* config/pdp11/pdp11-protos.md (arith_operand,
[official-gcc.git] / gcc / tree-affine.c
bloba02d56cdc8d1fa742954e59648e3df89be23b275
1 /* Operations with affine combinations of trees.
2 Copyright (C) 2005, 2007, 2008, 2010 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tree.h"
24 #include "output.h"
25 #include "tree-pretty-print.h"
26 #include "tree-dump.h"
27 #include "pointer-set.h"
28 #include "tree-affine.h"
29 #include "gimple.h"
30 #include "flags.h"
32 /* Extends CST as appropriate for the affine combinations COMB. */
34 double_int
35 double_int_ext_for_comb (double_int cst, aff_tree *comb)
37 return double_int_sext (cst, TYPE_PRECISION (comb->type));
40 /* Initializes affine combination COMB so that its value is zero in TYPE. */
42 static void
43 aff_combination_zero (aff_tree *comb, tree type)
45 comb->type = type;
46 comb->offset = double_int_zero;
47 comb->n = 0;
48 comb->rest = NULL_TREE;
51 /* Sets COMB to CST. */
53 void
54 aff_combination_const (aff_tree *comb, tree type, double_int cst)
56 aff_combination_zero (comb, type);
57 comb->offset = double_int_ext_for_comb (cst, comb);
60 /* Sets COMB to single element ELT. */
62 void
63 aff_combination_elt (aff_tree *comb, tree type, tree elt)
65 aff_combination_zero (comb, type);
67 comb->n = 1;
68 comb->elts[0].val = elt;
69 comb->elts[0].coef = double_int_one;
72 /* Scales COMB by SCALE. */
74 void
75 aff_combination_scale (aff_tree *comb, double_int scale)
77 unsigned i, j;
79 scale = double_int_ext_for_comb (scale, comb);
80 if (double_int_one_p (scale))
81 return;
83 if (double_int_zero_p (scale))
85 aff_combination_zero (comb, comb->type);
86 return;
89 comb->offset
90 = double_int_ext_for_comb (double_int_mul (scale, comb->offset), comb);
91 for (i = 0, j = 0; i < comb->n; i++)
93 double_int new_coef;
95 new_coef
96 = double_int_ext_for_comb (double_int_mul (scale, comb->elts[i].coef),
97 comb);
98 /* A coefficient may become zero due to overflow. Remove the zero
99 elements. */
100 if (double_int_zero_p (new_coef))
101 continue;
102 comb->elts[j].coef = new_coef;
103 comb->elts[j].val = comb->elts[i].val;
104 j++;
106 comb->n = j;
108 if (comb->rest)
110 tree type = comb->type;
111 if (POINTER_TYPE_P (type))
112 type = sizetype;
113 if (comb->n < MAX_AFF_ELTS)
115 comb->elts[comb->n].coef = scale;
116 comb->elts[comb->n].val = comb->rest;
117 comb->rest = NULL_TREE;
118 comb->n++;
120 else
121 comb->rest = fold_build2 (MULT_EXPR, type, comb->rest,
122 double_int_to_tree (type, scale));
126 /* Adds ELT * SCALE to COMB. */
128 void
129 aff_combination_add_elt (aff_tree *comb, tree elt, double_int scale)
131 unsigned i;
132 tree type;
134 scale = double_int_ext_for_comb (scale, comb);
135 if (double_int_zero_p (scale))
136 return;
138 for (i = 0; i < comb->n; i++)
139 if (operand_equal_p (comb->elts[i].val, elt, 0))
141 double_int new_coef;
143 new_coef = double_int_add (comb->elts[i].coef, scale);
144 new_coef = double_int_ext_for_comb (new_coef, comb);
145 if (!double_int_zero_p (new_coef))
147 comb->elts[i].coef = new_coef;
148 return;
151 comb->n--;
152 comb->elts[i] = comb->elts[comb->n];
154 if (comb->rest)
156 gcc_assert (comb->n == MAX_AFF_ELTS - 1);
157 comb->elts[comb->n].coef = double_int_one;
158 comb->elts[comb->n].val = comb->rest;
159 comb->rest = NULL_TREE;
160 comb->n++;
162 return;
164 if (comb->n < MAX_AFF_ELTS)
166 comb->elts[comb->n].coef = scale;
167 comb->elts[comb->n].val = elt;
168 comb->n++;
169 return;
172 type = comb->type;
173 if (POINTER_TYPE_P (type))
174 type = sizetype;
176 if (double_int_one_p (scale))
177 elt = fold_convert (type, elt);
178 else
179 elt = fold_build2 (MULT_EXPR, type,
