2010-07-05 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / fortran / trans-types.c
blob6f71da8104bf8594aba734f62dbbc46ee952eca0
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010
4 Free Software Foundation, Inc.
5 Contributed by Paul Brook <paul@nowt.org>
6 and Steven Bosscher <s.bosscher@student.tudelft.nl>
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* trans-types.c -- gfortran backend types */
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tree.h"
30 #include "langhooks.h" /* For iso-c-bindings.def. */
31 #include "target.h"
32 #include "ggc.h"
33 #include "toplev.h" /* For rest_of_decl_compilation/fatal_error. */
34 #include "gfortran.h"
35 #include "trans.h"
36 #include "trans-types.h"
37 #include "trans-const.h"
38 #include "flags.h"
39 #include "dwarf2out.h" /* For struct array_descr_info. */
42 #if (GFC_MAX_DIMENSIONS < 10)
43 #define GFC_RANK_DIGITS 1
44 #define GFC_RANK_PRINTF_FORMAT "%01d"
45 #elif (GFC_MAX_DIMENSIONS < 100)
46 #define GFC_RANK_DIGITS 2
47 #define GFC_RANK_PRINTF_FORMAT "%02d"
48 #else
49 #error If you really need >99 dimensions, continue the sequence above...
50 #endif
52 /* array of structs so we don't have to worry about xmalloc or free */
53 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
55 tree gfc_array_index_type;
56 tree gfc_array_range_type;
57 tree gfc_character1_type_node;
58 tree pvoid_type_node;
59 tree prvoid_type_node;
60 tree ppvoid_type_node;
61 tree pchar_type_node;
62 tree pfunc_type_node;
64 tree gfc_charlen_type_node;
66 static GTY(()) tree gfc_desc_dim_type;
67 static GTY(()) tree gfc_max_array_element_size;
68 static GTY(()) tree gfc_array_descriptor_base[2 * GFC_MAX_DIMENSIONS];
70 /* Arrays for all integral and real kinds. We'll fill this in at runtime
71 after the target has a chance to process command-line options. */
73 #define MAX_INT_KINDS 5
74 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
75 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
76 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
77 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
79 #define MAX_REAL_KINDS 5
80 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
81 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
82 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
84 #define MAX_CHARACTER_KINDS 2
85 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
86 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
87 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
89 static tree gfc_add_field_to_struct_1 (tree *, tree, tree, tree, tree **);
91 /* The integer kind to use for array indices. This will be set to the
92 proper value based on target information from the backend. */
94 int gfc_index_integer_kind;
96 /* The default kinds of the various types. */
98 int gfc_default_integer_kind;
99 int gfc_max_integer_kind;
100 int gfc_default_real_kind;
101 int gfc_default_double_kind;
102 int gfc_default_character_kind;
103 int gfc_default_logical_kind;
104 int gfc_default_complex_kind;
105 int gfc_c_int_kind;
107 /* The kind size used for record offsets. If the target system supports
108 kind=8, this will be set to 8, otherwise it is set to 4. */
109 int gfc_intio_kind;
111 /* The integer kind used to store character lengths. */
112 int gfc_charlen_int_kind;
114 /* The size of the numeric storage unit and character storage unit. */
115 int gfc_numeric_storage_size;
116 int gfc_character_storage_size;
119 gfc_try
120 gfc_check_any_c_kind (gfc_typespec *ts)
122 int i;
124 for (i = 0; i < ISOCBINDING_NUMBER; i++)
126 /* Check for any C interoperable kind for the given type/kind in ts.
127 This can be used after verify_c_interop to make sure that the
128 Fortran kind being used exists in at least some form for C. */
129 if (c_interop_kinds_table[i].f90_type == ts->type &&
130 c_interop_kinds_table[i].value == ts->kind)
131 return SUCCESS;
134 return FAILURE;
138 static int
139 get_real_kind_from_node (tree type)
141 int i;
143 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
144 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
145 return gfc_real_kinds[i].kind;
147 return -4;
150 static int
151 get_int_kind_from_node (tree type)
153 int i;
155 if (!type)
156 return -2;
158 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
159 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
160 return gfc_integer_kinds[i].kind;
162 return -1;
165 /* Return a typenode for the "standard" C type with a given name. */
166 static tree
167 get_typenode_from_name (const char *name)
169 if (name == NULL || *name == '\0')
170 return NULL_TREE;
172 if (strcmp (name, "char") == 0)
173 return char_type_node;
174 if (strcmp (name, "unsigned char") == 0)
175 return unsigned_char_type_node;
176 if (strcmp (name, "signed char") == 0)
177 return signed_char_type_node;
179 if (strcmp (name, "short int") == 0)
180 return short_integer_type_node;
181 if (strcmp (name, "short unsigned int") == 0)
182 return short_unsigned_type_node;
184 if (strcmp (name, "int") == 0)
185 return integer_type_node;
186 if (strcmp (name, "unsigned int") == 0)
187 return unsigned_type_node;
189 if (strcmp (name, "long int") == 0)
190 return long_integer_type_node;
191 if (strcmp (name, "long unsigned int") == 0)
192 return long_unsigned_type_node;
194 if (strcmp (name, "long long int") == 0)
195 return long_long_integer_type_node;
196 if (strcmp (name, "long long unsigned int") == 0)
197 return long_long_unsigned_type_node;
199 gcc_unreachable ();
202 static int
203 get_int_kind_from_name (const char *name)
205 return get_int_kind_from_node (get_typenode_from_name (name));
209 /* Get the kind number corresponding to an integer of given size,
210 following the required return values for ISO_FORTRAN_ENV INT* constants:
211 -2 is returned if we support a kind of larger size, -1 otherwise. */
213 gfc_get_int_kind_from_width_isofortranenv (int size)
215 int i;
217 /* Look for a kind with matching storage size. */
218 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
219 if (gfc_integer_kinds[i].bit_size == size)
220 return gfc_integer_kinds[i].kind;
222 /* Look for a kind with larger storage size. */
223 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
224 if (gfc_integer_kinds[i].bit_size > size)
225 return -2;
227 return -1;
230 /* Get the kind number corresponding to a real of given storage size,
231 following the required return values for ISO_FORTRAN_ENV REAL* constants:
232 -2 is returned if we support a kind of larger size, -1 otherwise. */
234 gfc_get_real_kind_from_width_isofortranenv (int size)
236 int i;
238 size /= 8;
240 /* Look for a kind with matching storage size. */
241 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
242 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
243 return gfc_real_kinds[i].kind;
245 /* Look for a kind with larger storage size. */
246 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
247 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
248 return -2;
250 return -1;
255 static int
256 get_int_kind_from_width (int size)
258 int i;
260 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
261 if (gfc_integer_kinds[i].bit_size == size)
262 return gfc_integer_kinds[i].kind;
264 return -2;
267 static int
268 get_int_kind_from_minimal_width (int size)
270 int i;
272 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
273 if (gfc_integer_kinds[i].bit_size >= size)
274 return gfc_integer_kinds[i].kind;
276 return -2;
280 /* Generate the CInteropKind_t objects for the C interoperable
281 kinds. */
283 static
284 void init_c_interop_kinds (void)
286 int i;
288 /* init all pointers in the list to NULL */
289 for (i = 0; i < ISOCBINDING_NUMBER; i++)
291 /* Initialize the name and value fields. */
292 c_interop_kinds_table[i].name[0] = '\0';
293 c_interop_kinds_table[i].value = -100;
294 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
297 #define NAMED_INTCST(a,b,c,d) \
298 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
299 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
300 c_interop_kinds_table[a].value = c;
301 #define NAMED_REALCST(a,b,c) \
302 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
303 c_interop_kinds_table[a].f90_type = BT_REAL; \
304 c_interop_kinds_table[a].value = c;
305 #define NAMED_CMPXCST(a,b,c) \
306 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
307 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
308 c_interop_kinds_table[a].value = c;
309 #define NAMED_LOGCST(a,b,c) \
310 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
311 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
312 c_interop_kinds_table[a].value = c;
313 #define NAMED_CHARKNDCST(a,b,c) \
314 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
315 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
316 c_interop_kinds_table[a].value = c;
317 #define NAMED_CHARCST(a,b,c) \
318 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
319 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
320 c_interop_kinds_table[a].value = c;
321 #define DERIVED_TYPE(a,b,c) \
322 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
323 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
324 c_interop_kinds_table[a].value = c;
325 #define PROCEDURE(a,b) \
326 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
327 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
328 c_interop_kinds_table[a].value = 0;
329 #include "iso-c-binding.def"
333 /* Query the target to determine which machine modes are available for
334 computation. Choose KIND numbers for them. */
336 void
337 gfc_init_kinds (void)
339 unsigned int mode;
340 int i_index, r_index, kind;
341 bool saw_i4 = false, saw_i8 = false;
342 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
344 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
346 int kind, bitsize;
348 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
349 continue;
351 /* The middle end doesn't support constants larger than 2*HWI.
