[17/77] Add an int_mode_for_size helper function
[official-gcc.git] / gcc / ada / gcc-interface / utils.c
blobbc916bbb974771418587d518f0c12d37df1c6d4f
1 /****************************************************************************
2 * *
3 * GNAT COMPILER COMPONENTS *
4 * *
5 * U T I L S *
6 * *
7 * C Implementation File *
8 * *
9 * Copyright (C) 1992-2017, Free Software Foundation, Inc. *
10 * *
11 * GNAT is free software; you can redistribute it and/or modify it under *
12 * terms of the GNU General Public License as published by the Free Soft- *
13 * ware Foundation; either version 3, or (at your option) any later ver- *
14 * sion. GNAT is distributed in the hope that it will be useful, but WITH- *
15 * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY *
16 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License *
17 * for more details. You should have received a copy of the GNU General *
18 * Public License along with GCC; see the file COPYING3. If not see *
19 * <http://www.gnu.org/licenses/>. *
20 * *
21 * GNAT was originally developed by the GNAT team at New York University. *
22 * Extensive contributions were provided by Ada Core Technologies Inc. *
23 * *
24 ****************************************************************************/
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "target.h"
30 #include "function.h"
31 #include "tree.h"
32 #include "stringpool.h"
33 #include "cgraph.h"
34 #include "diagnostic.h"
35 #include "alias.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "attribs.h"
39 #include "varasm.h"
40 #include "toplev.h"
41 #include "output.h"
42 #include "debug.h"
43 #include "convert.h"
44 #include "common/common-target.h"
45 #include "langhooks.h"
46 #include "tree-dump.h"
47 #include "tree-inline.h"
49 #include "ada.h"
50 #include "types.h"
51 #include "atree.h"
52 #include "nlists.h"
53 #include "uintp.h"
54 #include "fe.h"
55 #include "sinfo.h"
56 #include "einfo.h"
57 #include "ada-tree.h"
58 #include "gigi.h"
60 /* If nonzero, pretend we are allocating at global level. */
61 int force_global;
63 /* The default alignment of "double" floating-point types, i.e. floating
64 point types whose size is equal to 64 bits, or 0 if this alignment is
65 not specifically capped. */
66 int double_float_alignment;
68 /* The default alignment of "double" or larger scalar types, i.e. scalar
69 types whose size is greater or equal to 64 bits, or 0 if this alignment
70 is not specifically capped. */
71 int double_scalar_alignment;
73 /* True if floating-point arithmetics may use wider intermediate results. */
74 bool fp_arith_may_widen = true;
76 /* Tree nodes for the various types and decls we create. */
77 tree gnat_std_decls[(int) ADT_LAST];
79 /* Functions to call for each of the possible raise reasons. */
80 tree gnat_raise_decls[(int) LAST_REASON_CODE + 1];
82 /* Likewise, but with extra info for each of the possible raise reasons. */
83 tree gnat_raise_decls_ext[(int) LAST_REASON_CODE + 1];
85 /* Forward declarations for handlers of attributes. */
86 static tree handle_const_attribute (tree *, tree, tree, int, bool *);
87 static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *);
88 static tree handle_pure_attribute (tree *, tree, tree, int, bool *);
89 static tree handle_novops_attribute (tree *, tree, tree, int, bool *);
90 static tree handle_nonnull_attribute (tree *, tree, tree, int, bool *);
91 static tree handle_sentinel_attribute (tree *, tree, tree, int, bool *);
92 static tree handle_noreturn_attribute (tree *, tree, tree, int, bool *);
93 static tree handle_noinline_attribute (tree *, tree, tree, int, bool *);
94 static tree handle_noclone_attribute (tree *, tree, tree, int, bool *);
95 static tree handle_leaf_attribute (tree *, tree, tree, int, bool *);
96 static tree handle_always_inline_attribute (tree *, tree, tree, int, bool *);
97 static tree handle_malloc_attribute (tree *, tree, tree, int, bool *);
98 static tree handle_type_generic_attribute (tree *, tree, tree, int, bool *);
99 static tree handle_vector_size_attribute (tree *, tree, tree, int, bool *);
100 static tree handle_vector_type_attribute (tree *, tree, tree, int, bool *);
102 /* Fake handler for attributes we don't properly support, typically because
103 they'd require dragging a lot of the common-c front-end circuitry. */
104 static tree fake_attribute_handler (tree *, tree, tree, int, bool *);
106 /* Table of machine-independent internal attributes for Ada. We support
107 this minimal set of attributes to accommodate the needs of builtins. */
108 const struct attribute_spec gnat_internal_attribute_table[] =
110 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
111 affects_type_identity } */
112 { "const", 0, 0, true, false, false, handle_const_attribute,
113 false },
114 { "nothrow", 0, 0, true, false, false, handle_nothrow_attribute,
115 false },
116 { "pure", 0, 0, true, false, false, handle_pure_attribute,
117 false },
118 { "no vops", 0, 0, true, false, false, handle_novops_attribute,
119 false },
120 { "nonnull", 0, -1, false, true, true, handle_nonnull_attribute,
121 false },
122 { "sentinel", 0, 1, false, true, true, handle_sentinel_attribute,
123 false },
124 { "noreturn", 0, 0, true, false, false, handle_noreturn_attribute,
125 false },
126 { "noinline", 0, 0, true, false, false, handle_noinline_attribute,
127 false },
128 { "noclone", 0, 0, true, false, false, handle_noclone_attribute,
129 false },
130 { "leaf", 0, 0, true, false, false, handle_leaf_attribute,
131 false },
132 { "always_inline",0, 0, true, false, false, handle_always_inline_attribute,
133 false },
134 { "malloc", 0, 0, true, false, false, handle_malloc_attribute,
135 false },
136 { "type generic", 0, 0, false, true, true, handle_type_generic_attribute,
137 false },
139 { "vector_size", 1, 1, false, true, false, handle_vector_size_attribute,
140 false },
141 { "vector_type", 0, 0, false, true, false, handle_vector_type_attribute,
142 false },
143 { "may_alias", 0, 0, false, true, false, NULL, false },
145 /* ??? format and format_arg are heavy and not supported, which actually
146 prevents support for stdio builtins, which we however declare as part
147 of the common builtins.def contents. */
148 { "format", 3, 3, false, true, true, fake_attribute_handler, false },
149 { "format_arg", 1, 1, false, true, true, fake_attribute_handler, false },
151 { NULL, 0, 0, false, false, false, NULL, false }
154 /* Associates a GNAT tree node to a GCC tree node. It is used in
155 `save_gnu_tree', `get_gnu_tree' and `present_gnu_tree'. See documentation
156 of `save_gnu_tree' for more info. */
157 static GTY((length ("max_gnat_nodes"))) tree *associate_gnat_to_gnu;
159 #define GET_GNU_TREE(GNAT_ENTITY) \
160 associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id]
162 #define SET_GNU_TREE(GNAT_ENTITY,VAL) \
163 associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] = (VAL)
165 #define PRESENT_GNU_TREE(GNAT_ENTITY) \
166 (associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)
168 /* Associates a GNAT entity to a GCC tree node used as a dummy, if any. */
169 static GTY((length ("max_gnat_nodes"))) tree *dummy_node_table;
171 #define GET_DUMMY_NODE(GNAT_ENTITY) \
172 dummy_node_table[(GNAT_ENTITY) - First_Node_Id]
174 #define SET_DUMMY_NODE(GNAT_ENTITY,VAL) \
175 dummy_node_table[(GNAT_ENTITY) - First_Node_Id] = (VAL)
177 #define PRESENT_DUMMY_NODE(GNAT_ENTITY) \
178 (dummy_node_table[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE)
180 /* This variable keeps a table for types for each precision so that we only
181 allocate each of them once. Signed and unsigned types are kept separate.
183 Note that these types are only used when fold-const requests something
184 special. Perhaps we should NOT share these types; we'll see how it
185 goes later. */
186 static GTY(()) tree signed_and_unsigned_types[2 * MAX_BITS_PER_WORD + 1][2];
188 /* Likewise for float types, but record these by mode. */
189 static GTY(()) tree float_types[NUM_MACHINE_MODES];
191 /* For each binding contour we allocate a binding_level structure to indicate
192 the binding depth. */
194 struct GTY((chain_next ("%h.chain"))) gnat_binding_level {
195 /* The binding level containing this one (the enclosing binding level). */
196 struct gnat_binding_level *chain;
197 /* The BLOCK node for this level. */
198 tree block;
199 /* If nonzero, the setjmp buffer that needs to be updated for any
200 variable-sized definition within this context. */
201 tree jmpbuf_decl;
204 /* The binding level currently in effect. */
205 static GTY(()) struct gnat_binding_level *current_binding_level;
207 /* A chain of gnat_binding_level structures awaiting reuse. */
208 static GTY((deletable)) struct gnat_binding_level *free_binding_level;
210 /* The context to be used for global declarations. */
211 static GTY(()) tree global_context;
213 /* An array of global declarations. */
214 static GTY(()) vec<tree, va_gc> *global_decls;
216 /* An array of builtin function declarations. */
217 static GTY(()) vec<tree, va_gc> *builtin_decls;
219 /* A chain of unused BLOCK nodes. */
220 static GTY((deletable)) tree free_block_chain;
222 /* A hash table of padded types. It is modelled on the generic type
223 hash table in tree.c, which must thus be used as a reference. */
225 struct GTY((for_user)) pad_type_hash {
226 unsigned long hash;
227 tree type;
230 struct pad_type_hasher : ggc_cache_ptr_hash<pad_type_hash>
232 static inline hashval_t hash (pad_type_hash *t) { return t->hash; }
233 static bool equal (pad_type_hash *a, pad_type_hash *b);
234 static int keep_cache_entry (pad_type_hash *&);
237 static GTY ((cache))
238 hash_table<pad_type_hasher> *pad_type_hash_table;
240 static tree merge_sizes (tree, tree, tree, bool, bool);
241 static tree fold_bit_position (const_tree);
242 static tree compute_related_constant (tree, tree);
243 static tree split_plus (tree, tree *);
244 static tree float_type_for_precision (int, machine_mode);
245 static tree convert_to_fat_pointer (tree, tree);
246 static unsigned int scale_by_factor_of (tree, unsigned int);
247 static bool potential_alignment_gap (tree, tree, tree);
249 /* Linked list used as a queue to defer the initialization of the DECL_CONTEXT
250 of ..._DECL nodes and of the TYPE_CONTEXT of ..._TYPE nodes. */
251 struct deferred_decl_context_node
253 /* The ..._DECL node to work on. */
254 tree decl;
256 /* The corresponding entity's Scope. */
257 Entity_Id gnat_scope;
259 /* The value of force_global when DECL was pushed. */
260 int force_global;
262 /* The list of ..._TYPE nodes to propagate the context to. */
263 vec<tree> types;
265 /* The next queue item. */
266 struct deferred_decl_context_node *next;
269 static struct deferred_decl_context_node *deferred_decl_context_queue = NULL;
271 /* Defer the initialization of DECL's DECL_CONTEXT attribute, scheduling to
272 feed it with the elaboration of GNAT_SCOPE. */
273 static struct deferred_decl_context_node *
274 add_deferred_decl_context (tree decl, Entity_Id gnat_scope, int force_global);
276 /* Defer the initialization of TYPE's TYPE_CONTEXT attribute, scheduling to
277 feed it with the DECL_CONTEXT computed as part of N as soon as it is
278 computed. */
279 static void add_deferred_type_context (struct deferred_decl_context_node *n,
280 tree type);
282 /* Initialize data structures of the utils.c module. */
284 void
285 init_gnat_utils (void)
287 /* Initialize the association of GNAT nodes to GCC trees. */
288 associate_gnat_to_gnu = ggc_cleared_vec_alloc<tree> (max_gnat_nodes);
290 /* Initialize the association of GNAT nodes to GCC trees as dummies. */
291 dummy_node_table = ggc_cleared_vec_alloc<tree> (max_gnat_nodes);
293 /* Initialize the hash table of padded types. */
294 pad_type_hash_table = hash_table<pad_type_hasher>::create_ggc (512);
297 /* Destroy data structures of the utils.c module. */
299 void
300 destroy_gnat_utils (void)
302 /* Destroy the association of GNAT nodes to GCC trees. */
303 ggc_free (associate_gnat_to_gnu);
304 associate_gnat_to_gnu = NULL;
306 /* Destroy the association of GNAT nodes to GCC trees as dummies. */
307 ggc_free (dummy_node_table);
308 dummy_node_table = NULL;
310 /* Destroy the hash table of padded types. */
311 pad_type_hash_table->empty ();
312 pad_type_hash_table = NULL;
315 /* GNAT_ENTITY is a GNAT tree node for an entity. Associate GNU_DECL, a GCC
316 tree node, with GNAT_ENTITY. If GNU_DECL is not a ..._DECL node, abort.
317 If NO_CHECK is true, the latter check is suppressed.
319 If GNU_DECL is zero, reset a previous association. */
321 void
322 save_gnu_tree (Entity_Id gnat_entity, tree gnu_decl, bool no_check)
324 /* Check that GNAT_ENTITY is not already defined and that it is being set
325 to something which is a decl. If that is not the case, this usually
326 means GNAT_ENTITY is defined twice, but occasionally is due to some
327 Gigi problem. */
328 gcc_assert (!(gnu_decl
329 && (PRESENT_GNU_TREE (gnat_entity)
330 || (!no_check && !DECL_P (gnu_decl)))));
332 SET_GNU_TREE (gnat_entity, gnu_decl);
335 /* GNAT_ENTITY is a GNAT tree node for an entity. Return the GCC tree node
336 that was associated with it. If there is no such tree node, abort.
338 In some cases, such as delayed elaboration or expressions that need to
339 be elaborated only once, GNAT_ENTITY is really not an entity. */
341 tree
342 get_gnu_tree (Entity_Id gnat_entity)
344 gcc_assert (PRESENT_GNU_TREE (gnat_entity));
345 return GET_GNU_TREE (gnat_entity);
348 /* Return nonzero if a GCC tree has been associated with GNAT_ENTITY. */
350 bool
351 present_gnu_tree (Entity_Id gnat_entity)
353 return PRESENT_GNU_TREE (gnat_entity);
356 /* Make a dummy type corresponding to GNAT_TYPE. */
358 tree
359 make_dummy_type (Entity_Id gnat_type)
361 Entity_Id gnat_equiv = Gigi_Equivalent_Type (Underlying_Type (gnat_type));
362 tree gnu_type, debug_type;
364 /* If there was no equivalent type (can only happen when just annotating
365 types) or underlying type, go back to the original type. */
366 if (No (gnat_equiv))
367 gnat_equiv = gnat_type;
369 /* If it there already a dummy type, use that one. Else make one. */
370 if (PRESENT_DUMMY_NODE (gnat_equiv))
371 return GET_DUMMY_NODE (gnat_equiv);
373 /* If this is a record, make a RECORD_TYPE or UNION_TYPE; else make
374 an ENUMERAL_TYPE. */
375 gnu_type = make_node (Is_Record_Type (gnat_equiv)
376 ? tree_code_for_record_type (gnat_equiv)
377 : ENUMERAL_TYPE);
378 TYPE_NAME (gnu_type) = get_entity_name (gnat_type);
379 TYPE_DUMMY_P (gnu_type) = 1;
380 TYPE_STUB_DECL (gnu_type)
381 = create_type_stub_decl (TYPE_NAME (gnu_type), gnu_type);
382 if (Is_By_Reference_Type (gnat_equiv))
383 TYPE_BY_REFERENCE_P (gnu_type) = 1;
385 SET_DUMMY_NODE (gnat_equiv, gnu_type);
387 /* Create a debug type so that debug info consumers only see an unspecified
388 type. */
389 if (Needs_Debug_Info (gnat_type))
391 debug_type = make_node (LANG_TYPE);
392 SET_TYPE_DEBUG_TYPE (gnu_type, debug_type);
394 TYPE_NAME (debug_type) = TYPE_NAME (gnu_type);
395 TYPE_ARTIFICIAL (debug_type) = TYPE_ARTIFICIAL (gnu_type);
398 return gnu_type;
401 /* Return the dummy type that was made for GNAT_TYPE, if any. */
403 tree
404 get_dummy_type (Entity_Id gnat_type)
406 return GET_DUMMY_NODE (gnat_type);
409 /* Build dummy fat and thin pointer types whose designated type is specified
410 by GNAT_DESIG_TYPE/GNU_DESIG_TYPE and attach them to the latter. */
412 void
413 build_dummy_unc_pointer_types (Entity_Id gnat_desig_type, tree gnu_desig_type)
415 tree gnu_template_type, gnu_ptr_template, gnu_array_type, gnu_ptr_array;
416 tree gnu_fat_type, fields, gnu_object_type;
418 gnu_template_type = make_node (RECORD_TYPE);
419 TYPE_NAME (gnu_template_type) = create_concat_name (gnat_desig_type, "XUB");
420 TYPE_DUMMY_P (gnu_template_type) = 1;
421 gnu_ptr_template = build_pointer_type (gnu_template_type);
423 gnu_array_type = make_node (ENUMERAL_TYPE);
424 TYPE_NAME (gnu_array_type) = create_concat_name (gnat_desig_type, "XUA");
425 TYPE_DUMMY_P (gnu_array_type) = 1;
426 gnu_ptr_array = build_pointer_type (gnu_array_type);
428 gnu_fat_type = make_node (RECORD_TYPE);
429 /* Build a stub DECL to trigger the special processing for fat pointer types
430 in gnat_pushdecl. */
431 TYPE_NAME (gnu_fat_type)
432 = create_type_stub_decl (create_concat_name (gnat_desig_type, "XUP"),
433 gnu_fat_type);
434 fields = create_field_decl (get_identifier ("P_ARRAY"), gnu_ptr_array,
435 gnu_fat_type, NULL_TREE, NULL_TREE, 0, 0);
436 DECL_CHAIN (fields)
437 = create_field_decl (get_identifier ("P_BOUNDS"), gnu_ptr_template,
438 gnu_fat_type, NULL_TREE, NULL_TREE, 0, 0);
439 finish_fat_pointer_type (gnu_fat_type, fields);
440 SET_TYPE_UNCONSTRAINED_ARRAY (gnu_fat_type, gnu_desig_type);
441 /* Suppress debug info until after the type is completed. */
442 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (gnu_fat_type)) = 1;
444 gnu_object_type = make_node (RECORD_TYPE);
445 TYPE_NAME (gnu_object_type) = create_concat_name (gnat_desig_type, "XUT");
446 TYPE_DUMMY_P (gnu_object_type) = 1;
448 TYPE_POINTER_TO (gnu_desig_type) = gnu_fat_type;
449 TYPE_REFERENCE_TO (gnu_desig_type) = gnu_fat_type;
450 TYPE_OBJECT_RECORD_TYPE (gnu_desig_type) = gnu_object_type;
453 /* Return true if we are in the global binding level. */
455 bool
456 global_bindings_p (void)
458 return force_global || !current_function_decl;
461 /* Enter a new binding level. */
463 void
464 gnat_pushlevel (void)
466 struct gnat_binding_level *newlevel = NULL;
468 /* Reuse a struct for this binding level, if there is one. */
469 if (free_binding_level)
471 newlevel = free_binding_level;
472 free_binding_level = free_binding_level->chain;
474 else
475 newlevel = ggc_alloc<gnat_binding_level> ();
477 /* Use a free BLOCK, if any; otherwise, allocate one. */
478 if (free_block_chain)
480 newlevel->block = free_block_chain;
481 free_block_chain = BLOCK_CHAIN (free_block_chain);
482 BLOCK_CHAIN (newlevel->block) = NULL_TREE;
484 else
485 newlevel->block = make_node (BLOCK);
487 /* Point the BLOCK we just made to its parent. */
488 if (current_binding_level)
489 BLOCK_SUPERCONTEXT (newlevel->block) = current_binding_level->block;
491 BLOCK_VARS (newlevel->block) = NULL_TREE;
492 BLOCK_SUBBLOCKS (newlevel->block) = NULL_TREE;
493 TREE_USED (newlevel->block) = 1;
495 /* Add this level to the front of the chain (stack) of active levels. */
496 newlevel->chain = current_binding_level;
497 newlevel->jmpbuf_decl = NULL_TREE;
498 current_binding_level = newlevel;
501 /* Set SUPERCONTEXT of the BLOCK for the current binding level to FNDECL
502 and point FNDECL to this BLOCK. */
504 void
505 set_current_block_context (tree fndecl)
507 BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
508 DECL_INITIAL (fndecl) = current_binding_level->block;
509 set_block_for_group (current_binding_level->block);
512 /* Set the jmpbuf_decl for the current binding level to DECL. */
514 void
515 set_block_jmpbuf_decl (tree decl)
517 current_binding_level->jmpbuf_decl = decl;
520 /* Get the jmpbuf_decl, if any, for the current binding level. */
522 tree
523 get_block_jmpbuf_decl (void)
525 return current_binding_level->jmpbuf_decl;
528 /* Exit a binding level. Set any BLOCK into the current code group. */
530 void
531 gnat_poplevel (void)
533 struct gnat_binding_level *level = current_binding_level;
534 tree block = level->block;
536 BLOCK_VARS (block) = nreverse (BLOCK_VARS (block));
537 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
539 /* If this is a function-level BLOCK don't do anything. Otherwise, if there
540 are no variables free the block and merge its subblocks into those of its
541 parent block. Otherwise, add it to the list of its parent. */
542 if (TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL)
544 else if (!BLOCK_VARS (block))
546 BLOCK_SUBBLOCKS (level->chain->block)
547 = block_chainon (BLOCK_SUBBLOCKS (block),
548 BLOCK_SUBBLOCKS (level->chain->block));
549 BLOCK_CHAIN (block) = free_block_chain;
550 free_block_chain = block;
552 else
554 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (level->chain->block);
555 BLOCK_SUBBLOCKS (level->chain->block) = block;
556 TREE_USED (block) = 1;
557 set_block_for_group (block);
560 /* Free this binding structure. */
561 current_binding_level = level->chain;
562 level->chain = free_binding_level;
563 free_binding_level = level;
566 /* Exit a binding level and discard the associated BLOCK. */
568 void
569 gnat_zaplevel (void)
571 struct gnat_binding_level *level = current_binding_level;
572 tree block = level->block;
574 BLOCK_CHAIN (block) = free_block_chain;
575 free_block_chain = block;
577 /* Free this binding structure. */
578 current_binding_level = level->chain;
579 level->chain = free_binding_level;
580 free_binding_level = level;
583 /* Set the context of TYPE and its parallel types (if any) to CONTEXT. */
585 static void
586 gnat_set_type_context (tree type, tree context)
588 tree decl = TYPE_STUB_DECL (type);
590 TYPE_CONTEXT (type) = context;
592 while (decl && DECL_PARALLEL_TYPE (decl))
594 tree parallel_type = DECL_PARALLEL_TYPE (decl);
596 /* Give a context to the parallel types and their stub decl, if any.
597 Some parallel types seems to be present in multiple parallel type
598 chains, so don't mess with their context if they already have one. */
599 if (!TYPE_CONTEXT (parallel_type))
601 if (TYPE_STUB_DECL (parallel_type))
602 DECL_CONTEXT (TYPE_STUB_DECL (parallel_type)) = context;
603 TYPE_CONTEXT (parallel_type) = context;
606 decl = TYPE_STUB_DECL (DECL_PARALLEL_TYPE (decl));
610 /* Return the innermost scope, starting at GNAT_NODE, we are be interested in
611 the debug info, or Empty if there is no such scope. If not NULL, set
612 IS_SUBPROGRAM to whether the returned entity is a subprogram. */
614 Entity_Id
615 get_debug_scope (Node_Id gnat_node, bool *is_subprogram)
617 Entity_Id gnat_entity;
619 if (is_subprogram)
620 *is_subprogram = false;
622 if (Nkind (gnat_node) == N_Defining_Identifier
623 || Nkind (gnat_node) == N_Defining_Operator_Symbol)
624 gnat_entity = Scope (gnat_node);
625 else
626 return Empty;
628 while (Present (gnat_entity))
630 switch (Ekind (gnat_entity))
632 case E_Function:
633 case E_Procedure:
634 if (Present (Protected_Body_Subprogram (gnat_entity)))
635 gnat_entity = Protected_Body_Subprogram (gnat_entity);
637 /* If the scope is a subprogram, then just rely on
638 current_function_decl, so that we don't have to defer
639 anything. This is needed because other places rely on the
640 validity of the DECL_CONTEXT attribute of FUNCTION_DECL nodes. */
641 if (is_subprogram)
642 *is_subprogram = true;
643 return gnat_entity;
645 case E_Record_Type:
646 case E_Record_Subtype:
647 return gnat_entity;
649 default:
650 /* By default, we are not interested in this particular scope: go to
651 the outer one. */
652 break;
655 gnat_entity = Scope (gnat_entity);
658 return Empty;
661 /* If N is NULL, set TYPE's context to CONTEXT. Defer this to the processing
662 of N otherwise. */
664 static void
665 defer_or_set_type_context (tree type, tree context,
666 struct deferred_decl_context_node *n)
668 if (n)
669 add_deferred_type_context (n, type);
670 else
671 gnat_set_type_context (type, context);
674 /* Return global_context, but create it first if need be. */
676 static tree
677 get_global_context (void)
679 if (!global_context)
681 global_context
682 = build_translation_unit_decl (get_identifier (main_input_filename));
683 debug_hooks->register_main_translation_unit (global_context);
686 return global_context;
689 /* Record DECL as belonging to the current lexical scope and use GNAT_NODE
690 for location information and flag propagation. */
692 void
693 gnat_pushdecl (tree decl, Node_Id gnat_node)
695 tree context = NULL_TREE;
696 struct deferred_decl_context_node *deferred_decl_context = NULL;
698 /* If explicitely asked to make DECL global or if it's an imported nested
699 object, short-circuit the regular Scope-based context computation. */
700 if (!((TREE_PUBLIC (decl) && DECL_EXTERNAL (decl)) || force_global == 1))
702 /* Rely on the GNAT scope, or fallback to the current_function_decl if
703 the GNAT scope reached the global scope, if it reached a subprogram
704 or the declaration is a subprogram or a variable (for them we skip
705 intermediate context types because the subprogram body elaboration
706 machinery and the inliner both expect a subprogram context).
708 Falling back to current_function_decl is necessary for implicit
709 subprograms created by gigi, such as the elaboration subprograms. */
710 bool context_is_subprogram = false;
711 const Entity_Id gnat_scope
712 = get_debug_scope (gnat_node, &context_is_subprogram);
714 if (Present (gnat_scope)
715 && !context_is_subprogram
716 && TREE_CODE (decl) != FUNCTION_DECL
717 && TREE_CODE (decl) != VAR_DECL)
718 /* Always assume the scope has not been elaborated, thus defer the
719 context propagation to the time its elaboration will be
720 available. */
721 deferred_decl_context
722 = add_deferred_decl_context (decl, gnat_scope, force_global);
724 /* External declarations (when force_global > 0) may not be in a
725 local context. */
726 else if (current_function_decl && force_global == 0)
727 context = current_function_decl;
730 /* If either we are forced to be in global mode or if both the GNAT scope and
731 the current_function_decl did not help in determining the context, use the
732 global scope. */
733 if (!deferred_decl_context && !context)
734 context = get_global_context ();
736 /* Functions imported in another function are not really nested.
737 For really nested functions mark them initially as needing
738 a static chain for uses of that flag before unnesting;
739 lower_nested_functions will then recompute it. */
740 if (TREE_CODE (decl) == FUNCTION_DECL
741 && !TREE_PUBLIC (decl)
742 && context
743 && (TREE_CODE (context) == FUNCTION_DECL
744 || decl_function_context (context)))
745 DECL_STATIC_CHAIN (decl) = 1;
747 if (!deferred_decl_context)
748 DECL_CONTEXT (decl) = context;
750 TREE_NO_WARNING (decl) = (No (gnat_node) || Warnings_Off (gnat_node));
752 /* Set the location of DECL and emit a declaration for it. */
753 if (Present (gnat_node) && !renaming_from_generic_instantiation_p (gnat_node))
754 Sloc_to_locus (Sloc (gnat_node), &DECL_SOURCE_LOCATION (decl));
756 add_decl_expr (decl, gnat_node);
758 /* Put the declaration on the list. The list of declarations is in reverse
759 order. The list will be reversed later. Put global declarations in the
760 globals list and local ones in the current block. But skip TYPE_DECLs
761 for UNCONSTRAINED_ARRAY_TYPE in both cases, as they will cause trouble
762 with the debugger and aren't needed anyway. */
763 if (!(TREE_CODE (decl) == TYPE_DECL
764 && TREE_CODE (TREE_TYPE (decl)) == UNCONSTRAINED_ARRAY_TYPE))
766 /* External declarations must go to the binding level they belong to.
767 This will make corresponding imported entities are available in the
768 debugger at the proper time. */
769 if (DECL_EXTERNAL (decl)
770 && TREE_CODE (decl) == FUNCTION_DECL
771 && DECL_BUILT_IN (decl))
772 vec_safe_push (builtin_decls, decl);
773 else if (global_bindings_p ())
774 vec_safe_push (global_decls, decl);
775 else
777 DECL_CHAIN (decl) = BLOCK_VARS (current_binding_level->block);
778 BLOCK_VARS (current_binding_level->block) = decl;
782 /* For the declaration of a type, set its name either if it isn't already
783 set or if the previous type name was not derived from a source name.
784 We'd rather have the type named with a real name and all the pointer
785 types to the same object have the same node, except when the names are
786 both derived from source names. */
787 if (TREE_CODE (decl) == TYPE_DECL && DECL_NAME (decl))
789 tree t = TREE_TYPE (decl);
791 /* Array and pointer types aren't tagged types in the C sense so we need
792 to generate a typedef in DWARF for them and make sure it is preserved,
793 unless the type is artificial. */
794 if (!(TYPE_NAME (t) && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL)
795 && ((TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != POINTER_TYPE)
796 || DECL_ARTIFICIAL (decl)))
798 /* For array and pointer types, create the DECL_ORIGINAL_TYPE that will
799 generate the typedef in DWARF. Also do that for fat pointer types
800 because, even though they are tagged types in the C sense, they are
801 still XUP types attached to the base array type at this point. */
802 else if (!DECL_ARTIFICIAL (decl)
803 && (TREE_CODE (t) == ARRAY_TYPE
804 || TREE_CODE (t) == POINTER_TYPE
805 || TYPE_IS_FAT_POINTER_P (t)))
807 tree tt = build_variant_type_copy (t);
808 TYPE_NAME (tt) = decl;
809 defer_or_set_type_context (tt,
810 DECL_CONTEXT (decl),
811 deferred_decl_context);
812 TREE_TYPE (decl) = tt;
813 if (TYPE_NAME (t)
814 && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL
815 && DECL_ORIGINAL_TYPE (TYPE_NAME (t)))
816 DECL_ORIGINAL_TYPE (decl) = DECL_ORIGINAL_TYPE (TYPE_NAME (t));
817 else
818 DECL_ORIGINAL_TYPE (decl) = t;
819 /* Array types need to have a name so that they can be related to
820 their GNAT encodings. */
821 if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NAME (t))
822 TYPE_NAME (t) = DECL_NAME (decl);
823 t = NULL_TREE;
825 else if (TYPE_NAME (t)
826 && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL
827 && DECL_ARTIFICIAL (TYPE_NAME (t)) && !DECL_ARTIFICIAL (decl))
829 else
830 t = NULL_TREE;
832 /* Propagate the name to all the variants, this is needed for the type
833 qualifiers machinery to work properly (see check_qualified_type).