180 fold_convert (type, elt),
181 double_int_to_tree (type, scale));
183 if (comb->rest)
184 comb->rest = fold_build2 (PLUS_EXPR, type, comb->rest,
185 elt);
186 else
187 comb->rest = elt;
190 /* Adds CST to C. */
192 static void
193 aff_combination_add_cst (aff_tree *c, double_int cst)
195 c->offset = double_int_ext_for_comb (double_int_add (c->offset, cst), c);
198 /* Adds COMB2 to COMB1. */
200 void
201 aff_combination_add (aff_tree *comb1, aff_tree *comb2)
203 unsigned i;
205 aff_combination_add_cst (comb1, comb2->offset);
206 for (i = 0; i < comb2->n; i++)
207 aff_combination_add_elt (comb1, comb2->elts[i].val, comb2->elts[i].coef);
208 if (comb2->rest)
209 aff_combination_add_elt (comb1, comb2->rest, double_int_one);
212 /* Converts affine combination COMB to TYPE. */
214 void
215 aff_combination_convert (aff_tree *comb, tree type)
217 unsigned i, j;
218 tree comb_type = comb->type;
220 if (TYPE_PRECISION (type) > TYPE_PRECISION (comb_type))
222 tree val = fold_convert (type, aff_combination_to_tree (comb));
223 tree_to_aff_combination (val, type, comb);
224 return;
227 comb->type = type;
228 if (comb->rest && !POINTER_TYPE_P (type))
229 comb->rest = fold_convert (type, comb->rest);
231 if (TYPE_PRECISION (type) == TYPE_PRECISION (comb_type))
232 return;
234 comb->offset = double_int_ext_for_comb (comb->offset, comb);
235 for (i = j = 0; i < comb->n; i++)
237 double_int new_coef = double_int_ext_for_comb (comb->elts[i].coef, comb);
238 if (double_int_zero_p (new_coef))
239 continue;
240 comb->elts[j].coef = new_coef;
241 comb->elts[j].val = fold_convert (type, comb->elts[i].val);
242 j++;
245 comb->n = j;
246 if (comb->n < MAX_AFF_ELTS && comb->rest)
248 comb->elts[comb->n].coef = double_int_one;
249 comb->elts[comb->n].val = comb->rest;
250 comb->rest = NULL_TREE;
251 comb->n++;
255 /* Splits EXPR into an affine combination of parts. */
257 void
258 tree_to_aff_combination (tree expr, tree type, aff_tree *comb)
260 aff_tree tmp;
261 enum tree_code code;
262 tree cst, core, toffset;
263 HOST_WIDE_INT bitpos, bitsize;
264 enum machine_mode mode;
265 int unsignedp, volatilep;
267 STRIP_NOPS (expr);
269 code = TREE_CODE (expr);
270 switch (code)
272 case INTEGER_CST:
273 aff_combination_const (comb, type, tree_to_double_int (expr));
274 return;
276 case POINTER_PLUS_EXPR:
277 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
278 tree_to_aff_combination (TREE_OPERAND (expr, 1), sizetype, &tmp);
279 aff_combination_add (comb, &tmp);
280 return;
282 case PLUS_EXPR:
283 case MINUS_EXPR:
284 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
285 tree_to_aff_combination (TREE_OPERAND (expr, 1), type, &tmp);
286 if (code == MINUS_EXPR)
287 aff_combination_scale (&tmp, double_int_minus_one);
288 aff_combination_add (comb, &tmp);
289 return;
291 case MULT_EXPR:
292 cst = TREE_OPERAND (expr, 1);
293 if (TREE_CODE (cst) != INTEGER_CST)
294 break;
295 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
296 aff_combination_scale (comb, tree_to_double_int (cst));
297 return;
299 case NEGATE_EXPR:
300 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
301 aff_combination_scale (comb, double_int_minus_one);
302 return;
304 case BIT_NOT_EXPR:
305 /* ~x = -x - 1 */
306 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
307 aff_combination_scale (comb, double_int_minus_one);
308 aff_combination_add_cst (comb, double_int_minus_one);
309 return;
311 case ADDR_EXPR:
312 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
313 if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF)
315 expr = TREE_OPERAND (expr, 0);
316 tree_to_aff_combination (TREE_OPERAND (expr, 0), type, comb);