352 Perhaps the target hook shouldn't have accepted these either,
353 but just to be safe... */
354 bitsize = GET_MODE_BITSIZE (mode);
355 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
356 continue;
358 gcc_assert (i_index != MAX_INT_KINDS);
360 /* Let the kind equal the bit size divided by 8. This insulates the
361 programmer from the underlying byte size. */
362 kind = bitsize / 8;
364 if (kind == 4)
365 saw_i4 = true;
366 if (kind == 8)
367 saw_i8 = true;
369 gfc_integer_kinds[i_index].kind = kind;
370 gfc_integer_kinds[i_index].radix = 2;
371 gfc_integer_kinds[i_index].digits = bitsize - 1;
372 gfc_integer_kinds[i_index].bit_size = bitsize;
374 gfc_logical_kinds[i_index].kind = kind;
375 gfc_logical_kinds[i_index].bit_size = bitsize;
377 i_index += 1;
380 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
381 used for large file access. */
383 if (saw_i8)
384 gfc_intio_kind = 8;
385 else
386 gfc_intio_kind = 4;
388 /* If we do not at least have kind = 4, everything is pointless. */
389 gcc_assert(saw_i4);
391 /* Set the maximum integer kind. Used with at least BOZ constants. */
392 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
394 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
396 const struct real_format *fmt =
397 REAL_MODE_FORMAT ((enum machine_mode) mode);
398 int kind;
400 if (fmt == NULL)
401 continue;
402 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
403 continue;
405 /* Only let float/double/long double go through because the fortran
406 library assumes these are the only floating point types. */
408 if (mode != TYPE_MODE (float_type_node)
409 && (mode != TYPE_MODE (double_type_node))
410 && (mode != TYPE_MODE (long_double_type_node)))
411 continue;
413 /* Let the kind equal the precision divided by 8, rounding up. Again,
414 this insulates the programmer from the underlying byte size.
416 Also, it effectively deals with IEEE extended formats. There, the
417 total size of the type may equal 16, but it's got 6 bytes of padding
418 and the increased size can get in the way of a real IEEE quad format
419 which may also be supported by the target.
421 We round up so as to handle IA-64 __floatreg (RFmode), which is an
422 82 bit type. Not to be confused with __float80 (XFmode), which is
423 an 80 bit type also supported by IA-64. So XFmode should come out
424 to be kind=10, and RFmode should come out to be kind=11. Egads. */
426 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
428 if (kind == 4)
429 saw_r4 = true;
430 if (kind == 8)
431 saw_r8 = true;
432 if (kind == 16)
433 saw_r16 = true;
435 /* Careful we don't stumble a weird internal mode. */
436 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
437 /* Or have too many modes for the allocated space. */
438 gcc_assert (r_index != MAX_REAL_KINDS);
440 gfc_real_kinds[r_index].kind = kind;
441 gfc_real_kinds[r_index].radix = fmt->b;
442 gfc_real_kinds[r_index].digits = fmt->p;
443 gfc_real_kinds[r_index].min_exponent = fmt->emin;
444 gfc_real_kinds[r_index].max_exponent = fmt->emax;
445 if (fmt->pnan < fmt->p)
446 /* This is an IBM extended double format (or the MIPS variant)
447 made up of two IEEE doubles. The value of the long double is
448 the sum of the values of the two parts. The most significant
449 part is required to be the value of the long double rounded
450 to the nearest double. If we use emax of 1024 then we can't
451 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
452 rounding will make the most significant part overflow. */
453 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
454 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
455 r_index += 1;
458 /* Choose the default integer kind. We choose 4 unless the user
459 directs us otherwise. */
460 if (gfc_option.flag_default_integer)
462 if (!saw_i8)
463 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
464 gfc_default_integer_kind = 8;
466 /* Even if the user specified that the default integer kind be 8,
467 the numeric storage size isn't 64. In this case, a warning will
468 be issued when NUMERIC_STORAGE_SIZE is used. */
469 gfc_numeric_storage_size = 4 * 8;
471 else if (saw_i4)
473 gfc_default_integer_kind = 4;
474 gfc_numeric_storage_size = 4 * 8;
476 else
478 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
479 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
482 /* Choose the default real kind. Again, we choose 4 when possible. */
483 if (gfc_option.flag_default_real)
485 if (!saw_r8)
486 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
487 gfc_default_real_kind = 8;
489 else if (saw_r4)
490 gfc_default_real_kind = 4;
491 else
492 gfc_default_real_kind = gfc_real_kinds[0].kind;
494 /* Choose the default double kind. If -fdefault-real and -fdefault-double
495 are specified, we use kind=8, if it's available. If -fdefault-real is
496 specified without -fdefault-double, we use kind=16, if it's available.
497 Otherwise we do not change anything. */
498 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
499 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
501 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
502 gfc_default_double_kind = 8;
503 else if (gfc_option.flag_default_real && saw_r16)
504 gfc_default_double_kind = 16;
505 else if (saw_r4 && saw_r8)
506 gfc_default_double_kind = 8;
507 else
509 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
510 real ... occupies two contiguous numeric storage units.
512 Therefore we must be supplied a kind twice as large as we chose
513 for single precision. There are loopholes, in that double
514 precision must *occupy* two storage units, though it doesn't have
515 to *use* two storage units. Which means that you can make this
516 kind artificially wide by padding it. But at present there are
517 no GCC targets for which a two-word type does not exist, so we
518 just let gfc_validate_kind abort and tell us if something breaks. */
520 gfc_default_double_kind
521 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
524 /* The default logical kind is constrained to be the same as the
525 default integer kind. Similarly with complex and real. */
526 gfc_default_logical_kind = gfc_default_integer_kind;
527 gfc_default_complex_kind = gfc_default_real_kind;
529 /* We only have two character kinds: ASCII and UCS-4.
530 ASCII corresponds to a 8-bit integer type, if one is available.
531 UCS-4 corresponds to a 32-bit integer type, if one is available. */
532 i_index = 0;
533 if ((kind = get_int_kind_from_width (8)) > 0)
535 gfc_character_kinds[i_index].kind = kind;
536 gfc_character_kinds[i_index].bit_size = 8;
537 gfc_character_kinds[i_index].name = "ascii";
538 i_index++;
540 if ((kind = get_int_kind_from_width (32)) > 0)
542 gfc_character_kinds[i_index].kind = kind;
543 gfc_character_kinds[i_index].bit_size = 32;
544 gfc_character_kinds[i_index].name = "iso_10646";
545 i_index++;
548 /* Choose the smallest integer kind for our default character. */
549 gfc_default_character_kind = gfc_character_kinds[0].kind;
550 gfc_character_storage_size = gfc_default_character_kind * 8;
552 /* Choose the integer kind the same size as "void*" for our index kind. */
553 gfc_index_integer_kind = POINTER_SIZE / 8;
554 /* Pick a kind the same size as the C "int" type. */
555 gfc_c_int_kind = INT_TYPE_SIZE / 8;
557 /* initialize the C interoperable kinds */
558 init_c_interop_kinds();
561 /* Make sure that a valid kind is present. Returns an index into the
562 associated kinds array, -1 if the kind is not present. */
564 static int
565 validate_integer (int kind)
567 int i;
569 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
570 if (gfc_integer_kinds[i].kind == kind)
571 return i;
573 return -1;
576 static int
577 validate_real (int kind)
579 int i;
581 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
582 if (gfc_real_kinds[i].kind == kind)
583 return i;
585 return -1;
588 static int
589 validate_logical (int kind)
591 int i;
593 for (i = 0; gfc_logical_kinds[i].kind; i++)
594 if (gfc_logical_kinds[i].kind == kind)
595 return i;
597 return -1;
600 static int
601 validate_character (int kind)
603 int i;
605 for (i = 0; gfc_character_kinds[i].kind; i++)
606 if (gfc_character_kinds[i].kind == kind)
607 return i;
609 return -1;
612 /* Validate a kind given a basic type. The return value is the same
613 for the child functions, with -1 indicating nonexistence of the
614 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
617 gfc_validate_kind (bt type, int kind, bool may_fail)
619 int rc;
621 switch (type)
623 case BT_REAL: /* Fall through */
624 case BT_COMPLEX:
625 rc = validate_real (kind);
626 break;
627 case BT_INTEGER:
628 rc = validate_integer (kind);
629 break;
630 case BT_LOGICAL:
631 rc = validate_logical (kind);
632 break;
633 case BT_CHARACTER:
634 rc = validate_character (kind);
635 break;
637 default:
638 gfc_internal_error ("gfc_validate_kind(): Got bad type");
641 if (rc < 0 && !may_fail)
642 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
644 return rc;
648 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
649 Reuse common type nodes where possible. Recognize if the kind matches up
650 with a C type. This will be used later in determining which routines may
651 be scarfed from libm. */
653 static tree
654 gfc_build_int_type (gfc_integer_info *info)
656 int mode_precision = info->bit_size;
658 if (mode_precision == CHAR_TYPE_SIZE)
659 info->c_char = 1;
660 if (mode_precision == SHORT_TYPE_SIZE)
661 info->c_short = 1;
662 if (mode_precision == INT_TYPE_SIZE)
663 info->c_int = 1;
664 if (mode_precision == LONG_TYPE_SIZE)
665 info->c_long = 1;
666 if (mode_precision == LONG_LONG_TYPE_SIZE)
667 info->c_long_long = 1;
669 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
670 return intQI_type_node;
671 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
672 return intHI_type_node;
673 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
674 return intSI_type_node;
675 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
676 return intDI_type_node;
677 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
678 return intTI_type_node;
680 return make_signed_type (mode_precision);
683 tree
684 gfc_build_uint_type (int size)
686 if (size == CHAR_TYPE_SIZE)
687 return unsigned_char_type_node;
688 if (size == SHORT_TYPE_SIZE)
689 return short_unsigned_type_node;
690 if (size == INT_TYPE_SIZE)
691 return unsigned_type_node;
692 if (size == LONG_TYPE_SIZE)
693 return long_unsigned_type_node;
694 if (size == LONG_LONG_TYPE_SIZE)
695 return long_long_unsigned_type_node;
697 return make_unsigned_type (size);
701 static tree
702 gfc_build_real_type (gfc_real_info *info)
704 int mode_precision = info->mode_precision;
705 tree new_type;
707 if (mode_precision == FLOAT_TYPE_SIZE)
