2010-07-05 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / function.c
blob3a7bb25dac6a963d91194d35b2021629f55df149
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl-error.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "hashtab.h"
55 #include "ggc.h"
56 #include "tm_p.h"
57 #include "integrate.h"
58 #include "langhooks.h"
59 #include "target.h"
60 #include "cfglayout.h"
61 #include "gimple.h"
62 #include "tree-pass.h"
63 #include "predict.h"
64 #include "df.h"
65 #include "timevar.h"
66 #include "vecprim.h"
68 /* So we can assign to cfun in this file. */
69 #undef cfun
71 #ifndef STACK_ALIGNMENT_NEEDED
72 #define STACK_ALIGNMENT_NEEDED 1
73 #endif
75 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 /* Some systems use __main in a way incompatible with its use in gcc, in these
78 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
79 give the same symbol without quotes for an alternative entry point. You
80 must define both, or neither. */
81 #ifndef NAME__MAIN
82 #define NAME__MAIN "__main"
83 #endif
85 /* Round a value to the lowest integer less than it that is a multiple of
86 the required alignment. Avoid using division in case the value is
87 negative. Assume the alignment is a power of two. */
88 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 /* Similar, but round to the next highest integer that meets the
91 alignment. */
92 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 /* Nonzero if function being compiled doesn't contain any calls
95 (ignoring the prologue and epilogue). This is set prior to
96 local register allocation and is valid for the remaining
97 compiler passes. */
98 int current_function_is_leaf;
100 /* Nonzero if function being compiled doesn't modify the stack pointer
101 (ignoring the prologue and epilogue). This is only valid after
102 pass_stack_ptr_mod has run. */
103 int current_function_sp_is_unchanging;
105 /* Nonzero if the function being compiled is a leaf function which only
106 uses leaf registers. This is valid after reload (specifically after
107 sched2) and is useful only if the port defines LEAF_REGISTERS. */
108 int current_function_uses_only_leaf_regs;
110 /* Nonzero once virtual register instantiation has been done.
111 assign_stack_local uses frame_pointer_rtx when this is nonzero.
112 calls.c:emit_library_call_value_1 uses it to set up
113 post-instantiation libcalls. */
114 int virtuals_instantiated;
116 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
117 static GTY(()) int funcdef_no;
119 /* These variables hold pointers to functions to create and destroy
120 target specific, per-function data structures. */
121 struct machine_function * (*init_machine_status) (void);
123 /* The currently compiled function. */
124 struct function *cfun = 0;
126 /* These hashes record the prologue and epilogue insns. */
127 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
128 htab_t prologue_insn_hash;
129 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
130 htab_t epilogue_insn_hash;
133 htab_t types_used_by_vars_hash = NULL;
134 VEC(tree,gc) *types_used_by_cur_var_decl;
136 /* Forward declarations. */
138 static struct temp_slot *find_temp_slot_from_address (rtx);
139 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
140 static void pad_below (struct args_size *, enum machine_mode, tree);
141 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
142 static int all_blocks (tree, tree *);
143 static tree *get_block_vector (tree, int *);
144 extern tree debug_find_var_in_block_tree (tree, tree);
145 /* We always define `record_insns' even if it's not used so that we
146 can always export `prologue_epilogue_contains'. */
147 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
148 static bool contains (const_rtx, htab_t);
149 #ifdef HAVE_return
150 static void emit_return_into_block (basic_block);
151 #endif
152 static void prepare_function_start (void);
153 static void do_clobber_return_reg (rtx, void *);
154 static void do_use_return_reg (rtx, void *);
155 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
157 /* Stack of nested functions. */
158 /* Keep track of the cfun stack. */
160 typedef struct function *function_p;
162 DEF_VEC_P(function_p);
163 DEF_VEC_ALLOC_P(function_p,heap);
164 static VEC(function_p,heap) *function_context_stack;
166 /* Save the current context for compilation of a nested function.
167 This is called from language-specific code. */
169 void
170 push_function_context (void)
172 if (cfun == 0)
173 allocate_struct_function (NULL, false);
175 VEC_safe_push (function_p, heap, function_context_stack, cfun);
176 set_cfun (NULL);
179 /* Restore the last saved context, at the end of a nested function.
180 This function is called from language-specific code. */
182 void
183 pop_function_context (void)
185 struct function *p = VEC_pop (function_p, function_context_stack);
186 set_cfun (p);
187 current_function_decl = p->decl;
189 /* Reset variables that have known state during rtx generation. */
190 virtuals_instantiated = 0;
191 generating_concat_p = 1;
194 /* Clear out all parts of the state in F that can safely be discarded
195 after the function has been parsed, but not compiled, to let
196 garbage collection reclaim the memory. */
198 void
199 free_after_parsing (struct function *f)
201 f->language = 0;
204 /* Clear out all parts of the state in F that can safely be discarded
205 after the function has been compiled, to let garbage collection
206 reclaim the memory. */
208 void
209 free_after_compilation (struct function *f)
211 prologue_insn_hash = NULL;
212 epilogue_insn_hash = NULL;
214 if (crtl->emit.regno_pointer_align)
215 free (crtl->emit.regno_pointer_align);
217 memset (crtl, 0, sizeof (struct rtl_data));
218 f->eh = NULL;
219 f->machine = NULL;
220 f->cfg = NULL;
222 regno_reg_rtx = NULL;
223 insn_locators_free ();
226 /* Return size needed for stack frame based on slots so far allocated.
227 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
228 the caller may have to do that. */
230 HOST_WIDE_INT
231 get_frame_size (void)
233 if (FRAME_GROWS_DOWNWARD)
234 return -frame_offset;
235 else
236 return frame_offset;
239 /* Issue an error message and return TRUE if frame OFFSET overflows in
240 the signed target pointer arithmetics for function FUNC. Otherwise
241 return FALSE. */
243 bool
244 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
246 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
248 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
249 /* Leave room for the fixed part of the frame. */
250 - 64 * UNITS_PER_WORD)
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects too large");
254 return TRUE;
257 return FALSE;
260 /* Return stack slot alignment in bits for TYPE and MODE. */
262 static unsigned int
263 get_stack_local_alignment (tree type, enum machine_mode mode)
265 unsigned int alignment;
267 if (mode == BLKmode)
268 alignment = BIGGEST_ALIGNMENT;
269 else
270 alignment = GET_MODE_ALIGNMENT (mode);
272 /* Allow the frond-end to (possibly) increase the alignment of this
273 stack slot. */
274 if (! type)
275 type = lang_hooks.types.type_for_mode (mode, 0);
277 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
280 /* Determine whether it is possible to fit a stack slot of size SIZE and
281 alignment ALIGNMENT into an area in the stack frame that starts at
282 frame offset START and has a length of LENGTH. If so, store the frame
283 offset to be used for the stack slot in *POFFSET and return true;
284 return false otherwise. This function will extend the frame size when
285 given a start/length pair that lies at the end of the frame. */
287 static bool
288 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
289 HOST_WIDE_INT size, unsigned int alignment,
290 HOST_WIDE_INT *poffset)
292 HOST_WIDE_INT this_frame_offset;
293 int frame_off, frame_alignment, frame_phase;
295 /* Calculate how many bytes the start of local variables is off from
296 stack alignment. */
297 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
298 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
299 frame_phase = frame_off ? frame_alignment - frame_off : 0;
301 /* Round the frame offset to the specified alignment. */
303 /* We must be careful here, since FRAME_OFFSET might be negative and
304 division with a negative dividend isn't as well defined as we might
305 like. So we instead assume that ALIGNMENT is a power of two and
306 use logical operations which are unambiguous. */
307 if (FRAME_GROWS_DOWNWARD)
308 this_frame_offset
309 = (FLOOR_ROUND (start + length - size - frame_phase,
310 (unsigned HOST_WIDE_INT) alignment)
311 + frame_phase);
312 else
313 this_frame_offset
314 = (CEIL_ROUND (start - frame_phase,
315 (unsigned HOST_WIDE_INT) alignment)
316 + frame_phase);
318 /* See if it fits. If this space is at the edge of the frame,
319 consider extending the frame to make it fit. Our caller relies on
320 this when allocating a new slot. */
321 if (frame_offset == start && this_frame_offset < frame_offset)
322 frame_offset = this_frame_offset;
323 else if (this_frame_offset < start)
324 return false;
325 else if (start + length == frame_offset
326 && this_frame_offset + size > start + length)
327 frame_offset = this_frame_offset + size;
328 else if (this_frame_offset + size > start + length)
329 return false;
331 *poffset = this_frame_offset;
332 return true;
335 /* Create a new frame_space structure describing free space in the stack
336 frame beginning at START and ending at END, and chain it into the
337 function's frame_space_list. */
339 static void
340 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
342 struct frame_space *space = ggc_alloc_frame_space ();
343 space->next = crtl->frame_space_list;
344 crtl->frame_space_list = space;
345 space->start = start;
346 space->length = end - start;
349 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
350 with machine mode MODE.
352 ALIGN controls the amount of alignment for the address of the slot:
353 0 means according to MODE,
354 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
355 -2 means use BITS_PER_UNIT,
356 positive specifies alignment boundary in bits.
358 If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
360 We do not round to stack_boundary here. */
363 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
364 int align,
365 bool reduce_alignment_ok ATTRIBUTE_UNUSED)
367 rtx x, addr;
368 int bigend_correction = 0;
369 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
370 unsigned int alignment, alignment_in_bits;
372 if (align == 0)
374 alignment = get_stack_local_alignment (NULL, mode);
375 alignment /= BITS_PER_UNIT;
377 else if (align == -1)
379 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
380 size = CEIL_ROUND (size, alignment);
382 else if (align == -2)
383 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
384 else
385 alignment = align / BITS_PER_UNIT;
387 alignment_in_bits = alignment * BITS_PER_UNIT;
389 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
390 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
392 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
393 alignment = alignment_in_bits / BITS_PER_UNIT;
396 if (SUPPORTS_STACK_ALIGNMENT)
398 if (crtl->stack_alignment_estimated < alignment_in_bits)
400 if (!crtl->stack_realign_processed)
401 crtl->stack_alignment_estimated = alignment_in_bits;
402 else
404 /* If stack is realigned and stack alignment value
405 hasn't been finalized, it is OK not to increase
406 stack_alignment_estimated. The bigger alignment
407 requirement is recorded in stack_alignment_needed
408 below. */
409 gcc_assert (!crtl->stack_realign_finalized);
410 if (!crtl->stack_realign_needed)
412 /* It is OK to reduce the alignment as long as the
413 requested size is 0 or the estimated stack
414 alignment >= mode alignment. */
415 gcc_assert (reduce_alignment_ok
416 || size == 0
417 || (crtl->stack_alignment_estimated
418 >= GET_MODE_ALIGNMENT (mode)));
419 alignment_in_bits = crtl->stack_alignment_estimated;
420 alignment = alignment_in_bits / BITS_PER_UNIT;
426 if (crtl->stack_alignment_needed < alignment_in_bits)
427 crtl->stack_alignment_needed = alignment_in_bits;
428 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
429 crtl->max_used_stack_slot_alignment = alignment_in_bits;
431 if (mode != BLKmode || size != 0)
433 struct frame_space **psp;
435 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
437 struct frame_space *space = *psp;
438 if (!try_fit_stack_local (space->start, space->length, size,
439 alignment, &slot_offset))
440 continue;
441 *psp = space->next;
442 if (slot_offset > space->start)
443 add_frame_space (space->start, slot_offset);
444 if (slot_offset + size < space->start + space->length)
445 add_frame_space (slot_offset + size,
446 space->start + space->length);
447 goto found_space;
450 else if (!STACK_ALIGNMENT_NEEDED)
452 slot_offset = frame_offset;
453 goto found_space;
456 old_frame_offset = frame_offset;
458 if (FRAME_GROWS_DOWNWARD)
460 frame_offset -= size;
461 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
463 if (slot_offset > frame_offset)
464 add_frame_space (frame_offset, slot_offset);
465 if (slot_offset + size < old_frame_offset)
466 add_frame_space (slot_offset + size, old_frame_offset);
468 else
470 frame_offset += size;
471 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
473 if (slot_offset > old_frame_offset)
474 add_frame_space (old_frame_offset, slot_offset);
475 if (slot_offset + size < frame_offset)
476 add_frame_space (slot_offset + size, frame_offset);
479 found_space:
480 /* On a big-endian machine, if we are allocating more space than we will use,
481 use the least significant bytes of those that are allocated. */
482 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
483 bigend_correction = size - GET_MODE_SIZE (mode);
485 /* If we have already instantiated virtual registers, return the actual
486 address relative to the frame pointer. */
487 if (virtuals_instantiated)
488 addr = plus_constant (frame_pointer_rtx,
489 trunc_int_for_mode
490 (slot_offset + bigend_correction
491 + STARTING_FRAME_OFFSET, Pmode));
492 else
493 addr = plus_constant (virtual_stack_vars_rtx,
494 trunc_int_for_mode
495 (slot_offset + bigend_correction,
496 Pmode));
498 x = gen_rtx_MEM (mode, addr);
499 set_mem_align (x, alignment_in_bits);
500 MEM_NOTRAP_P (x) = 1;
502 stack_slot_list
503 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
505 if (frame_offset_overflow (frame_offset, current_function_decl))
506 frame_offset = 0;
508 return x;
511 /* Wrap up assign_stack_local_1 with last parameter as false. */
514 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
516 return assign_stack_local_1 (mode, size, align, false);
520 /* In order to evaluate some expressions, such as function calls returning
521 structures in memory, we need to temporarily allocate stack locations.
522 We record each allocated temporary in the following structure.
524 Associated with each temporary slot is a nesting level. When we pop up
525 one level, all temporaries associated with the previous level are freed.
526 Normally, all temporaries are freed after the execution of the statement
527 in which they were created. However, if we are inside a ({...}) grouping,
528 the result may be in a temporary and hence must be preserved. If the
529 result could be in a temporary, we preserve it if we can determine which
530 one it is in. If we cannot determine which temporary may contain the
531 result, all temporaries are preserved. A temporary is preserved by
532 pretending it was allocated at the previous nesting level.
534 Automatic variables are also assigned temporary slots, at the nesting
535 level where they are defined. They are marked a "kept" so that
536 free_temp_slots will not free them. */
538 struct GTY(()) temp_slot {
539 /* Points to next temporary slot. */
540 struct temp_slot *next;
541 /* Points to previous temporary slot. */
542 struct temp_slot *prev;
543 /* The rtx to used to reference the slot. */
544 rtx slot;
545 /* The size, in units, of the slot. */
546 HOST_WIDE_INT size;
547 /* The type of the object in the slot, or zero if it doesn't correspond
548 to a type. We use this to determine whether a slot can be reused.
549 It can be reused if objects of the type of the new slot will always
550 conflict with objects of the type of the old slot. */
551 tree type;
552 /* The alignment (in bits) of the slot. */
553 unsigned int align;
554 /* Nonzero if this temporary is currently in use. */
555 char in_use;
556 /* Nonzero if this temporary has its address taken. */
557 char addr_taken;
558 /* Nesting level at which this slot is being used. */
559 int level;
560 /* Nonzero if this should survive a call to free_temp_slots. */
561 int keep;
562 /* The offset of the slot from the frame_pointer, including extra space
563 for alignment. This info is for combine_temp_slots. */
564 HOST_WIDE_INT base_offset;
565 /* The size of the slot, including extra space for alignment. This
566 info is for combine_temp_slots. */
567 HOST_WIDE_INT full_size;
570 /* A table of addresses that represent a stack slot. The table is a mapping
571 from address RTXen to a temp slot. */
572 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
574 /* Entry for the above hash table. */
575 struct GTY(()) temp_slot_address_entry {
576 hashval_t hash;
577 rtx address;
578 struct temp_slot *temp_slot;
581 /* Removes temporary slot TEMP from LIST. */
583 static void
584 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
586 if (temp->next)
587 temp->next->prev = temp->prev;
588 if (temp->prev)
589 temp->prev->next = temp->next;
590 else
591 *list = temp->next;
593 temp->prev = temp->next = NULL;
596 /* Inserts temporary slot TEMP to LIST. */
598 static void
599 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
601 temp->next = *list;
602 if (*list)
603 (*list)->prev = temp;
604 temp->prev = NULL;
605 *list = temp;
608 /* Returns the list of used temp slots at LEVEL. */
610 static struct temp_slot **
611 temp_slots_at_level (int level)
613 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
614 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
616 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
619 /* Returns the maximal temporary slot level. */
621 static int
622 max_slot_level (void)
624 if (!used_temp_slots)
625 return -1;
627 return VEC_length (temp_slot_p, used_temp_slots) - 1;
630 /* Moves temporary slot TEMP to LEVEL. */
632 static void
633 move_slot_to_level (struct temp_slot *temp, int level)
635 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
636 insert_slot_to_list (temp, temp_slots_at_level (level));
637 temp->level = level;
640 /* Make temporary slot TEMP available. */
642 static void
643 make_slot_available (struct temp_slot *temp)
645 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
646 insert_slot_to_list (temp, &avail_temp_slots);
647 temp->in_use = 0;
648 temp->level = -1;
651 /* Compute the hash value for an address -> temp slot mapping.
652 The value is cached on the mapping entry. */
653 static hashval_t
654 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
656 int do_not_record = 0;
657 return hash_rtx (t->address, GET_MODE (t->address),
658 &do_not_record, NULL, false);
661 /* Return the hash value for an address -> temp slot mapping. */
662 static hashval_t
663 temp_slot_address_hash (const void *p)
665 const struct temp_slot_address_entry *t;
666 t = (const struct temp_slot_address_entry *) p;
667 return t->hash;
670 /* Compare two address -> temp slot mapping entries. */
671 static int
672 temp_slot_address_eq (const void *p1, const void *p2)
674 const struct temp_slot_address_entry *t1, *t2;
675 t1 = (const struct temp_slot_address_entry *) p1;
676 t2 = (const struct temp_slot_address_entry *) p2;
677 return exp_equiv_p (t1->address, t2->address, 0, true);
680 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
681 static void
682 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
684 void **slot;
685 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
686 t->address = address;
687 t->temp_slot = temp_slot;
688 t->hash = temp_slot_address_compute_hash (t);
689 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
690 *slot = t;
693 /* Remove an address -> temp slot mapping entry if the temp slot is
694 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
695 static int
696 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
698 const struct temp_slot_address_entry *t;
699 t = (const struct temp_slot_address_entry *) *slot;
700 if (! t->temp_slot->in_use)
701 *slot = NULL;
702 return 1;
705 /* Remove all mappings of addresses to unused temp slots. */
706 static void
707 remove_unused_temp_slot_addresses (void)
709 htab_traverse (temp_slot_address_table,
710 remove_unused_temp_slot_addresses_1,
711 NULL);
714 /* Find the temp slot corresponding to the object at address X. */
716 static struct temp_slot *
717 find_temp_slot_from_address (rtx x)
719 struct temp_slot *p;
720 struct temp_slot_address_entry tmp, *t;
722 /* First try the easy way:
723 See if X exists in the address -> temp slot mapping. */
724 tmp.address = x;
725 tmp.temp_slot = NULL;
726 tmp.hash = temp_slot_address_compute_hash (&tmp);
727 t = (struct temp_slot_address_entry *)
728 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
729 if (t)
730 return t->temp_slot;
732 /* If we have a sum involving a register, see if it points to a temp
733 slot. */
734 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
735 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
736 return p;
737 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
738 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
739 return p;
741 /* Last resort: Address is a virtual stack var address. */
742 if (GET_CODE (x) == PLUS
743 && XEXP (x, 0) == virtual_stack_vars_rtx
744 && CONST_INT_P (XEXP (x, 1)))
746 int i;
747 for (i = max_slot_level (); i >= 0; i--)
748 for (p = *temp_slots_at_level (i); p; p = p->next)
750 if (INTVAL (XEXP (x, 1)) >= p->base_offset
751 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
752 return p;
756 return NULL;
759 /* Allocate a temporary stack slot and record it for possible later
760 reuse.