317 tree_to_aff_combination (TREE_OPERAND (expr, 1), sizetype, &tmp);
318 aff_combination_add (comb, &tmp);
319 return;
321 core = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, &bitpos,
322 &toffset, &mode, &unsignedp, &volatilep,
323 false);
324 if (bitpos % BITS_PER_UNIT != 0)
325 break;
326 aff_combination_const (comb, type,
327 uhwi_to_double_int (bitpos / BITS_PER_UNIT));
328 core = build_fold_addr_expr (core);
329 if (TREE_CODE (core) == ADDR_EXPR)
330 aff_combination_add_elt (comb, core, double_int_one);
331 else
333 tree_to_aff_combination (core, type, &tmp);
334 aff_combination_add (comb, &tmp);
336 if (toffset)
338 tree_to_aff_combination (toffset, type, &tmp);
339 aff_combination_add (comb, &tmp);
341 return;
343 case MEM_REF:
344 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
345 tree_to_aff_combination (TREE_OPERAND (TREE_OPERAND (expr, 0), 0),
346 type, comb);
347 else if (integer_zerop (TREE_OPERAND (expr, 1)))
349 aff_combination_elt (comb, type, expr);
350 return;
352 else
353 aff_combination_elt (comb, type,
354 build2 (MEM_REF, TREE_TYPE (expr),
355 TREE_OPERAND (expr, 0),
356 build_int_cst
357 (TREE_TYPE (TREE_OPERAND (expr, 1)), 0)));
358 tree_to_aff_combination (TREE_OPERAND (expr, 1), sizetype, &tmp);
359 aff_combination_add (comb, &tmp);
360 return;
362 default:
363 break;
366 aff_combination_elt (comb, type, expr);
369 /* Creates EXPR + ELT * SCALE in TYPE. EXPR is taken from affine
370 combination COMB. */
372 static tree
373 add_elt_to_tree (tree expr, tree type, tree elt, double_int scale,
374 aff_tree *comb)
376 enum tree_code code;
377 tree type1 = type;
378 if (POINTER_TYPE_P (type))
379 type1 = sizetype;
381 scale = double_int_ext_for_comb (scale, comb);
382 elt = fold_convert (type1, elt);
384 if (double_int_one_p (scale))
386 if (!expr)
387 return fold_convert (type, elt);
389 if (POINTER_TYPE_P (type))
390 return fold_build2 (POINTER_PLUS_EXPR, type, expr, elt);
391 return fold_build2 (PLUS_EXPR, type, expr, elt);
394 if (double_int_minus_one_p (scale))
396 if (!expr)
397 return fold_convert (type, fold_build1 (NEGATE_EXPR, type1, elt));
399 if (POINTER_TYPE_P (type))
401 elt = fold_build1 (NEGATE_EXPR, type1, elt);
402 return fold_build2 (POINTER_PLUS_EXPR, type, expr, elt);
404 return fold_build2 (MINUS_EXPR, type, expr, elt);
407 if (!expr)
408 return fold_convert (type,
409 fold_build2 (MULT_EXPR, type1, elt,
410 double_int_to_tree (type1, scale)));
412 if (double_int_negative_p (scale))
414 code = MINUS_EXPR;
415 scale = double_int_neg (scale);
417 else
418 code = PLUS_EXPR;
420 elt = fold_build2 (MULT_EXPR, type1, elt,
421 double_int_to_tree (type1, scale));
422 if (POINTER_TYPE_P (type))
424 if (code == MINUS_EXPR)
425 elt = fold_build1 (NEGATE_EXPR, type1, elt);
426 return fold_build2 (POINTER_PLUS_EXPR, type, expr, elt);
428 return fold_build2 (code, type, expr, elt);
431 /* Makes tree from the affine combination COMB. */
433 tree
434 aff_combination_to_tree (aff_tree *comb)
436 tree type = comb->type;
437 tree expr = comb->rest;
438 unsigned i;
439 double_int off, sgn;
440 tree type1 = type;
441 if (POINTER_TYPE_P (type))
442 type1 = sizetype;
444 gcc_assert (comb->n == MAX_AFF_ELTS || comb->rest == NULL_TREE);
446 for (i = 0; i < comb->n; i++)
447 expr = add_elt_to_tree (expr, type, comb->elts[i].val, comb->elts[i].coef,
448 comb);
450 /* Ensure that we get x - 1, not x + (-1) or x + 0xff..f if x is
451 unsigned. */
452 if (double_int_negative_p (comb->offset))
454 off = double_int_neg (comb->offset);
455 sgn = double_int_minus_one;
457 else
459 off = comb->offset;
460 sgn = double_int_one;
