* cgraph.c (hash_node, eq_node, cgraph_node, cgraph_remove_node)
[official-gcc.git] / boehm-gc / os_dep.c
blobfd195e1c806c6b9acdfa775fd4d0b4a5d584b984
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 # include "private/gc_priv.h"
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
26 # define __KERNEL__
27 # include <asm/signal.h>
28 # undef __KERNEL__
29 # else
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
35 # if 2 <= __GLIBC__
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
46 # endif
47 # endif
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
49 && !defined(MSWINCE)
50 # include <sys/types.h>
51 # if !defined(MSWIN32) && !defined(SUNOS4)
52 # include <unistd.h>
53 # endif
54 # endif
56 # include <stdio.h>
57 # if defined(MSWINCE)
58 # define SIGSEGV 0 /* value is irrelevant */
59 # else
60 # include <signal.h>
61 # endif
63 /* Blatantly OS dependent routines, except for those that are related */
64 /* to dynamic loading. */
66 # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
67 # define NEED_FIND_LIMIT
68 # endif
70 # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
71 # define NEED_FIND_LIMIT
72 # endif
74 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
75 # define NEED_FIND_LIMIT
76 # endif
78 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
79 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
80 # define NEED_FIND_LIMIT
81 # endif
83 #if defined(FREEBSD) && defined(I386)
84 # include <machine/trap.h>
85 # if !defined(PCR)
86 # define NEED_FIND_LIMIT
87 # endif
88 #endif
90 #ifdef NEED_FIND_LIMIT
91 # include <setjmp.h>
92 #endif
94 #ifdef AMIGA
95 # define GC_AMIGA_DEF
96 # include "AmigaOS.c"
97 # undef GC_AMIGA_DEF
98 #endif
100 #if defined(MSWIN32) || defined(MSWINCE)
101 # define WIN32_LEAN_AND_MEAN
102 # define NOSERVICE
103 # include <windows.h>
104 #endif
106 #ifdef MACOS
107 # include <Processes.h>
108 #endif
110 #ifdef IRIX5
111 # include <sys/uio.h>
112 # include <malloc.h> /* for locking */
113 #endif
114 #ifdef USE_MMAP
115 # include <sys/types.h>
116 # include <sys/mman.h>
117 # include <sys/stat.h>
118 #endif
120 #ifdef UNIX_LIKE
121 # include <fcntl.h>
122 #endif
124 #if defined(SUNOS5SIGS) || defined (HURD) || defined(LINUX)
125 # ifdef SUNOS5SIGS
126 # include <sys/siginfo.h>
127 # endif
128 # undef setjmp
129 # undef longjmp
130 # define setjmp(env) sigsetjmp(env, 1)
131 # define longjmp(env, val) siglongjmp(env, val)
132 # define jmp_buf sigjmp_buf
133 #endif
135 #ifdef DARWIN
136 /* for get_etext and friends */
137 #include <mach-o/getsect.h>
138 #endif
140 #ifdef DJGPP
141 /* Apparently necessary for djgpp 2.01. May cause problems with */
142 /* other versions. */
143 typedef long unsigned int caddr_t;
144 #endif
146 #ifdef PCR
147 # include "il/PCR_IL.h"
148 # include "th/PCR_ThCtl.h"
149 # include "mm/PCR_MM.h"
150 #endif
152 #if !defined(NO_EXECUTE_PERMISSION)
153 # define OPT_PROT_EXEC PROT_EXEC
154 #else
155 # define OPT_PROT_EXEC 0
156 #endif
158 #if defined(LINUX) && \
159 (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
161 /* We need to parse /proc/self/maps, either to find dynamic libraries, */
162 /* and/or to find the register backing store base (IA64). Do it once */
163 /* here. */
165 #define READ read
167 /* Repeatedly perform a read call until the buffer is filled or */
168 /* we encounter EOF. */
169 ssize_t GC_repeat_read(int fd, char *buf, size_t count)
171 ssize_t num_read = 0;
172 ssize_t result;
174 while (num_read < count) {
175 result = READ(fd, buf + num_read, count - num_read);
176 if (result < 0) return result;
177 if (result == 0) break;
178 num_read += result;
180 return num_read;
184 * Apply fn to a buffer containing the contents of /proc/self/maps.
185 * Return the result of fn or, if we failed, 0.
188 word GC_apply_to_maps(word (*fn)(char *))
190 int f;
191 int result;
192 int maps_size;
193 char maps_temp[32768];
194 char *maps_buf;
196 /* Read /proc/self/maps */
197 /* Note that we may not allocate, and thus can't use stdio. */
198 f = open("/proc/self/maps", O_RDONLY);
199 if (-1 == f) return 0;
200 /* stat() doesn't work for /proc/self/maps, so we have to
201 read it to find out how large it is... */
202 maps_size = 0;
203 do {
204 result = GC_repeat_read(f, maps_temp, sizeof(maps_temp));
205 if (result <= 0) return 0;
206 maps_size += result;
207 } while (result == sizeof(maps_temp));
209 if (maps_size > sizeof(maps_temp)) {
210 /* If larger than our buffer, close and re-read it. */
211 close(f);
212 f = open("/proc/self/maps", O_RDONLY);
213 if (-1 == f) return 0;
214 maps_buf = alloca(maps_size);
215 if (NULL == maps_buf) return 0;
216 result = GC_repeat_read(f, maps_buf, maps_size);
217 if (result <= 0) return 0;
218 } else {
219 /* Otherwise use the fixed size buffer */
220 maps_buf = maps_temp;
223 close(f);
224 maps_buf[result] = '\0';
226 /* Apply fn to result. */
227 return fn(maps_buf);
230 #endif /* Need GC_apply_to_maps */
232 #if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
234 // GC_parse_map_entry parses an entry from /proc/self/maps so we can
235 // locate all writable data segments that belong to shared libraries.
236 // The format of one of these entries and the fields we care about
237 // is as follows:
238 // XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537 name of mapping...\n
239 // ^^^^^^^^ ^^^^^^^^ ^^^^ ^^
240 // start end prot maj_dev
241 // 0 9 18 32
243 // For 64 bit ABIs:
244 // 0 17 34 56
246 // The parser is called with a pointer to the entry and the return value
247 // is either NULL or is advanced to the next entry(the byte after the
248 // trailing '\n'.)
250 #if CPP_WORDSZ == 32
251 # define OFFSET_MAP_START 0
252 # define OFFSET_MAP_END 9
253 # define OFFSET_MAP_PROT 18
254 # define OFFSET_MAP_MAJDEV 32
255 # define ADDR_WIDTH 8
256 #endif
258 #if CPP_WORDSZ == 64
259 # define OFFSET_MAP_START 0
260 # define OFFSET_MAP_END 17
261 # define OFFSET_MAP_PROT 34
262 # define OFFSET_MAP_MAJDEV 56
263 # define ADDR_WIDTH 16
264 #endif
267 * Assign various fields of the first line in buf_ptr to *start, *end,
268 * *prot_buf and *maj_dev. Only *prot_buf may be set for unwritable maps.
270 char *GC_parse_map_entry(char *buf_ptr, word *start, word *end,
271 char *prot_buf, unsigned int *maj_dev)
273 int i;
274 char *tok;
276 if (buf_ptr == NULL || *buf_ptr == '\0') {
277 return NULL;
280 memcpy(prot_buf, buf_ptr+OFFSET_MAP_PROT, 4);
281 /* do the protections first. */
282 prot_buf[4] = '\0';
284 if (prot_buf[1] == 'w') {/* we can skip all of this if it's not writable. */
286 tok = buf_ptr;
287 buf_ptr[OFFSET_MAP_START+ADDR_WIDTH] = '\0';
288 *start = strtoul(tok, NULL, 16);
290 tok = buf_ptr+OFFSET_MAP_END;
291 buf_ptr[OFFSET_MAP_END+ADDR_WIDTH] = '\0';
292 *end = strtoul(tok, NULL, 16);
294 buf_ptr += OFFSET_MAP_MAJDEV;
295 tok = buf_ptr;
296 while (*buf_ptr != ':') buf_ptr++;
297 *buf_ptr++ = '\0';
298 *maj_dev = strtoul(tok, NULL, 16);
301 while (*buf_ptr && *buf_ptr++ != '\n');
303 return buf_ptr;
306 #endif /* Need to parse /proc/self/maps. */
308 #if defined(SEARCH_FOR_DATA_START)
309 /* The I386 case can be handled without a search. The Alpha case */
310 /* used to be handled differently as well, but the rules changed */
311 /* for recent Linux versions. This seems to be the easiest way to */
312 /* cover all versions. */
314 # ifdef LINUX
315 /* Some Linux distributions arrange to define __data_start. Some */
316 /* define data_start as a weak symbol. The latter is technically */
317 /* broken, since the user program may define data_start, in which */
318 /* case we lose. Nonetheless, we try both, prefering __data_start. */
319 /* We assume gcc-compatible pragmas. */
320 # pragma weak __data_start
321 extern int __data_start[];
322 # pragma weak data_start
323 extern int data_start[];
324 # endif /* LINUX */
325 extern int _end[];
327 ptr_t GC_data_start;
329 void GC_init_linux_data_start()
331 extern ptr_t GC_find_limit();
333 # ifdef LINUX
334 /* Try the easy approaches first: */
335 if ((ptr_t)__data_start != 0) {
336 GC_data_start = (ptr_t)(__data_start);
337 return;
339 if ((ptr_t)data_start != 0) {
340 GC_data_start = (ptr_t)(data_start);
341 return;
343 # endif /* LINUX */
344 GC_data_start = GC_find_limit((ptr_t)(_end), FALSE);
346 #endif
348 # ifdef ECOS
350 # ifndef ECOS_GC_MEMORY_SIZE
351 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
352 # endif /* ECOS_GC_MEMORY_SIZE */
354 // setjmp() function, as described in ANSI para 7.6.1.1
355 #define setjmp( __env__ ) hal_setjmp( __env__ )
357 // FIXME: This is a simple way of allocating memory which is
358 // compatible with ECOS early releases. Later releases use a more
359 // sophisticated means of allocating memory than this simple static
360 // allocator, but this method is at least bound to work.
361 static char memory[ECOS_GC_MEMORY_SIZE];
362 static char *brk = memory;
364 static void *tiny_sbrk(ptrdiff_t increment)
366 void *p = brk;
368 brk += increment;
370 if (brk > memory + sizeof memory)
372 brk -= increment;
373 return NULL;
376 return p;
378 #define sbrk tiny_sbrk
379 # endif /* ECOS */
381 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
382 ptr_t GC_data_start;
384 void GC_init_netbsd_elf()
386 extern ptr_t GC_find_limit();
387 extern char **environ;
388 /* This may need to be environ, without the underscore, for */
389 /* some versions. */
390 GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
392 #endif
394 # ifdef OS2
396 # include <stddef.h>
398 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
400 struct exe_hdr {
401 unsigned short magic_number;
402 unsigned short padding[29];
403 long new_exe_offset;
406 #define E_MAGIC(x) (x).magic_number
407 #define EMAGIC 0x5A4D
408 #define E_LFANEW(x) (x).new_exe_offset
410 struct e32_exe {
411 unsigned char magic_number[2];
412 unsigned char byte_order;
413 unsigned char word_order;
414 unsigned long exe_format_level;
415 unsigned short cpu;
416 unsigned short os;
417 unsigned long padding1[13];
418 unsigned long object_table_offset;
419 unsigned long object_count;
420 unsigned long padding2[31];
423 #define E32_MAGIC1(x) (x).magic_number[0]
424 #define E32MAGIC1 'L'
425 #define E32_MAGIC2(x) (x).magic_number[1]
426 #define E32MAGIC2 'X'
427 #define E32_BORDER(x) (x).byte_order
428 #define E32LEBO 0
429 #define E32_WORDER(x) (x).word_order
430 #define E32LEWO 0
431 #define E32_CPU(x) (x).cpu
432 #define E32CPU286 1
433 #define E32_OBJTAB(x) (x).object_table_offset
434 #define E32_OBJCNT(x) (x).object_count
436 struct o32_obj {
437 unsigned long size;
438 unsigned long base;
439 unsigned long flags;
440 unsigned long pagemap;
441 unsigned long mapsize;
442 unsigned long reserved;
445 #define O32_FLAGS(x) (x).flags
446 #define OBJREAD 0x0001L
447 #define OBJWRITE 0x0002L
448 #define OBJINVALID 0x0080L
449 #define O32_SIZE(x) (x).size
450 #define O32_BASE(x) (x).base
452 # else /* IBM's compiler */
454 /* A kludge to get around what appears to be a header file bug */
455 # ifndef WORD
456 # define WORD unsigned short
457 # endif
458 # ifndef DWORD
459 # define DWORD unsigned long
460 # endif
462 # define EXE386 1
463 # include <newexe.h>
464 # include <exe386.h>
466 # endif /* __IBMC__ */
468 # define INCL_DOSEXCEPTIONS
469 # define INCL_DOSPROCESS
470 # define INCL_DOSERRORS
471 # define INCL_DOSMODULEMGR
472 # define INCL_DOSMEMMGR
473 # include <os2.h>
476 /* Disable and enable signals during nontrivial allocations */
478 void GC_disable_signals(void)
480 ULONG nest;
482 DosEnterMustComplete(&nest);
483 if (nest != 1) ABORT("nested GC_disable_signals");
486 void GC_enable_signals(void)
488 ULONG nest;
490 DosExitMustComplete(&nest);
491 if (nest != 0) ABORT("GC_enable_signals");
495 # else
497 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
498 && !defined(MSWINCE) \
499 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
500 && !defined(NOSYS) && !defined(ECOS)
502 # if defined(sigmask) && !defined(UTS4) && !defined(HURD)
503 /* Use the traditional BSD interface */
504 # define SIGSET_T int
505 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
506 # define SIG_FILL(set) (set) = 0x7fffffff
507 /* Setting the leading bit appears to provoke a bug in some */
508 /* longjmp implementations. Most systems appear not to have */
509 /* a signal 32. */
510 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
511 # else
512 /* Use POSIX/SYSV interface */
513 # define SIGSET_T sigset_t
514 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
515 # define SIG_FILL(set) sigfillset(&set)
516 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
517 # endif
519 static GC_bool mask_initialized = FALSE;
521 static SIGSET_T new_mask;
523 static SIGSET_T old_mask;
525 static SIGSET_T dummy;
527 #if defined(PRINTSTATS) && !defined(THREADS)
528 # define CHECK_SIGNALS
529 int GC_sig_disabled = 0;
530 #endif
532 void GC_disable_signals()
534 if (!mask_initialized) {
535 SIG_FILL(new_mask);
537 SIG_DEL(new_mask, SIGSEGV);
538 SIG_DEL(new_mask, SIGILL);
539 SIG_DEL(new_mask, SIGQUIT);
540 # ifdef SIGBUS
541 SIG_DEL(new_mask, SIGBUS);
542 # endif
543 # ifdef SIGIOT
544 SIG_DEL(new_mask, SIGIOT);
545 # endif
546 # ifdef SIGEMT
547 SIG_DEL(new_mask, SIGEMT);
548 # endif
549 # ifdef SIGTRAP
550 SIG_DEL(new_mask, SIGTRAP);
551 # endif
552 mask_initialized = TRUE;
554 # ifdef CHECK_SIGNALS
555 if (GC_sig_disabled != 0) ABORT("Nested disables");
556 GC_sig_disabled++;
557 # endif
558 SIGSETMASK(old_mask,new_mask);
561 void GC_enable_signals()
563 # ifdef CHECK_SIGNALS
564 if (GC_sig_disabled != 1) ABORT("Unmatched enable");
565 GC_sig_disabled--;
566 # endif
567 SIGSETMASK(dummy,old_mask);
570 # endif /* !PCR */
572 # endif /*!OS/2 */
574 /* Ivan Demakov: simplest way (to me) */
575 #if defined (DOS4GW)
576 void GC_disable_signals() { }
577 void GC_enable_signals() { }
578 #endif
580 /* Find the page size */
581 word GC_page_size;
583 # if defined(MSWIN32) || defined(MSWINCE)
584 void GC_setpagesize()
586 GetSystemInfo(&GC_sysinfo);
587 GC_page_size = GC_sysinfo.dwPageSize;
590 # else
591 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
592 || defined(USE_MUNMAP)
593 void GC_setpagesize()
595 GC_page_size = GETPAGESIZE();
597 # else
598 /* It's acceptable to fake it. */
599 void GC_setpagesize()
601 GC_page_size = HBLKSIZE;
603 # endif
604 # endif
607 * Find the base of the stack.