834 Also propagate the context to them. Note that it will be propagated
835 to all parallel types too thanks to gnat_set_type_context. */
836 if (t)
837 for (t = TYPE_MAIN_VARIANT (t); t; t = TYPE_NEXT_VARIANT (t))
838 /* ??? Because of the previous kludge, we can have variants of fat
839 pointer types with different names. */
840 if (!(TYPE_IS_FAT_POINTER_P (t)
841 && TYPE_NAME (t)
842 && TREE_CODE (TYPE_NAME (t)) == TYPE_DECL))
844 TYPE_NAME (t) = decl;
845 defer_or_set_type_context (t,
846 DECL_CONTEXT (decl),
847 deferred_decl_context);
852 /* Create a record type that contains a SIZE bytes long field of TYPE with a
853 starting bit position so that it is aligned to ALIGN bits, and leaving at
854 least ROOM bytes free before the field. BASE_ALIGN is the alignment the
855 record is guaranteed to get. GNAT_NODE is used for the position of the
856 associated TYPE_DECL. */
858 tree
859 make_aligning_type (tree type, unsigned int align, tree size,
860 unsigned int base_align, int room, Node_Id gnat_node)
862 /* We will be crafting a record type with one field at a position set to be
863 the next multiple of ALIGN past record'address + room bytes. We use a
864 record placeholder to express record'address. */
865 tree record_type = make_node (RECORD_TYPE);
866 tree record = build0 (PLACEHOLDER_EXPR, record_type);
868 tree record_addr_st
869 = convert (sizetype, build_unary_op (ADDR_EXPR, NULL_TREE, record));
871 /* The diagram below summarizes the shape of what we manipulate:
873 <--------- pos ---------->
874 { +------------+-------------+-----------------+
875 record =>{ |############| ... | field (type) |
876 { +------------+-------------+-----------------+
877 |<-- room -->|<- voffset ->|<---- size ----->|
880 record_addr vblock_addr
882 Every length is in sizetype bytes there, except "pos" which has to be
883 set as a bit position in the GCC tree for the record. */
884 tree room_st = size_int (room);
885 tree vblock_addr_st = size_binop (PLUS_EXPR, record_addr_st, room_st);
886 tree voffset_st, pos, field;
888 tree name = TYPE_IDENTIFIER (type);
890 name = concat_name (name, "ALIGN");
891 TYPE_NAME (record_type) = name;
893 /* Compute VOFFSET and then POS. The next byte position multiple of some
894 alignment after some address is obtained by "and"ing the alignment minus
895 1 with the two's complement of the address. */
896 voffset_st = size_binop (BIT_AND_EXPR,
897 fold_build1 (NEGATE_EXPR, sizetype, vblock_addr_st),
898 size_int ((align / BITS_PER_UNIT) - 1));
900 /* POS = (ROOM + VOFFSET) * BIT_PER_UNIT, in bitsizetype. */
901 pos = size_binop (MULT_EXPR,
902 convert (bitsizetype,
903 size_binop (PLUS_EXPR, room_st, voffset_st)),
904 bitsize_unit_node);
906 /* Craft the GCC record representation. We exceptionally do everything
907 manually here because 1) our generic circuitry is not quite ready to
908 handle the complex position/size expressions we are setting up, 2) we
909 have a strong simplifying factor at hand: we know the maximum possible
910 value of voffset, and 3) we have to set/reset at least the sizes in
911 accordance with this maximum value anyway, as we need them to convey
912 what should be "alloc"ated for this type.
914 Use -1 as the 'addressable' indication for the field to prevent the
915 creation of a bitfield. We don't need one, it would have damaging
916 consequences on the alignment computation, and create_field_decl would
917 make one without this special argument, for instance because of the
918 complex position expression. */
919 field = create_field_decl (get_identifier ("F"), type, record_type, size,
920 pos, 1, -1);
921 TYPE_FIELDS (record_type) = field;
923 SET_TYPE_ALIGN (record_type, base_align);
924 TYPE_USER_ALIGN (record_type) = 1;
926 TYPE_SIZE (record_type)
927 = size_binop (PLUS_EXPR,
928 size_binop (MULT_EXPR, convert (bitsizetype, size),
929 bitsize_unit_node),
930 bitsize_int (align + room * BITS_PER_UNIT));
931 TYPE_SIZE_UNIT (record_type)
932 = size_binop (PLUS_EXPR, size,
933 size_int (room + align / BITS_PER_UNIT));
935 SET_TYPE_MODE (record_type, BLKmode);
936 relate_alias_sets (record_type, type, ALIAS_SET_COPY);
938 /* Declare it now since it will never be declared otherwise. This is
939 necessary to ensure that its subtrees are properly marked. */
940 create_type_decl (name, record_type, true, false, gnat_node);
942 return record_type;
945 /* TYPE is a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE that is being used
946 as the field type of a packed record if IN_RECORD is true, or as the
947 component type of a packed array if IN_RECORD is false. See if we can
948 rewrite it either as a type that has non-BLKmode, which we can pack
949 tighter in the packed record case, or as a smaller type with at most
950 MAX_ALIGN alignment if the value is non-zero. If so, return the new
951 type; if not, return the original type. */
953 tree
954 make_packable_type (tree type, bool in_record, unsigned int max_align)
956 unsigned HOST_WIDE_INT size = tree_to_uhwi (TYPE_SIZE (type));
957 unsigned HOST_WIDE_INT new_size;
958 unsigned int align = TYPE_ALIGN (type);
959 unsigned int new_align;
961 /* No point in doing anything if the size is zero. */
962 if (size == 0)
963 return type;
965 tree new_type = make_node (TREE_CODE (type));
967 /* Copy the name and flags from the old type to that of the new.
968 Note that we rely on the pointer equality created here for
969 TYPE_NAME to look through conversions in various places. */
970 TYPE_NAME (new_type) = TYPE_NAME (type);
971 TYPE_JUSTIFIED_MODULAR_P (new_type) = TYPE_JUSTIFIED_MODULAR_P (type);
972 TYPE_CONTAINS_TEMPLATE_P (new_type) = TYPE_CONTAINS_TEMPLATE_P (type);
973 TYPE_REVERSE_STORAGE_ORDER (new_type) = TYPE_REVERSE_STORAGE_ORDER (type);
974 if (TREE_CODE (type) == RECORD_TYPE)
975 TYPE_PADDING_P (new_type) = TYPE_PADDING_P (type);
977 /* If we are in a record and have a small size, set the alignment to
978 try for an integral mode. Otherwise set it to try for a smaller
979 type with BLKmode. */
980 if (in_record && size <= MAX_FIXED_MODE_SIZE)
982 new_size = ceil_pow2 (size);
983 new_align = MIN (new_size, BIGGEST_ALIGNMENT);
984 SET_TYPE_ALIGN (new_type, new_align);
986 else
988 /* Do not try to shrink the size if the RM size is not constant. */
989 if (TYPE_CONTAINS_TEMPLATE_P (type)
990 || !tree_fits_uhwi_p (TYPE_ADA_SIZE (type)))
991 return type;
993 /* Round the RM size up to a unit boundary to get the minimal size
994 for a BLKmode record. Give up if it's already the size and we
995 don't need to lower the alignment. */
996 new_size = tree_to_uhwi (TYPE_ADA_SIZE (type));
997 new_size = (new_size + BITS_PER_UNIT - 1) & -BITS_PER_UNIT;
998 if (new_size == size && (max_align == 0 || align <= max_align))
999 return type;
1001 new_align = MIN (new_size & -new_size, BIGGEST_ALIGNMENT);
1002 if (max_align > 0 && new_align > max_align)
1003 new_align = max_align;
1004 SET_TYPE_ALIGN (new_type, MIN (align, new_align));
1007 TYPE_USER_ALIGN (new_type) = 1;
1009 /* Now copy the fields, keeping the position and size as we don't want
1010 to change the layout by propagating the packedness downwards. */
1011 tree new_field_list = NULL_TREE;
1012 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1014 tree new_field_type = TREE_TYPE (field);
1015 tree new_field, new_size;
1017 if (RECORD_OR_UNION_TYPE_P (new_field_type)
1018 && !TYPE_FAT_POINTER_P (new_field_type)
1019 && tree_fits_uhwi_p (TYPE_SIZE (new_field_type)))
1020 new_field_type = make_packable_type (new_field_type, true, max_align);
1022 /* However, for the last field in a not already packed record type
1023 that is of an aggregate type, we need to use the RM size in the
1024 packable version of the record type, see finish_record_type. */
1025 if (!DECL_CHAIN (field)
1026 && !TYPE_PACKED (type)
1027 && RECORD_OR_UNION_TYPE_P (new_field_type)
1028 && !TYPE_FAT_POINTER_P (new_field_type)
1029 && !TYPE_CONTAINS_TEMPLATE_P (new_field_type)
1030 && TYPE_ADA_SIZE (new_field_type))
1031 new_size = TYPE_ADA_SIZE (new_field_type);
1032 else
1033 new_size = DECL_SIZE (field);
1035 new_field
1036 = create_field_decl (DECL_NAME (field), new_field_type, new_type,
1037 new_size, bit_position (field),
1038 TYPE_PACKED (type),
1039 !DECL_NONADDRESSABLE_P (field));
1041 DECL_INTERNAL_P (new_field) = DECL_INTERNAL_P (field);
1042 SET_DECL_ORIGINAL_FIELD_TO_FIELD (new_field, field);
1043 if (TREE_CODE (new_type) == QUAL_UNION_TYPE)
1044 DECL_QUALIFIER (new_field) = DECL_QUALIFIER (field);
1046 DECL_CHAIN (new_field) = new_field_list;
1047 new_field_list = new_field;
1050 finish_record_type (new_type, nreverse (new_field_list), 2, false);
1051 relate_alias_sets (new_type, type, ALIAS_SET_COPY);
1052 if (TYPE_STUB_DECL (type))
1053 SET_DECL_PARALLEL_TYPE (TYPE_STUB_DECL (new_type),
1054 DECL_PARALLEL_TYPE (TYPE_STUB_DECL (type)));
1056 /* If this is a padding record, we never want to make the size smaller
1057 than what was specified. For QUAL_UNION_TYPE, also copy the size. */
1058 if (TYPE_IS_PADDING_P (type) || TREE_CODE (type) == QUAL_UNION_TYPE)
1060 TYPE_SIZE (new_type) = TYPE_SIZE (type);
1061 TYPE_SIZE_UNIT (new_type) = TYPE_SIZE_UNIT (type);
1062 new_size = size;
1064 else
1066 TYPE_SIZE (new_type) = bitsize_int (new_size);
1067 TYPE_SIZE_UNIT (new_type) = size_int (new_size / BITS_PER_UNIT);
1070 if (!TYPE_CONTAINS_TEMPLATE_P (type))
1071 SET_TYPE_ADA_SIZE (new_type, TYPE_ADA_SIZE (type));
1073 compute_record_mode (new_type);
1075 /* Try harder to get a packable type if necessary, for example
1076 in case the record itself contains a BLKmode field. */
1077 if (in_record && TYPE_MODE (new_type) == BLKmode)
1078 SET_TYPE_MODE (new_type,
1079 mode_for_size_tree (TYPE_SIZE (new_type), MODE_INT, 1));
1081 /* If neither mode nor size nor alignment shrunk, return the old type. */
1082 if (TYPE_MODE (new_type) == BLKmode && new_size >= size && max_align == 0)
1083 return type;
1085 return new_type;
1088 /* Return true if TYPE has an unsigned representation. This needs to be used
1089 when the representation of types whose precision is not equal to their size
1090 is manipulated based on the RM size. */
1092 static inline bool
1093 type_unsigned_for_rm (tree type)
1095 /* This is the common case. */
1096 if (TYPE_UNSIGNED (type))
1097 return true;
1099 /* See the E_Signed_Integer_Subtype case of gnat_to_gnu_entity. */
1100 if (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
1101 && tree_int_cst_sgn (TYPE_MIN_VALUE (type)) >= 0)
1102 return true;
1104 return false;
1107 /* Given a type TYPE, return a new type whose size is appropriate for SIZE.
1108 If TYPE is the best type, return it. Otherwise, make a new type. We
1109 only support new integral and pointer types. FOR_BIASED is true if
1110 we are making a biased type. */
1112 tree
1113 make_type_from_size (tree type, tree size_tree, bool for_biased)
1115 unsigned HOST_WIDE_INT size;
1116 bool biased_p;
1117 tree new_type;
1119 /* If size indicates an error, just return TYPE to avoid propagating
1120 the error. Likewise if it's too large to represent. */
1121 if (!size_tree || !tree_fits_uhwi_p (size_tree))
1122 return type;
1124 size = tree_to_uhwi (size_tree);
1126 switch (TREE_CODE (type))
1128 case INTEGER_TYPE:
1129 case ENUMERAL_TYPE:
1130 case BOOLEAN_TYPE:
1131 biased_p = (TREE_CODE (type) == INTEGER_TYPE
1132 && TYPE_BIASED_REPRESENTATION_P (type));
1134 /* Integer types with precision 0 are forbidden. */
1135 if (size == 0)
1136 size = 1;
1138 /* Only do something if the type isn't a packed array type and doesn't
1139 already have the proper size and the size isn't too large. */
1140 if (TYPE_IS_PACKED_ARRAY_TYPE_P (type)
1141 || (TYPE_PRECISION (type) == size && biased_p == for_biased)
1142 || size > LONG_LONG_TYPE_SIZE)
1143 break;
1145 biased_p |= for_biased;
1147 /* The type should be an unsigned type if the original type is unsigned
1148 or if the lower bound is constant and non-negative or if the type is
1149 biased, see E_Signed_Integer_Subtype case of gnat_to_gnu_entity. */
1150 if (type_unsigned_for_rm (type) || biased_p)
1151 new_type = make_unsigned_type (size);
1152 else
1153 new_type = make_signed_type (size);
1154 TREE_TYPE (new_type) = TREE_TYPE (type) ? TREE_TYPE (type) : type;
1155 SET_TYPE_RM_MIN_VALUE (new_type, TYPE_MIN_VALUE (type));
1156 SET_TYPE_RM_MAX_VALUE (new_type, TYPE_MAX_VALUE (type));
1157 /* Copy the name to show that it's essentially the same type and
1158 not a subrange type. */
1159 TYPE_NAME (new_type) = TYPE_NAME (type);
1160 TYPE_BIASED_REPRESENTATION_P (new_type) = biased_p;
1161 SET_TYPE_RM_SIZE (new_type, bitsize_int (size));
1162 return new_type;
1164 case RECORD_TYPE:
1165 /* Do something if this is a fat pointer, in which case we
1166 may need to return the thin pointer. */
1167 if (TYPE_FAT_POINTER_P (type) && size < POINTER_SIZE * 2)
1169 scalar_int_mode p_mode;
1170 if (!int_mode_for_size (size, 0).exists (&p_mode)
1171 || !targetm.valid_pointer_mode (p_mode))
1172 p_mode = ptr_mode;
1173 return
1174 build_pointer_type_for_mode
1175 (TYPE_OBJECT_RECORD_TYPE (TYPE_UNCONSTRAINED_ARRAY (type)),
1176 p_mode, 0);
1178 break;
1180 case POINTER_TYPE:
1181 /* Only do something if this is a thin pointer, in which case we
1182 may need to return the fat pointer. */
1183 if (TYPE_IS_THIN_POINTER_P (type) && size >= POINTER_SIZE * 2)
1184 return
1185 build_pointer_type (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type)));
1186 break;
1188 default:
1189 break;
1192 return type;
1195 /* See if the data pointed to by the hash table slot is marked. */
1198 pad_type_hasher::keep_cache_entry (pad_type_hash *&t)
1200 return ggc_marked_p (t->type);
1203 /* Return true iff the padded types are equivalent. */
1205 bool
1206 pad_type_hasher::equal (pad_type_hash *t1, pad_type_hash *t2)
1208 tree type1, type2;
1210 if (t1->hash != t2->hash)
1211 return 0;
1213 type1 = t1->type;
1214 type2 = t2->type;
1216 /* We consider that the padded types are equivalent if they pad the same type
1217 and have the same size, alignment, RM size and storage order. Taking the
1218 mode into account is redundant since it is determined by the others. */
1219 return
1220 TREE_TYPE (TYPE_FIELDS (type1)) == TREE_TYPE (TYPE_FIELDS (type2))
1221 && TYPE_SIZE (type1) == TYPE_SIZE (type2)
1222 && TYPE_ALIGN (type1) == TYPE_ALIGN (type2)
1223 && TYPE_ADA_SIZE (type1) == TYPE_ADA_SIZE (type2)
1224 && TYPE_REVERSE_STORAGE_ORDER (type1) == TYPE_REVERSE_STORAGE_ORDER (type2);
1227 /* Look up the padded TYPE in the hash table and return its canonical version
1228 if it exists; otherwise, insert it into the hash table. */
1230 static tree
1231 lookup_and_insert_pad_type (tree type)
1233 hashval_t hashcode;
1234 struct pad_type_hash in, *h;
1236 hashcode
1237 = iterative_hash_object (TYPE_HASH (TREE_TYPE (TYPE_FIELDS (type))), 0);
1238 hashcode = iterative_hash_expr (TYPE_SIZE (type), hashcode);
1239 hashcode = iterative_hash_hashval_t (TYPE_ALIGN (type), hashcode);
1240 hashcode = iterative_hash_expr (TYPE_ADA_SIZE (type), hashcode);
1242 in.hash = hashcode;
1243 in.type = type;
1244 h = pad_type_hash_table->find_with_hash (&in, hashcode);
1245 if (h)
1246 return h->type;
1248 h = ggc_alloc<pad_type_hash> ();
1249 h->hash = hashcode;
1250 h->type = type;
1251 *pad_type_hash_table->find_slot_with_hash (h, hashcode, INSERT) = h;
1252 return NULL_TREE;
1255 /* Ensure that TYPE has SIZE and ALIGN. Make and return a new padded type
1256 if needed. We have already verified that SIZE and ALIGN are large enough.
1257 GNAT_ENTITY is used to name the resulting record and to issue a warning.
1258 IS_COMPONENT_TYPE is true if this is being done for the component type of
1259 an array. IS_USER_TYPE is true if the original type needs to be completed.
1260 DEFINITION is true if this type is being defined. SET_RM_SIZE is true if
1261 the RM size of the resulting type is to be set to SIZE too; in this case,
1262 the padded type is canonicalized before being returned. */
1264 tree
1265 maybe_pad_type (tree type, tree size, unsigned int align,
1266 Entity_Id gnat_entity, bool is_component_type,
1267 bool is_user_type, bool definition, bool set_rm_size)
1269 tree orig_size = TYPE_SIZE (type);
1270 unsigned int orig_align = TYPE_ALIGN (type);
1271 tree record, field;
1273 /* If TYPE is a padded type, see if it agrees with any size and alignment
1274 we were given. If so, return the original type. Otherwise, strip
1275 off the padding, since we will either be returning the inner type
1276 or repadding it. If no size or alignment is specified, use that of
1277 the original padded type. */
1278 if (TYPE_IS_PADDING_P (type))
1280 if ((!size
1281 || operand_equal_p (round_up (size, orig_align), orig_size, 0))
1282 && (align == 0 || align == orig_align))
1283 return type;
1285 if (!size)
1286 size = orig_size;
1287 if (align == 0)
1288 align = orig_align;
1290 type = TREE_TYPE (TYPE_FIELDS (type));
1291 orig_size = TYPE_SIZE (type);
1292 orig_align = TYPE_ALIGN (type);
1295 /* If the size is either not being changed or is being made smaller (which
1296 is not done here and is only valid for bitfields anyway), show the size
1297 isn't changing. Likewise, clear the alignment if it isn't being
1298 changed. Then return if we aren't doing anything. */
1299 if (size
1300 && (operand_equal_p (size, orig_size, 0)
1301 || (TREE_CODE (orig_size) == INTEGER_CST
1302 && tree_int_cst_lt (size, orig_size))))
1303 size = NULL_TREE;
1305 if (align == orig_align)
1306 align = 0;
1308 if (align == 0 && !size)
1309 return type;
1311 /* If requested, complete the original type and give it a name. */
1312 if (is_user_type)
1313 create_type_decl (get_entity_name (gnat_entity), type,
1314 !Comes_From_Source (gnat_entity),
1315 !(TYPE_NAME (type)
1316 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1317 && DECL_IGNORED_P (TYPE_NAME (type))),
1318 gnat_entity);
1320 /* We used to modify the record in place in some cases, but that could
1321 generate incorrect debugging information. So make a new record
1322 type and name. */
1323 record = make_node (RECORD_TYPE);
1324 TYPE_PADDING_P (record) = 1;
1326 /* ??? Padding types around packed array implementation types will be
1327 considered as root types in the array descriptor language hook (see
1328 gnat_get_array_descr_info). Give them the original packed array type
1329 name so that the one coming from sources appears in the debugging
1330 information. */
1331 if (TYPE_IMPL_PACKED_ARRAY_P (type)
1332 && TYPE_ORIGINAL_PACKED_ARRAY (type)
1333 && gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
1334 TYPE_NAME (record) = TYPE_NAME (TYPE_ORIGINAL_PACKED_ARRAY (type));
1335 else if (Present (gnat_entity))
1336 TYPE_NAME (record) = create_concat_name (gnat_entity, "PAD");
1338 SET_TYPE_ALIGN (record, align ? align : orig_align);
1339 TYPE_SIZE (record) = size ? size : orig_size;
1340 TYPE_SIZE_UNIT (record)
1341 = convert (sizetype,
1342 size_binop (CEIL_DIV_EXPR, TYPE_SIZE (record),
1343 bitsize_unit_node));
1345 /* If we are changing the alignment and the input type is a record with
1346 BLKmode and a small constant size, try to make a form that has an
1347 integral mode. This might allow the padding record to also have an
1348 integral mode, which will be much more efficient. There is no point
1349 in doing so if a size is specified unless it is also a small constant
1350 size and it is incorrect to do so if we cannot guarantee that the mode
1351 will be naturally aligned since the field must always be addressable.
1353 ??? This might not always be a win when done for a stand-alone object:
1354 since the nominal and the effective type of the object will now have
1355 different modes, a VIEW_CONVERT_EXPR will be required for converting
1356 between them and it might be hard to overcome afterwards, including
1357 at the RTL level when the stand-alone object is accessed as a whole. */
1358 if (align != 0
1359 && RECORD_OR_UNION_TYPE_P (type)
1360 && TYPE_MODE (type) == BLKmode
1361 && !TYPE_BY_REFERENCE_P (type)
1362 && TREE_CODE (orig_size) == INTEGER_CST
1363 && !TREE_OVERFLOW (orig_size)
1364 && compare_tree_int (orig_size, MAX_FIXED_MODE_SIZE) <= 0
1365 && (!size
1366 || (TREE_CODE (size) == INTEGER_CST
1367 && compare_tree_int (size, MAX_FIXED_MODE_SIZE) <= 0)))
1369 tree packable_type = make_packable_type (type, true);
1370 if (TYPE_MODE (packable_type) != BLKmode
1371 && align >= TYPE_ALIGN (packable_type))
1372 type = packable_type;
1375 /* Now create the field with the original size. */
1376 field = create_field_decl (get_identifier ("F"), type, record, orig_size,
1377 bitsize_zero_node, 0, 1);
1378 DECL_INTERNAL_P (field) = 1;
1380 /* We will output additional debug info manually below. */
1381 finish_record_type (record, field, 1, false);
1383 if (gnat_encodings == DWARF_GNAT_ENCODINGS_MINIMAL)
1384 SET_TYPE_DEBUG_TYPE (record, type);
1386 /* Set the RM size if requested. */
1387 if (set_rm_size)
1389 tree canonical_pad_type;
1391 SET_TYPE_ADA_SIZE (record, size ? size : orig_size);
1393 /* If the padded type is complete and has constant size, we canonicalize
1394 it by means of the hash table. This is consistent with the language
1395 semantics and ensures that gigi and the middle-end have a common view
1396 of these padded types. */
1397 if (TREE_CONSTANT (TYPE_SIZE (record))
1398 && (canonical_pad_type = lookup_and_insert_pad_type (record)))
1400 record = canonical_pad_type;
1401 goto built;
1405 /* Unless debugging information isn't being written for the input type,
1406 write a record that shows what we are a subtype of and also make a
1407 variable that indicates our size, if still variable. */
1408 if (TREE_CODE (orig_size) != INTEGER_CST
1409 && TYPE_NAME (record)
1410 && TYPE_NAME (type)
1411 && !(TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1412 && DECL_IGNORED_P (TYPE_NAME (type))))
1414 tree name = TYPE_IDENTIFIER (record);
1415 tree size_unit = TYPE_SIZE_UNIT (record);
1417 /* A variable that holds the size is required even with no encoding since
1418 it will be referenced by debugging information attributes. At global
1419 level, we need a single variable across all translation units. */
1420 if (size
1421 && TREE_CODE (size) != INTEGER_CST
1422 && (definition || global_bindings_p ()))
1424 /* Whether or not gnat_entity comes from source, this XVZ variable is
1425 is a compilation artifact. */
1426 size_unit
1427 = create_var_decl (concat_name (name, "XVZ"), NULL_TREE, sizetype,
1428 size_unit, true, global_bindings_p (),
1429 !definition && global_bindings_p (), false,
1430 false, true, true, NULL, gnat_entity);
1431 TYPE_SIZE_UNIT (record) = size_unit;
1434 /* There is no need to show what we are a subtype of when outputting as
1435 few encodings as possible: regular debugging infomation makes this
1436 redundant. */
1437 if (gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL)
1439 tree marker = make_node (RECORD_TYPE);
1440 tree orig_name = TYPE_IDENTIFIER (type);
1442 TYPE_NAME (marker) = concat_name (name, "XVS");
1443 finish_record_type (marker,
1444 create_field_decl (orig_name,
1445 build_reference_type (type),
1446 marker, NULL_TREE, NULL_TREE,
1447 0, 0),
1448 0, true);
1449 TYPE_SIZE_UNIT (marker) = size_unit;
1451 add_parallel_type (record, marker);
1455 built:
1456 /* If a simple size was explicitly given, maybe issue a warning. */
1457 if (!size
1458 || TREE_CODE (size) == COND_EXPR
1459 || TREE_CODE (size) == MAX_EXPR
1460 || No (gnat_entity))
1461 return record;
1463 /* But don't do it if we are just annotating types and the type is tagged or
1464 concurrent, since these types aren't fully laid out in this mode. */
1465 if (type_annotate_only)
1467 Entity_Id gnat_type
1468 = is_component_type
1469 ? Component_Type (gnat_entity) : Etype (gnat_entity);
1471 if (Is_Tagged_Type (gnat_type) || Is_Concurrent_Type (gnat_type))
1472 return record;
1475 /* Take the original size as the maximum size of the input if there was an
1476 unconstrained record involved and round it up to the specified alignment,
1477 if one was specified, but only for aggregate types. */
1478 if (CONTAINS_PLACEHOLDER_P (orig_size))
1479 orig_size = max_size (orig_size, true);
1481 if (align && AGGREGATE_TYPE_P (type))
1482 orig_size = round_up (orig_size, align);
1484 if (!operand_equal_p (size, orig_size, 0)
1485 && !(TREE_CODE (size) == INTEGER_CST
1486 && TREE_CODE (orig_size) == INTEGER_CST
1487 && (TREE_OVERFLOW (size)
1488 || TREE_OVERFLOW (orig_size)
1489 || tree_int_cst_lt (size, orig_size))))
1491 Node_Id gnat_error_node = Empty;
1493 /* For a packed array, post the message on the original array type. */
1494 if (Is_Packed_Array_Impl_Type (gnat_entity))
1495 gnat_entity = Original_Array_Type (gnat_entity);
1497 if ((Ekind (gnat_entity) == E_Component
1498 || Ekind (gnat_entity) == E_Discriminant)
1499 && Present (Component_Clause (gnat_entity)))
1500 gnat_error_node = Last_Bit (Component_Clause (gnat_entity));
1501 else if (Present (Size_Clause (gnat_entity)))
1502 gnat_error_node = Expression (Size_Clause (gnat_entity));
1504 /* Generate message only for entities that come from source, since
1505 if we have an entity created by expansion, the message will be
1506 generated for some other corresponding source entity. */
1507 if (Comes_From_Source (gnat_entity))
1509 if (Present (gnat_error_node))
1510 post_error_ne_tree ("{^ }bits of & unused?",
1511 gnat_error_node, gnat_entity,
1512 size_diffop (size, orig_size));
1513 else if (is_component_type)
1514 post_error_ne_tree ("component of& padded{ by ^ bits}?",
1515 gnat_entity, gnat_entity,
1516 size_diffop (size, orig_size));
1520 return record;
1523 /* Return a copy of the padded TYPE but with reverse storage order. */
1525 tree
1526 set_reverse_storage_order_on_pad_type (tree type)
1528 tree field, canonical_pad_type;
1530 if (flag_checking)
1532 /* If the inner type is not scalar then the function does nothing. */
1533 tree inner_type = TREE_TYPE (TYPE_FIELDS (type));
1534 gcc_assert (!AGGREGATE_TYPE_P (inner_type)
1535 && !VECTOR_TYPE_P (inner_type));
1538 /* This is required for the canonicalization. */
1539 gcc_assert (TREE_CONSTANT (TYPE_SIZE (type)));
1541 field = copy_node (TYPE_FIELDS (type));
1542 type = copy_type (type);
1543 DECL_CONTEXT (field) = type;
1544 TYPE_FIELDS (type) = field;
1545 TYPE_REVERSE_STORAGE_ORDER (type) = 1;
1546 canonical_pad_type = lookup_and_insert_pad_type (type);
1547 return canonical_pad_type ? canonical_pad_type : type;
1550 /* Relate the alias sets of GNU_NEW_TYPE and GNU_OLD_TYPE according to OP.
1551 If this is a multi-dimensional array type, do this recursively.
1553 OP may be
1554 - ALIAS_SET_COPY: the new set is made a copy of the old one.
1555 - ALIAS_SET_SUPERSET: the new set is made a superset of the old one.