462 return add_elt_to_tree (expr, type, double_int_to_tree (type1, off), sgn,
463 comb);
466 /* Copies the tree elements of COMB to ensure that they are not shared. */
468 void
469 unshare_aff_combination (aff_tree *comb)
471 unsigned i;
473 for (i = 0; i < comb->n; i++)
474 comb->elts[i].val = unshare_expr (comb->elts[i].val);
475 if (comb->rest)
476 comb->rest = unshare_expr (comb->rest);
479 /* Remove M-th element from COMB. */
481 void
482 aff_combination_remove_elt (aff_tree *comb, unsigned m)
484 comb->n--;
485 if (m <= comb->n)
486 comb->elts[m] = comb->elts[comb->n];
487 if (comb->rest)
489 comb->elts[comb->n].coef = double_int_one;
490 comb->elts[comb->n].val = comb->rest;
491 comb->rest = NULL_TREE;
492 comb->n++;
496 /* Adds C * COEF * VAL to R. VAL may be NULL, in that case only
497 C * COEF is added to R. */
500 static void
501 aff_combination_add_product (aff_tree *c, double_int coef, tree val,
502 aff_tree *r)
504 unsigned i;
505 tree aval, type;
507 for (i = 0; i < c->n; i++)
509 aval = c->elts[i].val;
510 if (val)
512 type = TREE_TYPE (aval);
513 aval = fold_build2 (MULT_EXPR, type, aval,
514 fold_convert (type, val));
517 aff_combination_add_elt (r, aval,
518 double_int_mul (coef, c->elts[i].coef));
521 if (c->rest)
523 aval = c->rest;
524 if (val)
526 type = TREE_TYPE (aval);
527 aval = fold_build2 (MULT_EXPR, type, aval,
528 fold_convert (type, val));
531 aff_combination_add_elt (r, aval, coef);
534 if (val)
535 aff_combination_add_elt (r, val,
536 double_int_mul (coef, c->offset));
537 else
538 aff_combination_add_cst (r, double_int_mul (coef, c->offset));
541 /* Multiplies C1 by C2, storing the result to R */
543 void
544 aff_combination_mult (aff_tree *c1, aff_tree *c2, aff_tree *r)
546 unsigned i;
547 gcc_assert (TYPE_PRECISION (c1->type) == TYPE_PRECISION (c2->type));
549 aff_combination_zero (r, c1->type);
551 for (i = 0; i < c2->n; i++)
552 aff_combination_add_product (c1, c2->elts[i].coef, c2->elts[i].val, r);
553 if (c2->rest)
554 aff_combination_add_product (c1, double_int_one, c2->rest, r);
555 aff_combination_add_product (c1, c2->offset, NULL, r);
558 /* Returns the element of COMB whose value is VAL, or NULL if no such
559 element exists. If IDX is not NULL, it is set to the index of VAL in
560 COMB. */
562 static struct aff_comb_elt *
563 aff_combination_find_elt (aff_tree *comb, tree val, unsigned *idx)
565 unsigned i;
567 for (i = 0; i < comb->n; i++)
568 if (operand_equal_p (comb->elts[i].val, val, 0))
570 if (idx)
571 *idx = i;
573 return &comb->elts[i];
576 return NULL;
579 /* Element of the cache that maps ssa name NAME to its expanded form
580 as an affine expression EXPANSION. */
582 struct name_expansion
584 aff_tree expansion;
586 /* True if the expansion for the name is just being generated. */
587 unsigned in_progress : 1;
590 /* Expands SSA names in COMB recursively. CACHE is used to cache the
591 results. */
593 void
594 aff_combination_expand (aff_tree *comb ATTRIBUTE_UNUSED,
595 struct pointer_map_t **cache ATTRIBUTE_UNUSED)
597 unsigned i;
598 aff_tree to_add, current, curre;
599 tree e, rhs;
600 gimple def;
601 double_int scale;
602 void **slot;
603 struct name_expansion *exp;
605 aff_combination_zero (&to_add, comb->type);
606 for (i = 0; i < comb->n; i++)
608 tree type, name;
609 enum tree_code code;
611 e = comb->elts[i].val;
612 type = TREE_TYPE (e);
613 name = e;
614 /* Look through some conversions. */
615 if (TREE_CODE (e) == NOP_EXPR
616 && (TYPE_PRECISION (type)
617 >= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (e, 0)))))
618 name = TREE_OPERAND (e, 0);
619 if (TREE_CODE (name) != SSA_NAME)
620 continue;
621 def = SSA_NAME_DEF_STMT (name);