762 MODE is the machine mode to be given to the returned rtx.
764 SIZE is the size in units of the space required. We do no rounding here
765 since assign_stack_local will do any required rounding.
767 KEEP is 1 if this slot is to be retained after a call to
768 free_temp_slots. Automatic variables for a block are allocated
769 with this flag. KEEP values of 2 or 3 were needed respectively
770 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
771 or for SAVE_EXPRs, but they are now unused.
773 TYPE is the type that will be used for the stack slot. */
776 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
777 int keep, tree type)
779 unsigned int align;
780 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
781 rtx slot;
783 /* If SIZE is -1 it means that somebody tried to allocate a temporary
784 of a variable size. */
785 gcc_assert (size != -1);
787 /* These are now unused. */
788 gcc_assert (keep <= 1);
790 align = get_stack_local_alignment (type, mode);
792 /* Try to find an available, already-allocated temporary of the proper
793 mode which meets the size and alignment requirements. Choose the
794 smallest one with the closest alignment.
796 If assign_stack_temp is called outside of the tree->rtl expansion,
797 we cannot reuse the stack slots (that may still refer to
798 VIRTUAL_STACK_VARS_REGNUM). */
799 if (!virtuals_instantiated)
801 for (p = avail_temp_slots; p; p = p->next)
803 if (p->align >= align && p->size >= size
804 && GET_MODE (p->slot) == mode
805 && objects_must_conflict_p (p->type, type)
806 && (best_p == 0 || best_p->size > p->size
807 || (best_p->size == p->size && best_p->align > p->align)))
809 if (p->align == align && p->size == size)
811 selected = p;
812 cut_slot_from_list (selected, &avail_temp_slots);
813 best_p = 0;
814 break;
816 best_p = p;
821 /* Make our best, if any, the one to use. */
822 if (best_p)
824 selected = best_p;
825 cut_slot_from_list (selected, &avail_temp_slots);
827 /* If there are enough aligned bytes left over, make them into a new
828 temp_slot so that the extra bytes don't get wasted. Do this only
829 for BLKmode slots, so that we can be sure of the alignment. */
830 if (GET_MODE (best_p->slot) == BLKmode)
832 int alignment = best_p->align / BITS_PER_UNIT;
833 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
835 if (best_p->size - rounded_size >= alignment)
837 p = ggc_alloc_temp_slot ();
838 p->in_use = p->addr_taken = 0;
839 p->size = best_p->size - rounded_size;
840 p->base_offset = best_p->base_offset + rounded_size;
841 p->full_size = best_p->full_size - rounded_size;
842 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
843 p->align = best_p->align;
844 p->type = best_p->type;
845 insert_slot_to_list (p, &avail_temp_slots);
847 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
848 stack_slot_list);
850 best_p->size = rounded_size;
851 best_p->full_size = rounded_size;
856 /* If we still didn't find one, make a new temporary. */
857 if (selected == 0)
859 HOST_WIDE_INT frame_offset_old = frame_offset;
861 p = ggc_alloc_temp_slot ();
863 /* We are passing an explicit alignment request to assign_stack_local.
864 One side effect of that is assign_stack_local will not round SIZE
865 to ensure the frame offset remains suitably aligned.
867 So for requests which depended on the rounding of SIZE, we go ahead
868 and round it now. We also make sure ALIGNMENT is at least
869 BIGGEST_ALIGNMENT. */
870 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
871 p->slot = assign_stack_local (mode,
872 (mode == BLKmode
873 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
874 : size),
875 align);
877 p->align = align;
879 /* The following slot size computation is necessary because we don't
880 know the actual size of the temporary slot until assign_stack_local
881 has performed all the frame alignment and size rounding for the
882 requested temporary. Note that extra space added for alignment
883 can be either above or below this stack slot depending on which
884 way the frame grows. We include the extra space if and only if it
885 is above this slot. */
886 if (FRAME_GROWS_DOWNWARD)
887 p->size = frame_offset_old - frame_offset;
888 else
889 p->size = size;
891 /* Now define the fields used by combine_temp_slots. */
892 if (FRAME_GROWS_DOWNWARD)
894 p->base_offset = frame_offset;
895 p->full_size = frame_offset_old - frame_offset;
897 else
899 p->base_offset = frame_offset_old;
900 p->full_size = frame_offset - frame_offset_old;
903 selected = p;
906 p = selected;
907 p->in_use = 1;
908 p->addr_taken = 0;
909 p->type = type;
910 p->level = temp_slot_level;
911 p->keep = keep;
913 pp = temp_slots_at_level (p->level);
914 insert_slot_to_list (p, pp);
915 insert_temp_slot_address (XEXP (p->slot, 0), p);
917 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
918 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
919 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
921 /* If we know the alias set for the memory that will be used, use
922 it. If there's no TYPE, then we don't know anything about the
923 alias set for the memory. */
924 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
925 set_mem_align (slot, align);
927 /* If a type is specified, set the relevant flags. */
928 if (type != 0)
930 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
931 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
932 || TREE_CODE (type) == COMPLEX_TYPE));
934 MEM_NOTRAP_P (slot) = 1;
936 return slot;
939 /* Allocate a temporary stack slot and record it for possible later
940 reuse. First three arguments are same as in preceding function. */
943 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
945 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
948 /* Assign a temporary.
949 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
950 and so that should be used in error messages. In either case, we
951 allocate of the given type.
952 KEEP is as for assign_stack_temp.
953 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
954 it is 0 if a register is OK.
955 DONT_PROMOTE is 1 if we should not promote values in register
956 to wider modes. */
959 assign_temp (tree type_or_decl, int keep, int memory_required,
960 int dont_promote ATTRIBUTE_UNUSED)
962 tree type, decl;
963 enum machine_mode mode;
964 #ifdef PROMOTE_MODE
965 int unsignedp;
966 #endif
968 if (DECL_P (type_or_decl))
969 decl = type_or_decl, type = TREE_TYPE (decl);
970 else
971 decl = NULL, type = type_or_decl;
973 mode = TYPE_MODE (type);
974 #ifdef PROMOTE_MODE
975 unsignedp = TYPE_UNSIGNED (type);
976 #endif
978 if (mode == BLKmode || memory_required)
980 HOST_WIDE_INT size = int_size_in_bytes (type);
981 rtx tmp;
983 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
984 problems with allocating the stack space. */
985 if (size == 0)
986 size = 1;
988 /* Unfortunately, we don't yet know how to allocate variable-sized
989 temporaries. However, sometimes we can find a fixed upper limit on
990 the size, so try that instead. */
991 else if (size == -1)
992 size = max_int_size_in_bytes (type);
994 /* The size of the temporary may be too large to fit into an integer. */
995 /* ??? Not sure this should happen except for user silliness, so limit
996 this to things that aren't compiler-generated temporaries. The
997 rest of the time we'll die in assign_stack_temp_for_type. */
998 if (decl && size == -1
999 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1001 error ("size of variable %q+D is too large", decl);
1002 size = 1;
1005 tmp = assign_stack_temp_for_type (mode, size, keep, type);
1006 return tmp;
1009 #ifdef PROMOTE_MODE
1010 if (! dont_promote)
1011 mode = promote_mode (type, mode, &unsignedp);
1012 #endif
1014 return gen_reg_rtx (mode);
1017 /* Combine temporary stack slots which are adjacent on the stack.
1019 This allows for better use of already allocated stack space. This is only
1020 done for BLKmode slots because we can be sure that we won't have alignment
1021 problems in this case. */
1023 static void
1024 combine_temp_slots (void)
1026 struct temp_slot *p, *q, *next, *next_q;
1027 int num_slots;
1029 /* We can't combine slots, because the information about which slot
1030 is in which alias set will be lost. */
1031 if (flag_strict_aliasing)
1032 return;
1034 /* If there are a lot of temp slots, don't do anything unless
1035 high levels of optimization. */
1036 if (! flag_expensive_optimizations)
1037 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1038 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1039 return;
1041 for (p = avail_temp_slots; p; p = next)
1043 int delete_p = 0;
1045 next = p->next;
1047 if (GET_MODE (p->slot) != BLKmode)
1048 continue;
1050 for (q = p->next; q; q = next_q)
1052 int delete_q = 0;
1054 next_q = q->next;
1056 if (GET_MODE (q->slot) != BLKmode)
1057 continue;
1059 if (p->base_offset + p->full_size == q->base_offset)
1061 /* Q comes after P; combine Q into P. */
1062 p->size += q->size;
1063 p->full_size += q->full_size;
1064 delete_q = 1;
1066 else if (q->base_offset + q->full_size == p->base_offset)
1068 /* P comes after Q; combine P into Q. */
1069 q->size += p->size;
1070 q->full_size += p->full_size;
1071 delete_p = 1;
1072 break;
1074 if (delete_q)
1075 cut_slot_from_list (q, &avail_temp_slots);
1078 /* Either delete P or advance past it. */
1079 if (delete_p)
1080 cut_slot_from_list (p, &avail_temp_slots);
1084 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1085 slot that previously was known by OLD_RTX. */
1087 void
1088 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1090 struct temp_slot *p;
1092 if (rtx_equal_p (old_rtx, new_rtx))
1093 return;
1095 p = find_temp_slot_from_address (old_rtx);
1097 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1098 NEW_RTX is a register, see if one operand of the PLUS is a
1099 temporary location. If so, NEW_RTX points into it. Otherwise,
1100 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1101 in common between them. If so, try a recursive call on those
1102 values. */
1103 if (p == 0)
1105 if (GET_CODE (old_rtx) != PLUS)
1106 return;
1108 if (REG_P (new_rtx))
1110 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1111 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1112 return;
1114 else if (GET_CODE (new_rtx) != PLUS)
1115 return;
1117 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1118 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1119 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1120 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1121 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1122 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1123 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1124 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1126 return;
1129 /* Otherwise add an alias for the temp's address. */
1130 insert_temp_slot_address (new_rtx, p);
1133 /* If X could be a reference to a temporary slot, mark the fact that its
1134 address was taken. */
1136 void
1137 mark_temp_addr_taken (rtx x)
1139 struct temp_slot *p;
1141 if (x == 0)
1142 return;
1144 /* If X is not in memory or is at a constant address, it cannot be in
1145 a temporary slot. */
1146 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1147 return;
1149 p = find_temp_slot_from_address (XEXP (x, 0));
1150 if (p != 0)
1151 p->addr_taken = 1;
1154 /* If X could be a reference to a temporary slot, mark that slot as
1155 belonging to the to one level higher than the current level. If X
1156 matched one of our slots, just mark that one. Otherwise, we can't
1157 easily predict which it is, so upgrade all of them. Kept slots
1158 need not be touched.
1160 This is called when an ({...}) construct occurs and a statement
1161 returns a value in memory. */
1163 void
1164 preserve_temp_slots (rtx x)
1166 struct temp_slot *p = 0, *next;
1168 /* If there is no result, we still might have some objects whose address
1169 were taken, so we need to make sure they stay around. */
1170 if (x == 0)
1172 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1174 next = p->next;
1176 if (p->addr_taken)
1177 move_slot_to_level (p, temp_slot_level - 1);
1180 return;
1183 /* If X is a register that is being used as a pointer, see if we have
1184 a temporary slot we know it points to. To be consistent with
1185 the code below, we really should preserve all non-kept slots
1186 if we can't find a match, but that seems to be much too costly. */
1187 if (REG_P (x) && REG_POINTER (x))
1188 p = find_temp_slot_from_address (x);
1190 /* If X is not in memory or is at a constant address, it cannot be in
1191 a temporary slot, but it can contain something whose address was
1192 taken. */
1193 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1195 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1197 next = p->next;
1199 if (p->addr_taken)
1200 move_slot_to_level (p, temp_slot_level - 1);
1203 return;
1206 /* First see if we can find a match. */
1207 if (p == 0)
1208 p = find_temp_slot_from_address (XEXP (x, 0));
1210 if (p != 0)
1212 /* Move everything at our level whose address was taken to our new
1213 level in case we used its address. */
1214 struct temp_slot *q;
1216 if (p->level == temp_slot_level)
1218 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1220 next = q->next;
1222 if (p != q && q->addr_taken)
1223 move_slot_to_level (q, temp_slot_level - 1);
1226 move_slot_to_level (p, temp_slot_level - 1);
1227 p->addr_taken = 0;
1229 return;
1232 /* Otherwise, preserve all non-kept slots at this level. */
1233 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1235 next = p->next;
1237 if (!p->keep)
1238 move_slot_to_level (p, temp_slot_level - 1);
1242 /* Free all temporaries used so far. This is normally called at the
1243 end of generating code for a statement. */
1245 void
1246 free_temp_slots (void)
1248 struct temp_slot *p, *next;
1249 bool some_available = false;
1251 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1253 next = p->next;
1255 if (!p->keep)
1257 make_slot_available (p);
1258 some_available = true;
1262 if (some_available)
1264 remove_unused_temp_slot_addresses ();
1265 combine_temp_slots ();
1269 /* Push deeper into the nesting level for stack temporaries. */
1271 void
1272 push_temp_slots (void)
1274 temp_slot_level++;
1277 /* Pop a temporary nesting level. All slots in use in the current level
1278 are freed. */
1280 void
1281 pop_temp_slots (void)
1283 struct temp_slot *p, *next;
1284 bool some_available = false;
1286 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1288 next = p->next;
1289 make_slot_available (p);
1290 some_available = true;
1293 if (some_available)
1295 remove_unused_temp_slot_addresses ();
1296 combine_temp_slots ();
1299 temp_slot_level--;
1302 /* Initialize temporary slots. */
1304 void
1305 init_temp_slots (void)
1307 /* We have not allocated any temporaries yet. */
1308 avail_temp_slots = 0;
1309 used_temp_slots = 0;
1310 temp_slot_level = 0;
1312 /* Set up the table to map addresses to temp slots. */
1313 if (! temp_slot_address_table)
1314 temp_slot_address_table = htab_create_ggc (32,
1315 temp_slot_address_hash,
1316 temp_slot_address_eq,
1317 NULL);
1318 else
1319 htab_empty (temp_slot_address_table);
1322 /* These routines are responsible for converting virtual register references
1323 to the actual hard register references once RTL generation is complete.
1325 The following four variables are used for communication between the
1326 routines. They contain the offsets of the virtual registers from their
1327 respective hard registers. */
1329 static int in_arg_offset;
1330 static int var_offset;
1331 static int dynamic_offset;
1332 static int out_arg_offset;
1333 static int cfa_offset;
1335 /* In most machines, the stack pointer register is equivalent to the bottom
1336 of the stack. */
1338 #ifndef STACK_POINTER_OFFSET
1339 #define STACK_POINTER_OFFSET 0
1340 #endif
1342 /* If not defined, pick an appropriate default for the offset of dynamically
1343 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1344 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1346 #ifndef STACK_DYNAMIC_OFFSET
1348 /* The bottom of the stack points to the actual arguments. If
1349 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1350 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1351 stack space for register parameters is not pushed by the caller, but
1352 rather part of the fixed stack areas and hence not included in
1353 `crtl->outgoing_args_size'. Nevertheless, we must allow
1354 for it when allocating stack dynamic objects. */
1356 #if defined(REG_PARM_STACK_SPACE)
1357 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1358 ((ACCUMULATE_OUTGOING_ARGS \
1359 ? (crtl->outgoing_args_size \
1360 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1361 : REG_PARM_STACK_SPACE (FNDECL))) \
1362 : 0) + (STACK_POINTER_OFFSET))
1363 #else
1364 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1365 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1366 + (STACK_POINTER_OFFSET))
1367 #endif
1368 #endif
1371 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1372 is a virtual register, return the equivalent hard register and set the
1373 offset indirectly through the pointer. Otherwise, return 0. */
1375 static rtx
1376 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1378 rtx new_rtx;
1379 HOST_WIDE_INT offset;
1381 if (x == virtual_incoming_args_rtx)
1383 if (stack_realign_drap)
1385 /* Replace virtual_incoming_args_rtx with internal arg
1386 pointer if DRAP is used to realign stack. */
1387 new_rtx = crtl->args.internal_arg_pointer;
1388 offset = 0;
1390 else
1391 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1393 else if (x == virtual_stack_vars_rtx)
1394 new_rtx = frame_pointer_rtx, offset = var_offset;
1395 else if (x == virtual_stack_dynamic_rtx)
1396 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1397 else if (x == virtual_outgoing_args_rtx)
1398 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1399 else if (x == virtual_cfa_rtx)
1401 #ifdef FRAME_POINTER_CFA_OFFSET
1402 new_rtx = frame_pointer_rtx;
1403 #else
1404 new_rtx = arg_pointer_rtx;
1405 #endif
1406 offset = cfa_offset;
1408 else
1409 return NULL_RTX;
1411 *poffset = offset;
1412 return new_rtx;
1415 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1416 Instantiate any virtual registers present inside of *LOC. The expression
1417 is simplified, as much as possible, but is not to be considered "valid"
1418 in any sense implied by the target. If any change is made, set CHANGED
1419 to true. */
1421 static int
1422 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1424 HOST_WIDE_INT offset;
1425 bool *changed = (bool *) data;
1426 rtx x, new_rtx;
1428 x = *loc;
1429 if (x == 0)
1430 return 0;
1432 switch (GET_CODE (x))
1434 case REG:
1435 new_rtx = instantiate_new_reg (x, &offset);
1436 if (new_rtx)
1438 *loc = plus_constant (new_rtx, offset);
1439 if (changed)
1440 *changed = true;
1442 return -1;
1444 case PLUS:
1445 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1446 if (new_rtx)
1448 new_rtx = plus_constant (new_rtx, offset);
1449 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1450 if (changed)
1451 *changed = true;
1452 return -1;
1455 /* FIXME -- from old code */
1456 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1457 we can commute the PLUS and SUBREG because pointers into the
1458 frame are well-behaved. */
1459 break;
1461 default:
1462 break;
1465 return 0;
1468 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1469 matches the predicate for insn CODE operand OPERAND. */
1471 static int
1472 safe_insn_predicate (int code, int operand, rtx x)
1474 const struct insn_operand_data *op_data;
1476 if (code < 0)
1477 return true;
1479 op_data = &insn_data[code].operand[operand];
1480 if (op_data->predicate == NULL)
1481 return true;
1483 return op_data->predicate (x, op_data->mode);
1486 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1487 registers present inside of insn. The result will be a valid insn. */
1489 static void
1490 instantiate_virtual_regs_in_insn (rtx insn)
1492 HOST_WIDE_INT offset;
1493 int insn_code, i;
1494 bool any_change = false;
1495 rtx set, new_rtx, x, seq;
1497 /* There are some special cases to be handled first. */
1498 set = single_set (insn);
1499 if (set)
1501 /* We're allowed to assign to a virtual register. This is interpreted
1502 to mean that the underlying register gets assigned the inverse
1503 transformation. This is used, for example, in the handling of
1504 non-local gotos. */
1505 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1506 if (new_rtx)
1508 start_sequence ();
1510 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1511 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1512 GEN_INT (-offset));
1513 x = force_operand (x, new_rtx);
1514 if (x != new_rtx)
1515 emit_move_insn (new_rtx, x);
1517 seq = get_insns ();
1518 end_sequence ();
1520 emit_insn_before (seq, insn);
1521 delete_insn (insn);
1522 return;
1525 /* Handle a straight copy from a virtual register by generating a
1526 new add insn. The difference between this and falling through
1527 to the generic case is avoiding a new pseudo and eliminating a
1528 move insn in the initial rtl stream. */
1529 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1530 if (new_rtx && offset != 0
1531 && REG_P (SET_DEST (set))
1532 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1534 start_sequence ();
1536 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1537 new_rtx, GEN_INT (offset), SET_DEST (set),
1538 1, OPTAB_LIB_WIDEN);
1539 if (x != SET_DEST (set))
1540 emit_move_insn (SET_DEST (set), x);
1542 seq = get_insns ();
1543 end_sequence ();
1545 emit_insn_before (seq, insn);
1546 delete_insn (insn);
1547 return;
1550 extract_insn (insn);
1551 insn_code = INSN_CODE (insn);
1553 /* Handle a plus involving a virtual register by determining if the
1554 operands remain valid if they're modified in place. */
1555 if (GET_CODE (SET_SRC (set)) == PLUS
1556 && recog_data.n_operands >= 3
1557 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1558 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1559 && CONST_INT_P (recog_data.operand[2])
1560 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1562 offset += INTVAL (recog_data.operand[2]);
1564 /* If the sum is zero, then replace with a plain move. */
1565 if (offset == 0
1566 && REG_P (SET_DEST (set))
1567 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1569 start_sequence ();
1570 emit_move_insn (SET_DEST (set), new_rtx);
1571 seq = get_insns ();
1572 end_sequence ();
1574 emit_insn_before (seq, insn);
1575 delete_insn (insn);
1576 return;
1579 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1581 /* Using validate_change and apply_change_group here leaves
1582 recog_data in an invalid state. Since we know exactly what
1583 we want to check, do those two by hand. */
1584 if (safe_insn_predicate (insn_code, 1, new_rtx)
1585 && safe_insn_predicate (insn_code, 2, x))
1587 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1588 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1589 any_change = true;
1591 /* Fall through into the regular operand fixup loop in
1592 order to take care of operands other than 1 and 2. */
1596 else
1598 extract_insn (insn);
1599 insn_code = INSN_CODE (insn);
1602 /* In the general case, we expect virtual registers to appear only in
1603 operands, and then only as either bare registers or inside memories. */
1604 for (i = 0; i < recog_data.n_operands; ++i)
1606 x = recog_data.operand[i];
1607 switch (GET_CODE (x))
1609 case MEM:
1611 rtx addr = XEXP (x, 0);
1612 bool changed = false;
1614 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1615 if (!changed)
1616 continue;
1618 start_sequence ();
1619 x = replace_equiv_address (x, addr);
1620 /* It may happen that the address with the virtual reg
1621 was valid (e.g. based on the virtual stack reg, which might
1622 be acceptable to the predicates with all offsets), whereas
1623 the address now isn't anymore, for instance when the address
1624 is still offsetted, but the base reg isn't virtual-stack-reg
1625 anymore. Below we would do a force_reg on the whole operand,
1626 but this insn might actually only accept memory. Hence,
1627 before doing that last resort, try to reload the address into
1628 a register, so this operand stays a MEM. */
1629 if (!safe_insn_predicate (insn_code, i, x))
1631 addr = force_reg (GET_MODE (addr), addr);
1632 x = replace_equiv_address (x, addr);
1634 seq = get_insns ();
1635 end_sequence ();
1636 if (seq)
1637 emit_insn_before (seq, insn);
1639 break;
1641 case REG:
1642 new_rtx = instantiate_new_reg (x, &offset);
1643 if (new_rtx == NULL)
1644 continue;
1645 if (offset == 0)
1646 x = new_rtx;
1647 else
1649 start_sequence ();
1651 /* Careful, special mode predicates may have stuff in
1652 insn_data[insn_code].operand[i].mode that isn't useful
1653 to us for computing a new value. */
1654 /* ??? Recognize address_operand and/or "p" constraints
1655 to see if (plus new offset) is a valid before we put
1656 this through expand_simple_binop. */
1657 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1658 GEN_INT (offset), NULL_RTX,
1659 1, OPTAB_LIB_WIDEN);
1660 seq = get_insns ();
1661 end_sequence ();
1662 emit_insn_before (seq, insn);
1664 break;
1666 case SUBREG:
1667 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1668 if (new_rtx == NULL)
1669 continue;
1670 if (offset != 0)
1672 start_sequence ();
1673 new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1674 GEN_INT (offset), NULL_RTX,
1675 1, OPTAB_LIB_WIDEN);
1676 seq = get_insns ();
1677 end_sequence ();
1678 emit_insn_before (seq, insn);
1680 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1681 GET_MODE (new_rtx), SUBREG_BYTE (x));
1682 gcc_assert (x);
1683 break;
1685 default:
1686 continue;
1689 /* At this point, X contains the new value for the operand.
