debug_generic_stmt (expr
);
3025 else if (TREE_CODE (op
) == SSA_NAME
3026 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3028 error ("conversion of register to a different size");
3029 debug_generic_stmt (expr
);
3032 else if (!handled_component_p (op
))
3039 if (TREE_CODE (expr
) == MEM_REF
)
3041 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
3043 error ("invalid address operand in MEM_REF");
3044 debug_generic_stmt (expr
);
3047 if (TREE_CODE (TREE_OPERAND (expr
, 1)) != INTEGER_CST
3048 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3050 error ("invalid offset operand in MEM_REF");
3051 debug_generic_stmt (expr
);
3055 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3057 if (!TMR_BASE (expr
)
3058 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
3060 error ("invalid address operand in TARGET_MEM_REF");
3063 if (!TMR_OFFSET (expr
)
3064 || TREE_CODE (TMR_OFFSET (expr
)) != INTEGER_CST
3065 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3067 error ("invalid offset operand in TARGET_MEM_REF");
3068 debug_generic_stmt (expr
);
3073 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3074 && verify_types_in_gimple_min_lval (expr
));
3077 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3078 list of pointer-to types that is trivially convertible to DEST. */
3081 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3085 if (!TYPE_POINTER_TO (src_obj
))
3088 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3089 if (useless_type_conversion_p (dest
, src
))
3095 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3096 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3099 valid_fixed_convert_types_p (tree type1
, tree type2
)
3101 return (FIXED_POINT_TYPE_P (type1
)
3102 && (INTEGRAL_TYPE_P (type2
)
3103 || SCALAR_FLOAT_TYPE_P (type2
)
3104 || FIXED_POINT_TYPE_P (type2
)));
3107 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3108 is a problem, otherwise false. */
3111 verify_gimple_call (gimple stmt
)
3113 tree fn
= gimple_call_fn (stmt
);
3114 tree fntype
, fndecl
;
3117 if (gimple_call_internal_p (stmt
))
3121 error ("gimple call has two targets");
3122 debug_generic_stmt (fn
);
3130 error ("gimple call has no target");
3135 if (fn
&& !is_gimple_call_addr (fn
))
3137 error ("invalid function in gimple call");
3138 debug_generic_stmt (fn
);
3143 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3144 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3145 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3147 error ("non-function in gimple call");
3151 fndecl
= gimple_call_fndecl (stmt
);
3153 && TREE_CODE (fndecl
) == FUNCTION_DECL
3154 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3155 && !DECL_PURE_P (fndecl
)
3156 && !TREE_READONLY (fndecl
))
3158 error ("invalid pure const state for function");
3162 if (gimple_call_lhs (stmt
)
3163 && (!is_gimple_lvalue (gimple_call_lhs (stmt
))
3164 || verify_types_in_gimple_reference (gimple_call_lhs (stmt
), true)))
3166 error ("invalid LHS in gimple call");
3170 if (gimple_call_lhs (stmt
) && gimple_call_noreturn_p (stmt
))
3172 error ("LHS in noreturn call");
3176 fntype
= gimple_call_fntype (stmt
);
3178 && gimple_call_lhs (stmt
)
3179 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt
)),
3181 /* ??? At least C++ misses conversions at assignments from
3182 void * call results.
3183 ??? Java is completely off. Especially with functions
3184 returning java.lang.Object.
3185 For now simply allow arbitrary pointer type conversions. */
3186 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt
)))
3187 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3189 error ("invalid conversion in gimple call");
3190 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt
)));
3191 debug_generic_stmt (TREE_TYPE (fntype
));
3195 if (gimple_call_chain (stmt
)
3196 && !is_gimple_val (gimple_call_chain (stmt
)))
3198 error ("invalid static chain in gimple call");
3199 debug_generic_stmt (gimple_call_chain (stmt
));
3203 /* If there is a static chain argument, this should not be an indirect
3204 call, and the decl should have DECL_STATIC_CHAIN set. */
3205 if (gimple_call_chain (stmt
))
3207 if (!gimple_call_fndecl (stmt
))
3209 error ("static chain in indirect gimple call");
3212 fn
= TREE_OPERAND (fn
, 0);
3214 if (!DECL_STATIC_CHAIN (fn
))
3216 error ("static chain with function that doesn%'t use one");
3221 /* ??? The C frontend passes unpromoted arguments in case it
3222 didn't see a function declaration before the call. So for now
3223 leave the call arguments mostly unverified. Once we gimplify
3224 unit-at-a-time we have a chance to fix this. */
3226 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3228 tree arg
= gimple_call_arg (stmt
, i
);
3229 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3230 && !is_gimple_val (arg
))
3231 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3232 && !is_gimple_lvalue (arg
)))
3234 error ("invalid argument to gimple call");
3235 debug_generic_expr (arg
);
3243 /* Verifies the gimple comparison with the result type TYPE and
3244 the operands OP0 and OP1. */
3247 verify_gimple_comparison (tree type
, tree op0
, tree op1
)
3249 tree op0_type
= TREE_TYPE (op0
);
3250 tree op1_type
= TREE_TYPE (op1
);
3252 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3254 error ("invalid operands in gimple comparison");
3258 /* For comparisons we do not have the operations type as the
3259 effective type the comparison is carried out in. Instead
3260 we require that either the first operand is trivially
3261 convertible into the second, or the other way around.
3262 Because we special-case pointers to void we allow
3263 comparisons of pointers with the same mode as well. */
3264 if (!useless_type_conversion_p (op0_type
, op1_type
)
3265 && !useless_type_conversion_p (op1_type
, op0_type
)
3266 && (!POINTER_TYPE_P (op0_type
)
3267 || !POINTER_TYPE_P (op1_type
)
3268 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3270 error ("mismatching comparison operand types");
3271 debug_generic_expr (op0_type
);
3272 debug_generic_expr (op1_type
);
3276 /* The resulting type of a comparison may be an effective boolean type. */
3277 if (INTEGRAL_TYPE_P (type
)
3278 && (TREE_CODE (type
) == BOOLEAN_TYPE
3279 || TYPE_PRECISION (type
) == 1))
3281 /* Or an integer vector type with the same size and element count
3282 as the comparison operand types. */
3283 else if (TREE_CODE (type
) == VECTOR_TYPE
3284 && TREE_CODE (TREE_TYPE (type
)) == INTEGER_TYPE
)
3286 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3287 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3289 error ("non-vector operands in vector comparison");
3290 debug_generic_expr (op0_type
);
3291 debug_generic_expr (op1_type
);
3295 if (TYPE_VECTOR_SUBPARTS (type
) != TYPE_VECTOR_SUBPARTS (op0_type
)
3296 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type
)))
3297 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type
)))))
3299 error ("invalid vector comparison resulting type");
3300 debug_generic_expr (type
);
3306 error ("bogus comparison result type");
3307 debug_generic_expr (type
);
3314 /* Verify a gimple assignment statement STMT with an unary rhs.
3315 Returns true if anything is wrong. */
3318 verify_gimple_assign_unary (gimple stmt
)
3320 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3321 tree lhs
= gimple_assign_lhs (stmt
);
3322 tree lhs_type
= TREE_TYPE (lhs
);
3323 tree rhs1
= gimple_assign_rhs1 (stmt
);
3324 tree rhs1_type
= TREE_TYPE (rhs1
);
3326 if (!is_gimple_reg (lhs
))
3328 error ("non-register as LHS of unary operation");
3332 if (!is_gimple_val (rhs1
))
3334 error ("invalid operand in unary operation");
3338 /* First handle conversions. */
3343 /* Allow conversions between integral types and pointers only if
3344 there is no sign or zero extension involved.
3345 For targets were the precision of ptrofftype doesn't match that
3346 of pointers we need to allow arbitrary conversions from and
3348 if ((POINTER_TYPE_P (lhs_type
)
3349 && INTEGRAL_TYPE_P (rhs1_type
)
3350 && (TYPE_PRECISION (lhs_type
) >= TYPE_PRECISION (rhs1_type
)
3351 || ptrofftype_p (rhs1_type
)))
3352 || (POINTER_TYPE_P (rhs1_type
)
3353 && INTEGRAL_TYPE_P (lhs_type
)
3354 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3355 || ptrofftype_p (sizetype
))))
3358 /* Allow conversion from integer to offset type and vice versa. */
3359 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3360 && TREE_CODE (rhs1_type
) == INTEGER_TYPE
)
3361 || (TREE_CODE (lhs_type
) == INTEGER_TYPE
3362 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3365 /* Otherwise assert we are converting between types of the
3367 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3369 error ("invalid types in nop conversion");
3370 debug_generic_expr (lhs_type
);
3371 debug_generic_expr (rhs1_type
);
3378 case ADDR_SPACE_CONVERT_EXPR
:
3380 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3381 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3382 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3384 error ("invalid types in address space conversion");
3385 debug_generic_expr (lhs_type
);
3386 debug_generic_expr (rhs1_type
);
3393 case FIXED_CONVERT_EXPR
:
3395 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3396 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3398 error ("invalid types in fixed-point conversion");
3399 debug_generic_expr (lhs_type
);
3400 debug_generic_expr (rhs1_type
);
3409 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3410 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3411 || !VECTOR_FLOAT_TYPE_P(lhs_type
)))
3413 error ("invalid types in conversion to floating point");
3414 debug_generic_expr (lhs_type
);
3415 debug_generic_expr (rhs1_type
);
3422 case FIX_TRUNC_EXPR
:
3424 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3425 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3426 || !VECTOR_FLOAT_TYPE_P(rhs1_type
)))
3428 error ("invalid types in conversion to integer");
3429 debug_generic_expr (lhs_type
);
3430 debug_generic_expr (rhs1_type
);
3437 case VEC_UNPACK_HI_EXPR
:
3438 case VEC_UNPACK_LO_EXPR
:
3439 case REDUC_MAX_EXPR
:
3440 case REDUC_MIN_EXPR
:
3441 case REDUC_PLUS_EXPR
:
3442 case VEC_UNPACK_FLOAT_HI_EXPR
:
3443 case VEC_UNPACK_FLOAT_LO_EXPR
:
3451 case NON_LVALUE_EXPR
:
3459 /* For the remaining codes assert there is no conversion involved. */
3460 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3462 error ("non-trivial conversion in unary operation");
3463 debug_generic_expr (lhs_type
);
3464 debug_generic_expr (rhs1_type
);
3471 /* Verify a gimple assignment statement STMT with a binary rhs.