622 if (!is_gimple_assign (def) || gimple_assign_lhs (def) != name)
623 continue;
625 code = gimple_assign_rhs_code (def);
626 if (code != SSA_NAME
627 && !IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
628 && (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
629 || !is_gimple_min_invariant (gimple_assign_rhs1 (def))))
630 continue;
632 /* We do not know whether the reference retains its value at the
633 place where the expansion is used. */
634 if (TREE_CODE_CLASS (code) == tcc_reference)
635 continue;
637 if (!*cache)
638 *cache = pointer_map_create ();
639 slot = pointer_map_insert (*cache, e);
640 exp = (struct name_expansion *) *slot;
642 if (!exp)
644 exp = XNEW (struct name_expansion);
645 exp->in_progress = 1;
646 *slot = exp;
647 /* In principle this is a generally valid folding, but
648 it is not unconditionally an optimization, so do it
649 here and not in fold_unary. */
650 /* Convert (T1)(X *+- CST) into (T1)X *+- (T1)CST if T1 is wider
651 than the type of X and overflow for the type of X is
652 undefined. */
653 if (e != name
654 && INTEGRAL_TYPE_P (type)
655 && INTEGRAL_TYPE_P (TREE_TYPE (name))
656 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (name))
657 && TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (name))
658 && (code == PLUS_EXPR || code == MINUS_EXPR || code == MULT_EXPR)
659 && TREE_CODE (gimple_assign_rhs2 (def)) == INTEGER_CST)
660 rhs = fold_build2 (code, type,
661 fold_convert (type, gimple_assign_rhs1 (def)),
662 fold_convert (type, gimple_assign_rhs2 (def)));
663 else
665 rhs = gimple_assign_rhs_to_tree (def);
666 if (e != name)
667 rhs = fold_convert (type, rhs);
669 tree_to_aff_combination_expand (rhs, comb->type, &current, cache);
670 exp->expansion = current;
671 exp->in_progress = 0;
673 else
675 /* Since we follow the definitions in the SSA form, we should not
676 enter a cycle unless we pass through a phi node. */
677 gcc_assert (!exp->in_progress);
678 current = exp->expansion;
681 /* Accumulate the new terms to TO_ADD, so that we do not modify
682 COMB while traversing it; include the term -coef * E, to remove
683 it from COMB. */
684 scale = comb->elts[i].coef;
685 aff_combination_zero (&curre, comb->type);
686 aff_combination_add_elt (&curre, e, double_int_neg (scale));
687 aff_combination_scale (&current, scale);
688 aff_combination_add (&to_add, &current);
689 aff_combination_add (&to_add, &curre);
691 aff_combination_add (comb, &to_add);
694 /* Similar to tree_to_aff_combination, but follows SSA name definitions
695 and expands them recursively. CACHE is used to cache the expansions
696 of the ssa names, to avoid exponential time complexity for cases
697 like
699 a1 = a0 + a0;
700 a2 = a1 + a1;
701 a3 = a2 + a2;
702 ... */
704 void
705 tree_to_aff_combination_expand (tree expr, tree type, aff_tree *comb,
706 struct pointer_map_t **cache)
708 tree_to_aff_combination (expr, type, comb);
709 aff_combination_expand (comb, cache);
712 /* Frees memory occupied by struct name_expansion in *VALUE. Callback for
713 pointer_map_traverse. */
715 static bool
716 free_name_expansion (const void *key ATTRIBUTE_UNUSED, void **value,
717 void *data ATTRIBUTE_UNUSED)
719 struct name_expansion *const exp = (struct name_expansion *) *value;
721 free (exp);
722 return true;
725 /* Frees memory allocated for the CACHE used by
726 tree_to_aff_combination_expand. */
728 void
729 free_affine_expand_cache (struct pointer_map_t **cache)
731 if (!*cache)
732 return;
734 pointer_map_traverse (*cache, free_name_expansion, NULL);
735 pointer_map_destroy (*cache);
736 *cache = NULL;
739 /* If VAL != CST * DIV for any constant CST, returns false.