608 * Used only in single-threaded environment.
609 * With threads, GC_mark_roots needs to know how to do this.
610 * Called with allocator lock held.
612 # if defined(MSWIN32) || defined(MSWINCE)
613 # define is_writable(prot) ((prot) == PAGE_READWRITE \
614 || (prot) == PAGE_WRITECOPY \
615 || (prot) == PAGE_EXECUTE_READWRITE \
616 || (prot) == PAGE_EXECUTE_WRITECOPY)
617 /* Return the number of bytes that are writable starting at p. */
618 /* The pointer p is assumed to be page aligned. */
619 /* If base is not 0, *base becomes the beginning of the */
620 /* allocation region containing p. */
621 word GC_get_writable_length(ptr_t p, ptr_t *base)
623 MEMORY_BASIC_INFORMATION buf;
624 word result;
625 word protect;
627 result = VirtualQuery(p, &buf, sizeof(buf));
628 if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
629 if (base != 0) *base = (ptr_t)(buf.AllocationBase);
630 protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
631 if (!is_writable(protect)) {
632 return(0);
634 if (buf.State != MEM_COMMIT) return(0);
635 return(buf.RegionSize);
638 ptr_t GC_get_stack_base()
640 int dummy;
641 ptr_t sp = (ptr_t)(&dummy);
642 ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
643 word size = GC_get_writable_length(trunc_sp, 0);
645 return(trunc_sp + size);
649 # endif /* MS Windows */
651 # ifdef BEOS
652 # include <kernel/OS.h>
653 ptr_t GC_get_stack_base(){
654 thread_info th;
655 get_thread_info(find_thread(NULL),&th);
656 return th.stack_end;
658 # endif /* BEOS */
661 # ifdef OS2
663 ptr_t GC_get_stack_base()
665 PTIB ptib;
666 PPIB ppib;
668 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
669 GC_err_printf0("DosGetInfoBlocks failed\n");
670 ABORT("DosGetInfoBlocks failed\n");
672 return((ptr_t)(ptib -> tib_pstacklimit));
675 # endif /* OS2 */
677 # ifdef AMIGA
678 # define GC_AMIGA_SB
679 # include "AmigaOS.c"
680 # undef GC_AMIGA_SB
681 # endif /* AMIGA */
683 # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
685 # ifdef __STDC__
686 typedef void (*handler)(int);
687 # else
688 typedef void (*handler)();
689 # endif
691 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) || defined(HURD)
692 static struct sigaction old_segv_act;
693 # if defined(_sigargs) /* !Irix6.x */ || defined(HPUX) || defined(HURD)
694 static struct sigaction old_bus_act;
695 # endif
696 # else
697 static handler old_segv_handler, old_bus_handler;
698 # endif
700 # ifdef __STDC__
701 void GC_set_and_save_fault_handler(handler h)
702 # else
703 void GC_set_and_save_fault_handler(h)
704 handler h;
705 # endif
707 # if defined(SUNOS5SIGS) || defined(IRIX5) \
708 || defined(OSF1) || defined(HURD)
709 struct sigaction act;
711 act.sa_handler = h;
712 # ifdef SUNOS5SIGS
713 act.sa_flags = SA_RESTART | SA_NODEFER;
714 # else
715 act.sa_flags = SA_RESTART;
716 # endif
717 /* The presence of SA_NODEFER represents yet another gross */
718 /* hack. Under Solaris 2.3, siglongjmp doesn't appear to */
719 /* interact correctly with -lthread. We hide the confusion */
720 /* by making sure that signal handling doesn't affect the */
721 /* signal mask. */
723 (void) sigemptyset(&act.sa_mask);
724 # ifdef GC_IRIX_THREADS
725 /* Older versions have a bug related to retrieving and */
726 /* and setting a handler at the same time. */
727 (void) sigaction(SIGSEGV, 0, &old_segv_act);
728 (void) sigaction(SIGSEGV, &act, 0);
729 # else
730 (void) sigaction(SIGSEGV, &act, &old_segv_act);
731 # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
732 || defined(HPUX) || defined(HURD)
733 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
734 /* Pthreads doesn't exist under Irix 5.x, so we */
735 /* don't have to worry in the threads case. */
736 (void) sigaction(SIGBUS, &act, &old_bus_act);
737 # endif
738 # endif /* GC_IRIX_THREADS */
739 # else
740 old_segv_handler = signal(SIGSEGV, h);
741 # ifdef SIGBUS
742 old_bus_handler = signal(SIGBUS, h);
743 # endif
744 # endif
746 # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
748 # ifdef NEED_FIND_LIMIT
749 /* Some tools to implement HEURISTIC2 */
750 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
751 /* static */ jmp_buf GC_jmp_buf;
753 /*ARGSUSED*/
754 void GC_fault_handler(sig)
755 int sig;
757 longjmp(GC_jmp_buf, 1);
760 void GC_setup_temporary_fault_handler()
762 GC_set_and_save_fault_handler(GC_fault_handler);
765 void GC_reset_fault_handler()
767 # if defined(SUNOS5SIGS) || defined(IRIX5) \
768 || defined(OSF1) || defined(HURD)
769 (void) sigaction(SIGSEGV, &old_segv_act, 0);
770 # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
771 || defined(HPUX) || defined(HURD)
772 (void) sigaction(SIGBUS, &old_bus_act, 0);
773 # endif
774 # else
775 (void) signal(SIGSEGV, old_segv_handler);
776 # ifdef SIGBUS
777 (void) signal(SIGBUS, old_bus_handler);
778 # endif
779 # endif
782 /* Return the first nonaddressible location > p (up) or */
783 /* the smallest location q s.t. [q,p) is addressable (!up). */
784 /* We assume that p (up) or p-1 (!up) is addressable. */
785 ptr_t GC_find_limit(p, up)
786 ptr_t p;
787 GC_bool up;
789 static VOLATILE ptr_t result;
790 /* Needs to be static, since otherwise it may not be */
791 /* preserved across the longjmp. Can safely be */
792 /* static since it's only called once, with the */
793 /* allocation lock held. */
796 GC_setup_temporary_fault_handler();
797 if (setjmp(GC_jmp_buf) == 0) {
798 result = (ptr_t)(((word)(p))
799 & ~(MIN_PAGE_SIZE-1));
800 for (;;) {
801 if (up) {
802 result += MIN_PAGE_SIZE;
803 } else {
804 result -= MIN_PAGE_SIZE;
806 GC_noop1((word)(*result));
809 GC_reset_fault_handler();
810 if (!up) {
811 result += MIN_PAGE_SIZE;
813 return(result);
815 # endif
817 #if defined(ECOS) || defined(NOSYS)
818 ptr_t GC_get_stack_base()
820 return STACKBOTTOM;
822 #endif
824 #ifdef LINUX_STACKBOTTOM
826 #include <sys/types.h>
827 #include <sys/stat.h>
828 #include <ctype.h>
830 # define STAT_SKIP 27 /* Number of fields preceding startstack */
831 /* field in /proc/self/stat */
833 # pragma weak __libc_stack_end
834 extern ptr_t __libc_stack_end;
836 # ifdef IA64
837 /* Try to read the backing store base from /proc/self/maps. */
838 /* We look for the writable mapping with a 0 major device, */
839 /* which is as close to our frame as possible, but below it.*/
840 static word backing_store_base_from_maps(char *maps)
842 char prot_buf[5];
843 char *buf_ptr = maps;
844 word start, end;
845 unsigned int maj_dev;
846 word current_best = 0;
847 word dummy;
849 for (;;) {
850 buf_ptr = GC_parse_map_entry(buf_ptr, &start, &end, prot_buf, &maj_dev);
851 if (buf_ptr == NULL) return current_best;
852 if (prot_buf[1] == 'w' && maj_dev == 0) {
853 if (end < (word)(&dummy) && start > current_best) current_best = start;
856 return current_best;
859 static word backing_store_base_from_proc(void)
861 return GC_apply_to_maps(backing_store_base_from_maps);
864 # pragma weak __libc_ia64_register_backing_store_base
865 extern ptr_t __libc_ia64_register_backing_store_base;
867 ptr_t GC_get_register_stack_base(void)
869 if (0 != &__libc_ia64_register_backing_store_base
870 && 0 != __libc_ia64_register_backing_store_base) {
871 /* Glibc 2.2.4 has a bug such that for dynamically linked */
872 /* executables __libc_ia64_register_backing_store_base is */
873 /* defined but uninitialized during constructor calls. */
874 /* Hence we check for both nonzero address and value. */
875 return __libc_ia64_register_backing_store_base;
876 } else {
877 word result = backing_store_base_from_proc();
878 if (0 == result) {
879 /* Use dumb heuristics. Works only for default configuration. */
880 result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
881 result += BACKING_STORE_ALIGNMENT - 1;
882 result &= ~(BACKING_STORE_ALIGNMENT - 1);
883 /* Verify that it's at least readable. If not, we goofed. */
884 GC_noop1(*(word *)result);
886 return (ptr_t)result;
889 # endif
891 ptr_t GC_linux_stack_base(void)
893 /* We read the stack base value from /proc/self/stat. We do this */
894 /* using direct I/O system calls in order to avoid calling malloc */
895 /* in case REDIRECT_MALLOC is defined. */
896 # define STAT_BUF_SIZE 4096
897 # define STAT_READ read
898 /* Should probably call the real read, if read is wrapped. */
899 char stat_buf[STAT_BUF_SIZE];
900 int f;
901 char c;
902 word result = 0;
903 size_t i, buf_offset = 0;
905 /* First try the easy way. This should work for glibc 2.2 */
906 if (0 != &__libc_stack_end) {
907 # ifdef IA64
908 /* Some versions of glibc set the address 16 bytes too */
909 /* low while the initialization code is running. */
910 if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) {
911 return __libc_stack_end + 0x10;
912 } /* Otherwise it's not safe to add 16 bytes and we fall */
913 /* back to using /proc. */
914 # else
915 return __libc_stack_end;
916 # endif
918 f = open("/proc/self/stat", O_RDONLY);
919 if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
920 ABORT("Couldn't read /proc/self/stat");
922 c = stat_buf[buf_offset++];
923 /* Skip the required number of fields. This number is hopefully */
924 /* constant across all Linux implementations. */
925 for (i = 0; i < STAT_SKIP; ++i) {
926 while (isspace(c)) c = stat_buf[buf_offset++];
927 while (!isspace(c)) c = stat_buf[buf_offset++];
929 while (isspace(c)) c = stat_buf[buf_offset++];
930 while (isdigit(c)) {
931 result *= 10;
932 result += c - '0';
933 c = stat_buf[buf_offset++];
935 close(f);
936 if (result < 0x10000000) ABORT("Absurd stack bottom value");
937 return (ptr_t)result;
940 #endif /* LINUX_STACKBOTTOM */
942 #ifdef FREEBSD_STACKBOTTOM
944 /* This uses an undocumented sysctl call, but at least one expert */
945 /* believes it will stay. */
947 #include <unistd.h>
948 #include <sys/types.h>
949 #include <sys/sysctl.h>
951 ptr_t GC_freebsd_stack_base(void)
953 int nm[2] = {CTL_KERN, KERN_USRSTACK};
954 ptr_t base;
955 size_t len = sizeof(ptr_t);
956 int r = sysctl(nm, 2, &base, &len, NULL, 0);
958 if (r) ABORT("Error getting stack base");
960 return base;
963 #endif /* FREEBSD_STACKBOTTOM */
965 #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
966 && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS)
968 ptr_t GC_get_stack_base()
970 # if defined(HEURISTIC1) || defined(HEURISTIC2) || \
971 defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM)
972 word dummy;
973 ptr_t result;
974 # endif
976 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
978 # ifdef STACKBOTTOM
979 return(STACKBOTTOM);
980 # else
981 # ifdef HEURISTIC1
982 # ifdef STACK_GROWS_DOWN
983 result = (ptr_t)((((word)(&dummy))
984 + STACKBOTTOM_ALIGNMENT_M1)
985 & ~STACKBOTTOM_ALIGNMENT_M1);
986 # else
987 result = (ptr_t)(((word)(&dummy))
988 & ~STACKBOTTOM_ALIGNMENT_M1);
989 # endif
990 # endif /* HEURISTIC1 */
991 # ifdef LINUX_STACKBOTTOM
992 result = GC_linux_stack_base();
993 # endif
994 # ifdef FREEBSD_STACKBOTTOM
995 result = GC_freebsd_stack_base();
996 # endif
997 # ifdef HEURISTIC2
998 # ifdef STACK_GROWS_DOWN
999 result = GC_find_limit((ptr_t)(&dummy), TRUE);
1000 # ifdef HEURISTIC2_LIMIT
1001 if (result > HEURISTIC2_LIMIT
1002 && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
1003 result = HEURISTIC2_LIMIT;
1005 # endif
1006 # else
1007 result = GC_find_limit((ptr_t)(&dummy), FALSE);
1008 # ifdef HEURISTIC2_LIMIT
1009 if (result < HEURISTIC2_LIMIT
1010 && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
1011 result = HEURISTIC2_LIMIT;
1013 # endif
1014 # endif
1016 # endif /* HEURISTIC2 */
1017 # ifdef STACK_GROWS_DOWN
1018 if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
1019 # endif
1020 return(result);
1021 # endif /* STACKBOTTOM */
1024 # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
1027 * Register static data segment(s) as roots.
1028 * If more data segments are added later then they need to be registered
1029 * add that point (as we do with SunOS dynamic loading),
1030 * or GC_mark_roots needs to check for them (as we do with PCR).
1031 * Called with allocator lock held.