3472 Returns true if anything is wrong. */
3475 verify_gimple_assign_binary (gimple stmt
)
3477 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3478 tree lhs
= gimple_assign_lhs (stmt
);
3479 tree lhs_type
= TREE_TYPE (lhs
);
3480 tree rhs1
= gimple_assign_rhs1 (stmt
);
3481 tree rhs1_type
= TREE_TYPE (rhs1
);
3482 tree rhs2
= gimple_assign_rhs2 (stmt
);
3483 tree rhs2_type
= TREE_TYPE (rhs2
);
3485 if (!is_gimple_reg (lhs
))
3487 error ("non-register as LHS of binary operation");
3491 if (!is_gimple_val (rhs1
)
3492 || !is_gimple_val (rhs2
))
3494 error ("invalid operands in binary operation");
3498 /* First handle operations that involve different types. */
3503 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3504 || !(INTEGRAL_TYPE_P (rhs1_type
)
3505 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3506 || !(INTEGRAL_TYPE_P (rhs2_type
)
3507 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3509 error ("type mismatch in complex expression");
3510 debug_generic_expr (lhs_type
);
3511 debug_generic_expr (rhs1_type
);
3512 debug_generic_expr (rhs2_type
);
3524 /* Shifts and rotates are ok on integral types, fixed point
3525 types and integer vector types. */
3526 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3527 && !FIXED_POINT_TYPE_P (rhs1_type
)
3528 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3529 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3530 || (!INTEGRAL_TYPE_P (rhs2_type
)
3531 /* Vector shifts of vectors are also ok. */
3532 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3533 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3534 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3535 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3536 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3538 error ("type mismatch in shift expression");
3539 debug_generic_expr (lhs_type
);
3540 debug_generic_expr (rhs1_type
);
3541 debug_generic_expr (rhs2_type
);
3548 case VEC_LSHIFT_EXPR
:
3549 case VEC_RSHIFT_EXPR
:
3551 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3552 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3553 || POINTER_TYPE_P (TREE_TYPE (rhs1_type
))
3554 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type
))
3555 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3556 || (!INTEGRAL_TYPE_P (rhs2_type
)
3557 && (TREE_CODE (rhs2_type
) != VECTOR_TYPE
3558 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3559 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3561 error ("type mismatch in vector shift expression");
3562 debug_generic_expr (lhs_type
);
3563 debug_generic_expr (rhs1_type
);
3564 debug_generic_expr (rhs2_type
);
3567 /* For shifting a vector of non-integral components we
3568 only allow shifting by a constant multiple of the element size. */
3569 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3570 && (TREE_CODE (rhs2
) != INTEGER_CST
3571 || !div_if_zero_remainder (EXACT_DIV_EXPR
, rhs2
,
3572 TYPE_SIZE (TREE_TYPE (rhs1_type
)))))
3574 error ("non-element sized vector shift of floating point vector");
3581 case WIDEN_LSHIFT_EXPR
:
3583 if (!INTEGRAL_TYPE_P (lhs_type
)
3584 || !INTEGRAL_TYPE_P (rhs1_type
)
3585 || TREE_CODE (rhs2
) != INTEGER_CST
3586 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3588 error ("type mismatch in widening vector shift expression");
3589 debug_generic_expr (lhs_type
);
3590 debug_generic_expr (rhs1_type
);
3591 debug_generic_expr (rhs2_type
);
3598 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3599 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3601 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3602 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3603 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3604 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3605 || TREE_CODE (rhs2
) != INTEGER_CST
3606 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3607 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3609 error ("type mismatch in widening vector shift expression");
3610 debug_generic_expr (lhs_type
);
3611 debug_generic_expr (rhs1_type
);
3612 debug_generic_expr (rhs2_type
);
3622 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3623 ??? This just makes the checker happy and may not be what is
3625 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
3626 && POINTER_TYPE_P (TREE_TYPE (lhs_type
)))
3628 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3629 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3631 error ("invalid non-vector operands to vector valued plus");
3634 lhs_type
= TREE_TYPE (lhs_type
);
3635 rhs1_type
= TREE_TYPE (rhs1_type
);
3636 rhs2_type
= TREE_TYPE (rhs2_type
);
3637 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3638 the pointer to 2nd place. */
3639 if (POINTER_TYPE_P (rhs2_type
))
3641 tree tem
= rhs1_type
;
3642 rhs1_type
= rhs2_type
;
3645 goto do_pointer_plus_expr_check
;
3647 if (POINTER_TYPE_P (lhs_type
)
3648 || POINTER_TYPE_P (rhs1_type
)
3649 || POINTER_TYPE_P (rhs2_type
))
3651 error ("invalid (pointer) operands to plus/minus");
3655 /* Continue with generic binary expression handling. */
3659 case POINTER_PLUS_EXPR
:
3661 do_pointer_plus_expr_check
:
3662 if (!POINTER_TYPE_P (rhs1_type
)
3663 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3664 || !ptrofftype_p (rhs2_type
))
3666 error ("type mismatch in pointer plus expression");
3667 debug_generic_stmt (lhs_type
);
3668 debug_generic_stmt (rhs1_type
);
3669 debug_generic_stmt (rhs2_type
);
3676 case TRUTH_ANDIF_EXPR
:
3677 case TRUTH_ORIF_EXPR
:
3678 case TRUTH_AND_EXPR
:
3680 case TRUTH_XOR_EXPR
:
3690 case UNORDERED_EXPR
:
3698 /* Comparisons are also binary, but the result type is not
3699 connected to the operand types. */
3700 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
);
3702 case WIDEN_MULT_EXPR
:
3703 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3705 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
3706 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3708 case WIDEN_SUM_EXPR
:
3709 case VEC_WIDEN_MULT_HI_EXPR
:
3710 case VEC_WIDEN_MULT_LO_EXPR
:
3711 case VEC_PACK_TRUNC_EXPR
:
3712 case VEC_PACK_SAT_EXPR
:
3713 case VEC_PACK_FIX_TRUNC_EXPR
:
3718 case TRUNC_DIV_EXPR
:
3720 case FLOOR_DIV_EXPR
:
3721 case ROUND_DIV_EXPR
:
3722 case TRUNC_MOD_EXPR
:
3724 case FLOOR_MOD_EXPR
:
3725 case ROUND_MOD_EXPR
:
3727 case EXACT_DIV_EXPR
:
3733 /* Continue with generic binary expression handling. */
3740 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3741 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3743 error ("type mismatch in binary expression");
3744 debug_generic_stmt (lhs_type
);
3745 debug_generic_stmt (rhs1_type
);
3746 debug_generic_stmt (rhs2_type
);
3753 /* Verify a gimple assignment statement STMT with a ternary rhs.
3754 Returns true if anything is wrong. */
3757 verify_gimple_assign_ternary (gimple stmt
)
3759 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3760 tree lhs
= gimple_assign_lhs (stmt
);
3761 tree lhs_type
= TREE_TYPE (lhs
);
3762 tree rhs1
= gimple_assign_rhs1 (stmt
);
3763 tree rhs1_type
= TREE_TYPE (rhs1
);
3764 tree rhs2
= gimple_assign_rhs2 (stmt
);
3765 tree rhs2_type
= TREE_TYPE (rhs2
);
3766 tree rhs3
= gimple_assign_rhs3 (stmt
);
3767 tree rhs3_type
= TREE_TYPE (rhs3
);
3769 if (!is_gimple_reg (lhs
))
3771 error ("non-register as LHS of ternary operation");
3775 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
3776 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
3777 || !is_gimple_val (rhs2
)
3778 || !is_gimple_val (rhs3
))
3780 error ("invalid operands in ternary operation");
3784 /* First handle operations that involve different types. */
3787 case WIDEN_MULT_PLUS_EXPR
:
3788 case WIDEN_MULT_MINUS_EXPR
:
3789 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3790 && !FIXED_POINT_TYPE_P (rhs1_type
))
3791 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
3792 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
3793 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
3794 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
3796 error ("type mismatch in widening multiply-accumulate expression");
3797 debug_generic_expr (lhs_type
);
3798 debug_generic_expr (rhs1_type
);
3799 debug_generic_expr (rhs2_type
);
3800 debug_generic_expr (rhs3_type
);
3806 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3807 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3808 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3810 error ("type mismatch in fused multiply-add expression");
3811 debug_generic_expr (lhs_type
);
3812 debug_generic_expr (rhs1_type
);
3813 debug_generic_expr (rhs2_type
);
3814 debug_generic_expr (rhs3_type
);
3821 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
3822 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3824 error ("type mismatch in conditional expression");
3825 debug_generic_expr (lhs_type
);
3826 debug_generic_expr (rhs2_type
);
3827 debug_generic_expr (rhs3_type
);
3833 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3834 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3836 error ("type mismatch in vector permute expression");
3837 debug_generic_expr (lhs_type
);
3838 debug_generic_expr (rhs1_type
);
3839 debug_generic_expr (rhs2_type
);
3840 debug_generic_expr (rhs3_type
);
3844 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3845 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
3846 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
3848 error ("vector types expected in vector permute expression");
3849 debug_generic_expr (lhs_type
);
3850 debug_generic_expr (rhs1_type
);
3851 debug_generic_expr (rhs2_type
);
3852 debug_generic_expr (rhs3_type
);
3856 if (TYPE_VECTOR_SUBPARTS (rhs1_type
) != TYPE_VECTOR_SUBPARTS (rhs2_type
)
3857 || TYPE_VECTOR_SUBPARTS (rhs2_type
)
3858 != TYPE_VECTOR_SUBPARTS (rhs3_type
)
3859 || TYPE_VECTOR_SUBPARTS (rhs3_type
)
3860 != TYPE_VECTOR_SUBPARTS (lhs_type
))
3862 error ("vectors with different element number found "
3863 "in vector permute expression");
3864 debug_generic_expr (lhs_type
);
3865 debug_generic_expr (rhs1_type
);
3866 debug_generic_expr (rhs2_type
);
3867 debug_generic_expr (rhs3_type
);
3871 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
3872 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type
)))
3873 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
))))
3875 error ("invalid mask type in vector permute expression");
3876 debug_generic_expr (lhs_type
);
3877 debug_generic_expr (rhs1_type
);
3878 debug_generic_expr (rhs2_type
);
3879 debug_generic_expr (rhs3_type
);
3886 case REALIGN_LOAD_EXPR
:
3896 /* Verify a gimple assignment statement STMT with a single rhs.
3897 Returns true if anything is wrong. */
3900 verify_gimple_assign_single (gimple stmt
)
3902 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3903 tree lhs
= gimple_assign_lhs (stmt
);
3904 tree lhs_type
= TREE_TYPE (lhs
);
3905 tree rhs1
= gimple_assign_rhs1 (stmt
);
3906 tree rhs1_type
= TREE_TYPE (rhs1
);
3909 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3911 error ("non-trivial conversion at assignment");
3912 debug_generic_expr (lhs_type
);
3913 debug_generic_expr (rhs1_type
);
3917 if (handled_component_p (lhs
))
3918 res
|= verify_types_in_gimple_reference (lhs
, true);
3920 /* Special codes we cannot handle via their class. */
3925 tree op
= TREE_OPERAND (rhs1
, 0);
3926 if (!is_gimple_addressable (op
))
3928 error ("invalid operand in unary expression");
3932 /* Technically there is no longer a need for matching types, but
3933 gimple hygiene asks for this check. In LTO we can end up
3934 combining incompatible units and thus end up with addresses
3935 of globals that change their type to a common one. */
3937 && !types_compatible_p (TREE_TYPE (op
),
3938 TREE_TYPE (TREE_TYPE (rhs1
)))
3939 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
3942 error ("type mismatch in address expression");
3943 debug_generic_stmt (TREE_TYPE (rhs1
));
3944 debug_generic_stmt (TREE_TYPE (op
));
3948 return verify_types_in_gimple_reference (op
, true);
3953 error ("INDIRECT_REF in gimple IL");
3959 case ARRAY_RANGE_REF
:
3960 case VIEW_CONVERT_EXPR
:
3963 case TARGET_MEM_REF
:
3965 if (!is_gimple_reg (lhs
)
3966 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3968 error ("invalid rhs for gimple memory store");
3969 debug_generic_stmt (lhs
);
3970 debug_generic_stmt (rhs1
);
3973 return res
|| verify_types_in_gimple_reference (rhs1
, false);
3985 /* tcc_declaration */
3990 if (!is_gimple_reg (lhs
)
3991 && !is_gimple_reg (rhs1
)
3992 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3994 error ("invalid rhs for gimple memory store");
3995 debug_generic_stmt (lhs
);
3996 debug_generic_stmt (rhs1
);
4004 case WITH_SIZE_EXPR
:
4014 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4015 is a problem, otherwise false. */
4018 verify_gimple_assign (gimple stmt
)
4020 switch (gimple_assign_rhs_class (stmt
))
4022 case GIMPLE_SINGLE_RHS
:
4023 return verify_gimple_assign_single (stmt
);
4025 case GIMPLE_UNARY_RHS
:
4026 return verify_gimple_assign_unary (stmt
);
4028 case GIMPLE_BINARY_RHS
:
4029 return verify_gimple_assign_binary (stmt
);
4031 case GIMPLE_TERNARY_RHS
:
4032 return verify_gimple_assign_ternary (stmt
);
4039 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4040 is a problem, otherwise false. */
4043 verify_gimple_return (gimple stmt
)
4045 tree op
= gimple_return_retval (stmt
);
4046 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4048 /* We cannot test for present return values as we do not fix up missing
4049 return values from the original source. */
4053 if (!is_gimple_val (op
)
4054 && TREE_CODE (op
) != RESULT_DECL
)
4056 error ("invalid operand in return statement");
4057 debug_generic_stmt (op
);
4061 if ((TREE_CODE (op
) == RESULT_DECL
4062 && DECL_BY_REFERENCE (op
))
4063 || (TREE_CODE (op
) == SSA_NAME
4064 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4065 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4066 op
= TREE_TYPE (op
);
4068 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4070 error ("invalid conversion in return statement");
4071 debug_generic_stmt (restype
);
4072 debug_generic_stmt (TREE_TYPE (op
));
4080 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4081 is a problem, otherwise false. */
4084 verify_gimple_goto (gimple stmt
)
4086 tree dest
= gimple_goto_dest (stmt
);
4088 /* ??? We have two canonical forms of direct goto destinations, a
4089 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4090 if (TREE_CODE (dest
) != LABEL_DECL
4091 && (!is_gimple_val (dest
)
4092 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4094 error ("goto destination is neither a label nor a pointer");
4101 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4102 is a problem, otherwise false. */
4105 verify_gimple_switch (gimple stmt
)
4107 if (!is_gimple_val (gimple_switch_index (stmt
)))
4109 error ("invalid operand to switch statement");
4110 debug_generic_stmt (gimple_switch_index (stmt
));
4117 /* Verify a gimple debug statement STMT.
4118 Returns true if anything is wrong. */
4121 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED
)
4123 /* There isn't much that could be wrong in a gimple debug stmt. A
4124 gimple debug bind stmt, for example, maps a tree, that's usually
4125 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4126 component or member of an aggregate type, to another tree, that
4127 can be an arbitrary expression. These stmts expand into debug
4128 insns, and are converted to debug notes by var-tracking.c. */
4132 /* Verify a gimple label statement STMT.