708 info->c_float = 1;
709 if (mode_precision == DOUBLE_TYPE_SIZE)
710 info->c_double = 1;
711 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
712 info->c_long_double = 1;
714 if (TYPE_PRECISION (float_type_node) == mode_precision)
715 return float_type_node;
716 if (TYPE_PRECISION (double_type_node) == mode_precision)
717 return double_type_node;
718 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
719 return long_double_type_node;
721 new_type = make_node (REAL_TYPE);
722 TYPE_PRECISION (new_type) = mode_precision;
723 layout_type (new_type);
724 return new_type;
727 static tree
728 gfc_build_complex_type (tree scalar_type)
730 tree new_type;
732 if (scalar_type == NULL)
733 return NULL;
734 if (scalar_type == float_type_node)
735 return complex_float_type_node;
736 if (scalar_type == double_type_node)
737 return complex_double_type_node;
738 if (scalar_type == long_double_type_node)
739 return complex_long_double_type_node;
741 new_type = make_node (COMPLEX_TYPE);
742 TREE_TYPE (new_type) = scalar_type;
743 layout_type (new_type);
744 return new_type;
747 static tree
748 gfc_build_logical_type (gfc_logical_info *info)
750 int bit_size = info->bit_size;
751 tree new_type;
753 if (bit_size == BOOL_TYPE_SIZE)
755 info->c_bool = 1;
756 return boolean_type_node;
759 new_type = make_unsigned_type (bit_size);
760 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
761 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
762 TYPE_PRECISION (new_type) = 1;
764 return new_type;
768 #if 0
769 /* Return the bit size of the C "size_t". */
771 static unsigned int
772 c_size_t_size (void)
774 #ifdef SIZE_TYPE
775 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
776 return INT_TYPE_SIZE;
777 if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
778 return LONG_TYPE_SIZE;
779 if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
780 return SHORT_TYPE_SIZE;
781 gcc_unreachable ();
782 #else
783 return LONG_TYPE_SIZE;
784 #endif
786 #endif
788 /* Create the backend type nodes. We map them to their
789 equivalent C type, at least for now. We also give
790 names to the types here, and we push them in the
791 global binding level context.*/
793 void
794 gfc_init_types (void)
796 char name_buf[18];
797 int index;
798 tree type;
799 unsigned n;
800 unsigned HOST_WIDE_INT hi;
801 unsigned HOST_WIDE_INT lo;
803 /* Create and name the types. */
804 #define PUSH_TYPE(name, node) \
805 pushdecl (build_decl (input_location, \
806 TYPE_DECL, get_identifier (name), node))
808 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
810 type = gfc_build_int_type (&gfc_integer_kinds[index]);
811 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
812 if (TYPE_STRING_FLAG (type))
813 type = make_signed_type (gfc_integer_kinds[index].bit_size);
814 gfc_integer_types[index] = type;
815 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
816 gfc_integer_kinds[index].kind);
817 PUSH_TYPE (name_buf, type);
820 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
822 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
823 gfc_logical_types[index] = type;
824 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
825 gfc_logical_kinds[index].kind);
826 PUSH_TYPE (name_buf, type);
829 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
831 type = gfc_build_real_type (&gfc_real_kinds[index]);
832 gfc_real_types[index] = type;
833 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
834 gfc_real_kinds[index].kind);
835 PUSH_TYPE (name_buf, type);
837 type = gfc_build_complex_type (type);
838 gfc_complex_types[index] = type;
839 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
840 gfc_real_kinds[index].kind);
841 PUSH_TYPE (name_buf, type);
844 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
846 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
847 type = build_qualified_type (type, TYPE_UNQUALIFIED);
848 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
849 gfc_character_kinds[index].kind);
850 PUSH_TYPE (name_buf, type);
851 gfc_character_types[index] = type;
852 gfc_pcharacter_types[index] = build_pointer_type (type);
854 gfc_character1_type_node = gfc_character_types[0];
856 PUSH_TYPE ("byte", unsigned_char_type_node);
857 PUSH_TYPE ("void", void_type_node);
859 /* DBX debugging output gets upset if these aren't set. */
860 if (!TYPE_NAME (integer_type_node))
861 PUSH_TYPE ("c_integer", integer_type_node);
862 if (!TYPE_NAME (char_type_node))
863 PUSH_TYPE ("c_char", char_type_node);
865 #undef PUSH_TYPE
867 pvoid_type_node = build_pointer_type (void_type_node);
868 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
869 ppvoid_type_node = build_pointer_type (pvoid_type_node);
870 pchar_type_node = build_pointer_type (gfc_character1_type_node);
871 pfunc_type_node
872 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
874 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
875 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
876 since this function is called before gfc_init_constants. */
877 gfc_array_range_type
878 = build_range_type (gfc_array_index_type,
879 build_int_cst (gfc_array_index_type, 0),
880 NULL_TREE);
882 /* The maximum array element size that can be handled is determined
883 by the number of bits available to store this field in the array
884 descriptor. */
886 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
887 lo = ~ (unsigned HOST_WIDE_INT) 0;
888 if (n > HOST_BITS_PER_WIDE_INT)
889 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
890 else
891 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
892 gfc_max_array_element_size
893 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
895 size_type_node = gfc_array_index_type;
897 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
898 boolean_true_node = build_int_cst (boolean_type_node, 1);
899 boolean_false_node = build_int_cst (boolean_type_node, 0);
901 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
902 gfc_charlen_int_kind = 4;
903 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
906 /* Get the type node for the given type and kind. */
908 tree
909 gfc_get_int_type (int kind)
911 int index = gfc_validate_kind (BT_INTEGER, kind, true);
912 return index < 0 ? 0 : gfc_integer_types[index];
915 tree
916 gfc_get_real_type (int kind)
918 int index = gfc_validate_kind (BT_REAL, kind, true);
919 return index < 0 ? 0 : gfc_real_types[index];
922 tree
923 gfc_get_complex_type (int kind)
925 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
926 return index < 0 ? 0 : gfc_complex_types[index];
929 tree
930 gfc_get_logical_type (int kind)
932 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
933 return index < 0 ? 0 : gfc_logical_types[index];
936 tree
937 gfc_get_char_type (int kind)
939 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
940 return index < 0 ? 0 : gfc_character_types[index];
943 tree
944 gfc_get_pchar_type (int kind)
946 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
947 return index < 0 ? 0 : gfc_pcharacter_types[index];
951 /* Create a character type with the given kind and length. */
953 tree
954 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
956 tree bounds, type;
958 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
959 type = build_array_type (eltype, bounds);
960 TYPE_STRING_FLAG (type) = 1;
962 return type;
965 tree
966 gfc_get_character_type_len (int kind, tree len)
968 gfc_validate_kind (BT_CHARACTER, kind, false);
969 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
973 /* Get a type node for a character kind. */
975 tree
976 gfc_get_character_type (int kind, gfc_charlen * cl)
978 tree len;
980 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
982 return gfc_get_character_type_len (kind, len);
985 /* Covert a basic type. This will be an array for character types. */
987 tree
988 gfc_typenode_for_spec (gfc_typespec * spec)
990 tree basetype;
992 switch (spec->type)
994 case BT_UNKNOWN:
995 gcc_unreachable ();
997 case BT_INTEGER:
998 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
999 has been resolved. This is done so we can convert C_PTR and
1000 C_FUNPTR to simple variables that get translated to (void *). */
1001 if (spec->f90_type == BT_VOID)
1003 if (spec->u.derived
1004 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1005 basetype = ptr_type_node;
1006 else
1007 basetype = pfunc_type_node;
1009 else
1010 basetype = gfc_get_int_type (spec->kind);
1011 break;
1013 case BT_REAL:
1014 basetype = gfc_get_real_type (spec->kind);
1015 break;
1017 case BT_COMPLEX:
1018 basetype = gfc_get_complex_type (spec->kind);
1019 break;
1021 case BT_LOGICAL:
1022 basetype = gfc_get_logical_type (spec->kind);
1023 break;
1025 case BT_CHARACTER:
1026 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1027 break;
1029 case BT_DERIVED:
1030 case BT_CLASS:
1031 basetype = gfc_get_derived_type (spec->u.derived);
1033 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1034 type and kind to fit a (void *) and the basetype returned was a
1035 ptr_type_node. We need to pass up this new information to the
1036 symbol that was declared of type C_PTR or C_FUNPTR. */
1037 if (spec->u.derived->attr.is_iso_c)
1039 spec->type = spec->u.derived->ts.type;
1040 spec->kind = spec->u.derived->ts.kind;
1041 spec->f90_type = spec->u.derived->ts.f90_type;
1043 break;
1044 case BT_VOID:
1045 /* This is for the second arg to c_f_pointer and c_f_procpointer
1046 of the iso_c_binding module, to accept any ptr type. */
1047 basetype = ptr_type_node;
1048 if (spec->f90_type == BT_VOID)
1050 if (spec->u.derived
1051 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1052 basetype = ptr_type_node;
1053 else
1054 basetype = pfunc_type_node;
1056 break;
1057 default:
1058 gcc_unreachable ();
1060 return basetype;
1063 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1065 static tree
1066 gfc_conv_array_bound (gfc_expr * expr)
1068 /* If expr is an integer constant, return that. */
1069 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1070 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1072 /* Otherwise return NULL. */
1073 return NULL_TREE;
1076 tree
1077 gfc_get_element_type (tree type)
1079 tree element;
1081 if (GFC_ARRAY_TYPE_P (type))
1083 if (TREE_CODE (type) == POINTER_TYPE)
1084 type = TREE_TYPE (type);
1085 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1086 element = TREE_TYPE (type);
1088 else
1090 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1091 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1093 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1094 element = TREE_TYPE (element);
1096 gcc_assert (TREE_CODE (element) == ARRAY_TYPE);
1097 element = TREE_TYPE (element);
1100 return element;
1103 /* Build an array. This function is called from gfc_sym_type().
1104 Actually returns array descriptor type.
1106 Format of array descriptors is as follows:
1108 struct gfc_array_descriptor
1110 array *data
1111 index offset;
1112 index dtype;
1113 struct descriptor_dimension dimension[N_DIM];
1116 struct descriptor_dimension
1118 index stride;
1119 index lbound;
1120 index ubound;
1123 Translation code should use gfc_conv_descriptor_* rather than
1124 accessing the descriptor directly. Any changes to the array
1125 descriptor type will require changes in gfc_conv_descriptor_* and
1126 gfc_build_array_initializer.
1128 This is represented internally as a RECORD_TYPE. The index nodes
1129 are gfc_array_index_type and the data node is a pointer to the
1130 data. See below for the handling of character types.
1132 The dtype member is formatted as follows:
1133 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1134 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1135 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1137 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1138 this generated poor code for assumed/deferred size arrays. These
1139 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1140 of the GENERIC grammar. Also, there is no way to explicitly set
1141 the array stride, so all data must be packed(1). I've tried to
1142 mark all the functions which would require modification with a GCC
1143 ARRAYS comment.
1145 The data component points to the first element in the array. The
1146 offset field is the position of the origin of the array (i.e. element
1147 (0, 0 ...)). This may be outside the bounds of the array.
1149 An element is accessed by
1150 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1151 This gives good performance as the computation does not involve the
1152 bounds of the array. For packed arrays, this is optimized further
1153 by substituting the known strides.
1155 This system has one problem: all array bounds must be within 2^31
1156 elements of the origin (2^63 on 64-bit machines). For example
1157 integer, dimension (80000:90000, 80000:90000, 2) :: array
1158 may not work properly on 32-bit machines because 80000*80000 >
1159 2^31, so the calculation for stride2 would overflow. This may
1160 still work, but I haven't checked, and it relies on the overflow
1161 doing the right thing.
1163 The way to fix this problem is to access elements as follows:
1164 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1165 Obviously this is much slower. I will make this a compile time
1166 option, something like -fsmall-array-offsets. Mixing code compiled
1167 with and without this switch will work.
1169 (1) This can be worked around by modifying the upper bound of the
1170 previous dimension. This requires extra fields in the descriptor
1171 (both real_ubound and fake_ubound). */
1174 /* Returns true if the array sym does not require a descriptor. */
1177 gfc_is_nodesc_array (gfc_symbol * sym)
1179 gcc_assert (sym->attr.dimension);
1181 /* We only want local arrays. */
1182 if (sym->attr.pointer || sym->attr.allocatable)
1183 return 0;
1185 if (sym->attr.dummy)
1187 if (sym->as->type != AS_ASSUMED_SHAPE)
1188 return 1;
1189 else
1190 return 0;
1193 if (sym->attr.result || sym->attr.function)
1194 return 0;
1196 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1198 return 1;
1202 /* Create an array descriptor type. */
1204 static tree
1205 gfc_build_array_type (tree type, gfc_array_spec * as,
1206 enum gfc_array_kind akind, bool restricted,
1207 bool contiguous)
1209 tree lbound[GFC_MAX_DIMENSIONS];
1210 tree ubound[GFC_MAX_DIMENSIONS];
1211 int n;
1213 for (n = 0; n < as->rank; n++)
1215 /* Create expressions for the known bounds of the array. */
1216 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1217 lbound[n] = gfc_index_one_node;
1218 else
1219 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1220 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1223 if (as->type == AS_ASSUMED_SHAPE)
1224 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1225 : GFC_ARRAY_ASSUMED_SHAPE;
1226 return gfc_get_array_type_bounds (type, as->rank, as->corank, lbound,
1227 ubound, 0, akind, restricted);
1230 /* Returns the struct descriptor_dimension type. */
1232 static tree
1233 gfc_get_desc_dim_type (void)
1235 tree type;
1236 tree fieldlist = NULL_TREE, decl, *chain = NULL;
1238 if (gfc_desc_dim_type)
1239 return gfc_desc_dim_type;
1241 /* Build the type node. */
1242 type = make_node (RECORD_TYPE);
1244 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1245 TYPE_PACKED (type) = 1;
1247 /* Consists of the stride, lbound and ubound members. */
1248 decl = gfc_add_field_to_struct_1 (&fieldlist, type,
1249 get_identifier ("stride"),
1250 gfc_array_index_type, &chain);
1251 TREE_NO_WARNING (decl) = 1;
1253 decl = gfc_add_field_to_struct_1 (&fieldlist, type,
1254 get_identifier ("lbound"),
1255 gfc_array_index_type, &chain);
1256 TREE_NO_WARNING (decl) = 1;
1258 decl = gfc_add_field_to_struct_1 (&fieldlist, type,
1259 get_identifier ("ubound"),
1260 gfc_array_index_type, &chain);
1261 TREE_NO_WARNING (decl) = 1;
1263 /* Finish off the type. */
1264 TYPE_FIELDS (type) = fieldlist;
1266 gfc_finish_type (type);
1267 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1269 gfc_desc_dim_type = type;
1270 return type;
1274 /* Return the DTYPE for an array. This describes the type and type parameters
1275 of the array. */
1276 /* TODO: Only call this when the value is actually used, and make all the
1277 unknown cases abort. */
1279 tree
1280 gfc_get_dtype (tree type)
1282 tree size;
1283 int n;
1284 HOST_WIDE_INT i;
1285 tree tmp;
1286 tree dtype;
1287 tree etype;
1288 int rank;
1290 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1292 if (GFC_TYPE_ARRAY_DTYPE (type))
1293 return GFC_TYPE_ARRAY_DTYPE (type);
1295 rank = GFC_TYPE_ARRAY_RANK (type);
1296 etype = gfc_get_element_type (type);
1298 switch (TREE_CODE (etype))
1300 case INTEGER_TYPE:
1301 n = GFC_DTYPE_INTEGER;
1302 break;
1304 case BOOLEAN_TYPE:
1305 n = GFC_DTYPE_LOGICAL;
1306 break;
1308 case REAL_TYPE:
1309 n = GFC_DTYPE_REAL;
1310 break;
1312 case COMPLEX_TYPE:
1313 n = GFC_DTYPE_COMPLEX;
1314 break;
1316 /* We will never have arrays of arrays. */
1317 case RECORD_TYPE:
1318 n = GFC_DTYPE_DERIVED;
1319 break;
1321 case ARRAY_TYPE:
1322 n = GFC_DTYPE_CHARACTER;
1323 break;
1325 default:
1326 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1327 /* We can strange array types for temporary arrays. */
1328 return gfc_index_zero_node;
1331 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1332 size = TYPE_SIZE_UNIT (etype);
1334 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1335 if (size && INTEGER_CST_P (size))
1337 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1338 internal_error ("Array element size too big");
1340 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1342 dtype = build_int_cst (gfc_array_index_type, i);
1344 if (size && !INTEGER_CST_P (size))
1346 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1347 tmp = fold_build2 (LSHIFT_EXPR, gfc_array_index_type,
1348 fold_convert (gfc_array_index_type, size), tmp);
1349 dtype = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, dtype);
1351 /* If we don't know the size we leave it as zero. This should never happen
1352 for anything that is actually used. */
1353 /* TODO: Check this is actually true, particularly when repacking
1354 assumed size parameters. */
1356 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1357 return dtype;
1361 /* Build an array type for use without a descriptor, packed according
1362 to the value of PACKED. */
1364 tree
1365 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1366 bool restricted)
1368 tree range;
1369 tree type;
1370 tree tmp;
1371 int n;
1372 int known_stride;
1373 int known_offset;
1374 mpz_t offset;
1375 mpz_t stride;
1376 mpz_t delta;
1377 gfc_expr *expr;
1379 mpz_init_set_ui (offset, 0);
1380 mpz_init_set_ui (stride, 1);
1381 mpz_init (delta);
1383 /* We don't use build_array_type because this does not include include
1384 lang-specific information (i.e. the bounds of the array) when checking
1385 for duplicates. */
1386 type = make_node (ARRAY_TYPE);
1388 GFC_ARRAY_TYPE_P (type) = 1;
1389 TYPE_LANG_SPECIFIC (type)
1390 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1392 known_stride = (packed != PACKED_NO);
1393 known_offset = 1;
1394 for (n = 0; n < as->rank; n++)
1396 /* Fill in the stride and bound components of the type. */
1397 if (known_stride)
1398 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1399 else
1400 tmp = NULL_TREE;
1401 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1403 expr = as->lower[n];
1404 if (expr->expr_type == EXPR_CONSTANT)
1406 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1407 gfc_index_integer_kind);
1409 else
1411 known_stride = 0;
1412 tmp = NULL_TREE;
1414 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1416 if (known_stride)
1418 /* Calculate the offset. */
1419 mpz_mul (delta, stride, as->lower[n]->value.integer);