1034 # ifdef OS2
1036 void GC_register_data_segments()
1038 PTIB ptib;
1039 PPIB ppib;
1040 HMODULE module_handle;
1041 # define PBUFSIZ 512
1042 UCHAR path[PBUFSIZ];
1043 FILE * myexefile;
1044 struct exe_hdr hdrdos; /* MSDOS header. */
1045 struct e32_exe hdr386; /* Real header for my executable */
1046 struct o32_obj seg; /* Currrent segment */
1047 int nsegs;
1050 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
1051 GC_err_printf0("DosGetInfoBlocks failed\n");
1052 ABORT("DosGetInfoBlocks failed\n");
1054 module_handle = ppib -> pib_hmte;
1055 if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
1056 GC_err_printf0("DosQueryModuleName failed\n");
1057 ABORT("DosGetInfoBlocks failed\n");
1059 myexefile = fopen(path, "rb");
1060 if (myexefile == 0) {
1061 GC_err_puts("Couldn't open executable ");
1062 GC_err_puts(path); GC_err_puts("\n");
1063 ABORT("Failed to open executable\n");
1065 if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
1066 GC_err_puts("Couldn't read MSDOS header from ");
1067 GC_err_puts(path); GC_err_puts("\n");
1068 ABORT("Couldn't read MSDOS header");
1070 if (E_MAGIC(hdrdos) != EMAGIC) {
1071 GC_err_puts("Executable has wrong DOS magic number: ");
1072 GC_err_puts(path); GC_err_puts("\n");
1073 ABORT("Bad DOS magic number");
1075 if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
1076 GC_err_puts("Seek to new header failed in ");
1077 GC_err_puts(path); GC_err_puts("\n");
1078 ABORT("Bad DOS magic number");
1080 if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
1081 GC_err_puts("Couldn't read MSDOS header from ");
1082 GC_err_puts(path); GC_err_puts("\n");
1083 ABORT("Couldn't read OS/2 header");
1085 if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
1086 GC_err_puts("Executable has wrong OS/2 magic number:");
1087 GC_err_puts(path); GC_err_puts("\n");
1088 ABORT("Bad OS/2 magic number");
1090 if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
1091 GC_err_puts("Executable %s has wrong byte order: ");
1092 GC_err_puts(path); GC_err_puts("\n");
1093 ABORT("Bad byte order");
1095 if ( E32_CPU(hdr386) == E32CPU286) {
1096 GC_err_puts("GC can't handle 80286 executables: ");
1097 GC_err_puts(path); GC_err_puts("\n");
1098 EXIT();
1100 if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
1101 SEEK_SET) != 0) {
1102 GC_err_puts("Seek to object table failed: ");
1103 GC_err_puts(path); GC_err_puts("\n");
1104 ABORT("Seek to object table failed");
1106 for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
1107 int flags;
1108 if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
1109 GC_err_puts("Couldn't read obj table entry from ");
1110 GC_err_puts(path); GC_err_puts("\n");
1111 ABORT("Couldn't read obj table entry");
1113 flags = O32_FLAGS(seg);
1114 if (!(flags & OBJWRITE)) continue;
1115 if (!(flags & OBJREAD)) continue;
1116 if (flags & OBJINVALID) {
1117 GC_err_printf0("Object with invalid pages?\n");
1118 continue;
1120 GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
1124 # else /* !OS2 */
1126 # if defined(MSWIN32) || defined(MSWINCE)
1128 # ifdef MSWIN32
1129 /* Unfortunately, we have to handle win32s very differently from NT, */
1130 /* Since VirtualQuery has very different semantics. In particular, */
1131 /* under win32s a VirtualQuery call on an unmapped page returns an */
1132 /* invalid result. Under NT, GC_register_data_segments is a noop and */
1133 /* all real work is done by GC_register_dynamic_libraries. Under */
1134 /* win32s, we cannot find the data segments associated with dll's. */
1135 /* We register the main data segment here. */
1136 GC_bool GC_no_win32_dlls = FALSE;
1137 /* This used to be set for gcc, to avoid dealing with */
1138 /* the structured exception handling issues. But we now have */
1139 /* assembly code to do that right. */
1141 void GC_init_win32()
1143 /* if we're running under win32s, assume that no DLLs will be loaded */
1144 DWORD v = GetVersion();
1145 GC_no_win32_dlls |= ((v & 0x80000000) && (v & 0xff) <= 3);
1148 /* Return the smallest address a such that VirtualQuery */
1149 /* returns correct results for all addresses between a and start. */
1150 /* Assumes VirtualQuery returns correct information for start. */
1151 ptr_t GC_least_described_address(ptr_t start)
1153 MEMORY_BASIC_INFORMATION buf;
1154 DWORD result;
1155 LPVOID limit;
1156 ptr_t p;
1157 LPVOID q;
1159 limit = GC_sysinfo.lpMinimumApplicationAddress;
1160 p = (ptr_t)((word)start & ~(GC_page_size - 1));
1161 for (;;) {
1162 q = (LPVOID)(p - GC_page_size);
1163 if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
1164 result = VirtualQuery(q, &buf, sizeof(buf));
1165 if (result != sizeof(buf) || buf.AllocationBase == 0) break;
1166 p = (ptr_t)(buf.AllocationBase);
1168 return(p);
1170 # endif
1172 # ifndef REDIRECT_MALLOC
1173 /* We maintain a linked list of AllocationBase values that we know */
1174 /* correspond to malloc heap sections. Currently this is only called */
1175 /* during a GC. But there is some hope that for long running */
1176 /* programs we will eventually see most heap sections. */
1178 /* In the long run, it would be more reliable to occasionally walk */
1179 /* the malloc heap with HeapWalk on the default heap. But that */
1180 /* apparently works only for NT-based Windows. */
1182 /* In the long run, a better data structure would also be nice ... */
1183 struct GC_malloc_heap_list {
1184 void * allocation_base;
1185 struct GC_malloc_heap_list *next;
1186 } *GC_malloc_heap_l = 0;
1188 /* Is p the base of one of the malloc heap sections we already know */
1189 /* about? */
1190 GC_bool GC_is_malloc_heap_base(ptr_t p)
1192 struct GC_malloc_heap_list *q = GC_malloc_heap_l;
1194 while (0 != q) {
1195 if (q -> allocation_base == p) return TRUE;
1196 q = q -> next;
1198 return FALSE;
1201 void *GC_get_allocation_base(void *p)
1203 MEMORY_BASIC_INFORMATION buf;
1204 DWORD result = VirtualQuery(p, &buf, sizeof(buf));
1205 if (result != sizeof(buf)) {
1206 ABORT("Weird VirtualQuery result");
1208 return buf.AllocationBase;
1211 size_t GC_max_root_size = 100000; /* Appr. largest root size. */
1213 void GC_add_current_malloc_heap()
1215 struct GC_malloc_heap_list *new_l =
1216 malloc(sizeof(struct GC_malloc_heap_list));
1217 void * candidate = GC_get_allocation_base(new_l);
1219 if (new_l == 0) return;
1220 if (GC_is_malloc_heap_base(candidate)) {
1221 /* Try a little harder to find malloc heap. */
1222 size_t req_size = 10000;
1223 do {
1224 void *p = malloc(req_size);
1225 if (0 == p) { free(new_l); return; }
1226 candidate = GC_get_allocation_base(p);
1227 free(p);
1228 req_size *= 2;
1229 } while (GC_is_malloc_heap_base(candidate)
1230 && req_size < GC_max_root_size/10 && req_size < 500000);
1231 if (GC_is_malloc_heap_base(candidate)) {
1232 free(new_l); return;
1235 # ifdef CONDPRINT
1236 if (GC_print_stats)
1237 GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
1238 candidate);
1239 # endif
1240 new_l -> allocation_base = candidate;
1241 new_l -> next = GC_malloc_heap_l;
1242 GC_malloc_heap_l = new_l;
1244 # endif /* REDIRECT_MALLOC */
1246 /* Is p the start of either the malloc heap, or of one of our */
1247 /* heap sections? */
1248 GC_bool GC_is_heap_base (ptr_t p)
1251 unsigned i;
1253 # ifndef REDIRECT_MALLOC
1254 static word last_gc_no = -1;
1256 if (last_gc_no != GC_gc_no) {
1257 GC_add_current_malloc_heap();
1258 last_gc_no = GC_gc_no;
1260 if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size;
1261 if (GC_is_malloc_heap_base(p)) return TRUE;
1262 # endif
1263 for (i = 0; i < GC_n_heap_bases; i++) {
1264 if (GC_heap_bases[i] == p) return TRUE;
1266 return FALSE ;
1269 # ifdef MSWIN32
1270 void GC_register_root_section(ptr_t static_root)
1272 MEMORY_BASIC_INFORMATION buf;
1273 DWORD result;
1274 DWORD protect;
1275 LPVOID p;
1276 char * base;
1277 char * limit, * new_limit;
1279 if (!GC_no_win32_dlls) return;
1280 p = base = limit = GC_least_described_address(static_root);
1281 while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1282 result = VirtualQuery(p, &buf, sizeof(buf));
1283 if (result != sizeof(buf) || buf.AllocationBase == 0
1284 || GC_is_heap_base(buf.AllocationBase)) break;
1285 new_limit = (char *)p + buf.RegionSize;
1286 protect = buf.Protect;
1287 if (buf.State == MEM_COMMIT
1288 && is_writable(protect)) {
1289 if ((char *)p == limit) {
1290 limit = new_limit;
1291 } else {
1292 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1293 base = p;
1294 limit = new_limit;
1297 if (p > (LPVOID)new_limit /* overflow */) break;
1298 p = (LPVOID)new_limit;
1300 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1302 #endif
1304 void GC_register_data_segments()
1306 # ifdef MSWIN32
1307 static char dummy;
1308 GC_register_root_section((ptr_t)(&dummy));
1309 # endif
1312 # else /* !OS2 && !Windows */
1314 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1315 || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
1316 ptr_t GC_SysVGetDataStart(max_page_size, etext_addr)
1317 int max_page_size;
1318 int * etext_addr;
1320 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1321 & ~(sizeof(word) - 1);
1322 /* etext rounded to word boundary */
1323 word next_page = ((text_end + (word)max_page_size - 1)
1324 & ~((word)max_page_size - 1));
1325 word page_offset = (text_end & ((word)max_page_size - 1));
1326 VOLATILE char * result = (char *)(next_page + page_offset);
1327 /* Note that this isnt equivalent to just adding */
1328 /* max_page_size to &etext if &etext is at a page boundary */
1330 GC_setup_temporary_fault_handler();
1331 if (setjmp(GC_jmp_buf) == 0) {
1332 /* Try writing to the address. */
1333 *result = *result;
1334 GC_reset_fault_handler();
1335 } else {
1336 GC_reset_fault_handler();
1337 /* We got here via a longjmp. The address is not readable. */
1338 /* This is known to happen under Solaris 2.4 + gcc, which place */
1339 /* string constants in the text segment, but after etext. */
1340 /* Use plan B. Note that we now know there is a gap between */
1341 /* text and data segments, so plan A bought us something. */
1342 result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE);
1344 return((ptr_t)result);
1346 # endif
1348 # if defined(FREEBSD) && defined(I386) && !defined(PCR)
1349 /* Its unclear whether this should be identical to the above, or */
1350 /* whether it should apply to non-X86 architectures. */
1351 /* For now we don't assume that there is always an empty page after */
1352 /* etext. But in some cases there actually seems to be slightly more. */
1353 /* This also deals with holes between read-only data and writable data. */
1354 ptr_t GC_FreeBSDGetDataStart(max_page_size, etext_addr)
1355 int max_page_size;
1356 int * etext_addr;
1358 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1359 & ~(sizeof(word) - 1);
1360 /* etext rounded to word boundary */
1361 VOLATILE word next_page = (text_end + (word)max_page_size - 1)
1362 & ~((word)max_page_size - 1);
1363 VOLATILE ptr_t result = (ptr_t)text_end;
1364 GC_setup_temporary_fault_handler();
1365 if (setjmp(GC_jmp_buf) == 0) {
1366 /* Try reading at the address. */
1367 /* This should happen before there is another thread. */
1368 for (; next_page < (word)(DATAEND); next_page += (word)max_page_size)
1369 *(VOLATILE char *)next_page;
1370 GC_reset_fault_handler();
1371 } else {
1372 GC_reset_fault_handler();
1373 /* As above, we go to plan B */
1374 result = GC_find_limit((ptr_t)(DATAEND), FALSE);
1376 return(result);
1379 # endif
1382 #ifdef AMIGA
1384 # define GC_AMIGA_DS
1385 # include "AmigaOS.c"
1386 # undef GC_AMIGA_DS
1388 #else /* !OS2 && !Windows && !AMIGA */
1390 void GC_register_data_segments()
1392 # if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1393 # if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1394 /* As of Solaris 2.3, the Solaris threads implementation */
1395 /* allocates the data structure for the initial thread with */
1396 /* sbrk at process startup. It needs to be scanned, so that */
1397 /* we don't lose some malloc allocated data structures */
1398 /* hanging from it. We're on thin ice here ... */
1399 extern caddr_t sbrk();
1401 GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1402 # else
1403 GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1404 # if defined(DATASTART2)
1405 GC_add_roots_inner(DATASTART2, (char *)(DATAEND2), FALSE);
1406 # endif
1407 # endif
1408 # endif
1409 # if defined(MACOS)
1411 # if defined(THINK_C)
1412 extern void* GC_MacGetDataStart(void);
1413 /* globals begin above stack and end at a5. */
1414 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1415 (ptr_t)LMGetCurrentA5(), FALSE);
1416 # else
1417 # if defined(__MWERKS__)
1418 # if !__POWERPC__
1419 extern void* GC_MacGetDataStart(void);
1420 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1421 # if __option(far_data)
1422 extern void* GC_MacGetDataEnd(void);
1423 # endif
1424 /* globals begin above stack and end at a5. */
1425 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1426 (ptr_t)LMGetCurrentA5(), FALSE);
1427 /* MATTHEW: Handle Far Globals */
1428 # if __option(far_data)
1429 /* Far globals follow he QD globals: */
1430 GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1431 (ptr_t)GC_MacGetDataEnd(), FALSE);
1432 # endif
1433 # else
1434 extern char __data_start__[], __data_end__[];
1435 GC_add_roots_inner((ptr_t)&__data_start__,
1436 (ptr_t)&__data_end__, FALSE);
1437 # endif /* __POWERPC__ */
1438 # endif /* __MWERKS__ */
1439 # endif /* !THINK_C */
1441 # endif /* MACOS */
1443 /* Dynamic libraries are added at every collection, since they may */
1444 /* change. */
1447 # endif /* ! AMIGA */
1448 # endif /* ! MSWIN32 && ! MSWINCE*/
1449 # endif /* ! OS2 */
1452 * Auxiliary routines for obtaining memory from OS.