4133 Returns true if anything is wrong. */
4136 verify_gimple_label (gimple stmt
)
4138 tree decl
= gimple_label_label (stmt
);
4142 if (TREE_CODE (decl
) != LABEL_DECL
)
4145 uid
= LABEL_DECL_UID (decl
);
4148 || VEC_index (basic_block
,
4149 label_to_block_map
, uid
) != gimple_bb (stmt
)))
4151 error ("incorrect entry in label_to_block_map");
4155 uid
= EH_LANDING_PAD_NR (decl
);
4158 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4159 if (decl
!= lp
->post_landing_pad
)
4161 error ("incorrect setting of landing pad number");
4169 /* Verify the GIMPLE statement STMT. Returns true if there is an
4170 error, otherwise false. */
4173 verify_gimple_stmt (gimple stmt
)
4175 switch (gimple_code (stmt
))
4178 return verify_gimple_assign (stmt
);
4181 return verify_gimple_label (stmt
);
4184 return verify_gimple_call (stmt
);
4187 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4189 error ("invalid comparison code in gimple cond");
4192 if (!(!gimple_cond_true_label (stmt
)
4193 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4194 || !(!gimple_cond_false_label (stmt
)
4195 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4197 error ("invalid labels in gimple cond");
4201 return verify_gimple_comparison (boolean_type_node
,
4202 gimple_cond_lhs (stmt
),
4203 gimple_cond_rhs (stmt
));
4206 return verify_gimple_goto (stmt
);
4209 return verify_gimple_switch (stmt
);
4212 return verify_gimple_return (stmt
);
4217 case GIMPLE_TRANSACTION
:
4218 return verify_gimple_transaction (stmt
);
4220 /* Tuples that do not have tree operands. */
4222 case GIMPLE_PREDICT
:
4224 case GIMPLE_EH_DISPATCH
:
4225 case GIMPLE_EH_MUST_NOT_THROW
:
4229 /* OpenMP directives are validated by the FE and never operated
4230 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4231 non-gimple expressions when the main index variable has had
4232 its address taken. This does not affect the loop itself
4233 because the header of an GIMPLE_OMP_FOR is merely used to determine
4234 how to setup the parallel iteration. */
4238 return verify_gimple_debug (stmt
);
4245 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4246 and false otherwise. */
4249 verify_gimple_phi (gimple phi
)
4253 tree phi_result
= gimple_phi_result (phi
);
4258 error ("invalid PHI result");
4262 virtual_p
= !is_gimple_reg (phi_result
);
4263 if (TREE_CODE (phi_result
) != SSA_NAME
4265 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4267 error ("invalid PHI result");
4271 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4273 tree t
= gimple_phi_arg_def (phi
, i
);
4277 error ("missing PHI def");
4281 /* Addressable variables do have SSA_NAMEs but they
4282 are not considered gimple values. */
4283 else if ((TREE_CODE (t
) == SSA_NAME
4284 && virtual_p
!= !is_gimple_reg (t
))
4286 && (TREE_CODE (t
) != SSA_NAME
4287 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4289 && !is_gimple_val (t
)))
4291 error ("invalid PHI argument");
4292 debug_generic_expr (t
);
4295 #ifdef ENABLE_TYPES_CHECKING
4296 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4298 error ("incompatible types in PHI argument %u", i
);
4299 debug_generic_stmt (TREE_TYPE (phi_result
));
4300 debug_generic_stmt (TREE_TYPE (t
));
4309 /* Verify the GIMPLE statements inside the sequence STMTS. */
4312 verify_gimple_in_seq_2 (gimple_seq stmts
)
4314 gimple_stmt_iterator ittr
;
4317 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4319 gimple stmt
= gsi_stmt (ittr
);
4321 switch (gimple_code (stmt
))
4324 err
|= verify_gimple_in_seq_2 (gimple_bind_body (stmt
));
4328 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
4329 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
4332 case GIMPLE_EH_FILTER
:
4333 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
4336 case GIMPLE_EH_ELSE
:
4337 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt
));
4338 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt
));
4342 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (stmt
));
4345 case GIMPLE_TRANSACTION
:
4346 err
|= verify_gimple_transaction (stmt
);
4351 bool err2
= verify_gimple_stmt (stmt
);
4353 debug_gimple_stmt (stmt
);
4362 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4363 is a problem, otherwise false. */
4366 verify_gimple_transaction (gimple stmt
)
4368 tree lab
= gimple_transaction_label (stmt
);
4369 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4371 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
4375 /* Verify the GIMPLE statements inside the statement list STMTS. */
4378 verify_gimple_in_seq (gimple_seq stmts
)
4380 timevar_push (TV_TREE_STMT_VERIFY
);
4381 if (verify_gimple_in_seq_2 (stmts
))
4382 internal_error ("verify_gimple failed");
4383 timevar_pop (TV_TREE_STMT_VERIFY
);
4386 /* Return true when the T can be shared. */
4389 tree_node_can_be_shared (tree t
)
4391 if (IS_TYPE_OR_DECL_P (t
)
4392 || is_gimple_min_invariant (t
)
4393 || TREE_CODE (t
) == SSA_NAME
4394 || t
== error_mark_node
4395 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4398 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
4401 while (((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
4402 && is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
4403 || TREE_CODE (t
) == COMPONENT_REF
4404 || TREE_CODE (t
) == REALPART_EXPR
4405 || TREE_CODE (t
) == IMAGPART_EXPR
)
4406 t
= TREE_OPERAND (t
, 0);
4414 /* Called via walk_gimple_stmt. Verify tree sharing. */
4417 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
4419 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4420 struct pointer_set_t
*visited
= (struct pointer_set_t
*) wi
->info
;
4422 if (tree_node_can_be_shared (*tp
))
4424 *walk_subtrees
= false;
4428 if (pointer_set_insert (visited
, *tp
))
4434 static bool eh_error_found
;
4436 verify_eh_throw_stmt_node (void **slot
, void *data
)
4438 struct throw_stmt_node
*node
= (struct throw_stmt_node
*)*slot
;
4439 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4441 if (!pointer_set_contains (visited
, node
->stmt
))
4443 error ("dead STMT in EH table");
4444 debug_gimple_stmt (node
->stmt
);
4445 eh_error_found
= true;
4450 /* Verify the GIMPLE statements in the CFG of FN. */
4453 verify_gimple_in_cfg (struct function
*fn
)
4457 struct pointer_set_t
*visited
, *visited_stmts
;
4459 timevar_push (TV_TREE_STMT_VERIFY
);
4460 visited
= pointer_set_create ();
4461 visited_stmts
= pointer_set_create ();
4463 FOR_EACH_BB_FN (bb
, fn
)
4465 gimple_stmt_iterator gsi
;
4467 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4469 gimple phi
= gsi_stmt (gsi
);
4473 pointer_set_insert (visited_stmts
, phi
);
4475 if (gimple_bb (phi
) != bb
)
4477 error ("gimple_bb (phi) is set to a wrong basic block");
4481 err2
|= verify_gimple_phi (phi
);
4483 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4485 tree arg
= gimple_phi_arg_def (phi
, i
);
4486 tree addr
= walk_tree (&arg
, verify_node_sharing
, visited
, NULL
);
4489 error ("incorrect sharing of tree nodes");
4490 debug_generic_expr (addr
);
4496 debug_gimple_stmt (phi
);
4500 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4502 gimple stmt
= gsi_stmt (gsi
);
4504 struct walk_stmt_info wi
;
4508 pointer_set_insert (visited_stmts
, stmt
);
4510 if (gimple_bb (stmt
) != bb
)
4512 error ("gimple_bb (stmt) is set to a wrong basic block");
4516 err2
|= verify_gimple_stmt (stmt
);
4518 memset (&wi
, 0, sizeof (wi
));
4519 wi
.info
= (void *) visited
;
4520 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
4523 error ("incorrect sharing of tree nodes");
4524 debug_generic_expr (addr
);
4528 /* ??? Instead of not checking these stmts at all the walker
4529 should know its context via wi. */
4530 if (!is_gimple_debug (stmt
)
4531 && !is_gimple_omp (stmt
))
4533 memset (&wi
, 0, sizeof (wi
));
4534 addr
= walk_gimple_op (stmt
, verify_expr
, &wi
);
4537 debug_generic_expr (addr
);
4538 inform (gimple_location (stmt
), "in statement");
4543 /* If the statement is marked as part of an EH region, then it is
4544 expected that the statement could throw. Verify that when we
4545 have optimizations that simplify statements such that we prove
4546 that they cannot throw, that we update other data structures
4548 lp_nr
= lookup_stmt_eh_lp (stmt
);
4551 if (!stmt_could_throw_p (stmt
))
4553 error ("statement marked for throw, but doesn%'t");
4557 && !gsi_one_before_end_p (gsi
)
4558 && stmt_can_throw_internal (stmt
))
4560 error ("statement marked for throw in middle of block");
4566 debug_gimple_stmt (stmt
);
4571 eh_error_found
= false;
4572 if (get_eh_throw_stmt_table (cfun
))
4573 htab_traverse (get_eh_throw_stmt_table (cfun
),
4574 verify_eh_throw_stmt_node
,
4577 if (err
|| eh_error_found
)
4578 internal_error ("verify_gimple failed");
4580 pointer_set_destroy (visited
);
4581 pointer_set_destroy (visited_stmts
);
4582 verify_histograms ();
4583 timevar_pop (TV_TREE_STMT_VERIFY
);
4587 /* Verifies that the flow information is OK. */
4590 gimple_verify_flow_info (void)
4594 gimple_stmt_iterator gsi
;
4599 if (ENTRY_BLOCK_PTR
->il
.gimple
)
4601 error ("ENTRY_BLOCK has IL associated with it");
4605 if (EXIT_BLOCK_PTR
->il
.gimple
)
4607 error ("EXIT_BLOCK has IL associated with it");
4611 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
4612 if (e
->flags
& EDGE_FALLTHRU
)
4614 error ("fallthru to exit from bb %d", e
->src
->index
);
4620 bool found_ctrl_stmt
= false;
4624 /* Skip labels on the start of basic block. */
4625 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4628 gimple prev_stmt
= stmt
;
4630 stmt
= gsi_stmt (gsi
);
4632 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4635 label
= gimple_label_label (stmt
);
4636 if (prev_stmt
&& DECL_NONLOCAL (label
))
4638 error ("nonlocal label ");
4639 print_generic_expr (stderr
, label
, 0);
4640 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4645 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
4647 error ("EH landing pad label ");
4648 print_generic_expr (stderr
, label
, 0);
4649 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4654 if (label_to_block (label
) != bb
)
4657 print_generic_expr (stderr
, label
, 0);
4658 fprintf (stderr
, " to block does not match in bb %d",
4663 if (decl_function_context (label
) != current_function_decl
)
4666 print_generic_expr (stderr
, label
, 0);
4667 fprintf (stderr
, " has incorrect context in bb %d",
4673 /* Verify that body of basic block BB is free of control flow. */
4674 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
4676 gimple stmt
= gsi_stmt (gsi
);
4678 if (found_ctrl_stmt
)
4680 error ("control flow in the middle of basic block %d",
4685 if (stmt_ends_bb_p (stmt
))
4686 found_ctrl_stmt
= true;
4688 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4691 print_generic_expr (stderr
, gimple_label_label (stmt
), 0);
4692 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
4697 gsi
= gsi_last_bb (bb
);
4698 if (gsi_end_p (gsi
))
4701 stmt
= gsi_stmt (gsi
);
4703 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4706 err
|= verify_eh_edges (stmt
);
4708 if (is_ctrl_stmt (stmt
))
4710 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4711 if (e
->flags
& EDGE_FALLTHRU
)
4713 error ("fallthru edge after a control statement in bb %d",
4719 if (gimple_code (stmt
) != GIMPLE_COND
)
4721 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4722 after anything else but if statement. */
4723 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4724 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
4726 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4732 switch (gimple_code (stmt
))
4739 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
4743 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
4744 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
4745 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4746 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4747 || EDGE_COUNT (bb
->succs
) >= 3)
4749 error ("wrong outgoing edge flags at end of bb %d",
4757 if (simple_goto_p (stmt
))
4759 error ("explicit goto at end of bb %d", bb
->index
);
4764 /* FIXME. We should double check that the labels in the
4765 destination blocks have their address taken. */
4766 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4767 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
4768 | EDGE_FALSE_VALUE
))
4769 || !(e
->flags
& EDGE_ABNORMAL
))
4771 error ("wrong outgoing edge flags at end of bb %d",
4779 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
4781 /* ... fallthru ... */
4783 if (!single_succ_p (bb
)
4784 || (single_succ_edge (bb
)->flags
4785 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
4786 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4788 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
4791 if (single_succ (bb
) != EXIT_BLOCK_PTR
)
4793 error ("return edge does not point to exit in bb %d",
4805 n
= gimple_switch_num_labels (stmt
);
4807 /* Mark all the destination basic blocks. */
4808 for (i
= 0; i
< n
; ++i
)
4810 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4811 basic_block label_bb
= label_to_block (lab
);
4812 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
4813 label_bb
->aux
= (void *)1;
4816 /* Verify that the case labels are sorted. */
4817 prev
= gimple_switch_label (stmt
, 0);
4818 for (i
= 1; i
< n
; ++i
)
4820 tree c
= gimple_switch_label (stmt
, i
);
4823 error ("found default case not at the start of "
4829 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
4831 error ("case labels not sorted: ");
4832 print_generic_expr (stderr
, prev
, 0);
4833 fprintf (stderr
," is greater than ");
4834 print_generic_expr (stderr
, c
, 0);
4835 fprintf (stderr
," but comes before it.\n");
4840 /* VRP will remove the default case if it can prove it will
4841 never be executed. So do not verify there always exists
4842 a default case here. */
4844 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4848 error ("extra outgoing edge %d->%d",
4849 bb
->index
, e
->dest
->index
);
4853 e
->dest
->aux
= (void *)2;
4854 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
4855 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4857 error ("wrong outgoing edge flags at end of bb %d",
4863 /* Check that we have all of them. */
4864 for (i
= 0; i
< n
; ++i
)
4866 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4867 basic_block label_bb
= label_to_block (lab
);
4869 if (label_bb
->aux
!= (void *)2)
4871 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
4876 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4877 e
->dest
->aux
= (void *)0;
4881 case GIMPLE_EH_DISPATCH
:
4882 err
|= verify_eh_dispatch_edge (stmt
);
4890 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
4891 verify_dominators (CDI_DOMINATORS
);
4897 /* Updates phi nodes after creating a forwarder block joined
4898 by edge FALLTHRU. */
4901 gimple_make_forwarder_block (edge fallthru
)
4905 basic_block dummy
, bb
;
4907 gimple_stmt_iterator gsi
;
4909 dummy
= fallthru
->src
;
4910 bb
= fallthru
->dest
;
4912 if (single_pred_p (bb
))
4915 /* If we redirected a branch we must create new PHI nodes at the
4917 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4919 gimple phi
, new_phi
;
4921 phi
= gsi_stmt (gsi
);
4922 var
= gimple_phi_result (phi
);
4923 new_phi
= create_phi_node (var
, bb
);
4924 SSA_NAME_DEF_STMT (var
) = new_phi
;
4925 gimple_phi_set_result (phi
, make_ssa_name (SSA_NAME_VAR (var
), phi
));
4926 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
4930 /* Add the arguments we have stored on edges. */
4931 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4936 flush_pending_stmts (e
);
4941 /* Return a non-special label in the head of basic block BLOCK.