1690 Validate the new value vs the insn predicate. Note that
1691 asm insns will have insn_code -1 here. */
1692 if (!safe_insn_predicate (insn_code, i, x))
1694 start_sequence ();
1695 if (REG_P (x))
1697 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1698 x = copy_to_reg (x);
1700 else
1701 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1702 seq = get_insns ();
1703 end_sequence ();
1704 if (seq)
1705 emit_insn_before (seq, insn);
1708 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1709 any_change = true;
1712 if (any_change)
1714 /* Propagate operand changes into the duplicates. */
1715 for (i = 0; i < recog_data.n_dups; ++i)
1716 *recog_data.dup_loc[i]
1717 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1719 /* Force re-recognition of the instruction for validation. */
1720 INSN_CODE (insn) = -1;
1723 if (asm_noperands (PATTERN (insn)) >= 0)
1725 if (!check_asm_operands (PATTERN (insn)))
1727 error_for_asm (insn, "impossible constraint in %<asm%>");
1728 delete_insn (insn);
1731 else
1733 if (recog_memoized (insn) < 0)
1734 fatal_insn_not_found (insn);
1738 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1739 do any instantiation required. */
1741 void
1742 instantiate_decl_rtl (rtx x)
1744 rtx addr;
1746 if (x == 0)
1747 return;
1749 /* If this is a CONCAT, recurse for the pieces. */
1750 if (GET_CODE (x) == CONCAT)
1752 instantiate_decl_rtl (XEXP (x, 0));
1753 instantiate_decl_rtl (XEXP (x, 1));
1754 return;
1757 /* If this is not a MEM, no need to do anything. Similarly if the
1758 address is a constant or a register that is not a virtual register. */
1759 if (!MEM_P (x))
1760 return;
1762 addr = XEXP (x, 0);
1763 if (CONSTANT_P (addr)
1764 || (REG_P (addr)
1765 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1766 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1767 return;
1769 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1772 /* Helper for instantiate_decls called via walk_tree: Process all decls
1773 in the given DECL_VALUE_EXPR. */
1775 static tree
1776 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1778 tree t = *tp;
1779 if (! EXPR_P (t))
1781 *walk_subtrees = 0;
1782 if (DECL_P (t) && DECL_RTL_SET_P (t))
1783 instantiate_decl_rtl (DECL_RTL (t));
1785 return NULL;
1788 /* Subroutine of instantiate_decls: Process all decls in the given
1789 BLOCK node and all its subblocks. */
1791 static void
1792 instantiate_decls_1 (tree let)
1794 tree t;
1796 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1798 if (DECL_RTL_SET_P (t))
1799 instantiate_decl_rtl (DECL_RTL (t));
1800 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1802 tree v = DECL_VALUE_EXPR (t);
1803 walk_tree (&v, instantiate_expr, NULL, NULL);
1807 /* Process all subblocks. */
1808 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1809 instantiate_decls_1 (t);
1812 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1813 all virtual registers in their DECL_RTL's. */
1815 static void
1816 instantiate_decls (tree fndecl)
1818 tree decl, t, next;
1820 /* Process all parameters of the function. */
1821 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1823 instantiate_decl_rtl (DECL_RTL (decl));
1824 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1825 if (DECL_HAS_VALUE_EXPR_P (decl))
1827 tree v = DECL_VALUE_EXPR (decl);
1828 walk_tree (&v, instantiate_expr, NULL, NULL);
1832 /* Now process all variables defined in the function or its subblocks. */
1833 instantiate_decls_1 (DECL_INITIAL (fndecl));
1835 t = cfun->local_decls;
1836 cfun->local_decls = NULL_TREE;
1837 for (; t; t = next)
1839 next = TREE_CHAIN (t);
1840 decl = TREE_VALUE (t);
1841 if (DECL_RTL_SET_P (decl))
1842 instantiate_decl_rtl (DECL_RTL (decl));
1843 ggc_free (t);
1847 /* Pass through the INSNS of function FNDECL and convert virtual register
1848 references to hard register references. */
1850 static unsigned int
1851 instantiate_virtual_regs (void)
1853 rtx insn;
1855 /* Compute the offsets to use for this function. */
1856 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1857 var_offset = STARTING_FRAME_OFFSET;
1858 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1859 out_arg_offset = STACK_POINTER_OFFSET;
1860 #ifdef FRAME_POINTER_CFA_OFFSET
1861 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1862 #else
1863 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1864 #endif
1866 /* Initialize recognition, indicating that volatile is OK. */
1867 init_recog ();
1869 /* Scan through all the insns, instantiating every virtual register still
1870 present. */
1871 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1872 if (INSN_P (insn))
1874 /* These patterns in the instruction stream can never be recognized.
1875 Fortunately, they shouldn't contain virtual registers either. */
1876 if (GET_CODE (PATTERN (insn)) == USE
1877 || GET_CODE (PATTERN (insn)) == CLOBBER
1878 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1879 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1880 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1881 continue;
1882 else if (DEBUG_INSN_P (insn))
1883 for_each_rtx (&INSN_VAR_LOCATION (insn),
1884 instantiate_virtual_regs_in_rtx, NULL);
1885 else
1886 instantiate_virtual_regs_in_insn (insn);
1888 if (INSN_DELETED_P (insn))
1889 continue;
1891 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1893 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1894 if (CALL_P (insn))
1895 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1896 instantiate_virtual_regs_in_rtx, NULL);
1899 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1900 instantiate_decls (current_function_decl);
1902 targetm.instantiate_decls ();
1904 /* Indicate that, from now on, assign_stack_local should use
1905 frame_pointer_rtx. */
1906 virtuals_instantiated = 1;
1907 return 0;
1910 struct rtl_opt_pass pass_instantiate_virtual_regs =
1913 RTL_PASS,
1914 "vregs", /* name */
1915 NULL, /* gate */
1916 instantiate_virtual_regs, /* execute */
1917 NULL, /* sub */
1918 NULL, /* next */
1919 0, /* static_pass_number */
1920 TV_NONE, /* tv_id */
1921 0, /* properties_required */
1922 0, /* properties_provided */
1923 0, /* properties_destroyed */
1924 0, /* todo_flags_start */
1925 TODO_dump_func /* todo_flags_finish */
1930 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1931 This means a type for which function calls must pass an address to the
1932 function or get an address back from the function.
1933 EXP may be a type node or an expression (whose type is tested). */
1936 aggregate_value_p (const_tree exp, const_tree fntype)
1938 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1939 int i, regno, nregs;
1940 rtx reg;
1942 if (fntype)
1943 switch (TREE_CODE (fntype))
1945 case CALL_EXPR:
1947 tree fndecl = get_callee_fndecl (fntype);
1948 fntype = (fndecl
1949 ? TREE_TYPE (fndecl)
1950 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1952 break;
1953 case FUNCTION_DECL:
1954 fntype = TREE_TYPE (fntype);
1955 break;
1956 case FUNCTION_TYPE:
1957 case METHOD_TYPE:
1958 break;
1959 case IDENTIFIER_NODE:
1960 fntype = NULL_TREE;
1961 break;
1962 default:
1963 /* We don't expect other tree types here. */
1964 gcc_unreachable ();
1967 if (VOID_TYPE_P (type))
1968 return 0;
1970 /* If a record should be passed the same as its first (and only) member
1971 don't pass it as an aggregate. */
1972 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
1973 return aggregate_value_p (first_field (type), fntype);
1975 /* If the front end has decided that this needs to be passed by
1976 reference, do so. */
1977 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1978 && DECL_BY_REFERENCE (exp))
1979 return 1;
1981 /* Function types that are TREE_ADDRESSABLE force return in memory. */
1982 if (fntype && TREE_ADDRESSABLE (fntype))
1983 return 1;
1985 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1986 and thus can't be returned in registers. */
1987 if (TREE_ADDRESSABLE (type))
1988 return 1;
1990 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1991 return 1;
1993 if (targetm.calls.return_in_memory (type, fntype))
1994 return 1;
1996 /* Make sure we have suitable call-clobbered regs to return
1997 the value in; if not, we must return it in memory. */
1998 reg = hard_function_value (type, 0, fntype, 0);
2000 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2001 it is OK. */
2002 if (!REG_P (reg))
2003 return 0;
2005 regno = REGNO (reg);
2006 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2007 for (i = 0; i < nregs; i++)
2008 if (! call_used_regs[regno + i])
2009 return 1;
2011 return 0;
2014 /* Return true if we should assign DECL a pseudo register; false if it
2015 should live on the local stack. */
2017 bool
2018 use_register_for_decl (const_tree decl)
2020 if (!targetm.calls.allocate_stack_slots_for_args())
2021 return true;
2023 /* Honor volatile. */
2024 if (TREE_SIDE_EFFECTS (decl))
2025 return false;
2027 /* Honor addressability. */
2028 if (TREE_ADDRESSABLE (decl))
2029 return false;
2031 /* Only register-like things go in registers. */
2032 if (DECL_MODE (decl) == BLKmode)
2033 return false;
2035 /* If -ffloat-store specified, don't put explicit float variables
2036 into registers. */
2037 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2038 propagates values across these stores, and it probably shouldn't. */
2039 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2040 return false;
2042 /* If we're not interested in tracking debugging information for
2043 this decl, then we can certainly put it in a register. */
2044 if (DECL_IGNORED_P (decl))
2045 return true;
2047 if (optimize)
2048 return true;
2050 if (!DECL_REGISTER (decl))
2051 return false;
2053 switch (TREE_CODE (TREE_TYPE (decl)))
2055 case RECORD_TYPE:
2056 case UNION_TYPE:
2057 case QUAL_UNION_TYPE:
2058 /* When not optimizing, disregard register keyword for variables with
2059 types containing methods, otherwise the methods won't be callable
2060 from the debugger. */
2061 if (TYPE_METHODS (TREE_TYPE (decl)))
2062 return false;
2063 break;
2064 default:
2065 break;
2068 return true;
2071 /* Return true if TYPE should be passed by invisible reference. */
2073 bool
2074 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2075 tree type, bool named_arg)
2077 if (type)
2079 /* If this type contains non-trivial constructors, then it is
2080 forbidden for the middle-end to create any new copies. */
2081 if (TREE_ADDRESSABLE (type))
2082 return true;
2084 /* GCC post 3.4 passes *all* variable sized types by reference. */
2085 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2086 return true;
2088 /* If a record type should be passed the same as its first (and only)
2089 member, use the type and mode of that member. */
2090 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2092 type = TREE_TYPE (first_field (type));
2093 mode = TYPE_MODE (type);
2097 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
2100 /* Return true if TYPE, which is passed by reference, should be callee
2101 copied instead of caller copied. */
2103 bool
2104 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2105 tree type, bool named_arg)
2107 if (type && TREE_ADDRESSABLE (type))
2108 return false;
2109 return targetm.calls.callee_copies (ca, mode, type, named_arg);
2112 /* Structures to communicate between the subroutines of assign_parms.
2113 The first holds data persistent across all parameters, the second
2114 is cleared out for each parameter. */
2116 struct assign_parm_data_all
2118 CUMULATIVE_ARGS args_so_far;
2119 struct args_size stack_args_size;
2120 tree function_result_decl;
2121 tree orig_fnargs;
2122 rtx first_conversion_insn;
2123 rtx last_conversion_insn;
2124 HOST_WIDE_INT pretend_args_size;
2125 HOST_WIDE_INT extra_pretend_bytes;
2126 int reg_parm_stack_space;
2129 struct assign_parm_data_one
2131 tree nominal_type;
2132 tree passed_type;
2133 rtx entry_parm;
2134 rtx stack_parm;
2135 enum machine_mode nominal_mode;
2136 enum machine_mode passed_mode;
2137 enum machine_mode promoted_mode;
2138 struct locate_and_pad_arg_data locate;
2139 int partial;
2140 BOOL_BITFIELD named_arg : 1;
2141 BOOL_BITFIELD passed_pointer : 1;
2142 BOOL_BITFIELD on_stack : 1;
2143 BOOL_BITFIELD loaded_in_reg : 1;
2146 /* A subroutine of assign_parms. Initialize ALL. */
2148 static void
2149 assign_parms_initialize_all (struct assign_parm_data_all *all)
2151 tree fntype ATTRIBUTE_UNUSED;
2153 memset (all, 0, sizeof (*all));
2155 fntype = TREE_TYPE (current_function_decl);
2157 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2158 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2159 #else
2160 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2161 current_function_decl, -1);
2162 #endif
2164 #ifdef REG_PARM_STACK_SPACE
2165 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2166 #endif
2169 /* If ARGS contains entries with complex types, split the entry into two
2170 entries of the component type. Return a new list of substitutions are
2171 needed, else the old list. */
2173 static void
2174 split_complex_args (VEC(tree, heap) **args)
2176 unsigned i;
2177 tree p;
2179 for (i = 0; VEC_iterate (tree, *args, i, p); ++i)
2181 tree type = TREE_TYPE (p);
2182 if (TREE_CODE (type) == COMPLEX_TYPE
2183 && targetm.calls.split_complex_arg (type))
2185 tree decl;
2186 tree subtype = TREE_TYPE (type);
2187 bool addressable = TREE_ADDRESSABLE (p);
2189 /* Rewrite the PARM_DECL's type with its component. */
2190 p = copy_node (p);
2191 TREE_TYPE (p) = subtype;
2192 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2193 DECL_MODE (p) = VOIDmode;
2194 DECL_SIZE (p) = NULL;
2195 DECL_SIZE_UNIT (p) = NULL;
2196 /* If this arg must go in memory, put it in a pseudo here.
2197 We can't allow it to go in memory as per normal parms,
2198 because the usual place might not have the imag part
2199 adjacent to the real part. */
2200 DECL_ARTIFICIAL (p) = addressable;
2201 DECL_IGNORED_P (p) = addressable;
2202 TREE_ADDRESSABLE (p) = 0;
2203 layout_decl (p, 0);
2204 VEC_replace (tree, *args, i, p);
2206 /* Build a second synthetic decl. */
2207 decl = build_decl (EXPR_LOCATION (p),
2208 PARM_DECL, NULL_TREE, subtype);
2209 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2210 DECL_ARTIFICIAL (decl) = addressable;
2211 DECL_IGNORED_P (decl) = addressable;
2212 layout_decl (decl, 0);
2213 VEC_safe_insert (tree, heap, *args, ++i, decl);
2218 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2219 the hidden struct return argument, and (abi willing) complex args.