1455 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1456 && !defined(MSWIN32) && !defined(MSWINCE) \
1457 && !defined(MACOS) && !defined(DOS4GW)
1459 # ifdef SUNOS4
1460 extern caddr_t sbrk();
1461 # endif
1462 # ifdef __STDC__
1463 # define SBRK_ARG_T ptrdiff_t
1464 # else
1465 # define SBRK_ARG_T int
1466 # endif
1469 # ifdef RS6000
1470 /* The compiler seems to generate speculative reads one past the end of */
1471 /* an allocated object. Hence we need to make sure that the page */
1472 /* following the last heap page is also mapped. */
1473 ptr_t GC_unix_get_mem(bytes)
1474 word bytes;
1476 caddr_t cur_brk = (caddr_t)sbrk(0);
1477 caddr_t result;
1478 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1479 static caddr_t my_brk_val = 0;
1481 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1482 if (lsbs != 0) {
1483 if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1485 if (cur_brk == my_brk_val) {
1486 /* Use the extra block we allocated last time. */
1487 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1488 if (result == (caddr_t)(-1)) return(0);
1489 result -= GC_page_size;
1490 } else {
1491 result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1492 if (result == (caddr_t)(-1)) return(0);
1494 my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1495 return((ptr_t)result);
1498 #else /* Not RS6000 */
1500 #if defined(USE_MMAP)
1501 /* Tested only under Linux, IRIX5 and Solaris 2 */
1503 #ifdef USE_MMAP_FIXED
1504 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1505 /* Seems to yield better performance on Solaris 2, but can */
1506 /* be unreliable if something is already mapped at the address. */
1507 #else
1508 # define GC_MMAP_FLAGS MAP_PRIVATE
1509 #endif
1511 #ifndef HEAP_START
1512 # define HEAP_START 0
1513 #endif
1515 ptr_t GC_unix_get_mem(bytes)
1516 word bytes;
1518 void *result;
1519 static ptr_t last_addr = HEAP_START;
1521 # ifndef USE_MMAP_ANON
1522 static GC_bool initialized = FALSE;
1523 static int fd;
1525 if (!initialized) {
1526 fd = open("/dev/zero", O_RDONLY);
1527 fcntl(fd, F_SETFD, FD_CLOEXEC);
1528 initialized = TRUE;
1530 # endif
1532 if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1533 # ifdef USE_MMAP_ANON
1534 result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1535 GC_MMAP_FLAGS | MAP_ANON, -1, 0/* offset */);
1536 # else
1537 result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1538 GC_MMAP_FLAGS, fd, 0/* offset */);
1539 # endif
1540 if (result == MAP_FAILED) return(0);
1541 last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1542 last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1543 # if !defined(LINUX)
1544 if (last_addr == 0) {
1545 /* Oops. We got the end of the address space. This isn't */
1546 /* usable by arbitrary C code, since one-past-end pointers */
1547 /* don't work, so we discard it and try again. */
1548 munmap(result, (size_t)(-GC_page_size) - (size_t)result);
1549 /* Leave last page mapped, so we can't repeat. */
1550 return GC_unix_get_mem(bytes);
1552 # else
1553 GC_ASSERT(last_addr != 0);
1554 # endif
1555 return((ptr_t)result);
1558 #else /* Not RS6000, not USE_MMAP */
1559 ptr_t GC_unix_get_mem(bytes)
1560 word bytes;
1562 ptr_t result;
1563 # ifdef IRIX5
1564 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1565 /* The equivalent may be needed on other systems as well. */
1566 __LOCK_MALLOC();
1567 # endif
1569 ptr_t cur_brk = (ptr_t)sbrk(0);
1570 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1572 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1573 if (lsbs != 0) {
1574 if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1576 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1577 if (result == (ptr_t)(-1)) result = 0;
1579 # ifdef IRIX5
1580 __UNLOCK_MALLOC();
1581 # endif
1582 return(result);
1585 #endif /* Not USE_MMAP */
1586 #endif /* Not RS6000 */
1588 # endif /* UN*X */
1590 # ifdef OS2
1592 void * os2_alloc(size_t bytes)
1594 void * result;
1596 if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1597 PAG_WRITE | PAG_COMMIT)
1598 != NO_ERROR) {
1599 return(0);
1601 if (result == 0) return(os2_alloc(bytes));
1602 return(result);
1605 # endif /* OS2 */
1608 # if defined(MSWIN32) || defined(MSWINCE)
1609 SYSTEM_INFO GC_sysinfo;
1610 # endif
1612 # ifdef MSWIN32
1614 # ifdef USE_GLOBAL_ALLOC
1615 # define GLOBAL_ALLOC_TEST 1
1616 # else
1617 # define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1618 # endif
1620 word GC_n_heap_bases = 0;
1622 ptr_t GC_win32_get_mem(bytes)
1623 word bytes;
1625 ptr_t result;
1627 if (GLOBAL_ALLOC_TEST) {
1628 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1629 /* There are also unconfirmed rumors of other */
1630 /* problems, so we dodge the issue. */
1631 result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1632 result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1633 } else {
1634 /* VirtualProtect only works on regions returned by a */
1635 /* single VirtualAlloc call. Thus we allocate one */
1636 /* extra page, which will prevent merging of blocks */
1637 /* in separate regions, and eliminate any temptation */
1638 /* to call VirtualProtect on a range spanning regions. */
1639 /* This wastes a small amount of memory, and risks */
1640 /* increased fragmentation. But better alternatives */
1641 /* would require effort. */
1642 result = (ptr_t) VirtualAlloc(NULL, bytes + 1,
1643 MEM_COMMIT | MEM_RESERVE,
1644 PAGE_EXECUTE_READWRITE);
1646 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1647 /* If I read the documentation correctly, this can */
1648 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1649 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1650 GC_heap_bases[GC_n_heap_bases++] = result;
1651 return(result);
1654 void GC_win32_free_heap ()
1656 if (GC_no_win32_dlls) {
1657 while (GC_n_heap_bases > 0) {
1658 GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1659 GC_heap_bases[GC_n_heap_bases] = 0;
1663 # endif
1665 #ifdef AMIGA
1666 # define GC_AMIGA_AM
1667 # include "AmigaOS.c"
1668 # undef GC_AMIGA_AM
1669 #endif
1672 # ifdef MSWINCE
1673 word GC_n_heap_bases = 0;
1675 ptr_t GC_wince_get_mem(bytes)
1676 word bytes;
1678 ptr_t result;
1679 word i;
1681 /* Round up allocation size to multiple of page size */
1682 bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
1684 /* Try to find reserved, uncommitted pages */
1685 for (i = 0; i < GC_n_heap_bases; i++) {
1686 if (((word)(-(signed_word)GC_heap_lengths[i])
1687 & (GC_sysinfo.dwAllocationGranularity-1))
1688 >= bytes) {
1689 result = GC_heap_bases[i] + GC_heap_lengths[i];
1690 break;
1694 if (i == GC_n_heap_bases) {
1695 /* Reserve more pages */
1696 word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
1697 & ~(GC_sysinfo.dwAllocationGranularity-1);
1698 /* If we ever support MPROTECT_VDB here, we will probably need to */
1699 /* ensure that res_bytes is strictly > bytes, so that VirtualProtect */
1700 /* never spans regions. It seems to be OK for a VirtualFree argument */
1701 /* to span regions, so we should be OK for now. */
1702 result = (ptr_t) VirtualAlloc(NULL, res_bytes,
1703 MEM_RESERVE | MEM_TOP_DOWN,
1704 PAGE_EXECUTE_READWRITE);
1705 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1706 /* If I read the documentation correctly, this can */
1707 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1708 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1709 GC_heap_bases[GC_n_heap_bases] = result;
1710 GC_heap_lengths[GC_n_heap_bases] = 0;
1711 GC_n_heap_bases++;
1714 /* Commit pages */
1715 result = (ptr_t) VirtualAlloc(result, bytes,
1716 MEM_COMMIT,
1717 PAGE_EXECUTE_READWRITE);
1718 if (result != NULL) {
1719 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1720 GC_heap_lengths[i] += bytes;
1723 return(result);
1725 # endif
1727 #ifdef USE_MUNMAP
1729 /* For now, this only works on Win32/WinCE and some Unix-like */
1730 /* systems. If you have something else, don't define */
1731 /* USE_MUNMAP. */
1732 /* We assume ANSI C to support this feature. */
1734 #if !defined(MSWIN32) && !defined(MSWINCE)
1736 #include <unistd.h>
1737 #include <sys/mman.h>
1738 #include <sys/stat.h>
1739 #include <sys/types.h>
1741 #endif
1743 /* Compute a page aligned starting address for the unmap */
1744 /* operation on a block of size bytes starting at start. */
1745 /* Return 0 if the block is too small to make this feasible. */
1746 ptr_t GC_unmap_start(ptr_t start, word bytes)
1748 ptr_t result = start;
1749 /* Round start to next page boundary. */
1750 result += GC_page_size - 1;
1751 result = (ptr_t)((word)result & ~(GC_page_size - 1));
1752 if (result + GC_page_size > start + bytes) return 0;
1753 return result;
1756 /* Compute end address for an unmap operation on the indicated */
1757 /* block. */
1758 ptr_t GC_unmap_end(ptr_t start, word bytes)
1760 ptr_t end_addr = start + bytes;
1761 end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1762 return end_addr;
1765 /* Under Win32/WinCE we commit (map) and decommit (unmap) */
1766 /* memory using VirtualAlloc and VirtualFree. These functions */
1767 /* work on individual allocations of virtual memory, made */
1768 /* previously using VirtualAlloc with the MEM_RESERVE flag. */
1769 /* The ranges we need to (de)commit may span several of these */
1770 /* allocations; therefore we use VirtualQuery to check */
1771 /* allocation lengths, and split up the range as necessary. */
1773 /* We assume that GC_remap is called on exactly the same range */
1774 /* as a previous call to GC_unmap. It is safe to consistently */
1775 /* round the endpoints in both places. */
1776 void GC_unmap(ptr_t start, word bytes)
1778 ptr_t start_addr = GC_unmap_start(start, bytes);
1779 ptr_t end_addr = GC_unmap_end(start, bytes);
1780 word len = end_addr - start_addr;
1781 if (0 == start_addr) return;
1782 # if defined(MSWIN32) || defined(MSWINCE)
1783 while (len != 0) {
1784 MEMORY_BASIC_INFORMATION mem_info;
1785 GC_word free_len;
1786 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1787 != sizeof(mem_info))
1788 ABORT("Weird VirtualQuery result");
1789 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1790 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1791 ABORT("VirtualFree failed");
1792 GC_unmapped_bytes += free_len;
1793 start_addr += free_len;
1794 len -= free_len;
1796 # else
1797 if (munmap(start_addr, len) != 0) ABORT("munmap failed");
1798 GC_unmapped_bytes += len;
1799 # endif
1803 void GC_remap(ptr_t start, word bytes)
1805 static int zero_descr = -1;
1806 ptr_t start_addr = GC_unmap_start(start, bytes);
1807 ptr_t end_addr = GC_unmap_end(start, bytes);
1808 word len = end_addr - start_addr;
1809 ptr_t result;
1811 # if defined(MSWIN32) || defined(MSWINCE)
1812 if (0 == start_addr) return;
1813 while (len != 0) {
1814 MEMORY_BASIC_INFORMATION mem_info;
1815 GC_word alloc_len;
1816 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1817 != sizeof(mem_info))
1818 ABORT("Weird VirtualQuery result");
1819 alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1820 result = VirtualAlloc(start_addr, alloc_len,
1821 MEM_COMMIT,
1822 PAGE_EXECUTE_READWRITE);
1823 if (result != start_addr) {
1824 ABORT("VirtualAlloc remapping failed");
1826 GC_unmapped_bytes -= alloc_len;
1827 start_addr += alloc_len;
1828 len -= alloc_len;
1830 # else
1831 if (-1 == zero_descr) zero_descr = open("/dev/zero", O_RDWR);
1832 fcntl(zero_descr, F_SETFD, FD_CLOEXEC);
1833 if (0 == start_addr) return;
1834 result = mmap(start_addr, len, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1835 MAP_FIXED | MAP_PRIVATE, zero_descr, 0);
1836 if (result != start_addr) {
1837 ABORT("mmap remapping failed");
1839 GC_unmapped_bytes -= len;
1840 # endif
1843 /* Two adjacent blocks have already been unmapped and are about to */
1844 /* be merged. Unmap the whole block. This typically requires */
1845 /* that we unmap a small section in the middle that was not previously */
1846 /* unmapped due to alignment constraints. */
1847 void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1849 ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1850 ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1851 ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1852 ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1853 ptr_t start_addr = end1_addr;
1854 ptr_t end_addr = start2_addr;
1855 word len;
1856 GC_ASSERT(start1 + bytes1 == start2);
1857 if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1858 if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1859 if (0 == start_addr) return;
1860 len = end_addr - start_addr;
1861 # if defined(MSWIN32) || defined(MSWINCE)
1862 while (len != 0) {
1863 MEMORY_BASIC_INFORMATION mem_info;
1864 GC_word free_len;
1865 if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
1866 != sizeof(mem_info))
1867 ABORT("Weird VirtualQuery result");
1868 free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
1869 if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
1870 ABORT("VirtualFree failed");
1871 GC_unmapped_bytes += free_len;
1872 start_addr += free_len;
1873 len -= free_len;
1875 # else
1876 if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1877 GC_unmapped_bytes += len;
1878 # endif
1881 #endif /* USE_MUNMAP */
1883 /* Routine for pushing any additional roots. In THREADS */
1884 /* environment, this is also responsible for marking from */
1885 /* thread stacks. */
1886 #ifndef THREADS
1887 void (*GC_push_other_roots)() = 0;
1888 #else /* THREADS */
1890 # ifdef PCR
1891 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1893 struct PCR_ThCtl_TInfoRep info;
1894 PCR_ERes result;
1896 info.ti_stkLow = info.ti_stkHi = 0;
1897 result = PCR_ThCtl_GetInfo(t, &info);
1898 GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1899 return(result);
1902 /* Push the contents of an old object. We treat this as stack */
1903 /* data only becasue that makes it robust against mark stack */
1904 /* overflow. */
1905 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1907 GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1908 return(PCR_ERes_okay);
1912 void GC_default_push_other_roots GC_PROTO((void))
1914 /* Traverse data allocated by previous memory managers. */
1916 extern struct PCR_MM_ProcsRep * GC_old_allocator;
1918 if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1919 GC_push_old_obj, 0)
1920 != PCR_ERes_okay) {
1921 ABORT("Old object enumeration failed");
1924 /* Traverse all thread stacks. */
1925 if (PCR_ERes_IsErr(
1926 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1927 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1928 ABORT("Thread stack marking failed\n");
1932 # endif /* PCR */
1934 # ifdef SRC_M3
1936 # ifdef ALL_INTERIOR_POINTERS
1937 --> misconfigured
1938 # endif
1940 void GC_push_thread_structures GC_PROTO((void))
1942 /* Not our responsibibility. */
1945 extern void ThreadF__ProcessStacks();
1947 void GC_push_thread_stack(start, stop)
1948 word start, stop;
1950 GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
1953 /* Push routine with M3 specific calling convention. */
1954 GC_m3_push_root(dummy1, p, dummy2, dummy3)
1955 word *p;
1956 ptr_t dummy1, dummy2;
1957 int dummy3;
1959 word q = *p;
1961 GC_PUSH_ONE_STACK(q, p);
1964 /* M3 set equivalent to RTHeap.TracedRefTypes */
1965 typedef struct { int elts[1]; } RefTypeSet;
1966 RefTypeSet GC_TracedRefTypes = {{0x1}};
1968 void GC_default_push_other_roots GC_PROTO((void))
1970 /* Use the M3 provided routine for finding static roots. */
1971 /* This is a bit dubious, since it presumes no C roots. */
1972 /* We handle the collector roots explicitly in GC_push_roots */
1973 RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
1974 if (GC_words_allocd > 0) {
1975 ThreadF__ProcessStacks(GC_push_thread_stack);
1977 /* Otherwise this isn't absolutely necessary, and we have */
1978 /* startup ordering problems. */
1981 # endif /* SRC_M3 */
1983 # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
1984 defined(GC_WIN32_THREADS)
1986 extern void GC_push_all_stacks();
1988 void GC_default_push_other_roots GC_PROTO((void))
1990 GC_push_all_stacks();
1993 # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
1995 void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
1997 #endif /* THREADS */
2000 * Routines for accessing dirty bits on virtual pages.
2001 * We plan to eventually implement four strategies for doing so:
2002 * DEFAULT_VDB: A simple dummy implementation that treats every page
2003 * as possibly dirty. This makes incremental collection
2004 * useless, but the implementation is still correct.
2005 * PCR_VDB: Use PPCRs virtual dirty bit facility.
2006 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
2007 * works under some SVR4 variants. Even then, it may be
2008 * too slow to be entirely satisfactory. Requires reading
2009 * dirty bits for entire address space. Implementations tend
2010 * to assume that the client is a (slow) debugger.
2011 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2012 * dirtied pages. The implementation (and implementability)
2013 * is highly system dependent. This usually fails when system
2014 * calls write to a protected page. We prevent the read system
2015 * call from doing so. It is the clients responsibility to
2016 * make sure that other system calls are similarly protected
2017 * or write only to the stack.
2019 GC_bool GC_dirty_maintained = FALSE;
2021 # ifdef DEFAULT_VDB
2023 /* All of the following assume the allocation lock is held, and */
2024 /* signals are disabled. */
2026 /* The client asserts that unallocated pages in the heap are never */
2027 /* written. */
2029 /* Initialize virtual dirty bit implementation. */
2030 void GC_dirty_init()
2032 # ifdef PRINTSTATS
2033 GC_printf0("Initializing DEFAULT_VDB...\n");
2034 # endif
2035 GC_dirty_maintained = TRUE;
2038 /* Retrieve system dirty bits for heap to a local buffer. */
2039 /* Restore the systems notion of which pages are dirty. */
2040 void GC_read_dirty()
2043 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
2044 /* If the actual page size is different, this returns TRUE if any */
2045 /* of the pages overlapping h are dirty. This routine may err on the */
2046 /* side of labelling pages as dirty (and this implementation does). */
2047 /*ARGSUSED*/
2048 GC_bool GC_page_was_dirty(h)
2049 struct hblk *h;
2051 return(TRUE);
2055 * The following two routines are typically less crucial. They matter
2056 * most with large dynamic libraries, or if we can't accurately identify
2057 * stacks, e.g. under Solaris 2.X. Otherwise the following default
2058 * versions are adequate.
2061 /* Could any valid GC heap pointer ever have been written to this page? */
2062 /*ARGSUSED*/
2063 GC_bool GC_page_was_ever_dirty(h)
2064 struct hblk *h;
2066 return(TRUE);
2069 /* Reset the n pages starting at h to "was never dirty" status. */
2070 void GC_is_fresh(h, n)
2071 struct hblk *h;
2072 word n;
2076 /* A call that: */
2077 /* I) hints that [h, h+nblocks) is about to be written. */
2078 /* II) guarantees that protection is removed. */
2079 /* (I) may speed up some dirty bit implementations. */
2080 /* (II) may be essential if we need to ensure that */
2081 /* pointer-free system call buffers in the heap are */
2082 /* not protected. */
2083 /*ARGSUSED*/
2084 void GC_remove_protection(h, nblocks, is_ptrfree)
2085 struct hblk *h;
2086 word nblocks;
2087 GC_bool is_ptrfree;
2091 # endif /* DEFAULT_VDB */
2094 # ifdef MPROTECT_VDB
2097 * See DEFAULT_VDB for interface descriptions.
2101 * This implementation maintains dirty bits itself by catching write
2102 * faults and keeping track of them. We assume nobody else catches
2103 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls.
2104 * This means that clients must ensure that system calls don't write
2105 * to the write-protected heap. Probably the best way to do this is to
2106 * ensure that system calls write at most to POINTERFREE objects in the
2107 * heap, and do even that only if we are on a platform on which those
2108 * are not protected. Another alternative is to wrap system calls
2109 * (see example for read below), but the current implementation holds
2110 * a lock across blocking calls, making it problematic for multithreaded
2111 * applications.
2112 * We assume the page size is a multiple of HBLKSIZE.
2113 * We prefer them to be the same. We avoid protecting POINTERFREE
2114 * objects only if they are the same.