1420 mpz_sub (offset, offset, delta);
1422 else
1423 known_offset = 0;
1425 expr = as->upper[n];
1426 if (expr && expr->expr_type == EXPR_CONSTANT)
1428 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1429 gfc_index_integer_kind);
1431 else
1433 tmp = NULL_TREE;
1434 known_stride = 0;
1436 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1438 if (known_stride)
1440 /* Calculate the stride. */
1441 mpz_sub (delta, as->upper[n]->value.integer,
1442 as->lower[n]->value.integer);
1443 mpz_add_ui (delta, delta, 1);
1444 mpz_mul (stride, stride, delta);
1447 /* Only the first stride is known for partial packed arrays. */
1448 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1449 known_stride = 0;
1452 if (known_offset)
1454 GFC_TYPE_ARRAY_OFFSET (type) =
1455 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1457 else
1458 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1460 if (known_stride)
1462 GFC_TYPE_ARRAY_SIZE (type) =
1463 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1465 else
1466 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1468 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1469 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1470 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1471 NULL_TREE);
1472 /* TODO: use main type if it is unbounded. */
1473 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1474 build_pointer_type (build_array_type (etype, range));
1475 if (restricted)
1476 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1477 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1478 TYPE_QUAL_RESTRICT);
1480 if (known_stride)
1482 mpz_sub_ui (stride, stride, 1);
1483 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1485 else
1486 range = NULL_TREE;
1488 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1489 TYPE_DOMAIN (type) = range;
1491 build_pointer_type (etype);
1492 TREE_TYPE (type) = etype;
1494 layout_type (type);
1496 mpz_clear (offset);
1497 mpz_clear (stride);
1498 mpz_clear (delta);
1500 /* Represent packed arrays as multi-dimensional if they have rank >
1501 1 and with proper bounds, instead of flat arrays. This makes for
1502 better debug info. */
1503 if (known_offset)
1505 tree gtype = etype, rtype, type_decl;
1507 for (n = as->rank - 1; n >= 0; n--)
1509 rtype = build_range_type (gfc_array_index_type,
1510 GFC_TYPE_ARRAY_LBOUND (type, n),
1511 GFC_TYPE_ARRAY_UBOUND (type, n));
1512 gtype = build_array_type (gtype, rtype);
1514 TYPE_NAME (type) = type_decl = build_decl (input_location,
1515 TYPE_DECL, NULL, gtype);
1516 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1519 if (packed != PACKED_STATIC || !known_stride)
1521 /* For dummy arrays and automatic (heap allocated) arrays we
1522 want a pointer to the array. */
1523 type = build_pointer_type (type);
1524 if (restricted)
1525 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1526 GFC_ARRAY_TYPE_P (type) = 1;
1527 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1529 return type;
1532 /* Return or create the base type for an array descriptor. */
1534 static tree
1535 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted)
1537 tree fat_type, fieldlist = NULL_TREE, decl, arraytype, *chain = NULL;
1538 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1539 int idx = 2 * (codimen + dimen - 1) + restricted;
1541 gcc_assert (dimen >= 1 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1542 if (gfc_array_descriptor_base[idx])
1543 return gfc_array_descriptor_base[idx];
1545 /* Build the type node. */
1546 fat_type = make_node (RECORD_TYPE);
1548 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1549 TYPE_NAME (fat_type) = get_identifier (name);
1551 /* Add the data member as the first element of the descriptor. */
1552 decl = gfc_add_field_to_struct_1 (&fieldlist, fat_type,
1553 get_identifier ("data"),
1554 (restricted
1555 ? prvoid_type_node
1556 : ptr_type_node), &chain);
1558 /* Add the base component. */
1559 decl = gfc_add_field_to_struct_1 (&fieldlist, fat_type,
1560 get_identifier ("offset"),
1561 gfc_array_index_type, &chain);
1562 TREE_NO_WARNING (decl) = 1;
1564 /* Add the dtype component. */
1565 decl = gfc_add_field_to_struct_1 (&fieldlist, fat_type,
1566 get_identifier ("dtype"),
1567 gfc_array_index_type, &chain);
1568 TREE_NO_WARNING (decl) = 1;
1570 /* Build the array type for the stride and bound components. */
1571 arraytype =
1572 build_array_type (gfc_get_desc_dim_type (),
1573 build_range_type (gfc_array_index_type,
1574 gfc_index_zero_node,
1575 gfc_rank_cst[codimen + dimen - 1]));
1577 decl = gfc_add_field_to_struct_1 (&fieldlist, fat_type,
1578 get_identifier ("dim"),
1579 arraytype, &chain);
1580 TREE_NO_WARNING (decl) = 1;
1582 /* Finish off the type. */
1583 TYPE_FIELDS (fat_type) = fieldlist;
1585 gfc_finish_type (fat_type);
1586 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1588 gfc_array_descriptor_base[idx] = fat_type;
1589 return fat_type;
1592 /* Build an array (descriptor) type with given bounds. */
1594 tree
1595 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1596 tree * ubound, int packed,
1597 enum gfc_array_kind akind, bool restricted)
1599 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1600 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1601 const char *type_name;
1602 int n;
1604 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted);
1605 fat_type = build_distinct_type_copy (base_type);
1606 /* Make sure that nontarget and target array type have the same canonical
1607 type (and same stub decl for debug info). */
1608 base_type = gfc_get_array_descriptor_base (dimen, codimen, false);
1609 TYPE_CANONICAL (fat_type) = base_type;
1610 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1612 tmp = TYPE_NAME (etype);
1613 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1614 tmp = DECL_NAME (tmp);
1615 if (tmp)
1616 type_name = IDENTIFIER_POINTER (tmp);
1617 else
1618 type_name = "unknown";
1619 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1620 GFC_MAX_SYMBOL_LEN, type_name);
1621 TYPE_NAME (fat_type) = get_identifier (name);
1623 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1624 TYPE_LANG_SPECIFIC (fat_type)
1625 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1627 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1628 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1629 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1631 /* Build an array descriptor record type. */
1632 if (packed != 0)
1633 stride = gfc_index_one_node;
1634 else
1635 stride = NULL_TREE;
1636 for (n = 0; n < dimen; n++)
1638 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1640 if (lbound)
1641 lower = lbound[n];
1642 else
1643 lower = NULL_TREE;
1645 if (lower != NULL_TREE)
1647 if (INTEGER_CST_P (lower))
1648 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1649 else
1650 lower = NULL_TREE;
1653 upper = ubound[n];
1654 if (upper != NULL_TREE)
1656 if (INTEGER_CST_P (upper))
1657 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1658 else
1659 upper = NULL_TREE;
1662 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1664 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, upper, lower);
1665 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp,
1666 gfc_index_one_node);
1667 stride =
1668 fold_build2 (MULT_EXPR, gfc_array_index_type, tmp, stride);
1669 /* Check the folding worked. */
1670 gcc_assert (INTEGER_CST_P (stride));
1672 else
1673 stride = NULL_TREE;
1675 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1677 /* TODO: known offsets for descriptors. */
1678 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1680 /* We define data as an array with the correct size if possible.
1681 Much better than doing pointer arithmetic. */
1682 if (stride)
1683 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1684 int_const_binop (MINUS_EXPR, stride,
1685 integer_one_node, 0));
1686 else
1687 rtype = gfc_array_range_type;
1688 arraytype = build_array_type (etype, rtype);
1689 arraytype = build_pointer_type (arraytype);
1690 if (restricted)
1691 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1692 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1694 /* This will generate the base declarations we need to emit debug
1695 information for this type. FIXME: there must be a better way to
1696 avoid divergence between compilations with and without debug
1697 information. */
1699 struct array_descr_info info;
1700 gfc_get_array_descr_info (fat_type, &info);
1701 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1704 return fat_type;
1707 /* Build a pointer type. This function is called from gfc_sym_type(). */
1709 static tree
1710 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1712 /* Array pointer types aren't actually pointers. */
1713 if (sym->attr.dimension)
1714 return type;
1715 else
1716 return build_pointer_type (type);
1719 /* Return the type for a symbol. Special handling is required for character
1720 types to get the correct level of indirection.
1721 For functions return the return type.
1722 For subroutines return void_type_node.
1723 Calling this multiple times for the same symbol should be avoided,
1724 especially for character and array types. */
1726 tree
1727 gfc_sym_type (gfc_symbol * sym)
1729 tree type;
1730 int byref;
1731 bool restricted;
1733 /* Procedure Pointers inside COMMON blocks. */
1734 if (sym->attr.proc_pointer && sym->attr.in_common)
1736 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
1737 sym->attr.proc_pointer = 0;
1738 type = build_pointer_type (gfc_get_function_type (sym));
1739 sym->attr.proc_pointer = 1;
1740 return type;
1743 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
1744 return void_type_node;
1746 /* In the case of a function the fake result variable may have a
1747 type different from the function type, so don't return early in
1748 that case. */
1749 if (sym->backend_decl && !sym->attr.function)
1750 return TREE_TYPE (sym->backend_decl);
1752 if (sym->ts.type == BT_CHARACTER
1753 && ((sym->attr.function && sym->attr.is_bind_c)
1754 || (sym->attr.result
1755 && sym->ns->proc_name
1756 && sym->ns->proc_name->attr.is_bind_c)))
1757 type = gfc_character1_type_node;
1758 else
1759 type = gfc_typenode_for_spec (&sym->ts);
1761 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
1762 byref = 1;
1763 else
1764 byref = 0;
1766 restricted = !sym->attr.target && !sym->attr.pointer
1767 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
1768 if (sym->attr.dimension)
1770 if (gfc_is_nodesc_array (sym))
1772 /* If this is a character argument of unknown length, just use the
1773 base type. */
1774 if (sym->ts.type != BT_CHARACTER
1775 || !(sym->attr.dummy || sym->attr.function)
1776 || sym->ts.u.cl->backend_decl)
1778 type = gfc_get_nodesc_array_type (type, sym->as,
1779 byref ? PACKED_FULL
1780 : PACKED_STATIC,
1781 restricted);
1782 byref = 0;
1785 if (sym->attr.cray_pointee)
1786 GFC_POINTER_TYPE_P (type) = 1;
1788 else
1790 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
1791 if (sym->attr.pointer)
1792 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
1793 : GFC_ARRAY_POINTER;
1794 else if (sym->attr.allocatable)
1795 akind = GFC_ARRAY_ALLOCATABLE;
1796 type = gfc_build_array_type (type, sym->as, akind, restricted,
1797 sym->attr.contiguous);
1800 else
1802 if (sym->attr.allocatable || sym->attr.pointer)
1803 type = gfc_build_pointer_type (sym, type);
1804 if (sym->attr.pointer || sym->attr.cray_pointee)
1805 GFC_POINTER_TYPE_P (type) = 1;
1808 /* We currently pass all parameters by reference.
1809 See f95_get_function_decl. For dummy function parameters return the
1810 function type. */
1811 if (byref)
1813 /* We must use pointer types for potentially absent variables. The
1814 optimizers assume a reference type argument is never NULL. */
1815 if (sym->attr.optional || sym->ns->proc_name->attr.entry_master)
1816 type = build_pointer_type (type);
1817 else
1819 type = build_reference_type (type);
1820 if (restricted)
1821 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1825 return (type);
1828 /* Layout and output debug info for a record type. */
1830 void
1831 gfc_finish_type (tree type)
1833 tree decl;
1835 decl = build_decl (input_location,
1836 TYPE_DECL, NULL_TREE, type);
1837 TYPE_STUB_DECL (type) = decl;
1838 layout_type (type);
1839 rest_of_type_compilation (type, 1);
1840 rest_of_decl_compilation (decl, 1, 0);
1843 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
1844 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
1845 to the fieldlist pointed to by FIELDLIST through *CHAIN.
1847 Returns a pointer to the new field. */
1849 static tree
1850 gfc_add_field_to_struct_1 (tree *fieldlist, tree context,
1851 tree name, tree type, tree **chain)
1853 tree decl = build_decl (input_location, FIELD_DECL, name, type);
1855 DECL_CONTEXT (decl) = context;
1856 TREE_CHAIN (decl) = NULL_TREE;
1857 if (*fieldlist == NULL_TREE)
1858 *fieldlist = decl;
1859 if (chain != NULL)
1861 if (*chain != NULL)
1862 **chain = decl;
1863 *chain = &TREE_CHAIN (decl);
1866 return decl;
1869 /* Like `gfc_add_field_to_struct_1', but adds alignment
1870 information. */
1872 tree
1873 gfc_add_field_to_struct (tree *fieldlist, tree context,
1874 tree name, tree type, tree **chain)
1876 tree decl = gfc_add_field_to_struct_1 (fieldlist, context,
1877 name, type, chain);
1879 DECL_INITIAL (decl) = 0;
1880 DECL_ALIGN (decl) = 0;
1881 DECL_USER_ALIGN (decl) = 0;
1883 return decl;
1887 /* Copy the backend_decl and component backend_decls if
1888 the two derived type symbols are "equal", as described
1889 in 4.4.2 and resolved by gfc_compare_derived_types. */
1891 static int
1892 copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
1893 bool from_gsym)
1895 gfc_component *to_cm;
1896 gfc_component *from_cm;
1898 if (from->backend_decl == NULL
1899 || !gfc_compare_derived_types (from, to))
1900 return 0;
1902 to->backend_decl = from->backend_decl;
1904 to_cm = to->components;
1905 from_cm = from->components;
1907 /* Copy the component declarations. If a component is itself
1908 a derived type, we need a copy of its component declarations.
1909 This is done by recursing into gfc_get_derived_type and
1910 ensures that the component's component declarations have
1911 been built. If it is a character, we need the character
1912 length, as well. */
1913 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
1915 to_cm->backend_decl = from_cm->backend_decl;
1916 if ((!from_cm->attr.pointer || from_gsym)
1917 && from_cm->ts.type == BT_DERIVED)
1918 gfc_get_derived_type (to_cm->ts.u.derived);
1920 else if (from_cm->ts.type == BT_CHARACTER)
1921 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
1924 return 1;
1928 /* Build a tree node for a procedure pointer component. */
1930 tree
1931 gfc_get_ppc_type (gfc_component* c)
1933 tree t;
1935 /* Explicit interface. */
1936 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
1937 return build_pointer_type (gfc_get_function_type (c->ts.interface));
1939 /* Implicit interface (only return value may be known). */
1940 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
1941 t = gfc_typenode_for_spec (&c->ts);
1942 else
1943 t = void_type_node;
1945 return build_pointer_type (build_function_type_list (t, NULL_TREE));
1949 /* Build a tree node for a derived type. If there are equal
1950 derived types, with different local names, these are built
1951 at the same time. If an equal derived type has been built
1952 in a parent namespace, this is used. */
1954 tree
1955 gfc_get_derived_type (gfc_symbol * derived)
1957 tree typenode = NULL, field = NULL, field_type = NULL, fieldlist = NULL;
1958 tree canonical = NULL_TREE;
1959 tree *chain = NULL;
1960 bool got_canonical = false;
1961 gfc_component *c;
1962 gfc_dt_list *dt;
1963 gfc_namespace *ns;
1964 gfc_gsymbol *gsym;
1966 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
1968 /* See if it's one of the iso_c_binding derived types. */
1969 if (derived->attr.is_iso_c == 1)
1971 if (derived->backend_decl)
1972 return derived->backend_decl;
1974 if (derived->intmod_sym_id == ISOCBINDING_PTR)
1975 derived->backend_decl = ptr_type_node;
1976 else
1977 derived->backend_decl = pfunc_type_node;
1979 /* Create a backend_decl for the __c_ptr_c_address field. */
1980 derived->components->backend_decl =
1981 gfc_add_field_to_struct (&(derived->backend_decl->type.values),
1982 derived->backend_decl,
1983 get_identifier (derived->components->name),
1984 gfc_typenode_for_spec (
1985 &(derived->components->ts)), NULL);
1987 derived->ts.kind = gfc_index_integer_kind;
1988 derived->ts.type = BT_INTEGER;
1989 /* Set the f90_type to BT_VOID as a way to recognize something of type
1990 BT_INTEGER that needs to fit a void * for the purpose of the
1991 iso_c_binding derived types. */
1992 derived->ts.f90_type = BT_VOID;
1994 return derived->backend_decl;
1997 /* If use associated, use the module type for this one. */
1998 if (gfc_option.flag_whole_file
1999 && derived->backend_decl == NULL
2000 && derived->attr.use_assoc
2001 && derived->module)
2003 gsym = gfc_find_gsymbol (gfc_gsym_root, derived->module);
2004 if (gsym && gsym->ns && gsym->type == GSYM_MODULE)
2006 gfc_symbol *s;
2007 s = NULL;
2008 gfc_find_symbol (derived->name, gsym->ns, 0, &s);
2009 if (s && s->backend_decl)
2011 copy_dt_decls_ifequal (s, derived, true);
2012 goto copy_derived_types;
2017 /* If a whole file compilation, the derived types from an earlier
2018 namespace can be used as the the canonical type. */
2019 if (gfc_option.flag_whole_file
2020 && derived->backend_decl == NULL
2021 && !derived->attr.use_assoc
2022 && gfc_global_ns_list)
2024 for (ns = gfc_global_ns_list;
2025 ns->translated && !got_canonical;
2026 ns = ns->sibling)
2028 dt = ns->derived_types;
2029 for (; dt && !canonical; dt = dt->next)
2031 copy_dt_decls_ifequal (dt->derived, derived, true);
2032 if (derived->backend_decl)
2033 got_canonical = true;
2038 /* Store up the canonical type to be added to this one. */
2039 if (got_canonical)
2041 if (TYPE_CANONICAL (derived->backend_decl))
2042 canonical = TYPE_CANONICAL (derived->backend_decl);
2043 else
2044 canonical = derived->backend_decl;
2046 derived->backend_decl = NULL_TREE;
2049 /* derived->backend_decl != 0 means we saw it before, but its
2050 components' backend_decl may have not been built. */
2051 if (derived->backend_decl)
2053 /* Its components' backend_decl have been built or we are
2054 seeing recursion through the formal arglist of a procedure
2055 pointer component. */
2056 if (TYPE_FIELDS (derived->backend_decl)
2057 || derived->attr.proc_pointer_comp)
2058 return derived->backend_decl;
2059 else
2060 typenode = derived->backend_decl;
2062 else
2064 /* We see this derived type first time, so build the type node. */
2065 typenode = make_node (RECORD_TYPE);
2066 TYPE_NAME (typenode) = get_identifier (derived->name);
2067 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2068 derived->backend_decl = typenode;
2071 /* Go through the derived type components, building them as
2072 necessary. The reason for doing this now is that it is
2073 possible to recurse back to this derived type through a
2074 pointer component (PR24092). If this happens, the fields
2075 will be built and so we can return the type. */
2076 for (c = derived->components; c; c = c->next)
2078 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2079 continue;
2081 if ((!c->attr.pointer && !c->attr.proc_pointer)
2082 || c->ts.u.derived->backend_decl == NULL)
2083 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2085 if (c->ts.u.derived && c->ts.u.derived->attr.is_iso_c)
2087 /* Need to copy the modified ts from the derived type. The
2088 typespec was modified because C_PTR/C_FUNPTR are translated
2089 into (void *) from derived types. */
2090 c->ts.type = c->ts.u.derived->ts.type;
2091 c->ts.kind = c->ts.u.derived->ts.kind;
2092 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2093 if (c->initializer)
2095 c->initializer->ts.type = c->ts.type;
2096 c->initializer->ts.kind = c->ts.kind;
2097 c->initializer->ts.f90_type = c->ts.f90_type;
2098 c->initializer->expr_type = EXPR_NULL;
2103 if (TYPE_FIELDS (derived->backend_decl))
2104 return derived->backend_decl;
2106 /* Build the type member list. Install the newly created RECORD_TYPE
2107 node as DECL_CONTEXT of each FIELD_DECL. */
2108 fieldlist = NULL_TREE;
2109 for (c = derived->components; c; c = c->next)
2111 if (c->attr.proc_pointer)
2112 field_type = gfc_get_ppc_type (c);
2113 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2114 field_type = c->ts.u.derived->backend_decl;
2115 else
2117 if (c->ts.type == BT_CHARACTER)
2119 /* Evaluate the string length. */
2120 gfc_conv_const_charlen (c->ts.u.cl);
2121 gcc_assert (c->ts.u.cl->backend_decl);
2124 field_type = gfc_typenode_for_spec (&c->ts);
2127 /* This returns an array descriptor type. Initialization may be
2128 required. */
2129 if (c->attr.dimension && !c->attr.proc_pointer)
2131 if (c->attr.pointer || c->attr.allocatable)
2133 enum gfc_array_kind akind;
2134 if (c->attr.pointer)
2135 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2136 : GFC_ARRAY_POINTER;
2137 else
2138 akind = GFC_ARRAY_ALLOCATABLE;
2139 /* Pointers to arrays aren't actually pointer types. The
2140 descriptors are separate, but the data is common. */
2141 field_type = gfc_build_array_type (field_type, c->as, akind,
2142 !c->attr.target
2143 && !c->attr.pointer,
2144 c->attr.contiguous);
2146 else
2147 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2148 PACKED_STATIC,
2149 !c->attr.target);
2151 else if ((c->attr.pointer || c->attr.allocatable)
2152 && !c->attr.proc_pointer)
2153 field_type = build_pointer_type (field_type);
2155 /* vtype fields can point to different types to the base type. */
2156 if (c->ts.type == BT_DERIVED && c->ts.u.derived->attr.vtype)
2157 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2158 ptr_mode, true);
2160 field = gfc_add_field_to_struct (&fieldlist, typenode,
2161 get_identifier (c->name),
2162 field_type, &chain);
2163 if (c->loc.lb)
2164 gfc_set_decl_location (field, &c->loc);
2165 else if (derived->declared_at.lb)
2166 gfc_set_decl_location (field, &derived->declared_at);
2168 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2170 gcc_assert (field);
2171 if (!c->backend_decl)
2172 c->backend_decl = field;
2175 /* Now we have the final fieldlist. Record it, then lay out the
2176 derived type, including the fields. */
2177 TYPE_FIELDS (typenode) = fieldlist;
2178 if (canonical)
2179 TYPE_CANONICAL (typenode) = canonical;
2181 gfc_finish_type (typenode);
2182 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2183 if (derived->module && derived->ns->proc_name
2184 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2186 if (derived->ns->proc_name->backend_decl
2187 && TREE_CODE (derived->ns->proc_name->backend_decl)
2188 == NAMESPACE_DECL)
2190 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2191 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2192 = derived->ns->proc_name->backend_decl;
2196 derived->backend_decl = typenode;
2198 copy_derived_types:
2200 for (dt = gfc_derived_types; dt; dt = dt->next)
2201 copy_dt_decls_ifequal (derived, dt->derived, false);
2203 return derived->backend_decl;
2208 gfc_return_by_reference (gfc_symbol * sym)
2210 if (!sym->attr.function)
2211 return 0;
2213 if (sym->attr.dimension)
2214 return 1;
2216 if (sym->ts.type == BT_CHARACTER
2217 && !sym->attr.is_bind_c
2218 && (!sym->attr.result
2219 || !sym->ns->proc_name
2220 || !sym->ns->proc_name->attr.is_bind_c))
2221 return 1;
2223 /* Possibly return complex numbers by reference for g77 compatibility.
2224 We don't do this for calls to intrinsics (as the library uses the
2225 -fno-f2c calling convention), nor for calls to functions which always
2226 require an explicit interface, as no compatibility problems can
2227 arise there. */
2228 if (gfc_option.flag_f2c
2229 && sym->ts.type == BT_COMPLEX
2230 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2231 return 1;
2233 return 0;
2236 static tree
2237 gfc_get_mixed_entry_union (gfc_namespace *ns)
2239 tree type;
2240 tree fieldlist;
2241 tree *chain = NULL;
2242 char name[GFC_MAX_SYMBOL_LEN + 1];
2243 gfc_entry_list *el, *el2;
2245 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2246 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2248 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2250 /* Build the type node. */
2251 type = make_node (UNION_TYPE);
2253 TYPE_NAME (type) = get_identifier (name);
2254 fieldlist = NULL;
2256 for (el = ns->entries; el; el = el->next)
2258 /* Search for duplicates. */
2259 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2260 if (el2->sym->result == el->sym->result)
2261 break;
2263 if (el == el2)
2264 gfc_add_field_to_struct_1 (&fieldlist, type,
2265 get_identifier (el->sym->result->name),
2266 gfc_sym_type (el->sym->result), &chain);
2269 /* Finish off the type. */
2270 TYPE_FIELDS (type) = fieldlist;
2272 gfc_finish_type (type);
2273 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2274 return type;
2277 tree
2278 gfc_get_function_type (gfc_symbol * sym)
2280 tree type;
2281 tree typelist;
2282 gfc_formal_arglist *f;
2283 gfc_symbol *arg;
2284 int nstr;
2285 int alternate_return;
2287 /* Make sure this symbol is a function, a subroutine or the main
2288 program. */
2289 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2290 || sym->attr.flavor == FL_PROGRAM);
2292 if (sym->backend_decl)
2293 return TREE_TYPE (sym->backend_decl);
2295 nstr = 0;
2296 alternate_return = 0;
2297 typelist = NULL_TREE;
2299 if (sym->attr.entry_master)
2301 /* Additional parameter for selecting an entry point. */
2302 typelist = gfc_chainon_list (typelist, gfc_array_index_type);
2305 if (sym->result)
2306 arg = sym->result;
2307 else
2308 arg = sym;
2310 if (arg->ts.type == BT_CHARACTER)
2311 gfc_conv_const_charlen (arg->ts.u.cl);
2313 /* Some functions we use an extra parameter for the return value. */
2314 if (gfc_return_by_reference (sym))
2316 type = gfc_sym_type (arg);
2317 if (arg->ts.type == BT_COMPLEX
2318 || arg->attr.dimension
2319 || arg->ts.type == BT_CHARACTER)
2320 type = build_reference_type (type);
2322 typelist = gfc_chainon_list (typelist, type);
2323 if (arg->ts.type == BT_CHARACTER)
2324 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2327 /* Build the argument types for the function. */
2328 for (f = sym->formal; f; f = f->next)
2330 arg = f->sym;
2331 if (arg)
2333 /* Evaluate constant character lengths here so that they can be
2334 included in the type. */
2335 if (arg->ts.type == BT_CHARACTER)
2336 gfc_conv_const_charlen (arg->ts.u.cl);
2338 if (arg->attr.flavor == FL_PROCEDURE)
2340 type = gfc_get_function_type (arg);
2341 type = build_pointer_type (type);
2343 else
2344 type = gfc_sym_type (arg);
2346 /* Parameter Passing Convention
2348 We currently pass all parameters by reference.
2349 Parameters with INTENT(IN) could be passed by value.
2350 The problem arises if a function is called via an implicit
2351 prototype. In this situation the INTENT is not known.