4942 Create one if it doesn't exist. */
4945 gimple_block_label (basic_block bb
)
4947 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
4952 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
4954 stmt
= gsi_stmt (i
);
4955 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4957 label
= gimple_label_label (stmt
);
4958 if (!DECL_NONLOCAL (label
))
4961 gsi_move_before (&i
, &s
);
4966 label
= create_artificial_label (UNKNOWN_LOCATION
);
4967 stmt
= gimple_build_label (label
);
4968 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
4973 /* Attempt to perform edge redirection by replacing a possibly complex
4974 jump instruction by a goto or by removing the jump completely.
4975 This can apply only if all edges now point to the same block. The
4976 parameters and return values are equivalent to
4977 redirect_edge_and_branch. */
4980 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
4982 basic_block src
= e
->src
;
4983 gimple_stmt_iterator i
;
4986 /* We can replace or remove a complex jump only when we have exactly
4988 if (EDGE_COUNT (src
->succs
) != 2
4989 /* Verify that all targets will be TARGET. Specifically, the
4990 edge that is not E must also go to TARGET. */
4991 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
4994 i
= gsi_last_bb (src
);
4998 stmt
= gsi_stmt (i
);
5000 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5002 gsi_remove (&i
, true);
5003 e
= ssa_redirect_edge (e
, target
);
5004 e
->flags
= EDGE_FALLTHRU
;
5012 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5013 edge representing the redirected branch. */
5016 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5018 basic_block bb
= e
->src
;
5019 gimple_stmt_iterator gsi
;
5023 if (e
->flags
& EDGE_ABNORMAL
)
5026 if (e
->dest
== dest
)
5029 if (e
->flags
& EDGE_EH
)
5030 return redirect_eh_edge (e
, dest
);
5032 if (e
->src
!= ENTRY_BLOCK_PTR
)
5034 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5039 gsi
= gsi_last_bb (bb
);
5040 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5042 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5045 /* For COND_EXPR, we only need to redirect the edge. */
5049 /* No non-abnormal edges should lead from a non-simple goto, and
5050 simple ones should be represented implicitly. */
5055 tree label
= gimple_block_label (dest
);
5056 tree cases
= get_cases_for_edge (e
, stmt
);
5058 /* If we have a list of cases associated with E, then use it
5059 as it's a lot faster than walking the entire case vector. */
5062 edge e2
= find_edge (e
->src
, dest
);
5069 CASE_LABEL (cases
) = label
;
5070 cases
= CASE_CHAIN (cases
);
5073 /* If there was already an edge in the CFG, then we need
5074 to move all the cases associated with E to E2. */
5077 tree cases2
= get_cases_for_edge (e2
, stmt
);
5079 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5080 CASE_CHAIN (cases2
) = first
;
5082 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5086 size_t i
, n
= gimple_switch_num_labels (stmt
);
5088 for (i
= 0; i
< n
; i
++)
5090 tree elt
= gimple_switch_label (stmt
, i
);
5091 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
5092 CASE_LABEL (elt
) = label
;
5100 int i
, n
= gimple_asm_nlabels (stmt
);
5103 for (i
= 0; i
< n
; ++i
)
5105 tree cons
= gimple_asm_label_op (stmt
, i
);
5106 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
5109 label
= gimple_block_label (dest
);
5110 TREE_VALUE (cons
) = label
;
5114 /* If we didn't find any label matching the former edge in the
5115 asm labels, we must be redirecting the fallthrough
5117 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
5122 gsi_remove (&gsi
, true);
5123 e
->flags
|= EDGE_FALLTHRU
;
5126 case GIMPLE_OMP_RETURN
:
5127 case GIMPLE_OMP_CONTINUE
:
5128 case GIMPLE_OMP_SECTIONS_SWITCH
:
5129 case GIMPLE_OMP_FOR
:
5130 /* The edges from OMP constructs can be simply redirected. */
5133 case GIMPLE_EH_DISPATCH
:
5134 if (!(e
->flags
& EDGE_FALLTHRU
))
5135 redirect_eh_dispatch_edge (stmt
, e
, dest
);
5138 case GIMPLE_TRANSACTION
:
5139 /* The ABORT edge has a stored label associated with it, otherwise
5140 the edges are simply redirectable. */
5142 gimple_transaction_set_label (stmt
, gimple_block_label (dest
));
5146 /* Otherwise it must be a fallthru edge, and we don't need to
5147 do anything besides redirecting it. */
5148 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
5152 /* Update/insert PHI nodes as necessary. */
5154 /* Now update the edges in the CFG. */
5155 e
= ssa_redirect_edge (e
, dest
);
5160 /* Returns true if it is possible to remove edge E by redirecting
5161 it to the destination of the other edge from E->src. */
5164 gimple_can_remove_branch_p (const_edge e
)
5166 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
5172 /* Simple wrapper, as we can always redirect fallthru edges. */
5175 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
5177 e
= gimple_redirect_edge_and_branch (e
, dest
);
5184 /* Splits basic block BB after statement STMT (but at least after the
5185 labels). If STMT is NULL, BB is split just after the labels. */
5188 gimple_split_block (basic_block bb
, void *stmt
)
5190 gimple_stmt_iterator gsi
;
5191 gimple_stmt_iterator gsi_tgt
;
5198 new_bb
= create_empty_bb (bb
);
5200 /* Redirect the outgoing edges. */
5201 new_bb
->succs
= bb
->succs
;
5203 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5206 if (stmt
&& gimple_code ((gimple
) stmt
) == GIMPLE_LABEL
)
5209 /* Move everything from GSI to the new basic block. */
5210 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5212 act
= gsi_stmt (gsi
);
5213 if (gimple_code (act
) == GIMPLE_LABEL
)
5226 if (gsi_end_p (gsi
))
5229 /* Split the statement list - avoid re-creating new containers as this
5230 brings ugly quadratic memory consumption in the inliner.
5231 (We are still quadratic since we need to update stmt BB pointers,
5233 list
= gsi_split_seq_before (&gsi
);
5234 set_bb_seq (new_bb
, list
);
5235 for (gsi_tgt
= gsi_start (list
);
5236 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5237 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5243 /* Moves basic block BB after block AFTER. */
5246 gimple_move_block_after (basic_block bb
, basic_block after
)
5248 if (bb
->prev_bb
== after
)
5252 link_block (bb
, after
);
5258 /* Return true if basic_block can be duplicated. */
5261 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
5266 /* Create a duplicate of the basic block BB. NOTE: This does not
5267 preserve SSA form. */
5270 gimple_duplicate_bb (basic_block bb
)
5273 gimple_stmt_iterator gsi
, gsi_tgt
;
5274 gimple_seq phis
= phi_nodes (bb
);
5275 gimple phi
, stmt
, copy
;
5277 new_bb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
5279 /* Copy the PHI nodes. We ignore PHI node arguments here because
5280 the incoming edges have not been setup yet. */
5281 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5283 phi
= gsi_stmt (gsi
);
5284 copy
= create_phi_node (gimple_phi_result (phi
), new_bb
);
5285 create_new_def_for (gimple_phi_result (copy
), copy
,
5286 gimple_phi_result_ptr (copy
));
5289 gsi_tgt
= gsi_start_bb (new_bb
);
5290 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5292 def_operand_p def_p
;
5293 ssa_op_iter op_iter
;
5296 stmt
= gsi_stmt (gsi
);
5297 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5300 /* Don't duplicate label debug stmts. */
5301 if (gimple_debug_bind_p (stmt
)
5302 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
5306 /* Create a new copy of STMT and duplicate STMT's virtual
5308 copy
= gimple_copy (stmt
);
5309 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
5311 maybe_duplicate_eh_stmt (copy
, stmt
);
5312 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
5314 /* When copying around a stmt writing into a local non-user
5315 aggregate, make sure it won't share stack slot with other
5317 lhs
= gimple_get_lhs (stmt
);
5318 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
5320 tree base
= get_base_address (lhs
);
5322 && (TREE_CODE (base
) == VAR_DECL
5323 || TREE_CODE (base
) == RESULT_DECL
)
5324 && DECL_IGNORED_P (base
)
5325 && !TREE_STATIC (base
)
5326 && !DECL_EXTERNAL (base
)
5327 && (TREE_CODE (base
) != VAR_DECL
5328 || !DECL_HAS_VALUE_EXPR_P (base
)))
5329 DECL_NONSHAREABLE (base
) = 1;
5332 /* Create new names for all the definitions created by COPY and
5333 add replacement mappings for each new name. */
5334 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
5335 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
5341 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5344 add_phi_args_after_copy_edge (edge e_copy
)
5346 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
5349 gimple phi
, phi_copy
;
5351 gimple_stmt_iterator psi
, psi_copy
;
5353 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
5356 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
5358 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
5359 dest
= get_bb_original (e_copy
->dest
);
5361 dest
= e_copy
->dest
;
5363 e
= find_edge (bb
, dest
);
5366 /* During loop unrolling the target of the latch edge is copied.
5367 In this case we are not looking for edge to dest, but to
5368 duplicated block whose original was dest. */
5369 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5371 if ((e
->dest
->flags
& BB_DUPLICATED
)
5372 && get_bb_original (e
->dest
) == dest
)
5376 gcc_assert (e
!= NULL
);
5379 for (psi
= gsi_start_phis (e
->dest
),
5380 psi_copy
= gsi_start_phis (e_copy
->dest
);
5382 gsi_next (&psi
), gsi_next (&psi_copy
))
5384 phi
= gsi_stmt (psi
);
5385 phi_copy
= gsi_stmt (psi_copy
);
5386 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
5387 add_phi_arg (phi_copy
, def
, e_copy
,
5388 gimple_phi_arg_location_from_edge (phi
, e
));
5393 /* Basic block BB_COPY was created by code duplication. Add phi node
5394 arguments for edges going out of BB_COPY. The blocks that were
5395 duplicated have BB_DUPLICATED set. */
5398 add_phi_args_after_copy_bb (basic_block bb_copy
)
5403 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
5405 add_phi_args_after_copy_edge (e_copy
);
5409 /* Blocks in REGION_COPY array of length N_REGION were created by
5410 duplication of basic blocks. Add phi node arguments for edges
5411 going from these blocks. If E_COPY is not NULL, also add
5412 phi node arguments for its destination.*/
5415 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
5420 for (i
= 0; i
< n_region
; i
++)
5421 region_copy
[i
]->flags
|= BB_DUPLICATED
;
5423 for (i
= 0; i
< n_region
; i
++)
5424 add_phi_args_after_copy_bb (region_copy
[i
]);
5426 add_phi_args_after_copy_edge (e_copy
);
5428 for (i
= 0; i
< n_region
; i
++)
5429 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
5432 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5433 important exit edge EXIT. By important we mean that no SSA name defined
5434 inside region is live over the other exit edges of the region. All entry
5435 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5436 to the duplicate of the region. SSA form, dominance and loop information
5437 is updated. The new basic blocks are stored to REGION_COPY in the same
5438 order as they had in REGION, provided that REGION_COPY is not NULL.