2117 # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
2119 # include <sys/mman.h>
2120 # include <signal.h>
2121 # include <sys/syscall.h>
2123 # define PROTECT(addr, len) \
2124 if (mprotect((caddr_t)(addr), (size_t)(len), \
2125 PROT_READ | OPT_PROT_EXEC) < 0) { \
2126 ABORT("mprotect failed"); \
2128 # define UNPROTECT(addr, len) \
2129 if (mprotect((caddr_t)(addr), (size_t)(len), \
2130 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2131 ABORT("un-mprotect failed"); \
2134 # else
2136 # ifdef DARWIN
2137 /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
2138 decrease the likelihood of some of the problems described below. */
2139 #include <mach/vm_map.h>
2140 extern mach_port_t GC_task_self;
2141 #define PROTECT(addr,len) \
2142 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2143 FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
2144 ABORT("vm_portect failed"); \
2146 #define UNPROTECT(addr,len) \
2147 if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2148 FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
2149 ABORT("vm_portect failed"); \
2151 # else
2153 # ifndef MSWINCE
2154 # include <signal.h>
2155 # endif
2157 static DWORD protect_junk;
2158 # define PROTECT(addr, len) \
2159 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2160 &protect_junk)) { \
2161 DWORD last_error = GetLastError(); \
2162 GC_printf1("Last error code: %lx\n", last_error); \
2163 ABORT("VirtualProtect failed"); \
2165 # define UNPROTECT(addr, len) \
2166 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2167 &protect_junk)) { \
2168 ABORT("un-VirtualProtect failed"); \
2170 # endif /* !DARWIN */
2171 # endif /* MSWIN32 || MSWINCE || DARWIN */
2173 #if defined(SUNOS4) || defined(FREEBSD)
2174 typedef void (* SIG_PF)();
2175 #endif /* SUNOS4 || FREEBSD */
2177 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
2178 || defined(HURD)
2179 # ifdef __STDC__
2180 typedef void (* SIG_PF)(int);
2181 # else
2182 typedef void (* SIG_PF)();
2183 # endif
2184 #endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
2186 #if defined(MSWIN32)
2187 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
2188 # undef SIG_DFL
2189 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2190 #endif
2191 #if defined(MSWINCE)
2192 typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
2193 # undef SIG_DFL
2194 # define SIG_DFL (SIG_PF) (-1)
2195 #endif
2197 #if defined(IRIX5) || defined(OSF1) || defined(HURD)
2198 typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
2199 #endif /* IRIX5 || OSF1 || HURD */
2201 #if defined(SUNOS5SIGS)
2202 # ifdef HPUX
2203 # define SIGINFO __siginfo
2204 # else
2205 # define SIGINFO siginfo
2206 # endif
2207 # ifdef __STDC__
2208 typedef void (* REAL_SIG_PF)(int, struct SIGINFO *, void *);
2209 # else
2210 typedef void (* REAL_SIG_PF)();
2211 # endif
2212 #endif /* SUNOS5SIGS */
2214 #if defined(LINUX)
2215 # if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
2216 typedef struct sigcontext s_c;
2217 # else /* glibc < 2.2 */
2218 # include <linux/version.h>
2219 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2220 typedef struct sigcontext s_c;
2221 # else
2222 typedef struct sigcontext_struct s_c;
2223 # endif
2224 # endif /* glibc < 2.2 */
2225 # if defined(ALPHA) || defined(M68K)
2226 typedef void (* REAL_SIG_PF)(int, int, s_c *);
2227 # else
2228 # if defined(IA64) || defined(HP_PA)
2229 typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
2230 # else
2231 typedef void (* REAL_SIG_PF)(int, s_c);
2232 # endif
2233 # endif
2234 # ifdef ALPHA
2235 /* Retrieve fault address from sigcontext structure by decoding */
2236 /* instruction. */
2237 char * get_fault_addr(s_c *sc) {
2238 unsigned instr;
2239 word faultaddr;
2241 instr = *((unsigned *)(sc->sc_pc));
2242 faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
2243 faultaddr += (word) (((int)instr << 16) >> 16);
2244 return (char *)faultaddr;
2246 # endif /* !ALPHA */
2247 # endif /* LINUX */
2249 #ifndef DARWIN
2250 SIG_PF GC_old_bus_handler;
2251 SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
2252 #endif /* !DARWIN */
2254 #if defined(THREADS)
2255 /* We need to lock around the bitmap update in the write fault handler */
2256 /* in order to avoid the risk of losing a bit. We do this with a */
2257 /* test-and-set spin lock if we know how to do that. Otherwise we */
2258 /* check whether we are already in the handler and use the dumb but */
2259 /* safe fallback algorithm of setting all bits in the word. */
2260 /* Contention should be very rare, so we do the minimum to handle it */
2261 /* correctly. */
2262 #ifdef GC_TEST_AND_SET_DEFINED
2263 static VOLATILE unsigned int fault_handler_lock = 0;
2264 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2265 while (GC_test_and_set(&fault_handler_lock)) {}
2266 /* Could also revert to set_pht_entry_from_index_safe if initial */
2267 /* GC_test_and_set fails. */
2268 set_pht_entry_from_index(db, index);
2269 GC_clear(&fault_handler_lock);
2271 #else /* !GC_TEST_AND_SET_DEFINED */
2272 /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong, */
2273 /* just before we notice the conflict and correct it. We may end up */
2274 /* looking at it while it's wrong. But this requires contention */
2275 /* exactly when a GC is triggered, which seems far less likely to */
2276 /* fail than the old code, which had no reported failures. Thus we */
2277 /* leave it this way while we think of something better, or support */
2278 /* GC_test_and_set on the remaining platforms. */
2279 static VOLATILE word currently_updating = 0;
2280 void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2281 unsigned int update_dummy;
2282 currently_updating = (word)(&update_dummy);
2283 set_pht_entry_from_index(db, index);
2284 /* If we get contention in the 10 or so instruction window here, */
2285 /* and we get stopped by a GC between the two updates, we lose! */
2286 if (currently_updating != (word)(&update_dummy)) {
2287 set_pht_entry_from_index_safe(db, index);
2288 /* We claim that if two threads concurrently try to update the */
2289 /* dirty bit vector, the first one to execute UPDATE_START */
2290 /* will see it changed when UPDATE_END is executed. (Note that */
2291 /* &update_dummy must differ in two distinct threads.) It */
2292 /* will then execute set_pht_entry_from_index_safe, thus */
2293 /* returning us to a safe state, though not soon enough. */
2296 #endif /* !GC_TEST_AND_SET_DEFINED */
2297 #else /* !THREADS */
2298 # define async_set_pht_entry_from_index(db, index) \
2299 set_pht_entry_from_index(db, index)
2300 #endif /* !THREADS */
2302 /*ARGSUSED*/
2303 #if !defined(DARWIN)
2304 # if defined (SUNOS4) || defined(FREEBSD)
2305 void GC_write_fault_handler(sig, code, scp, addr)
2306 int sig, code;
2307 struct sigcontext *scp;
2308 char * addr;
2309 # ifdef SUNOS4
2310 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2311 # define CODE_OK (FC_CODE(code) == FC_PROT \
2312 || (FC_CODE(code) == FC_OBJERR \
2313 && FC_ERRNO(code) == FC_PROT))
2314 # endif
2315 # ifdef FREEBSD
2316 # define SIG_OK (sig == SIGBUS)
2317 # define CODE_OK (code == BUS_PAGE_FAULT)
2318 # endif
2319 # endif /* SUNOS4 || FREEBSD */
2321 # if defined(IRIX5) || defined(OSF1) || defined(HURD)
2322 # include <errno.h>
2323 void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2324 # ifdef OSF1
2325 # define SIG_OK (sig == SIGSEGV)
2326 # define CODE_OK (code == 2 /* experimentally determined */)
2327 # endif
2328 # ifdef IRIX5
2329 # define SIG_OK (sig == SIGSEGV)
2330 # define CODE_OK (code == EACCES)
2331 # endif
2332 # ifdef HURD
2333 # define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2334 # define CODE_OK TRUE
2335 # endif
2336 # endif /* IRIX5 || OSF1 || HURD */
2338 # if defined(LINUX)
2339 # if defined(ALPHA) || defined(M68K)
2340 void GC_write_fault_handler(int sig, int code, s_c * sc)
2341 # else
2342 # if defined(IA64) || defined(HP_PA)
2343 void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2344 # else
2345 # if defined(ARM32)
2346 void GC_write_fault_handler(int sig, int a2, int a3, int a4, s_c sc)
2347 # else
2348 void GC_write_fault_handler(int sig, s_c sc)
2349 # endif
2350 # endif
2351 # endif
2352 # define SIG_OK (sig == SIGSEGV)
2353 # define CODE_OK TRUE
2354 /* Empirically c.trapno == 14, on IA32, but is that useful? */
2355 /* Should probably consider alignment issues on other */
2356 /* architectures. */
2357 # endif /* LINUX */
2359 # if defined(SUNOS5SIGS)
2360 # ifdef __STDC__
2361 void GC_write_fault_handler(int sig, struct SIGINFO *scp, void * context)
2362 # else
2363 void GC_write_fault_handler(sig, scp, context)
2364 int sig;
2365 struct SIGINFO *scp;
2366 void * context;
2367 # endif
2368 # ifdef HPUX
2369 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2370 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2371 || (scp -> si_code == BUS_ADRERR) \
2372 || (scp -> si_code == BUS_UNKNOWN) \
2373 || (scp -> si_code == SEGV_UNKNOWN) \
2374 || (scp -> si_code == BUS_OBJERR)
2375 # else
2376 # define SIG_OK (sig == SIGSEGV)
2377 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
2378 # endif
2379 # endif /* SUNOS5SIGS */
2381 # if defined(MSWIN32) || defined(MSWINCE)
2382 LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2383 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2384 STATUS_ACCESS_VIOLATION)
2385 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2386 /* Write fault */
2387 # endif /* MSWIN32 || MSWINCE */
2389 register unsigned i;
2390 # if defined(HURD)
2391 char *addr = (char *) code;
2392 # endif
2393 # ifdef IRIX5
2394 char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2395 # endif
2396 # if defined(OSF1) && defined(ALPHA)
2397 char * addr = (char *) (scp -> sc_traparg_a0);
2398 # endif
2399 # ifdef SUNOS5SIGS
2400 char * addr = (char *) (scp -> si_addr);
2401 # endif
2402 # ifdef LINUX
2403 # if defined(I386) || defined (X86_64)
2404 char * addr = (char *) (sc.cr2);
2405 # else
2406 # if defined(M68K)
2407 char * addr = NULL;
2409 struct sigcontext *scp = (struct sigcontext *)(sc);
2411 int format = (scp->sc_formatvec >> 12) & 0xf;
2412 unsigned long *framedata = (unsigned long *)(scp + 1);
2413 unsigned long ea;
2415 if (format == 0xa || format == 0xb) {
2416 /* 68020/030 */
2417 ea = framedata[2];
2418 } else if (format == 7) {
2419 /* 68040 */
2420 ea = framedata[3];
2421 if (framedata[1] & 0x08000000) {
2422 /* correct addr on misaligned access */
2423 ea = (ea+4095)&(~4095);
2425 } else if (format == 4) {
2426 /* 68060 */
2427 ea = framedata[0];
2428 if (framedata[1] & 0x08000000) {
2429 /* correct addr on misaligned access */
2430 ea = (ea+4095)&(~4095);
2433 addr = (char *)ea;
2434 # else
2435 # ifdef ALPHA
2436 char * addr = get_fault_addr(sc);
2437 # else
2438 # if defined(IA64) || defined(HP_PA)
2439 char * addr = si -> si_addr;
2440 /* I believe this is claimed to work on all platforms for */
2441 /* Linux 2.3.47 and later. Hopefully we don't have to */
2442 /* worry about earlier kernels on IA64. */
2443 # else
2444 # if defined(POWERPC)
2445 char * addr = (char *) (sc.regs->dar);
2446 # else
2447 # if defined(ARM32)
2448 char * addr = (char *)sc.fault_address;
2449 # else
2450 --> architecture not supported
2451 # endif
2452 # endif
2453 # endif
2454 # endif
2455 # endif
2456 # endif
2457 # endif
2458 # if defined(MSWIN32) || defined(MSWINCE)
2459 char * addr = (char *) (exc_info -> ExceptionRecord
2460 -> ExceptionInformation[1]);
2461 # define sig SIGSEGV
2462 # endif
2464 if (SIG_OK && CODE_OK) {
2465 register struct hblk * h =
2466 (struct hblk *)((word)addr & ~(GC_page_size-1));
2467 GC_bool in_allocd_block;
2469 # ifdef SUNOS5SIGS
2470 /* Address is only within the correct physical page. */
2471 in_allocd_block = FALSE;
2472 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2473 if (HDR(h+i) != 0) {
2474 in_allocd_block = TRUE;
2477 # else
2478 in_allocd_block = (HDR(addr) != 0);
2479 # endif
2480 if (!in_allocd_block) {
2481 /* Heap blocks now begin and end on page boundaries */
2482 SIG_PF old_handler;
2484 if (sig == SIGSEGV) {
2485 old_handler = GC_old_segv_handler;
2486 } else {
2487 old_handler = GC_old_bus_handler;
2489 if (old_handler == SIG_DFL) {
2490 # if !defined(MSWIN32) && !defined(MSWINCE)
2491 GC_err_printf1("Segfault at 0x%lx\n", addr);
2492 ABORT("Unexpected bus error or segmentation fault");
2493 # else
2494 return(EXCEPTION_CONTINUE_SEARCH);
2495 # endif
2496 } else {
2497 # if defined (SUNOS4) || defined(FREEBSD)
2498 (*old_handler) (sig, code, scp, addr);
2499 return;
2500 # endif
2501 # if defined (SUNOS5SIGS)
2502 (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2503 return;
2504 # endif
2505 # if defined (LINUX)
2506 # if defined(ALPHA) || defined(M68K)
2507 (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2508 # else
2509 # if defined(IA64) || defined(HP_PA)
2510 (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2511 # else
2512 (*(REAL_SIG_PF)old_handler) (sig, sc);
2513 # endif
2514 # endif
2515 return;
2516 # endif
2517 # if defined (IRIX5) || defined(OSF1) || defined(HURD)
2518 (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2519 return;
2520 # endif
2521 # ifdef MSWIN32
2522 return((*old_handler)(exc_info));
2523 # endif
2526 UNPROTECT(h, GC_page_size);
2527 /* We need to make sure that no collection occurs between */
2528 /* the UNPROTECT and the setting of the dirty bit. Otherwise */
2529 /* a write by a third thread might go unnoticed. Reversing */
2530 /* the order is just as bad, since we would end up unprotecting */
2531 /* a page in a GC cycle during which it's not marked. */
2532 /* Currently we do this by disabling the thread stopping */
2533 /* signals while this handler is running. An alternative might */
2534 /* be to record the fact that we're about to unprotect, or */
2535 /* have just unprotected a page in the GC's thread structure, */
2536 /* and then to have the thread stopping code set the dirty */
2537 /* flag, if necessary. */
2538 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2539 register int index = PHT_HASH(h+i);
2541 async_set_pht_entry_from_index(GC_dirty_pages, index);
2543 # if defined(OSF1)
2544 /* These reset the signal handler each time by default. */
2545 signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2546 # endif
2547 /* The write may not take place before dirty bits are read. */
2548 /* But then we'll fault again ... */
2549 # if defined(MSWIN32) || defined(MSWINCE)
2550 return(EXCEPTION_CONTINUE_EXECUTION);
2551 # else
2552 return;
2553 # endif
2555 #if defined(MSWIN32) || defined(MSWINCE)
2556 return EXCEPTION_CONTINUE_SEARCH;
2557 #else
2558 GC_err_printf1("Segfault at 0x%lx\n", addr);
2559 ABORT("Unexpected bus error or segmentation fault");
2560 #endif
2562 #endif /* !DARWIN */
2565 * We hold the allocation lock. We expect block h to be written
2566 * shortly. Ensure that all pages containing any part of the n hblks
2567 * starting at h are no longer protected. If is_ptrfree is false,
2568 * also ensure that they will subsequently appear to be dirty.