1556 - ALIAS_SET_SUBSET: the new set is made a subset of the old one. */
1558 void
1559 relate_alias_sets (tree gnu_new_type, tree gnu_old_type, enum alias_set_op op)
1561 /* Remove any padding from GNU_OLD_TYPE. It doesn't matter in the case
1562 of a one-dimensional array, since the padding has the same alias set
1563 as the field type, but if it's a multi-dimensional array, we need to
1564 see the inner types. */
1565 while (TREE_CODE (gnu_old_type) == RECORD_TYPE
1566 && (TYPE_JUSTIFIED_MODULAR_P (gnu_old_type)
1567 || TYPE_PADDING_P (gnu_old_type)))
1568 gnu_old_type = TREE_TYPE (TYPE_FIELDS (gnu_old_type));
1570 /* Unconstrained array types are deemed incomplete and would thus be given
1571 alias set 0. Retrieve the underlying array type. */
1572 if (TREE_CODE (gnu_old_type) == UNCONSTRAINED_ARRAY_TYPE)
1573 gnu_old_type
1574 = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_old_type))));
1575 if (TREE_CODE (gnu_new_type) == UNCONSTRAINED_ARRAY_TYPE)
1576 gnu_new_type
1577 = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (gnu_new_type))));
1579 if (TREE_CODE (gnu_new_type) == ARRAY_TYPE
1580 && TREE_CODE (TREE_TYPE (gnu_new_type)) == ARRAY_TYPE
1581 && TYPE_MULTI_ARRAY_P (TREE_TYPE (gnu_new_type)))
1582 relate_alias_sets (TREE_TYPE (gnu_new_type), TREE_TYPE (gnu_old_type), op);
1584 switch (op)
1586 case ALIAS_SET_COPY:
1587 /* The alias set shouldn't be copied between array types with different
1588 aliasing settings because this can break the aliasing relationship
1589 between the array type and its element type. */
1590 if (flag_checking || flag_strict_aliasing)
1591 gcc_assert (!(TREE_CODE (gnu_new_type) == ARRAY_TYPE
1592 && TREE_CODE (gnu_old_type) == ARRAY_TYPE
1593 && TYPE_NONALIASED_COMPONENT (gnu_new_type)
1594 != TYPE_NONALIASED_COMPONENT (gnu_old_type)));
1596 TYPE_ALIAS_SET (gnu_new_type) = get_alias_set (gnu_old_type);
1597 break;
1599 case ALIAS_SET_SUBSET:
1600 case ALIAS_SET_SUPERSET:
1602 alias_set_type old_set = get_alias_set (gnu_old_type);
1603 alias_set_type new_set = get_alias_set (gnu_new_type);
1605 /* Do nothing if the alias sets conflict. This ensures that we
1606 never call record_alias_subset several times for the same pair
1607 or at all for alias set 0. */
1608 if (!alias_sets_conflict_p (old_set, new_set))
1610 if (op == ALIAS_SET_SUBSET)
1611 record_alias_subset (old_set, new_set);
1612 else
1613 record_alias_subset (new_set, old_set);
1616 break;
1618 default:
1619 gcc_unreachable ();
1622 record_component_aliases (gnu_new_type);
1625 /* Record TYPE as a builtin type for Ada. NAME is the name of the type.
1626 ARTIFICIAL_P is true if the type was generated by the compiler. */
1628 void
1629 record_builtin_type (const char *name, tree type, bool artificial_p)
1631 tree type_decl = build_decl (input_location,
1632 TYPE_DECL, get_identifier (name), type);
1633 DECL_ARTIFICIAL (type_decl) = artificial_p;
1634 TYPE_ARTIFICIAL (type) = artificial_p;
1635 gnat_pushdecl (type_decl, Empty);
1637 if (debug_hooks->type_decl)
1638 debug_hooks->type_decl (type_decl, false);
1641 /* Finish constructing the character type CHAR_TYPE.
1643 In Ada character types are enumeration types and, as a consequence, are
1644 represented in the front-end by integral types holding the positions of
1645 the enumeration values as defined by the language, which means that the
1646 integral types are unsigned.
1648 Unfortunately the signedness of 'char' in C is implementation-defined
1649 and GCC even has the option -fsigned-char to toggle it at run time.
1650 Since GNAT's philosophy is to be compatible with C by default, to wit
1651 Interfaces.C.char is defined as a mere copy of Character, we may need
1652 to declare character types as signed types in GENERIC and generate the
1653 necessary adjustments to make them behave as unsigned types.
1655 The overall strategy is as follows: if 'char' is unsigned, do nothing;
1656 if 'char' is signed, translate character types of CHAR_TYPE_SIZE and
1657 character subtypes with RM_Size = Esize = CHAR_TYPE_SIZE into signed
1658 types. The idea is to ensure that the bit pattern contained in the
1659 Esize'd objects is not changed, even though the numerical value will
1660 be interpreted differently depending on the signedness. */
1662 void
1663 finish_character_type (tree char_type)
1665 if (TYPE_UNSIGNED (char_type))
1666 return;
1668 /* Make a copy of a generic unsigned version since we'll modify it. */
1669 tree unsigned_char_type
1670 = (char_type == char_type_node
1671 ? unsigned_char_type_node
1672 : copy_type (gnat_unsigned_type_for (char_type)));
1674 /* Create an unsigned version of the type and set it as debug type. */
1675 TYPE_NAME (unsigned_char_type) = TYPE_NAME (char_type);
1676 TYPE_STRING_FLAG (unsigned_char_type) = TYPE_STRING_FLAG (char_type);
1677 TYPE_ARTIFICIAL (unsigned_char_type) = TYPE_ARTIFICIAL (char_type);
1678 SET_TYPE_DEBUG_TYPE (char_type, unsigned_char_type);
1680 /* If this is a subtype, make the debug type a subtype of the debug type
1681 of the base type and convert literal RM bounds to unsigned. */
1682 if (TREE_TYPE (char_type))
1684 tree base_unsigned_char_type = TYPE_DEBUG_TYPE (TREE_TYPE (char_type));
1685 tree min_value = TYPE_RM_MIN_VALUE (char_type);
1686 tree max_value = TYPE_RM_MAX_VALUE (char_type);
1688 if (TREE_CODE (min_value) == INTEGER_CST)
1689 min_value = fold_convert (base_unsigned_char_type, min_value);
1690 if (TREE_CODE (max_value) == INTEGER_CST)
1691 max_value = fold_convert (base_unsigned_char_type, max_value);
1693 TREE_TYPE (unsigned_char_type) = base_unsigned_char_type;
1694 SET_TYPE_RM_MIN_VALUE (unsigned_char_type, min_value);
1695 SET_TYPE_RM_MAX_VALUE (unsigned_char_type, max_value);
1698 /* Adjust the RM bounds of the original type to unsigned; that's especially
1699 important for types since they are implicit in this case. */
1700 SET_TYPE_RM_MIN_VALUE (char_type, TYPE_MIN_VALUE (unsigned_char_type));
1701 SET_TYPE_RM_MAX_VALUE (char_type, TYPE_MAX_VALUE (unsigned_char_type));
1704 /* Given a record type RECORD_TYPE and a list of FIELD_DECL nodes FIELD_LIST,
1705 finish constructing the record type as a fat pointer type. */
1707 void
1708 finish_fat_pointer_type (tree record_type, tree field_list)
1710 /* Make sure we can put it into a register. */
1711 if (STRICT_ALIGNMENT)
1712 SET_TYPE_ALIGN (record_type, MIN (BIGGEST_ALIGNMENT, 2 * POINTER_SIZE));
1714 /* Show what it really is. */
1715 TYPE_FAT_POINTER_P (record_type) = 1;
1717 /* Do not emit debug info for it since the types of its fields may still be
1718 incomplete at this point. */
1719 finish_record_type (record_type, field_list, 0, false);
1721 /* Force type_contains_placeholder_p to return true on it. Although the
1722 PLACEHOLDER_EXPRs are referenced only indirectly, this isn't a pointer
1723 type but the representation of the unconstrained array. */
1724 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (record_type) = 2;
1727 /* Given a record type RECORD_TYPE and a list of FIELD_DECL nodes FIELD_LIST,
1728 finish constructing the record or union type. If REP_LEVEL is zero, this
1729 record has no representation clause and so will be entirely laid out here.
1730 If REP_LEVEL is one, this record has a representation clause and has been
1731 laid out already; only set the sizes and alignment. If REP_LEVEL is two,
1732 this record is derived from a parent record and thus inherits its layout;
1733 only make a pass on the fields to finalize them. DEBUG_INFO_P is true if
1734 additional debug info needs to be output for this type. */
1736 void
1737 finish_record_type (tree record_type, tree field_list, int rep_level,
1738 bool debug_info_p)
1740 enum tree_code code = TREE_CODE (record_type);
1741 tree name = TYPE_IDENTIFIER (record_type);
1742 tree ada_size = bitsize_zero_node;
1743 tree size = bitsize_zero_node;
1744 bool had_size = TYPE_SIZE (record_type) != 0;
1745 bool had_size_unit = TYPE_SIZE_UNIT (record_type) != 0;
1746 bool had_align = TYPE_ALIGN (record_type) != 0;
1747 tree field;
1749 TYPE_FIELDS (record_type) = field_list;
1751 /* Always attach the TYPE_STUB_DECL for a record type. It is required to
1752 generate debug info and have a parallel type. */
1753 TYPE_STUB_DECL (record_type) = create_type_stub_decl (name, record_type);
1755 /* Globally initialize the record first. If this is a rep'ed record,
1756 that just means some initializations; otherwise, layout the record. */
1757 if (rep_level > 0)
1759 SET_TYPE_ALIGN (record_type, MAX (BITS_PER_UNIT,
1760 TYPE_ALIGN (record_type)));
1762 if (!had_size_unit)
1763 TYPE_SIZE_UNIT (record_type) = size_zero_node;
1765 if (!had_size)
1766 TYPE_SIZE (record_type) = bitsize_zero_node;
1768 /* For all-repped records with a size specified, lay the QUAL_UNION_TYPE
1769 out just like a UNION_TYPE, since the size will be fixed. */
1770 else if (code == QUAL_UNION_TYPE)
1771 code = UNION_TYPE;
1773 else
1775 /* Ensure there isn't a size already set. There can be in an error
1776 case where there is a rep clause but all fields have errors and
1777 no longer have a position. */
1778 TYPE_SIZE (record_type) = 0;
1780 /* Ensure we use the traditional GCC layout for bitfields when we need
1781 to pack the record type or have a representation clause. The other
1782 possible layout (Microsoft C compiler), if available, would prevent
1783 efficient packing in almost all cases. */
1784 #ifdef TARGET_MS_BITFIELD_LAYOUT
1785 if (TARGET_MS_BITFIELD_LAYOUT && TYPE_PACKED (record_type))
1786 decl_attributes (&record_type,
1787 tree_cons (get_identifier ("gcc_struct"),
1788 NULL_TREE, NULL_TREE),
1789 ATTR_FLAG_TYPE_IN_PLACE);
1790 #endif
1792 layout_type (record_type);
1795 /* At this point, the position and size of each field is known. It was
1796 either set before entry by a rep clause, or by laying out the type above.
1798 We now run a pass over the fields (in reverse order for QUAL_UNION_TYPEs)
1799 to compute the Ada size; the GCC size and alignment (for rep'ed records
1800 that are not padding types); and the mode (for rep'ed records). We also
1801 clear the DECL_BIT_FIELD indication for the cases we know have not been
1802 handled yet, and adjust DECL_NONADDRESSABLE_P accordingly. */
1804 if (code == QUAL_UNION_TYPE)
1805 field_list = nreverse (field_list);
1807 for (field = field_list; field; field = DECL_CHAIN (field))
1809 tree type = TREE_TYPE (field);
1810 tree pos = bit_position (field);
1811 tree this_size = DECL_SIZE (field);
1812 tree this_ada_size;
1814 if (RECORD_OR_UNION_TYPE_P (type)
1815 && !TYPE_FAT_POINTER_P (type)
1816 && !TYPE_CONTAINS_TEMPLATE_P (type)
1817 && TYPE_ADA_SIZE (type))
1818 this_ada_size = TYPE_ADA_SIZE (type);
1819 else
1820 this_ada_size = this_size;
1822 /* Clear DECL_BIT_FIELD for the cases layout_decl does not handle. */
1823 if (DECL_BIT_FIELD (field)
1824 && operand_equal_p (this_size, TYPE_SIZE (type), 0))
1826 unsigned int align = TYPE_ALIGN (type);
1828 /* In the general case, type alignment is required. */
1829 if (value_factor_p (pos, align))
1831 /* The enclosing record type must be sufficiently aligned.
1832 Otherwise, if no alignment was specified for it and it
1833 has been laid out already, bump its alignment to the
1834 desired one if this is compatible with its size and
1835 maximum alignment, if any. */
1836 if (TYPE_ALIGN (record_type) >= align)
1838 SET_DECL_ALIGN (field, MAX (DECL_ALIGN (field), align));
1839 DECL_BIT_FIELD (field) = 0;
1841 else if (!had_align
1842 && rep_level == 0
1843 && value_factor_p (TYPE_SIZE (record_type), align)
1844 && (!TYPE_MAX_ALIGN (record_type)
1845 || TYPE_MAX_ALIGN (record_type) >= align))
1847 SET_TYPE_ALIGN (record_type, align);
1848 SET_DECL_ALIGN (field, MAX (DECL_ALIGN (field), align));
1849 DECL_BIT_FIELD (field) = 0;
1853 /* In the non-strict alignment case, only byte alignment is. */
1854 if (!STRICT_ALIGNMENT
1855 && DECL_BIT_FIELD (field)
1856 && value_factor_p (pos, BITS_PER_UNIT))
1857 DECL_BIT_FIELD (field) = 0;
1860 /* If we still have DECL_BIT_FIELD set at this point, we know that the
1861 field is technically not addressable. Except that it can actually
1862 be addressed if it is BLKmode and happens to be properly aligned. */
1863 if (DECL_BIT_FIELD (field)
1864 && !(DECL_MODE (field) == BLKmode
1865 && value_factor_p (pos, BITS_PER_UNIT)))
1866 DECL_NONADDRESSABLE_P (field) = 1;
1868 /* A type must be as aligned as its most aligned field that is not
1869 a bit-field. But this is already enforced by layout_type. */
1870 if (rep_level > 0 && !DECL_BIT_FIELD (field))
1871 SET_TYPE_ALIGN (record_type,
1872 MAX (TYPE_ALIGN (record_type), DECL_ALIGN (field)));
1874 switch (code)
1876 case UNION_TYPE:
1877 ada_size = size_binop (MAX_EXPR, ada_size, this_ada_size);
1878 size = size_binop (MAX_EXPR, size, this_size);
1879 break;
1881 case QUAL_UNION_TYPE:
1882 ada_size
1883 = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
1884 this_ada_size, ada_size);
1885 size = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field),
1886 this_size, size);
1887 break;
1889 case RECORD_TYPE:
1890 /* Since we know here that all fields are sorted in order of
1891 increasing bit position, the size of the record is one
1892 higher than the ending bit of the last field processed
1893 unless we have a rep clause, since in that case we might
1894 have a field outside a QUAL_UNION_TYPE that has a higher ending
1895 position. So use a MAX in that case. Also, if this field is a
1896 QUAL_UNION_TYPE, we need to take into account the previous size in
1897 the case of empty variants. */
1898 ada_size
1899 = merge_sizes (ada_size, pos, this_ada_size,
1900 TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0);
1901 size
1902 = merge_sizes (size, pos, this_size,
1903 TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0);
1904 break;
1906 default:
1907 gcc_unreachable ();
1911 if (code == QUAL_UNION_TYPE)
1912 nreverse (field_list);
1914 if (rep_level < 2)
1916 /* If this is a padding record, we never want to make the size smaller
1917 than what was specified in it, if any. */
1918 if (TYPE_IS_PADDING_P (record_type) && TYPE_SIZE (record_type))
1919 size = TYPE_SIZE (record_type);
1921 /* Now set any of the values we've just computed that apply. */
1922 if (!TYPE_FAT_POINTER_P (record_type)
1923 && !TYPE_CONTAINS_TEMPLATE_P (record_type))
1924 SET_TYPE_ADA_SIZE (record_type, ada_size);
1926 if (rep_level > 0)
1928 tree size_unit = had_size_unit
1929 ? TYPE_SIZE_UNIT (record_type)
1930 : convert (sizetype,
1931 size_binop (CEIL_DIV_EXPR, size,
1932 bitsize_unit_node));
1933 unsigned int align = TYPE_ALIGN (record_type);
1935 TYPE_SIZE (record_type) = variable_size (round_up (size, align));
1936 TYPE_SIZE_UNIT (record_type)
1937 = variable_size (round_up (size_unit, align / BITS_PER_UNIT));
1939 compute_record_mode (record_type);
1943 /* Reset the TYPE_MAX_ALIGN field since it's private to gigi. */
1944 TYPE_MAX_ALIGN (record_type) = 0;
1946 if (debug_info_p)
1947 rest_of_record_type_compilation (record_type);
1950 /* Append PARALLEL_TYPE on the chain of parallel types of TYPE. If
1951 PARRALEL_TYPE has no context and its computation is not deferred yet, also
1952 propagate TYPE's context to PARALLEL_TYPE's or defer its propagation to the
1953 moment TYPE will get a context. */
1955 void
1956 add_parallel_type (tree type, tree parallel_type)
1958 tree decl = TYPE_STUB_DECL (type);
1960 while (DECL_PARALLEL_TYPE (decl))
1961 decl = TYPE_STUB_DECL (DECL_PARALLEL_TYPE (decl));
1963 SET_DECL_PARALLEL_TYPE (decl, parallel_type);
1965 /* If PARALLEL_TYPE already has a context, we are done. */
1966 if (TYPE_CONTEXT (parallel_type))
1967 return;
1969 /* Otherwise, try to get one from TYPE's context. If so, simply propagate
1970 it to PARALLEL_TYPE. */
1971 if (TYPE_CONTEXT (type))
1972 gnat_set_type_context (parallel_type, TYPE_CONTEXT (type));
1974 /* Otherwise TYPE has not context yet. We know it will have one thanks to
1975 gnat_pushdecl and then its context will be propagated to PARALLEL_TYPE,
1976 so we have nothing to do in this case. */
1979 /* Return true if TYPE has a parallel type. */
1981 static bool
1982 has_parallel_type (tree type)
1984 tree decl = TYPE_STUB_DECL (type);
1986 return DECL_PARALLEL_TYPE (decl) != NULL_TREE;
1989 /* Wrap up compilation of RECORD_TYPE, i.e. output additional debug info
1990 associated with it. It need not be invoked directly in most cases as
1991 finish_record_type takes care of doing so. */
1993 void
1994 rest_of_record_type_compilation (tree record_type)
1996 bool var_size = false;
1997 tree field;
1999 /* If this is a padded type, the bulk of the debug info has already been
2000 generated for the field's type. */
2001 if (TYPE_IS_PADDING_P (record_type))
2002 return;
2004 /* If the type already has a parallel type (XVS type), then we're done. */
2005 if (has_parallel_type (record_type))
2006 return;
2008 for (field = TYPE_FIELDS (record_type); field; field = DECL_CHAIN (field))
2010 /* We need to make an XVE/XVU record if any field has variable size,
2011 whether or not the record does. For example, if we have a union,
2012 it may be that all fields, rounded up to the alignment, have the
2013 same size, in which case we'll use that size. But the debug
2014 output routines (except Dwarf2) won't be able to output the fields,
2015 so we need to make the special record. */
2016 if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
2017 /* If a field has a non-constant qualifier, the record will have
2018 variable size too. */
2019 || (TREE_CODE (record_type) == QUAL_UNION_TYPE
2020 && TREE_CODE (DECL_QUALIFIER (field)) != INTEGER_CST))
2022 var_size = true;
2023 break;
2027 /* If this record type is of variable size, make a parallel record type that
2028 will tell the debugger how the former is laid out (see exp_dbug.ads). */
2029 if (var_size && gnat_encodings != DWARF_GNAT_ENCODINGS_MINIMAL)
2031 tree new_record_type
2032 = make_node (TREE_CODE (record_type) == QUAL_UNION_TYPE
2033 ? UNION_TYPE : TREE_CODE (record_type));
2034 tree orig_name = TYPE_IDENTIFIER (record_type), new_name;
2035 tree last_pos = bitsize_zero_node;
2036 tree old_field, prev_old_field = NULL_TREE;
2038 new_name
2039 = concat_name (orig_name, TREE_CODE (record_type) == QUAL_UNION_TYPE
2040 ? "XVU" : "XVE");
2041 TYPE_NAME (new_record_type) = new_name;
2042 SET_TYPE_ALIGN (new_record_type, BIGGEST_ALIGNMENT);
2043 TYPE_STUB_DECL (new_record_type)
2044 = create_type_stub_decl (new_name, new_record_type);
2045 DECL_IGNORED_P (TYPE_STUB_DECL (new_record_type))
2046 = DECL_IGNORED_P (TYPE_STUB_DECL (record_type));
2047 gnat_pushdecl (TYPE_STUB_DECL (new_record_type), Empty);
2048 TYPE_SIZE (new_record_type) = size_int (TYPE_ALIGN (record_type));
2049 TYPE_SIZE_UNIT (new_record_type)
2050 = size_int (TYPE_ALIGN (record_type) / BITS_PER_UNIT);
2052 /* Now scan all the fields, replacing each field with a new field
2053 corresponding to the new encoding. */
2054 for (old_field = TYPE_FIELDS (record_type); old_field;
2055 old_field = DECL_CHAIN (old_field))
2057 tree field_type = TREE_TYPE (old_field);
2058 tree field_name = DECL_NAME (old_field);
2059 tree curpos = fold_bit_position (old_field);
2060 tree pos, new_field;
2061 bool var = false;
2062 unsigned int align = 0;
2064 /* See how the position was modified from the last position.
2066 There are two basic cases we support: a value was added
2067 to the last position or the last position was rounded to
2068 a boundary and they something was added. Check for the
2069 first case first. If not, see if there is any evidence
2070 of rounding. If so, round the last position and retry.
2072 If this is a union, the position can be taken as zero. */
2073 if (TREE_CODE (new_record_type) == UNION_TYPE)
2074 pos = bitsize_zero_node;
2075 else
2076 pos = compute_related_constant (curpos, last_pos);
2078 if (!pos
2079 && TREE_CODE (curpos) == MULT_EXPR
2080 && tree_fits_uhwi_p (TREE_OPERAND (curpos, 1)))
2082 tree offset = TREE_OPERAND (curpos, 0);
2083 align = tree_to_uhwi (TREE_OPERAND (curpos, 1));
2084 align = scale_by_factor_of (offset, align);
2085 last_pos = round_up (last_pos, align);
2086 pos = compute_related_constant (curpos, last_pos);
2088 else if (!pos
2089 && TREE_CODE (curpos) == PLUS_EXPR
2090 && tree_fits_uhwi_p (TREE_OPERAND (curpos, 1))
2091 && TREE_CODE (TREE_OPERAND (curpos, 0)) == MULT_EXPR
2092 && tree_fits_uhwi_p
2093 (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1)))
2095 tree offset = TREE_OPERAND (TREE_OPERAND (curpos, 0), 0);
2096 unsigned HOST_WIDE_INT addend
2097 = tree_to_uhwi (TREE_OPERAND (curpos, 1));
2098 align
2099 = tree_to_uhwi (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1));
2100 align = scale_by_factor_of (offset, align);
2101 align = MIN (align, addend & -addend);
2102 last_pos = round_up (last_pos, align);
2103 pos = compute_related_constant (curpos, last_pos);
2105 else if (potential_alignment_gap (prev_old_field, old_field, pos))
2107 align = TYPE_ALIGN (field_type);
2108 last_pos = round_up (last_pos, align);
2109 pos = compute_related_constant (curpos, last_pos);
2112 /* If we can't compute a position, set it to zero.
2114 ??? We really should abort here, but it's too much work
2115 to get this correct for all cases. */
2116 if (!pos)
2117 pos = bitsize_zero_node;
2119 /* See if this type is variable-sized and make a pointer type
2120 and indicate the indirection if so. Beware that the debug
2121 back-end may adjust the position computed above according
2122 to the alignment of the field type, i.e. the pointer type
2123 in this case, if we don't preventively counter that. */
2124 if (TREE_CODE (DECL_SIZE (old_field)) != INTEGER_CST)
2126 field_type = build_pointer_type (field_type);
2127 if (align != 0 && TYPE_ALIGN (field_type) > align)
2129 field_type = copy_type (field_type);
2130 SET_TYPE_ALIGN (field_type, align);
2132 var = true;
2135 /* Make a new field name, if necessary. */
2136 if (var || align != 0)
2138 char suffix[16];
2140 if (align != 0)
2141 sprintf (suffix, "XV%c%u", var ? 'L' : 'A',
2142 align / BITS_PER_UNIT);
2143 else
2144 strcpy (suffix, "XVL");
2146 field_name = concat_name (field_name, suffix);
2149 new_field
2150 = create_field_decl (field_name, field_type, new_record_type,
2151 DECL_SIZE (old_field), pos, 0, 0);
2152 DECL_CHAIN (new_field) = TYPE_FIELDS (new_record_type);
2153 TYPE_FIELDS (new_record_type) = new_field;
2155 /* If old_field is a QUAL_UNION_TYPE, take its size as being
2156 zero. The only time it's not the last field of the record
2157 is when there are other components at fixed positions after
2158 it (meaning there was a rep clause for every field) and we
2159 want to be able to encode them. */
2160 last_pos = size_binop (PLUS_EXPR, curpos,
2161 (TREE_CODE (TREE_TYPE (old_field))
2162 == QUAL_UNION_TYPE)
2163 ? bitsize_zero_node
2164 : DECL_SIZE (old_field));
2165 prev_old_field = old_field;
2168 TYPE_FIELDS (new_record_type) = nreverse (TYPE_FIELDS (new_record_type));
2170 add_parallel_type (record_type, new_record_type);
2174 /* Utility function of above to merge LAST_SIZE, the previous size of a record
2175 with FIRST_BIT and SIZE that describe a field. SPECIAL is true if this
2176 represents a QUAL_UNION_TYPE in which case we must look for COND_EXPRs and
2177 replace a value of zero with the old size. If HAS_REP is true, we take the
2178 MAX of the end position of this field with LAST_SIZE. In all other cases,
2179 we use FIRST_BIT plus SIZE. Return an expression for the size. */
2181 static tree
2182 merge_sizes (tree last_size, tree first_bit, tree size, bool special,
2183 bool has_rep)
2185 tree type = TREE_TYPE (last_size);
2186 tree new_size;
2188 if (!special || TREE_CODE (size) != COND_EXPR)
2190 new_size = size_binop (PLUS_EXPR, first_bit, size);
2191 if (has_rep)
2192 new_size = size_binop (MAX_EXPR, last_size, new_size);
2195 else
2196 new_size = fold_build3 (COND_EXPR, type, TREE_OPERAND (size, 0),
2197 integer_zerop (TREE_OPERAND (size, 1))
2198 ? last_size : merge_sizes (last_size, first_bit,
2199 TREE_OPERAND (size, 1),
2200 1, has_rep),
2201 integer_zerop (TREE_OPERAND (size, 2))
2202 ? last_size : merge_sizes (last_size, first_bit,
2203 TREE_OPERAND (size, 2),
2204 1, has_rep));
2206 /* We don't need any NON_VALUE_EXPRs and they can confuse us (especially
2207 when fed through substitute_in_expr) into thinking that a constant
2208 size is not constant. */
2209 while (TREE_CODE (new_size) == NON_LVALUE_EXPR)
2210 new_size = TREE_OPERAND (new_size, 0);
2212 return new_size;
2215 /* Return the bit position of FIELD, in bits from the start of the record,
2216 and fold it as much as possible. This is a tree of type bitsizetype. */
2218 static tree
2219 fold_bit_position (const_tree field)
2221 tree offset = DECL_FIELD_OFFSET (field);
2222 if (TREE_CODE (offset) == MULT_EXPR || TREE_CODE (offset) == PLUS_EXPR)
2223 offset = size_binop (TREE_CODE (offset),
2224 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
2225 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
2226 else
2227 offset = fold_convert (bitsizetype, offset);
2228 return size_binop (PLUS_EXPR, DECL_FIELD_BIT_OFFSET (field),
2229 size_binop (MULT_EXPR, offset, bitsize_unit_node));
2232 /* Utility function of above to see if OP0 and OP1, both of SIZETYPE, are
2233 related by the addition of a constant. Return that constant if so. */
2235 static tree
2236 compute_related_constant (tree op0, tree op1)
2238 tree factor, op0_var, op1_var, op0_cst, op1_cst, result;
2240 if (TREE_CODE (op0) == MULT_EXPR
2241 && TREE_CODE (op1) == MULT_EXPR
2242 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST
2243 && TREE_OPERAND (op1, 1) == TREE_OPERAND (op0, 1))
2245 factor = TREE_OPERAND (op0, 1);
2246 op0 = TREE_OPERAND (op0, 0);
2247 op1 = TREE_OPERAND (op1, 0);
2249 else
2250 factor = NULL_TREE;
2252 op0_cst = split_plus (op0, &op0_var);
2253 op1_cst = split_plus (op1, &op1_var);
2254 result = size_binop (MINUS_EXPR, op0_cst, op1_cst);
2256 if (operand_equal_p (op0_var, op1_var, 0))
2257 return factor ? size_binop (MULT_EXPR, factor, result) : result;
2259 return NULL_TREE;
2262 /* Utility function of above to split a tree OP which may be a sum, into a
2263 constant part, which is returned, and a variable part, which is stored
2264 in *PVAR. *PVAR may be bitsize_zero_node. All operations must be of
2265 bitsizetype. */
2267 static tree
2268 split_plus (tree in, tree *pvar)
2270 /* Strip conversions in order to ease the tree traversal and maximize the
2271 potential for constant or plus/minus discovery. We need to be careful
2272 to always return and set *pvar to bitsizetype trees, but it's worth
2273 the effort. */
2274 in = remove_conversions (in, false);
2276 *pvar = convert (bitsizetype, in);
2278 if (TREE_CODE (in) == INTEGER_CST)
2280 *pvar = bitsize_zero_node;
2281 return convert (bitsizetype, in);
2283 else if (TREE_CODE (in) == PLUS_EXPR || TREE_CODE (in) == MINUS_EXPR)
2285 tree lhs_var, rhs_var;
2286 tree lhs_con = split_plus (TREE_OPERAND (in, 0), &lhs_var);
2287 tree rhs_con = split_plus (TREE_OPERAND (in, 1), &rhs_var);
2289 if (lhs_var == TREE_OPERAND (in, 0)
2290 && rhs_var == TREE_OPERAND (in, 1))
2291 return bitsize_zero_node;
2293 *pvar = size_binop (TREE_CODE (in), lhs_var, rhs_var);
2294 return size_binop (TREE_CODE (in), lhs_con, rhs_con);
2296 else
2297 return bitsize_zero_node;
2300 /* Return a copy of TYPE but safe to modify in any way. */
2302 tree
2303 copy_type (tree type)
2305 tree new_type = copy_node (type);
2307 /* Unshare the language-specific data. */
2308 if (TYPE_LANG_SPECIFIC (type))
2310 TYPE_LANG_SPECIFIC (new_type) = NULL;
2311 SET_TYPE_LANG_SPECIFIC (new_type, GET_TYPE_LANG_SPECIFIC (type));
2314 /* And the contents of the language-specific slot if needed. */
2315 if ((INTEGRAL_TYPE_P (type) || TREE_CODE (type) == REAL_TYPE)
2316 && TYPE_RM_VALUES (type))
2318 TYPE_RM_VALUES (new_type) = NULL_TREE;
2319 SET_TYPE_RM_SIZE (new_type, TYPE_RM_SIZE (type));
2320 SET_TYPE_RM_MIN_VALUE (new_type, TYPE_RM_MIN_VALUE (type));
2321 SET_TYPE_RM_MAX_VALUE (new_type, TYPE_RM_MAX_VALUE (type));
2324 /* copy_node clears this field instead of copying it, because it is
2325 aliased with TREE_CHAIN. */
2326 TYPE_STUB_DECL (new_type) = TYPE_STUB_DECL (type);
2328 TYPE_POINTER_TO (new_type) = NULL_TREE;
2329 TYPE_REFERENCE_TO (new_type) = NULL_TREE;
2330 TYPE_MAIN_VARIANT (new_type) = new_type;
2331 TYPE_NEXT_VARIANT (new_type) = NULL_TREE;
2332 TYPE_CANONICAL (new_type) = new_type;
2334 return new_type;
2337 /* Return a subtype of sizetype with range MIN to MAX and whose
2338 TYPE_INDEX_TYPE is INDEX. GNAT_NODE is used for the position
2339 of the associated TYPE_DECL. */
2341 tree
2342 create_index_type (tree min, tree max, tree index, Node_Id gnat_node)
2344 /* First build a type for the desired range. */
2345 tree type = build_nonshared_range_type (sizetype, min, max);
2347 /* Then set the index type. */
2348 SET_TYPE_INDEX_TYPE (type, index);
2349 create_type_decl (NULL_TREE, type, true, false, gnat_node);
2351 return type;
2354 /* Return a subtype of TYPE with range MIN to MAX. If TYPE is NULL,
2355 sizetype is used. */
2357 tree
2358 create_range_type (tree type, tree min, tree max)
2360 tree range_type;
2362 if (!type)
2363 type = sizetype;
2365 /* First build a type with the base range. */
2366 range_type = build_nonshared_range_type (type, TYPE_MIN_VALUE (type),
2367 TYPE_MAX_VALUE (type));
2369 /* Then set the actual range. */
2370 SET_TYPE_RM_MIN_VALUE (range_type, min);
2371 SET_TYPE_RM_MAX_VALUE (range_type, max);
2373 return range_type;
2376 /* Return a TYPE_DECL node suitable for the TYPE_STUB_DECL field of TYPE.