5439 The function returns false if it is unable to copy the region,
5443 gimple_duplicate_sese_region (edge entry
, edge exit
,
5444 basic_block
*region
, unsigned n_region
,
5445 basic_block
*region_copy
)
5448 bool free_region_copy
= false, copying_header
= false;
5449 struct loop
*loop
= entry
->dest
->loop_father
;
5451 VEC (basic_block
, heap
) *doms
;
5453 int total_freq
= 0, entry_freq
= 0;
5454 gcov_type total_count
= 0, entry_count
= 0;
5456 if (!can_copy_bbs_p (region
, n_region
))
5459 /* Some sanity checking. Note that we do not check for all possible
5460 missuses of the functions. I.e. if you ask to copy something weird,
5461 it will work, but the state of structures probably will not be
5463 for (i
= 0; i
< n_region
; i
++)
5465 /* We do not handle subloops, i.e. all the blocks must belong to the
5467 if (region
[i
]->loop_father
!= loop
)
5470 if (region
[i
] != entry
->dest
5471 && region
[i
] == loop
->header
)
5475 set_loop_copy (loop
, loop
);
5477 /* In case the function is used for loop header copying (which is the primary
5478 use), ensure that EXIT and its copy will be new latch and entry edges. */
5479 if (loop
->header
== entry
->dest
)
5481 copying_header
= true;
5482 set_loop_copy (loop
, loop_outer (loop
));
5484 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
5487 for (i
= 0; i
< n_region
; i
++)
5488 if (region
[i
] != exit
->src
5489 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
5495 region_copy
= XNEWVEC (basic_block
, n_region
);
5496 free_region_copy
= true;
5499 gcc_assert (!need_ssa_update_p (cfun
));
5501 /* Record blocks outside the region that are dominated by something
5504 initialize_original_copy_tables ();
5506 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5508 if (entry
->dest
->count
)
5510 total_count
= entry
->dest
->count
;
5511 entry_count
= entry
->count
;
5512 /* Fix up corner cases, to avoid division by zero or creation of negative
5514 if (entry_count
> total_count
)
5515 entry_count
= total_count
;
5519 total_freq
= entry
->dest
->frequency
;
5520 entry_freq
= EDGE_FREQUENCY (entry
);
5521 /* Fix up corner cases, to avoid division by zero or creation of negative
5523 if (total_freq
== 0)
5525 else if (entry_freq
> total_freq
)
5526 entry_freq
= total_freq
;
5529 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
5530 split_edge_bb_loc (entry
));
5533 scale_bbs_frequencies_gcov_type (region
, n_region
,
5534 total_count
- entry_count
,
5536 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, entry_count
,
5541 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
5543 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
5548 loop
->header
= exit
->dest
;
5549 loop
->latch
= exit
->src
;
5552 /* Redirect the entry and add the phi node arguments. */
5553 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
5554 gcc_assert (redirected
!= NULL
);
5555 flush_pending_stmts (entry
);
5557 /* Concerning updating of dominators: We must recount dominators
5558 for entry block and its copy. Anything that is outside of the
5559 region, but was dominated by something inside needs recounting as
5561 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
5562 VEC_safe_push (basic_block
, heap
, doms
, get_bb_original (entry
->dest
));
5563 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5564 VEC_free (basic_block
, heap
, doms
);
5566 /* Add the other PHI node arguments. */
5567 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
5569 /* Update the SSA web. */
5570 update_ssa (TODO_update_ssa
);
5572 if (free_region_copy
)
5575 free_original_copy_tables ();
5579 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5580 are stored to REGION_COPY in the same order in that they appear
5581 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5582 the region, EXIT an exit from it. The condition guarding EXIT
5583 is moved to ENTRY. Returns true if duplication succeeds, false
5609 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED
, edge exit ATTRIBUTE_UNUSED
,
5610 basic_block
*region ATTRIBUTE_UNUSED
, unsigned n_region ATTRIBUTE_UNUSED
,
5611 basic_block
*region_copy ATTRIBUTE_UNUSED
)
5614 bool free_region_copy
= false;
5615 struct loop
*loop
= exit
->dest
->loop_father
;
5616 struct loop
*orig_loop
= entry
->dest
->loop_father
;
5617 basic_block switch_bb
, entry_bb
, nentry_bb
;
5618 VEC (basic_block
, heap
) *doms
;
5619 int total_freq
= 0, exit_freq
= 0;
5620 gcov_type total_count
= 0, exit_count
= 0;
5621 edge exits
[2], nexits
[2], e
;
5622 gimple_stmt_iterator gsi
;
5625 basic_block exit_bb
;
5626 gimple_stmt_iterator psi
;
5630 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
5632 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
5634 if (!can_copy_bbs_p (region
, n_region
))
5637 initialize_original_copy_tables ();
5638 set_loop_copy (orig_loop
, loop
);
5639 duplicate_subloops (orig_loop
, loop
);
5643 region_copy
= XNEWVEC (basic_block
, n_region
);
5644 free_region_copy
= true;
5647 gcc_assert (!need_ssa_update_p (cfun
));
5649 /* Record blocks outside the region that are dominated by something
5651 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5653 if (exit
->src
->count
)
5655 total_count
= exit
->src
->count
;
5656 exit_count
= exit
->count
;
5657 /* Fix up corner cases, to avoid division by zero or creation of negative
5659 if (exit_count
> total_count
)
5660 exit_count
= total_count
;
5664 total_freq
= exit
->src
->frequency
;
5665 exit_freq
= EDGE_FREQUENCY (exit
);
5666 /* Fix up corner cases, to avoid division by zero or creation of negative
5668 if (total_freq
== 0)
5670 if (exit_freq
> total_freq
)
5671 exit_freq
= total_freq
;
5674 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
5675 split_edge_bb_loc (exit
));
5678 scale_bbs_frequencies_gcov_type (region
, n_region
,
5679 total_count
- exit_count
,
5681 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, exit_count
,
5686 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
5688 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
5691 /* Create the switch block, and put the exit condition to it. */
5692 entry_bb
= entry
->dest
;
5693 nentry_bb
= get_bb_copy (entry_bb
);
5694 if (!last_stmt (entry
->src
)
5695 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
5696 switch_bb
= entry
->src
;
5698 switch_bb
= split_edge (entry
);
5699 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
5701 gsi
= gsi_last_bb (switch_bb
);
5702 cond_stmt
= last_stmt (exit
->src
);
5703 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
5704 cond_stmt
= gimple_copy (cond_stmt
);
5706 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
5708 sorig
= single_succ_edge (switch_bb
);
5709 sorig
->flags
= exits
[1]->flags
;
5710 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
5712 /* Register the new edge from SWITCH_BB in loop exit lists. */
5713 rescan_loop_exit (snew
, true, false);
5715 /* Add the PHI node arguments. */
5716 add_phi_args_after_copy (region_copy
, n_region
, snew
);
5718 /* Get rid of now superfluous conditions and associated edges (and phi node
5720 exit_bb
= exit
->dest
;
5722 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
5723 PENDING_STMT (e
) = NULL
;
5725 /* The latch of ORIG_LOOP was copied, and so was the backedge
5726 to the original header. We redirect this backedge to EXIT_BB. */
5727 for (i
= 0; i
< n_region
; i
++)
5728 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
5730 gcc_assert (single_succ_edge (region_copy
[i
]));
5731 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
5732 PENDING_STMT (e
) = NULL
;
5733 for (psi
= gsi_start_phis (exit_bb
);
5737 phi
= gsi_stmt (psi
);
5738 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
5739 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
5742 e
= redirect_edge_and_branch (nexits
[0], nexits
[1]->dest
);
5743 PENDING_STMT (e
) = NULL
;
5745 /* Anything that is outside of the region, but was dominated by something
5746 inside needs to update dominance info. */
5747 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5748 VEC_free (basic_block
, heap
, doms
);
5749 /* Update the SSA web. */
5750 update_ssa (TODO_update_ssa
);
5752 if (free_region_copy
)
5755 free_original_copy_tables ();
5759 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5760 adding blocks when the dominator traversal reaches EXIT. This
5761 function silently assumes that ENTRY strictly dominates EXIT. */
5764 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
5765 VEC(basic_block
,heap
) **bbs_p
)
5769 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
5771 son
= next_dom_son (CDI_DOMINATORS
, son
))
5773 VEC_safe_push (basic_block
, heap
, *bbs_p
, son
);
5775 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
5779 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5780 The duplicates are recorded in VARS_MAP. */
5783 replace_by_duplicate_decl (tree
*tp
, struct pointer_map_t
*vars_map
,
5786 tree t
= *tp
, new_t
;
5787 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
5790 if (DECL_CONTEXT (t
) == to_context
)
5793 loc
= pointer_map_contains (vars_map
, t
);
5797 loc
= pointer_map_insert (vars_map
, t
);
5801 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
5802 add_local_decl (f
, new_t
);
5806 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
5807 new_t
= copy_node (t
);
5809 DECL_CONTEXT (new_t
) = to_context
;
5814 new_t
= (tree
) *loc
;
5820 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5821 VARS_MAP maps old ssa names and var_decls to the new ones. */
5824 replace_ssa_name (tree name
, struct pointer_map_t
*vars_map
,
5828 tree new_name
, decl
= SSA_NAME_VAR (name
);
5830 gcc_assert (is_gimple_reg (name
));
5832 loc
= pointer_map_contains (vars_map
, name
);
5836 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
5838 push_cfun (DECL_STRUCT_FUNCTION (to_context
));
5839 if (gimple_in_ssa_p (cfun
))
5840 add_referenced_var (decl
);
5842 new_name
= make_ssa_name (decl
, SSA_NAME_DEF_STMT (name
));
5843 if (SSA_NAME_IS_DEFAULT_DEF (name
))
5844 set_default_def (decl
, new_name
);
5847 loc
= pointer_map_insert (vars_map
, name
);
5851 new_name
= (tree
) *loc
;
5862 struct pointer_map_t
*vars_map
;
5863 htab_t new_label_map
;
5864 struct pointer_map_t
*eh_map
;
5868 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5869 contained in *TP if it has been ORIG_BLOCK previously and change the
5870 DECL_CONTEXT of every local variable referenced in *TP. */
5873 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
5875 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5876 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5880 /* We should never have TREE_BLOCK set on non-statements. */
5881 gcc_assert (!TREE_BLOCK (t
));
5883 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
5885 if (TREE_CODE (t
) == SSA_NAME
)
5886 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
5887 else if (TREE_CODE (t
) == LABEL_DECL
)
5889 if (p
->new_label_map
)
5891 struct tree_map in
, *out
;
5893 out
= (struct tree_map
*)
5894 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
5899 DECL_CONTEXT (t
) = p
->to_context
;
5901 else if (p
->remap_decls_p
)
5903 /* Replace T with its duplicate. T should no longer appear in the
5904 parent function, so this looks wasteful; however, it may appear
5905 in referenced_vars, and more importantly, as virtual operands of
5906 statements, and in alias lists of other variables. It would be
5907 quite difficult to expunge it from all those places. ??? It might
5908 suffice to do this for addressable variables. */
5909 if ((TREE_CODE (t
) == VAR_DECL
5910 && !is_global_var (t
))
5911 || TREE_CODE (t
) == CONST_DECL
)
5912 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
5915 && gimple_in_ssa_p (cfun
))
5917 push_cfun (DECL_STRUCT_FUNCTION (p
->to_context
));
5918 add_referenced_var (*tp
);
5924 else if (TYPE_P (t
))
5930 /* Helper for move_stmt_r. Given an EH region number for the source
5931 function, map that to the duplicate EH regio number in the dest. */
5934 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
5936 eh_region old_r
, new_r
;
5939 old_r
= get_eh_region_from_number (old_nr
);
5940 slot
= pointer_map_contains (p
->eh_map
, old_r
);
5941 new_r
= (eh_region
) *slot
;
5943 return new_r
->index
;
5946 /* Similar, but operate on INTEGER_CSTs. */
5949 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
5953 old_nr
= tree_low_cst (old_t_nr
, 0);
5954 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
5956 return build_int_cst (integer_type_node
, new_nr
);
5959 /* Like move_stmt_op, but for gimple statements.
5961 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5962 contained in the current statement in *GSI_P and change the
5963 DECL_CONTEXT of every local variable referenced in the current
5967 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
5968 struct walk_stmt_info
*wi
)
5970 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5971 gimple stmt
= gsi_stmt (*gsi_p
);
5972 tree block
= gimple_block (stmt
);
5974 if (p
->orig_block
== NULL_TREE
5975 || block
== p
->orig_block
5976 || block
== NULL_TREE
)
5977 gimple_set_block (stmt
, p
->new_block
);
5978 #ifdef ENABLE_CHECKING
5979 else if (block
!= p
->new_block
)
5981 while (block
&& block
!= p
->orig_block
)
5982 block
= BLOCK_SUPERCONTEXT (block
);
5987 switch (gimple_code (stmt
))
5990 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5992 tree r
, fndecl
= gimple_call_fndecl (stmt
);
5993 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
5994 switch (DECL_FUNCTION_CODE (fndecl
))
5996 case BUILT_IN_EH_COPY_VALUES
:
5997 r
= gimple_call_arg (stmt
, 1);
5998 r
= move_stmt_eh_region_tree_nr (r
, p
);
5999 gimple_call_set_arg (stmt
, 1, r
);
6002 case BUILT_IN_EH_POINTER
:
6003 case BUILT_IN_EH_FILTER
:
6004 r
= gimple_call_arg (stmt
, 0);
6005 r
= move_stmt_eh_region_tree_nr (r
, p
);
6006 gimple_call_set_arg (stmt
, 0, r
);
6017 int r
= gimple_resx_region (stmt
);
6018 r
= move_stmt_eh_region_nr (r
, p
);
6019 gimple_resx_set_region (stmt
, r
);
6023 case GIMPLE_EH_DISPATCH
:
6025 int r
= gimple_eh_dispatch_region (stmt
);
6026 r
= move_stmt_eh_region_nr (r
, p
);
6027 gimple_eh_dispatch_set_region (stmt
, r
);
6031 case GIMPLE_OMP_RETURN
:
6032 case GIMPLE_OMP_CONTINUE
:
6035 if (is_gimple_omp (stmt
))
6037 /* Do not remap variables inside OMP directives. Variables
6038 referenced in clauses and directive header belong to the
6039 parent function and should not be moved into the child
6041 bool save_remap_decls_p
= p
->remap_decls_p
;
6042 p
->remap_decls_p
= false;
6043 *handled_ops_p
= true;
6045 walk_gimple_seq (gimple_omp_body (stmt
), move_stmt_r
,
6048 p
->remap_decls_p
= save_remap_decls_p
;
6056 /* Move basic block BB from function CFUN to function DEST_FN. The
6057 block is moved out of the original linked list and placed after
6058 block AFTER in the new list. Also, the block is removed from the
6059 original array of blocks and placed in DEST_FN's array of blocks.