2220 Return the new parameter list. */
2222 static VEC(tree, heap) *
2223 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2225 tree fndecl = current_function_decl;
2226 tree fntype = TREE_TYPE (fndecl);
2227 VEC(tree, heap) *fnargs = NULL;
2228 tree arg;
2230 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg))
2231 VEC_safe_push (tree, heap, fnargs, arg);
2233 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2235 /* If struct value address is treated as the first argument, make it so. */
2236 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2237 && ! cfun->returns_pcc_struct
2238 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2240 tree type = build_pointer_type (TREE_TYPE (fntype));
2241 tree decl;
2243 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2244 PARM_DECL, NULL_TREE, type);
2245 DECL_ARG_TYPE (decl) = type;
2246 DECL_ARTIFICIAL (decl) = 1;
2247 DECL_IGNORED_P (decl) = 1;
2249 TREE_CHAIN (decl) = all->orig_fnargs;
2250 all->orig_fnargs = decl;
2251 VEC_safe_insert (tree, heap, fnargs, 0, decl);
2253 all->function_result_decl = decl;
2256 /* If the target wants to split complex arguments into scalars, do so. */
2257 if (targetm.calls.split_complex_arg)
2258 split_complex_args (&fnargs);
2260 return fnargs;
2263 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2264 data for the parameter. Incorporate ABI specifics such as pass-by-
2265 reference and type promotion. */
2267 static void
2268 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2269 struct assign_parm_data_one *data)
2271 tree nominal_type, passed_type;
2272 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2273 int unsignedp;
2275 memset (data, 0, sizeof (*data));
2277 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2278 if (!cfun->stdarg)
2279 data->named_arg = 1; /* No variadic parms. */
2280 else if (TREE_CHAIN (parm))
2281 data->named_arg = 1; /* Not the last non-variadic parm. */
2282 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2283 data->named_arg = 1; /* Only variadic ones are unnamed. */
2284 else
2285 data->named_arg = 0; /* Treat as variadic. */
2287 nominal_type = TREE_TYPE (parm);
2288 passed_type = DECL_ARG_TYPE (parm);
2290 /* Look out for errors propagating this far. Also, if the parameter's
2291 type is void then its value doesn't matter. */
2292 if (TREE_TYPE (parm) == error_mark_node
2293 /* This can happen after weird syntax errors
2294 or if an enum type is defined among the parms. */
2295 || TREE_CODE (parm) != PARM_DECL
2296 || passed_type == NULL
2297 || VOID_TYPE_P (nominal_type))
2299 nominal_type = passed_type = void_type_node;
2300 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2301 goto egress;
2304 /* Find mode of arg as it is passed, and mode of arg as it should be
2305 during execution of this function. */
2306 passed_mode = TYPE_MODE (passed_type);
2307 nominal_mode = TYPE_MODE (nominal_type);
2309 /* If the parm is to be passed as a transparent union or record, use the
2310 type of the first field for the tests below. We have already verified
2311 that the modes are the same. */
2312 if ((TREE_CODE (passed_type) == UNION_TYPE
2313 || TREE_CODE (passed_type) == RECORD_TYPE)
2314 && TYPE_TRANSPARENT_AGGR (passed_type))
2315 passed_type = TREE_TYPE (first_field (passed_type));
2317 /* See if this arg was passed by invisible reference. */
2318 if (pass_by_reference (&all->args_so_far, passed_mode,
2319 passed_type, data->named_arg))
2321 passed_type = nominal_type = build_pointer_type (passed_type);
2322 data->passed_pointer = true;
2323 passed_mode = nominal_mode = Pmode;
2326 /* Find mode as it is passed by the ABI. */
2327 unsignedp = TYPE_UNSIGNED (passed_type);
2328 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2329 TREE_TYPE (current_function_decl), 0);
2331 egress:
2332 data->nominal_type = nominal_type;
2333 data->passed_type = passed_type;
2334 data->nominal_mode = nominal_mode;
2335 data->passed_mode = passed_mode;
2336 data->promoted_mode = promoted_mode;
2339 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2341 static void
2342 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2343 struct assign_parm_data_one *data, bool no_rtl)
2345 int varargs_pretend_bytes = 0;
2347 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2348 data->promoted_mode,
2349 data->passed_type,
2350 &varargs_pretend_bytes, no_rtl);
2352 /* If the back-end has requested extra stack space, record how much is
2353 needed. Do not change pretend_args_size otherwise since it may be
2354 nonzero from an earlier partial argument. */
2355 if (varargs_pretend_bytes > 0)
2356 all->pretend_args_size = varargs_pretend_bytes;
2359 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2360 the incoming location of the current parameter. */
2362 static void
2363 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2364 struct assign_parm_data_one *data)
2366 HOST_WIDE_INT pretend_bytes = 0;
2367 rtx entry_parm;
2368 bool in_regs;
2370 if (data->promoted_mode == VOIDmode)
2372 data->entry_parm = data->stack_parm = const0_rtx;
2373 return;
2376 entry_parm = targetm.calls.function_incoming_arg (&all->args_so_far,
2377 data->promoted_mode,
2378 data->passed_type,
2379 data->named_arg);
2381 if (entry_parm == 0)
2382 data->promoted_mode = data->passed_mode;
2384 /* Determine parm's home in the stack, in case it arrives in the stack
2385 or we should pretend it did. Compute the stack position and rtx where
2386 the argument arrives and its size.
2388 There is one complexity here: If this was a parameter that would
2389 have been passed in registers, but wasn't only because it is
2390 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2391 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2392 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2393 as it was the previous time. */
2394 in_regs = entry_parm != 0;
2395 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2396 in_regs = true;
2397 #endif
2398 if (!in_regs && !data->named_arg)
2400 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2402 rtx tem;
2403 tem = targetm.calls.function_incoming_arg (&all->args_so_far,
2404 data->promoted_mode,
2405 data->passed_type, true);
2406 in_regs = tem != NULL;
2410 /* If this parameter was passed both in registers and in the stack, use
2411 the copy on the stack. */
2412 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2413 data->passed_type))
2414 entry_parm = 0;
2416 if (entry_parm)
2418 int partial;
2420 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2421 data->promoted_mode,
2422 data->passed_type,
2423 data->named_arg);
2424 data->partial = partial;
2426 /* The caller might already have allocated stack space for the
2427 register parameters. */
2428 if (partial != 0 && all->reg_parm_stack_space == 0)
2430 /* Part of this argument is passed in registers and part
2431 is passed on the stack. Ask the prologue code to extend
2432 the stack part so that we can recreate the full value.
2434 PRETEND_BYTES is the size of the registers we need to store.
2435 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2436 stack space that the prologue should allocate.
2438 Internally, gcc assumes that the argument pointer is aligned
2439 to STACK_BOUNDARY bits. This is used both for alignment
2440 optimizations (see init_emit) and to locate arguments that are
2441 aligned to more than PARM_BOUNDARY bits. We must preserve this
2442 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2443 a stack boundary. */
2445 /* We assume at most one partial arg, and it must be the first
2446 argument on the stack. */
2447 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2449 pretend_bytes = partial;
2450 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2452 /* We want to align relative to the actual stack pointer, so
2453 don't include this in the stack size until later. */
2454 all->extra_pretend_bytes = all->pretend_args_size;
2458 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2459 entry_parm ? data->partial : 0, current_function_decl,
2460 &all->stack_args_size, &data->locate);
2462 /* Update parm_stack_boundary if this parameter is passed in the
2463 stack. */
2464 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2465 crtl->parm_stack_boundary = data->locate.boundary;
2467 /* Adjust offsets to include the pretend args. */
2468 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2469 data->locate.slot_offset.constant += pretend_bytes;
2470 data->locate.offset.constant += pretend_bytes;
2472 data->entry_parm = entry_parm;
2475 /* A subroutine of assign_parms. If there is actually space on the stack
2476 for this parm, count it in stack_args_size and return true. */
2478 static bool
2479 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2480 struct assign_parm_data_one *data)
2482 /* Trivially true if we've no incoming register. */
2483 if (data->entry_parm == NULL)
2485 /* Also true if we're partially in registers and partially not,
2486 since we've arranged to drop the entire argument on the stack. */
2487 else if (data->partial != 0)
2489 /* Also true if the target says that it's passed in both registers
2490 and on the stack. */
2491 else if (GET_CODE (data->entry_parm) == PARALLEL
2492 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2494 /* Also true if the target says that there's stack allocated for
2495 all register parameters. */
2496 else if (all->reg_parm_stack_space > 0)
2498 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2499 else
2500 return false;
2502 all->stack_args_size.constant += data->locate.size.constant;
2503 if (data->locate.size.var)
2504 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2506 return true;
2509 /* A subroutine of assign_parms. Given that this parameter is allocated
2510 stack space by the ABI, find it. */
2512 static void
2513 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2515 rtx offset_rtx, stack_parm;
2516 unsigned int align, boundary;
2518 /* If we're passing this arg using a reg, make its stack home the
2519 aligned stack slot. */
2520 if (data->entry_parm)
2521 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2522 else
2523 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2525 stack_parm = crtl->args.internal_arg_pointer;
2526 if (offset_rtx != const0_rtx)
2527 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2528 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2530 if (!data->passed_pointer)
2532 set_mem_attributes (stack_parm, parm, 1);
2533 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2534 while promoted mode's size is needed. */
2535 if (data->promoted_mode != BLKmode
2536 && data->promoted_mode != DECL_MODE (parm))
2538 set_mem_size (stack_parm,
2539 GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2540 if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2542 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2543 data->promoted_mode);
2544 if (offset)
2545 set_mem_offset (stack_parm,
2546 plus_constant (MEM_OFFSET (stack_parm),
2547 -offset));
2552 boundary = data->locate.boundary;
2553 align = BITS_PER_UNIT;
2555 /* If we're padding upward, we know that the alignment of the slot
2556 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2557 intentionally forcing upward padding. Otherwise we have to come
2558 up with a guess at the alignment based on OFFSET_RTX. */
2559 if (data->locate.where_pad != downward || data->entry_parm)
2560 align = boundary;
2561 else if (CONST_INT_P (offset_rtx))
2563 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2564 align = align & -align;
2566 set_mem_align (stack_parm, align);
2568 if (data->entry_parm)
2569 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2571 data->stack_parm = stack_parm;
2574 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2575 always valid and contiguous. */
2577 static void
2578 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2580 rtx entry_parm = data->entry_parm;
2581 rtx stack_parm = data->stack_parm;
2583 /* If this parm was passed part in regs and part in memory, pretend it
2584 arrived entirely in memory by pushing the register-part onto the stack.
2585 In the special case of a DImode or DFmode that is split, we could put
2586 it together in a pseudoreg directly, but for now that's not worth
2587 bothering with. */
2588 if (data->partial != 0)
2590 /* Handle calls that pass values in multiple non-contiguous
2591 locations. The Irix 6 ABI has examples of this. */
2592 if (GET_CODE (entry_parm) == PARALLEL)
2593 emit_group_store (validize_mem (stack_parm), entry_parm,
2594 data->passed_type,
2595 int_size_in_bytes (data->passed_type));
2596 else
2598 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2599 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2600 data->partial / UNITS_PER_WORD);
2603 entry_parm = stack_parm;
2606 /* If we didn't decide this parm came in a register, by default it came
2607 on the stack. */
2608 else if (entry_parm == NULL)
2609 entry_parm = stack_parm;
2611 /* When an argument is passed in multiple locations, we can't make use
2612 of this information, but we can save some copying if the whole argument
2613 is passed in a single register. */
2614 else if (GET_CODE (entry_parm) == PARALLEL
2615 && data->nominal_mode != BLKmode
2616 && data->passed_mode != BLKmode)
2618 size_t i, len = XVECLEN (entry_parm, 0);
2620 for (i = 0; i < len; i++)
2621 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2622 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2623 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2624 == data->passed_mode)
2625 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2627 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2628 break;
2632 data->entry_parm = entry_parm;
2635 /* A subroutine of assign_parms. Reconstitute any values which were
2636 passed in multiple registers and would fit in a single register. */
2638 static void
2639 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2641 rtx entry_parm = data->entry_parm;
2643 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2644 This can be done with register operations rather than on the
2645 stack, even if we will store the reconstituted parameter on the
2646 stack later. */
2647 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2649 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2650 emit_group_store (parmreg, entry_parm, data->passed_type,
2651 GET_MODE_SIZE (GET_MODE (entry_parm)));
2652 entry_parm = parmreg;
2655 data->entry_parm = entry_parm;
2658 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2659 always valid and properly aligned. */
2661 static void
2662 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2664 rtx stack_parm = data->stack_parm;
2666 /* If we can't trust the parm stack slot to be aligned enough for its
2667 ultimate type, don't use that slot after entry. We'll make another
2668 stack slot, if we need one. */
2669 if (stack_parm
2670 && ((STRICT_ALIGNMENT
2671 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2672 || (data->nominal_type
2673 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2674 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2675 stack_parm = NULL;
2677 /* If parm was passed in memory, and we need to convert it on entry,
2678 don't store it back in that same slot. */
2679 else if (data->entry_parm == stack_parm
2680 && data->nominal_mode != BLKmode
2681 && data->nominal_mode != data->passed_mode)
2682 stack_parm = NULL;
2684 /* If stack protection is in effect for this function, don't leave any
2685 pointers in their passed stack slots. */
2686 else if (crtl->stack_protect_guard
2687 && (flag_stack_protect == 2
2688 || data->passed_pointer
2689 || POINTER_TYPE_P (data->nominal_type)))
2690 stack_parm = NULL;
2692 data->stack_parm = stack_parm;
2695 /* A subroutine of assign_parms. Return true if the current parameter
2696 should be stored as a BLKmode in the current frame. */
2698 static bool
2699 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2701 if (data->nominal_mode == BLKmode)
2702 return true;
2703 if (GET_MODE (data->entry_parm) == BLKmode)
2704 return true;
2706 #ifdef BLOCK_REG_PADDING
2707 /* Only assign_parm_setup_block knows how to deal with register arguments
2708 that are padded at the least significant end. */
2709 if (REG_P (data->entry_parm)
2710 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2711 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2712 == (BYTES_BIG_ENDIAN ? upward : downward)))
2713 return true;
2714 #endif
2716 return false;
2719 /* A subroutine of assign_parms. Arrange for the parameter to be
2720 present and valid in DATA->STACK_RTL. */
2722 static void
2723 assign_parm_setup_block (struct assign_parm_data_all *all,
2724 tree parm, struct assign_parm_data_one *data)
2726 rtx entry_parm = data->entry_parm;
2727 rtx stack_parm = data->stack_parm;
2728 HOST_WIDE_INT size;
2729 HOST_WIDE_INT size_stored;
2731 if (GET_CODE (entry_parm) == PARALLEL)
2732 entry_parm = emit_group_move_into_temps (entry_parm);
2734 size = int_size_in_bytes (data->passed_type);
2735 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2736 if (stack_parm == 0)
2738 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2739 stack_parm = assign_stack_local (BLKmode, size_stored,
2740 DECL_ALIGN (parm));
2741 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2742 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2743 set_mem_attributes (stack_parm, parm, 1);
2746 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2747 calls that pass values in multiple non-contiguous locations. */
2748 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2750 rtx mem;
2752 /* Note that we will be storing an integral number of words.
2753 So we have to be careful to ensure that we allocate an
2754 integral number of words. We do this above when we call
2755 assign_stack_local if space was not allocated in the argument
2756 list. If it was, this will not work if PARM_BOUNDARY is not
2757 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2758 if it becomes a problem. Exception is when BLKmode arrives
2759 with arguments not conforming to word_mode. */
2761 if (data->stack_parm == 0)
2763 else if (GET_CODE (entry_parm) == PARALLEL)
2765 else
2766 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2768 mem = validize_mem (stack_parm);
2770 /* Handle values in multiple non-contiguous locations. */
2771 if (GET_CODE (entry_parm) == PARALLEL)
2773 push_to_sequence2 (all->first_conversion_insn,
2774 all->last_conversion_insn);
2775 emit_group_store (mem, entry_parm, data->passed_type, size);
2776 all->first_conversion_insn = get_insns ();
2777 all->last_conversion_insn = get_last_insn ();
2778 end_sequence ();
2781 else if (size == 0)
2784 /* If SIZE is that of a mode no bigger than a word, just use
2785 that mode's store operation. */
2786 else if (size <= UNITS_PER_WORD)
2788 enum machine_mode mode
2789 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2791 if (mode != BLKmode
2792 #ifdef BLOCK_REG_PADDING
2793 && (size == UNITS_PER_WORD
2794 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2795 != (BYTES_BIG_ENDIAN ? upward : downward)))
2796 #endif
2799 rtx reg;
2801 /* We are really truncating a word_mode value containing
2802 SIZE bytes into a value of mode MODE. If such an
2803 operation requires no actual instructions, we can refer
2804 to the value directly in mode MODE, otherwise we must
2805 start with the register in word_mode and explicitly
2806 convert it. */
2807 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2808 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2809 else
2811 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2812 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2814 emit_move_insn (change_address (mem, mode, 0), reg);
2817 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2818 machine must be aligned to the left before storing
2819 to memory. Note that the previous test doesn't
2820 handle all cases (e.g. SIZE == 3). */
2821 else if (size != UNITS_PER_WORD
2822 #ifdef BLOCK_REG_PADDING
2823 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2824 == downward)
2825 #else
2826 && BYTES_BIG_ENDIAN
2827 #endif
2830 rtx tem, x;
2831 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2832 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2834 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2835 build_int_cst (NULL_TREE, by),
2836 NULL_RTX, 1);
2837 tem = change_address (mem, word_mode, 0);
2838 emit_move_insn (tem, x);
2840 else
2841 move_block_from_reg (REGNO (entry_parm), mem,
2842 size_stored / UNITS_PER_WORD);
2844 else
2845 move_block_from_reg (REGNO (entry_parm), mem,
2846 size_stored / UNITS_PER_WORD);
2848 else if (data->stack_parm == 0)
2850 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2851 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2852 BLOCK_OP_NORMAL);
2853 all->first_conversion_insn = get_insns ();
2854 all->last_conversion_insn = get_last_insn ();
2855 end_sequence ();
2858 data->stack_parm = stack_parm;
2859 SET_DECL_RTL (parm, stack_parm);
2862 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2863 parameter. Get it there. Perform all ABI specified conversions. */
2865 static void
2866 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2867 struct assign_parm_data_one *data)
2869 rtx parmreg;
2870 enum machine_mode promoted_nominal_mode;
2871 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2872 bool did_conversion = false;
2874 /* Store the parm in a pseudoregister during the function, but we may
2875 need to do it in a wider mode. Using 2 here makes the result
2876 consistent with promote_decl_mode and thus expand_expr_real_1. */
2877 promoted_nominal_mode
2878 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2879 TREE_TYPE (current_function_decl), 2);
2881 parmreg = gen_reg_rtx (promoted_nominal_mode);
2883 if (!DECL_ARTIFICIAL (parm))
2884 mark_user_reg (parmreg);
2886 /* If this was an item that we received a pointer to,
2887 set DECL_RTL appropriately. */
2888 if (data->passed_pointer)
2890 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2891 set_mem_attributes (x, parm, 1);
2892 SET_DECL_RTL (parm, x);
2894 else
2895 SET_DECL_RTL (parm, parmreg);
2897 assign_parm_remove_parallels (data);
2899 /* Copy the value into the register, thus bridging between
2900 assign_parm_find_data_types and expand_expr_real_1. */
2901 if (data->nominal_mode != data->passed_mode
2902 || promoted_nominal_mode != data->promoted_mode)
2904 int save_tree_used;
2906 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2907 mode, by the caller. We now have to convert it to
2908 NOMINAL_MODE, if different. However, PARMREG may be in
2909 a different mode than NOMINAL_MODE if it is being stored
2910 promoted.
2912 If ENTRY_PARM is a hard register, it might be in a register
2913 not valid for operating in its mode (e.g., an odd-numbered
2914 register for a DFmode). In that case, moves are the only
2915 thing valid, so we can't do a convert from there. This
2916 occurs when the calling sequence allow such misaligned
2917 usages.
2919 In addition, the conversion may involve a call, which could
2920 clobber parameters which haven't been copied to pseudo
2921 registers yet. Therefore, we must first copy the parm to
2922 a pseudo reg here, and save the conversion until after all
2923 parameters have been moved. */
2925 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2927 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2929 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2930 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2932 if (GET_CODE (tempreg) == SUBREG
2933 && GET_MODE (tempreg) == data->nominal_mode
2934 && REG_P (SUBREG_REG (tempreg))
2935 && data->nominal_mode == data->passed_mode
2936 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2937 && GET_MODE_SIZE (GET_MODE (tempreg))
2938 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2940 /* The argument is already sign/zero extended, so note it
2941 into the subreg. */
2942 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2943 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2946 /* TREE_USED gets set erroneously during expand_assignment. */
2947 save_tree_used = TREE_USED (parm);
2948 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2949 TREE_USED (parm) = save_tree_used;
2950 all->first_conversion_insn = get_insns ();
2951 all->last_conversion_insn = get_last_insn ();
2952 end_sequence ();
2954 did_conversion = true;
2956 else
2957 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2959 /* If we were passed a pointer but the actual value can safely live
2960 in a register, put it in one. */
2961 if (data->passed_pointer
2962 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2963 /* If by-reference argument was promoted, demote it. */
2964 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2965 || use_register_for_decl (parm)))
2967 /* We can't use nominal_mode, because it will have been set to
2968 Pmode above. We must use the actual mode of the parm. */
2969 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2970 mark_user_reg (parmreg);
2972 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2974 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2975 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2977 push_to_sequence2 (all->first_conversion_insn,
2978 all->last_conversion_insn);
2979 emit_move_insn (tempreg, DECL_RTL (parm));
2980 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2981 emit_move_insn (parmreg, tempreg);
2982 all->first_conversion_insn = get_insns ();
2983 all->last_conversion_insn = get_last_insn ();
2984 end_sequence ();
2986 did_conversion = true;
2988 else
2989 emit_move_insn (parmreg, DECL_RTL (parm));
2991 SET_DECL_RTL (parm, parmreg);
2993 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2994 now the parm. */
2995 data->stack_parm = NULL;
2998 /* Mark the register as eliminable if we did no conversion and it was
2999 copied from memory at a fixed offset, and the arg pointer was not
3000 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3001 offset formed an invalid address, such memory-equivalences as we
3002 make here would screw up life analysis for it. */
3003 if (data->nominal_mode == data->passed_mode
3004 && !did_conversion
3005 && data->stack_parm != 0
3006 && MEM_P (data->stack_parm)
3007 && data->locate.offset.var == 0
3008 && reg_mentioned_p (virtual_incoming_args_rtx,
3009 XEXP (data->stack_parm, 0)))
3011 rtx linsn = get_last_insn ();
3012 rtx sinsn, set;
3014 /* Mark complex types separately. */
3015 if (GET_CODE (parmreg) == CONCAT)
3017 enum machine_mode submode
3018 = GET_MODE_INNER (GET_MODE (parmreg));
3019 int regnor = REGNO (XEXP (parmreg, 0));
3020 int regnoi = REGNO (XEXP (parmreg, 1));
3021 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3022 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3023 GET_MODE_SIZE (submode));
3025 /* Scan backwards for the set of the real and
3026 imaginary parts. */
3027 for (sinsn = linsn; sinsn != 0;
3028 sinsn = prev_nonnote_insn (sinsn))
3030 set = single_set (sinsn);
3031 if (set == 0)
3032 continue;
3034 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3035 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3036 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3037 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3040 else if ((set = single_set (linsn)) != 0
3041 && SET_DEST (set) == parmreg)
3042 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
3045 /* For pointer data type, suggest pointer register. */
3046 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3047 mark_reg_pointer (parmreg,
3048 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3051 /* A subroutine of assign_parms. Allocate stack space to hold the current
3052 parameter. Get it there. Perform all ABI specified conversions. */
3054 static void
3055 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3056 struct assign_parm_data_one *data)
3058 /* Value must be stored in the stack slot STACK_PARM during function
3059 execution. */
3060 bool to_conversion = false;
3062 assign_parm_remove_parallels (data);
3064 if (data->promoted_mode != data->nominal_mode)
3066 /* Conversion is required. */
3067 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3069 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3071 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3072 to_conversion = true;
3074 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3075 TYPE_UNSIGNED (TREE_TYPE (parm)));
3077 if (data->stack_parm)
3079 int offset = subreg_lowpart_offset (data->nominal_mode,
3080 GET_MODE (data->stack_parm));
3081 /* ??? This may need a big-endian conversion on sparc64. */
3082 data->stack_parm
3083 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3084 if (offset && MEM_OFFSET (data->stack_parm))
3085 set_mem_offset (data->stack_parm,
3086 plus_constant (MEM_OFFSET (data->stack_parm),
3087 offset));
3091 if (data->entry_parm != data->stack_parm)
3093 rtx src, dest;
3095 if (data->stack_parm == 0)
3097 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3098 GET_MODE (data->entry_parm),
3099 TYPE_ALIGN (data->passed_type));
3100 data->stack_parm
3101 = assign_stack_local (GET_MODE (data->entry_parm),
3102 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3103 align);
3104 set_mem_attributes (data->stack_parm, parm, 1);
3107 dest = validize_mem (data->stack_parm);
3108 src = validize_mem (data->entry_parm);
3110 if (MEM_P (src))
3112 /* Use a block move to handle potentially misaligned entry_parm. */
3113 if (!to_conversion)
3114 push_to_sequence2 (all->first_conversion_insn,
3115 all->last_conversion_insn);
3116 to_conversion = true;
3118 emit_block_move (dest, src,
3119 GEN_INT (int_size_in_bytes (data->passed_type)),
3120 BLOCK_OP_NORMAL);
3122 else
3123 emit_move_insn (dest, src);
3126 if (to_conversion)
3128 all->first_conversion_insn = get_insns ();
3129 all->last_conversion_insn = get_last_insn ();
3130 end_sequence ();
3133 SET_DECL_RTL (parm, data->stack_parm);
3136 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3137 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3139 static void
3140 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3141 VEC(tree, heap) *fnargs)
3143 tree parm;
3144 tree orig_fnargs = all->orig_fnargs;
3145 unsigned i = 0;
3147 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3149 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3150 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3152 rtx tmp, real, imag;
3153 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3155 real = DECL_RTL (VEC_index (tree, fnargs, i));
3156 imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3157 if (inner != GET_MODE (real))
3159 real = gen_lowpart_SUBREG (inner, real);
3160 imag = gen_lowpart_SUBREG (inner, imag);
3163 if (TREE_ADDRESSABLE (parm))
3165 rtx rmem, imem;
3166 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3167 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3168 DECL_MODE (parm),
3169 TYPE_ALIGN (TREE_TYPE (parm)));
3171 /* split_complex_arg put the real and imag parts in
3172 pseudos. Move them to memory. */
3173 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3174 set_mem_attributes (tmp, parm, 1);
3175 rmem = adjust_address_nv (tmp, inner, 0);
3176 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3177 push_to_sequence2 (all->first_conversion_insn,
3178 all->last_conversion_insn);
3179 emit_move_insn (rmem, real);
3180 emit_move_insn (imem, imag);
3181 all->first_conversion_insn = get_insns ();
3182 all->last_conversion_insn = get_last_insn ();
3183 end_sequence ();
3185 else
3186 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3187 SET_DECL_RTL (parm, tmp);
3189 real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3190 imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3191 if (inner != GET_MODE (real))
3193 real = gen_lowpart_SUBREG (inner, real);
3194 imag = gen_lowpart_SUBREG (inner, imag);
3196 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3197 set_decl_incoming_rtl (parm, tmp, false);
3198 i++;
3203 /* Assign RTL expressions to the function's parameters. This may involve
3204 copying them into registers and using those registers as the DECL_RTL. */
3206 static void
3207 assign_parms (tree fndecl)
3209 struct assign_parm_data_all all;
3210 tree parm;
3211 VEC(tree, heap) *fnargs;
3212 unsigned i;
3214 crtl->args.internal_arg_pointer
3215 = targetm.calls.internal_arg_pointer ();
3217 assign_parms_initialize_all (&all);
3218 fnargs = assign_parms_augmented_arg_list (&all);
3220 for (i = 0; VEC_iterate (tree, fnargs, i, parm); ++i)
3222 struct assign_parm_data_one data;
3224 /* Extract the type of PARM; adjust it according to ABI. */
3225 assign_parm_find_data_types (&all, parm, &data);
3227 /* Early out for errors and void parameters. */
3228 if (data.passed_mode == VOIDmode)
3230 SET_DECL_RTL (parm, const0_rtx);
3231 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3232 continue;
3235 /* Estimate stack alignment from parameter alignment. */
3236 if (SUPPORTS_STACK_ALIGNMENT)
3238 unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3239 data.passed_type);
3240 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3241 align);
3242 if (TYPE_ALIGN (data.nominal_type) > align)
3243 align = MINIMUM_ALIGNMENT (data.nominal_type,
3244 TYPE_MODE (data.nominal_type),
3245 TYPE_ALIGN (data.nominal_type));
3246 if (crtl->stack_alignment_estimated < align)
3248 gcc_assert (!crtl->stack_realign_processed);
3249 crtl->stack_alignment_estimated = align;
3253 if (cfun->stdarg && !TREE_CHAIN (parm))
3254 assign_parms_setup_varargs (&all, &data, false);
3256 /* Find out where the parameter arrives in this function. */
3257 assign_parm_find_entry_rtl (&all, &data);
3259 /* Find out where stack space for this parameter might be. */
3260 if (assign_parm_is_stack_parm (&all, &data))
3262 assign_parm_find_stack_rtl (parm, &data);
3263 assign_parm_adjust_entry_rtl (&data);
3266 /* Record permanently how this parm was passed. */
3267 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3269 /* Update info on where next arg arrives in registers. */
3270 targetm.calls.function_arg_advance (&all.args_so_far, data.promoted_mode,
3271 data.passed_type, data.named_arg);
3273 assign_parm_adjust_stack_rtl (&data);
3275 if (assign_parm_setup_block_p (&data))
3276 assign_parm_setup_block (&all, parm, &data);
3277 else if (data.passed_pointer || use_register_for_decl (parm))
3278 assign_parm_setup_reg (&all, parm, &data);
3279 else
3280 assign_parm_setup_stack (&all, parm, &data);
3283 if (targetm.calls.split_complex_arg)
3284 assign_parms_unsplit_complex (&all, fnargs);
3286 VEC_free (tree, heap, fnargs);
3288 /* Output all parameter conversion instructions (possibly including calls)
3289 now that all parameters have been copied out of hard registers. */
3290 emit_insn (all.first_conversion_insn);
3292 /* Estimate reload stack alignment from scalar return mode. */
3293 if (SUPPORTS_STACK_ALIGNMENT)
3295 if (DECL_RESULT (fndecl))
3297 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3298 enum machine_mode mode = TYPE_MODE (type);
3300 if (mode != BLKmode
3301 && mode != VOIDmode
3302 && !AGGREGATE_TYPE_P (type))
3304 unsigned int align = GET_MODE_ALIGNMENT (mode);
3305 if (crtl->stack_alignment_estimated < align)
3307 gcc_assert (!crtl->stack_realign_processed);
3308 crtl->stack_alignment_estimated = align;
3314 /* If we are receiving a struct value address as the first argument, set up
3315 the RTL for the function result. As this might require code to convert
3316 the transmitted address to Pmode, we do this here to ensure that possible
3317 preliminary conversions of the address have been emitted already. */
3318 if (all.function_result_decl)
3320 tree result = DECL_RESULT (current_function_decl);
3321 rtx addr = DECL_RTL (all.function_result_decl);
3322 rtx x;
3324 if (DECL_BY_REFERENCE (result))
3325 x = addr;
3326 else
3328 addr = convert_memory_address (Pmode, addr);
3329 x = gen_rtx_MEM (DECL_MODE (result), addr);
3330 set_mem_attributes (x, result, 1);
3332 SET_DECL_RTL (result, x);
3335 /* We have aligned all the args, so add space for the pretend args. */
3336 crtl->args.pretend_args_size = all.pretend_args_size;
3337 all.stack_args_size.constant += all.extra_pretend_bytes;
3338 crtl->args.size = all.stack_args_size.constant;
3340 /* Adjust function incoming argument size for alignment and
3341 minimum length. */
3343 #ifdef REG_PARM_STACK_SPACE
3344 crtl->args.size = MAX (crtl->args.size,
3345 REG_PARM_STACK_SPACE (fndecl));
3346 #endif
3348 crtl->args.size = CEIL_ROUND (crtl->args.size,
3349 PARM_BOUNDARY / BITS_PER_UNIT);
3351 #ifdef ARGS_GROW_DOWNWARD
3352 crtl->args.arg_offset_rtx
3353 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3354 : expand_expr (size_diffop (all.stack_args_size.var,
3355 size_int (-all.stack_args_size.constant)),
3356 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3357 #else
3358 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3359 #endif
3361 /* See how many bytes, if any, of its args a function should try to pop
3362 on return. */
3364 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3365 TREE_TYPE (fndecl),
3366 crtl->args.size);
3368 /* For stdarg.h function, save info about
3369 regs and stack space used by the named args. */
3371 crtl->args.info = all.args_so_far;
3373 /* Set the rtx used for the function return value. Put this in its
3374 own variable so any optimizers that need this information don't have
3375 to include tree.h. Do this here so it gets done when an inlined
3376 function gets output. */
3378 crtl->return_rtx
3379 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3380 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3382 /* If scalar return value was computed in a pseudo-reg, or was a named
3383 return value that got dumped to the stack, copy that to the hard
3384 return register. */
3385 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3387 tree decl_result = DECL_RESULT (fndecl);
3388 rtx decl_rtl = DECL_RTL (decl_result);
3390 if (REG_P (decl_rtl)
3391 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3392 : DECL_REGISTER (decl_result))
3394 rtx real_decl_rtl;
3396 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3397 fndecl, true);
3398 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3399 /* The delay slot scheduler assumes that crtl->return_rtx
3400 holds the hard register containing the return value, not a
3401 temporary pseudo. */
3402 crtl->return_rtx = real_decl_rtl;
3407 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3408 For all seen types, gimplify their sizes. */
3410 static tree
3411 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3413 tree t = *tp;
3415 *walk_subtrees = 0;
3416 if (TYPE_P (t))
3418 if (POINTER_TYPE_P (t))
3419 *walk_subtrees = 1;
3420 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3421 && !TYPE_SIZES_GIMPLIFIED (t))
3423 gimplify_type_sizes (t, (gimple_seq *) data);
3424 *walk_subtrees = 1;
3428 return NULL;
3431 /* Gimplify the parameter list for current_function_decl. This involves
3432 evaluating SAVE_EXPRs of variable sized parameters and generating code
3433 to implement callee-copies reference parameters. Returns a sequence of
3434 statements to add to the beginning of the function. */
3436 gimple_seq
3437 gimplify_parameters (void)
3439 struct assign_parm_data_all all;
3440 tree parm;
3441 gimple_seq stmts = NULL;
3442 VEC(tree, heap) *fnargs;
3443 unsigned i;
3445 assign_parms_initialize_all (&all);
3446 fnargs = assign_parms_augmented_arg_list (&all);
3448 for (i = 0; VEC_iterate (tree, fnargs, i, parm); ++i)
3450 struct assign_parm_data_one data;
3452 /* Extract the type of PARM; adjust it according to ABI. */
3453 assign_parm_find_data_types (&all, parm, &data);
3455 /* Early out for errors and void parameters. */
3456 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3457 continue;
3459 /* Update info on where next arg arrives in registers. */
3460 targetm.calls.function_arg_advance (&all.args_so_far, data.promoted_mode,
3461 data.passed_type, data.named_arg);
3463 /* ??? Once upon a time variable_size stuffed parameter list
3464 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3465 turned out to be less than manageable in the gimple world.
3466 Now we have to hunt them down ourselves. */
3467 walk_tree_without_duplicates (&data.passed_type,
3468 gimplify_parm_type, &stmts);
3470 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3472 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3473 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3476 if (data.passed_pointer)
3478 tree type = TREE_TYPE (data.passed_type);
3479 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3480 type, data.named_arg))
3482 tree local, t;
3484 /* For constant-sized objects, this is trivial; for
3485 variable-sized objects, we have to play games. */
3486 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3487 && !(flag_stack_check == GENERIC_STACK_CHECK
3488 && compare_tree_int (DECL_SIZE_UNIT (parm),
3489 STACK_CHECK_MAX_VAR_SIZE) > 0))
3491 local = create_tmp_var (type, get_name (parm));
3492 DECL_IGNORED_P (local) = 0;
3493 /* If PARM was addressable, move that flag over
3494 to the local copy, as its address will be taken,
3495 not the PARMs. */
3496 if (TREE_ADDRESSABLE (parm))
3498 TREE_ADDRESSABLE (parm) = 0;
3499 TREE_ADDRESSABLE (local) = 1;
3502 else
3504 tree ptr_type, addr;
3506 ptr_type = build_pointer_type (type);
3507 addr = create_tmp_var (ptr_type, get_name (parm));
3508 DECL_IGNORED_P (addr) = 0;
3509 local = build_fold_indirect_ref (addr);
3511 t = built_in_decls[BUILT_IN_ALLOCA];
3512 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3513 t = fold_convert (ptr_type, t);
3514 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3515 gimplify_and_add (t, &stmts);
3518 gimplify_assign (local, parm, &stmts);
3520 SET_DECL_VALUE_EXPR (parm, local);
3521 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3526 VEC_free (tree, heap, fnargs);
3528 return stmts;
3531 /* Compute the size and offset from the start of the stacked arguments for a
3532 parm passed in mode PASSED_MODE and with type TYPE.
3534 INITIAL_OFFSET_PTR points to the current offset into the stacked
3535 arguments.
3537 The starting offset and size for this parm are returned in
3538 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3539 nonzero, the offset is that of stack slot, which is returned in
3540 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3541 padding required from the initial offset ptr to the stack slot.
3543 IN_REGS is nonzero if the argument will be passed in registers. It will
3544 never be set if REG_PARM_STACK_SPACE is not defined.
3546 FNDECL is the function in which the argument was defined.
3548 There are two types of rounding that are done. The first, controlled by
3549 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3550 list to be aligned to the specific boundary (in bits). This rounding
3551 affects the initial and starting offsets, but not the argument size.