2377 NAME gives the name of the type to be used in the declaration. */
2379 tree
2380 create_type_stub_decl (tree name, tree type)
2382 tree type_decl = build_decl (input_location, TYPE_DECL, name, type);
2383 DECL_ARTIFICIAL (type_decl) = 1;
2384 TYPE_ARTIFICIAL (type) = 1;
2385 return type_decl;
2388 /* Return a TYPE_DECL node for TYPE. NAME gives the name of the type to be
2389 used in the declaration. ARTIFICIAL_P is true if the declaration was
2390 generated by the compiler. DEBUG_INFO_P is true if we need to write
2391 debug information about this type. GNAT_NODE is used for the position
2392 of the decl. */
2394 tree
2395 create_type_decl (tree name, tree type, bool artificial_p, bool debug_info_p,
2396 Node_Id gnat_node)
2398 enum tree_code code = TREE_CODE (type);
2399 bool is_named
2400 = TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL;
2401 tree type_decl;
2403 /* Only the builtin TYPE_STUB_DECL should be used for dummy types. */
2404 gcc_assert (!TYPE_IS_DUMMY_P (type));
2406 /* If the type hasn't been named yet, we're naming it; preserve an existing
2407 TYPE_STUB_DECL that has been attached to it for some purpose. */
2408 if (!is_named && TYPE_STUB_DECL (type))
2410 type_decl = TYPE_STUB_DECL (type);
2411 DECL_NAME (type_decl) = name;
2413 else
2414 type_decl = build_decl (input_location, TYPE_DECL, name, type);
2416 DECL_ARTIFICIAL (type_decl) = artificial_p;
2417 TYPE_ARTIFICIAL (type) = artificial_p;
2419 /* Add this decl to the current binding level. */
2420 gnat_pushdecl (type_decl, gnat_node);
2422 /* If we're naming the type, equate the TYPE_STUB_DECL to the name. This
2423 causes the name to be also viewed as a "tag" by the debug back-end, with
2424 the advantage that no DW_TAG_typedef is emitted for artificial "tagged"
2425 types in DWARF.
2427 Note that if "type" is used as a DECL_ORIGINAL_TYPE, it may be referenced
2428 from multiple contexts, and "type_decl" references a copy of it: in such a
2429 case, do not mess TYPE_STUB_DECL: we do not want to re-use the TYPE_DECL
2430 with the mechanism above. */
2431 if (!is_named && type != DECL_ORIGINAL_TYPE (type_decl))
2432 TYPE_STUB_DECL (type) = type_decl;
2434 /* Do not generate debug info for UNCONSTRAINED_ARRAY_TYPE that the
2435 back-end doesn't support, and for others if we don't need to. */
2436 if (code == UNCONSTRAINED_ARRAY_TYPE || !debug_info_p)
2437 DECL_IGNORED_P (type_decl) = 1;
2439 return type_decl;
2442 /* Return a VAR_DECL or CONST_DECL node.
2444 NAME gives the name of the variable. ASM_NAME is its assembler name
2445 (if provided). TYPE is its data type (a GCC ..._TYPE node). INIT is
2446 the GCC tree for an optional initial expression; NULL_TREE if none.
2448 CONST_FLAG is true if this variable is constant, in which case we might
2449 return a CONST_DECL node unless CONST_DECL_ALLOWED_P is false.
2451 PUBLIC_FLAG is true if this is for a reference to a public entity or for a
2452 definition to be made visible outside of the current compilation unit, for
2453 instance variable definitions in a package specification.
2455 EXTERN_FLAG is true when processing an external variable declaration (as
2456 opposed to a definition: no storage is to be allocated for the variable).
2458 STATIC_FLAG is only relevant when not at top level and indicates whether
2459 to always allocate storage to the variable.
2461 VOLATILE_FLAG is true if this variable is declared as volatile.
2463 ARTIFICIAL_P is true if the variable was generated by the compiler.
2465 DEBUG_INFO_P is true if we need to write debug information for it.
2467 ATTR_LIST is the list of attributes to be attached to the variable.
2469 GNAT_NODE is used for the position of the decl. */
2471 tree
2472 create_var_decl (tree name, tree asm_name, tree type, tree init,
2473 bool const_flag, bool public_flag, bool extern_flag,
2474 bool static_flag, bool volatile_flag, bool artificial_p,
2475 bool debug_info_p, struct attrib *attr_list,
2476 Node_Id gnat_node, bool const_decl_allowed_p)
2478 /* Whether the object has static storage duration, either explicitly or by
2479 virtue of being declared at the global level. */
2480 const bool static_storage = static_flag || global_bindings_p ();
2482 /* Whether the initializer is constant: for an external object or an object
2483 with static storage duration, we check that the initializer is a valid
2484 constant expression for initializing a static variable; otherwise, we
2485 only check that it is constant. */
2486 const bool init_const
2487 = (init
2488 && gnat_types_compatible_p (type, TREE_TYPE (init))
2489 && (extern_flag || static_storage
2490 ? initializer_constant_valid_p (init, TREE_TYPE (init))
2491 != NULL_TREE
2492 : TREE_CONSTANT (init)));
2494 /* Whether we will make TREE_CONSTANT the DECL we produce here, in which
2495 case the initializer may be used in lieu of the DECL node (as done in
2496 Identifier_to_gnu). This is useful to prevent the need of elaboration
2497 code when an identifier for which such a DECL is made is in turn used
2498 as an initializer. We used to rely on CONST_DECL vs VAR_DECL for this,
2499 but extra constraints apply to this choice (see below) and they are not
2500 relevant to the distinction we wish to make. */
2501 const bool constant_p = const_flag && init_const;
2503 /* The actual DECL node. CONST_DECL was initially intended for enumerals
2504 and may be used for scalars in general but not for aggregates. */
2505 tree var_decl
2506 = build_decl (input_location,
2507 (constant_p
2508 && const_decl_allowed_p
2509 && !AGGREGATE_TYPE_P (type) ? CONST_DECL : VAR_DECL),
2510 name, type);
2512 /* Detect constants created by the front-end to hold 'reference to function
2513 calls for stabilization purposes. This is needed for renaming. */
2514 if (const_flag && init && POINTER_TYPE_P (type))
2516 tree inner = init;
2517 if (TREE_CODE (inner) == COMPOUND_EXPR)
2518 inner = TREE_OPERAND (inner, 1);
2519 inner = remove_conversions (inner, true);
2520 if (TREE_CODE (inner) == ADDR_EXPR
2521 && ((TREE_CODE (TREE_OPERAND (inner, 0)) == CALL_EXPR
2522 && !call_is_atomic_load (TREE_OPERAND (inner, 0)))
2523 || (TREE_CODE (TREE_OPERAND (inner, 0)) == VAR_DECL
2524 && DECL_RETURN_VALUE_P (TREE_OPERAND (inner, 0)))))
2525 DECL_RETURN_VALUE_P (var_decl) = 1;
2528 /* If this is external, throw away any initializations (they will be done
2529 elsewhere) unless this is a constant for which we would like to remain
2530 able to get the initializer. If we are defining a global here, leave a
2531 constant initialization and save any variable elaborations for the
2532 elaboration routine. If we are just annotating types, throw away the
2533 initialization if it isn't a constant. */
2534 if ((extern_flag && !constant_p)
2535 || (type_annotate_only && init && !TREE_CONSTANT (init)))
2536 init = NULL_TREE;
2538 /* At the global level, a non-constant initializer generates elaboration
2539 statements. Check that such statements are allowed, that is to say,
2540 not violating a No_Elaboration_Code restriction. */
2541 if (init && !init_const && global_bindings_p ())
2542 Check_Elaboration_Code_Allowed (gnat_node);
2544 /* Attach the initializer, if any. */
2545 DECL_INITIAL (var_decl) = init;
2547 /* Directly set some flags. */
2548 DECL_ARTIFICIAL (var_decl) = artificial_p;
2549 DECL_EXTERNAL (var_decl) = extern_flag;
2551 TREE_CONSTANT (var_decl) = constant_p;
2552 TREE_READONLY (var_decl) = const_flag;
2554 /* The object is public if it is external or if it is declared public
2555 and has static storage duration. */
2556 TREE_PUBLIC (var_decl) = extern_flag || (public_flag && static_storage);
2558 /* We need to allocate static storage for an object with static storage
2559 duration if it isn't external. */
2560 TREE_STATIC (var_decl) = !extern_flag && static_storage;
2562 TREE_SIDE_EFFECTS (var_decl)
2563 = TREE_THIS_VOLATILE (var_decl)
2564 = TYPE_VOLATILE (type) | volatile_flag;
2566 if (TREE_SIDE_EFFECTS (var_decl))
2567 TREE_ADDRESSABLE (var_decl) = 1;
2569 /* Ada doesn't feature Fortran-like COMMON variables so we shouldn't
2570 try to fiddle with DECL_COMMON. However, on platforms that don't
2571 support global BSS sections, uninitialized global variables would
2572 go in DATA instead, thus increasing the size of the executable. */
2573 if (!flag_no_common
2574 && TREE_CODE (var_decl) == VAR_DECL
2575 && TREE_PUBLIC (var_decl)
2576 && !have_global_bss_p ())
2577 DECL_COMMON (var_decl) = 1;
2579 /* Do not emit debug info for a CONST_DECL if optimization isn't enabled,
2580 since we will create an associated variable. Likewise for an external
2581 constant whose initializer is not absolute, because this would mean a
2582 global relocation in a read-only section which runs afoul of the PE-COFF
2583 run-time relocation mechanism. */
2584 if (!debug_info_p
2585 || (TREE_CODE (var_decl) == CONST_DECL && !optimize)
2586 || (extern_flag
2587 && constant_p
2588 && init
2589 && initializer_constant_valid_p (init, TREE_TYPE (init))
2590 != null_pointer_node))
2591 DECL_IGNORED_P (var_decl) = 1;
2593 /* ??? Some attributes cannot be applied to CONST_DECLs. */
2594 if (TREE_CODE (var_decl) == VAR_DECL)
2595 process_attributes (&var_decl, &attr_list, true, gnat_node);
2597 /* Add this decl to the current binding level. */
2598 gnat_pushdecl (var_decl, gnat_node);
2600 if (TREE_CODE (var_decl) == VAR_DECL && asm_name)
2602 /* Let the target mangle the name if this isn't a verbatim asm. */
2603 if (*IDENTIFIER_POINTER (asm_name) != '*')
2604 asm_name = targetm.mangle_decl_assembler_name (var_decl, asm_name);
2606 SET_DECL_ASSEMBLER_NAME (var_decl, asm_name);
2609 return var_decl;
2612 /* Return true if TYPE, an aggregate type, contains (or is) an array. */
2614 static bool
2615 aggregate_type_contains_array_p (tree type)
2617 switch (TREE_CODE (type))
2619 case RECORD_TYPE:
2620 case UNION_TYPE:
2621 case QUAL_UNION_TYPE:
2623 tree field;
2624 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2625 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
2626 && aggregate_type_contains_array_p (TREE_TYPE (field)))
2627 return true;
2628 return false;
2631 case ARRAY_TYPE:
2632 return true;
2634 default:
2635 gcc_unreachable ();
2639 /* Return a FIELD_DECL node. NAME is the field's name, TYPE is its type and
2640 RECORD_TYPE is the type of the enclosing record. If SIZE is nonzero, it
2641 is the specified size of the field. If POS is nonzero, it is the bit
2642 position. PACKED is 1 if the enclosing record is packed, -1 if it has
2643 Component_Alignment of Storage_Unit. If ADDRESSABLE is nonzero, it
2644 means we are allowed to take the address of the field; if it is negative,
2645 we should not make a bitfield, which is used by make_aligning_type. */
2647 tree
2648 create_field_decl (tree name, tree type, tree record_type, tree size, tree pos,
2649 int packed, int addressable)
2651 tree field_decl = build_decl (input_location, FIELD_DECL, name, type);
2653 DECL_CONTEXT (field_decl) = record_type;
2654 TREE_READONLY (field_decl) = TYPE_READONLY (type);
2656 /* If FIELD_TYPE is BLKmode, we must ensure this is aligned to at least a
2657 byte boundary since GCC cannot handle less-aligned BLKmode bitfields.
2658 Likewise for an aggregate without specified position that contains an
2659 array, because in this case slices of variable length of this array
2660 must be handled by GCC and variable-sized objects need to be aligned
2661 to at least a byte boundary. */
2662 if (packed && (TYPE_MODE (type) == BLKmode
2663 || (!pos
2664 && AGGREGATE_TYPE_P (type)
2665 && aggregate_type_contains_array_p (type))))
2666 SET_DECL_ALIGN (field_decl, BITS_PER_UNIT);
2668 /* If a size is specified, use it. Otherwise, if the record type is packed
2669 compute a size to use, which may differ from the object's natural size.
2670 We always set a size in this case to trigger the checks for bitfield
2671 creation below, which is typically required when no position has been
2672 specified. */
2673 if (size)
2674 size = convert (bitsizetype, size);
2675 else if (packed == 1)
2677 size = rm_size (type);
2678 if (TYPE_MODE (type) == BLKmode)
2679 size = round_up (size, BITS_PER_UNIT);
2682 /* If we may, according to ADDRESSABLE, make a bitfield if a size is
2683 specified for two reasons: first if the size differs from the natural
2684 size. Second, if the alignment is insufficient. There are a number of
2685 ways the latter can be true.
2687 We never make a bitfield if the type of the field has a nonconstant size,
2688 because no such entity requiring bitfield operations should reach here.
2690 We do *preventively* make a bitfield when there might be the need for it
2691 but we don't have all the necessary information to decide, as is the case
2692 of a field with no specified position in a packed record.
2694 We also don't look at STRICT_ALIGNMENT here, and rely on later processing
2695 in layout_decl or finish_record_type to clear the bit_field indication if
2696 it is in fact not needed. */
2697 if (addressable >= 0
2698 && size
2699 && TREE_CODE (size) == INTEGER_CST
2700 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
2701 && (!tree_int_cst_equal (size, TYPE_SIZE (type))
2702 || (pos && !value_factor_p (pos, TYPE_ALIGN (type)))
2703 || packed
2704 || (TYPE_ALIGN (record_type) != 0
2705 && TYPE_ALIGN (record_type) < TYPE_ALIGN (type))))
2707 DECL_BIT_FIELD (field_decl) = 1;
2708 DECL_SIZE (field_decl) = size;
2709 if (!packed && !pos)
2711 if (TYPE_ALIGN (record_type) != 0
2712 && TYPE_ALIGN (record_type) < TYPE_ALIGN (type))
2713 SET_DECL_ALIGN (field_decl, TYPE_ALIGN (record_type));
2714 else
2715 SET_DECL_ALIGN (field_decl, TYPE_ALIGN (type));
2719 DECL_PACKED (field_decl) = pos ? DECL_BIT_FIELD (field_decl) : packed;
2721 /* Bump the alignment if need be, either for bitfield/packing purposes or
2722 to satisfy the type requirements if no such consideration applies. When
2723 we get the alignment from the type, indicate if this is from an explicit
2724 user request, which prevents stor-layout from lowering it later on. */
2726 unsigned int bit_align
2727 = (DECL_BIT_FIELD (field_decl) ? 1
2728 : packed && TYPE_MODE (type) != BLKmode ? BITS_PER_UNIT : 0);
2730 if (bit_align > DECL_ALIGN (field_decl))
2731 SET_DECL_ALIGN (field_decl, bit_align);
2732 else if (!bit_align && TYPE_ALIGN (type) > DECL_ALIGN (field_decl))
2734 SET_DECL_ALIGN (field_decl, TYPE_ALIGN (type));
2735 DECL_USER_ALIGN (field_decl) = TYPE_USER_ALIGN (type);
2739 if (pos)
2741 /* We need to pass in the alignment the DECL is known to have.
2742 This is the lowest-order bit set in POS, but no more than
2743 the alignment of the record, if one is specified. Note
2744 that an alignment of 0 is taken as infinite. */
2745 unsigned int known_align;
2747 if (tree_fits_uhwi_p (pos))
2748 known_align = tree_to_uhwi (pos) & - tree_to_uhwi (pos);
2749 else
2750 known_align = BITS_PER_UNIT;
2752 if (TYPE_ALIGN (record_type)
2753 && (known_align == 0 || known_align > TYPE_ALIGN (record_type)))
2754 known_align = TYPE_ALIGN (record_type);
2756 layout_decl (field_decl, known_align);
2757 SET_DECL_OFFSET_ALIGN (field_decl,
2758 tree_fits_uhwi_p (pos) ? BIGGEST_ALIGNMENT
2759 : BITS_PER_UNIT);
2760 pos_from_bit (&DECL_FIELD_OFFSET (field_decl),
2761 &DECL_FIELD_BIT_OFFSET (field_decl),
2762 DECL_OFFSET_ALIGN (field_decl), pos);
2765 /* In addition to what our caller says, claim the field is addressable if we
2766 know that its type is not suitable.
2768 The field may also be "technically" nonaddressable, meaning that even if
2769 we attempt to take the field's address we will actually get the address
2770 of a copy. This is the case for true bitfields, but the DECL_BIT_FIELD
2771 value we have at this point is not accurate enough, so we don't account
2772 for this here and let finish_record_type decide. */
2773 if (!addressable && !type_for_nonaliased_component_p (type))
2774 addressable = 1;
2776 DECL_NONADDRESSABLE_P (field_decl) = !addressable;
2778 return field_decl;
2781 /* Return a PARM_DECL node with NAME and TYPE. */
2783 tree
2784 create_param_decl (tree name, tree type)
2786 tree param_decl = build_decl (input_location, PARM_DECL, name, type);
2788 /* Honor TARGET_PROMOTE_PROTOTYPES like the C compiler, as not doing so
2789 can lead to various ABI violations. */
2790 if (targetm.calls.promote_prototypes (NULL_TREE)
2791 && INTEGRAL_TYPE_P (type)
2792 && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node))
2794 /* We have to be careful about biased types here. Make a subtype
2795 of integer_type_node with the proper biasing. */
2796 if (TREE_CODE (type) == INTEGER_TYPE
2797 && TYPE_BIASED_REPRESENTATION_P (type))
2799 tree subtype
2800 = make_unsigned_type (TYPE_PRECISION (integer_type_node));
2801 TREE_TYPE (subtype) = integer_type_node;
2802 TYPE_BIASED_REPRESENTATION_P (subtype) = 1;
2803 SET_TYPE_RM_MIN_VALUE (subtype, TYPE_MIN_VALUE (type));
2804 SET_TYPE_RM_MAX_VALUE (subtype, TYPE_MAX_VALUE (type));
2805 type = subtype;
2807 else
2808 type = integer_type_node;
2811 DECL_ARG_TYPE (param_decl) = type;
2812 return param_decl;
2815 /* Process the attributes in ATTR_LIST for NODE, which is either a DECL or
2816 a TYPE. If IN_PLACE is true, the tree pointed to by NODE should not be
2817 changed. GNAT_NODE is used for the position of error messages. */
2819 void
2820 process_attributes (tree *node, struct attrib **attr_list, bool in_place,
2821 Node_Id gnat_node)
2823 struct attrib *attr;
2825 for (attr = *attr_list; attr; attr = attr->next)
2826 switch (attr->type)
2828 case ATTR_MACHINE_ATTRIBUTE:
2829 Sloc_to_locus (Sloc (gnat_node), &input_location);
2830 decl_attributes (node, tree_cons (attr->name, attr->args, NULL_TREE),
2831 in_place ? ATTR_FLAG_TYPE_IN_PLACE : 0);
2832 break;
2834 case ATTR_LINK_ALIAS:
2835 if (!DECL_EXTERNAL (*node))
2837 TREE_STATIC (*node) = 1;
2838 assemble_alias (*node, attr->name);
2840 break;
2842 case ATTR_WEAK_EXTERNAL:
2843 if (SUPPORTS_WEAK)
2844 declare_weak (*node);
2845 else
2846 post_error ("?weak declarations not supported on this target",
2847 attr->error_point);
2848 break;
2850 case ATTR_LINK_SECTION:
2851 if (targetm_common.have_named_sections)
2853 set_decl_section_name (*node, IDENTIFIER_POINTER (attr->name));
2854 DECL_COMMON (*node) = 0;
2856 else
2857 post_error ("?section attributes are not supported for this target",
2858 attr->error_point);
2859 break;
2861 case ATTR_LINK_CONSTRUCTOR:
2862 DECL_STATIC_CONSTRUCTOR (*node) = 1;
2863 TREE_USED (*node) = 1;
2864 break;
2866 case ATTR_LINK_DESTRUCTOR:
2867 DECL_STATIC_DESTRUCTOR (*node) = 1;
2868 TREE_USED (*node) = 1;
2869 break;
2871 case ATTR_THREAD_LOCAL_STORAGE:
2872 set_decl_tls_model (*node, decl_default_tls_model (*node));
2873 DECL_COMMON (*node) = 0;
2874 break;
2877 *attr_list = NULL;
2880 /* Return true if VALUE is a known to be a multiple of FACTOR, which must be
2881 a power of 2. */
2883 bool
2884 value_factor_p (tree value, HOST_WIDE_INT factor)
2886 if (tree_fits_uhwi_p (value))
2887 return tree_to_uhwi (value) % factor == 0;
2889 if (TREE_CODE (value) == MULT_EXPR)
2890 return (value_factor_p (TREE_OPERAND (value, 0), factor)
2891 || value_factor_p (TREE_OPERAND (value, 1), factor));
2893 return false;
2896 /* Return whether GNAT_NODE is a defining identifier for a renaming that comes
2897 from the parameter association for the instantiation of a generic. We do
2898 not want to emit source location for them: the code generated for their
2899 initialization is likely to disturb debugging. */
2901 bool
2902 renaming_from_generic_instantiation_p (Node_Id gnat_node)
2904 if (Nkind (gnat_node) != N_Defining_Identifier
2905 || !IN (Ekind (gnat_node), Object_Kind)
2906 || Comes_From_Source (gnat_node)
2907 || !Present (Renamed_Object (gnat_node)))
2908 return false;
2910 /* Get the object declaration of the renamed object, if any and if the
2911 renamed object is a mere identifier. */
2912 gnat_node = Renamed_Object (gnat_node);
2913 if (Nkind (gnat_node) != N_Identifier)
2914 return false;
2916 gnat_node = Entity (gnat_node);
2917 if (!Present (Parent (gnat_node)))
2918 return false;
2920 gnat_node = Parent (gnat_node);
2921 return
2922 (Present (gnat_node)
2923 && Nkind (gnat_node) == N_Object_Declaration
2924 && Present (Corresponding_Generic_Association (gnat_node)));
2927 /* Defer the initialization of DECL's DECL_CONTEXT attribute, scheduling to
2928 feed it with the elaboration of GNAT_SCOPE. */
2930 static struct deferred_decl_context_node *
2931 add_deferred_decl_context (tree decl, Entity_Id gnat_scope, int force_global)
2933 struct deferred_decl_context_node *new_node;
2935 new_node
2936 = (struct deferred_decl_context_node * ) xmalloc (sizeof (*new_node));
2937 new_node->decl = decl;
2938 new_node->gnat_scope = gnat_scope;
2939 new_node->force_global = force_global;
2940 new_node->types.create (1);
2941 new_node->next = deferred_decl_context_queue;
2942 deferred_decl_context_queue = new_node;
2943 return new_node;
2946 /* Defer the initialization of TYPE's TYPE_CONTEXT attribute, scheduling to
2947 feed it with the DECL_CONTEXT computed as part of N as soon as it is
2948 computed. */
2950 static void
2951 add_deferred_type_context (struct deferred_decl_context_node *n, tree type)
2953 n->types.safe_push (type);
2956 /* Get the GENERIC node corresponding to GNAT_SCOPE, if available. Return
2957 NULL_TREE if it is not available. */
2959 static tree
2960 compute_deferred_decl_context (Entity_Id gnat_scope)
2962 tree context;
2964 if (present_gnu_tree (gnat_scope))
2965 context = get_gnu_tree (gnat_scope);
2966 else
2967 return NULL_TREE;
2969 if (TREE_CODE (context) == TYPE_DECL)
2971 const tree context_type = TREE_TYPE (context);
2973 /* Skip dummy types: only the final ones can appear in the context
2974 chain. */
2975 if (TYPE_DUMMY_P (context_type))
2976 return NULL_TREE;
2978 /* ..._TYPE nodes are more useful than TYPE_DECL nodes in the context
2979 chain. */
2980 else
2981 context = context_type;
2984 return context;
2987 /* Try to process all deferred nodes in the queue. Keep in the queue the ones
2988 that cannot be processed yet, remove the other ones. If FORCE is true,
2989 force the processing for all nodes, use the global context when nodes don't
2990 have a GNU translation. */
2992 void
2993 process_deferred_decl_context (bool force)
2995 struct deferred_decl_context_node **it = &deferred_decl_context_queue;
2996 struct deferred_decl_context_node *node;
2998 while (*it)
3000 bool processed = false;
3001 tree context = NULL_TREE;
3002 Entity_Id gnat_scope;
3004 node = *it;
3006 /* If FORCE, get the innermost elaborated scope. Otherwise, just try to
3007 get the first scope. */
3008 gnat_scope = node->gnat_scope;
3009 while (Present (gnat_scope))
3011 context = compute_deferred_decl_context (gnat_scope);
3012 if (!force || context)
3013 break;
3014 gnat_scope = get_debug_scope (gnat_scope, NULL);
3017 /* Imported declarations must not be in a local context (i.e. not inside
3018 a function). */
3019 if (context && node->force_global > 0)
3021 tree ctx = context;
3023 while (ctx)
3025 gcc_assert (TREE_CODE (ctx) != FUNCTION_DECL);
3026 ctx = DECL_P (ctx) ? DECL_CONTEXT (ctx) : TYPE_CONTEXT (ctx);
3030 /* If FORCE, we want to get rid of all nodes in the queue: in case there
3031 was no elaborated scope, use the global context. */
3032 if (force && !context)
3033 context = get_global_context ();
3035 if (context)
3037 tree t;
3038 int i;
3040 DECL_CONTEXT (node->decl) = context;
3042 /* Propagate it to the TYPE_CONTEXT attributes of the requested
3043 ..._TYPE nodes. */
3044 FOR_EACH_VEC_ELT (node->types, i, t)
3046 gnat_set_type_context (t, context);
3048 processed = true;
3051 /* If this node has been successfuly processed, remove it from the
3052 queue. Then move to the next node. */
3053 if (processed)
3055 *it = node->next;
3056 node->types.release ();
3057 free (node);
3059 else
3060 it = &node->next;
3064 /* Return VALUE scaled by the biggest power-of-2 factor of EXPR. */
3066 static unsigned int
3067 scale_by_factor_of (tree expr, unsigned int value)
3069 unsigned HOST_WIDE_INT addend = 0;
3070 unsigned HOST_WIDE_INT factor = 1;
3072 /* Peel conversions around EXPR and try to extract bodies from function
3073 calls: it is possible to get the scale factor from size functions. */
3074 expr = remove_conversions (expr, true);
3075 if (TREE_CODE (expr) == CALL_EXPR)
3076 expr = maybe_inline_call_in_expr (expr);
3078 /* Sometimes we get PLUS_EXPR (BIT_AND_EXPR (..., X), Y), where Y is a
3079 multiple of the scale factor we are looking for. */
3080 if (TREE_CODE (expr) == PLUS_EXPR
3081 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
3082 && tree_fits_uhwi_p (TREE_OPERAND (expr, 1)))
3084 addend = TREE_INT_CST_LOW (TREE_OPERAND (expr, 1));
3085 expr = TREE_OPERAND (expr, 0);
3088 /* An expression which is a bitwise AND with a mask has a power-of-2 factor
3089 corresponding to the number of trailing zeros of the mask. */
3090 if (TREE_CODE (expr) == BIT_AND_EXPR
3091 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST)
3093 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (TREE_OPERAND (expr, 1));
3094 unsigned int i = 0;
3096 while ((mask & 1) == 0 && i < HOST_BITS_PER_WIDE_INT)
3098 mask >>= 1;
3099 factor *= 2;
3100 i++;
3104 /* If the addend is not a multiple of the factor we found, give up. In
3105 theory we could find a smaller common factor but it's useless for our
3106 needs. This situation arises when dealing with a field F1 with no
3107 alignment requirement but that is following a field F2 with such
3108 requirements. As long as we have F2's offset, we don't need alignment
3109 information to compute F1's. */
3110 if (addend % factor != 0)
3111 factor = 1;
3113 return factor * value;
3116 /* Given two consecutive field decls PREV_FIELD and CURR_FIELD, return true
3117 unless we can prove these 2 fields are laid out in such a way that no gap
3118 exist between the end of PREV_FIELD and the beginning of CURR_FIELD. OFFSET
3119 is the distance in bits between the end of PREV_FIELD and the starting
3120 position of CURR_FIELD. It is ignored if null. */
3122 static bool
3123 potential_alignment_gap (tree prev_field, tree curr_field, tree offset)
3125 /* If this is the first field of the record, there cannot be any gap */
3126 if (!prev_field)
3127 return false;
3129 /* If the previous field is a union type, then return false: The only
3130 time when such a field is not the last field of the record is when
3131 there are other components at fixed positions after it (meaning there
3132 was a rep clause for every field), in which case we don't want the
3133 alignment constraint to override them. */
3134 if (TREE_CODE (TREE_TYPE (prev_field)) == QUAL_UNION_TYPE)
3135 return false;
3137 /* If the distance between the end of prev_field and the beginning of
3138 curr_field is constant, then there is a gap if the value of this
3139 constant is not null. */
3140 if (offset && tree_fits_uhwi_p (offset))
3141 return !integer_zerop (offset);
3143 /* If the size and position of the previous field are constant,
3144 then check the sum of this size and position. There will be a gap
3145 iff it is not multiple of the current field alignment. */
3146 if (tree_fits_uhwi_p (DECL_SIZE (prev_field))
3147 && tree_fits_uhwi_p (bit_position (prev_field)))
3148 return ((tree_to_uhwi (bit_position (prev_field))
3149 + tree_to_uhwi (DECL_SIZE (prev_field)))
3150 % DECL_ALIGN (curr_field) != 0);
3152 /* If both the position and size of the previous field are multiples
3153 of the current field alignment, there cannot be any gap. */
3154 if (value_factor_p (bit_position (prev_field), DECL_ALIGN (curr_field))
3155 && value_factor_p (DECL_SIZE (prev_field), DECL_ALIGN (curr_field)))
3156 return false;
3158 /* Fallback, return that there may be a potential gap */
3159 return true;
3162 /* Return a LABEL_DECL with NAME. GNAT_NODE is used for the position of
3163 the decl. */
3165 tree
3166 create_label_decl (tree name, Node_Id gnat_node)
3168 tree label_decl
3169 = build_decl (input_location, LABEL_DECL, name, void_type_node);
3171 SET_DECL_MODE (label_decl, VOIDmode);
3173 /* Add this decl to the current binding level. */
3174 gnat_pushdecl (label_decl, gnat_node);
3176 return label_decl;
3179 /* Return a FUNCTION_DECL node. NAME is the name of the subprogram, ASM_NAME
3180 its assembler name, TYPE its type (a FUNCTION_TYPE node), PARAM_DECL_LIST
3181 the list of its parameters (a list of PARM_DECL nodes chained through the
3182 DECL_CHAIN field).
3184 INLINE_STATUS describes the inline flags to be set on the FUNCTION_DECL.
3186 PUBLIC_FLAG is true if this is for a reference to a public entity or for a
3187 definition to be made visible outside of the current compilation unit.