2570 void GC_remove_protection(h, nblocks, is_ptrfree)
2571 struct hblk *h;
2572 word nblocks;
2573 GC_bool is_ptrfree;
2575 struct hblk * h_trunc; /* Truncated to page boundary */
2576 struct hblk * h_end; /* Page boundary following block end */
2577 struct hblk * current;
2578 GC_bool found_clean;
2580 if (!GC_dirty_maintained) return;
2581 h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2582 h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1)
2583 & ~(GC_page_size-1));
2584 found_clean = FALSE;
2585 for (current = h_trunc; current < h_end; ++current) {
2586 int index = PHT_HASH(current);
2588 if (!is_ptrfree || current < h || current >= h + nblocks) {
2589 async_set_pht_entry_from_index(GC_dirty_pages, index);
2592 UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc);
2595 #if !defined(DARWIN)
2596 void GC_dirty_init()
2598 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2599 defined(OSF1) || defined(HURD)
2600 struct sigaction act, oldact;
2601 /* We should probably specify SA_SIGINFO for Linux, and handle */
2602 /* the different architectures more uniformly. */
2603 # if defined(IRIX5) || defined(LINUX) || defined(OSF1) || defined(HURD)
2604 act.sa_flags = SA_RESTART;
2605 act.sa_handler = (SIG_PF)GC_write_fault_handler;
2606 # else
2607 act.sa_flags = SA_RESTART | SA_SIGINFO;
2608 act.sa_sigaction = GC_write_fault_handler;
2609 # endif
2610 (void)sigemptyset(&act.sa_mask);
2611 # ifdef SIG_SUSPEND
2612 /* Arrange to postpone SIG_SUSPEND while we're in a write fault */
2613 /* handler. This effectively makes the handler atomic w.r.t. */
2614 /* stopping the world for GC. */
2615 (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
2616 # endif /* SIG_SUSPEND */
2617 # endif
2618 # ifdef PRINTSTATS
2619 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2620 # endif
2621 GC_dirty_maintained = TRUE;
2622 if (GC_page_size % HBLKSIZE != 0) {
2623 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2624 ABORT("Page size not multiple of HBLKSIZE");
2626 # if defined(SUNOS4) || defined(FREEBSD)
2627 GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2628 if (GC_old_bus_handler == SIG_IGN) {
2629 GC_err_printf0("Previously ignored bus error!?");
2630 GC_old_bus_handler = SIG_DFL;
2632 if (GC_old_bus_handler != SIG_DFL) {
2633 # ifdef PRINTSTATS
2634 GC_err_printf0("Replaced other SIGBUS handler\n");
2635 # endif
2637 # endif
2638 # if defined(SUNOS4)
2639 GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2640 if (GC_old_segv_handler == SIG_IGN) {
2641 GC_err_printf0("Previously ignored segmentation violation!?");
2642 GC_old_segv_handler = SIG_DFL;
2644 if (GC_old_segv_handler != SIG_DFL) {
2645 # ifdef PRINTSTATS
2646 GC_err_printf0("Replaced other SIGSEGV handler\n");
2647 # endif
2649 # endif
2650 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) \
2651 || defined(OSF1) || defined(HURD)
2652 /* SUNOS5SIGS includes HPUX */
2653 # if defined(GC_IRIX_THREADS)
2654 sigaction(SIGSEGV, 0, &oldact);
2655 sigaction(SIGSEGV, &act, 0);
2656 # else
2658 int res = sigaction(SIGSEGV, &act, &oldact);
2659 if (res != 0) ABORT("Sigaction failed");
2661 # endif
2662 # if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
2663 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2664 /* sa_sigaction. */
2665 GC_old_segv_handler = oldact.sa_handler;
2666 # else /* Irix 6.x or SUNOS5SIGS or LINUX */
2667 if (oldact.sa_flags & SA_SIGINFO) {
2668 GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2669 } else {
2670 GC_old_segv_handler = oldact.sa_handler;
2672 # endif
2673 if (GC_old_segv_handler == SIG_IGN) {
2674 GC_err_printf0("Previously ignored segmentation violation!?");
2675 GC_old_segv_handler = SIG_DFL;
2677 if (GC_old_segv_handler != SIG_DFL) {
2678 # ifdef PRINTSTATS
2679 GC_err_printf0("Replaced other SIGSEGV handler\n");
2680 # endif
2682 # endif
2683 # if defined(HPUX) || defined(LINUX) || defined(HURD)
2684 sigaction(SIGBUS, &act, &oldact);
2685 GC_old_bus_handler = oldact.sa_handler;
2686 if (GC_old_bus_handler == SIG_IGN) {
2687 GC_err_printf0("Previously ignored bus error!?");
2688 GC_old_bus_handler = SIG_DFL;
2690 if (GC_old_bus_handler != SIG_DFL) {
2691 # ifdef PRINTSTATS
2692 GC_err_printf0("Replaced other SIGBUS handler\n");
2693 # endif
2695 # endif /* HPUX || LINUX || HURD */
2696 # if defined(MSWIN32)
2697 GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2698 if (GC_old_segv_handler != NULL) {
2699 # ifdef PRINTSTATS
2700 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2701 # endif
2702 } else {
2703 GC_old_segv_handler = SIG_DFL;
2705 # endif
2707 #endif /* !DARWIN */
2709 int GC_incremental_protection_needs()
2711 if (GC_page_size == HBLKSIZE) {
2712 return GC_PROTECTS_POINTER_HEAP;
2713 } else {
2714 return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP;
2718 #define HAVE_INCREMENTAL_PROTECTION_NEEDS
2720 #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
2722 #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
2723 void GC_protect_heap()
2725 ptr_t start;
2726 word len;
2727 struct hblk * current;
2728 struct hblk * current_start; /* Start of block to be protected. */
2729 struct hblk * limit;
2730 unsigned i;
2731 GC_bool protect_all =
2732 (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP));
2733 for (i = 0; i < GC_n_heap_sects; i++) {
2734 start = GC_heap_sects[i].hs_start;
2735 len = GC_heap_sects[i].hs_bytes;
2736 if (protect_all) {
2737 PROTECT(start, len);
2738 } else {
2739 GC_ASSERT(PAGE_ALIGNED(len))
2740 GC_ASSERT(PAGE_ALIGNED(start))
2741 current_start = current = (struct hblk *)start;
2742 limit = (struct hblk *)(start + len);
2743 while (current < limit) {
2744 hdr * hhdr;
2745 word nhblks;
2746 GC_bool is_ptrfree;
2748 GC_ASSERT(PAGE_ALIGNED(current));
2749 GET_HDR(current, hhdr);
2750 if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
2751 /* This can happen only if we're at the beginning of a */
2752 /* heap segment, and a block spans heap segments. */
2753 /* We will handle that block as part of the preceding */
2754 /* segment. */
2755 GC_ASSERT(current_start == current);
2756 current_start = ++current;
2757 continue;
2759 if (HBLK_IS_FREE(hhdr)) {
2760 GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz));
2761 nhblks = divHBLKSZ(hhdr -> hb_sz);
2762 is_ptrfree = TRUE; /* dirty on alloc */
2763 } else {
2764 nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
2765 is_ptrfree = IS_PTRFREE(hhdr);
2767 if (is_ptrfree) {
2768 if (current_start < current) {
2769 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2771 current_start = (current += nhblks);
2772 } else {
2773 current += nhblks;
2776 if (current_start < current) {
2777 PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
2783 /* We assume that either the world is stopped or its OK to lose dirty */
2784 /* bits while this is happenning (as in GC_enable_incremental). */
2785 void GC_read_dirty()
2787 BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2788 (sizeof GC_dirty_pages));
2789 BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2790 GC_protect_heap();
2793 GC_bool GC_page_was_dirty(h)
2794 struct hblk * h;
2796 register word index = PHT_HASH(h);
2798 return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2802 * Acquiring the allocation lock here is dangerous, since this
2803 * can be called from within GC_call_with_alloc_lock, and the cord
2804 * package does so. On systems that allow nested lock acquisition, this
2805 * happens to work.
2806 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2809 static GC_bool syscall_acquired_lock = FALSE; /* Protected by GC lock. */
2811 void GC_begin_syscall()
2813 if (!I_HOLD_LOCK()) {
2814 LOCK();
2815 syscall_acquired_lock = TRUE;
2819 void GC_end_syscall()
2821 if (syscall_acquired_lock) {
2822 syscall_acquired_lock = FALSE;
2823 UNLOCK();
2827 void GC_unprotect_range(addr, len)
2828 ptr_t addr;
2829 word len;
2831 struct hblk * start_block;
2832 struct hblk * end_block;
2833 register struct hblk *h;
2834 ptr_t obj_start;
2836 if (!GC_dirty_maintained) return;
2837 obj_start = GC_base(addr);
2838 if (obj_start == 0) return;
2839 if (GC_base(addr + len - 1) != obj_start) {
2840 ABORT("GC_unprotect_range(range bigger than object)");
2842 start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2843 end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2844 end_block += GC_page_size/HBLKSIZE - 1;
2845 for (h = start_block; h <= end_block; h++) {
2846 register word index = PHT_HASH(h);
2848 async_set_pht_entry_from_index(GC_dirty_pages, index);
2850 UNPROTECT(start_block,
2851 ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2854 #if 0
2856 /* We no longer wrap read by default, since that was causing too many */
2857 /* problems. It is preferred that the client instead avoids writing */
2858 /* to the write-protected heap with a system call. */
2859 /* This still serves as sample code if you do want to wrap system calls.*/
2861 #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
2862 /* Replacement for UNIX system call. */
2863 /* Other calls that write to the heap should be handled similarly. */
2864 /* Note that this doesn't work well for blocking reads: It will hold */
2865 /* the allocation lock for the entire duration of the call. Multithreaded */
2866 /* clients should really ensure that it won't block, either by setting */
2867 /* the descriptor nonblocking, or by calling select or poll first, to */
2868 /* make sure that input is available. */
2869 /* Another, preferred alternative is to ensure that system calls never */
2870 /* write to the protected heap (see above). */
2871 # if defined(__STDC__) && !defined(SUNOS4)
2872 # include <unistd.h>
2873 # include <sys/uio.h>
2874 ssize_t read(int fd, void *buf, size_t nbyte)
2875 # else
2876 # ifndef LINT
2877 int read(fd, buf, nbyte)
2878 # else
2879 int GC_read(fd, buf, nbyte)
2880 # endif
2881 int fd;
2882 char *buf;
2883 int nbyte;
2884 # endif
2886 int result;
2888 GC_begin_syscall();
2889 GC_unprotect_range(buf, (word)nbyte);
2890 # if defined(IRIX5) || defined(GC_LINUX_THREADS)
2891 /* Indirect system call may not always be easily available. */
2892 /* We could call _read, but that would interfere with the */
2893 /* libpthread interception of read. */
2894 /* On Linux, we have to be careful with the linuxthreads */
2895 /* read interception. */
2897 struct iovec iov;
2899 iov.iov_base = buf;
2900 iov.iov_len = nbyte;
2901 result = readv(fd, &iov, 1);
2903 # else
2904 # if defined(HURD)
2905 result = __read(fd, buf, nbyte);
2906 # else
2907 /* The two zero args at the end of this list are because one
2908 IA-64 syscall() implementation actually requires six args
2909 to be passed, even though they aren't always used. */
2910 result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
2911 # endif /* !HURD */
2912 # endif
2913 GC_end_syscall();
2914 return(result);
2916 #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
2918 #if defined(GC_USE_LD_WRAP) && !defined(THREADS)
2919 /* We use the GNU ld call wrapping facility. */
2920 /* This requires that the linker be invoked with "--wrap read". */
2921 /* This can be done by passing -Wl,"--wrap read" to gcc. */
2922 /* I'm not sure that this actually wraps whatever version of read */
2923 /* is called by stdio. That code also mentions __read. */
2924 # include <unistd.h>
2925 ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
2927 int result;
2929 GC_begin_syscall();
2930 GC_unprotect_range(buf, (word)nbyte);
2931 result = __real_read(fd, buf, nbyte);
2932 GC_end_syscall();
2933 return(result);
2936 /* We should probably also do this for __read, or whatever stdio */
2937 /* actually calls. */
2938 #endif
2940 #endif /* 0 */
2942 /*ARGSUSED*/
2943 GC_bool GC_page_was_ever_dirty(h)
2944 struct hblk *h;
2946 return(TRUE);
2949 /* Reset the n pages starting at h to "was never dirty" status. */
2950 /*ARGSUSED*/
2951 void GC_is_fresh(h, n)
2952 struct hblk *h;
2953 word n;
2957 # endif /* MPROTECT_VDB */
2959 # ifdef PROC_VDB
2962 * See DEFAULT_VDB for interface descriptions.
2966 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
2967 * from which we can read page modified bits. This facility is far from
2968 * optimal (e.g. we would like to get the info for only some of the
2969 * address space), but it avoids intercepting system calls.