6060 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6061 updated to reflect the moved edges.
6063 The local variables are remapped to new instances, VARS_MAP is used
6064 to record the mapping. */
6067 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
6068 basic_block after
, bool update_edge_count_p
,
6069 struct move_stmt_d
*d
)
6071 struct control_flow_graph
*cfg
;
6074 gimple_stmt_iterator si
;
6075 unsigned old_len
, new_len
;
6077 /* Remove BB from dominance structures. */
6078 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
6080 remove_bb_from_loops (bb
);
6082 /* Link BB to the new linked list. */
6083 move_block_after (bb
, after
);
6085 /* Update the edge count in the corresponding flowgraphs. */
6086 if (update_edge_count_p
)
6087 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6089 cfun
->cfg
->x_n_edges
--;
6090 dest_cfun
->cfg
->x_n_edges
++;
6093 /* Remove BB from the original basic block array. */
6094 VEC_replace (basic_block
, cfun
->cfg
->x_basic_block_info
, bb
->index
, NULL
);
6095 cfun
->cfg
->x_n_basic_blocks
--;
6097 /* Grow DEST_CFUN's basic block array if needed. */
6098 cfg
= dest_cfun
->cfg
;
6099 cfg
->x_n_basic_blocks
++;
6100 if (bb
->index
>= cfg
->x_last_basic_block
)
6101 cfg
->x_last_basic_block
= bb
->index
+ 1;
6103 old_len
= VEC_length (basic_block
, cfg
->x_basic_block_info
);
6104 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
6106 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
6107 VEC_safe_grow_cleared (basic_block
, gc
, cfg
->x_basic_block_info
,
6111 VEC_replace (basic_block
, cfg
->x_basic_block_info
,
6114 /* Remap the variables in phi nodes. */
6115 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); )
6117 gimple phi
= gsi_stmt (si
);
6119 tree op
= PHI_RESULT (phi
);
6122 if (!is_gimple_reg (op
))
6124 /* Remove the phi nodes for virtual operands (alias analysis will be
6125 run for the new function, anyway). */
6126 remove_phi_node (&si
, true);
6130 SET_PHI_RESULT (phi
,
6131 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6132 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
6134 op
= USE_FROM_PTR (use
);
6135 if (TREE_CODE (op
) == SSA_NAME
)
6136 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6142 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6144 gimple stmt
= gsi_stmt (si
);
6145 struct walk_stmt_info wi
;
6147 memset (&wi
, 0, sizeof (wi
));
6149 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
6151 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6153 tree label
= gimple_label_label (stmt
);
6154 int uid
= LABEL_DECL_UID (label
);
6156 gcc_assert (uid
> -1);
6158 old_len
= VEC_length (basic_block
, cfg
->x_label_to_block_map
);
6159 if (old_len
<= (unsigned) uid
)
6161 new_len
= 3 * uid
/ 2 + 1;
6162 VEC_safe_grow_cleared (basic_block
, gc
,
6163 cfg
->x_label_to_block_map
, new_len
);
6166 VEC_replace (basic_block
, cfg
->x_label_to_block_map
, uid
, bb
);
6167 VEC_replace (basic_block
, cfun
->cfg
->x_label_to_block_map
, uid
, NULL
);
6169 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
6171 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
6172 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
6175 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
6176 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
6178 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
6179 gimple_remove_stmt_histograms (cfun
, stmt
);
6181 /* We cannot leave any operands allocated from the operand caches of
6182 the current function. */
6183 free_stmt_operands (stmt
);
6184 push_cfun (dest_cfun
);
6189 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6192 tree block
= e
->goto_block
;
6193 if (d
->orig_block
== NULL_TREE
6194 || block
== d
->orig_block
)
6195 e
->goto_block
= d
->new_block
;
6196 #ifdef ENABLE_CHECKING
6197 else if (block
!= d
->new_block
)
6199 while (block
&& block
!= d
->orig_block
)
6200 block
= BLOCK_SUPERCONTEXT (block
);
6207 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6208 the outermost EH region. Use REGION as the incoming base EH region. */
6211 find_outermost_region_in_block (struct function
*src_cfun
,
6212 basic_block bb
, eh_region region
)
6214 gimple_stmt_iterator si
;
6216 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6218 gimple stmt
= gsi_stmt (si
);
6219 eh_region stmt_region
;
6222 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
6223 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
6227 region
= stmt_region
;
6228 else if (stmt_region
!= region
)
6230 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
6231 gcc_assert (region
!= NULL
);
6240 new_label_mapper (tree decl
, void *data
)
6242 htab_t hash
= (htab_t
) data
;
6246 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
6248 m
= XNEW (struct tree_map
);
6249 m
->hash
= DECL_UID (decl
);
6250 m
->base
.from
= decl
;
6251 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
6252 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
6253 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
6254 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
6256 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
6257 gcc_assert (*slot
== NULL
);
6264 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6268 replace_block_vars_by_duplicates (tree block
, struct pointer_map_t
*vars_map
,
6273 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
6276 if (TREE_CODE (t
) != VAR_DECL
&& TREE_CODE (t
) != CONST_DECL
)
6278 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
6281 if (TREE_CODE (*tp
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (*tp
))
6283 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (*tp
));
6284 DECL_HAS_VALUE_EXPR_P (t
) = 1;
6286 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
6291 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
6292 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
6295 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6296 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6297 single basic block in the original CFG and the new basic block is
6298 returned. DEST_CFUN must not have a CFG yet.
6300 Note that the region need not be a pure SESE region. Blocks inside
6301 the region may contain calls to abort/exit. The only restriction
6302 is that ENTRY_BB should be the only entry point and it must
6305 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6306 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6307 to the new function.
6309 All local variables referenced in the region are assumed to be in
6310 the corresponding BLOCK_VARS and unexpanded variable lists
6311 associated with DEST_CFUN. */
6314 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
6315 basic_block exit_bb
, tree orig_block
)
6317 VEC(basic_block
,heap
) *bbs
, *dom_bbs
;
6318 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
6319 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
6320 struct function
*saved_cfun
= cfun
;
6321 int *entry_flag
, *exit_flag
;
6322 unsigned *entry_prob
, *exit_prob
;
6323 unsigned i
, num_entry_edges
, num_exit_edges
;
6326 htab_t new_label_map
;
6327 struct pointer_map_t
*vars_map
, *eh_map
;
6328 struct loop
*loop
= entry_bb
->loop_father
;
6329 struct move_stmt_d d
;
6331 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6333 gcc_assert (entry_bb
!= exit_bb
6335 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
6337 /* Collect all the blocks in the region. Manually add ENTRY_BB
6338 because it won't be added by dfs_enumerate_from. */
6340 VEC_safe_push (basic_block
, heap
, bbs
, entry_bb
);
6341 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
6343 /* The blocks that used to be dominated by something in BBS will now be
6344 dominated by the new block. */
6345 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
6346 VEC_address (basic_block
, bbs
),
6347 VEC_length (basic_block
, bbs
));
6349 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6350 the predecessor edges to ENTRY_BB and the successor edges to
6351 EXIT_BB so that we can re-attach them to the new basic block that
6352 will replace the region. */
6353 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
6354 entry_pred
= (basic_block
*) xcalloc (num_entry_edges
, sizeof (basic_block
));
6355 entry_flag
= (int *) xcalloc (num_entry_edges
, sizeof (int));
6356 entry_prob
= XNEWVEC (unsigned, num_entry_edges
);
6358 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
6360 entry_prob
[i
] = e
->probability
;
6361 entry_flag
[i
] = e
->flags
;
6362 entry_pred
[i
++] = e
->src
;
6368 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
6369 exit_succ
= (basic_block
*) xcalloc (num_exit_edges
,
6370 sizeof (basic_block
));
6371 exit_flag
= (int *) xcalloc (num_exit_edges
, sizeof (int));
6372 exit_prob
= XNEWVEC (unsigned, num_exit_edges
);
6374 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
6376 exit_prob
[i
] = e
->probability
;
6377 exit_flag
[i
] = e
->flags
;
6378 exit_succ
[i
++] = e
->dest
;
6390 /* Switch context to the child function to initialize DEST_FN's CFG. */
6391 gcc_assert (dest_cfun
->cfg
== NULL
);
6392 push_cfun (dest_cfun
);
6394 init_empty_tree_cfg ();
6396 /* Initialize EH information for the new function. */
6398 new_label_map
= NULL
;
6401 eh_region region
= NULL
;
6403 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, bb
)
6404 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
6406 init_eh_for_function ();
6409 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
6410 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
6411 new_label_mapper
, new_label_map
);
6417 /* Move blocks from BBS into DEST_CFUN. */
6418 gcc_assert (VEC_length (basic_block
, bbs
) >= 2);
6419 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
6420 vars_map
= pointer_map_create ();
6422 memset (&d
, 0, sizeof (d
));
6423 d
.orig_block
= orig_block
;
6424 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
6425 d
.from_context
= cfun
->decl
;
6426 d
.to_context
= dest_cfun
->decl
;
6427 d
.vars_map
= vars_map
;
6428 d
.new_label_map
= new_label_map
;
6430 d
.remap_decls_p
= true;
6432 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, bb
)
6434 /* No need to update edge counts on the last block. It has
6435 already been updated earlier when we detached the region from
6436 the original CFG. */
6437 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
6441 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6445 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6447 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6448 = BLOCK_SUBBLOCKS (orig_block
);
6449 for (block
= BLOCK_SUBBLOCKS (orig_block
);
6450 block
; block
= BLOCK_CHAIN (block
))
6451 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
6452 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
6455 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
6456 vars_map
, dest_cfun
->decl
);
6459 htab_delete (new_label_map
);
6461 pointer_map_destroy (eh_map
);
6462 pointer_map_destroy (vars_map
);
6464 /* Rewire the entry and exit blocks. The successor to the entry
6465 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6466 the child function. Similarly, the predecessor of DEST_FN's
6467 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6468 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6469 various CFG manipulation function get to the right CFG.
6471 FIXME, this is silly. The CFG ought to become a parameter to
6473 push_cfun (dest_cfun
);
6474 make_edge (ENTRY_BLOCK_PTR
, entry_bb
, EDGE_FALLTHRU
);
6476 make_edge (exit_bb
, EXIT_BLOCK_PTR
, 0);
6479 /* Back in the original function, the SESE region has disappeared,
6480 create a new basic block in its place. */
6481 bb
= create_empty_bb (entry_pred
[0]);
6483 add_bb_to_loop (bb
, loop
);
6484 for (i
= 0; i
< num_entry_edges
; i
++)
6486 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
6487 e
->probability
= entry_prob
[i
];
6490 for (i
= 0; i
< num_exit_edges
; i
++)
6492 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
6493 e
->probability
= exit_prob
[i
];
6496 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
6497 FOR_EACH_VEC_ELT (basic_block
, dom_bbs
, i
, abb
)
6498 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
6499 VEC_free (basic_block
, heap
, dom_bbs
);
6510 VEC_free (basic_block
, heap
, bbs
);
6516 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6520 dump_function_to_file (tree fn
, FILE *file
, int flags
)
6523 struct function
*dsf
;
6524 bool ignore_topmost_bind
= false, any_var
= false;
6527 bool tmclone
= TREE_CODE (fn
) == FUNCTION_DECL
&& decl_is_tm_clone (fn
);
6529 fprintf (file
, "%s %s(", lang_hooks
.decl_printable_name (fn
, 2),
6530 tmclone
? "[tm-clone] " : "");
6532 arg
= DECL_ARGUMENTS (fn
);
6535 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
6536 fprintf (file
, " ");
6537 print_generic_expr (file
, arg
, dump_flags
);
6538 if (flags
& TDF_VERBOSE
)
6539 print_node (file
, "", arg
, 4);
6540 if (DECL_CHAIN (arg
))
6541 fprintf (file
, ", ");
6542 arg
= DECL_CHAIN (arg
);
6544 fprintf (file
, ")\n");
6546 if (flags
& TDF_VERBOSE
)
6547 print_node (file
, "", fn
, 2);
6549 dsf
= DECL_STRUCT_FUNCTION (fn
);
6550 if (dsf
&& (flags
& TDF_EH
))
6551 dump_eh_tree (file
, dsf
);
6553 if (flags
& TDF_RAW
&& !gimple_has_body_p (fn
))
6555 dump_node (fn
, TDF_SLIM
| flags
, file
);
6559 /* Switch CFUN to point to FN. */
6560 push_cfun (DECL_STRUCT_FUNCTION (fn
));
6562 /* When GIMPLE is lowered, the variables are no longer available in
6563 BIND_EXPRs, so display them separately. */
6564 if (cfun
&& cfun
->decl
== fn
&& !VEC_empty (tree
, cfun
->local_decls
))
6567 ignore_topmost_bind
= true;
6569 fprintf (file
, "{\n");
6570 FOR_EACH_LOCAL_DECL (cfun
, ix
, var
)
6572 print_generic_decl (file
, var
, flags
);
6573 if (flags
& TDF_VERBOSE
)
6574 print_node (file
, "", var
, 4);
6575 fprintf (file
, "\n");
6581 if (cfun
&& cfun
->decl
== fn
&& cfun
->cfg
&& basic_block_info
)
6583 /* If the CFG has been built, emit a CFG-based dump. */
6584 check_bb_profile (ENTRY_BLOCK_PTR
, file
);
6585 if (!ignore_topmost_bind
)
6586 fprintf (file
, "{\n");
6588 if (any_var
&& n_basic_blocks
)
6589 fprintf (file
, "\n");
6592 gimple_dump_bb (bb
, file
, 2, flags
);
6594 fprintf (file
, "}\n");
6595 check_bb_profile (EXIT_BLOCK_PTR
, file
);
6597 else if (DECL_SAVED_TREE (fn
) == NULL
)
6599 /* The function is now in GIMPLE form but the CFG has not been
6600 built yet. Emit the single sequence of GIMPLE statements
6601 that make up its body. */
6602 gimple_seq body
= gimple_body (fn
);
6604 if (gimple_seq_first_stmt (body
)
6605 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
6606 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
6607 print_gimple_seq (file
, body
, 0, flags
);
6610 if (!ignore_topmost_bind
)
6611 fprintf (file
, "{\n");
6614 fprintf (file
, "\n");
6616 print_gimple_seq (file
, body
, 2, flags
);
6617 fprintf (file
, "}\n");
6624 /* Make a tree based dump. */
6625 chain
= DECL_SAVED_TREE (fn
);
6627 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
6629 if (ignore_topmost_bind
)
6631 chain
= BIND_EXPR_BODY (chain
);
6639 if (!ignore_topmost_bind
)
6640 fprintf (file
, "{\n");
6645 fprintf (file
, "\n");
6647 print_generic_stmt_indented (file
, chain
, flags
, indent
);
6648 if (ignore_topmost_bind
)
6649 fprintf (file
, "}\n");
6652 if (flags
& TDF_ENUMERATE_LOCALS
)
6653 dump_enumerated_decls (file
, flags
);
6654 fprintf (file
, "\n\n");
6661 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6664 debug_function (tree fn
, int flags
)
6666 dump_function_to_file (fn
, stderr
, flags
);
6670 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6673 print_pred_bbs (FILE *file
, basic_block bb
)
6678 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6679 fprintf (file
, "bb_%d ", e
->src
->index
);
6683 /* Print on FILE the indexes for the successors of basic_block BB. */
6686 print_succ_bbs (FILE *file
, basic_block bb
)
6691 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6692 fprintf (file
, "bb_%d ", e
->dest
->index
);
6695 /* Print to FILE the basic block BB following the VERBOSITY level. */
6698 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
6700 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
6701 memset ((void *) s_indent
, ' ', (size_t) indent
);
6702 s_indent
[indent
] = '\0';
6704 /* Print basic_block's header. */
6707 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
6708 print_pred_bbs (file
, bb
);
6709 fprintf (file
, "}, succs = {");
6710 print_succ_bbs (file
, bb
);
6711 fprintf (file
, "})\n");
6714 /* Print basic_block's body. */
6717 fprintf (file
, "%s {\n", s_indent
);
6718 gimple_dump_bb (bb
, file
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
6719 fprintf (file
, "%s }\n", s_indent
);
6723 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
6725 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6726 VERBOSITY level this outputs the contents of the loop, or just its
6730 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6738 s_indent
= (char *) alloca ((size_t) indent
+ 1);
6739 memset ((void *) s_indent
, ' ', (size_t) indent
);
6740 s_indent
[indent
] = '\0';
6742 /* Print loop's header. */
6743 fprintf (file
, "%sloop_%d (header = %d, latch = %d", s_indent
,
6744 loop
->num
, loop
->header
->index
, loop
->latch
->index
);
6745 fprintf (file
, ", niter = ");
6746 print_generic_expr (file
, loop
->nb_iterations
, 0);
6748 if (loop
->any_upper_bound
)
6750 fprintf (file
, ", upper_bound = ");
6751 dump_double_int (file
, loop
->nb_iterations_upper_bound
, true);
6754 if (loop
->any_estimate
)
6756 fprintf (file
, ", estimate = ");
6757 dump_double_int (file
, loop
->nb_iterations_estimate
, true);
6759 fprintf (file
, ")\n");
6761 /* Print loop's body. */
6764 fprintf (file
, "%s{\n", s_indent
);
6766 if (bb
->loop_father
== loop
)
6767 print_loops_bb (file
, bb
, indent
, verbosity
);
6769 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
6770 fprintf (file
, "%s}\n", s_indent
);
6774 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6775 spaces. Following VERBOSITY level this outputs the contents of the
6776 loop, or just its structure. */
6779 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6784 print_loop (file
, loop
, indent
, verbosity
);
6785 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
6788 /* Follow a CFG edge from the entry point of the program, and on entry
6789 of a loop, pretty print the loop structure on FILE. */
6792 print_loops (FILE *file
, int verbosity
)
6796 bb
= ENTRY_BLOCK_PTR
;
6797 if (bb
&& bb
->loop_father
)
6798 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
6802 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6805 debug_loops (int verbosity
)
6807 print_loops (stderr
, verbosity
);
6810 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6813 debug_loop (struct loop
*loop
, int verbosity
)
6815 print_loop (stderr
, loop
, 0, verbosity
);
6818 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6822 debug_loop_num (unsigned num
, int verbosity
)
6824 debug_loop (get_loop (num
), verbosity
);
6827 /* Return true if BB ends with a call, possibly followed by some
6828 instructions that must stay with the call. Return false,
6832 gimple_block_ends_with_call_p (basic_block bb
)
6834 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6835 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
6839 /* Return true if BB ends with a conditional branch. Return false,
6843 gimple_block_ends_with_condjump_p (const_basic_block bb
)
6845 gimple stmt
= last_stmt (CONST_CAST_BB (bb
));
6846 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
6850 /* Return true if we need to add fake edge to exit at statement T.
6851 Helper function for gimple_flow_call_edges_add. */
6854 need_fake_edge_p (gimple t
)
6856 tree fndecl
= NULL_TREE
;
6859 /* NORETURN and LONGJMP calls already have an edge to exit.
6860 CONST and PURE calls do not need one.
6861 We don't currently check for CONST and PURE here, although
6862 it would be a good idea, because those attributes are
6863 figured out from the RTL in mark_constant_function, and
6864 the counter incrementation code from -fprofile-arcs
6865 leads to different results from -fbranch-probabilities. */
6866 if (is_gimple_call (t
))
6868 fndecl
= gimple_call_fndecl (t
);
6869 call_flags
= gimple_call_flags (t
);
6872 if (is_gimple_call (t
)
6874 && DECL_BUILT_IN (fndecl
)
6875 && (call_flags
& ECF_NOTHROW
)
6876 && !(call_flags
& ECF_RETURNS_TWICE
)
6877 /* fork() doesn't really return twice, but the effect of
6878 wrapping it in __gcov_fork() which calls __gcov_flush()
6879 and clears the counters before forking has the same
6880 effect as returning twice. Force a fake edge. */
6881 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
6882 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
6885 if (is_gimple_call (t
))
6891 if (!(call_flags
& ECF_NORETURN
))
6895 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6896 if ((e
->flags
& EDGE_FAKE
) == 0)
6900 if (gimple_code (t
) == GIMPLE_ASM
6901 && (gimple_asm_volatile_p (t
) || gimple_asm_input_p (t
)))
6908 /* Add fake edges to the function exit for any non constant and non
6909 noreturn calls (or noreturn calls with EH/abnormal edges),
6910 volatile inline assembly in the bitmap of blocks specified by BLOCKS
6911 or to the whole CFG if BLOCKS is zero. Return the number of blocks
6914 The goal is to expose cases in which entering a basic block does
6915 not imply that all subsequent instructions must be executed. */
6918 gimple_flow_call_edges_add (sbitmap blocks
)
6921 int blocks_split
= 0;
6922 int last_bb
= last_basic_block
;
6923 bool check_last_block
= false;
6925 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
6929 check_last_block
= true;
6931 check_last_block
= TEST_BIT (blocks
, EXIT_BLOCK_PTR
->prev_bb
->index
);
6933 /* In the last basic block, before epilogue generation, there will be
6934 a fallthru edge to EXIT. Special care is required if the last insn
6935 of the last basic block is a call because make_edge folds duplicate
6936 edges, which would result in the fallthru edge also being marked
6937 fake, which would result in the fallthru edge being removed by
6938 remove_fake_edges, which would result in an invalid CFG.
6940 Moreover, we can't elide the outgoing fake edge, since the block
6941 profiler needs to take this into account in order to solve the minimal
6942 spanning tree in the case that the call doesn't return.
6944 Handle this by adding a dummy instruction in a new last basic block. */
6945 if (check_last_block
)
6947 basic_block bb
= EXIT_BLOCK_PTR
->prev_bb
;
6948 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6951 if (!gsi_end_p (gsi
))
6954 if (t
&& need_fake_edge_p (t
))
6958 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
6961 gsi_insert_on_edge (e
, gimple_build_nop ());
6962 gsi_commit_edge_inserts ();
6967 /* Now add fake edges to the function exit for any non constant
6968 calls since there is no way that we can determine if they will
6970 for (i
= 0; i
< last_bb
; i
++)
6972 basic_block bb
= BASIC_BLOCK (i
);
6973 gimple_stmt_iterator gsi
;
6974 gimple stmt
, last_stmt
;
6979 if (blocks
&& !TEST_BIT (blocks
, i
))
6982 gsi
= gsi_last_nondebug_bb (bb
);
6983 if (!gsi_end_p (gsi
))
6985 last_stmt
= gsi_stmt (gsi
);
6988 stmt
= gsi_stmt (gsi
);
6989 if (need_fake_edge_p (stmt
))
6993 /* The handling above of the final block before the
6994 epilogue should be enough to verify that there is
6995 no edge to the exit block in CFG already.
6996 Calling make_edge in such case would cause us to
6997 mark that edge as fake and remove it later. */
6998 #ifdef ENABLE_CHECKING
6999 if (stmt
== last_stmt
)
7001 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
7002 gcc_assert (e
== NULL
);
7006 /* Note that the following may create a new basic block
7007 and renumber the existing basic blocks. */
7008 if (stmt
!= last_stmt
)
7010 e
= split_block (bb
, stmt
);
7014 make_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
7018 while (!gsi_end_p (gsi
));
7023 verify_flow_info ();
7025 return blocks_split
;
7028 /* Removes edge E and all the blocks dominated by it, and updates dominance
7029 information. The IL in E->src needs to be updated separately.
7030 If dominance info is not available, only the edge E is removed.*/
7033 remove_edge_and_dominated_blocks (edge e
)
7035 VEC (basic_block
, heap
) *bbs_to_remove
= NULL
;
7036 VEC (basic_block
, heap
) *bbs_to_fix_dom
= NULL
;
7040 bool none_removed
= false;
7042 basic_block bb
, dbb
;
7045 if (!dom_info_available_p (CDI_DOMINATORS
))
7051 /* No updating is needed for edges to exit. */
7052 if (e
->dest
== EXIT_BLOCK_PTR
)
7054 if (cfgcleanup_altered_bbs
)
7055 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
7060 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7061 that is not dominated by E->dest, then this set is empty. Otherwise,
7062 all the basic blocks dominated by E->dest are removed.