3189 EXTERN_FLAG is true when processing an external subprogram declaration.
3191 ARTIFICIAL_P is true if the subprogram was generated by the compiler.
3193 DEBUG_INFO_P is true if we need to write debug information for it.
3195 DEFINITION is true if the subprogram is to be considered as a definition.
3197 ATTR_LIST is the list of attributes to be attached to the subprogram.
3199 GNAT_NODE is used for the position of the decl. */
3201 tree
3202 create_subprog_decl (tree name, tree asm_name, tree type, tree param_decl_list,
3203 enum inline_status_t inline_status, bool public_flag,
3204 bool extern_flag, bool artificial_p, bool debug_info_p,
3205 bool definition, struct attrib *attr_list,
3206 Node_Id gnat_node)
3208 tree subprog_decl = build_decl (input_location, FUNCTION_DECL, name, type);
3209 DECL_ARGUMENTS (subprog_decl) = param_decl_list;
3211 DECL_ARTIFICIAL (subprog_decl) = artificial_p;
3212 DECL_EXTERNAL (subprog_decl) = extern_flag;
3213 TREE_PUBLIC (subprog_decl) = public_flag;
3215 if (!debug_info_p)
3216 DECL_IGNORED_P (subprog_decl) = 1;
3217 if (definition)
3218 DECL_FUNCTION_IS_DEF (subprog_decl) = 1;
3220 switch (inline_status)
3222 case is_suppressed:
3223 DECL_UNINLINABLE (subprog_decl) = 1;
3224 break;
3226 case is_disabled:
3227 break;
3229 case is_required:
3230 if (Back_End_Inlining)
3232 decl_attributes (&subprog_decl,
3233 tree_cons (get_identifier ("always_inline"),
3234 NULL_TREE, NULL_TREE),
3235 ATTR_FLAG_TYPE_IN_PLACE);
3237 /* Inline_Always guarantees that every direct call is inlined and
3238 that there is no indirect reference to the subprogram, so the
3239 instance in the original package (as well as its clones in the
3240 client packages created for inter-unit inlining) can be made
3241 private, which causes the out-of-line body to be eliminated. */
3242 TREE_PUBLIC (subprog_decl) = 0;
3245 /* ... fall through ... */
3247 case is_enabled:
3248 DECL_DECLARED_INLINE_P (subprog_decl) = 1;
3249 DECL_NO_INLINE_WARNING_P (subprog_decl) = artificial_p;
3250 break;
3252 default:
3253 gcc_unreachable ();
3256 process_attributes (&subprog_decl, &attr_list, true, gnat_node);
3258 /* Once everything is processed, finish the subprogram declaration. */
3259 finish_subprog_decl (subprog_decl, asm_name, type);
3261 /* Add this decl to the current binding level. */
3262 gnat_pushdecl (subprog_decl, gnat_node);
3264 /* Output the assembler code and/or RTL for the declaration. */
3265 rest_of_decl_compilation (subprog_decl, global_bindings_p (), 0);
3267 return subprog_decl;
3270 /* Given a subprogram declaration DECL, its assembler name and its type,
3271 finish constructing the subprogram declaration from ASM_NAME and TYPE. */
3273 void
3274 finish_subprog_decl (tree decl, tree asm_name, tree type)
3276 tree result_decl
3277 = build_decl (DECL_SOURCE_LOCATION (decl), RESULT_DECL, NULL_TREE,
3278 TREE_TYPE (type));
3280 DECL_ARTIFICIAL (result_decl) = 1;
3281 DECL_IGNORED_P (result_decl) = 1;
3282 DECL_BY_REFERENCE (result_decl) = TREE_ADDRESSABLE (type);
3283 DECL_RESULT (decl) = result_decl;
3285 TREE_READONLY (decl) = TYPE_READONLY (type);
3286 TREE_SIDE_EFFECTS (decl) = TREE_THIS_VOLATILE (decl) = TYPE_VOLATILE (type);
3288 if (asm_name)
3290 /* Let the target mangle the name if this isn't a verbatim asm. */
3291 if (*IDENTIFIER_POINTER (asm_name) != '*')
3292 asm_name = targetm.mangle_decl_assembler_name (decl, asm_name);
3294 SET_DECL_ASSEMBLER_NAME (decl, asm_name);
3296 /* The expand_main_function circuitry expects "main_identifier_node" to
3297 designate the DECL_NAME of the 'main' entry point, in turn expected
3298 to be declared as the "main" function literally by default. Ada
3299 program entry points are typically declared with a different name
3300 within the binder generated file, exported as 'main' to satisfy the
3301 system expectations. Force main_identifier_node in this case. */
3302 if (asm_name == main_identifier_node)
3303 DECL_NAME (decl) = main_identifier_node;
3307 /* Set up the framework for generating code for SUBPROG_DECL, a subprogram
3308 body. This routine needs to be invoked before processing the declarations
3309 appearing in the subprogram. */
3311 void
3312 begin_subprog_body (tree subprog_decl)
3314 tree param_decl;
3316 announce_function (subprog_decl);
3318 /* This function is being defined. */
3319 TREE_STATIC (subprog_decl) = 1;
3321 /* The failure of this assertion will likely come from a wrong context for
3322 the subprogram body, e.g. another procedure for a procedure declared at
3323 library level. */
3324 gcc_assert (current_function_decl == decl_function_context (subprog_decl));
3326 current_function_decl = subprog_decl;
3328 /* Enter a new binding level and show that all the parameters belong to
3329 this function. */
3330 gnat_pushlevel ();
3332 for (param_decl = DECL_ARGUMENTS (subprog_decl); param_decl;
3333 param_decl = DECL_CHAIN (param_decl))
3334 DECL_CONTEXT (param_decl) = subprog_decl;
3336 make_decl_rtl (subprog_decl);
3339 /* Finish translating the current subprogram and set its BODY. */
3341 void
3342 end_subprog_body (tree body)
3344 tree fndecl = current_function_decl;
3346 /* Attach the BLOCK for this level to the function and pop the level. */
3347 BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl;
3348 DECL_INITIAL (fndecl) = current_binding_level->block;
3349 gnat_poplevel ();
3351 /* Mark the RESULT_DECL as being in this subprogram. */
3352 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
3354 /* The body should be a BIND_EXPR whose BLOCK is the top-level one. */
3355 if (TREE_CODE (body) == BIND_EXPR)
3357 BLOCK_SUPERCONTEXT (BIND_EXPR_BLOCK (body)) = fndecl;
3358 DECL_INITIAL (fndecl) = BIND_EXPR_BLOCK (body);
3361 DECL_SAVED_TREE (fndecl) = body;
3363 current_function_decl = decl_function_context (fndecl);
3366 /* Wrap up compilation of SUBPROG_DECL, a subprogram body. */
3368 void
3369 rest_of_subprog_body_compilation (tree subprog_decl)
3371 /* We cannot track the location of errors past this point. */
3372 error_gnat_node = Empty;
3374 /* If we're only annotating types, don't actually compile this function. */
3375 if (type_annotate_only)
3376 return;
3378 /* Dump functions before gimplification. */
3379 dump_function (TDI_original, subprog_decl);
3381 if (!decl_function_context (subprog_decl))
3382 cgraph_node::finalize_function (subprog_decl, false);
3383 else
3384 /* Register this function with cgraph just far enough to get it
3385 added to our parent's nested function list. */
3386 (void) cgraph_node::get_create (subprog_decl);
3389 tree
3390 gnat_builtin_function (tree decl)
3392 gnat_pushdecl (decl, Empty);
3393 return decl;
3396 /* Return an integer type with the number of bits of precision given by
3397 PRECISION. UNSIGNEDP is nonzero if the type is unsigned; otherwise
3398 it is a signed type. */
3400 tree
3401 gnat_type_for_size (unsigned precision, int unsignedp)
3403 tree t;
3404 char type_name[20];
3406 if (precision <= 2 * MAX_BITS_PER_WORD
3407 && signed_and_unsigned_types[precision][unsignedp])
3408 return signed_and_unsigned_types[precision][unsignedp];
3410 if (unsignedp)
3411 t = make_unsigned_type (precision);
3412 else
3413 t = make_signed_type (precision);
3414 TYPE_ARTIFICIAL (t) = 1;
3416 if (precision <= 2 * MAX_BITS_PER_WORD)
3417 signed_and_unsigned_types[precision][unsignedp] = t;
3419 if (!TYPE_NAME (t))
3421 sprintf (type_name, "%sSIGNED_%u", unsignedp ? "UN" : "", precision);
3422 TYPE_NAME (t) = get_identifier (type_name);
3425 return t;
3428 /* Likewise for floating-point types. */
3430 static tree
3431 float_type_for_precision (int precision, machine_mode mode)
3433 tree t;
3434 char type_name[20];
3436 if (float_types[(int) mode])
3437 return float_types[(int) mode];
3439 float_types[(int) mode] = t = make_node (REAL_TYPE);
3440 TYPE_PRECISION (t) = precision;
3441 layout_type (t);
3443 gcc_assert (TYPE_MODE (t) == mode);
3444 if (!TYPE_NAME (t))
3446 sprintf (type_name, "FLOAT_%d", precision);
3447 TYPE_NAME (t) = get_identifier (type_name);
3450 return t;
3453 /* Return a data type that has machine mode MODE. UNSIGNEDP selects
3454 an unsigned type; otherwise a signed type is returned. */
3456 tree
3457 gnat_type_for_mode (machine_mode mode, int unsignedp)
3459 if (mode == BLKmode)
3460 return NULL_TREE;
3462 if (mode == VOIDmode)
3463 return void_type_node;
3465 if (COMPLEX_MODE_P (mode))
3466 return NULL_TREE;
3468 scalar_float_mode float_mode;
3469 if (is_a <scalar_float_mode> (mode, &float_mode))
3470 return float_type_for_precision (GET_MODE_PRECISION (float_mode),
3471 float_mode);
3473 if (SCALAR_INT_MODE_P (mode))
3474 return gnat_type_for_size (GET_MODE_BITSIZE (mode), unsignedp);
3476 if (VECTOR_MODE_P (mode))
3478 machine_mode inner_mode = GET_MODE_INNER (mode);
3479 tree inner_type = gnat_type_for_mode (inner_mode, unsignedp);
3480 if (inner_type)
3481 return build_vector_type_for_mode (inner_type, mode);
3484 return NULL_TREE;
3487 /* Return the signed or unsigned version of TYPE_NODE, a scalar type, the
3488 signedness being specified by UNSIGNEDP. */
3490 tree
3491 gnat_signed_or_unsigned_type_for (int unsignedp, tree type_node)
3493 if (type_node == char_type_node)
3494 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
3496 tree type = gnat_type_for_size (TYPE_PRECISION (type_node), unsignedp);
3498 if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node))
3500 type = copy_type (type);
3501 TREE_TYPE (type) = type_node;
3503 else if (TREE_TYPE (type_node)
3504 && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE
3505 && TYPE_MODULAR_P (TREE_TYPE (type_node)))
3507 type = copy_type (type);
3508 TREE_TYPE (type) = TREE_TYPE (type_node);
3511 return type;
3514 /* Return 1 if the types T1 and T2 are compatible, i.e. if they can be
3515 transparently converted to each other. */
3518 gnat_types_compatible_p (tree t1, tree t2)
3520 enum tree_code code;
3522 /* This is the default criterion. */
3523 if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
3524 return 1;
3526 /* We only check structural equivalence here. */
3527 if ((code = TREE_CODE (t1)) != TREE_CODE (t2))
3528 return 0;
3530 /* Vector types are also compatible if they have the same number of subparts
3531 and the same form of (scalar) element type. */
3532 if (code == VECTOR_TYPE
3533 && TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
3534 && TREE_CODE (TREE_TYPE (t1)) == TREE_CODE (TREE_TYPE (t2))
3535 && TYPE_PRECISION (TREE_TYPE (t1)) == TYPE_PRECISION (TREE_TYPE (t2)))
3536 return 1;
3538 /* Array types are also compatible if they are constrained and have the same
3539 domain(s), the same component type and the same scalar storage order. */
3540 if (code == ARRAY_TYPE
3541 && (TYPE_DOMAIN (t1) == TYPE_DOMAIN (t2)
3542 || (TYPE_DOMAIN (t1)
3543 && TYPE_DOMAIN (t2)
3544 && tree_int_cst_equal (TYPE_MIN_VALUE (TYPE_DOMAIN (t1)),
3545 TYPE_MIN_VALUE (TYPE_DOMAIN (t2)))
3546 && tree_int_cst_equal (TYPE_MAX_VALUE (TYPE_DOMAIN (t1)),
3547 TYPE_MAX_VALUE (TYPE_DOMAIN (t2)))))
3548 && (TREE_TYPE (t1) == TREE_TYPE (t2)
3549 || (TREE_CODE (TREE_TYPE (t1)) == ARRAY_TYPE
3550 && gnat_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))))
3551 && TYPE_REVERSE_STORAGE_ORDER (t1) == TYPE_REVERSE_STORAGE_ORDER (t2))
3552 return 1;
3554 return 0;
3557 /* Return true if EXPR is a useless type conversion. */
3559 bool
3560 gnat_useless_type_conversion (tree expr)
3562 if (CONVERT_EXPR_P (expr)
3563 || TREE_CODE (expr) == VIEW_CONVERT_EXPR
3564 || TREE_CODE (expr) == NON_LVALUE_EXPR)
3565 return gnat_types_compatible_p (TREE_TYPE (expr),
3566 TREE_TYPE (TREE_OPERAND (expr, 0)));
3568 return false;
3571 /* Return true if T, a FUNCTION_TYPE, has the specified list of flags. */
3573 bool
3574 fntype_same_flags_p (const_tree t, tree cico_list, bool return_unconstrained_p,
3575 bool return_by_direct_ref_p, bool return_by_invisi_ref_p)
3577 return TYPE_CI_CO_LIST (t) == cico_list
3578 && TYPE_RETURN_UNCONSTRAINED_P (t) == return_unconstrained_p
3579 && TYPE_RETURN_BY_DIRECT_REF_P (t) == return_by_direct_ref_p
3580 && TREE_ADDRESSABLE (t) == return_by_invisi_ref_p;
3583 /* EXP is an expression for the size of an object. If this size contains
3584 discriminant references, replace them with the maximum (if MAX_P) or
3585 minimum (if !MAX_P) possible value of the discriminant. */
3587 tree
3588 max_size (tree exp, bool max_p)
3590 enum tree_code code = TREE_CODE (exp);
3591 tree type = TREE_TYPE (exp);
3592 tree op0, op1, op2;
3594 switch (TREE_CODE_CLASS (code))
3596 case tcc_declaration:
3597 case tcc_constant:
3598 return exp;
3600 case tcc_vl_exp:
3601 if (code == CALL_EXPR)
3603 tree t, *argarray;
3604 int n, i;
3606 t = maybe_inline_call_in_expr (exp);
3607 if (t)
3608 return max_size (t, max_p);
3610 n = call_expr_nargs (exp);
3611 gcc_assert (n > 0);
3612 argarray = XALLOCAVEC (tree, n);
3613 for (i = 0; i < n; i++)
3614 argarray[i] = max_size (CALL_EXPR_ARG (exp, i), max_p);
3615 return build_call_array (type, CALL_EXPR_FN (exp), n, argarray);
3617 break;
3619 case tcc_reference:
3620 /* If this contains a PLACEHOLDER_EXPR, it is the thing we want to
3621 modify. Otherwise, we treat it like a variable. */
3622 if (CONTAINS_PLACEHOLDER_P (exp))
3624 tree val_type = TREE_TYPE (TREE_OPERAND (exp, 1));
3625 tree val = (max_p ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type));
3626 return
3627 convert (type,
3628 max_size (convert (get_base_type (val_type), val), true));
3631 return exp;
3633 case tcc_comparison:
3634 return build_int_cst (type, max_p ? 1 : 0);
3636 case tcc_unary:
3637 if (code == NON_LVALUE_EXPR)
3638 return max_size (TREE_OPERAND (exp, 0), max_p);
3640 op0 = max_size (TREE_OPERAND (exp, 0),
3641 code == NEGATE_EXPR ? !max_p : max_p);
3643 if (op0 == TREE_OPERAND (exp, 0))
3644 return exp;
3646 return fold_build1 (code, type, op0);
3648 case tcc_binary:
3650 tree lhs = max_size (TREE_OPERAND (exp, 0), max_p);
3651 tree rhs = max_size (TREE_OPERAND (exp, 1),
3652 code == MINUS_EXPR ? !max_p : max_p);
3654 /* Special-case wanting the maximum value of a MIN_EXPR.
3655 In that case, if one side overflows, return the other. */
3656 if (max_p && code == MIN_EXPR)
3658 if (TREE_CODE (rhs) == INTEGER_CST && TREE_OVERFLOW (rhs))
3659 return lhs;
3661 if (TREE_CODE (lhs) == INTEGER_CST && TREE_OVERFLOW (lhs))
3662 return rhs;
3665 /* Likewise, handle a MINUS_EXPR or PLUS_EXPR with the LHS
3666 overflowing and the RHS a variable. */
3667 if ((code == MINUS_EXPR || code == PLUS_EXPR)
3668 && TREE_CODE (lhs) == INTEGER_CST
3669 && TREE_OVERFLOW (lhs)
3670 && TREE_CODE (rhs) != INTEGER_CST)
3671 return lhs;
3673 /* If we are going to subtract a "negative" value in an unsigned type,
3674 do the operation as an addition of the negated value, in order to
3675 avoid creating a spurious overflow below. */
3676 if (code == MINUS_EXPR
3677 && TYPE_UNSIGNED (type)
3678 && TREE_CODE (rhs) == INTEGER_CST
3679 && !TREE_OVERFLOW (rhs)
3680 && tree_int_cst_sign_bit (rhs) != 0)
3682 rhs = fold_build1 (NEGATE_EXPR, type, rhs);
3683 code = PLUS_EXPR;
3686 if (lhs == TREE_OPERAND (exp, 0) && rhs == TREE_OPERAND (exp, 1))
3687 return exp;
3689 /* We need to detect overflows so we call size_binop here. */
3690 return size_binop (code, lhs, rhs);
3693 case tcc_expression:
3694 switch (TREE_CODE_LENGTH (code))
3696 case 1:
3697 if (code == SAVE_EXPR)
3698 return exp;
3700 op0 = max_size (TREE_OPERAND (exp, 0),
3701 code == TRUTH_NOT_EXPR ? !max_p : max_p);
3703 if (op0 == TREE_OPERAND (exp, 0))
3704 return exp;
3706 return fold_build1 (code, type, op0);
3708 case 2:
3709 if (code == COMPOUND_EXPR)
3710 return max_size (TREE_OPERAND (exp, 1), max_p);
3712 op0 = max_size (TREE_OPERAND (exp, 0), max_p);
3713 op1 = max_size (TREE_OPERAND (exp, 1), max_p);
3715 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3716 return exp;
3718 return fold_build2 (code, type, op0, op1);
3720 case 3:
3721 if (code == COND_EXPR)
3723 op1 = TREE_OPERAND (exp, 1);
3724 op2 = TREE_OPERAND (exp, 2);
3726 if (!op1 || !op2)
3727 return exp;
3729 return
3730 fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type,
3731 max_size (op1, max_p), max_size (op2, max_p));
3733 break;
3735 default:
3736 break;
3739 /* Other tree classes cannot happen. */
3740 default:
3741 break;
3744 gcc_unreachable ();
3747 /* Build a template of type TEMPLATE_TYPE from the array bounds of ARRAY_TYPE.
3748 EXPR is an expression that we can use to locate any PLACEHOLDER_EXPRs.
3749 Return a constructor for the template. */
3751 tree
3752 build_template (tree template_type, tree array_type, tree expr)
3754 vec<constructor_elt, va_gc> *template_elts = NULL;
3755 tree bound_list = NULL_TREE;
3756 tree field;
3758 while (TREE_CODE (array_type) == RECORD_TYPE
3759 && (TYPE_PADDING_P (array_type)
3760 || TYPE_JUSTIFIED_MODULAR_P (array_type)))
3761 array_type = TREE_TYPE (TYPE_FIELDS (array_type));
3763 if (TREE_CODE (array_type) == ARRAY_TYPE
3764 || (TREE_CODE (array_type) == INTEGER_TYPE
3765 && TYPE_HAS_ACTUAL_BOUNDS_P (array_type)))
3766 bound_list = TYPE_ACTUAL_BOUNDS (array_type);
3768 /* First make the list for a CONSTRUCTOR for the template. Go down the
3769 field list of the template instead of the type chain because this
3770 array might be an Ada array of arrays and we can't tell where the
3771 nested arrays stop being the underlying object. */
3773 for (field = TYPE_FIELDS (template_type); field;
3774 (bound_list
3775 ? (bound_list = TREE_CHAIN (bound_list))
3776 : (array_type = TREE_TYPE (array_type))),
3777 field = DECL_CHAIN (DECL_CHAIN (field)))
3779 tree bounds, min, max;
3781 /* If we have a bound list, get the bounds from there. Likewise
3782 for an ARRAY_TYPE. Otherwise, if expr is a PARM_DECL with
3783 DECL_BY_COMPONENT_PTR_P, use the bounds of the field in the template.
3784 This will give us a maximum range. */
3785 if (bound_list)
3786 bounds = TREE_VALUE (bound_list);
3787 else if (TREE_CODE (array_type) == ARRAY_TYPE)
3788 bounds = TYPE_INDEX_TYPE (TYPE_DOMAIN (array_type));
3789 else if (expr && TREE_CODE (expr) == PARM_DECL
3790 && DECL_BY_COMPONENT_PTR_P (expr))
3791 bounds = TREE_TYPE (field);
3792 else
3793 gcc_unreachable ();
3795 min = convert (TREE_TYPE (field), TYPE_MIN_VALUE (bounds));
3796 max = convert (TREE_TYPE (DECL_CHAIN (field)), TYPE_MAX_VALUE (bounds));
3798 /* If either MIN or MAX involve a PLACEHOLDER_EXPR, we must
3799 substitute it from OBJECT. */
3800 min = SUBSTITUTE_PLACEHOLDER_IN_EXPR (min, expr);
3801 max = SUBSTITUTE_PLACEHOLDER_IN_EXPR (max, expr);
3803 CONSTRUCTOR_APPEND_ELT (template_elts, field, min);
3804 CONSTRUCTOR_APPEND_ELT (template_elts, DECL_CHAIN (field), max);
3807 return gnat_build_constructor (template_type, template_elts);
3810 /* Return true if TYPE is suitable for the element type of a vector. */
3812 static bool
3813 type_for_vector_element_p (tree type)
3815 machine_mode mode;
3817 if (!INTEGRAL_TYPE_P (type)
3818 && !SCALAR_FLOAT_TYPE_P (type)
3819 && !FIXED_POINT_TYPE_P (type))
3820 return false;
3822 mode = TYPE_MODE (type);
3823 if (GET_MODE_CLASS (mode) != MODE_INT
3824 && !SCALAR_FLOAT_MODE_P (mode)
3825 && !ALL_SCALAR_FIXED_POINT_MODE_P (mode))
3826 return false;
3828 return true;
3831 /* Return a vector type given the SIZE and the INNER_TYPE, or NULL_TREE if
3832 this is not possible. If ATTRIBUTE is non-zero, we are processing the
3833 attribute declaration and want to issue error messages on failure. */
3835 static tree
3836 build_vector_type_for_size (tree inner_type, tree size, tree attribute)
3838 unsigned HOST_WIDE_INT size_int, inner_size_int;
3839 int nunits;
3841 /* Silently punt on variable sizes. We can't make vector types for them,
3842 need to ignore them on front-end generated subtypes of unconstrained
3843 base types, and this attribute is for binding implementors, not end
3844 users, so we should never get there from legitimate explicit uses. */
3845 if (!tree_fits_uhwi_p (size))
3846 return NULL_TREE;
3847 size_int = tree_to_uhwi (size);
3849 if (!type_for_vector_element_p (inner_type))
3851 if (attribute)
3852 error ("invalid element type for attribute %qs",
3853 IDENTIFIER_POINTER (attribute));
3854 return NULL_TREE;
3856 inner_size_int = tree_to_uhwi (TYPE_SIZE_UNIT (inner_type));
3858 if (size_int % inner_size_int)
3860 if (attribute)
3861 error ("vector size not an integral multiple of component size");
3862 return NULL_TREE;
3865 if (size_int == 0)
3867 if (attribute)
3868 error ("zero vector size");
3869 return NULL_TREE;
3872 nunits = size_int / inner_size_int;
3873 if (nunits & (nunits - 1))
3875 if (attribute)
3876 error ("number of components of vector not a power of two");
3877 return NULL_TREE;
3880 return build_vector_type (inner_type, nunits);
3883 /* Return a vector type whose representative array type is ARRAY_TYPE, or
3884 NULL_TREE if this is not possible. If ATTRIBUTE is non-zero, we are
3885 processing the attribute and want to issue error messages on failure. */
3887 static tree
3888 build_vector_type_for_array (tree array_type, tree attribute)
3890 tree vector_type = build_vector_type_for_size (TREE_TYPE (array_type),
3891 TYPE_SIZE_UNIT (array_type),
3892 attribute);
3893 if (!vector_type)
3894 return NULL_TREE;
3896 TYPE_REPRESENTATIVE_ARRAY (vector_type) = array_type;
3897 return vector_type;
3900 /* Build a type to be used to represent an aliased object whose nominal type
3901 is an unconstrained array. This consists of a RECORD_TYPE containing a
3902 field of TEMPLATE_TYPE and a field of OBJECT_TYPE, which is an ARRAY_TYPE.
3903 If ARRAY_TYPE is that of an unconstrained array, this is used to represent
3904 an arbitrary unconstrained object. Use NAME as the name of the record.
3905 DEBUG_INFO_P is true if we need to write debug information for the type. */
3907 tree
3908 build_unc_object_type (tree template_type, tree object_type, tree name,
3909 bool debug_info_p)
3911 tree decl;
3912 tree type = make_node (RECORD_TYPE);
3913 tree template_field
3914 = create_field_decl (get_identifier ("BOUNDS"), template_type, type,
3915 NULL_TREE, NULL_TREE, 0, 1);
3916 tree array_field
3917 = create_field_decl (get_identifier ("ARRAY"), object_type, type,
3918 NULL_TREE, NULL_TREE, 0, 1);
3920 TYPE_NAME (type) = name;
3921 TYPE_CONTAINS_TEMPLATE_P (type) = 1;
3922 DECL_CHAIN (template_field) = array_field;
3923 finish_record_type (type, template_field, 0, true);
3925 /* Declare it now since it will never be declared otherwise. This is
3926 necessary to ensure that its subtrees are properly marked. */
3927 decl = create_type_decl (name, type, true, debug_info_p, Empty);
3929 /* template_type will not be used elsewhere than here, so to keep the debug
3930 info clean and in order to avoid scoping issues, make decl its
3931 context. */
3932 gnat_set_type_context (template_type, decl);
3934 return type;
3937 /* Same, taking a thin or fat pointer type instead of a template type. */
3939 tree
3940 build_unc_object_type_from_ptr (tree thin_fat_ptr_type, tree object_type,
3941 tree name, bool debug_info_p)
3943 tree template_type;
3945 gcc_assert (TYPE_IS_FAT_OR_THIN_POINTER_P (thin_fat_ptr_type));
3947 template_type
3948 = (TYPE_IS_FAT_POINTER_P (thin_fat_ptr_type)
3949 ? TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (thin_fat_ptr_type))))
3950 : TREE_TYPE (TYPE_FIELDS (TREE_TYPE (thin_fat_ptr_type))));
3952 return
3953 build_unc_object_type (template_type, object_type, name, debug_info_p);
3956 /* Update anything previously pointing to OLD_TYPE to point to NEW_TYPE.
3957 In the normal case this is just two adjustments, but we have more to
3958 do if NEW_TYPE is an UNCONSTRAINED_ARRAY_TYPE. */
3960 void
3961 update_pointer_to (tree old_type, tree new_type)
3963 tree ptr = TYPE_POINTER_TO (old_type);
3964 tree ref = TYPE_REFERENCE_TO (old_type);
3965 tree t;
3967 /* If this is the main variant, process all the other variants first. */
3968 if (TYPE_MAIN_VARIANT (old_type) == old_type)
3969 for (t = TYPE_NEXT_VARIANT (old_type); t; t = TYPE_NEXT_VARIANT (t))
3970 update_pointer_to (t, new_type);
3972 /* If no pointers and no references, we are done. */
3973 if (!ptr && !ref)
3974 return;
3976 /* Merge the old type qualifiers in the new type.
3978 Each old variant has qualifiers for specific reasons, and the new
3979 designated type as well. Each set of qualifiers represents useful
3980 information grabbed at some point, and merging the two simply unifies
3981 these inputs into the final type description.