2972 #include <errno.h>
2973 #include <sys/types.h>
2974 #include <sys/signal.h>
2975 #include <sys/fault.h>
2976 #include <sys/syscall.h>
2977 #include <sys/procfs.h>
2978 #include <sys/stat.h>
2980 #define INITIAL_BUF_SZ 4096
2981 word GC_proc_buf_size = INITIAL_BUF_SZ;
2982 char *GC_proc_buf;
2984 #ifdef GC_SOLARIS_THREADS
2985 /* We don't have exact sp values for threads. So we count on */
2986 /* occasionally declaring stack pages to be fresh. Thus we */
2987 /* need a real implementation of GC_is_fresh. We can't clear */
2988 /* entries in GC_written_pages, since that would declare all */
2989 /* pages with the given hash address to be fresh. */
2990 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
2991 struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
2992 /* Collisions are dropped. */
2994 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
2995 # define ADD_FRESH_PAGE(h) \
2996 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
2997 # define PAGE_IS_FRESH(h) \
2998 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
2999 #endif
3001 /* Add all pages in pht2 to pht1 */
3002 void GC_or_pages(pht1, pht2)
3003 page_hash_table pht1, pht2;
3005 register int i;
3007 for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
3010 int GC_proc_fd;
3012 void GC_dirty_init()
3014 int fd;
3015 char buf[30];
3017 GC_dirty_maintained = TRUE;
3018 if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
3019 register int i;
3021 for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
3022 # ifdef PRINTSTATS
3023 GC_printf1("Allocated words:%lu:all pages may have been written\n",
3024 (unsigned long)
3025 (GC_words_allocd + GC_words_allocd_before_gc));
3026 # endif
3028 sprintf(buf, "/proc/%d", getpid());
3029 fd = open(buf, O_RDONLY);
3030 if (fd < 0) {
3031 ABORT("/proc open failed");
3033 GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
3034 close(fd);
3035 syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC);
3036 if (GC_proc_fd < 0) {
3037 ABORT("/proc ioctl failed");
3039 GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
3040 # ifdef GC_SOLARIS_THREADS
3041 GC_fresh_pages = (struct hblk **)
3042 GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
3043 if (GC_fresh_pages == 0) {
3044 GC_err_printf0("No space for fresh pages\n");
3045 EXIT();
3047 BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
3048 # endif
3051 /* Ignore write hints. They don't help us here. */
3052 /*ARGSUSED*/
3053 void GC_remove_protection(h, nblocks, is_ptrfree)
3054 struct hblk *h;
3055 word nblocks;
3056 GC_bool is_ptrfree;
3060 #ifdef GC_SOLARIS_THREADS
3061 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3062 #else
3063 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3064 #endif
3066 void GC_read_dirty()
3068 unsigned long ps, np;
3069 int nmaps;
3070 ptr_t vaddr;
3071 struct prasmap * map;
3072 char * bufp;
3073 ptr_t current_addr, limit;
3074 int i;
3075 int dummy;
3077 BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
3079 bufp = GC_proc_buf;
3080 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3081 # ifdef PRINTSTATS
3082 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3083 GC_proc_buf_size);
3084 # endif
3086 /* Retry with larger buffer. */
3087 word new_size = 2 * GC_proc_buf_size;
3088 char * new_buf = GC_scratch_alloc(new_size);
3090 if (new_buf != 0) {
3091 GC_proc_buf = bufp = new_buf;
3092 GC_proc_buf_size = new_size;
3094 if (syscall(SYS_read, GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3095 WARN("Insufficient space for /proc read\n", 0);
3096 /* Punt: */
3097 memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
3098 memset(GC_written_pages, 0xff, sizeof(page_hash_table));
3099 # ifdef GC_SOLARIS_THREADS
3100 BZERO(GC_fresh_pages,
3101 MAX_FRESH_PAGES * sizeof (struct hblk *));
3102 # endif
3103 return;
3107 /* Copy dirty bits into GC_grungy_pages */
3108 nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
3109 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3110 nmaps, PG_REFERENCED, PG_MODIFIED); */
3111 bufp = bufp + sizeof(struct prpageheader);
3112 for (i = 0; i < nmaps; i++) {
3113 map = (struct prasmap *)bufp;
3114 vaddr = (ptr_t)(map -> pr_vaddr);
3115 ps = map -> pr_pagesize;
3116 np = map -> pr_npage;
3117 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3118 limit = vaddr + ps * np;
3119 bufp += sizeof (struct prasmap);
3120 for (current_addr = vaddr;
3121 current_addr < limit; current_addr += ps){
3122 if ((*bufp++) & PG_MODIFIED) {
3123 register struct hblk * h = (struct hblk *) current_addr;
3125 while ((ptr_t)h < current_addr + ps) {
3126 register word index = PHT_HASH(h);
3128 set_pht_entry_from_index(GC_grungy_pages, index);
3129 # ifdef GC_SOLARIS_THREADS
3131 register int slot = FRESH_PAGE_SLOT(h);
3133 if (GC_fresh_pages[slot] == h) {
3134 GC_fresh_pages[slot] = 0;
3137 # endif
3138 h++;
3142 bufp += sizeof(long) - 1;
3143 bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
3145 /* Update GC_written_pages. */
3146 GC_or_pages(GC_written_pages, GC_grungy_pages);
3147 # ifdef GC_SOLARIS_THREADS
3148 /* Make sure that old stacks are considered completely clean */
3149 /* unless written again. */
3150 GC_old_stacks_are_fresh();
3151 # endif
3154 #undef READ
3156 GC_bool GC_page_was_dirty(h)
3157 struct hblk *h;
3159 register word index = PHT_HASH(h);
3160 register GC_bool result;
3162 result = get_pht_entry_from_index(GC_grungy_pages, index);
3163 # ifdef GC_SOLARIS_THREADS
3164 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3165 /* This happens only if page was declared fresh since */
3166 /* the read_dirty call, e.g. because it's in an unused */
3167 /* thread stack. It's OK to treat it as clean, in */
3168 /* that case. And it's consistent with */
3169 /* GC_page_was_ever_dirty. */
3170 # endif
3171 return(result);
3174 GC_bool GC_page_was_ever_dirty(h)
3175 struct hblk *h;
3177 register word index = PHT_HASH(h);
3178 register GC_bool result;
3180 result = get_pht_entry_from_index(GC_written_pages, index);
3181 # ifdef GC_SOLARIS_THREADS
3182 if (result && PAGE_IS_FRESH(h)) result = FALSE;
3183 # endif
3184 return(result);
3187 /* Caller holds allocation lock. */
3188 void GC_is_fresh(h, n)
3189 struct hblk *h;
3190 word n;
3193 register word index;
3195 # ifdef GC_SOLARIS_THREADS
3196 register word i;
3198 if (GC_fresh_pages != 0) {
3199 for (i = 0; i < n; i++) {
3200 ADD_FRESH_PAGE(h + i);
3203 # endif
3206 # endif /* PROC_VDB */
3209 # ifdef PCR_VDB
3211 # include "vd/PCR_VD.h"
3213 # define NPAGES (32*1024) /* 128 MB */
3215 PCR_VD_DB GC_grungy_bits[NPAGES];
3217 ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
3218 /* HBLKSIZE aligned. */
3220 void GC_dirty_init()
3222 GC_dirty_maintained = TRUE;
3223 /* For the time being, we assume the heap generally grows up */
3224 GC_vd_base = GC_heap_sects[0].hs_start;
3225 if (GC_vd_base == 0) {
3226 ABORT("Bad initial heap segment");
3228 if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
3229 != PCR_ERes_okay) {
3230 ABORT("dirty bit initialization failed");
3234 void GC_read_dirty()
3236 /* lazily enable dirty bits on newly added heap sects */
3238 static int onhs = 0;
3239 int nhs = GC_n_heap_sects;
3240 for( ; onhs < nhs; onhs++ ) {
3241 PCR_VD_WriteProtectEnable(
3242 GC_heap_sects[onhs].hs_start,
3243 GC_heap_sects[onhs].hs_bytes );
3248 if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
3249 != PCR_ERes_okay) {
3250 ABORT("dirty bit read failed");
3254 GC_bool GC_page_was_dirty(h)
3255 struct hblk *h;
3257 if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
3258 return(TRUE);
3260 return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
3263 /*ARGSUSED*/
3264 void GC_remove_protection(h, nblocks, is_ptrfree)
3265 struct hblk *h;
3266 word nblocks;
3267 GC_bool is_ptrfree;
3269 PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE);
3270 PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE);
3273 # endif /* PCR_VDB */
3275 #if defined(MPROTECT_VDB) && defined(DARWIN)
3276 /* The following sources were used as a *reference* for this exception handling
3277 code:
3278 1. Apple's mach/xnu documentation
3279 2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
3280 omnigroup's macosx-dev list.
3281 www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
3282 3. macosx-nat.c from Apple's GDB source code.
3285 /* The bug that caused all this trouble should now be fixed. This should
3286 eventually be removed if all goes well. */
3287 /* define BROKEN_EXCEPTION_HANDLING */
3289 #include <mach/mach.h>
3290 #include <mach/mach_error.h>
3291 #include <mach/thread_status.h>
3292 #include <mach/exception.h>
3293 #include <mach/task.h>
3294 #include <pthread.h>
3296 /* These are not defined in any header, although they are documented */
3297 extern boolean_t exc_server(mach_msg_header_t *,mach_msg_header_t *);
3298 extern kern_return_t exception_raise(
3299 mach_port_t,mach_port_t,mach_port_t,
3300 exception_type_t,exception_data_t,mach_msg_type_number_t);
3301 extern kern_return_t exception_raise_state(
3302 mach_port_t,mach_port_t,mach_port_t,
3303 exception_type_t,exception_data_t,mach_msg_type_number_t,
3304 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3305 thread_state_t,mach_msg_type_number_t*);
3306 extern kern_return_t exception_raise_state_identity(
3307 mach_port_t,mach_port_t,mach_port_t,
3308 exception_type_t,exception_data_t,mach_msg_type_number_t,
3309 thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3310 thread_state_t,mach_msg_type_number_t*);
3313 #define MAX_EXCEPTION_PORTS 16
3315 static mach_port_t GC_task_self;
3317 static struct {
3318 mach_msg_type_number_t count;
3319 exception_mask_t masks[MAX_EXCEPTION_PORTS];
3320 exception_handler_t ports[MAX_EXCEPTION_PORTS];
3321 exception_behavior_t behaviors[MAX_EXCEPTION_PORTS];
3322 thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS];
3323 } GC_old_exc_ports;
3325 static struct {
3326 mach_port_t exception;
3327 #if defined(THREADS)
3328 mach_port_t reply;
3329 #endif
3330 } GC_ports;
3332 typedef struct {
3333 mach_msg_header_t head;
3334 } GC_msg_t;
3336 typedef enum {
3337 GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED
3338 } GC_mprotect_state_t;
3340 /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
3341 but it isn't documented. Use the source and see if they
3342 should be ok. */
3343 #define ID_STOP 1
3344 #define ID_RESUME 2
3346 /* These values are only used on the reply port */
3347 #define ID_ACK 3
3349 #if defined(THREADS)
3351 GC_mprotect_state_t GC_mprotect_state;
3353 /* The following should ONLY be called when the world is stopped */
3354 static void GC_mprotect_thread_notify(mach_msg_id_t id) {
3355 struct {
3356 GC_msg_t msg;
3357 mach_msg_trailer_t trailer;
3358 } buf;
3359 mach_msg_return_t r;
3360 /* remote, local */
3361 buf.msg.head.msgh_bits =
3362 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3363 buf.msg.head.msgh_size = sizeof(buf.msg);
3364 buf.msg.head.msgh_remote_port = GC_ports.exception;
3365 buf.msg.head.msgh_local_port = MACH_PORT_NULL;
3366 buf.msg.head.msgh_id = id;
3368 r = mach_msg(
3369 &buf.msg.head,
3370 MACH_SEND_MSG|MACH_RCV_MSG|MACH_RCV_LARGE,
3371 sizeof(buf.msg),
3372 sizeof(buf),
3373 GC_ports.reply,
3374 MACH_MSG_TIMEOUT_NONE,
3375 MACH_PORT_NULL);
3376 if(r != MACH_MSG_SUCCESS)
3377 ABORT("mach_msg failed in GC_mprotect_thread_notify");
3378 if(buf.msg.head.msgh_id != ID_ACK)
3379 ABORT("invalid ack in GC_mprotect_thread_notify");
3382 /* Should only be called by the mprotect thread */
3383 static void GC_mprotect_thread_reply() {
3384 GC_msg_t msg;
3385 mach_msg_return_t r;
3386 /* remote, local */
3387 msg.head.msgh_bits =
3388 MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3389 msg.head.msgh_size = sizeof(msg);
3390 msg.head.msgh_remote_port = GC_ports.reply;
3391 msg.head.msgh_local_port = MACH_PORT_NULL;
3392 msg.head.msgh_id = ID_ACK;
3394 r = mach_msg(
3395 &msg.head,
3396 MACH_SEND_MSG,
3397 sizeof(msg),
3399 MACH_PORT_NULL,
3400 MACH_MSG_TIMEOUT_NONE,
3401 MACH_PORT_NULL);
3402 if(r != MACH_MSG_SUCCESS)
3403 ABORT("mach_msg failed in GC_mprotect_thread_reply");
3406 void GC_mprotect_stop() {
3407 GC_mprotect_thread_notify(ID_STOP);
3409 void GC_mprotect_resume() {
3410 GC_mprotect_thread_notify(ID_RESUME);
3413 #else /* !THREADS */
3414 /* The compiler should optimize away any GC_mprotect_state computations */
3415 #define GC_mprotect_state GC_MP_NORMAL
3416 #endif
3418 static void *GC_mprotect_thread(void *arg) {
3419 mach_msg_return_t r;
3420 /* These two structures contain some private kernel data. We don't need to
3421 access any of it so we don't bother defining a proper struct. The
3422 correct definitions are in the xnu source code. */
3423 struct {
3424 mach_msg_header_t head;
3425 char data[256];
3426 } reply;
3427 struct {
3428 mach_msg_header_t head;
3429 mach_msg_body_t msgh_body;
3430 char data[1024];
3431 } msg;
3433 mach_msg_id_t id;
3435 for(;;) {
3436 r = mach_msg(
3437 &msg.head,
3438 MACH_RCV_MSG|MACH_RCV_LARGE|
3439 (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0),
3441 sizeof(msg),
3442 GC_ports.exception,
3443 GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE,
3444 MACH_PORT_NULL);
3446 id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1;
3448 #if defined(THREADS)
3449 if(GC_mprotect_state == GC_MP_DISCARDING) {
3450 if(r == MACH_RCV_TIMED_OUT) {
3451 GC_mprotect_state = GC_MP_STOPPED;
3452 GC_mprotect_thread_reply();
3453 continue;
3455 if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME))
3456 ABORT("out of order mprotect thread request");
3458 #endif
3460 if(r != MACH_MSG_SUCCESS) {
3461 GC_err_printf2("mach_msg failed with %d %s\n",
3462 (int)r,mach_error_string(r));
3463 ABORT("mach_msg failed");
3466 switch(id) {
3467 #if defined(THREADS)
3468 case ID_STOP:
3469 if(GC_mprotect_state != GC_MP_NORMAL)
3470 ABORT("Called mprotect_stop when state wasn't normal");
3471 GC_mprotect_state = GC_MP_DISCARDING;
3472 break;
3473 case ID_RESUME:
3474 if(GC_mprotect_state != GC_MP_STOPPED)
3475 ABORT("Called mprotect_resume when state wasn't stopped");
3476 GC_mprotect_state = GC_MP_NORMAL;
3477 GC_mprotect_thread_reply();
3478 break;
3479 #endif /* THREADS */
3480 default:
3481 /* Handle the message (calls catch_exception_raise) */
3482 if(!exc_server(&msg.head,&reply.head))
3483 ABORT("exc_server failed");
3484 /* Send the reply */
3485 r = mach_msg(
3486 &reply.head,
3487 MACH_SEND_MSG,
3488 reply.head.msgh_size,
3490 MACH_PORT_NULL,
3491 MACH_MSG_TIMEOUT_NONE,
3492 MACH_PORT_NULL);
3493 if(r != MACH_MSG_SUCCESS) {
3494 /* This will fail if the thread dies, but the thread shouldn't
3495 die... */
3496 #ifdef BROKEN_EXCEPTION_HANDLING
3497 GC_err_printf2(
3498 "mach_msg failed with %d %s while sending exc reply\n",
3499 (int)r,mach_error_string(r));
3500 #else
3501 ABORT("mach_msg failed while sending exception reply");
3502 #endif
3504 } /* switch */
3505 } /* for(;;) */
3506 /* NOT REACHED */
3507 return NULL;
3510 /* All this SIGBUS code shouldn't be necessary. All protection faults should
3511 be going throught the mach exception handler. However, it seems a SIGBUS is
3512 occasionally sent for some unknown reason. Even more odd, it seems to be
3513 meaningless and safe to ignore. */
3514 #ifdef BROKEN_EXCEPTION_HANDLING
3516 typedef void (* SIG_PF)();
3517 static SIG_PF GC_old_bus_handler;
3519 /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
3520 Even if this doesn't get updated property, it isn't really a problem */
3521 static int GC_sigbus_count;
3523 static void GC_darwin_sigbus(int num,siginfo_t *sip,void *context) {
3524 if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler");
3526 /* Ugh... some seem safe to ignore, but too many in a row probably means
3527 trouble. GC_sigbus_count is reset for each mach exception that is
3528 handled */
3529 if(GC_sigbus_count >= 8) {
3530 ABORT("Got more than 8 SIGBUSs in a row!");
3531 } else {
3532 GC_sigbus_count++;
3533 GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
3536 #endif /* BROKEN_EXCEPTION_HANDLING */
3538 void GC_dirty_init() {
3539 kern_return_t r;
3540 mach_port_t me;
3541 pthread_t thread;
3542 pthread_attr_t attr;
3543 exception_mask_t mask;
3545 # ifdef PRINTSTATS
3546 GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
3547 "implementation\n");
3548 # endif
3549 # ifdef BROKEN_EXCEPTION_HANDLING
3550 GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
3551 "exception handling bugs.\n");
3552 # endif
3553 GC_dirty_maintained = TRUE;
3554 if (GC_page_size % HBLKSIZE != 0) {
3555 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
3556 ABORT("Page size not multiple of HBLKSIZE");
3559 GC_task_self = me = mach_task_self();
3561 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.exception);
3562 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)");
3564 r = mach_port_insert_right(me,GC_ports.exception,GC_ports.exception,
3565 MACH_MSG_TYPE_MAKE_SEND);
3566 if(r != KERN_SUCCESS)
3567 ABORT("mach_port_insert_right failed (exception port)");
3569 #if defined(THREADS)
3570 r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.reply);
3571 if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)");
3572 #endif
3574 /* The exceptions we want to catch */
3575 mask = EXC_MASK_BAD_ACCESS;
3577 r = task_get_exception_ports(
3579 mask,
3580 GC_old_exc_ports.masks,
3581 &GC_old_exc_ports.count,
3582 GC_old_exc_ports.ports,
3583 GC_old_exc_ports.behaviors,
3584 GC_old_exc_ports.flavors
3586 if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed");
3588 r = task_set_exception_ports(
3590 mask,
3591 GC_ports.exception,
3592 EXCEPTION_DEFAULT,
3593 MACHINE_THREAD_STATE
3595 if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed");
3597 if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed");
3598 if(pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED) != 0)
3599 ABORT("pthread_attr_setdetachedstate failed");
3601 # undef pthread_create
3602 /* This will call the real pthread function, not our wrapper */
3603 if(pthread_create(&thread,&attr,GC_mprotect_thread,NULL) != 0)
3604 ABORT("pthread_create failed");
3605 pthread_attr_destroy(&attr);
3607 /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
3608 #ifdef BROKEN_EXCEPTION_HANDLING
3610 struct sigaction sa, oldsa;
3611 sa.sa_handler = (SIG_PF)GC_darwin_sigbus;
3612 sigemptyset(&sa.sa_mask);
3613 sa.sa_flags = SA_RESTART|SA_SIGINFO;
3614 if(sigaction(SIGBUS,&sa,&oldsa) < 0) ABORT("sigaction");
3615 GC_old_bus_handler = (SIG_PF)oldsa.sa_handler;
3616 if (GC_old_bus_handler != SIG_DFL) {
3617 # ifdef PRINTSTATS
3618 GC_err_printf0("Replaced other SIGBUS handler\n");
3619 # endif
3622 #endif /* BROKEN_EXCEPTION_HANDLING */
3625 /* The source code for Apple's GDB was used as a reference for the exception
3626 forwarding code. This code is similar to be GDB code only because there is
3627 only one way to do it. */
3628 static kern_return_t GC_forward_exception(
3629 mach_port_t thread,
3630 mach_port_t task,
3631 exception_type_t exception,
3632 exception_data_t data,
3633 mach_msg_type_number_t data_count
3635 int i;
3636 kern_return_t r;
3637 mach_port_t port;
3638 exception_behavior_t behavior;
3639 thread_state_flavor_t flavor;
3641 thread_state_data_t thread_state;
3642 mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX;
3644 for(i=0;i<GC_old_exc_ports.count;i++)
3645 if(GC_old_exc_ports.masks[i] & (1 << exception))
3646 break;
3647 if(i==GC_old_exc_ports.count) ABORT("No handler for exception!");
3649 port = GC_old_exc_ports.ports[i];
3650 behavior = GC_old_exc_ports.behaviors[i];
3651 flavor = GC_old_exc_ports.flavors[i];
3653 if(behavior != EXCEPTION_DEFAULT) {
3654 r = thread_get_state(thread,flavor,thread_state,&thread_state_count);
3655 if(r != KERN_SUCCESS)
3656 ABORT("thread_get_state failed in forward_exception");
3659 switch(behavior) {
3660 case EXCEPTION_DEFAULT:
3661 r = exception_raise(port,thread,task,exception,data,data_count);
3662 break;
3663 case EXCEPTION_STATE:
3664 r = exception_raise_state(port,thread,task,exception,data,
3665 data_count,&flavor,thread_state,thread_state_count,
3666 thread_state,&thread_state_count);
3667 break;
3668 case EXCEPTION_STATE_IDENTITY:
3669 r = exception_raise_state_identity(port,thread,task,exception,data,
3670 data_count,&flavor,thread_state,thread_state_count,
3671 thread_state,&thread_state_count);
3672 break;
3673 default:
3674 r = KERN_FAILURE; /* make gcc happy */
3675 ABORT("forward_exception: unknown behavior");
3676 break;
3679 if(behavior != EXCEPTION_DEFAULT) {
3680 r = thread_set_state(thread,flavor,thread_state,thread_state_count);
3681 if(r != KERN_SUCCESS)
3682 ABORT("thread_set_state failed in forward_exception");
3685 return r;
3688 #define FWD() GC_forward_exception(thread,task,exception,code,code_count)
3690 /* This violates the namespace rules but there isn't anything that can be done
3691 about it. The exception handling stuff is hard coded to call this */
3692 kern_return_t
3693 catch_exception_raise(
3694 mach_port_t exception_port,mach_port_t thread,mach_port_t task,
3695 exception_type_t exception,exception_data_t code,
3696 mach_msg_type_number_t code_count
3698 kern_return_t r;
3699 char *addr;
3700 struct hblk *h;
3701 int i;
3702 #ifdef POWERPC
3703 thread_state_flavor_t flavor = PPC_EXCEPTION_STATE;
3704 mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT;
3705 ppc_exception_state_t exc_state;
3706 #else
3707 # error FIXME for non-ppc darwin
3708 #endif
3711 if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) {
3712 #ifdef DEBUG_EXCEPTION_HANDLING
3713 /* We aren't interested, pass it on to the old handler */
3714 GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
3715 exception,
3716 code_count > 0 ? code[0] : -1,
3717 code_count > 1 ? code[1] : -1);
3718 #endif
3719 return FWD();
3722 r = thread_get_state(thread,flavor,
3723 (natural_t*)&exc_state,&exc_state_count);
3724 if(r != KERN_SUCCESS) {
3725 /* The thread is supposed to be suspended while the exception handler
3726 is called. This shouldn't fail. */
3727 #ifdef BROKEN_EXCEPTION_HANDLING
3728 GC_err_printf0("thread_get_state failed in "
3729 "catch_exception_raise\n");
3730 return KERN_SUCCESS;
3731 #else
3732 ABORT("thread_get_state failed in catch_exception_raise");
3733 #endif
3736 /* This is the address that caused the fault */
3737 addr = (char*) exc_state.dar;
3739 if((HDR(addr)) == 0) {
3740 /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
3741 KERN_PROTECTION_FAILURE every once and a while. We wait till we get
3742 a bunch in a row before doing anything about it. If a "real" fault
3743 ever occurres it'll just keep faulting over and over and we'll hit
3744 the limit pretty quickly. */
3745 #ifdef BROKEN_EXCEPTION_HANDLING
3746 static char *last_fault;
3747 static int last_fault_count;
3749 if(addr != last_fault) {
3750 last_fault = addr;
3751 last_fault_count = 0;
3753 if(++last_fault_count < 32) {
3754 if(last_fault_count == 1)
3755 GC_err_printf1(
3756 "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
3757 addr);
3758 return KERN_SUCCESS;
3761 GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr);
3762 /* Can't pass it along to the signal handler because that is
3763 ignoring SIGBUS signals. We also shouldn't call ABORT here as
3764 signals don't always work too well from the exception handler. */
3765 GC_err_printf0("Aborting\n");
3766 exit(EXIT_FAILURE);
3767 #else /* BROKEN_EXCEPTION_HANDLING */
3768 /* Pass it along to the next exception handler
3769 (which should call SIGBUS/SIGSEGV) */
3770 return FWD();
3771 #endif /* !BROKEN_EXCEPTION_HANDLING */
3774 #ifdef BROKEN_EXCEPTION_HANDLING
3775 /* Reset the number of consecutive SIGBUSs */
3776 GC_sigbus_count = 0;
3777 #endif
3779 if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */
3780 h = (struct hblk*)((word)addr & ~(GC_page_size-1));
3781 UNPROTECT(h, GC_page_size);
3782 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
3783 register int index = PHT_HASH(h+i);
3784 async_set_pht_entry_from_index(GC_dirty_pages, index);
3786 } else if(GC_mprotect_state == GC_MP_DISCARDING) {
3787 /* Lie to the thread for now. No sense UNPROTECT()ing the memory
3788 when we're just going to PROTECT() it again later. The thread
3789 will just fault again once it resumes */
3790 } else {
3791 /* Shouldn't happen, i don't think */
3792 GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
3793 return FWD();
3795 return KERN_SUCCESS;
3797 #undef FWD
3799 /* These should never be called, but just in case... */
3800 kern_return_t catch_exception_raise_state(mach_port_name_t exception_port,
3801 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3802 int flavor, thread_state_t old_state, int old_stateCnt,
3803 thread_state_t new_state, int new_stateCnt)
3805 ABORT("catch_exception_raise_state");
3806 return(KERN_INVALID_ARGUMENT);
3808 kern_return_t catch_exception_raise_state_identity(
3809 mach_port_name_t exception_port, mach_port_t thread, mach_port_t task,
3810 int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
3811 int flavor, thread_state_t old_state, int old_stateCnt,
3812 thread_state_t new_state, int new_stateCnt)
3814 ABORT("catch_exception_raise_state_identity");
3815 return(KERN_INVALID_ARGUMENT);
3819 #endif /* DARWIN && MPROTECT_VDB */
3821 # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
3822 int GC_incremental_protection_needs()
3824 return GC_PROTECTS_NONE;
3826 # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
3829 * Call stack save code for debugging.
3830 * Should probably be in mach_dep.c, but that requires reorganization.
3833 /* I suspect the following works for most X86 *nix variants, so */
3834 /* long as the frame pointer is explicitly stored. In the case of gcc, */
3835 /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is. */
3836 #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
3837 # include <features.h>
3839 struct frame {
3840 struct frame *fr_savfp;
3841 long fr_savpc;
3842 long fr_arg[NARGS]; /* All the arguments go here. */
3844 #endif
3846 #if defined(SPARC)
3847 # if defined(LINUX)
3848 # include <features.h>
3850 struct frame {
3851 long fr_local[8];
3852 long fr_arg[6];
3853 struct frame *fr_savfp;
3854 long fr_savpc;
3855 # ifndef __arch64__
3856 char *fr_stret;
3857 # endif
3858 long fr_argd[6];
3859 long fr_argx[0];
3861 # else
3862 # if defined(SUNOS4)
3863 # include <machine/frame.h>
3864 # else
3865 # if defined (DRSNX)
3866 # include <sys/sparc/frame.h>
3867 # else
3868 # if defined(OPENBSD) || defined(NETBSD)
3869 # include <frame.h>
3870 # else
3871 # include <sys/frame.h>
3872 # endif
3873 # endif
3874 # endif
3875 # endif
3876 # if NARGS > 6
3877 --> We only know how to to get the first 6 arguments
3878 # endif
3879 #endif /* SPARC */
3881 #ifdef NEED_CALLINFO
3882 /* Fill in the pc and argument information for up to NFRAMES of my */
3883 /* callers. Ignore my frame and my callers frame. */
3885 #ifdef LINUX
3886 # include <unistd.h>
3887 #endif
3889 #endif /* NEED_CALLINFO */
3891 #ifdef SAVE_CALL_CHAIN
3893 #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
3894 && defined(GC_HAVE_BUILTIN_BACKTRACE)
3896 #include <execinfo.h>
3898 void GC_save_callers (info)
3899 struct callinfo info[NFRAMES];
3901 void * tmp_info[NFRAMES + 1];
3902 int npcs, i;
3903 # define IGNORE_FRAMES 1
3905 /* We retrieve NFRAMES+1 pc values, but discard the first, since it */
3906 /* points to our own frame. */
3907 GC_ASSERT(sizeof(struct callinfo) == sizeof(void *));
3908 npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES);
3909 BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *));
3910 for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0;
3913 #else /* No builtin backtrace; do it ourselves */
3915 #if (defined(OPENBSD) || defined(NETBSD)) && defined(SPARC)
3916 # define FR_SAVFP fr_fp
3917 # define FR_SAVPC fr_pc
3918 #else
3919 # define FR_SAVFP fr_savfp
3920 # define FR_SAVPC fr_savpc
3921 #endif
3923 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
3924 # define BIAS 2047
3925 #else
3926 # define BIAS 0
3927 #endif
3929 void GC_save_callers (info)
3930 struct callinfo info[NFRAMES];
3932 struct frame *frame;
3933 struct frame *fp;
3934 int nframes = 0;
3935 # ifdef I386
3936 /* We assume this is turned on only with gcc as the compiler. */
3937 asm("movl %%ebp,%0" : "=r"(frame));
3938 fp = frame;
3939 # else
3940 frame = (struct frame *) GC_save_regs_in_stack ();
3941 fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
3942 #endif
3944 for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
3945 && (nframes < NFRAMES));
3946 fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
3947 register int i;
3949 info[nframes].ci_pc = fp->FR_SAVPC;
3950 # if NARGS > 0
3951 for (i = 0; i < NARGS; i++) {
3952 info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
3954 # endif /* NARGS > 0 */
3956 if (nframes < NFRAMES) info[nframes].ci_pc = 0;
3959 #endif /* No builtin backtrace */
3961 #endif /* SAVE_CALL_CHAIN */
3963 #ifdef NEED_CALLINFO
3965 /* Print info to stderr. We do NOT hold the allocation lock */
3966 void GC_print_callers (info)
3967 struct callinfo info[NFRAMES];
3969 register int i;
3970 static int reentry_count = 0;
3971 GC_bool stop = FALSE;
3973 LOCK();
3974 ++reentry_count;
3975 UNLOCK();
3977 # if NFRAMES == 1
3978 GC_err_printf0("\tCaller at allocation:\n");
3979 # else
3980 GC_err_printf0("\tCall chain at allocation:\n");
3981 # endif
3982 for (i = 0; i < NFRAMES && !stop ; i++) {
3983 if (info[i].ci_pc == 0) break;
3984 # if NARGS > 0
3986 int j;
3988 GC_err_printf0("\t\targs: ");
3989 for (j = 0; j < NARGS; j++) {
3990 if (j != 0) GC_err_printf0(", ");
3991 GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
3992 ~(info[i].ci_arg[j]));
3994 GC_err_printf0("\n");
3996 # endif
3997 if (reentry_count > 1) {
3998 /* We were called during an allocation during */
3999 /* a previous GC_print_callers call; punt. */
4000 GC_err_printf1("\t\t##PC##= 0x%lx\n", info[i].ci_pc);
4001 continue;
4004 # ifdef LINUX
4005 FILE *pipe;
4006 # endif
4007 # if defined(GC_HAVE_BUILTIN_BACKTRACE)
4008 char **sym_name =
4009 backtrace_symbols((void **)(&(info[i].ci_pc)), 1);
4010 char *name = sym_name[0];
4011 # else
4012 char buf[40];
4013 char *name = buf;
4014 sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc);
4015 # endif
4016 # if defined(LINUX) && !defined(SMALL_CONFIG)
4017 /* Try for a line number. */
4019 # define EXE_SZ 100
4020 static char exe_name[EXE_SZ];
4021 # define CMD_SZ 200
4022 char cmd_buf[CMD_SZ];
4023 # define RESULT_SZ 200
4024 static char result_buf[RESULT_SZ];
4025 size_t result_len;
4026 static GC_bool found_exe_name = FALSE;
4027 static GC_bool will_fail = FALSE;
4028 int ret_code;
4029 /* Try to get it via a hairy and expensive scheme. */
4030 /* First we get the name of the executable: */
4031 if (will_fail) goto out;
4032 if (!found_exe_name) {
4033 ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ);
4034 if (ret_code < 0 || ret_code >= EXE_SZ
4035 || exe_name[0] != '/') {
4036 will_fail = TRUE; /* Dont try again. */
4037 goto out;
4039 exe_name[ret_code] = '\0';
4040 found_exe_name = TRUE;
4042 /* Then we use popen to start addr2line -e <exe> <addr> */
4043 /* There are faster ways to do this, but hopefully this */
4044 /* isn't time critical. */
4045 sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name,
4046 (unsigned long)info[i].ci_pc);
4047 pipe = popen(cmd_buf, "r");
4048 if (pipe == NULL
4049 || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe))
4050 == 0) {
4051 if (pipe != NULL) pclose(pipe);
4052 will_fail = TRUE;
4053 goto out;
4055 if (result_buf[result_len - 1] == '\n') --result_len;
4056 result_buf[result_len] = 0;
4057 if (result_buf[0] == '?'
4058 || result_buf[result_len-2] == ':'
4059 && result_buf[result_len-1] == '0') {
4060 pclose(pipe);
4061 goto out;
4063 /* Get rid of embedded newline, if any. Test for "main" */
4065 char * nl = strchr(result_buf, '\n');
4066 if (nl != NULL && nl < result_buf + result_len) {
4067 *nl = ':';
4069 if (strncmp(result_buf, "main", nl - result_buf) == 0) {
4070 stop = TRUE;
4073 if (result_len < RESULT_SZ - 25) {
4074 /* Add in hex address */
4075 sprintf(result_buf + result_len, " [0x%lx]",
4076 (unsigned long)info[i].ci_pc);
4078 name = result_buf;
4079 pclose(pipe);
4080 out:;
4082 # endif /* LINUX */
4083 GC_err_printf1("\t\t%s\n", name);
4084 # if defined(GC_HAVE_BUILTIN_BACKTRACE)
4085 free(sym_name); /* May call GC_free; that's OK */
4086 # endif
4089 LOCK();
4090 --reentry_count;
4091 UNLOCK();
4094 #endif /* NEED_CALLINFO */
4098 #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4100 /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4101 addresses in FIND_LEAK output. */
4103 static word dump_maps(char *maps)
4105 GC_err_write(maps, strlen(maps));
4106 return 1;
4109 void GC_print_address_map()
4111 GC_err_printf0("---------- Begin address map ----------\n");
4112 GC_apply_to_maps(dump_maps);
4113 GC_err_printf0("---------- End address map ----------\n");
4116 #endif