7064 Also, to DF_IDOM we store the immediate dominators of the blocks in
7065 the dominance frontier of E (i.e., of the successors of the
7066 removed blocks, if there are any, and of E->dest otherwise). */
7067 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
7072 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
7074 none_removed
= true;
7079 df
= BITMAP_ALLOC (NULL
);
7080 df_idom
= BITMAP_ALLOC (NULL
);
7083 bitmap_set_bit (df_idom
,
7084 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
7087 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
7088 FOR_EACH_VEC_ELT (basic_block
, bbs_to_remove
, i
, bb
)
7090 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
7092 if (f
->dest
!= EXIT_BLOCK_PTR
)
7093 bitmap_set_bit (df
, f
->dest
->index
);
7096 FOR_EACH_VEC_ELT (basic_block
, bbs_to_remove
, i
, bb
)
7097 bitmap_clear_bit (df
, bb
->index
);
7099 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
7101 bb
= BASIC_BLOCK (i
);
7102 bitmap_set_bit (df_idom
,
7103 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
7107 if (cfgcleanup_altered_bbs
)
7109 /* Record the set of the altered basic blocks. */
7110 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
7111 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
7114 /* Remove E and the cancelled blocks. */
7119 /* Walk backwards so as to get a chance to substitute all
7120 released DEFs into debug stmts. See
7121 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7123 for (i
= VEC_length (basic_block
, bbs_to_remove
); i
-- > 0; )
7124 delete_basic_block (VEC_index (basic_block
, bbs_to_remove
, i
));
7127 /* Update the dominance information. The immediate dominator may change only
7128 for blocks whose immediate dominator belongs to DF_IDOM:
7130 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7131 removal. Let Z the arbitrary block such that idom(Z) = Y and
7132 Z dominates X after the removal. Before removal, there exists a path P
7133 from Y to X that avoids Z. Let F be the last edge on P that is
7134 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7135 dominates W, and because of P, Z does not dominate W), and W belongs to
7136 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7137 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
7139 bb
= BASIC_BLOCK (i
);
7140 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
7142 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
7143 VEC_safe_push (basic_block
, heap
, bbs_to_fix_dom
, dbb
);
7146 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
7149 BITMAP_FREE (df_idom
);
7150 VEC_free (basic_block
, heap
, bbs_to_remove
);
7151 VEC_free (basic_block
, heap
, bbs_to_fix_dom
);
7154 /* Purge dead EH edges from basic block BB. */
7157 gimple_purge_dead_eh_edges (basic_block bb
)
7159 bool changed
= false;
7162 gimple stmt
= last_stmt (bb
);
7164 if (stmt
&& stmt_can_throw_internal (stmt
))
7167 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7169 if (e
->flags
& EDGE_EH
)
7171 remove_edge_and_dominated_blocks (e
);
7181 /* Purge dead EH edges from basic block listed in BLOCKS. */
7184 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
7186 bool changed
= false;
7190 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7192 basic_block bb
= BASIC_BLOCK (i
);
7194 /* Earlier gimple_purge_dead_eh_edges could have removed
7195 this basic block already. */
7196 gcc_assert (bb
|| changed
);
7198 changed
|= gimple_purge_dead_eh_edges (bb
);
7204 /* Purge dead abnormal call edges from basic block BB. */
7207 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
7209 bool changed
= false;
7212 gimple stmt
= last_stmt (bb
);
7214 if (!cfun
->has_nonlocal_label
)
7217 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
7220 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7222 if (e
->flags
& EDGE_ABNORMAL
)
7224 remove_edge_and_dominated_blocks (e
);
7234 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7237 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
7239 bool changed
= false;
7243 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7245 basic_block bb
= BASIC_BLOCK (i
);
7247 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7248 this basic block already. */
7249 gcc_assert (bb
|| changed
);
7251 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
7257 /* This function is called whenever a new edge is created or
7261 gimple_execute_on_growing_pred (edge e
)
7263 basic_block bb
= e
->dest
;
7265 if (!gimple_seq_empty_p (phi_nodes (bb
)))
7266 reserve_phi_args_for_new_edge (bb
);
7269 /* This function is called immediately before edge E is removed from
7270 the edge vector E->dest->preds. */
7273 gimple_execute_on_shrinking_pred (edge e
)
7275 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
7276 remove_phi_args (e
);
7279 /*---------------------------------------------------------------------------
7280 Helper functions for Loop versioning
7281 ---------------------------------------------------------------------------*/
7283 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7284 of 'first'. Both of them are dominated by 'new_head' basic block. When
7285 'new_head' was created by 'second's incoming edge it received phi arguments
7286 on the edge by split_edge(). Later, additional edge 'e' was created to
7287 connect 'new_head' and 'first'. Now this routine adds phi args on this
7288 additional edge 'e' that new_head to second edge received as part of edge
7292 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
7293 basic_block new_head
, edge e
)
7296 gimple_stmt_iterator psi1
, psi2
;
7298 edge e2
= find_edge (new_head
, second
);
7300 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7301 edge, we should always have an edge from NEW_HEAD to SECOND. */
7302 gcc_assert (e2
!= NULL
);
7304 /* Browse all 'second' basic block phi nodes and add phi args to
7305 edge 'e' for 'first' head. PHI args are always in correct order. */
7307 for (psi2
= gsi_start_phis (second
),
7308 psi1
= gsi_start_phis (first
);
7309 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
7310 gsi_next (&psi2
), gsi_next (&psi1
))
7312 phi1
= gsi_stmt (psi1
);
7313 phi2
= gsi_stmt (psi2
);
7314 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
7315 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
7320 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7321 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7322 the destination of the ELSE part. */
7325 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
7326 basic_block second_head ATTRIBUTE_UNUSED
,
7327 basic_block cond_bb
, void *cond_e
)
7329 gimple_stmt_iterator gsi
;
7330 gimple new_cond_expr
;
7331 tree cond_expr
= (tree
) cond_e
;
7334 /* Build new conditional expr */
7335 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
7336 NULL_TREE
, NULL_TREE
);
7338 /* Add new cond in cond_bb. */
7339 gsi
= gsi_last_bb (cond_bb
);
7340 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
7342 /* Adjust edges appropriately to connect new head with first head
7343 as well as second head. */
7344 e0
= single_succ_edge (cond_bb
);
7345 e0
->flags
&= ~EDGE_FALLTHRU
;
7346 e0
->flags
|= EDGE_FALSE_VALUE
;
7349 struct cfg_hooks gimple_cfg_hooks
= {
7351 gimple_verify_flow_info
,
7352 gimple_dump_bb
, /* dump_bb */
7353 create_bb
, /* create_basic_block */
7354 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
7355 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
7356 gimple_can_remove_branch_p
, /* can_remove_branch_p */
7357 remove_bb
, /* delete_basic_block */
7358 gimple_split_block
, /* split_block */
7359 gimple_move_block_after
, /* move_block_after */
7360 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
7361 gimple_merge_blocks
, /* merge_blocks */
7362 gimple_predict_edge
, /* predict_edge */
7363 gimple_predicted_by_p
, /* predicted_by_p */
7364 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
7365 gimple_duplicate_bb
, /* duplicate_block */
7366 gimple_split_edge
, /* split_edge */
7367 gimple_make_forwarder_block
, /* make_forward_block */
7368 NULL
, /* tidy_fallthru_edge */
7369 NULL
, /* force_nonfallthru */
7370 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
7371 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
7372 gimple_flow_call_edges_add
, /* flow_call_edges_add */
7373 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
7374 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
7375 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
7376 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
7377 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
7378 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
7379 flush_pending_stmts
/* flush_pending_stmts */
7383 /* Split all critical edges. */
7386 split_critical_edges (void)
7392 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7393 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7394 mappings around the calls to split_edge. */
7395 start_recording_case_labels ();
7398 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7400 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
7402 /* PRE inserts statements to edges and expects that
7403 since split_critical_edges was done beforehand, committing edge
7404 insertions will not split more edges. In addition to critical
7405 edges we must split edges that have multiple successors and
7406 end by control flow statements, such as RESX.
7407 Go ahead and split them too. This matches the logic in
7408 gimple_find_edge_insert_loc. */
7409 else if ((!single_pred_p (e
->dest
)
7410 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
7411 || e
->dest
== EXIT_BLOCK_PTR
)
7412 && e
->src
!= ENTRY_BLOCK_PTR
7413 && !(e
->flags
& EDGE_ABNORMAL
))
7415 gimple_stmt_iterator gsi
;
7417 gsi
= gsi_last_bb (e
->src
);
7418 if (!gsi_end_p (gsi
)
7419 && stmt_ends_bb_p (gsi_stmt (gsi
))
7420 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
7421 && !gimple_call_builtin_p (gsi_stmt (gsi
),
7427 end_recording_case_labels ();
7431 struct gimple_opt_pass pass_split_crit_edges
=
7435 "crited", /* name */
7437 split_critical_edges
, /* execute */
7440 0, /* static_pass_number */
7441 TV_TREE_SPLIT_EDGES
, /* tv_id */
7442 PROP_cfg
, /* properties required */
7443 PROP_no_crit_edges
, /* properties_provided */
7444 0, /* properties_destroyed */
7445 0, /* todo_flags_start */
7446 TODO_verify_flow
/* todo_flags_finish */
7451 /* Build a ternary operation and gimplify it. Emit code before GSI.
7452 Return the gimple_val holding the result. */
7455 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7456 tree type
, tree a
, tree b
, tree c
)
7459 location_t loc
= gimple_location (gsi_stmt (*gsi
));
7461 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
7464 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7468 /* Build a binary operation and gimplify it. Emit code before GSI.
7469 Return the gimple_val holding the result. */
7472 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7473 tree type
, tree a
, tree b
)
7477 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
7480 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7484 /* Build a unary operation and gimplify it. Emit code before GSI.
7485 Return the gimple_val holding the result. */
7488 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
7493 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
7496 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7502 /* Emit return warnings. */
7505 execute_warn_function_return (void)
7507 source_location location
;
7512 /* If we have a path to EXIT, then we do return. */
7513 if (TREE_THIS_VOLATILE (cfun
->decl
)
7514 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0)
7516 location
= UNKNOWN_LOCATION
;
7517 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7519 last
= last_stmt (e
->src
);
7520 if ((gimple_code (last
) == GIMPLE_RETURN
7521 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
7522 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
7525 if (location
== UNKNOWN_LOCATION
)
7526 location
= cfun
->function_end_locus
;
7527 warning_at (location
, 0, "%<noreturn%> function does return");
7530 /* If we see "return;" in some basic block, then we do reach the end
7531 without returning a value. */
7532 else if (warn_return_type
7533 && !TREE_NO_WARNING (cfun
->decl
)
7534 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0
7535 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun
->decl
))))
7537 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7539 gimple last
= last_stmt (e
->src
);
7540 if (gimple_code (last
) == GIMPLE_RETURN
7541 && gimple_return_retval (last
) == NULL
7542 && !gimple_no_warning_p (last
))
7544 location
= gimple_location (last
);
7545 if (location
== UNKNOWN_LOCATION
)
7546 location
= cfun
->function_end_locus
;
7547 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
7548 TREE_NO_WARNING (cfun
->decl
) = 1;
7557 /* Given a basic block B which ends with a conditional and has
7558 precisely two successors, determine which of the edges is taken if
7559 the conditional is true and which is taken if the conditional is
7560 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7563 extract_true_false_edges_from_block (basic_block b
,
7567 edge e
= EDGE_SUCC (b
, 0);
7569 if (e
->flags
& EDGE_TRUE_VALUE
)
7572 *false_edge
= EDGE_SUCC (b
, 1);
7577 *true_edge
= EDGE_SUCC (b
, 1);
7581 struct gimple_opt_pass pass_warn_function_return
=
7585 "*warn_function_return", /* name */
7587 execute_warn_function_return
, /* execute */
7590 0, /* static_pass_number */
7591 TV_NONE
, /* tv_id */
7592 PROP_cfg
, /* properties_required */
7593 0, /* properties_provided */
7594 0, /* properties_destroyed */
7595 0, /* todo_flags_start */
7596 0 /* todo_flags_finish */
7600 /* Emit noreturn warnings. */
7603 execute_warn_function_noreturn (void)
7605 if (!TREE_THIS_VOLATILE (current_function_decl
)
7606 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) == 0)
7607 warn_function_noreturn (current_function_decl
);
7612 gate_warn_function_noreturn (void)
7614 return warn_suggest_attribute_noreturn
;
7617 struct gimple_opt_pass pass_warn_function_noreturn
=
7621 "*warn_function_noreturn", /* name */
7622 gate_warn_function_noreturn
, /* gate */
7623 execute_warn_function_noreturn
, /* execute */
7626 0, /* static_pass_number */
7627 TV_NONE
, /* tv_id */
7628 PROP_cfg
, /* properties_required */
7629 0, /* properties_provided */
7630 0, /* properties_destroyed */
7631 0, /* todo_flags_start */
7632 0 /* todo_flags_finish */
7637 /* Walk a gimplified function and warn for functions whose return value is
7638 ignored and attribute((warn_unused_result)) is set. This is done before
7639 inlining, so we don't have to worry about that. */
7642 do_warn_unused_result (gimple_seq seq
)
7645 gimple_stmt_iterator i
;
7647 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
7649 gimple g
= gsi_stmt (i
);
7651 switch (gimple_code (g
))
7654 do_warn_unused_result (gimple_bind_body (g
));
7657 do_warn_unused_result (gimple_try_eval (g
));
7658 do_warn_unused_result (gimple_try_cleanup (g
));
7661 do_warn_unused_result (gimple_catch_handler (g
));
7663 case GIMPLE_EH_FILTER
:
7664 do_warn_unused_result (gimple_eh_filter_failure (g
));
7668 if (gimple_call_lhs (g
))
7670 if (gimple_call_internal_p (g
))
7673 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7674 LHS. All calls whose value is ignored should be
7675 represented like this. Look for the attribute. */
7676 fdecl
= gimple_call_fndecl (g
);
7677 ftype
= gimple_call_fntype (g
);
7679 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
7681 location_t loc
= gimple_location (g
);
7684 warning_at (loc
, OPT_Wunused_result
,
7685 "ignoring return value of %qD, "
7686 "declared with attribute warn_unused_result",
7689 warning_at (loc
, OPT_Wunused_result
,
7690 "ignoring return value of function "
7691 "declared with attribute warn_unused_result");
7696 /* Not a container, not a call, or a call whose value is used. */
7703 run_warn_unused_result (void)
7705 do_warn_unused_result (gimple_body (current_function_decl
));
7710 gate_warn_unused_result (void)
7712 return flag_warn_unused_result
;
7715 struct gimple_opt_pass pass_warn_unused_result
=
7719 "*warn_unused_result", /* name */
7720 gate_warn_unused_result
, /* gate */
7721 run_warn_unused_result
, /* execute */
7724 0, /* static_pass_number */
7725 TV_NONE
, /* tv_id */
7726 PROP_gimple_any
, /* properties_required */
7727 0, /* properties_provided */
7728 0, /* properties_destroyed */
7729 0, /* todo_flags_start */
7730 0, /* todo_flags_finish */