2352 For this reason all parameters to global functions must be
2353 passed by reference. Passing by value would potentially
2354 generate bad code. Worse there would be no way of telling that
2355 this code was bad, except that it would give incorrect results.
2357 Contained procedures could pass by value as these are never
2358 used without an explicit interface, and cannot be passed as
2359 actual parameters for a dummy procedure. */
2360 if (arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2361 nstr++;
2362 typelist = gfc_chainon_list (typelist, type);
2364 else
2366 if (sym->attr.subroutine)
2367 alternate_return = 1;
2371 /* Add hidden string length parameters. */
2372 while (nstr--)
2373 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2375 if (typelist)
2376 typelist = gfc_chainon_list (typelist, void_type_node);
2378 if (alternate_return)
2379 type = integer_type_node;
2380 else if (!sym->attr.function || gfc_return_by_reference (sym))
2381 type = void_type_node;
2382 else if (sym->attr.mixed_entry_master)
2383 type = gfc_get_mixed_entry_union (sym->ns);
2384 else if (gfc_option.flag_f2c
2385 && sym->ts.type == BT_REAL
2386 && sym->ts.kind == gfc_default_real_kind
2387 && !sym->attr.always_explicit)
2389 /* Special case: f2c calling conventions require that (scalar)
2390 default REAL functions return the C type double instead. f2c
2391 compatibility is only an issue with functions that don't
2392 require an explicit interface, as only these could be
2393 implemented in Fortran 77. */
2394 sym->ts.kind = gfc_default_double_kind;
2395 type = gfc_typenode_for_spec (&sym->ts);
2396 sym->ts.kind = gfc_default_real_kind;
2398 else if (sym->result && sym->result->attr.proc_pointer)
2399 /* Procedure pointer return values. */
2401 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2403 /* Unset proc_pointer as gfc_get_function_type
2404 is called recursively. */
2405 sym->result->attr.proc_pointer = 0;
2406 type = build_pointer_type (gfc_get_function_type (sym->result));
2407 sym->result->attr.proc_pointer = 1;
2409 else
2410 type = gfc_sym_type (sym->result);
2412 else
2413 type = gfc_sym_type (sym);
2415 type = build_function_type (type, typelist);
2417 return type;
2420 /* Language hooks for middle-end access to type nodes. */
2422 /* Return an integer type with BITS bits of precision,
2423 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2425 tree
2426 gfc_type_for_size (unsigned bits, int unsignedp)
2428 if (!unsignedp)
2430 int i;
2431 for (i = 0; i <= MAX_INT_KINDS; ++i)
2433 tree type = gfc_integer_types[i];
2434 if (type && bits == TYPE_PRECISION (type))
2435 return type;
2438 /* Handle TImode as a special case because it is used by some backends
2439 (e.g. ARM) even though it is not available for normal use. */
2440 #if HOST_BITS_PER_WIDE_INT >= 64
2441 if (bits == TYPE_PRECISION (intTI_type_node))
2442 return intTI_type_node;
2443 #endif
2445 else
2447 if (bits == TYPE_PRECISION (unsigned_intQI_type_node))
2448 return unsigned_intQI_type_node;
2449 if (bits == TYPE_PRECISION (unsigned_intHI_type_node))
2450 return unsigned_intHI_type_node;
2451 if (bits == TYPE_PRECISION (unsigned_intSI_type_node))
2452 return unsigned_intSI_type_node;
2453 if (bits == TYPE_PRECISION (unsigned_intDI_type_node))
2454 return unsigned_intDI_type_node;
2455 if (bits == TYPE_PRECISION (unsigned_intTI_type_node))
2456 return unsigned_intTI_type_node;
2459 return NULL_TREE;
2462 /* Return a data type that has machine mode MODE. If the mode is an
2463 integer, then UNSIGNEDP selects between signed and unsigned types. */
2465 tree
2466 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2468 int i;
2469 tree *base;
2471 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2472 base = gfc_real_types;
2473 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2474 base = gfc_complex_types;
2475 else if (SCALAR_INT_MODE_P (mode))
2476 return gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2477 else if (VECTOR_MODE_P (mode))
2479 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2480 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2481 if (inner_type != NULL_TREE)
2482 return build_vector_type_for_mode (inner_type, mode);
2483 return NULL_TREE;
2485 else
2486 return NULL_TREE;
2488 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2490 tree type = base[i];
2491 if (type && mode == TYPE_MODE (type))
2492 return type;
2495 return NULL_TREE;
2498 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2499 in that case. */
2501 bool
2502 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2504 int rank, dim;
2505 bool indirect = false;
2506 tree etype, ptype, field, t, base_decl;
2507 tree data_off, dim_off, dim_size, elem_size;
2508 tree lower_suboff, upper_suboff, stride_suboff;
2510 if (! GFC_DESCRIPTOR_TYPE_P (type))
2512 if (! POINTER_TYPE_P (type))
2513 return false;
2514 type = TREE_TYPE (type);
2515 if (! GFC_DESCRIPTOR_TYPE_P (type))
2516 return false;
2517 indirect = true;
2520 rank = GFC_TYPE_ARRAY_RANK (type);
2521 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
2522 return false;
2524 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
2525 gcc_assert (POINTER_TYPE_P (etype));
2526 etype = TREE_TYPE (etype);
2527 gcc_assert (TREE_CODE (etype) == ARRAY_TYPE);
2528 etype = TREE_TYPE (etype);
2529 /* Can't handle variable sized elements yet. */
2530 if (int_size_in_bytes (etype) <= 0)
2531 return false;
2532 /* Nor non-constant lower bounds in assumed shape arrays. */
2533 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
2534 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
2536 for (dim = 0; dim < rank; dim++)
2537 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
2538 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
2539 return false;
2542 memset (info, '\0', sizeof (*info));
2543 info->ndimensions = rank;
2544 info->element_type = etype;
2545 ptype = build_pointer_type (gfc_array_index_type);
2546 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
2547 if (!base_decl)
2549 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
2550 indirect ? build_pointer_type (ptype) : ptype);
2551 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
2553 info->base_decl = base_decl;
2554 if (indirect)
2555 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
2557 if (GFC_TYPE_ARRAY_SPAN (type))
2558 elem_size = GFC_TYPE_ARRAY_SPAN (type);
2559 else
2560 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
2561 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
2562 data_off = byte_position (field);
2563 field = TREE_CHAIN (field);
2564 field = TREE_CHAIN (field);
2565 field = TREE_CHAIN (field);
2566 dim_off = byte_position (field);
2567 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
2568 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
2569 stride_suboff = byte_position (field);
2570 field = TREE_CHAIN (field);
2571 lower_suboff = byte_position (field);
2572 field = TREE_CHAIN (field);
2573 upper_suboff = byte_position (field);
2575 t = base_decl;
2576 if (!integer_zerop (data_off))
2577 t = build2 (POINTER_PLUS_EXPR, ptype, t, data_off);
2578 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
2579 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
2580 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
2581 info->allocated = build2 (NE_EXPR, boolean_type_node,
2582 info->data_location, null_pointer_node);
2583 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
2584 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
2585 info->associated = build2 (NE_EXPR, boolean_type_node,
2586 info->data_location, null_pointer_node);
2588 for (dim = 0; dim < rank; dim++)
2590 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2591 size_binop (PLUS_EXPR, dim_off, lower_suboff));
2592 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2593 info->dimen[dim].lower_bound = t;
2594 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2595 size_binop (PLUS_EXPR, dim_off, upper_suboff));
2596 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2597 info->dimen[dim].upper_bound = t;
2598 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
2599 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
2601 /* Assumed shape arrays have known lower bounds. */
2602 info->dimen[dim].upper_bound
2603 = build2 (MINUS_EXPR, gfc_array_index_type,
2604 info->dimen[dim].upper_bound,
2605 info->dimen[dim].lower_bound);
2606 info->dimen[dim].lower_bound
2607 = fold_convert (gfc_array_index_type,
2608 GFC_TYPE_ARRAY_LBOUND (type, dim));
2609 info->dimen[dim].upper_bound
2610 = build2 (PLUS_EXPR, gfc_array_index_type,
2611 info->dimen[dim].lower_bound,
2612 info->dimen[dim].upper_bound);
2614 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2615 size_binop (PLUS_EXPR, dim_off, stride_suboff));
2616 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2617 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
2618 info->dimen[dim].stride = t;
2619 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
2622 return true;
2625 #include "gt-fortran-trans-types.h"