3553 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3554 optionally rounds the size of the parm to PARM_BOUNDARY. The
3555 initial offset is not affected by this rounding, while the size always
3556 is and the starting offset may be. */
3558 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3559 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3560 callers pass in the total size of args so far as
3561 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3563 void
3564 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3565 int partial, tree fndecl ATTRIBUTE_UNUSED,
3566 struct args_size *initial_offset_ptr,
3567 struct locate_and_pad_arg_data *locate)
3569 tree sizetree;
3570 enum direction where_pad;
3571 unsigned int boundary;
3572 int reg_parm_stack_space = 0;
3573 int part_size_in_regs;
3575 #ifdef REG_PARM_STACK_SPACE
3576 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3578 /* If we have found a stack parm before we reach the end of the
3579 area reserved for registers, skip that area. */
3580 if (! in_regs)
3582 if (reg_parm_stack_space > 0)
3584 if (initial_offset_ptr->var)
3586 initial_offset_ptr->var
3587 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3588 ssize_int (reg_parm_stack_space));
3589 initial_offset_ptr->constant = 0;
3591 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3592 initial_offset_ptr->constant = reg_parm_stack_space;
3595 #endif /* REG_PARM_STACK_SPACE */
3597 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3599 sizetree
3600 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3601 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3602 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3603 locate->where_pad = where_pad;
3605 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3606 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3607 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3609 locate->boundary = boundary;
3611 if (SUPPORTS_STACK_ALIGNMENT)
3613 /* stack_alignment_estimated can't change after stack has been
3614 realigned. */
3615 if (crtl->stack_alignment_estimated < boundary)
3617 if (!crtl->stack_realign_processed)
3618 crtl->stack_alignment_estimated = boundary;
3619 else
3621 /* If stack is realigned and stack alignment value
3622 hasn't been finalized, it is OK not to increase
3623 stack_alignment_estimated. The bigger alignment
3624 requirement is recorded in stack_alignment_needed
3625 below. */
3626 gcc_assert (!crtl->stack_realign_finalized
3627 && crtl->stack_realign_needed);
3632 /* Remember if the outgoing parameter requires extra alignment on the
3633 calling function side. */
3634 if (crtl->stack_alignment_needed < boundary)
3635 crtl->stack_alignment_needed = boundary;
3636 if (crtl->preferred_stack_boundary < boundary)
3637 crtl->preferred_stack_boundary = boundary;
3639 #ifdef ARGS_GROW_DOWNWARD
3640 locate->slot_offset.constant = -initial_offset_ptr->constant;
3641 if (initial_offset_ptr->var)
3642 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3643 initial_offset_ptr->var);
3646 tree s2 = sizetree;
3647 if (where_pad != none
3648 && (!host_integerp (sizetree, 1)
3649 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3650 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3651 SUB_PARM_SIZE (locate->slot_offset, s2);
3654 locate->slot_offset.constant += part_size_in_regs;
3656 if (!in_regs
3657 #ifdef REG_PARM_STACK_SPACE
3658 || REG_PARM_STACK_SPACE (fndecl) > 0
3659 #endif
3661 pad_to_arg_alignment (&locate->slot_offset, boundary,
3662 &locate->alignment_pad);
3664 locate->size.constant = (-initial_offset_ptr->constant
3665 - locate->slot_offset.constant);
3666 if (initial_offset_ptr->var)
3667 locate->size.var = size_binop (MINUS_EXPR,
3668 size_binop (MINUS_EXPR,
3669 ssize_int (0),
3670 initial_offset_ptr->var),
3671 locate->slot_offset.var);
3673 /* Pad_below needs the pre-rounded size to know how much to pad
3674 below. */
3675 locate->offset = locate->slot_offset;
3676 if (where_pad == downward)
3677 pad_below (&locate->offset, passed_mode, sizetree);
3679 #else /* !ARGS_GROW_DOWNWARD */
3680 if (!in_regs
3681 #ifdef REG_PARM_STACK_SPACE
3682 || REG_PARM_STACK_SPACE (fndecl) > 0
3683 #endif
3685 pad_to_arg_alignment (initial_offset_ptr, boundary,
3686 &locate->alignment_pad);
3687 locate->slot_offset = *initial_offset_ptr;
3689 #ifdef PUSH_ROUNDING
3690 if (passed_mode != BLKmode)
3691 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3692 #endif
3694 /* Pad_below needs the pre-rounded size to know how much to pad below
3695 so this must be done before rounding up. */
3696 locate->offset = locate->slot_offset;
3697 if (where_pad == downward)
3698 pad_below (&locate->offset, passed_mode, sizetree);
3700 if (where_pad != none
3701 && (!host_integerp (sizetree, 1)
3702 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3703 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3705 ADD_PARM_SIZE (locate->size, sizetree);
3707 locate->size.constant -= part_size_in_regs;
3708 #endif /* ARGS_GROW_DOWNWARD */
3710 #ifdef FUNCTION_ARG_OFFSET
3711 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3712 #endif
3715 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3716 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3718 static void
3719 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3720 struct args_size *alignment_pad)
3722 tree save_var = NULL_TREE;
3723 HOST_WIDE_INT save_constant = 0;
3724 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3725 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3727 #ifdef SPARC_STACK_BOUNDARY_HACK
3728 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3729 the real alignment of %sp. However, when it does this, the
3730 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3731 if (SPARC_STACK_BOUNDARY_HACK)
3732 sp_offset = 0;
3733 #endif
3735 if (boundary > PARM_BOUNDARY)
3737 save_var = offset_ptr->var;
3738 save_constant = offset_ptr->constant;
3741 alignment_pad->var = NULL_TREE;
3742 alignment_pad->constant = 0;
3744 if (boundary > BITS_PER_UNIT)
3746 if (offset_ptr->var)
3748 tree sp_offset_tree = ssize_int (sp_offset);
3749 tree offset = size_binop (PLUS_EXPR,
3750 ARGS_SIZE_TREE (*offset_ptr),
3751 sp_offset_tree);
3752 #ifdef ARGS_GROW_DOWNWARD
3753 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3754 #else
3755 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3756 #endif
3758 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3759 /* ARGS_SIZE_TREE includes constant term. */
3760 offset_ptr->constant = 0;
3761 if (boundary > PARM_BOUNDARY)
3762 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3763 save_var);
3765 else
3767 offset_ptr->constant = -sp_offset +
3768 #ifdef ARGS_GROW_DOWNWARD
3769 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3770 #else
3771 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3772 #endif
3773 if (boundary > PARM_BOUNDARY)
3774 alignment_pad->constant = offset_ptr->constant - save_constant;
3779 static void
3780 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3782 if (passed_mode != BLKmode)
3784 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3785 offset_ptr->constant
3786 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3787 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3788 - GET_MODE_SIZE (passed_mode));
3790 else
3792 if (TREE_CODE (sizetree) != INTEGER_CST
3793 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3795 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3796 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3797 /* Add it in. */
3798 ADD_PARM_SIZE (*offset_ptr, s2);
3799 SUB_PARM_SIZE (*offset_ptr, sizetree);
3805 /* True if register REGNO was alive at a place where `setjmp' was
3806 called and was set more than once or is an argument. Such regs may
3807 be clobbered by `longjmp'. */
3809 static bool
3810 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3812 /* There appear to be cases where some local vars never reach the
3813 backend but have bogus regnos. */
3814 if (regno >= max_reg_num ())
3815 return false;
3817 return ((REG_N_SETS (regno) > 1
3818 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3819 && REGNO_REG_SET_P (setjmp_crosses, regno));
3822 /* Walk the tree of blocks describing the binding levels within a
3823 function and warn about variables the might be killed by setjmp or
3824 vfork. This is done after calling flow_analysis before register
3825 allocation since that will clobber the pseudo-regs to hard
3826 regs. */
3828 static void
3829 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3831 tree decl, sub;
3833 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3835 if (TREE_CODE (decl) == VAR_DECL
3836 && DECL_RTL_SET_P (decl)
3837 && REG_P (DECL_RTL (decl))
3838 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3839 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3840 " %<longjmp%> or %<vfork%>", decl);
3843 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3844 setjmp_vars_warning (setjmp_crosses, sub);
3847 /* Do the appropriate part of setjmp_vars_warning
3848 but for arguments instead of local variables. */
3850 static void
3851 setjmp_args_warning (bitmap setjmp_crosses)
3853 tree decl;
3854 for (decl = DECL_ARGUMENTS (current_function_decl);
3855 decl; decl = TREE_CHAIN (decl))
3856 if (DECL_RTL (decl) != 0
3857 && REG_P (DECL_RTL (decl))
3858 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3859 warning (OPT_Wclobbered,
3860 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3861 decl);
3864 /* Generate warning messages for variables live across setjmp. */
3866 void
3867 generate_setjmp_warnings (void)
3869 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3871 if (n_basic_blocks == NUM_FIXED_BLOCKS
3872 || bitmap_empty_p (setjmp_crosses))
3873 return;
3875 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3876 setjmp_args_warning (setjmp_crosses);
3880 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3881 and create duplicate blocks. */
3882 /* ??? Need an option to either create block fragments or to create
3883 abstract origin duplicates of a source block. It really depends
3884 on what optimization has been performed. */
3886 void
3887 reorder_blocks (void)
3889 tree block = DECL_INITIAL (current_function_decl);
3890 VEC(tree,heap) *block_stack;
3892 if (block == NULL_TREE)
3893 return;
3895 block_stack = VEC_alloc (tree, heap, 10);
3897 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3898 clear_block_marks (block);
3900 /* Prune the old trees away, so that they don't get in the way. */
3901 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3902 BLOCK_CHAIN (block) = NULL_TREE;
3904 /* Recreate the block tree from the note nesting. */
3905 reorder_blocks_1 (get_insns (), block, &block_stack);
3906 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3908 VEC_free (tree, heap, block_stack);
3911 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3913 void
3914 clear_block_marks (tree block)
3916 while (block)
3918 TREE_ASM_WRITTEN (block) = 0;
3919 clear_block_marks (BLOCK_SUBBLOCKS (block));
3920 block = BLOCK_CHAIN (block);
3924 static void
3925 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3927 rtx insn;
3929 for (insn = insns; insn; insn = NEXT_INSN (insn))
3931 if (NOTE_P (insn))
3933 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3935 tree block = NOTE_BLOCK (insn);
3936 tree origin;
3938 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3939 ? BLOCK_FRAGMENT_ORIGIN (block)
3940 : block);
3942 /* If we have seen this block before, that means it now
3943 spans multiple address regions. Create a new fragment. */
3944 if (TREE_ASM_WRITTEN (block))
3946 tree new_block = copy_node (block);
3948 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3949 BLOCK_FRAGMENT_CHAIN (new_block)
3950 = BLOCK_FRAGMENT_CHAIN (origin);
3951 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3953 NOTE_BLOCK (insn) = new_block;
3954 block = new_block;
3957 BLOCK_SUBBLOCKS (block) = 0;
3958 TREE_ASM_WRITTEN (block) = 1;
3959 /* When there's only one block for the entire function,
3960 current_block == block and we mustn't do this, it
3961 will cause infinite recursion. */
3962 if (block != current_block)
3964 if (block != origin)
3965 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3967 BLOCK_SUPERCONTEXT (block) = current_block;
3968 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3969 BLOCK_SUBBLOCKS (current_block) = block;
3970 current_block = origin;
3972 VEC_safe_push (tree, heap, *p_block_stack, block);
3974 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3976 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3977 BLOCK_SUBBLOCKS (current_block)
3978 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3979 current_block = BLOCK_SUPERCONTEXT (current_block);
3985 /* Reverse the order of elements in the chain T of blocks,
3986 and return the new head of the chain (old last element). */
3988 tree
3989 blocks_nreverse (tree t)
3991 tree prev = 0, decl, next;
3992 for (decl = t; decl; decl = next)
3994 next = BLOCK_CHAIN (decl);
3995 BLOCK_CHAIN (decl) = prev;
3996 prev = decl;
3998 return prev;
4001 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4002 non-NULL, list them all into VECTOR, in a depth-first preorder
4003 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4004 blocks. */
4006 static int
4007 all_blocks (tree block, tree *vector)
4009 int n_blocks = 0;
4011 while (block)
4013 TREE_ASM_WRITTEN (block) = 0;
4015 /* Record this block. */
4016 if (vector)
4017 vector[n_blocks] = block;
4019 ++n_blocks;
4021 /* Record the subblocks, and their subblocks... */
4022 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4023 vector ? vector + n_blocks : 0);
4024 block = BLOCK_CHAIN (block);
4027 return n_blocks;
4030 /* Return a vector containing all the blocks rooted at BLOCK. The
4031 number of elements in the vector is stored in N_BLOCKS_P. The
4032 vector is dynamically allocated; it is the caller's responsibility
4033 to call `free' on the pointer returned. */
4035 static tree *
4036 get_block_vector (tree block, int *n_blocks_p)
4038 tree *block_vector;
4040 *n_blocks_p = all_blocks (block, NULL);
4041 block_vector = XNEWVEC (tree, *n_blocks_p);
4042 all_blocks (block, block_vector);
4044 return block_vector;
4047 static GTY(()) int next_block_index = 2;
4049 /* Set BLOCK_NUMBER for all the blocks in FN. */
4051 void
4052 number_blocks (tree fn)
4054 int i;
4055 int n_blocks;
4056 tree *block_vector;
4058 /* For SDB and XCOFF debugging output, we start numbering the blocks
4059 from 1 within each function, rather than keeping a running
4060 count. */
4061 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4062 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4063 next_block_index = 1;
4064 #endif
4066 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4068 /* The top-level BLOCK isn't numbered at all. */
4069 for (i = 1; i < n_blocks; ++i)
4070 /* We number the blocks from two. */
4071 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4073 free (block_vector);
4075 return;
4078 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4080 DEBUG_FUNCTION tree
4081 debug_find_var_in_block_tree (tree var, tree block)
4083 tree t;
4085 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4086 if (t == var)
4087 return block;
4089 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4091 tree ret = debug_find_var_in_block_tree (var, t);
4092 if (ret)
4093 return ret;
4096 return NULL_TREE;
4099 /* Keep track of whether we're in a dummy function context. If we are,
4100 we don't want to invoke the set_current_function hook, because we'll
4101 get into trouble if the hook calls target_reinit () recursively or
4102 when the initial initialization is not yet complete. */
4104 static bool in_dummy_function;
4106 /* Invoke the target hook when setting cfun. Update the optimization options
4107 if the function uses different options than the default. */
4109 static void
4110 invoke_set_current_function_hook (tree fndecl)
4112 if (!in_dummy_function)
4114 tree opts = ((fndecl)
4115 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4116 : optimization_default_node);
4118 if (!opts)
4119 opts = optimization_default_node;
4121 /* Change optimization options if needed. */
4122 if (optimization_current_node != opts)
4124 optimization_current_node = opts;
4125 cl_optimization_restore (TREE_OPTIMIZATION (opts));
4128 targetm.set_current_function (fndecl);
4132 /* cfun should never be set directly; use this function. */
4134 void
4135 set_cfun (struct function *new_cfun)
4137 if (cfun != new_cfun)
4139 cfun = new_cfun;
4140 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4144 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4146 static VEC(function_p,heap) *cfun_stack;
4148 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
4150 void
4151 push_cfun (struct function *new_cfun)
4153 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4154 set_cfun (new_cfun);
4157 /* Pop cfun from the stack. */
4159 void
4160 pop_cfun (void)
4162 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4163 set_cfun (new_cfun);
4166 /* Return value of funcdef and increase it. */
4168 get_next_funcdef_no (void)
4170 return funcdef_no++;
4173 /* Allocate a function structure for FNDECL and set its contents
4174 to the defaults. Set cfun to the newly-allocated object.
4175 Some of the helper functions invoked during initialization assume
4176 that cfun has already been set. Therefore, assign the new object
4177 directly into cfun and invoke the back end hook explicitly at the
4178 very end, rather than initializing a temporary and calling set_cfun
4179 on it.
4181 ABSTRACT_P is true if this is a function that will never be seen by
4182 the middle-end. Such functions are front-end concepts (like C++
4183 function templates) that do not correspond directly to functions
4184 placed in object files. */
4186 void
4187 allocate_struct_function (tree fndecl, bool abstract_p)
4189 tree result;
4190 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4192 cfun = ggc_alloc_cleared_function ();
4194 init_eh_for_function ();
4196 if (init_machine_status)
4197 cfun->machine = (*init_machine_status) ();
4199 #ifdef OVERRIDE_ABI_FORMAT
4200 OVERRIDE_ABI_FORMAT (fndecl);
4201 #endif
4203 invoke_set_current_function_hook (fndecl);
4205 if (fndecl != NULL_TREE)
4207 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4208 cfun->decl = fndecl;
4209 current_function_funcdef_no = get_next_funcdef_no ();
4211 result = DECL_RESULT (fndecl);
4212 if (!abstract_p && aggregate_value_p (result, fndecl))
4214 #ifdef PCC_STATIC_STRUCT_RETURN
4215 cfun->returns_pcc_struct = 1;
4216 #endif
4217 cfun->returns_struct = 1;
4220 cfun->stdarg
4221 = (fntype
4222 && TYPE_ARG_TYPES (fntype) != 0
4223 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4224 != void_type_node));
4226 /* Assume all registers in stdarg functions need to be saved. */
4227 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4228 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4230 /* ??? This could be set on a per-function basis by the front-end
4231 but is this worth the hassle? */
4232 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4236 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4237 instead of just setting it. */
4239 void
4240 push_struct_function (tree fndecl)
4242 VEC_safe_push (function_p, heap, cfun_stack, cfun);
4243 allocate_struct_function (fndecl, false);
4246 /* Reset crtl and other non-struct-function variables to defaults as
4247 appropriate for emitting rtl at the start of a function. */
4249 static void
4250 prepare_function_start (void)
4252 gcc_assert (!crtl->emit.x_last_insn);
4253 init_temp_slots ();
4254 init_emit ();
4255 init_varasm_status ();
4256 init_expr ();
4257 default_rtl_profile ();
4259 cse_not_expected = ! optimize;
4261 /* Caller save not needed yet. */
4262 caller_save_needed = 0;
4264 /* We haven't done register allocation yet. */
4265 reg_renumber = 0;
4267 /* Indicate that we have not instantiated virtual registers yet. */
4268 virtuals_instantiated = 0;
4270 /* Indicate that we want CONCATs now. */
4271 generating_concat_p = 1;
4273 /* Indicate we have no need of a frame pointer yet. */
4274 frame_pointer_needed = 0;
4277 /* Initialize the rtl expansion mechanism so that we can do simple things
4278 like generate sequences. This is used to provide a context during global
4279 initialization of some passes. You must call expand_dummy_function_end
4280 to exit this context. */
4282 void
4283 init_dummy_function_start (void)
4285 gcc_assert (!in_dummy_function);
4286 in_dummy_function = true;
4287 push_struct_function (NULL_TREE);
4288 prepare_function_start ();
4291 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4292 and initialize static variables for generating RTL for the statements
4293 of the function. */
4295 void
4296 init_function_start (tree subr)
4298 if (subr && DECL_STRUCT_FUNCTION (subr))
4299 set_cfun (DECL_STRUCT_FUNCTION (subr));
4300 else
4301 allocate_struct_function (subr, false);
4302 prepare_function_start ();
4304 /* Warn if this value is an aggregate type,
4305 regardless of which calling convention we are using for it. */
4306 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4307 warning (OPT_Waggregate_return, "function returns an aggregate");
4310 /* Make sure all values used by the optimization passes have sane defaults. */
4311 unsigned int
4312 init_function_for_compilation (void)
4314 reg_renumber = 0;
4315 return 0;
4318 struct rtl_opt_pass pass_init_function =
4321 RTL_PASS,
4322 "*init_function", /* name */
4323 NULL, /* gate */
4324 init_function_for_compilation, /* execute */
4325 NULL, /* sub */
4326 NULL, /* next */
4327 0, /* static_pass_number */
4328 TV_NONE, /* tv_id */
4329 0, /* properties_required */
4330 0, /* properties_provided */
4331 0, /* properties_destroyed */
4332 0, /* todo_flags_start */
4333 0 /* todo_flags_finish */
4338 void
4339 expand_main_function (void)
4341 #if (defined(INVOKE__main) \
4342 || (!defined(HAS_INIT_SECTION) \
4343 && !defined(INIT_SECTION_ASM_OP) \
4344 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4345 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4346 #endif
4349 /* Expand code to initialize the stack_protect_guard. This is invoked at
4350 the beginning of a function to be protected. */
4352 #ifndef HAVE_stack_protect_set
4353 # define HAVE_stack_protect_set 0
4354 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4355 #endif
4357 void
4358 stack_protect_prologue (void)
4360 tree guard_decl = targetm.stack_protect_guard ();
4361 rtx x, y;
4363 x = expand_normal (crtl->stack_protect_guard);
4364 y = expand_normal (guard_decl);
4366 /* Allow the target to copy from Y to X without leaking Y into a
4367 register. */
4368 if (HAVE_stack_protect_set)
4370 rtx insn = gen_stack_protect_set (x, y);
4371 if (insn)
4373 emit_insn (insn);
4374 return;
4378 /* Otherwise do a straight move. */
4379 emit_move_insn (x, y);
4382 /* Expand code to verify the stack_protect_guard. This is invoked at
4383 the end of a function to be protected. */
4385 #ifndef HAVE_stack_protect_test
4386 # define HAVE_stack_protect_test 0
4387 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4388 #endif
4390 void
4391 stack_protect_epilogue (void)
4393 tree guard_decl = targetm.stack_protect_guard ();
4394 rtx label = gen_label_rtx ();
4395 rtx x, y, tmp;
4397 x = expand_normal (crtl->stack_protect_guard);
4398 y = expand_normal (guard_decl);
4400 /* Allow the target to compare Y with X without leaking either into
4401 a register. */
4402 switch (HAVE_stack_protect_test != 0)
4404 case 1:
4405 tmp = gen_stack_protect_test (x, y, label);
4406 if (tmp)
4408 emit_insn (tmp);
4409 break;
4411 /* FALLTHRU */
4413 default:
4414 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4415 break;
4418 /* The noreturn predictor has been moved to the tree level. The rtl-level
4419 predictors estimate this branch about 20%, which isn't enough to get
4420 things moved out of line. Since this is the only extant case of adding
4421 a noreturn function at the rtl level, it doesn't seem worth doing ought
4422 except adding the prediction by hand. */
4423 tmp = get_last_insn ();
4424 if (JUMP_P (tmp))
4425 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4427 expand_expr_stmt (targetm.stack_protect_fail ());
4428 emit_label (label);
4431 /* Start the RTL for a new function, and set variables used for
4432 emitting RTL.
4433 SUBR is the FUNCTION_DECL node.
4434 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4435 the function's parameters, which must be run at any return statement. */
4437 void
4438 expand_function_start (tree subr)
4440 /* Make sure volatile mem refs aren't considered
4441 valid operands of arithmetic insns. */
4442 init_recog_no_volatile ();
4444 crtl->profile
4445 = (profile_flag
4446 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4448 crtl->limit_stack
4449 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4451 /* Make the label for return statements to jump to. Do not special
4452 case machines with special return instructions -- they will be
4453 handled later during jump, ifcvt, or epilogue creation. */
4454 return_label = gen_label_rtx ();
4456 /* Initialize rtx used to return the value. */
4457 /* Do this before assign_parms so that we copy the struct value address
4458 before any library calls that assign parms might generate. */
4460 /* Decide whether to return the value in memory or in a register. */
4461 if (aggregate_value_p (DECL_RESULT (subr), subr))
4463 /* Returning something that won't go in a register. */
4464 rtx value_address = 0;
4466 #ifdef PCC_STATIC_STRUCT_RETURN
4467 if (cfun->returns_pcc_struct)
4469 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4470 value_address = assemble_static_space (size);
4472 else
4473 #endif
4475 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4476 /* Expect to be passed the address of a place to store the value.
4477 If it is passed as an argument, assign_parms will take care of
4478 it. */
4479 if (sv)
4481 value_address = gen_reg_rtx (Pmode);
4482 emit_move_insn (value_address, sv);
4485 if (value_address)
4487 rtx x = value_address;
4488 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4490 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4491 set_mem_attributes (x, DECL_RESULT (subr), 1);
4493 SET_DECL_RTL (DECL_RESULT (subr), x);
4496 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4497 /* If return mode is void, this decl rtl should not be used. */
4498 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4499 else
4501 /* Compute the return values into a pseudo reg, which we will copy
4502 into the true return register after the cleanups are done. */
4503 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4504 if (TYPE_MODE (return_type) != BLKmode
4505 && targetm.calls.return_in_msb (return_type))
4506 /* expand_function_end will insert the appropriate padding in
4507 this case. Use the return value's natural (unpadded) mode
4508 within the function proper. */
4509 SET_DECL_RTL (DECL_RESULT (subr),
4510 gen_reg_rtx (TYPE_MODE (return_type)));
4511 else
4513 /* In order to figure out what mode to use for the pseudo, we
4514 figure out what the mode of the eventual return register will
4515 actually be, and use that. */
4516 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4518 /* Structures that are returned in registers are not
4519 aggregate_value_p, so we may see a PARALLEL or a REG. */
4520 if (REG_P (hard_reg))
4521 SET_DECL_RTL (DECL_RESULT (subr),
4522 gen_reg_rtx (GET_MODE (hard_reg)));
4523 else
4525 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4526 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4530 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4531 result to the real return register(s). */
4532 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4535 /* Initialize rtx for parameters and local variables.
4536 In some cases this requires emitting insns. */
4537 assign_parms (subr);
4539 /* If function gets a static chain arg, store it. */
4540 if (cfun->static_chain_decl)
4542 tree parm = cfun->static_chain_decl;
4543 rtx local, chain, insn;
4545 local = gen_reg_rtx (Pmode);
4546 chain = targetm.calls.static_chain (current_function_decl, true);
4548 set_decl_incoming_rtl (parm, chain, false);
4549 SET_DECL_RTL (parm, local);
4550 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4552 insn = emit_move_insn (local, chain);
4554 /* Mark the register as eliminable, similar to parameters. */
4555 if (MEM_P (chain)
4556 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4557 set_unique_reg_note (insn, REG_EQUIV, chain);
4560 /* If the function receives a non-local goto, then store the
4561 bits we need to restore the frame pointer. */
4562 if (cfun->nonlocal_goto_save_area)
4564 tree t_save;
4565 rtx r_save;
4567 /* ??? We need to do this save early. Unfortunately here is
4568 before the frame variable gets declared. Help out... */
4569 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4570 if (!DECL_RTL_SET_P (var))
4571 expand_decl (var);
4573 t_save = build4 (ARRAY_REF, ptr_type_node,
4574 cfun->nonlocal_goto_save_area,
4575 integer_zero_node, NULL_TREE, NULL_TREE);
4576 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4577 r_save = convert_memory_address (Pmode, r_save);
4579 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4580 update_nonlocal_goto_save_area ();
4583 /* The following was moved from init_function_start.
4584 The move is supposed to make sdb output more accurate. */
4585 /* Indicate the beginning of the function body,
4586 as opposed to parm setup. */
4587 emit_note (NOTE_INSN_FUNCTION_BEG);
4589 gcc_assert (NOTE_P (get_last_insn ()));
4591 parm_birth_insn = get_last_insn ();
4593 if (crtl->profile)
4595 #ifdef PROFILE_HOOK
4596 PROFILE_HOOK (current_function_funcdef_no);
4597 #endif
4600 /* After the display initializations is where the stack checking
4601 probe should go. */
4602 if(flag_stack_check)
4603 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4605 /* Make sure there is a line number after the function entry setup code. */
4606 force_next_line_note ();
4609 /* Undo the effects of init_dummy_function_start. */
4610 void
4611 expand_dummy_function_end (void)
4613 gcc_assert (in_dummy_function);
4615 /* End any sequences that failed to be closed due to syntax errors. */
4616 while (in_sequence_p ())
4617 end_sequence ();
4619 /* Outside function body, can't compute type's actual size
4620 until next function's body starts. */
4622 free_after_parsing (cfun);
4623 free_after_compilation (cfun);
4624 pop_cfun ();
4625 in_dummy_function = false;
4628 /* Call DOIT for each hard register used as a return value from
4629 the current function. */
4631 void
4632 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4634 rtx outgoing = crtl->return_rtx;
4636 if (! outgoing)
4637 return;
4639 if (REG_P (outgoing))
4640 (*doit) (outgoing, arg);
4641 else if (GET_CODE (outgoing) == PARALLEL)
4643 int i;
4645 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4647 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4649 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4650 (*doit) (x, arg);
4655 static void
4656 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4658 emit_clobber (reg);
4661 void
4662 clobber_return_register (void)
4664 diddle_return_value (do_clobber_return_reg, NULL);
4666 /* In case we do use pseudo to return value, clobber it too. */
4667 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4669 tree decl_result = DECL_RESULT (current_function_decl);
4670 rtx decl_rtl = DECL_RTL (decl_result);
4671 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4673 do_clobber_return_reg (decl_rtl, NULL);
4678 static void
4679 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4681 emit_use (reg);
4684 static void
4685 use_return_register (void)
4687 diddle_return_value (do_use_return_reg, NULL);
4690 /* Possibly warn about unused parameters. */
4691 void
4692 do_warn_unused_parameter (tree fn)
4694 tree decl;
4696 for (decl = DECL_ARGUMENTS (fn);
4697 decl; decl = TREE_CHAIN (decl))
4698 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4699 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4700 && !TREE_NO_WARNING (decl))
4701 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4704 static GTY(()) rtx initial_trampoline;
4706 /* Generate RTL for the end of the current function. */
4708 void
4709 expand_function_end (void)
4711 rtx clobber_after;
4713 /* If arg_pointer_save_area was referenced only from a nested
4714 function, we will not have initialized it yet. Do that now. */
4715 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4716 get_arg_pointer_save_area ();
4718 /* If we are doing generic stack checking and this function makes calls,
4719 do a stack probe at the start of the function to ensure we have enough
4720 space for another stack frame. */
4721 if (flag_stack_check == GENERIC_STACK_CHECK)
4723 rtx insn, seq;
4725 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4726 if (CALL_P (insn))
4728 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4729 start_sequence ();
4730 if (STACK_CHECK_MOVING_SP)
4731 anti_adjust_stack_and_probe (max_frame_size, true);
4732 else
4733 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4734 seq = get_insns ();
4735 end_sequence ();
4736 emit_insn_before (seq, stack_check_probe_note);
4737 break;
4741 /* End any sequences that failed to be closed due to syntax errors. */
4742 while (in_sequence_p ())
4743 end_sequence ();
4745 clear_pending_stack_adjust ();
4746 do_pending_stack_adjust ();
4748 /* Output a linenumber for the end of the function.
4749 SDB depends on this. */
4750 force_next_line_note ();
4751 set_curr_insn_source_location (input_location);
4753 /* Before the return label (if any), clobber the return
4754 registers so that they are not propagated live to the rest of
4755 the function. This can only happen with functions that drop
4756 through; if there had been a return statement, there would
4757 have either been a return rtx, or a jump to the return label.
4759 We delay actual code generation after the current_function_value_rtx
4760 is computed. */
4761 clobber_after = get_last_insn ();
4763 /* Output the label for the actual return from the function. */
4764 emit_label (return_label);
4766 if (USING_SJLJ_EXCEPTIONS)
4768 /* Let except.c know where it should emit the call to unregister
4769 the function context for sjlj exceptions. */
4770 if (flag_exceptions)
4771 sjlj_emit_function_exit_after (get_last_insn ());
4773 else
4775 /* We want to ensure that instructions that may trap are not
4776 moved into the epilogue by scheduling, because we don't
4777 always emit unwind information for the epilogue. */
4778 if (cfun->can_throw_non_call_exceptions)
4779 emit_insn (gen_blockage ());
4782 /* If this is an implementation of throw, do what's necessary to
4783 communicate between __builtin_eh_return and the epilogue. */
4784 expand_eh_return ();
4786 /* If scalar return value was computed in a pseudo-reg, or was a named
4787 return value that got dumped to the stack, copy that to the hard
4788 return register. */
4789 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4791 tree decl_result = DECL_RESULT (current_function_decl);
4792 rtx decl_rtl = DECL_RTL (decl_result);
4794 if (REG_P (decl_rtl)
4795 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4796 : DECL_REGISTER (decl_result))
4798 rtx real_decl_rtl = crtl->return_rtx;
4800 /* This should be set in assign_parms. */
4801 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4803 /* If this is a BLKmode structure being returned in registers,
4804 then use the mode computed in expand_return. Note that if
4805 decl_rtl is memory, then its mode may have been changed,
4806 but that crtl->return_rtx has not. */
4807 if (GET_MODE (real_decl_rtl) == BLKmode)
4808 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4810 /* If a non-BLKmode return value should be padded at the least
4811 significant end of the register, shift it left by the appropriate
4812 amount. BLKmode results are handled using the group load/store
4813 machinery. */
4814 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4815 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4817 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4818 REGNO (real_decl_rtl)),
4819 decl_rtl);
4820 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4822 /* If a named return value dumped decl_return to memory, then
4823 we may need to re-do the PROMOTE_MODE signed/unsigned
4824 extension. */
4825 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4827 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4828 promote_function_mode (TREE_TYPE (decl_result),
4829 GET_MODE (decl_rtl), &unsignedp,
4830 TREE_TYPE (current_function_decl), 1);
4832 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4834 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4836 /* If expand_function_start has created a PARALLEL for decl_rtl,
4837 move the result to the real return registers. Otherwise, do
4838 a group load from decl_rtl for a named return. */
4839 if (GET_CODE (decl_rtl) == PARALLEL)
4840 emit_group_move (real_decl_rtl, decl_rtl);
4841 else
4842 emit_group_load (real_decl_rtl, decl_rtl,
4843 TREE_TYPE (decl_result),
4844 int_size_in_bytes (TREE_TYPE (decl_result)));
4846 /* In the case of complex integer modes smaller than a word, we'll
4847 need to generate some non-trivial bitfield insertions. Do that
4848 on a pseudo and not the hard register. */
4849 else if (GET_CODE (decl_rtl) == CONCAT
4850 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4851 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4853 int old_generating_concat_p;
4854 rtx tmp;
4856 old_generating_concat_p = generating_concat_p;
4857 generating_concat_p = 0;
4858 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4859 generating_concat_p = old_generating_concat_p;
4861 emit_move_insn (tmp, decl_rtl);
4862 emit_move_insn (real_decl_rtl, tmp);
4864 else
4865 emit_move_insn (real_decl_rtl, decl_rtl);
4869 /* If returning a structure, arrange to return the address of the value
4870 in a place where debuggers expect to find it.
4872 If returning a structure PCC style,
4873 the caller also depends on this value.
4874 And cfun->returns_pcc_struct is not necessarily set. */
4875 if (cfun->returns_struct
4876 || cfun->returns_pcc_struct)
4878 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4879 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4880 rtx outgoing;
4882 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4883 type = TREE_TYPE (type);
4884 else
4885 value_address = XEXP (value_address, 0);
4887 outgoing = targetm.calls.function_value (build_pointer_type (type),
4888 current_function_decl, true);
4890 /* Mark this as a function return value so integrate will delete the
4891 assignment and USE below when inlining this function. */
4892 REG_FUNCTION_VALUE_P (outgoing) = 1;
4894 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4895 value_address = convert_memory_address (GET_MODE (outgoing),
4896 value_address);
4898 emit_move_insn (outgoing, value_address);
4900 /* Show return register used to hold result (in this case the address
4901 of the result. */
4902 crtl->return_rtx = outgoing;
4905 /* Emit the actual code to clobber return register. */
4907 rtx seq;
4909 start_sequence ();
4910 clobber_return_register ();
4911 seq = get_insns ();
4912 end_sequence ();
4914 emit_insn_after (seq, clobber_after);
4917 /* Output the label for the naked return from the function. */
4918 if (naked_return_label)
4919 emit_label (naked_return_label);
4921 /* @@@ This is a kludge. We want to ensure that instructions that
4922 may trap are not moved into the epilogue by scheduling, because
4923 we don't always emit unwind information for the epilogue. */
4924 if (!USING_SJLJ_EXCEPTIONS && cfun->can_throw_non_call_exceptions)
4925 emit_insn (gen_blockage ());
4927 /* If stack protection is enabled for this function, check the guard. */
4928 if (crtl->stack_protect_guard)
4929 stack_protect_epilogue ();
4931 /* If we had calls to alloca, and this machine needs
4932 an accurate stack pointer to exit the function,
4933 insert some code to save and restore the stack pointer. */
4934 if (! EXIT_IGNORE_STACK
4935 && cfun->calls_alloca)
4937 rtx tem = 0;
4939 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4940 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4943 /* ??? This should no longer be necessary since stupid is no longer with
4944 us, but there are some parts of the compiler (eg reload_combine, and
4945 sh mach_dep_reorg) that still try and compute their own lifetime info
4946 instead of using the general framework. */
4947 use_return_register ();
4951 get_arg_pointer_save_area (void)
4953 rtx ret = arg_pointer_save_area;
4955 if (! ret)
4957 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4958 arg_pointer_save_area = ret;
4961 if (! crtl->arg_pointer_save_area_init)
4963 rtx seq;
4965 /* Save the arg pointer at the beginning of the function. The
4966 generated stack slot may not be a valid memory address, so we
4967 have to check it and fix it if necessary. */
4968 start_sequence ();
4969 emit_move_insn (validize_mem (ret),
4970 crtl->args.internal_arg_pointer);
4971 seq = get_insns ();
4972 end_sequence ();
4974 push_topmost_sequence ();
4975 emit_insn_after (seq, entry_of_function ());
4976 pop_topmost_sequence ();
4979 return ret;
4982 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4983 for the first time. */
4985 static void
4986 record_insns (rtx insns, rtx end, htab_t *hashp)
4988 rtx tmp;
4989 htab_t hash = *hashp;
4991 if (hash == NULL)
4992 *hashp = hash
4993 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
4995 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
4997 void **slot = htab_find_slot (hash, tmp, INSERT);
4998 gcc_assert (*slot == NULL);
4999 *slot = tmp;
5003 /* INSN has been duplicated as COPY, as part of duping a basic block.
5004 If INSN is an epilogue insn, then record COPY as epilogue as well. */
5006 void
5007 maybe_copy_epilogue_insn (rtx insn, rtx copy)
5009 void **slot;
5011 if (epilogue_insn_hash == NULL
5012 || htab_find (epilogue_insn_hash, insn) == NULL)
5013 return;
5015 slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
5016 gcc_assert (*slot == NULL);
5017 *slot = copy;
5020 /* Set the locator of the insn chain starting at INSN to LOC. */
5021 static void
5022 set_insn_locators (rtx insn, int loc)
5024 while (insn != NULL_RTX)
5026 if (INSN_P (insn))
5027 INSN_LOCATOR (insn) = loc;
5028 insn = NEXT_INSN (insn);
5032 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5033 we can be running after reorg, SEQUENCE rtl is possible. */
5035 static bool
5036 contains (const_rtx insn, htab_t hash)
5038 if (hash == NULL)
5039 return false;
5041 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5043 int i;
5044 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5045 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5046 return true;
5047 return false;
5050 return htab_find (hash, insn) != NULL;
5054 prologue_epilogue_contains (const_rtx insn)
5056 if (contains (insn, prologue_insn_hash))
5057 return 1;
5058 if (contains (insn, epilogue_insn_hash))
5059 return 1;
5060 return 0;
5063 #ifdef HAVE_return
5064 /* Insert gen_return at the end of block BB. This also means updating
5065 block_for_insn appropriately. */
5067 static void
5068 emit_return_into_block (basic_block bb)
5070 emit_jump_insn_after (gen_return (), BB_END (bb));
5072 #endif /* HAVE_return */
5074 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5075 this into place with notes indicating where the prologue ends and where
5076 the epilogue begins. Update the basic block information when possible. */
5078 static void
5079 thread_prologue_and_epilogue_insns (void)
5081 int inserted = 0;
5082 edge e;
5083 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5084 rtx seq;
5085 #endif
5086 #if defined (HAVE_epilogue) || defined(HAVE_return)
5087 rtx epilogue_end = NULL_RTX;
5088 #endif
5089 edge_iterator ei;
5091 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5092 #ifdef HAVE_prologue
5093 if (HAVE_prologue)
5095 start_sequence ();
5096 seq = gen_prologue ();
5097 emit_insn (seq);
5099 /* Insert an explicit USE for the frame pointer
5100 if the profiling is on and the frame pointer is required. */
5101 if (crtl->profile && frame_pointer_needed)
5102 emit_use (hard_frame_pointer_rtx);
5104 /* Retain a map of the prologue insns. */
5105 record_insns (seq, NULL, &prologue_insn_hash);
5106 emit_note (NOTE_INSN_PROLOGUE_END);
5108 #ifndef PROFILE_BEFORE_PROLOGUE
5109 /* Ensure that instructions are not moved into the prologue when
5110 profiling is on. The call to the profiling routine can be
5111 emitted within the live range of a call-clobbered register. */
5112 if (crtl->profile)
5113 emit_insn (gen_blockage ());
5114 #endif
5116 seq = get_insns ();
5117 end_sequence ();
5118 set_insn_locators (seq, prologue_locator);
5120 /* Can't deal with multiple successors of the entry block
5121 at the moment. Function should always have at least one
5122 entry point. */
5123 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5125 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5126 inserted = 1;
5128 #endif
5130 /* If the exit block has no non-fake predecessors, we don't need
5131 an epilogue. */
5132 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5133 if ((e->flags & EDGE_FAKE) == 0)
5134 break;
5135 if (e == NULL)
5136 goto epilogue_done;
5138 rtl_profile_for_bb (EXIT_BLOCK_PTR);
5139 #ifdef HAVE_return
5140 if (optimize && HAVE_return)
5142 /* If we're allowed to generate a simple return instruction,
5143 then by definition we don't need a full epilogue. Examine
5144 the block that falls through to EXIT. If it does not
5145 contain any code, examine its predecessors and try to
5146 emit (conditional) return instructions. */
5148 basic_block last;
5149 rtx label;
5151 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5152 if (e->flags & EDGE_FALLTHRU)
5153 break;
5154 if (e == NULL)
5155 goto epilogue_done;
5156 last = e->src;
5158 /* Verify that there are no active instructions in the last block. */
5159 label = BB_END (last);
5160 while (label && !LABEL_P (label))
5162 if (active_insn_p (label))
5163 break;
5164 label = PREV_INSN (label);
5167 if (BB_HEAD (last) == label && LABEL_P (label))
5169 edge_iterator ei2;
5171 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5173 basic_block bb = e->src;
5174 rtx jump;
5176 if (bb == ENTRY_BLOCK_PTR)
5178 ei_next (&ei2);
5179 continue;
5182 jump = BB_END (bb);
5183 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5185 ei_next (&ei2);
5186 continue;
5189 /* If we have an unconditional jump, we can replace that
5190 with a simple return instruction. */
5191 if (simplejump_p (jump))
5193 emit_return_into_block (bb);
5194 delete_insn (jump);
5197 /* If we have a conditional jump, we can try to replace
5198 that with a conditional return instruction. */
5199 else if (condjump_p (jump))
5201 if (! redirect_jump (jump, 0, 0))
5203 ei_next (&ei2);
5204 continue;
5207 /* If this block has only one successor, it both jumps
5208 and falls through to the fallthru block, so we can't
5209 delete the edge. */
5210 if (single_succ_p (bb))
5212 ei_next (&ei2);
5213 continue;
5216 else
5218 ei_next (&ei2);
5219 continue;
5222 /* Fix up the CFG for the successful change we just made. */
5223 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5226 /* Emit a return insn for the exit fallthru block. Whether
5227 this is still reachable will be determined later. */
5229 emit_barrier_after (BB_END (last));
5230 emit_return_into_block (last);
5231 epilogue_end = BB_END (last);
5232 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5233 goto epilogue_done;
5236 #endif
5238 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5239 this marker for the splits of EH_RETURN patterns, and nothing else
5240 uses the flag in the meantime. */
5241 epilogue_completed = 1;
5243 #ifdef HAVE_eh_return
5244 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5245 some targets, these get split to a special version of the epilogue
5246 code. In order to be able to properly annotate these with unwind
5247 info, try to split them now. If we get a valid split, drop an
5248 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5249 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5251 rtx prev, last, trial;
5253 if (e->flags & EDGE_FALLTHRU)
5254 continue;
5255 last = BB_END (e->src);
5256 if (!eh_returnjump_p (last))
5257 continue;
5259 prev = PREV_INSN (last);
5260 trial = try_split (PATTERN (last), last, 1);
5261 if (trial == last)
5262 continue;
5264 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5265 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5267 #endif
5269 /* Find the edge that falls through to EXIT. Other edges may exist
5270 due to RETURN instructions, but those don't need epilogues.
5271 There really shouldn't be a mixture -- either all should have
5272 been converted or none, however... */
5274 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5275 if (e->flags & EDGE_FALLTHRU)
5276 break;
5277 if (e == NULL)
5278 goto epilogue_done;
5280 #ifdef HAVE_epilogue
5281 if (HAVE_epilogue)
5283 start_sequence ();
5284 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5285 seq = gen_epilogue ();
5286 emit_jump_insn (seq);
5288 /* Retain a map of the epilogue insns. */
5289 record_insns (seq, NULL, &epilogue_insn_hash);
5290 set_insn_locators (seq, epilogue_locator);
5292 seq = get_insns ();
5293 end_sequence ();
5295 insert_insn_on_edge (seq, e);
5296 inserted = 1;
5298 else
5299 #endif
5301 basic_block cur_bb;
5303 if (! next_active_insn (BB_END (e->src)))
5304 goto epilogue_done;
5305 /* We have a fall-through edge to the exit block, the source is not
5306 at the end of the function, and there will be an assembler epilogue
5307 at the end of the function.
5308 We can't use force_nonfallthru here, because that would try to
5309 use return. Inserting a jump 'by hand' is extremely messy, so
5310 we take advantage of cfg_layout_finalize using
5311 fixup_fallthru_exit_predecessor. */
5312 cfg_layout_initialize (0);
5313 FOR_EACH_BB (cur_bb)
5314 if (cur_bb->index >= NUM_FIXED_BLOCKS
5315 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5316 cur_bb->aux = cur_bb->next_bb;
5317 cfg_layout_finalize ();
5319 epilogue_done:
5320 default_rtl_profile ();
5322 if (inserted)
5324 commit_edge_insertions ();
5326 /* The epilogue insns we inserted may cause the exit edge to no longer
5327 be fallthru. */
5328 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5330 if (((e->flags & EDGE_FALLTHRU) != 0)
5331 && returnjump_p (BB_END (e->src)))
5332 e->flags &= ~EDGE_FALLTHRU;
5336 #ifdef HAVE_sibcall_epilogue
5337 /* Emit sibling epilogues before any sibling call sites. */
5338 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5340 basic_block bb = e->src;
5341 rtx insn = BB_END (bb);
5343 if (!CALL_P (insn)
5344 || ! SIBLING_CALL_P (insn))
5346 ei_next (&ei);
5347 continue;
5350 start_sequence ();
5351 emit_note (NOTE_INSN_EPILOGUE_BEG);
5352 emit_insn (gen_sibcall_epilogue ());
5353 seq = get_insns ();
5354 end_sequence ();
5356 /* Retain a map of the epilogue insns. Used in life analysis to
5357 avoid getting rid of sibcall epilogue insns. Do this before we
5358 actually emit the sequence. */
5359 record_insns (seq, NULL, &epilogue_insn_hash);
5360 set_insn_locators (seq, epilogue_locator);
5362 emit_insn_before (seq, insn);
5363 ei_next (&ei);
5365 #endif
5367 #ifdef HAVE_epilogue
5368 if (epilogue_end)
5370 rtx insn, next;
5372 /* Similarly, move any line notes that appear after the epilogue.
5373 There is no need, however, to be quite so anal about the existence
5374 of such a note. Also possibly move
5375 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5376 info generation. */
5377 for (insn = epilogue_end; insn; insn = next)
5379 next = NEXT_INSN (insn);
5380 if (NOTE_P (insn)
5381 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5382 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5385 #endif
5387 /* Threading the prologue and epilogue changes the artificial refs
5388 in the entry and exit blocks. */
5389 epilogue_completed = 1;
5390 df_update_entry_exit_and_calls ();
5393 /* Reposition the prologue-end and epilogue-begin notes after
5394 instruction scheduling. */
5396 void
5397 reposition_prologue_and_epilogue_notes (void)
5399 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5400 || defined (HAVE_sibcall_epilogue)
5401 /* Since the hash table is created on demand, the fact that it is
5402 non-null is a signal that it is non-empty. */
5403 if (prologue_insn_hash != NULL)
5405 size_t len = htab_elements (prologue_insn_hash);
5406 rtx insn, last = NULL, note = NULL;
5408 /* Scan from the beginning until we reach the last prologue insn. */
5409 /* ??? While we do have the CFG intact, there are two problems:
5410 (1) The prologue can contain loops (typically probing the stack),
5411 which means that the end of the prologue isn't in the first bb.
5412 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5413 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5415 if (NOTE_P (insn))
5417 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5418 note = insn;
5420 else if (contains (insn, prologue_insn_hash))
5422 last = insn;
5423 if (--len == 0)
5424 break;
5428 if (last)
5430 if (note == NULL)
5432 /* Scan forward looking for the PROLOGUE_END note. It should
5433 be right at the beginning of the block, possibly with other
5434 insn notes that got moved there. */
5435 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5437 if (NOTE_P (note)
5438 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5439 break;
5443 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5444 if (LABEL_P (last))
5445 last = NEXT_INSN (last);
5446 reorder_insns (note, note, last);
5450 if (epilogue_insn_hash != NULL)
5452 edge_iterator ei;
5453 edge e;
5455 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5457 rtx insn, first = NULL, note = NULL;
5458 basic_block bb = e->src;
5460 /* Scan from the beginning until we reach the first epilogue insn. */
5461 FOR_BB_INSNS (bb, insn)
5463 if (NOTE_P (insn))
5465 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5467 note = insn;
5468 if (first != NULL)
5469 break;
5472 else if (first == NULL && contains (insn, epilogue_insn_hash))
5474 first = insn;
5475 if (note != NULL)
5476 break;
5480 if (note)
5482 /* If the function has a single basic block, and no real
5483 epilogue insns (e.g. sibcall with no cleanup), the
5484 epilogue note can get scheduled before the prologue
5485 note. If we have frame related prologue insns, having
5486 them scanned during the epilogue will result in a crash.
5487 In this case re-order the epilogue note to just before
5488 the last insn in the block. */
5489 if (first == NULL)
5490 first = BB_END (bb);
5492 if (PREV_INSN (first) != note)
5493 reorder_insns (note, note, PREV_INSN (first));
5497 #endif /* HAVE_prologue or HAVE_epilogue */
5500 /* Returns the name of the current function. */
5501 const char *
5502 current_function_name (void)
5504 if (cfun == NULL)
5505 return "<none>";
5506 return lang_hooks.decl_printable_name (cfun->decl, 2);
5510 static unsigned int
5511 rest_of_handle_check_leaf_regs (void)
5513 #ifdef LEAF_REGISTERS
5514 current_function_uses_only_leaf_regs
5515 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5516 #endif
5517 return 0;
5520 /* Insert a TYPE into the used types hash table of CFUN. */
5522 static void
5523 used_types_insert_helper (tree type, struct function *func)
5525 if (type != NULL && func != NULL)
5527 void **slot;
5529 if (func->used_types_hash == NULL)
5530 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5531 htab_eq_pointer, NULL);
5532 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5533 if (*slot == NULL)
5534 *slot = type;
5538 /* Given a type, insert it into the used hash table in cfun. */
5539 void
5540 used_types_insert (tree t)
5542 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5543 if (TYPE_NAME (t))
5544 break;
5545 else
5546 t = TREE_TYPE (t);
5547 if (TYPE_NAME (t) == NULL_TREE
5548 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
5549 t = TYPE_MAIN_VARIANT (t);
5550 if (debug_info_level > DINFO_LEVEL_NONE)
5552 if (cfun)
5553 used_types_insert_helper (t, cfun);
5554 else
5555 /* So this might be a type referenced by a global variable.
5556 Record that type so that we can later decide to emit its debug
5557 information. */
5558 VEC_safe_push (tree, gc, types_used_by_cur_var_decl, t);
5562 /* Helper to Hash a struct types_used_by_vars_entry. */
5564 static hashval_t
5565 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5567 gcc_assert (entry && entry->var_decl && entry->type);
5569 return iterative_hash_object (entry->type,
5570 iterative_hash_object (entry->var_decl, 0));
5573 /* Hash function of the types_used_by_vars_entry hash table. */
5575 hashval_t
5576 types_used_by_vars_do_hash (const void *x)
5578 const struct types_used_by_vars_entry *entry =
5579 (const struct types_used_by_vars_entry *) x;
5581 return hash_types_used_by_vars_entry (entry);
5584 /*Equality function of the types_used_by_vars_entry hash table. */
5587 types_used_by_vars_eq (const void *x1, const void *x2)
5589 const struct types_used_by_vars_entry *e1 =
5590 (const struct types_used_by_vars_entry *) x1;
5591 const struct types_used_by_vars_entry *e2 =
5592 (const struct types_used_by_vars_entry *)x2;
5594 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5597 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5599 void
5600 types_used_by_var_decl_insert (tree type, tree var_decl)
5602 if (type != NULL && var_decl != NULL)
5604 void **slot;
5605 struct types_used_by_vars_entry e;
5606 e.var_decl = var_decl;
5607 e.type = type;
5608 if (types_used_by_vars_hash == NULL)
5609 types_used_by_vars_hash =
5610 htab_create_ggc (37, types_used_by_vars_do_hash,
5611 types_used_by_vars_eq, NULL);
5612 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5613 hash_types_used_by_vars_entry (&e), INSERT);
5614 if (*slot == NULL)
5616 struct types_used_by_vars_entry *entry;
5617 entry = ggc_alloc_types_used_by_vars_entry ();
5618 entry->type = type;
5619 entry->var_decl = var_decl;
5620 *slot = entry;
5625 struct rtl_opt_pass pass_leaf_regs =
5628 RTL_PASS,
5629 "*leaf_regs", /* name */
5630 NULL, /* gate */
5631 rest_of_handle_check_leaf_regs, /* execute */
5632 NULL, /* sub */
5633 NULL, /* next */
5634 0, /* static_pass_number */
5635 TV_NONE, /* tv_id */
5636 0, /* properties_required */
5637 0, /* properties_provided */
5638 0, /* properties_destroyed */
5639 0, /* todo_flags_start */
5640 0 /* todo_flags_finish */
5644 static unsigned int
5645 rest_of_handle_thread_prologue_and_epilogue (void)
5647 if (optimize)
5648 cleanup_cfg (CLEANUP_EXPENSIVE);
5649 /* On some machines, the prologue and epilogue code, or parts thereof,
5650 can be represented as RTL. Doing so lets us schedule insns between
5651 it and the rest of the code and also allows delayed branch
5652 scheduling to operate in the epilogue. */
5654 thread_prologue_and_epilogue_insns ();
5655 return 0;
5658 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5661 RTL_PASS,
5662 "pro_and_epilogue", /* name */
5663 NULL, /* gate */
5664 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5665 NULL, /* sub */
5666 NULL, /* next */
5667 0, /* static_pass_number */
5668 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5669 0, /* properties_required */
5670 0, /* properties_provided */
5671 0, /* properties_destroyed */
5672 TODO_verify_flow, /* todo_flags_start */
5673 TODO_dump_func |
5674 TODO_df_verify |
5675 TODO_df_finish | TODO_verify_rtl_sharing |
5676 TODO_ggc_collect /* todo_flags_finish */
5681 /* This mini-pass fixes fall-out from SSA in asm statements that have
5682 in-out constraints. Say you start with
5684 orig = inout;
5685 asm ("": "+mr" (inout));
5686 use (orig);
5688 which is transformed very early to use explicit output and match operands:
5690 orig = inout;
5691 asm ("": "=mr" (inout) : "0" (inout));
5692 use (orig);
5694 Or, after SSA and copyprop,
5696 asm ("": "=mr" (inout_2) : "0" (inout_1));
5697 use (inout_1);
5699 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5700 they represent two separate values, so they will get different pseudo
5701 registers during expansion. Then, since the two operands need to match
5702 per the constraints, but use different pseudo registers, reload can
5703 only register a reload for these operands. But reloads can only be
5704 satisfied by hardregs, not by memory, so we need a register for this
5705 reload, just because we are presented with non-matching operands.
5706 So, even though we allow memory for this operand, no memory can be
5707 used for it, just because the two operands don't match. This can
5708 cause reload failures on register-starved targets.
5710 So it's a symptom of reload not being able to use memory for reloads
5711 or, alternatively it's also a symptom of both operands not coming into
5712 reload as matching (in which case the pseudo could go to memory just
5713 fine, as the alternative allows it, and no reload would be necessary).
5714 We fix the latter problem here, by transforming
5716 asm ("": "=mr" (inout_2) : "0" (inout_1));
5718 back to
5720 inout_2 = inout_1;
5721 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5723 static void
5724 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5726 int i;
5727 bool changed = false;
5728 rtx op = SET_SRC (p_sets[0]);
5729 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5730 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5731 bool *output_matched = XALLOCAVEC (bool, noutputs);
5733 memset (output_matched, 0, noutputs * sizeof (bool));
5734 for (i = 0; i < ninputs; i++)
5736 rtx input, output, insns;
5737 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5738 char *end;
5739 int match, j;
5741 if (*constraint == '%')
5742 constraint++;
5744 match = strtoul (constraint, &end, 10);
5745 if (end == constraint)
5746 continue;
5748 gcc_assert (match < noutputs);
5749 output = SET_DEST (p_sets[match]);
5750 input = RTVEC_ELT (inputs, i);
5751 /* Only do the transformation for pseudos. */
5752 if (! REG_P (output)
5753 || rtx_equal_p (output, input)
5754 || (GET_MODE (input) != VOIDmode
5755 && GET_MODE (input) != GET_MODE (output)))
5756 continue;
5758 /* We can't do anything if the output is also used as input,
5759 as we're going to overwrite it. */
5760 for (j = 0; j < ninputs; j++)
5761 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5762 break;
5763 if (j != ninputs)
5764 continue;
5766 /* Avoid changing the same input several times. For
5767 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5768 only change in once (to out1), rather than changing it
5769 first to out1 and afterwards to out2. */
5770 if (i > 0)
5772 for (j = 0; j < noutputs; j++)
5773 if (output_matched[j] && input == SET_DEST (p_sets[j]))
5774 break;
5775 if (j != noutputs)
5776 continue;
5778 output_matched[match] = true;
5780 start_sequence ();
5781 emit_move_insn (output, input);
5782 insns = get_insns ();
5783 end_sequence ();
5784 emit_insn_before (insns, insn);
5786 /* Now replace all mentions of the input with output. We can't
5787 just replace the occurrence in inputs[i], as the register might
5788 also be used in some other input (or even in an address of an
5789 output), which would mean possibly increasing the number of
5790 inputs by one (namely 'output' in addition), which might pose
5791 a too complicated problem for reload to solve. E.g. this situation:
5793 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5795 Here 'input' is used in two occurrences as input (once for the
5796 input operand, once for the address in the second output operand).
5797 If we would replace only the occurrence of the input operand (to
5798 make the matching) we would be left with this:
5800 output = input
5801 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5803 Now we suddenly have two different input values (containing the same
5804 value, but different pseudos) where we formerly had only one.
5805 With more complicated asms this might lead to reload failures
5806 which wouldn't have happen without this pass. So, iterate over
5807 all operands and replace all occurrences of the register used. */
5808 for (j = 0; j < noutputs; j++)
5809 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5810 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5811 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5812 input, output);
5813 for (j = 0; j < ninputs; j++)
5814 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5815 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5816 input, output);
5818 changed = true;
5821 if (changed)
5822 df_insn_rescan (insn);
5825 static unsigned
5826 rest_of_match_asm_constraints (void)
5828 basic_block bb;
5829 rtx insn, pat, *p_sets;
5830 int noutputs;
5832 if (!crtl->has_asm_statement)
5833 return 0;
5835 df_set_flags (DF_DEFER_INSN_RESCAN);
5836 FOR_EACH_BB (bb)
5838 FOR_BB_INSNS (bb, insn)
5840 if (!INSN_P (insn))
5841 continue;
5843 pat = PATTERN (insn);
5844 if (GET_CODE (pat) == PARALLEL)
5845 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5846 else if (GET_CODE (pat) == SET)
5847 p_sets = &PATTERN (insn), noutputs = 1;
5848 else
5849 continue;
5851 if (GET_CODE (*p_sets) == SET
5852 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5853 match_asm_constraints_1 (insn, p_sets, noutputs);
5857 return TODO_df_finish;
5860 struct rtl_opt_pass pass_match_asm_constraints =
5863 RTL_PASS,
5864 "asmcons", /* name */
5865 NULL, /* gate */
5866 rest_of_match_asm_constraints, /* execute */
5867 NULL, /* sub */
5868 NULL, /* next */
5869 0, /* static_pass_number */
5870 TV_NONE, /* tv_id */
5871 0, /* properties_required */
5872 0, /* properties_provided */
5873 0, /* properties_destroyed */
5874 0, /* todo_flags_start */
5875 TODO_dump_func /* todo_flags_finish */
5880 #include "gt-function.h"