3983 Consider for instance a volatile type frozen after an access to constant
3984 type designating it; after the designated type's freeze, we get here with
3985 a volatile NEW_TYPE and a dummy OLD_TYPE with a readonly variant, created
3986 when the access type was processed. We will make a volatile and readonly
3987 designated type, because that's what it really is.
3989 We might also get here for a non-dummy OLD_TYPE variant with different
3990 qualifiers than those of NEW_TYPE, for instance in some cases of pointers
3991 to private record type elaboration (see the comments around the call to
3992 this routine in gnat_to_gnu_entity <E_Access_Type>). We have to merge
3993 the qualifiers in those cases too, to avoid accidentally discarding the
3994 initial set, and will often end up with OLD_TYPE == NEW_TYPE then. */
3995 new_type
3996 = build_qualified_type (new_type,
3997 TYPE_QUALS (old_type) | TYPE_QUALS (new_type));
3999 /* If old type and new type are identical, there is nothing to do. */
4000 if (old_type == new_type)
4001 return;
4003 /* Otherwise, first handle the simple case. */
4004 if (TREE_CODE (new_type) != UNCONSTRAINED_ARRAY_TYPE)
4006 tree new_ptr, new_ref;
4008 /* If pointer or reference already points to new type, nothing to do.
4009 This can happen as update_pointer_to can be invoked multiple times
4010 on the same couple of types because of the type variants. */
4011 if ((ptr && TREE_TYPE (ptr) == new_type)
4012 || (ref && TREE_TYPE (ref) == new_type))
4013 return;
4015 /* Chain PTR and its variants at the end. */
4016 new_ptr = TYPE_POINTER_TO (new_type);
4017 if (new_ptr)
4019 while (TYPE_NEXT_PTR_TO (new_ptr))
4020 new_ptr = TYPE_NEXT_PTR_TO (new_ptr);
4021 TYPE_NEXT_PTR_TO (new_ptr) = ptr;
4023 else
4024 TYPE_POINTER_TO (new_type) = ptr;
4026 /* Now adjust them. */
4027 for (; ptr; ptr = TYPE_NEXT_PTR_TO (ptr))
4028 for (t = TYPE_MAIN_VARIANT (ptr); t; t = TYPE_NEXT_VARIANT (t))
4030 TREE_TYPE (t) = new_type;
4031 if (TYPE_NULL_BOUNDS (t))
4032 TREE_TYPE (TREE_OPERAND (TYPE_NULL_BOUNDS (t), 0)) = new_type;
4035 /* Chain REF and its variants at the end. */
4036 new_ref = TYPE_REFERENCE_TO (new_type);
4037 if (new_ref)
4039 while (TYPE_NEXT_REF_TO (new_ref))
4040 new_ref = TYPE_NEXT_REF_TO (new_ref);
4041 TYPE_NEXT_REF_TO (new_ref) = ref;
4043 else
4044 TYPE_REFERENCE_TO (new_type) = ref;
4046 /* Now adjust them. */
4047 for (; ref; ref = TYPE_NEXT_REF_TO (ref))
4048 for (t = TYPE_MAIN_VARIANT (ref); t; t = TYPE_NEXT_VARIANT (t))
4049 TREE_TYPE (t) = new_type;
4051 TYPE_POINTER_TO (old_type) = NULL_TREE;
4052 TYPE_REFERENCE_TO (old_type) = NULL_TREE;
4055 /* Now deal with the unconstrained array case. In this case the pointer
4056 is actually a record where both fields are pointers to dummy nodes.
4057 Turn them into pointers to the correct types using update_pointer_to.
4058 Likewise for the pointer to the object record (thin pointer). */
4059 else
4061 tree new_ptr = TYPE_POINTER_TO (new_type);
4063 gcc_assert (TYPE_IS_FAT_POINTER_P (ptr));
4065 /* If PTR already points to NEW_TYPE, nothing to do. This can happen
4066 since update_pointer_to can be invoked multiple times on the same
4067 couple of types because of the type variants. */
4068 if (TYPE_UNCONSTRAINED_ARRAY (ptr) == new_type)
4069 return;
4071 update_pointer_to
4072 (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (ptr))),
4073 TREE_TYPE (TREE_TYPE (TYPE_FIELDS (new_ptr))));
4075 update_pointer_to
4076 (TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (ptr)))),
4077 TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (new_ptr)))));
4079 update_pointer_to (TYPE_OBJECT_RECORD_TYPE (old_type),
4080 TYPE_OBJECT_RECORD_TYPE (new_type));
4082 TYPE_POINTER_TO (old_type) = NULL_TREE;
4083 TYPE_REFERENCE_TO (old_type) = NULL_TREE;
4087 /* Convert EXPR, a pointer to a constrained array, into a pointer to an
4088 unconstrained one. This involves making or finding a template. */
4090 static tree
4091 convert_to_fat_pointer (tree type, tree expr)
4093 tree template_type = TREE_TYPE (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type))));
4094 tree p_array_type = TREE_TYPE (TYPE_FIELDS (type));
4095 tree etype = TREE_TYPE (expr);
4096 tree template_addr;
4097 vec<constructor_elt, va_gc> *v;
4098 vec_alloc (v, 2);
4100 /* If EXPR is null, make a fat pointer that contains a null pointer to the
4101 array (compare_fat_pointers ensures that this is the full discriminant)
4102 and a valid pointer to the bounds. This latter property is necessary
4103 since the compiler can hoist the load of the bounds done through it. */
4104 if (integer_zerop (expr))
4106 tree ptr_template_type = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
4107 tree null_bounds, t;
4109 if (TYPE_NULL_BOUNDS (ptr_template_type))
4110 null_bounds = TYPE_NULL_BOUNDS (ptr_template_type);
4111 else
4113 /* The template type can still be dummy at this point so we build an
4114 empty constructor. The middle-end will fill it in with zeros. */
4115 t = build_constructor (template_type, NULL);
4116 TREE_CONSTANT (t) = TREE_STATIC (t) = 1;
4117 null_bounds = build_unary_op (ADDR_EXPR, NULL_TREE, t);
4118 SET_TYPE_NULL_BOUNDS (ptr_template_type, null_bounds);
4121 CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type),
4122 fold_convert (p_array_type, null_pointer_node));
4123 CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (type)), null_bounds);
4124 t = build_constructor (type, v);
4125 /* Do not set TREE_CONSTANT so as to force T to static memory. */
4126 TREE_CONSTANT (t) = 0;
4127 TREE_STATIC (t) = 1;
4129 return t;
4132 /* If EXPR is a thin pointer, make template and data from the record. */
4133 if (TYPE_IS_THIN_POINTER_P (etype))
4135 tree field = TYPE_FIELDS (TREE_TYPE (etype));
4137 expr = gnat_protect_expr (expr);
4139 /* If we have a TYPE_UNCONSTRAINED_ARRAY attached to the RECORD_TYPE,
4140 the thin pointer value has been shifted so we shift it back to get
4141 the template address. */
4142 if (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (etype)))
4144 template_addr
4145 = build_binary_op (POINTER_PLUS_EXPR, etype, expr,
4146 fold_build1 (NEGATE_EXPR, sizetype,
4147 byte_position
4148 (DECL_CHAIN (field))));
4149 template_addr
4150 = fold_convert (TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type))),
4151 template_addr);
4154 /* Otherwise we explicitly take the address of the fields. */
4155 else
4157 expr = build_unary_op (INDIRECT_REF, NULL_TREE, expr);
4158 template_addr
4159 = build_unary_op (ADDR_EXPR, NULL_TREE,
4160 build_component_ref (expr, field, false));
4161 expr = build_unary_op (ADDR_EXPR, NULL_TREE,
4162 build_component_ref (expr, DECL_CHAIN (field),
4163 false));
4167 /* Otherwise, build the constructor for the template. */
4168 else
4169 template_addr
4170 = build_unary_op (ADDR_EXPR, NULL_TREE,
4171 build_template (template_type, TREE_TYPE (etype),
4172 expr));
4174 /* The final result is a constructor for the fat pointer.
4176 If EXPR is an argument of a foreign convention subprogram, the type it
4177 points to is directly the component type. In this case, the expression
4178 type may not match the corresponding FIELD_DECL type at this point, so we
4179 call "convert" here to fix that up if necessary. This type consistency is
4180 required, for instance because it ensures that possible later folding of
4181 COMPONENT_REFs against this constructor always yields something of the
4182 same type as the initial reference.
4184 Note that the call to "build_template" above is still fine because it
4185 will only refer to the provided TEMPLATE_TYPE in this case. */
4186 CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type), convert (p_array_type, expr));
4187 CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (type)), template_addr);
4188 return gnat_build_constructor (type, v);
4191 /* Create an expression whose value is that of EXPR,
4192 converted to type TYPE. The TREE_TYPE of the value
4193 is always TYPE. This function implements all reasonable
4194 conversions; callers should filter out those that are
4195 not permitted by the language being compiled. */
4197 tree
4198 convert (tree type, tree expr)
4200 tree etype = TREE_TYPE (expr);
4201 enum tree_code ecode = TREE_CODE (etype);
4202 enum tree_code code = TREE_CODE (type);
4204 /* If the expression is already of the right type, we are done. */
4205 if (etype == type)
4206 return expr;
4208 /* If both input and output have padding and are of variable size, do this
4209 as an unchecked conversion. Likewise if one is a mere variant of the
4210 other, so we avoid a pointless unpad/repad sequence. */
4211 else if (code == RECORD_TYPE && ecode == RECORD_TYPE
4212 && TYPE_PADDING_P (type) && TYPE_PADDING_P (etype)
4213 && (!TREE_CONSTANT (TYPE_SIZE (type))
4214 || !TREE_CONSTANT (TYPE_SIZE (etype))
4215 || TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype)
4216 || TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type)))
4217 == TYPE_NAME (TREE_TYPE (TYPE_FIELDS (etype)))))
4220 /* If the output type has padding, convert to the inner type and make a
4221 constructor to build the record, unless a variable size is involved. */
4222 else if (code == RECORD_TYPE && TYPE_PADDING_P (type))
4224 vec<constructor_elt, va_gc> *v;
4226 /* If we previously converted from another type and our type is
4227 of variable size, remove the conversion to avoid the need for
4228 variable-sized temporaries. Likewise for a conversion between
4229 original and packable version. */
4230 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
4231 && (!TREE_CONSTANT (TYPE_SIZE (type))
4232 || (ecode == RECORD_TYPE
4233 && TYPE_NAME (etype)
4234 == TYPE_NAME (TREE_TYPE (TREE_OPERAND (expr, 0))))))
4235 expr = TREE_OPERAND (expr, 0);
4237 /* If we are just removing the padding from expr, convert the original
4238 object if we have variable size in order to avoid the need for some
4239 variable-sized temporaries. Likewise if the padding is a variant
4240 of the other, so we avoid a pointless unpad/repad sequence. */
4241 if (TREE_CODE (expr) == COMPONENT_REF
4242 && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (expr, 0)))
4243 && (!TREE_CONSTANT (TYPE_SIZE (type))
4244 || TYPE_MAIN_VARIANT (type)
4245 == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (expr, 0)))
4246 || (ecode == RECORD_TYPE
4247 && TYPE_NAME (etype)
4248 == TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type))))))
4249 return convert (type, TREE_OPERAND (expr, 0));
4251 /* If the inner type is of self-referential size and the expression type
4252 is a record, do this as an unchecked conversion. But first pad the
4253 expression if possible to have the same size on both sides. */
4254 if (ecode == RECORD_TYPE
4255 && CONTAINS_PLACEHOLDER_P (DECL_SIZE (TYPE_FIELDS (type))))
4257 if (TREE_CODE (TYPE_SIZE (etype)) == INTEGER_CST)
4258 expr = convert (maybe_pad_type (etype, TYPE_SIZE (type), 0, Empty,
4259 false, false, false, true),
4260 expr);
4261 return unchecked_convert (type, expr, false);
4264 /* If we are converting between array types with variable size, do the
4265 final conversion as an unchecked conversion, again to avoid the need
4266 for some variable-sized temporaries. If valid, this conversion is
4267 very likely purely technical and without real effects. */
4268 if (ecode == ARRAY_TYPE
4269 && TREE_CODE (TREE_TYPE (TYPE_FIELDS (type))) == ARRAY_TYPE
4270 && !TREE_CONSTANT (TYPE_SIZE (etype))
4271 && !TREE_CONSTANT (TYPE_SIZE (type)))
4272 return unchecked_convert (type,
4273 convert (TREE_TYPE (TYPE_FIELDS (type)),
4274 expr),
4275 false);
4277 vec_alloc (v, 1);
4278 CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type),
4279 convert (TREE_TYPE (TYPE_FIELDS (type)), expr));
4280 return gnat_build_constructor (type, v);
4283 /* If the input type has padding, remove it and convert to the output type.
4284 The conditions ordering is arranged to ensure that the output type is not
4285 a padding type here, as it is not clear whether the conversion would
4286 always be correct if this was to happen. */
4287 else if (ecode == RECORD_TYPE && TYPE_PADDING_P (etype))
4289 tree unpadded;
4291 /* If we have just converted to this padded type, just get the
4292 inner expression. */
4293 if (TREE_CODE (expr) == CONSTRUCTOR)
4294 unpadded = CONSTRUCTOR_ELT (expr, 0)->value;
4296 /* Otherwise, build an explicit component reference. */
4297 else
4298 unpadded = build_component_ref (expr, TYPE_FIELDS (etype), false);
4300 return convert (type, unpadded);
4303 /* If the input is a biased type, convert first to the base type and add
4304 the bias. Note that the bias must go through a full conversion to the
4305 base type, lest it is itself a biased value; this happens for subtypes
4306 of biased types. */
4307 if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype))
4308 return convert (type, fold_build2 (PLUS_EXPR, TREE_TYPE (etype),
4309 fold_convert (TREE_TYPE (etype), expr),
4310 convert (TREE_TYPE (etype),
4311 TYPE_MIN_VALUE (etype))));
4313 /* If the input is a justified modular type, we need to extract the actual
4314 object before converting it to any other type with the exceptions of an
4315 unconstrained array or of a mere type variant. It is useful to avoid the
4316 extraction and conversion in the type variant case because it could end
4317 up replacing a VAR_DECL expr by a constructor and we might be about the
4318 take the address of the result. */
4319 if (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)
4320 && code != UNCONSTRAINED_ARRAY_TYPE
4321 && TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (etype))
4322 return
4323 convert (type, build_component_ref (expr, TYPE_FIELDS (etype), false));
4325 /* If converting to a type that contains a template, convert to the data
4326 type and then build the template. */
4327 if (code == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (type))
4329 tree obj_type = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
4330 vec<constructor_elt, va_gc> *v;
4331 vec_alloc (v, 2);
4333 /* If the source already has a template, get a reference to the
4334 associated array only, as we are going to rebuild a template
4335 for the target type anyway. */
4336 expr = maybe_unconstrained_array (expr);
4338 CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type),
4339 build_template (TREE_TYPE (TYPE_FIELDS (type)),
4340 obj_type, NULL_TREE));
4341 if (expr)
4342 CONSTRUCTOR_APPEND_ELT (v, DECL_CHAIN (TYPE_FIELDS (type)),
4343 convert (obj_type, expr));
4344 return gnat_build_constructor (type, v);
4347 /* There are some cases of expressions that we process specially. */
4348 switch (TREE_CODE (expr))
4350 case ERROR_MARK:
4351 return expr;
4353 case NULL_EXPR:
4354 /* Just set its type here. For TRANSFORM_EXPR, we will do the actual
4355 conversion in gnat_expand_expr. NULL_EXPR does not represent
4356 and actual value, so no conversion is needed. */
4357 expr = copy_node (expr);
4358 TREE_TYPE (expr) = type;
4359 return expr;
4361 case STRING_CST:
4362 /* If we are converting a STRING_CST to another constrained array type,
4363 just make a new one in the proper type. */
4364 if (code == ecode && AGGREGATE_TYPE_P (etype)
4365 && !(TREE_CODE (TYPE_SIZE (etype)) == INTEGER_CST
4366 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST))
4368 expr = copy_node (expr);
4369 TREE_TYPE (expr) = type;
4370 return expr;
4372 break;
4374 case VECTOR_CST:
4375 /* If we are converting a VECTOR_CST to a mere type variant, just make
4376 a new one in the proper type. */
4377 if (code == ecode && gnat_types_compatible_p (type, etype))
4379 expr = copy_node (expr);
4380 TREE_TYPE (expr) = type;
4381 return expr;
4383 break;
4385 case CONSTRUCTOR:
4386 /* If we are converting a CONSTRUCTOR to a mere type variant, or to
4387 another padding type around the same type, just make a new one in
4388 the proper type. */
4389 if (code == ecode
4390 && (gnat_types_compatible_p (type, etype)
4391 || (code == RECORD_TYPE
4392 && TYPE_PADDING_P (type) && TYPE_PADDING_P (etype)
4393 && TREE_TYPE (TYPE_FIELDS (type))
4394 == TREE_TYPE (TYPE_FIELDS (etype)))))
4396 expr = copy_node (expr);
4397 TREE_TYPE (expr) = type;
4398 CONSTRUCTOR_ELTS (expr) = vec_safe_copy (CONSTRUCTOR_ELTS (expr));
4399 return expr;
4402 /* Likewise for a conversion between original and packable version, or
4403 conversion between types of the same size and with the same list of
4404 fields, but we have to work harder to preserve type consistency. */
4405 if (code == ecode
4406 && code == RECORD_TYPE
4407 && (TYPE_NAME (type) == TYPE_NAME (etype)
4408 || tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (etype))))
4411 vec<constructor_elt, va_gc> *e = CONSTRUCTOR_ELTS (expr);
4412 unsigned HOST_WIDE_INT len = vec_safe_length (e);
4413 vec<constructor_elt, va_gc> *v;
4414 vec_alloc (v, len);
4415 tree efield = TYPE_FIELDS (etype), field = TYPE_FIELDS (type);
4416 unsigned HOST_WIDE_INT idx;
4417 tree index, value;
4419 /* Whether we need to clear TREE_CONSTANT et al. on the output
4420 constructor when we convert in place. */
4421 bool clear_constant = false;
4423 FOR_EACH_CONSTRUCTOR_ELT(e, idx, index, value)
4425 /* Skip the missing fields in the CONSTRUCTOR. */
4426 while (efield && field && !SAME_FIELD_P (efield, index))
4428 efield = DECL_CHAIN (efield);
4429 field = DECL_CHAIN (field);
4431 /* The field must be the same. */
4432 if (!(efield && field && SAME_FIELD_P (efield, field)))
4433 break;
4434 constructor_elt elt
4435 = {field, convert (TREE_TYPE (field), value)};
4436 v->quick_push (elt);
4438 /* If packing has made this field a bitfield and the input
4439 value couldn't be emitted statically any more, we need to
4440 clear TREE_CONSTANT on our output. */
4441 if (!clear_constant
4442 && TREE_CONSTANT (expr)
4443 && !CONSTRUCTOR_BITFIELD_P (efield)
4444 && CONSTRUCTOR_BITFIELD_P (field)
4445 && !initializer_constant_valid_for_bitfield_p (value))
4446 clear_constant = true;
4448 efield = DECL_CHAIN (efield);
4449 field = DECL_CHAIN (field);
4452 /* If we have been able to match and convert all the input fields
4453 to their output type, convert in place now. We'll fallback to a
4454 view conversion downstream otherwise. */
4455 if (idx == len)
4457 expr = copy_node (expr);
4458 TREE_TYPE (expr) = type;
4459 CONSTRUCTOR_ELTS (expr) = v;
4460 if (clear_constant)
4461 TREE_CONSTANT (expr) = TREE_STATIC (expr) = 0;
4462 return expr;
4466 /* Likewise for a conversion between array type and vector type with a
4467 compatible representative array. */
4468 else if (code == VECTOR_TYPE
4469 && ecode == ARRAY_TYPE
4470 && gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type),
4471 etype))
4473 vec<constructor_elt, va_gc> *e = CONSTRUCTOR_ELTS (expr);
4474 unsigned HOST_WIDE_INT len = vec_safe_length (e);
4475 vec<constructor_elt, va_gc> *v;
4476 unsigned HOST_WIDE_INT ix;
4477 tree value;
4479 /* Build a VECTOR_CST from a *constant* array constructor. */
4480 if (TREE_CONSTANT (expr))
4482 bool constant_p = true;
4484 /* Iterate through elements and check if all constructor
4485 elements are *_CSTs. */
4486 FOR_EACH_CONSTRUCTOR_VALUE (e, ix, value)
4487 if (!CONSTANT_CLASS_P (value))
4489 constant_p = false;
4490 break;
4493 if (constant_p)
4494 return build_vector_from_ctor (type,
4495 CONSTRUCTOR_ELTS (expr));
4498 /* Otherwise, build a regular vector constructor. */
4499 vec_alloc (v, len);
4500 FOR_EACH_CONSTRUCTOR_VALUE (e, ix, value)
4502 constructor_elt elt = {NULL_TREE, value};
4503 v->quick_push (elt);
4505 expr = copy_node (expr);
4506 TREE_TYPE (expr) = type;
4507 CONSTRUCTOR_ELTS (expr) = v;
4508 return expr;
4510 break;
4512 case UNCONSTRAINED_ARRAY_REF:
4513 /* First retrieve the underlying array. */
4514 expr = maybe_unconstrained_array (expr);
4515 etype = TREE_TYPE (expr);
4516 ecode = TREE_CODE (etype);
4517 break;
4519 case VIEW_CONVERT_EXPR:
4521 /* GCC 4.x is very sensitive to type consistency overall, and view
4522 conversions thus are very frequent. Even though just "convert"ing
4523 the inner operand to the output type is fine in most cases, it
4524 might expose unexpected input/output type mismatches in special
4525 circumstances so we avoid such recursive calls when we can. */
4526 tree op0 = TREE_OPERAND (expr, 0);
4528 /* If we are converting back to the original type, we can just
4529 lift the input conversion. This is a common occurrence with
4530 switches back-and-forth amongst type variants. */
4531 if (type == TREE_TYPE (op0))
4532 return op0;
4534 /* Otherwise, if we're converting between two aggregate or vector
4535 types, we might be allowed to substitute the VIEW_CONVERT_EXPR
4536 target type in place or to just convert the inner expression. */
4537 if ((AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype))
4538 || (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (etype)))
4540 /* If we are converting between mere variants, we can just
4541 substitute the VIEW_CONVERT_EXPR in place. */
4542 if (gnat_types_compatible_p (type, etype))
4543 return build1 (VIEW_CONVERT_EXPR, type, op0);
4545 /* Otherwise, we may just bypass the input view conversion unless
4546 one of the types is a fat pointer, which is handled by
4547 specialized code below which relies on exact type matching. */
4548 else if (!TYPE_IS_FAT_POINTER_P (type)
4549 && !TYPE_IS_FAT_POINTER_P (etype))
4550 return convert (type, op0);
4553 break;
4556 default:
4557 break;
4560 /* Check for converting to a pointer to an unconstrained array. */
4561 if (TYPE_IS_FAT_POINTER_P (type) && !TYPE_IS_FAT_POINTER_P (etype))
4562 return convert_to_fat_pointer (type, expr);
4564 /* If we are converting between two aggregate or vector types that are mere
4565 variants, just make a VIEW_CONVERT_EXPR. Likewise when we are converting
4566 to a vector type from its representative array type. */
4567 else if ((code == ecode
4568 && (AGGREGATE_TYPE_P (type) || VECTOR_TYPE_P (type))
4569 && gnat_types_compatible_p (type, etype))
4570 || (code == VECTOR_TYPE
4571 && ecode == ARRAY_TYPE
4572 && gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type),
4573 etype)))
4574 return build1 (VIEW_CONVERT_EXPR, type, expr);
4576 /* If we are converting between tagged types, try to upcast properly. */
4577 else if (ecode == RECORD_TYPE && code == RECORD_TYPE
4578 && TYPE_ALIGN_OK (etype) && TYPE_ALIGN_OK (type))
4580 tree child_etype = etype;
4581 do {
4582 tree field = TYPE_FIELDS (child_etype);
4583 if (DECL_NAME (field) == parent_name_id && TREE_TYPE (field) == type)
4584 return build_component_ref (expr, field, false);
4585 child_etype = TREE_TYPE (field);
4586 } while (TREE_CODE (child_etype) == RECORD_TYPE);
4589 /* If we are converting from a smaller form of record type back to it, just
4590 make a VIEW_CONVERT_EXPR. But first pad the expression to have the same
4591 size on both sides. */
4592 else if (ecode == RECORD_TYPE && code == RECORD_TYPE
4593 && smaller_form_type_p (etype, type))
4595 expr = convert (maybe_pad_type (etype, TYPE_SIZE (type), 0, Empty,
4596 false, false, false, true),
4597 expr);
4598 return build1 (VIEW_CONVERT_EXPR, type, expr);
4601 /* In all other cases of related types, make a NOP_EXPR. */
4602 else if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype))
4603 return fold_convert (type, expr);
4605 switch (code)
4607 case VOID_TYPE:
4608 return fold_build1 (CONVERT_EXPR, type, expr);
4610 case INTEGER_TYPE:
4611 if (TYPE_HAS_ACTUAL_BOUNDS_P (type)
4612 && (ecode == ARRAY_TYPE || ecode == UNCONSTRAINED_ARRAY_TYPE
4613 || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))))
4614 return unchecked_convert (type, expr, false);
4616 /* If the output is a biased type, convert first to the base type and
4617 subtract the bias. Note that the bias itself must go through a full
4618 conversion to the base type, lest it is a biased value; this happens
4619 for subtypes of biased types. */
4620 if (TYPE_BIASED_REPRESENTATION_P (type))
4621 return fold_convert (type,
4622 fold_build2 (MINUS_EXPR, TREE_TYPE (type),
4623 convert (TREE_TYPE (type), expr),
4624 convert (TREE_TYPE (type),
4625 TYPE_MIN_VALUE (type))));
4627 /* ... fall through ... */
4629 case ENUMERAL_TYPE:
4630 case BOOLEAN_TYPE:
4631 /* If we are converting an additive expression to an integer type
4632 with lower precision, be wary of the optimization that can be
4633 applied by convert_to_integer. There are 2 problematic cases:
4634 - if the first operand was originally of a biased type,
4635 because we could be recursively called to convert it
4636 to an intermediate type and thus rematerialize the
4637 additive operator endlessly,
4638 - if the expression contains a placeholder, because an
4639 intermediate conversion that changes the sign could
4640 be inserted and thus introduce an artificial overflow
4641 at compile time when the placeholder is substituted. */
4642 if (code == INTEGER_TYPE
4643 && ecode == INTEGER_TYPE
4644 && TYPE_PRECISION (type) < TYPE_PRECISION (etype)
4645 && (TREE_CODE (expr) == PLUS_EXPR || TREE_CODE (expr) == MINUS_EXPR))
4647 tree op0 = get_unwidened (TREE_OPERAND (expr, 0), type);
4649 if ((TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
4650 && TYPE_BIASED_REPRESENTATION_P (TREE_TYPE (op0)))
4651 || CONTAINS_PLACEHOLDER_P (expr))
4652 return build1 (NOP_EXPR, type, expr);
4655 return fold (convert_to_integer (type, expr));
4657 case POINTER_TYPE:
4658 case REFERENCE_TYPE:
4659 /* If converting between two thin pointers, adjust if needed to account
4660 for differing offsets from the base pointer, depending on whether
4661 there is a TYPE_UNCONSTRAINED_ARRAY attached to the record type. */
4662 if (TYPE_IS_THIN_POINTER_P (etype) && TYPE_IS_THIN_POINTER_P (type))
4664 tree etype_pos
4665 = TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (etype))
4666 ? byte_position (DECL_CHAIN (TYPE_FIELDS (TREE_TYPE (etype))))
4667 : size_zero_node;
4668 tree type_pos
4669 = TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))
4670 ? byte_position (DECL_CHAIN (TYPE_FIELDS (TREE_TYPE (type))))
4671 : size_zero_node;
4672 tree byte_diff = size_diffop (type_pos, etype_pos);
4674 expr = build1 (NOP_EXPR, type, expr);
4675 if (integer_zerop (byte_diff))
4676 return expr;
4678 return build_binary_op (POINTER_PLUS_EXPR, type, expr,
4679 fold_convert (sizetype, byte_diff));
4682 /* If converting fat pointer to normal or thin pointer, get the pointer
4683 to the array and then convert it. */
4684 if (TYPE_IS_FAT_POINTER_P (etype))
4685 expr = build_component_ref (expr, TYPE_FIELDS (etype), false);
4687 return fold (convert_to_pointer (type, expr));
4689 case REAL_TYPE:
4690 return fold (convert_to_real (type, expr));
4692 case RECORD_TYPE:
4693 if (TYPE_JUSTIFIED_MODULAR_P (type) && !AGGREGATE_TYPE_P (etype))
4695 vec<constructor_elt, va_gc> *v;
4696 vec_alloc (v, 1);
4698 CONSTRUCTOR_APPEND_ELT (v, TYPE_FIELDS (type),
4699 convert (TREE_TYPE (TYPE_FIELDS (type)),
4700 expr));
4701 return gnat_build_constructor (type, v);
4704 /* ... fall through ... */
4706 case ARRAY_TYPE:
4707 /* In these cases, assume the front-end has validated the conversion.
4708 If the conversion is valid, it will be a bit-wise conversion, so
4709 it can be viewed as an unchecked conversion. */
4710 return unchecked_convert (type, expr, false);
4712 case UNION_TYPE:
4713 /* This is a either a conversion between a tagged type and some
4714 subtype, which we have to mark as a UNION_TYPE because of
4715 overlapping fields or a conversion of an Unchecked_Union. */
4716 return unchecked_convert (type, expr, false);
4718 case UNCONSTRAINED_ARRAY_TYPE:
4719 /* If the input is a VECTOR_TYPE, convert to the representative
4720 array type first. */
4721 if (ecode == VECTOR_TYPE)
4723 expr = convert (TYPE_REPRESENTATIVE_ARRAY (etype), expr);
4724 etype = TREE_TYPE (expr);
4725 ecode = TREE_CODE (etype);
4728 /* If EXPR is a constrained array, take its address, convert it to a
4729 fat pointer, and then dereference it. Likewise if EXPR is a
4730 record containing both a template and a constrained array.
4731 Note that a record representing a justified modular type
4732 always represents a packed constrained array. */
4733 if (ecode == ARRAY_TYPE
4734 || (ecode == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (etype))
4735 || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype))
4736 || (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype)))
4737 return
4738 build_unary_op
4739 (INDIRECT_REF, NULL_TREE,
4740 convert_to_fat_pointer (TREE_TYPE (type),
4741 build_unary_op (ADDR_EXPR,
4742 NULL_TREE, expr)));
4744 /* Do something very similar for converting one unconstrained
4745 array to another. */
4746 else if (ecode == UNCONSTRAINED_ARRAY_TYPE)
4747 return
4748 build_unary_op (INDIRECT_REF, NULL_TREE,
4749 convert (TREE_TYPE (type),
4750 build_unary_op (ADDR_EXPR,
4751 NULL_TREE, expr)));
4752 else
4753 gcc_unreachable ();
4755 case COMPLEX_TYPE:
4756 return fold (convert_to_complex (type, expr));
4758 default:
4759 gcc_unreachable ();
4763 /* Create an expression whose value is that of EXPR converted to the common
4764 index type, which is sizetype. EXPR is supposed to be in the base type
4765 of the GNAT index type. Calling it is equivalent to doing
4767 convert (sizetype, expr)
4769 but we try to distribute the type conversion with the knowledge that EXPR
4770 cannot overflow in its type. This is a best-effort approach and we fall
4771 back to the above expression as soon as difficulties are encountered.
4773 This is necessary to overcome issues that arise when the GNAT base index
4774 type and the GCC common index type (sizetype) don't have the same size,
4775 which is quite frequent on 64-bit architectures. In this case, and if
4776 the GNAT base index type is signed but the iteration type of the loop has
4777 been forced to unsigned, the loop scalar evolution engine cannot compute
4778 a simple evolution for the general induction variables associated with the
4779 array indices, because it will preserve the wrap-around semantics in the
4780 unsigned type of their "inner" part. As a result, many loop optimizations
4781 are blocked.
4783 The solution is to use a special (basic) induction variable that is at
4784 least as large as sizetype, and to express the aforementioned general
4785 induction variables in terms of this induction variable, eliminating
4786 the problematic intermediate truncation to the GNAT base index type.
4787 This is possible as long as the original expression doesn't overflow
4788 and if the middle-end hasn't introduced artificial overflows in the
4789 course of the various simplification it can make to the expression. */
4791 tree
4792 convert_to_index_type (tree expr)
4794 enum tree_code code = TREE_CODE (expr);
4795 tree type = TREE_TYPE (expr);
4797 /* If the type is unsigned, overflow is allowed so we cannot be sure that
4798 EXPR doesn't overflow. Keep it simple if optimization is disabled. */
4799 if (TYPE_UNSIGNED (type) || !optimize)
4800 return convert (sizetype, expr);
4802 switch (code)
4804 case VAR_DECL:
4805 /* The main effect of the function: replace a loop parameter with its
4806 associated special induction variable. */
4807 if (DECL_LOOP_PARM_P (expr) && DECL_INDUCTION_VAR (expr))
4808 expr = DECL_INDUCTION_VAR (expr);
4809 break;
4811 CASE_CONVERT:
4813 tree otype = TREE_TYPE (TREE_OPERAND (expr, 0));
4814 /* Bail out as soon as we suspect some sort of type frobbing. */
4815 if (TYPE_PRECISION (type) != TYPE_PRECISION (otype)
4816 || TYPE_UNSIGNED (type) != TYPE_UNSIGNED (otype))
4817 break;
4820 /* ... fall through ... */
4822 case NON_LVALUE_EXPR:
4823 return fold_build1 (code, sizetype,
4824 convert_to_index_type (TREE_OPERAND (expr, 0)));
4826 case PLUS_EXPR:
4827 case MINUS_EXPR:
4828 case MULT_EXPR:
4829 return fold_build2 (code, sizetype,
4830 convert_to_index_type (TREE_OPERAND (expr, 0)),
4831 convert_to_index_type (TREE_OPERAND (expr, 1)));
4833 case COMPOUND_EXPR:
4834 return fold_build2 (code, sizetype, TREE_OPERAND (expr, 0),
4835 convert_to_index_type (TREE_OPERAND (expr, 1)));
4837 case COND_EXPR:
4838 return fold_build3 (code, sizetype, TREE_OPERAND (expr, 0),
4839 convert_to_index_type (TREE_OPERAND (expr, 1)),
4840 convert_to_index_type (TREE_OPERAND (expr, 2)));
4842 default:
4843 break;
4846 return convert (sizetype, expr);
4849 /* Remove all conversions that are done in EXP. This includes converting
4850 from a padded type or to a justified modular type. If TRUE_ADDRESS
4851 is true, always return the address of the containing object even if
4852 the address is not bit-aligned. */
4854 tree
4855 remove_conversions (tree exp, bool true_address)
4857 switch (TREE_CODE (exp))
4859 case CONSTRUCTOR:
4860 if (true_address
4861 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE
4862 && TYPE_JUSTIFIED_MODULAR_P (TREE_TYPE (exp)))
4863 return
4864 remove_conversions (CONSTRUCTOR_ELT (exp, 0)->value, true);
4865 break;
4867 case COMPONENT_REF:
4868 if (TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
4869 return remove_conversions (TREE_OPERAND (exp, 0), true_address);
4870 break;
4872 CASE_CONVERT:
4873 case VIEW_CONVERT_EXPR:
4874 case NON_LVALUE_EXPR:
4875 return remove_conversions (TREE_OPERAND (exp, 0), true_address);
4877 default:
4878 break;
4881 return exp;
4884 /* If EXP's type is an UNCONSTRAINED_ARRAY_TYPE, return an expression that
4885 refers to the underlying array. If it has TYPE_CONTAINS_TEMPLATE_P,
4886 likewise return an expression pointing to the underlying array. */
4888 tree
4889 maybe_unconstrained_array (tree exp)
4891 enum tree_code code = TREE_CODE (exp);
4892 tree type = TREE_TYPE (exp);
4894 switch (TREE_CODE (type))
4896 case UNCONSTRAINED_ARRAY_TYPE:
4897 if (code == UNCONSTRAINED_ARRAY_REF)
4899 const bool read_only = TREE_READONLY (exp);
4900 const bool no_trap = TREE_THIS_NOTRAP (exp);
4902 exp = TREE_OPERAND (exp, 0);
4903 type = TREE_TYPE (exp);
4905 if (TREE_CODE (exp) == COND_EXPR)
4907 tree op1
4908 = build_unary_op (INDIRECT_REF, NULL_TREE,
4909 build_component_ref (TREE_OPERAND (exp, 1),
4910 TYPE_FIELDS (type),
4911 false));
4912 tree op2
4913 = build_unary_op (INDIRECT_REF, NULL_TREE,
4914 build_component_ref (TREE_OPERAND (exp, 2),
4915 TYPE_FIELDS (type),
4916 false));
4918 exp = build3 (COND_EXPR,
4919 TREE_TYPE (TREE_TYPE (TYPE_FIELDS (type))),
4920 TREE_OPERAND (exp, 0), op1, op2);
4922 else
4924 exp = build_unary_op (INDIRECT_REF, NULL_TREE,
4925 build_component_ref (exp,
4926 TYPE_FIELDS (type),
4927 false));
4928 TREE_READONLY (exp) = read_only;
4929 TREE_THIS_NOTRAP (exp) = no_trap;
4933 else if (code == NULL_EXPR)
4934 exp = build1 (NULL_EXPR,
4935 TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type)))),
4936 TREE_OPERAND (exp, 0));
4937 break;
4939 case RECORD_TYPE:
4940 /* If this is a padded type and it contains a template, convert to the
4941 unpadded type first. */
4942 if (TYPE_PADDING_P (type)
4943 && TREE_CODE (TREE_TYPE (TYPE_FIELDS (type))) == RECORD_TYPE
4944 && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (TYPE_FIELDS (type))))
4946 exp = convert (TREE_TYPE (TYPE_FIELDS (type)), exp);
4947 code = TREE_CODE (exp);
4948 type = TREE_TYPE (exp);
4951 if (TYPE_CONTAINS_TEMPLATE_P (type))
4953 /* If the array initializer is a box, return NULL_TREE. */
4954 if (code == CONSTRUCTOR && CONSTRUCTOR_NELTS (exp) < 2)
4955 return NULL_TREE;
4957 exp = build_component_ref (exp, DECL_CHAIN (TYPE_FIELDS (type)),
4958 false);
4959 type = TREE_TYPE (exp);
4961 /* If the array type is padded, convert to the unpadded type. */
4962 if (TYPE_IS_PADDING_P (type))
4963 exp = convert (TREE_TYPE (TYPE_FIELDS (type)), exp);
4965 break;
4967 default:
4968 break;
4971 return exp;
4974 /* Return true if EXPR is an expression that can be folded as an operand
4975 of a VIEW_CONVERT_EXPR. See ada-tree.h for a complete rationale. */
4977 static bool
4978 can_fold_for_view_convert_p (tree expr)
4980 tree t1, t2;
4982 /* The folder will fold NOP_EXPRs between integral types with the same
4983 precision (in the middle-end's sense). We cannot allow it if the
4984 types don't have the same precision in the Ada sense as well. */
4985 if (TREE_CODE (expr) != NOP_EXPR)
4986 return true;
4988 t1 = TREE_TYPE (expr);
4989 t2 = TREE_TYPE (TREE_OPERAND (expr, 0));
4991 /* Defer to the folder for non-integral conversions. */
4992 if (!(INTEGRAL_TYPE_P (t1) && INTEGRAL_TYPE_P (t2)))
4993 return true;
4995 /* Only fold conversions that preserve both precisions. */
4996 if (TYPE_PRECISION (t1) == TYPE_PRECISION (t2)
4997 && operand_equal_p (rm_size (t1), rm_size (t2), 0))
4998 return true;
5000 return false;
5003 /* Return an expression that does an unchecked conversion of EXPR to TYPE.
5004 If NOTRUNC_P is true, truncation operations should be suppressed.
5006 Special care is required with (source or target) integral types whose
5007 precision is not equal to their size, to make sure we fetch or assign
5008 the value bits whose location might depend on the endianness, e.g.
5010 Rmsize : constant := 8;
5011 subtype Int is Integer range 0 .. 2 ** Rmsize - 1;
5013 type Bit_Array is array (1 .. Rmsize) of Boolean;
5014 pragma Pack (Bit_Array);
5016 function To_Bit_Array is new Unchecked_Conversion (Int, Bit_Array);
5018 Value : Int := 2#1000_0001#;
5019 Vbits : Bit_Array := To_Bit_Array (Value);
5021 we expect the 8 bits at Vbits'Address to always contain Value, while
5022 their original location depends on the endianness, at Value'Address
5023 on a little-endian architecture but not on a big-endian one.
5025 One pitfall is that we cannot use TYPE_UNSIGNED directly to decide how
5026 the bits between the precision and the size are filled, because of the
5027 trick used in the E_Signed_Integer_Subtype case of gnat_to_gnu_entity.
5028 So we use the special predicate type_unsigned_for_rm above. */
5030 tree
5031 unchecked_convert (tree type, tree expr, bool notrunc_p)
5033 tree etype = TREE_TYPE (expr);
5034 enum tree_code ecode = TREE_CODE (etype);
5035 enum tree_code code = TREE_CODE (type);
5036 tree tem;
5037 int c;
5039 /* If the expression is already of the right type, we are done. */
5040 if (etype == type)
5041 return expr;
5043 /* If both types are integral just do a normal conversion.
5044 Likewise for a conversion to an unconstrained array. */
5045 if (((INTEGRAL_TYPE_P (type)
5046 || (POINTER_TYPE_P (type) && !TYPE_IS_THIN_POINTER_P (type))
5047 || (code == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (type)))
5048 && (INTEGRAL_TYPE_P (etype)
5049 || (POINTER_TYPE_P (etype) && !TYPE_IS_THIN_POINTER_P (etype))
5050 || (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype))))
5051 || code == UNCONSTRAINED_ARRAY_TYPE)
5053 if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype))
5055 tree ntype = copy_type (etype);
5056 TYPE_BIASED_REPRESENTATION_P (ntype) = 0;
5057 TYPE_MAIN_VARIANT (ntype) = ntype;
5058 expr = build1 (NOP_EXPR, ntype, expr);
5061 if (code == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (type))
5063 tree rtype = copy_type (type);
5064 TYPE_BIASED_REPRESENTATION_P (rtype) = 0;
5065 TYPE_MAIN_VARIANT (rtype) = rtype;
5066 expr = convert (rtype, expr);
5067 expr = build1 (NOP_EXPR, type, expr);
5069 else
5070 expr = convert (type, expr);
5073 /* If we are converting to an integral type whose precision is not equal
5074 to its size, first unchecked convert to a record type that contains a
5075 field of the given precision. Then extract the result from the field.
5077 There is a subtlety if the source type is an aggregate type with reverse
5078 storage order because its representation is not contiguous in the native
5079 storage order, i.e. a direct unchecked conversion to an integral type
5080 with N bits of precision cannot read the first N bits of the aggregate
5081 type. To overcome it, we do an unchecked conversion to an integral type
5082 with reverse storage order and return the resulting value. This also
5083 ensures that the result of the unchecked conversion doesn't depend on
5084 the endianness of the target machine, but only on the storage order of
5085 the aggregate type.
5087 Finally, for the sake of consistency, we do the unchecked conversion
5088 to an integral type with reverse storage order as soon as the source
5089 type is an aggregate type with reverse storage order, even if there
5090 are no considerations of precision or size involved. */
5091 else if (INTEGRAL_TYPE_P (type)
5092 && TYPE_RM_SIZE (type)
5093 && (tree_int_cst_compare (TYPE_RM_SIZE (type),
5094 TYPE_SIZE (type)) < 0
5095 || (AGGREGATE_TYPE_P (etype)
5096 && TYPE_REVERSE_STORAGE_ORDER (etype))))
5098 tree rec_type = make_node (RECORD_TYPE);
5099 unsigned HOST_WIDE_INT prec = TREE_INT_CST_LOW (TYPE_RM_SIZE (type));
5100 tree field_type, field;
5102 if (AGGREGATE_TYPE_P (etype))
5103 TYPE_REVERSE_STORAGE_ORDER (rec_type)
5104 = TYPE_REVERSE_STORAGE_ORDER (etype);
5106 if (type_unsigned_for_rm (type))
5107 field_type = make_unsigned_type (prec);
5108 else
5109 field_type = make_signed_type (prec);
5110 SET_TYPE_RM_SIZE (field_type, TYPE_RM_SIZE (type));
5112 field = create_field_decl (get_identifier ("OBJ"), field_type, rec_type,
5113 NULL_TREE, bitsize_zero_node, 1, 0);
5115 finish_record_type (rec_type, field, 1, false);
5117 expr = unchecked_convert (rec_type, expr, notrunc_p);
5118 expr = build_component_ref (expr, field, false);
5119 expr = fold_build1 (NOP_EXPR, type, expr);
5122 /* Similarly if we are converting from an integral type whose precision is
5123 not equal to its size, first copy into a field of the given precision
5124 and unchecked convert the record type.
5126 The same considerations as above apply if the target type is an aggregate
5127 type with reverse storage order and we also proceed similarly. */
5128 else if (INTEGRAL_TYPE_P (etype)
5129 && TYPE_RM_SIZE (etype)
5130 && (tree_int_cst_compare (TYPE_RM_SIZE (etype),
5131 TYPE_SIZE (etype)) < 0
5132 || (AGGREGATE_TYPE_P (type)
5133 && TYPE_REVERSE_STORAGE_ORDER (type))))
5135 tree rec_type = make_node (RECORD_TYPE);
5136 unsigned HOST_WIDE_INT prec = TREE_INT_CST_LOW (TYPE_RM_SIZE (etype));
5137 vec<constructor_elt, va_gc> *v;
5138 vec_alloc (v, 1);
5139 tree field_type, field;
5141 if (AGGREGATE_TYPE_P (type))
5142 TYPE_REVERSE_STORAGE_ORDER (rec_type)
5143 = TYPE_REVERSE_STORAGE_ORDER (type);
5145 if (type_unsigned_for_rm (etype))
5146 field_type = make_unsigned_type (prec);
5147 else
5148 field_type = make_signed_type (prec);
5149 SET_TYPE_RM_SIZE (field_type, TYPE_RM_SIZE (etype));
5151 field = create_field_decl (get_identifier ("OBJ"), field_type, rec_type,
5152 NULL_TREE, bitsize_zero_node, 1, 0);
5154 finish_record_type (rec_type, field, 1, false);
5156 expr = fold_build1 (NOP_EXPR, field_type, expr);
5157 CONSTRUCTOR_APPEND_ELT (v, field, expr);
5158 expr = gnat_build_constructor (rec_type, v);
5159 expr = unchecked_convert (type, expr, notrunc_p);
5162 /* If we are converting from a scalar type to a type with a different size,
5163 we need to pad to have the same size on both sides.
5165 ??? We cannot do it unconditionally because unchecked conversions are
5166 used liberally by the front-end to implement polymorphism, e.g. in:
5168 S191s : constant ada__tags__addr_ptr := ada__tags__addr_ptr!(S190s);
5169 return p___size__4 (p__object!(S191s.all));
5171 so we skip all expressions that are references. */
5172 else if (!REFERENCE_CLASS_P (expr)
5173 && !AGGREGATE_TYPE_P (etype)
5174 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
5175 && (c = tree_int_cst_compare (TYPE_SIZE (etype), TYPE_SIZE (type))))
5177 if (c < 0)
5179 expr = convert (maybe_pad_type (etype, TYPE_SIZE (type), 0, Empty,
5180 false, false, false, true),
5181 expr);
5182 expr = unchecked_convert (type, expr, notrunc_p);
5184 else
5186 tree rec_type = maybe_pad_type (type, TYPE_SIZE (etype), 0, Empty,
5187 false, false, false, true);
5188 expr = unchecked_convert (rec_type, expr, notrunc_p);
5189 expr = build_component_ref (expr, TYPE_FIELDS (rec_type), false);
5193 /* We have a special case when we are converting between two unconstrained
5194 array types. In that case, take the address, convert the fat pointer
5195 types, and dereference. */
5196 else if (ecode == code && code == UNCONSTRAINED_ARRAY_TYPE)
5197 expr = build_unary_op (INDIRECT_REF, NULL_TREE,
5198 build1 (VIEW_CONVERT_EXPR, TREE_TYPE (type),
5199 build_unary_op (ADDR_EXPR, NULL_TREE,
5200 expr)));
5202 /* Another special case is when we are converting to a vector type from its
5203 representative array type; this a regular conversion. */
5204 else if (code == VECTOR_TYPE
5205 && ecode == ARRAY_TYPE
5206 && gnat_types_compatible_p (TYPE_REPRESENTATIVE_ARRAY (type),
5207 etype))
5208 expr = convert (type, expr);
5210 /* And, if the array type is not the representative, we try to build an
5211 intermediate vector type of which the array type is the representative
5212 and to do the unchecked conversion between the vector types, in order
5213 to enable further simplifications in the middle-end. */
5214 else if (code == VECTOR_TYPE
5215 && ecode == ARRAY_TYPE
5216 && (tem = build_vector_type_for_array (etype, NULL_TREE)))
5218 expr = convert (tem, expr);
5219 return unchecked_convert (type, expr, notrunc_p);
5222 /* If we are converting a CONSTRUCTOR to a more aligned RECORD_TYPE, bump
5223 the alignment of the CONSTRUCTOR to speed up the copy operation. */
5224 else if (TREE_CODE (expr) == CONSTRUCTOR
5225 && code == RECORD_TYPE
5226 && TYPE_ALIGN (etype) < TYPE_ALIGN (type))
5228 expr = convert (maybe_pad_type (etype, NULL_TREE, TYPE_ALIGN (type),
5229 Empty, false, false, false, true),
5230 expr);
5231 return unchecked_convert (type, expr, notrunc_p);
5234 /* Otherwise, just build a VIEW_CONVERT_EXPR of the expression. */
5235 else
5237 expr = maybe_unconstrained_array (expr);
5238 etype = TREE_TYPE (expr);
5239 ecode = TREE_CODE (etype);
5240 if (can_fold_for_view_convert_p (expr))
5241 expr = fold_build1 (VIEW_CONVERT_EXPR, type, expr);
5242 else
5243 expr = build1 (VIEW_CONVERT_EXPR, type, expr);
5246 /* If the result is a non-biased integral type whose precision is not equal
5247 to its size, sign- or zero-extend the result. But we need not do this
5248 if the input is also an integral type and both are unsigned or both are
5249 signed and have the same precision. */
5250 if (!notrunc_p
5251 && INTEGRAL_TYPE_P (type)
5252 && !(code == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (type))
5253 && TYPE_RM_SIZE (type)
5254 && tree_int_cst_compare (TYPE_RM_SIZE (type), TYPE_SIZE (type)) < 0
5255 && !(INTEGRAL_TYPE_P (etype)
5256 && type_unsigned_for_rm (type) == type_unsigned_for_rm (etype)
5257 && (type_unsigned_for_rm (type)
5258 || tree_int_cst_compare (TYPE_RM_SIZE (type),
5259 TYPE_RM_SIZE (etype)
5260 ? TYPE_RM_SIZE (etype)
5261 : TYPE_SIZE (etype)) == 0)))
5263 tree base_type
5264 = gnat_type_for_size (TREE_INT_CST_LOW (TYPE_SIZE (type)),
5265 type_unsigned_for_rm (type));
5266 tree shift_expr
5267 = convert (base_type,
5268 size_binop (MINUS_EXPR,
5269 TYPE_SIZE (type), TYPE_RM_SIZE (type)));
5270 expr
5271 = convert (type,
5272 build_binary_op (RSHIFT_EXPR, base_type,
5273 build_binary_op (LSHIFT_EXPR, base_type,
5274 convert (base_type, expr),
5275 shift_expr),
5276 shift_expr));
5279 /* An unchecked conversion should never raise Constraint_Error. The code
5280 below assumes that GCC's conversion routines overflow the same way that
5281 the underlying hardware does. This is probably true. In the rare case
5282 when it is false, we can rely on the fact that such conversions are
5283 erroneous anyway. */
5284 if (TREE_CODE (expr) == INTEGER_CST)
5285 TREE_OVERFLOW (expr) = 0;
5287 /* If the sizes of the types differ and this is an VIEW_CONVERT_EXPR,
5288 show no longer constant. */
5289 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR
5290 && !operand_equal_p (TYPE_SIZE_UNIT (type), TYPE_SIZE_UNIT (etype),
5291 OEP_ONLY_CONST))
5292 TREE_CONSTANT (expr) = 0;
5294 return expr;
5297 /* Return the appropriate GCC tree code for the specified GNAT_TYPE,
5298 the latter being a record type as predicated by Is_Record_Type. */
5300 enum tree_code
5301 tree_code_for_record_type (Entity_Id gnat_type)
5303 Node_Id component_list, component;
5305 /* Return UNION_TYPE if it's an Unchecked_Union whose non-discriminant
5306 fields are all in the variant part. Otherwise, return RECORD_TYPE. */
5307 if (!Is_Unchecked_Union (gnat_type))
5308 return RECORD_TYPE;
5310 gnat_type = Implementation_Base_Type (gnat_type);
5311 component_list
5312 = Component_List (Type_Definition (Declaration_Node (gnat_type)));
5314 for (component = First_Non_Pragma (Component_Items (component_list));
5315 Present (component);
5316 component = Next_Non_Pragma (component))
5317 if (Ekind (Defining_Entity (component)) == E_Component)
5318 return RECORD_TYPE;
5320 return UNION_TYPE;
5323 /* Return true if GNAT_TYPE is a "double" floating-point type, i.e. whose
5324 size is equal to 64 bits, or an array of such a type. Set ALIGN_CLAUSE
5325 according to the presence of an alignment clause on the type or, if it
5326 is an array, on the component type. */
5328 bool
5329 is_double_float_or_array (Entity_Id gnat_type, bool *align_clause)
5331 gnat_type = Underlying_Type (gnat_type);
5333 *align_clause = Present (Alignment_Clause (gnat_type));
5335 if (Is_Array_Type (gnat_type))
5337 gnat_type = Underlying_Type (Component_Type (gnat_type));
5338 if (Present (Alignment_Clause (gnat_type)))
5339 *align_clause = true;
5342 if (!Is_Floating_Point_Type (gnat_type))
5343 return false;
5345 if (UI_To_Int (Esize (gnat_type)) != 64)
5346 return false;
5348 return true;
5351 /* Return true if GNAT_TYPE is a "double" or larger scalar type, i.e. whose
5352 size is greater or equal to 64 bits, or an array of such a type. Set
5353 ALIGN_CLAUSE according to the presence of an alignment clause on the
5354 type or, if it is an array, on the component type. */
5356 bool
5357 is_double_scalar_or_array (Entity_Id gnat_type, bool *align_clause)
5359 gnat_type = Underlying_Type (gnat_type);
5361 *align_clause = Present (Alignment_Clause (gnat_type));
5363 if (Is_Array_Type (gnat_type))
5365 gnat_type = Underlying_Type (Component_Type (gnat_type));
5366 if (Present (Alignment_Clause (gnat_type)))
5367 *align_clause = true;
5370 if (!Is_Scalar_Type (gnat_type))
5371 return false;
5373 if (UI_To_Int (Esize (gnat_type)) < 64)
5374 return false;
5376 return true;
5379 /* Return true if GNU_TYPE is suitable as the type of a non-aliased
5380 component of an aggregate type. */
5382 bool
5383 type_for_nonaliased_component_p (tree gnu_type)
5385 /* If the type is passed by reference, we may have pointers to the
5386 component so it cannot be made non-aliased. */
5387 if (must_pass_by_ref (gnu_type) || default_pass_by_ref (gnu_type))
5388 return false;
5390 /* We used to say that any component of aggregate type is aliased
5391 because the front-end may take 'Reference of it. The front-end
5392 has been enhanced in the meantime so as to use a renaming instead
5393 in most cases, but the back-end can probably take the address of
5394 such a component too so we go for the conservative stance.
5396 For instance, we might need the address of any array type, even
5397 if normally passed by copy, to construct a fat pointer if the
5398 component is used as an actual for an unconstrained formal.
5400 Likewise for record types: even if a specific record subtype is
5401 passed by copy, the parent type might be passed by ref (e.g. if
5402 it's of variable size) and we might take the address of a child
5403 component to pass to a parent formal. We have no way to check
5404 for such conditions here. */
5405 if (AGGREGATE_TYPE_P (gnu_type))
5406 return false;
5408 return true;
5411 /* Return true if TYPE is a smaller form of ORIG_TYPE. */
5413 bool
5414 smaller_form_type_p (tree type, tree orig_type)
5416 tree size, osize;
5418 /* We're not interested in variants here. */
5419 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig_type))
5420 return false;
5422 /* Like a variant, a packable version keeps the original TYPE_NAME. */
5423 if (TYPE_NAME (type) != TYPE_NAME (orig_type))
5424 return false;
5426 size = TYPE_SIZE (type);
5427 osize = TYPE_SIZE (orig_type);
5429 if (!(TREE_CODE (size) == INTEGER_CST && TREE_CODE (osize) == INTEGER_CST))
5430 return false;
5432 return tree_int_cst_lt (size, osize) != 0;
5435 /* Return whether EXPR, which is the renamed object in an object renaming
5436 declaration, can be materialized as a reference (with a REFERENCE_TYPE).
5437 This should be synchronized with Exp_Dbug.Debug_Renaming_Declaration. */
5439 bool
5440 can_materialize_object_renaming_p (Node_Id expr)
5442 while (true)
5444 expr = Original_Node (expr);
5446 switch Nkind (expr)
5448 case N_Identifier:
5449 case N_Expanded_Name:
5450 if (!Present (Renamed_Object (Entity (expr))))
5451 return true;
5452 expr = Renamed_Object (Entity (expr));
5453 break;
5455 case N_Selected_Component:
5457 if (Is_Packed (Underlying_Type (Etype (Prefix (expr)))))
5458 return false;
5460 const Uint bitpos
5461 = Normalized_First_Bit (Entity (Selector_Name (expr)));
5462 if (!UI_Is_In_Int_Range (bitpos)
5463 || (bitpos != UI_No_Uint && bitpos != UI_From_Int (0)))
5464 return false;
5466 expr = Prefix (expr);
5467 break;
5470 case N_Indexed_Component:
5471 case N_Slice:
5473 const Entity_Id t = Underlying_Type (Etype (Prefix (expr)));
5475 if (Is_Array_Type (t) && Present (Packed_Array_Impl_Type (t)))
5476 return false;
5478 expr = Prefix (expr);
5479 break;
5482 case N_Explicit_Dereference:
5483 expr = Prefix (expr);
5484 break;
5486 default:
5487 return true;
5492 /* Perform final processing on global declarations. */
5494 static GTY (()) tree dummy_global;
5496 void
5497 gnat_write_global_declarations (void)
5499 unsigned int i;
5500 tree iter;
5502 /* If we have declared types as used at the global level, insert them in
5503 the global hash table. We use a dummy variable for this purpose, but
5504 we need to build it unconditionally to avoid -fcompare-debug issues. */
5505 if (first_global_object_name)
5507 struct varpool_node *node;
5508 char *label;
5510 ASM_FORMAT_PRIVATE_NAME (label, first_global_object_name, 0);
5511 dummy_global
5512 = build_decl (BUILTINS_LOCATION, VAR_DECL, get_identifier (label),
5513 void_type_node);
5514 DECL_HARD_REGISTER (dummy_global) = 1;
5515 TREE_STATIC (dummy_global) = 1;
5516 node = varpool_node::get_create (dummy_global);
5517 node->definition = 1;
5518 node->force_output = 1;
5520 if (types_used_by_cur_var_decl)
5521 while (!types_used_by_cur_var_decl->is_empty ())
5523 tree t = types_used_by_cur_var_decl->pop ();
5524 types_used_by_var_decl_insert (t, dummy_global);
5528 /* Output debug information for all global type declarations first. This
5529 ensures that global types whose compilation hasn't been finalized yet,
5530 for example pointers to Taft amendment types, have their compilation
5531 finalized in the right context. */
5532 FOR_EACH_VEC_SAFE_ELT (global_decls, i, iter)
5533 if (TREE_CODE (iter) == TYPE_DECL && !DECL_IGNORED_P (iter))
5534 debug_hooks->type_decl (iter, false);
5536 /* Output imported functions. */
5537 FOR_EACH_VEC_SAFE_ELT (global_decls, i, iter)
5538 if (TREE_CODE (iter) == FUNCTION_DECL
5539 && DECL_EXTERNAL (iter)
5540 && DECL_INITIAL (iter) == NULL
5541 && !DECL_IGNORED_P (iter)
5542 && DECL_FUNCTION_IS_DEF (iter))
5543 debug_hooks->early_global_decl (iter);
5545 /* Then output the global variables. We need to do that after the debug
5546 information for global types is emitted so that they are finalized. Skip
5547 external global variables, unless we need to emit debug info for them:
5548 this is useful for imported variables, for instance. */
5549 FOR_EACH_VEC_SAFE_ELT (global_decls, i, iter)
5550 if (TREE_CODE (iter) == VAR_DECL
5551 && (!DECL_EXTERNAL (iter) || !DECL_IGNORED_P (iter)))
5552 rest_of_decl_compilation (iter, true, 0);
5554 /* Output the imported modules/declarations. In GNAT, these are only
5555 materializing subprogram. */
5556 FOR_EACH_VEC_SAFE_ELT (global_decls, i, iter)
5557 if (TREE_CODE (iter) == IMPORTED_DECL && !DECL_IGNORED_P (iter))
5558 debug_hooks->imported_module_or_decl (iter, DECL_NAME (iter),
5559 DECL_CONTEXT (iter), false, false);
5562 /* ************************************************************************
5563 * * GCC builtins support *
5564 * ************************************************************************ */
5566 /* The general scheme is fairly simple:
5568 For each builtin function/type to be declared, gnat_install_builtins calls
5569 internal facilities which eventually get to gnat_pushdecl, which in turn
5570 tracks the so declared builtin function decls in the 'builtin_decls' global
5571 datastructure. When an Intrinsic subprogram declaration is processed, we
5572 search this global datastructure to retrieve the associated BUILT_IN DECL
5573 node. */
5575 /* Search the chain of currently available builtin declarations for a node
5576 corresponding to function NAME (an IDENTIFIER_NODE). Return the first node
5577 found, if any, or NULL_TREE otherwise. */
5578 tree
5579 builtin_decl_for (tree name)
5581 unsigned i;
5582 tree decl;
5584 FOR_EACH_VEC_SAFE_ELT (builtin_decls, i, decl)
5585 if (DECL_NAME (decl) == name)
5586 return decl;
5588 return NULL_TREE;
5591 /* The code below eventually exposes gnat_install_builtins, which declares
5592 the builtin types and functions we might need, either internally or as
5593 user accessible facilities.
5595 ??? This is a first implementation shot, still in rough shape. It is
5596 heavily inspired from the "C" family implementation, with chunks copied
5597 verbatim from there.
5599 Two obvious improvement candidates are:
5600 o Use a more efficient name/decl mapping scheme
5601 o Devise a middle-end infrastructure to avoid having to copy
5602 pieces between front-ends. */
5604 /* ----------------------------------------------------------------------- *
5605 * BUILTIN ELEMENTARY TYPES *
5606 * ----------------------------------------------------------------------- */
5608 /* Standard data types to be used in builtin argument declarations. */
5610 enum c_tree_index
5612 CTI_SIGNED_SIZE_TYPE, /* For format checking only. */
5613 CTI_STRING_TYPE,
5614 CTI_CONST_STRING_TYPE,
5616 CTI_MAX
5619 static tree c_global_trees[CTI_MAX];
5621 #define signed_size_type_node c_global_trees[CTI_SIGNED_SIZE_TYPE]
5622 #define string_type_node c_global_trees[CTI_STRING_TYPE]
5623 #define const_string_type_node c_global_trees[CTI_CONST_STRING_TYPE]
5625 /* ??? In addition some attribute handlers, we currently don't support a
5626 (small) number of builtin-types, which in turns inhibits support for a
5627 number of builtin functions. */
5628 #define wint_type_node void_type_node
5629 #define intmax_type_node void_type_node
5630 #define uintmax_type_node void_type_node
5632 /* Used to help initialize the builtin-types.def table. When a type of
5633 the correct size doesn't exist, use error_mark_node instead of NULL.
5634 The later results in segfaults even when a decl using the type doesn't
5635 get invoked. */
5637 static tree
5638 builtin_type_for_size (int size, bool unsignedp)
5640 tree type = gnat_type_for_size (size, unsignedp);
5641 return type ? type : error_mark_node;
5644 /* Build/push the elementary type decls that builtin functions/types
5645 will need. */
5647 static void
5648 install_builtin_elementary_types (void)
5650 signed_size_type_node = gnat_signed_type_for (size_type_node);
5651 pid_type_node = integer_type_node;
5653 string_type_node = build_pointer_type (char_type_node);
5654 const_string_type_node
5655 = build_pointer_type (build_qualified_type
5656 (char_type_node, TYPE_QUAL_CONST));
5659 /* ----------------------------------------------------------------------- *
5660 * BUILTIN FUNCTION TYPES *
5661 * ----------------------------------------------------------------------- */
5663 /* Now, builtin function types per se. */
5665 enum c_builtin_type
5667 #define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
5668 #define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
5669 #define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
5670 #define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
5671 #define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
5672 #define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
5673 #define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME,
5674 #define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
5675 ARG6) NAME,
5676 #define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
5677 ARG6, ARG7) NAME,
5678 #define DEF_FUNCTION_TYPE_8(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
5679 ARG6, ARG7, ARG8) NAME,
5680 #define DEF_FUNCTION_TYPE_9(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
5681 ARG6, ARG7, ARG8, ARG9) NAME,
5682 #define DEF_FUNCTION_TYPE_10(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
5683 ARG6, ARG7, ARG8, ARG9, ARG10) NAME,
5684 #define DEF_FUNCTION_TYPE_11(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
5685 ARG6, ARG7, ARG8, ARG9, ARG10, ARG11) NAME,
5686 #define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
5687 #define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
5688 #define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
5689 #define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
5690 #define DEF_FUNCTION_TYPE_VAR_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
5691 #define DEF_FUNCTION_TYPE_VAR_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
5692 NAME,
5693 #define DEF_FUNCTION_TYPE_VAR_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
5694 ARG6) NAME,
5695 #define DEF_FUNCTION_TYPE_VAR_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
5696 ARG6, ARG7) NAME,
5697 #define DEF_POINTER_TYPE(NAME, TYPE) NAME,
5698 #include "builtin-types.def"
5699 #undef DEF_PRIMITIVE_TYPE
5700 #undef DEF_FUNCTION_TYPE_0
5701 #undef DEF_FUNCTION_TYPE_1
5702 #undef DEF_FUNCTION_TYPE_2
5703 #undef DEF_FUNCTION_TYPE_3
5704 #undef DEF_FUNCTION_TYPE_4
5705 #undef DEF_FUNCTION_TYPE_5
5706 #undef DEF_FUNCTION_TYPE_6
5707 #undef DEF_FUNCTION_TYPE_7
5708 #undef DEF_FUNCTION_TYPE_8
5709 #undef DEF_FUNCTION_TYPE_9
5710 #undef DEF_FUNCTION_TYPE_10
5711 #undef DEF_FUNCTION_TYPE_11
5712 #undef DEF_FUNCTION_TYPE_VAR_0
5713 #undef DEF_FUNCTION_TYPE_VAR_1
5714 #undef DEF_FUNCTION_TYPE_VAR_2
5715 #undef DEF_FUNCTION_TYPE_VAR_3
5716 #undef DEF_FUNCTION_TYPE_VAR_4
5717 #undef DEF_FUNCTION_TYPE_VAR_5
5718 #undef DEF_FUNCTION_TYPE_VAR_6
5719 #undef DEF_FUNCTION_TYPE_VAR_7
5720 #undef DEF_POINTER_TYPE
5721 BT_LAST
5724 typedef enum c_builtin_type builtin_type;
5726 /* A temporary array used in communication with def_fn_type. */
5727 static GTY(()) tree builtin_types[(int) BT_LAST + 1];
5729 /* A helper function for install_builtin_types. Build function type
5730 for DEF with return type RET and N arguments. If VAR is true, then the
5731 function should be variadic after those N arguments.
5733 Takes special care not to ICE if any of the types involved are
5734 error_mark_node, which indicates that said type is not in fact available
5735 (see builtin_type_for_size). In which case the function type as a whole
5736 should be error_mark_node. */
5738 static void
5739 def_fn_type (builtin_type def, builtin_type ret, bool var, int n, ...)
5741 tree t;
5742 tree *args = XALLOCAVEC (tree, n);
5743 va_list list;
5744 int i;
5746 va_start (list, n);
5747 for (i = 0; i < n; ++i)
5749 builtin_type a = (builtin_type) va_arg (list, int);
5750 t = builtin_types[a];
5751 if (t == error_mark_node)
5752 goto egress;
5753 args[i] = t;
5756 t = builtin_types[ret];
5757 if (t == error_mark_node)
5758 goto egress;
5759 if (var)
5760 t = build_varargs_function_type_array (t, n, args);
5761 else
5762 t = build_function_type_array (t, n, args);
5764 egress:
5765 builtin_types[def] = t;
5766 va_end (list);
5769 /* Build the builtin function types and install them in the builtin_types
5770 array for later use in builtin function decls. */
5772 static void
5773 install_builtin_function_types (void)
5775 tree va_list_ref_type_node;
5776 tree va_list_arg_type_node;
5778 if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
5780 va_list_arg_type_node = va_list_ref_type_node =
5781 build_pointer_type (TREE_TYPE (va_list_type_node));
5783 else
5785 va_list_arg_type_node = va_list_type_node;
5786 va_list_ref_type_node = build_reference_type (va_list_type_node);
5789 #define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
5790 builtin_types[ENUM] = VALUE;
5791 #define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
5792 def_fn_type (ENUM, RETURN, 0, 0);
5793 #define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
5794 def_fn_type (ENUM, RETURN, 0, 1, ARG1);
5795 #define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
5796 def_fn_type (ENUM, RETURN, 0, 2, ARG1, ARG2);
5797 #define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
5798 def_fn_type (ENUM, RETURN, 0, 3, ARG1, ARG2, ARG3);
5799 #define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
5800 def_fn_type (ENUM, RETURN, 0, 4, ARG1, ARG2, ARG3, ARG4);
5801 #define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
5802 def_fn_type (ENUM, RETURN, 0, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
5803 #define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
5804 ARG6) \
5805 def_fn_type (ENUM, RETURN, 0, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
5806 #define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
5807 ARG6, ARG7) \
5808 def_fn_type (ENUM, RETURN, 0, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
5809 #define DEF_FUNCTION_TYPE_8(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
5810 ARG6, ARG7, ARG8) \
5811 def_fn_type (ENUM, RETURN, 0, 8, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
5812 ARG7, ARG8);
5813 #define DEF_FUNCTION_TYPE_9(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
5814 ARG6, ARG7, ARG8, ARG9) \
5815 def_fn_type (ENUM, RETURN, 0, 9, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
5816 ARG7, ARG8, ARG9);
5817 #define DEF_FUNCTION_TYPE_10(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5,\
5818 ARG6, ARG7, ARG8, ARG9, ARG10) \
5819 def_fn_type (ENUM, RETURN, 0, 10, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
5820 ARG7, ARG8, ARG9, ARG10);
5821 #define DEF_FUNCTION_TYPE_11(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5,\
5822 ARG6, ARG7, ARG8, ARG9, ARG10, ARG11) \
5823 def_fn_type (ENUM, RETURN, 0, 11, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, \
5824 ARG7, ARG8, ARG9, ARG10, ARG11);
5825 #define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
5826 def_fn_type (ENUM, RETURN, 1, 0);
5827 #define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
5828 def_fn_type (ENUM, RETURN, 1, 1, ARG1);
5829 #define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
5830 def_fn_type (ENUM, RETURN, 1, 2, ARG1, ARG2);
5831 #define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
5832 def_fn_type (ENUM, RETURN, 1, 3, ARG1, ARG2, ARG3);
5833 #define DEF_FUNCTION_TYPE_VAR_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
5834 def_fn_type (ENUM, RETURN, 1, 4, ARG1, ARG2, ARG3, ARG4);
5835 #define DEF_FUNCTION_TYPE_VAR_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
5836 def_fn_type (ENUM, RETURN, 1, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
5837 #define DEF_FUNCTION_TYPE_VAR_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
5838 ARG6) \
5839 def_fn_type (ENUM, RETURN, 1, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
5840 #define DEF_FUNCTION_TYPE_VAR_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
5841 ARG6, ARG7) \
5842 def_fn_type (ENUM, RETURN, 1, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
5843 #define DEF_POINTER_TYPE(ENUM, TYPE) \
5844 builtin_types[(int) ENUM] = build_pointer_type (builtin_types[(int) TYPE]);
5846 #include "builtin-types.def"
5848 #undef DEF_PRIMITIVE_TYPE
5849 #undef DEF_FUNCTION_TYPE_0
5850 #undef DEF_FUNCTION_TYPE_1
5851 #undef DEF_FUNCTION_TYPE_2
5852 #undef DEF_FUNCTION_TYPE_3
5853 #undef DEF_FUNCTION_TYPE_4
5854 #undef DEF_FUNCTION_TYPE_5
5855 #undef DEF_FUNCTION_TYPE_6
5856 #undef DEF_FUNCTION_TYPE_7
5857 #undef DEF_FUNCTION_TYPE_8
5858 #undef DEF_FUNCTION_TYPE_9
5859 #undef DEF_FUNCTION_TYPE_10
5860 #undef DEF_FUNCTION_TYPE_11
5861 #undef DEF_FUNCTION_TYPE_VAR_0
5862 #undef DEF_FUNCTION_TYPE_VAR_1
5863 #undef DEF_FUNCTION_TYPE_VAR_2
5864 #undef DEF_FUNCTION_TYPE_VAR_3
5865 #undef DEF_FUNCTION_TYPE_VAR_4
5866 #undef DEF_FUNCTION_TYPE_VAR_5
5867 #undef DEF_FUNCTION_TYPE_VAR_6
5868 #undef DEF_FUNCTION_TYPE_VAR_7
5869 #undef DEF_POINTER_TYPE
5870 builtin_types[(int) BT_LAST] = NULL_TREE;
5873 /* ----------------------------------------------------------------------- *
5874 * BUILTIN ATTRIBUTES *
5875 * ----------------------------------------------------------------------- */
5877 enum built_in_attribute
5879 #define DEF_ATTR_NULL_TREE(ENUM) ENUM,
5880 #define DEF_ATTR_INT(ENUM, VALUE) ENUM,
5881 #define DEF_ATTR_STRING(ENUM, VALUE) ENUM,
5882 #define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
5883 #define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
5884 #include "builtin-attrs.def"
5885 #undef DEF_ATTR_NULL_TREE
5886 #undef DEF_ATTR_INT
5887 #undef DEF_ATTR_STRING
5888 #undef DEF_ATTR_IDENT
5889 #undef DEF_ATTR_TREE_LIST
5890 ATTR_LAST
5893 static GTY(()) tree built_in_attributes[(int) ATTR_LAST];
5895 static void
5896 install_builtin_attributes (void)
5898 /* Fill in the built_in_attributes array. */
5899 #define DEF_ATTR_NULL_TREE(ENUM) \
5900 built_in_attributes[(int) ENUM] = NULL_TREE;
5901 #define DEF_ATTR_INT(ENUM, VALUE) \
5902 built_in_attributes[(int) ENUM] = build_int_cst (NULL_TREE, VALUE);
5903 #define DEF_ATTR_STRING(ENUM, VALUE) \
5904 built_in_attributes[(int) ENUM] = build_string (strlen (VALUE), VALUE);
5905 #define DEF_ATTR_IDENT(ENUM, STRING) \
5906 built_in_attributes[(int) ENUM] = get_identifier (STRING);
5907 #define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \
5908 built_in_attributes[(int) ENUM] \
5909 = tree_cons (built_in_attributes[(int) PURPOSE], \
5910 built_in_attributes[(int) VALUE], \
5911 built_in_attributes[(int) CHAIN]);
5912 #include "builtin-attrs.def"
5913 #undef DEF_ATTR_NULL_TREE
5914 #undef DEF_ATTR_INT
5915 #undef DEF_ATTR_STRING
5916 #undef DEF_ATTR_IDENT
5917 #undef DEF_ATTR_TREE_LIST
5920 /* Handle a "const" attribute; arguments as in
5921 struct attribute_spec.handler. */
5923 static tree
5924 handle_const_attribute (tree *node, tree ARG_UNUSED (name),
5925 tree ARG_UNUSED (args), int ARG_UNUSED (flags),
5926 bool *no_add_attrs)
5928 if (TREE_CODE (*node) == FUNCTION_DECL)
5929 TREE_READONLY (*node) = 1;
5930 else
5931 *no_add_attrs = true;
5933 return NULL_TREE;
5936 /* Handle a "nothrow" attribute; arguments as in
5937 struct attribute_spec.handler. */
5939 static tree
5940 handle_nothrow_attribute (tree *node, tree ARG_UNUSED (name),
5941 tree ARG_UNUSED (args), int ARG_UNUSED (flags),
5942 bool *no_add_attrs)
5944 if (TREE_CODE (*node) == FUNCTION_DECL)
5945 TREE_NOTHROW (*node) = 1;
5946 else
5947 *no_add_attrs = true;
5949 return NULL_TREE;
5952 /* Handle a "pure" attribute; arguments as in
5953 struct attribute_spec.handler. */
5955 static tree
5956 handle_pure_attribute (tree *node, tree name, tree ARG_UNUSED (args),
5957 int ARG_UNUSED (flags), bool *no_add_attrs)
5959 if (TREE_CODE (*node) == FUNCTION_DECL)
5960 DECL_PURE_P (*node) = 1;
5961 /* TODO: support types. */
5962 else
5964 warning (OPT_Wattributes, "%qs attribute ignored",
5965 IDENTIFIER_POINTER (name));
5966 *no_add_attrs = true;
5969 return NULL_TREE;
5972 /* Handle a "no vops" attribute; arguments as in
5973 struct attribute_spec.handler. */
5975 static tree
5976 handle_novops_attribute (tree *node, tree ARG_UNUSED (name),
5977 tree ARG_UNUSED (args), int ARG_UNUSED (flags),
5978 bool *ARG_UNUSED (no_add_attrs))
5980 gcc_assert (TREE_CODE (*node) == FUNCTION_DECL);
5981 DECL_IS_NOVOPS (*node) = 1;
5982 return NULL_TREE;
5985 /* Helper for nonnull attribute handling; fetch the operand number
5986 from the attribute argument list. */
5988 static bool
5989 get_nonnull_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp)
5991 /* Verify the arg number is a constant. */
5992 if (!tree_fits_uhwi_p (arg_num_expr))
5993 return false;
5995 *valp = TREE_INT_CST_LOW (arg_num_expr);
5996 return true;
5999 /* Handle the "nonnull" attribute. */
6000 static tree
6001 handle_nonnull_attribute (tree *node, tree ARG_UNUSED (name),
6002 tree args, int ARG_UNUSED (flags),
6003 bool *no_add_attrs)
6005 tree type = *node;
6006 unsigned HOST_WIDE_INT attr_arg_num;
6008 /* If no arguments are specified, all pointer arguments should be
6009 non-null. Verify a full prototype is given so that the arguments
6010 will have the correct types when we actually check them later.
6011 Avoid diagnosing type-generic built-ins since those have no
6012 prototype. */
6013 if (!args)
6015 if (!prototype_p (type)
6016 && (!TYPE_ATTRIBUTES (type)
6017 || !lookup_attribute ("type generic", TYPE_ATTRIBUTES (type))))
6019 error ("nonnull attribute without arguments on a non-prototype");
6020 *no_add_attrs = true;
6022 return NULL_TREE;
6025 /* Argument list specified. Verify that each argument number references
6026 a pointer argument. */
6027 for (attr_arg_num = 1; args; args = TREE_CHAIN (args))
6029 unsigned HOST_WIDE_INT arg_num = 0, ck_num;
6031 if (!get_nonnull_operand (TREE_VALUE (args), &arg_num))
6033 error ("nonnull argument has invalid operand number (argument %lu)",
6034 (unsigned long) attr_arg_num);
6035 *no_add_attrs = true;
6036 return NULL_TREE;
6039 if (prototype_p (type))
6041 function_args_iterator iter;
6042 tree argument;
6044 function_args_iter_init (&iter, type);
6045 for (ck_num = 1; ; ck_num++, function_args_iter_next (&iter))
6047 argument = function_args_iter_cond (&iter);
6048 if (!argument || ck_num == arg_num)
6049 break;
6052 if (!argument
6053 || TREE_CODE (argument) == VOID_TYPE)
6055 error ("nonnull argument with out-of-range operand number "
6056 "(argument %lu, operand %lu)",
6057 (unsigned long) attr_arg_num, (unsigned long) arg_num);
6058 *no_add_attrs = true;
6059 return NULL_TREE;
6062 if (TREE_CODE (argument) != POINTER_TYPE)
6064 error ("nonnull argument references non-pointer operand "
6065 "(argument %lu, operand %lu)",
6066 (unsigned long) attr_arg_num, (unsigned long) arg_num);
6067 *no_add_attrs = true;
6068 return NULL_TREE;
6073 return NULL_TREE;
6076 /* Handle a "sentinel" attribute. */
6078 static tree
6079 handle_sentinel_attribute (tree *node, tree name, tree args,
6080 int ARG_UNUSED (flags), bool *no_add_attrs)
6082 if (!prototype_p (*node))
6084 warning (OPT_Wattributes,
6085 "%qs attribute requires prototypes with named arguments",
6086 IDENTIFIER_POINTER (name));
6087 *no_add_attrs = true;
6089 else
6091 if (!stdarg_p (*node))
6093 warning (OPT_Wattributes,
6094 "%qs attribute only applies to variadic functions",
6095 IDENTIFIER_POINTER (name));
6096 *no_add_attrs = true;
6100 if (args)
6102 tree position = TREE_VALUE (args);
6104 if (TREE_CODE (position) != INTEGER_CST)
6106 warning (0, "requested position is not an integer constant");
6107 *no_add_attrs = true;
6109 else
6111 if (tree_int_cst_lt (position, integer_zero_node))
6113 warning (0, "requested position is less than zero");
6114 *no_add_attrs = true;
6119 return NULL_TREE;
6122 /* Handle a "noreturn" attribute; arguments as in
6123 struct attribute_spec.handler. */
6125 static tree
6126 handle_noreturn_attribute (tree *node, tree name, tree ARG_UNUSED (args),
6127 int ARG_UNUSED (flags), bool *no_add_attrs)
6129 tree type = TREE_TYPE (*node);
6131 /* See FIXME comment in c_common_attribute_table. */
6132 if (TREE_CODE (*node) == FUNCTION_DECL)
6133 TREE_THIS_VOLATILE (*node) = 1;
6134 else if (TREE_CODE (type) == POINTER_TYPE
6135 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
6136 TREE_TYPE (*node)
6137 = build_pointer_type
6138 (build_type_variant (TREE_TYPE (type),
6139 TYPE_READONLY (TREE_TYPE (type)), 1));
6140 else
6142 warning (OPT_Wattributes, "%qs attribute ignored",
6143 IDENTIFIER_POINTER (name));
6144 *no_add_attrs = true;
6147 return NULL_TREE;
6150 /* Handle a "noinline" attribute; arguments as in
6151 struct attribute_spec.handler. */
6153 static tree
6154 handle_noinline_attribute (tree *node, tree name,
6155 tree ARG_UNUSED (args),
6156 int ARG_UNUSED (flags), bool *no_add_attrs)
6158 if (TREE_CODE (*node) == FUNCTION_DECL)
6160 if (lookup_attribute ("always_inline", DECL_ATTRIBUTES (*node)))
6162 warning (OPT_Wattributes, "%qE attribute ignored due to conflict "
6163 "with attribute %qs", name, "always_inline");
6164 *no_add_attrs = true;
6166 else
6167 DECL_UNINLINABLE (*node) = 1;
6169 else
6171 warning (OPT_Wattributes, "%qE attribute ignored", name);
6172 *no_add_attrs = true;
6175 return NULL_TREE;
6178 /* Handle a "noclone" attribute; arguments as in
6179 struct attribute_spec.handler. */
6181 static tree
6182 handle_noclone_attribute (tree *node, tree name,
6183 tree ARG_UNUSED (args),
6184 int ARG_UNUSED (flags), bool *no_add_attrs)
6186 if (TREE_CODE (*node) != FUNCTION_DECL)
6188 warning (OPT_Wattributes, "%qE attribute ignored", name);
6189 *no_add_attrs = true;
6192 return NULL_TREE;
6195 /* Handle a "leaf" attribute; arguments as in
6196 struct attribute_spec.handler. */
6198 static tree
6199 handle_leaf_attribute (tree *node, tree name, tree ARG_UNUSED (args),
6200 int ARG_UNUSED (flags), bool *no_add_attrs)
6202 if (TREE_CODE (*node) != FUNCTION_DECL)
6204 warning (OPT_Wattributes, "%qE attribute ignored", name);
6205 *no_add_attrs = true;
6207 if (!TREE_PUBLIC (*node))
6209 warning (OPT_Wattributes, "%qE attribute has no effect", name);
6210 *no_add_attrs = true;
6213 return NULL_TREE;
6216 /* Handle a "always_inline" attribute; arguments as in
6217 struct attribute_spec.handler. */
6219 static tree
6220 handle_always_inline_attribute (tree *node, tree name, tree ARG_UNUSED (args),
6221 int ARG_UNUSED (flags), bool *no_add_attrs)
6223 if (TREE_CODE (*node) == FUNCTION_DECL)
6225 /* Set the attribute and mark it for disregarding inline limits. */
6226 DECL_DISREGARD_INLINE_LIMITS (*node) = 1;
6228 else
6230 warning (OPT_Wattributes, "%qE attribute ignored", name);
6231 *no_add_attrs = true;
6234 return NULL_TREE;
6237 /* Handle a "malloc" attribute; arguments as in
6238 struct attribute_spec.handler. */
6240 static tree
6241 handle_malloc_attribute (tree *node, tree name, tree ARG_UNUSED (args),
6242 int ARG_UNUSED (flags), bool *no_add_attrs)
6244 if (TREE_CODE (*node) == FUNCTION_DECL
6245 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (*node))))
6246 DECL_IS_MALLOC (*node) = 1;
6247 else
6249 warning (OPT_Wattributes, "%qs attribute ignored",
6250 IDENTIFIER_POINTER (name));
6251 *no_add_attrs = true;
6254 return NULL_TREE;
6257 /* Fake handler for attributes we don't properly support. */
6259 tree
6260 fake_attribute_handler (tree * ARG_UNUSED (node),
6261 tree ARG_UNUSED (name),
6262 tree ARG_UNUSED (args),
6263 int ARG_UNUSED (flags),
6264 bool * ARG_UNUSED (no_add_attrs))
6266 return NULL_TREE;
6269 /* Handle a "type_generic" attribute. */
6271 static tree
6272 handle_type_generic_attribute (tree *node, tree ARG_UNUSED (name),
6273 tree ARG_UNUSED (args), int ARG_UNUSED (flags),
6274 bool * ARG_UNUSED (no_add_attrs))
6276 /* Ensure we have a function type. */
6277 gcc_assert (TREE_CODE (*node) == FUNCTION_TYPE);
6279 /* Ensure we have a variadic function. */
6280 gcc_assert (!prototype_p (*node) || stdarg_p (*node));
6282 return NULL_TREE;
6285 /* Handle a "vector_size" attribute; arguments as in
6286 struct attribute_spec.handler. */
6288 static tree
6289 handle_vector_size_attribute (tree *node, tree name, tree args,
6290 int ARG_UNUSED (flags), bool *no_add_attrs)
6292 tree type = *node;
6293 tree vector_type;
6295 *no_add_attrs = true;
6297 /* We need to provide for vector pointers, vector arrays, and
6298 functions returning vectors. For example:
6300 __attribute__((vector_size(16))) short *foo;
6302 In this case, the mode is SI, but the type being modified is
6303 HI, so we need to look further. */
6304 while (POINTER_TYPE_P (type)
6305 || TREE_CODE (type) == FUNCTION_TYPE
6306 || TREE_CODE (type) == ARRAY_TYPE)
6307 type = TREE_TYPE (type);
6309 vector_type = build_vector_type_for_size (type, TREE_VALUE (args), name);
6310 if (!vector_type)
6311 return NULL_TREE;
6313 /* Build back pointers if needed. */
6314 *node = reconstruct_complex_type (*node, vector_type);
6316 return NULL_TREE;
6319 /* Handle a "vector_type" attribute; arguments as in
6320 struct attribute_spec.handler. */
6322 static tree
6323 handle_vector_type_attribute (tree *node, tree name, tree ARG_UNUSED (args),
6324 int ARG_UNUSED (flags), bool *no_add_attrs)
6326 tree type = *node;
6327 tree vector_type;
6329 *no_add_attrs = true;
6331 if (TREE_CODE (type) != ARRAY_TYPE)
6333 error ("attribute %qs applies to array types only",
6334 IDENTIFIER_POINTER (name));
6335 return NULL_TREE;
6338 vector_type = build_vector_type_for_array (type, name);
6339 if (!vector_type)
6340 return NULL_TREE;
6342 TYPE_REPRESENTATIVE_ARRAY (vector_type) = type;
6343 *node = vector_type;
6345 return NULL_TREE;
6348 /* ----------------------------------------------------------------------- *
6349 * BUILTIN FUNCTIONS *
6350 * ----------------------------------------------------------------------- */
6352 /* Worker for DEF_BUILTIN. Possibly define a builtin function with one or two
6353 names. Does not declare a non-__builtin_ function if flag_no_builtin, or
6354 if nonansi_p and flag_no_nonansi_builtin. */
6356 static void
6357 def_builtin_1 (enum built_in_function fncode,
6358 const char *name,
6359 enum built_in_class fnclass,
6360 tree fntype, tree libtype,
6361 bool both_p, bool fallback_p,
6362 bool nonansi_p ATTRIBUTE_UNUSED,
6363 tree fnattrs, bool implicit_p)
6365 tree decl;
6366 const char *libname;
6368 /* Preserve an already installed decl. It most likely was setup in advance
6369 (e.g. as part of the internal builtins) for specific reasons. */
6370 if (builtin_decl_explicit (fncode))
6371 return;
6373 gcc_assert ((!both_p && !fallback_p)
6374 || !strncmp (name, "__builtin_",
6375 strlen ("__builtin_")));
6377 libname = name + strlen ("__builtin_");
6378 decl = add_builtin_function (name, fntype, fncode, fnclass,
6379 (fallback_p ? libname : NULL),
6380 fnattrs);
6381 if (both_p)
6382 /* ??? This is normally further controlled by command-line options
6383 like -fno-builtin, but we don't have them for Ada. */
6384 add_builtin_function (libname, libtype, fncode, fnclass,
6385 NULL, fnattrs);
6387 set_builtin_decl (fncode, decl, implicit_p);
6390 static int flag_isoc94 = 0;
6391 static int flag_isoc99 = 0;
6392 static int flag_isoc11 = 0;
6394 /* Install what the common builtins.def offers. */
6396 static void
6397 install_builtin_functions (void)
6399 #define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, BOTH_P, FALLBACK_P, \
6400 NONANSI_P, ATTRS, IMPLICIT, COND) \
6401 if (NAME && COND) \
6402 def_builtin_1 (ENUM, NAME, CLASS, \
6403 builtin_types[(int) TYPE], \
6404 builtin_types[(int) LIBTYPE], \
6405 BOTH_P, FALLBACK_P, NONANSI_P, \
6406 built_in_attributes[(int) ATTRS], IMPLICIT);
6407 #include "builtins.def"
6410 /* ----------------------------------------------------------------------- *
6411 * BUILTIN FUNCTIONS *
6412 * ----------------------------------------------------------------------- */
6414 /* Install the builtin functions we might need. */
6416 void
6417 gnat_install_builtins (void)
6419 install_builtin_elementary_types ();
6420 install_builtin_function_types ();
6421 install_builtin_attributes ();
6423 /* Install builtins used by generic middle-end pieces first. Some of these
6424 know about internal specificities and control attributes accordingly, for
6425 instance __builtin_alloca vs no-throw and -fstack-check. We will ignore
6426 the generic definition from builtins.def. */
6427 build_common_builtin_nodes ();
6429 /* Now, install the target specific builtins, such as the AltiVec family on
6430 ppc, and the common set as exposed by builtins.def. */
6431 targetm.init_builtins ();
6432 install_builtin_functions ();
6435 #include "gt-ada-utils.h"
6436 #include "gtype-ada.h"