740 Otherwise, if VAL != 0 (and hence CST != 0), and *MULT_SET is true,
741 additionally compares CST and MULT, and if they are different,
742 returns false. Finally, if neither of these two cases occur,
743 true is returned, and if CST != 0, CST is stored to MULT and
744 MULT_SET is set to true. */
746 static bool
747 double_int_constant_multiple_p (double_int val, double_int div,
748 bool *mult_set, double_int *mult)
750 double_int rem, cst;
752 if (double_int_zero_p (val))
753 return true;
755 if (double_int_zero_p (div))
756 return false;
758 cst = double_int_sdivmod (val, div, FLOOR_DIV_EXPR, &rem);
759 if (!double_int_zero_p (rem))
760 return false;
762 if (*mult_set && !double_int_equal_p (*mult, cst))
763 return false;
765 *mult_set = true;
766 *mult = cst;
767 return true;
770 /* Returns true if VAL = X * DIV for some constant X. If this is the case,
771 X is stored to MULT. */
773 bool
774 aff_combination_constant_multiple_p (aff_tree *val, aff_tree *div,
775 double_int *mult)
777 bool mult_set = false;
778 unsigned i;
780 if (val->n == 0 && double_int_zero_p (val->offset))
782 *mult = double_int_zero;
783 return true;
785 if (val->n != div->n)
786 return false;
788 if (val->rest || div->rest)
789 return false;
791 if (!double_int_constant_multiple_p (val->offset, div->offset,
792 &mult_set, mult))
793 return false;
795 for (i = 0; i < div->n; i++)
797 struct aff_comb_elt *elt
798 = aff_combination_find_elt (val, div->elts[i].val, NULL);
799 if (!elt)
800 return false;
801 if (!double_int_constant_multiple_p (elt->coef, div->elts[i].coef,
802 &mult_set, mult))
803 return false;
806 gcc_assert (mult_set);
807 return true;
810 /* Prints the affine VAL to the FILE. */
812 void
813 print_aff (FILE *file, aff_tree *val)
815 unsigned i;
816 bool uns = TYPE_UNSIGNED (val->type);
817 if (POINTER_TYPE_P (val->type))
818 uns = false;
819 fprintf (file, "{\n type = ");
820 print_generic_expr (file, val->type, TDF_VOPS|TDF_MEMSYMS);
821 fprintf (file, "\n offset = ");
822 dump_double_int (file, val->offset, uns);
823 if (val->n > 0)
825 fprintf (file, "\n elements = {\n");
826 for (i = 0; i < val->n; i++)
828 fprintf (file, " [%d] = ", i);
829 print_generic_expr (file, val->elts[i].val, TDF_VOPS|TDF_MEMSYMS);
831 fprintf (file, " * ");
832 dump_double_int (file, val->elts[i].coef, uns);
833 if (i != val->n - 1)
834 fprintf (file, ", \n");
836 fprintf (file, "\n }");
838 if (val->rest)
840 fprintf (file, "\n rest = ");
841 print_generic_expr (file, val->rest, TDF_VOPS|TDF_MEMSYMS);
843 fprintf (file, "\n}");
846 /* Prints the affine VAL to the standard error, used for debugging. */
848 DEBUG_FUNCTION void
849 debug_aff (aff_tree *val)
851 print_aff (stderr, val);
852 fprintf (stderr, "\n");
855 /* Returns address of the reference REF in ADDR. The size of the accessed
856 location is stored to SIZE. */
858 void
859 get_inner_reference_aff (tree ref, aff_tree *addr, double_int *size)
861 HOST_WIDE_INT bitsize, bitpos;
862 tree toff;
863 enum machine_mode mode;
864 int uns, vol;
865 aff_tree tmp;
866 tree base = get_inner_reference (ref, &bitsize, &bitpos, &toff, &mode,
867 &uns, &vol, false);
868 tree base_addr = build_fold_addr_expr (base);
870 /* ADDR = &BASE + TOFF + BITPOS / BITS_PER_UNIT. */
872 tree_to_aff_combination (base_addr, sizetype, addr);
874 if (toff)
876 tree_to_aff_combination (toff, sizetype, &tmp);
877 aff_combination_add (addr, &tmp);
880 aff_combination_const (&tmp, sizetype,
881 shwi_to_double_int (bitpos / BITS_PER_UNIT));
882 aff_combination_add (addr, &tmp);
884 *size = shwi_to_double_int ((bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT);