* decl.c (grokdeclarator): Remove const and volatile from type after
[official-gcc.git] / gcc / reload.c
blobe89c2515d9e352b9bcd7b2af55a95212dbcec921
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 88, 89, 92-7, 1998 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
57 NOTE SIDE EFFECTS:
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "rtl.h"
93 #include "insn-config.h"
94 #include "insn-codes.h"
95 #include "recog.h"
96 #include "reload.h"
97 #include "regs.h"
98 #include "hard-reg-set.h"
99 #include "flags.h"
100 #include "real.h"
101 #include "output.h"
102 #include "expr.h"
104 #ifndef REGISTER_MOVE_COST
105 #define REGISTER_MOVE_COST(x, y) 2
106 #endif
108 #ifndef REGNO_MODE_OK_FOR_BASE_P
109 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
110 #endif
112 #ifndef REG_MODE_OK_FOR_BASE_P
113 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
114 #endif
116 /* The variables set up by `find_reloads' are:
118 n_reloads number of distinct reloads needed; max reload # + 1
119 tables indexed by reload number
120 reload_in rtx for value to reload from
121 reload_out rtx for where to store reload-reg afterward if nec
122 (often the same as reload_in)
123 reload_reg_class enum reg_class, saying what regs to reload into
124 reload_inmode enum machine_mode; mode this operand should have
125 when reloaded, on input.
126 reload_outmode enum machine_mode; mode this operand should have
127 when reloaded, on output.
128 reload_optional char, nonzero for an optional reload.
129 Optional reloads are ignored unless the
130 value is already sitting in a register.
131 reload_inc int, positive amount to increment or decrement by if
132 reload_in is a PRE_DEC, PRE_INC, POST_DEC, POST_INC.
133 Ignored otherwise (don't assume it is zero).
134 reload_in_reg rtx. A reg for which reload_in is the equivalent.
135 If reload_in is a symbol_ref which came from
136 reg_equiv_constant, then this is the pseudo
137 which has that symbol_ref as equivalent.
138 reload_reg_rtx rtx. This is the register to reload into.
139 If it is zero when `find_reloads' returns,
140 you must find a suitable register in the class
141 specified by reload_reg_class, and store here
142 an rtx for that register with mode from
143 reload_inmode or reload_outmode.
144 reload_nocombine char, nonzero if this reload shouldn't be
145 combined with another reload.
146 reload_opnum int, operand number being reloaded. This is
147 used to group related reloads and need not always
148 be equal to the actual operand number in the insn,
149 though it current will be; for in-out operands, it
150 is one of the two operand numbers.
151 reload_when_needed enum, classifies reload as needed either for
152 addressing an input reload, addressing an output,
153 for addressing a non-reloaded mem ref,
154 or for unspecified purposes (i.e., more than one
155 of the above).
156 reload_secondary_p int, 1 if this is a secondary register for one
157 or more reloads.
158 reload_secondary_in_reload
159 reload_secondary_out_reload
160 int, gives the reload number of a secondary
161 reload, when needed; otherwise -1
162 reload_secondary_in_icode
163 reload_secondary_out_icode
164 enum insn_code, if a secondary reload is required,
165 gives the INSN_CODE that uses the secondary
166 reload as a scratch register, or CODE_FOR_nothing
167 if the secondary reload register is to be an
168 intermediate register. */
169 int n_reloads;
171 rtx reload_in[MAX_RELOADS];
172 rtx reload_out[MAX_RELOADS];
173 enum reg_class reload_reg_class[MAX_RELOADS];
174 enum machine_mode reload_inmode[MAX_RELOADS];
175 enum machine_mode reload_outmode[MAX_RELOADS];
176 rtx reload_reg_rtx[MAX_RELOADS];
177 char reload_optional[MAX_RELOADS];
178 int reload_inc[MAX_RELOADS];
179 rtx reload_in_reg[MAX_RELOADS];
180 char reload_nocombine[MAX_RELOADS];
181 int reload_opnum[MAX_RELOADS];
182 enum reload_type reload_when_needed[MAX_RELOADS];
183 int reload_secondary_p[MAX_RELOADS];
184 int reload_secondary_in_reload[MAX_RELOADS];
185 int reload_secondary_out_reload[MAX_RELOADS];
186 enum insn_code reload_secondary_in_icode[MAX_RELOADS];
187 enum insn_code reload_secondary_out_icode[MAX_RELOADS];
189 /* All the "earlyclobber" operands of the current insn
190 are recorded here. */
191 int n_earlyclobbers;
192 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
194 int reload_n_operands;
196 /* Replacing reloads.
198 If `replace_reloads' is nonzero, then as each reload is recorded
199 an entry is made for it in the table `replacements'.
200 Then later `subst_reloads' can look through that table and
201 perform all the replacements needed. */
203 /* Nonzero means record the places to replace. */
204 static int replace_reloads;
206 /* Each replacement is recorded with a structure like this. */
207 struct replacement
209 rtx *where; /* Location to store in */
210 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
211 a SUBREG; 0 otherwise. */
212 int what; /* which reload this is for */
213 enum machine_mode mode; /* mode it must have */
216 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
218 /* Number of replacements currently recorded. */
219 static int n_replacements;
221 /* Used to track what is modified by an operand. */
222 struct decomposition
224 int reg_flag; /* Nonzero if referencing a register. */
225 int safe; /* Nonzero if this can't conflict with anything. */
226 rtx base; /* Base address for MEM. */
227 HOST_WIDE_INT start; /* Starting offset or register number. */
228 HOST_WIDE_INT end; /* Ending offset or register number. */
231 /* MEM-rtx's created for pseudo-regs in stack slots not directly addressable;
232 (see reg_equiv_address). */
233 static rtx memlocs[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
234 static int n_memlocs;
236 #ifdef SECONDARY_MEMORY_NEEDED
238 /* Save MEMs needed to copy from one class of registers to another. One MEM
239 is used per mode, but normally only one or two modes are ever used.
241 We keep two versions, before and after register elimination. The one
242 after register elimination is record separately for each operand. This
243 is done in case the address is not valid to be sure that we separately
244 reload each. */
246 static rtx secondary_memlocs[NUM_MACHINE_MODES];
247 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
248 #endif
250 /* The instruction we are doing reloads for;
251 so we can test whether a register dies in it. */
252 static rtx this_insn;
254 /* Nonzero if this instruction is a user-specified asm with operands. */
255 static int this_insn_is_asm;
257 /* If hard_regs_live_known is nonzero,
258 we can tell which hard regs are currently live,
259 at least enough to succeed in choosing dummy reloads. */
260 static int hard_regs_live_known;
262 /* Indexed by hard reg number,
263 element is nonnegative if hard reg has been spilled.
264 This vector is passed to `find_reloads' as an argument
265 and is not changed here. */
266 static short *static_reload_reg_p;
268 /* Set to 1 in subst_reg_equivs if it changes anything. */
269 static int subst_reg_equivs_changed;
271 /* On return from push_reload, holds the reload-number for the OUT
272 operand, which can be different for that from the input operand. */
273 static int output_reloadnum;
275 /* Compare two RTX's. */
276 #define MATCHES(x, y) \
277 (x == y || (x != 0 && (GET_CODE (x) == REG \
278 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
279 : rtx_equal_p (x, y) && ! side_effects_p (x))))
281 /* Indicates if two reloads purposes are for similar enough things that we
282 can merge their reloads. */
283 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
284 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
285 || ((when1) == (when2) && (op1) == (op2)) \
286 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
287 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
288 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
289 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
290 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
292 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
293 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
294 ((when1) != (when2) \
295 || ! ((op1) == (op2) \
296 || (when1) == RELOAD_FOR_INPUT \
297 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
298 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
300 /* If we are going to reload an address, compute the reload type to
301 use. */
302 #define ADDR_TYPE(type) \
303 ((type) == RELOAD_FOR_INPUT_ADDRESS \
304 ? RELOAD_FOR_INPADDR_ADDRESS \
305 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
306 ? RELOAD_FOR_OUTADDR_ADDRESS \
307 : (type)))
309 #ifdef HAVE_SECONDARY_RELOADS
310 static int push_secondary_reload PROTO((int, rtx, int, int, enum reg_class,
311 enum machine_mode, enum reload_type,
312 enum insn_code *));
313 #endif
314 static enum reg_class find_valid_class PROTO((enum machine_mode, int));
315 static int push_reload PROTO((rtx, rtx, rtx *, rtx *, enum reg_class,
316 enum machine_mode, enum machine_mode,
317 int, int, int, enum reload_type));
318 static void push_replacement PROTO((rtx *, int, enum machine_mode));
319 static void combine_reloads PROTO((void));
320 static rtx find_dummy_reload PROTO((rtx, rtx, rtx *, rtx *,
321 enum machine_mode, enum machine_mode,
322 enum reg_class, int, int));
323 static int earlyclobber_operand_p PROTO((rtx));
324 static int hard_reg_set_here_p PROTO((int, int, rtx));
325 static struct decomposition decompose PROTO((rtx));
326 static int immune_p PROTO((rtx, rtx, struct decomposition));
327 static int alternative_allows_memconst PROTO((char *, int));
328 static rtx find_reloads_toplev PROTO((rtx, int, enum reload_type, int, int));
329 static rtx make_memloc PROTO((rtx, int));
330 static int find_reloads_address PROTO((enum machine_mode, rtx *, rtx, rtx *,
331 int, enum reload_type, int, rtx));
332 static rtx subst_reg_equivs PROTO((rtx));
333 static rtx subst_indexed_address PROTO((rtx));
334 static int find_reloads_address_1 PROTO((enum machine_mode, rtx, int, rtx *,
335 int, enum reload_type,int, rtx));
336 static void find_reloads_address_part PROTO((rtx, rtx *, enum reg_class,
337 enum machine_mode, int,
338 enum reload_type, int));
339 static int find_inc_amount PROTO((rtx, rtx));
341 #ifdef HAVE_SECONDARY_RELOADS
343 /* Determine if any secondary reloads are needed for loading (if IN_P is
344 non-zero) or storing (if IN_P is zero) X to or from a reload register of
345 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
346 are needed, push them.
348 Return the reload number of the secondary reload we made, or -1 if
349 we didn't need one. *PICODE is set to the insn_code to use if we do
350 need a secondary reload. */
352 static int
353 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
354 type, picode)
355 int in_p;
356 rtx x;
357 int opnum;
358 int optional;
359 enum reg_class reload_class;
360 enum machine_mode reload_mode;
361 enum reload_type type;
362 enum insn_code *picode;
364 enum reg_class class = NO_REGS;
365 enum machine_mode mode = reload_mode;
366 enum insn_code icode = CODE_FOR_nothing;
367 enum reg_class t_class = NO_REGS;
368 enum machine_mode t_mode = VOIDmode;
369 enum insn_code t_icode = CODE_FOR_nothing;
370 enum reload_type secondary_type;
371 int s_reload, t_reload = -1;
373 if (type == RELOAD_FOR_INPUT_ADDRESS
374 || type == RELOAD_FOR_OUTPUT_ADDRESS
375 || type == RELOAD_FOR_INPADDR_ADDRESS
376 || type == RELOAD_FOR_OUTADDR_ADDRESS)
377 secondary_type = type;
378 else
379 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
381 *picode = CODE_FOR_nothing;
383 /* If X is a paradoxical SUBREG, use the inner value to determine both the
384 mode and object being reloaded. */
385 if (GET_CODE (x) == SUBREG
386 && (GET_MODE_SIZE (GET_MODE (x))
387 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
389 x = SUBREG_REG (x);
390 reload_mode = GET_MODE (x);
393 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
394 is still a pseudo-register by now, it *must* have an equivalent MEM
395 but we don't want to assume that), use that equivalent when seeing if
396 a secondary reload is needed since whether or not a reload is needed
397 might be sensitive to the form of the MEM. */
399 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
400 && reg_equiv_mem[REGNO (x)] != 0)
401 x = reg_equiv_mem[REGNO (x)];
403 #ifdef SECONDARY_INPUT_RELOAD_CLASS
404 if (in_p)
405 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
406 #endif
408 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
409 if (! in_p)
410 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
411 #endif
413 /* If we don't need any secondary registers, done. */
414 if (class == NO_REGS)
415 return -1;
417 /* Get a possible insn to use. If the predicate doesn't accept X, don't
418 use the insn. */
420 icode = (in_p ? reload_in_optab[(int) reload_mode]
421 : reload_out_optab[(int) reload_mode]);
423 if (icode != CODE_FOR_nothing
424 && insn_operand_predicate[(int) icode][in_p]
425 && (! (insn_operand_predicate[(int) icode][in_p]) (x, reload_mode)))
426 icode = CODE_FOR_nothing;
428 /* If we will be using an insn, see if it can directly handle the reload
429 register we will be using. If it can, the secondary reload is for a
430 scratch register. If it can't, we will use the secondary reload for
431 an intermediate register and require a tertiary reload for the scratch
432 register. */
434 if (icode != CODE_FOR_nothing)
436 /* If IN_P is non-zero, the reload register will be the output in
437 operand 0. If IN_P is zero, the reload register will be the input
438 in operand 1. Outputs should have an initial "=", which we must
439 skip. */
441 char insn_letter = insn_operand_constraint[(int) icode][!in_p][in_p];
442 enum reg_class insn_class
443 = (insn_letter == 'r' ? GENERAL_REGS
444 : REG_CLASS_FROM_LETTER (insn_letter));
446 if (insn_class == NO_REGS
447 || (in_p && insn_operand_constraint[(int) icode][!in_p][0] != '=')
448 /* The scratch register's constraint must start with "=&". */
449 || insn_operand_constraint[(int) icode][2][0] != '='
450 || insn_operand_constraint[(int) icode][2][1] != '&')
451 abort ();
453 if (reg_class_subset_p (reload_class, insn_class))
454 mode = insn_operand_mode[(int) icode][2];
455 else
457 char t_letter = insn_operand_constraint[(int) icode][2][2];
458 class = insn_class;
459 t_mode = insn_operand_mode[(int) icode][2];
460 t_class = (t_letter == 'r' ? GENERAL_REGS
461 : REG_CLASS_FROM_LETTER (t_letter));
462 t_icode = icode;
463 icode = CODE_FOR_nothing;
467 /* This case isn't valid, so fail. Reload is allowed to use the same
468 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
469 in the case of a secondary register, we actually need two different
470 registers for correct code. We fail here to prevent the possibility of
471 silently generating incorrect code later.
473 The convention is that secondary input reloads are valid only if the
474 secondary_class is different from class. If you have such a case, you
475 can not use secondary reloads, you must work around the problem some
476 other way.
478 Allow this when MODE is not reload_mode and assume that the generated
479 code handles this case (it does on the Alpha, which is the only place
480 this currently happens). */
482 if (in_p && class == reload_class && mode == reload_mode)
483 abort ();
485 /* If we need a tertiary reload, see if we have one we can reuse or else
486 make a new one. */
488 if (t_class != NO_REGS)
490 for (t_reload = 0; t_reload < n_reloads; t_reload++)
491 if (reload_secondary_p[t_reload]
492 && (reg_class_subset_p (t_class, reload_reg_class[t_reload])
493 || reg_class_subset_p (reload_reg_class[t_reload], t_class))
494 && ((in_p && reload_inmode[t_reload] == t_mode)
495 || (! in_p && reload_outmode[t_reload] == t_mode))
496 && ((in_p && (reload_secondary_in_icode[t_reload]
497 == CODE_FOR_nothing))
498 || (! in_p &&(reload_secondary_out_icode[t_reload]
499 == CODE_FOR_nothing)))
500 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
501 && MERGABLE_RELOADS (secondary_type,
502 reload_when_needed[t_reload],
503 opnum, reload_opnum[t_reload]))
505 if (in_p)
506 reload_inmode[t_reload] = t_mode;
507 if (! in_p)
508 reload_outmode[t_reload] = t_mode;
510 if (reg_class_subset_p (t_class, reload_reg_class[t_reload]))
511 reload_reg_class[t_reload] = t_class;
513 reload_opnum[t_reload] = MIN (reload_opnum[t_reload], opnum);
514 reload_optional[t_reload] &= optional;
515 reload_secondary_p[t_reload] = 1;
516 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[t_reload],
517 opnum, reload_opnum[t_reload]))
518 reload_when_needed[t_reload] = RELOAD_OTHER;
521 if (t_reload == n_reloads)
523 /* We need to make a new tertiary reload for this register class. */
524 reload_in[t_reload] = reload_out[t_reload] = 0;
525 reload_reg_class[t_reload] = t_class;
526 reload_inmode[t_reload] = in_p ? t_mode : VOIDmode;
527 reload_outmode[t_reload] = ! in_p ? t_mode : VOIDmode;
528 reload_reg_rtx[t_reload] = 0;
529 reload_optional[t_reload] = optional;
530 reload_inc[t_reload] = 0;
531 /* Maybe we could combine these, but it seems too tricky. */
532 reload_nocombine[t_reload] = 1;
533 reload_in_reg[t_reload] = 0;
534 reload_opnum[t_reload] = opnum;
535 reload_when_needed[t_reload] = secondary_type;
536 reload_secondary_in_reload[t_reload] = -1;
537 reload_secondary_out_reload[t_reload] = -1;
538 reload_secondary_in_icode[t_reload] = CODE_FOR_nothing;
539 reload_secondary_out_icode[t_reload] = CODE_FOR_nothing;
540 reload_secondary_p[t_reload] = 1;
542 n_reloads++;
546 /* See if we can reuse an existing secondary reload. */
547 for (s_reload = 0; s_reload < n_reloads; s_reload++)
548 if (reload_secondary_p[s_reload]
549 && (reg_class_subset_p (class, reload_reg_class[s_reload])
550 || reg_class_subset_p (reload_reg_class[s_reload], class))
551 && ((in_p && reload_inmode[s_reload] == mode)
552 || (! in_p && reload_outmode[s_reload] == mode))
553 && ((in_p && reload_secondary_in_reload[s_reload] == t_reload)
554 || (! in_p && reload_secondary_out_reload[s_reload] == t_reload))
555 && ((in_p && reload_secondary_in_icode[s_reload] == t_icode)
556 || (! in_p && reload_secondary_out_icode[s_reload] == t_icode))
557 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
558 && MERGABLE_RELOADS (secondary_type, reload_when_needed[s_reload],
559 opnum, reload_opnum[s_reload]))
561 if (in_p)
562 reload_inmode[s_reload] = mode;
563 if (! in_p)
564 reload_outmode[s_reload] = mode;
566 if (reg_class_subset_p (class, reload_reg_class[s_reload]))
567 reload_reg_class[s_reload] = class;
569 reload_opnum[s_reload] = MIN (reload_opnum[s_reload], opnum);
570 reload_optional[s_reload] &= optional;
571 reload_secondary_p[s_reload] = 1;
572 if (MERGE_TO_OTHER (secondary_type, reload_when_needed[s_reload],
573 opnum, reload_opnum[s_reload]))
574 reload_when_needed[s_reload] = RELOAD_OTHER;
577 if (s_reload == n_reloads)
579 #ifdef SECONDARY_MEMORY_NEEDED
580 /* If we need a memory location to copy between the two reload regs,
581 set it up now. Note that we do the input case before making
582 the reload and the output case after. This is due to the
583 way reloads are output. */
585 if (in_p && icode == CODE_FOR_nothing
586 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
587 get_secondary_mem (x, reload_mode, opnum, type);
588 #endif
590 /* We need to make a new secondary reload for this register class. */
591 reload_in[s_reload] = reload_out[s_reload] = 0;
592 reload_reg_class[s_reload] = class;
594 reload_inmode[s_reload] = in_p ? mode : VOIDmode;
595 reload_outmode[s_reload] = ! in_p ? mode : VOIDmode;
596 reload_reg_rtx[s_reload] = 0;
597 reload_optional[s_reload] = optional;
598 reload_inc[s_reload] = 0;
599 /* Maybe we could combine these, but it seems too tricky. */
600 reload_nocombine[s_reload] = 1;
601 reload_in_reg[s_reload] = 0;
602 reload_opnum[s_reload] = opnum;
603 reload_when_needed[s_reload] = secondary_type;
604 reload_secondary_in_reload[s_reload] = in_p ? t_reload : -1;
605 reload_secondary_out_reload[s_reload] = ! in_p ? t_reload : -1;
606 reload_secondary_in_icode[s_reload] = in_p ? t_icode : CODE_FOR_nothing;
607 reload_secondary_out_icode[s_reload]
608 = ! in_p ? t_icode : CODE_FOR_nothing;
609 reload_secondary_p[s_reload] = 1;
611 n_reloads++;
613 #ifdef SECONDARY_MEMORY_NEEDED
614 if (! in_p && icode == CODE_FOR_nothing
615 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
616 get_secondary_mem (x, mode, opnum, type);
617 #endif
620 *picode = icode;
621 return s_reload;
623 #endif /* HAVE_SECONDARY_RELOADS */
625 #ifdef SECONDARY_MEMORY_NEEDED
627 /* Return a memory location that will be used to copy X in mode MODE.
628 If we haven't already made a location for this mode in this insn,
629 call find_reloads_address on the location being returned. */
632 get_secondary_mem (x, mode, opnum, type)
633 rtx x;
634 enum machine_mode mode;
635 int opnum;
636 enum reload_type type;
638 rtx loc;
639 int mem_valid;
641 /* By default, if MODE is narrower than a word, widen it to a word.
642 This is required because most machines that require these memory
643 locations do not support short load and stores from all registers
644 (e.g., FP registers). */
646 #ifdef SECONDARY_MEMORY_NEEDED_MODE
647 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
648 #else
649 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
650 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
651 #endif
653 /* If we already have made a MEM for this operand in MODE, return it. */
654 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
655 return secondary_memlocs_elim[(int) mode][opnum];
657 /* If this is the first time we've tried to get a MEM for this mode,
658 allocate a new one. `something_changed' in reload will get set
659 by noticing that the frame size has changed. */
661 if (secondary_memlocs[(int) mode] == 0)
663 #ifdef SECONDARY_MEMORY_NEEDED_RTX
664 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
665 #else
666 secondary_memlocs[(int) mode]
667 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
668 #endif
671 /* Get a version of the address doing any eliminations needed. If that
672 didn't give us a new MEM, make a new one if it isn't valid. */
674 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
675 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
677 if (! mem_valid && loc == secondary_memlocs[(int) mode])
678 loc = copy_rtx (loc);
680 /* The only time the call below will do anything is if the stack
681 offset is too large. In that case IND_LEVELS doesn't matter, so we
682 can just pass a zero. Adjust the type to be the address of the
683 corresponding object. If the address was valid, save the eliminated
684 address. If it wasn't valid, we need to make a reload each time, so
685 don't save it. */
687 if (! mem_valid)
689 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
690 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
691 : RELOAD_OTHER);
693 find_reloads_address (mode, NULL_PTR, XEXP (loc, 0), &XEXP (loc, 0),
694 opnum, type, 0, 0);
697 secondary_memlocs_elim[(int) mode][opnum] = loc;
698 return loc;
701 /* Clear any secondary memory locations we've made. */
703 void
704 clear_secondary_mem ()
706 bzero ((char *) secondary_memlocs, sizeof secondary_memlocs);
708 #endif /* SECONDARY_MEMORY_NEEDED */
710 /* Find the largest class for which every register number plus N is valid in
711 M1 (if in range). Abort if no such class exists. */
713 static enum reg_class
714 find_valid_class (m1, n)
715 enum machine_mode m1;
716 int n;
718 int class;
719 int regno;
720 enum reg_class best_class;
721 int best_size = 0;
723 for (class = 1; class < N_REG_CLASSES; class++)
725 int bad = 0;
726 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
727 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
728 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
729 && ! HARD_REGNO_MODE_OK (regno + n, m1))
730 bad = 1;
732 if (! bad && reg_class_size[class] > best_size)
733 best_class = class, best_size = reg_class_size[class];
736 if (best_size == 0)
737 abort ();
739 return best_class;
742 /* Record one reload that needs to be performed.
743 IN is an rtx saying where the data are to be found before this instruction.
744 OUT says where they must be stored after the instruction.
745 (IN is zero for data not read, and OUT is zero for data not written.)
746 INLOC and OUTLOC point to the places in the instructions where
747 IN and OUT were found.
748 If IN and OUT are both non-zero, it means the same register must be used
749 to reload both IN and OUT.
751 CLASS is a register class required for the reloaded data.
752 INMODE is the machine mode that the instruction requires
753 for the reg that replaces IN and OUTMODE is likewise for OUT.
755 If IN is zero, then OUT's location and mode should be passed as
756 INLOC and INMODE.
758 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
760 OPTIONAL nonzero means this reload does not need to be performed:
761 it can be discarded if that is more convenient.
763 OPNUM and TYPE say what the purpose of this reload is.
765 The return value is the reload-number for this reload.
767 If both IN and OUT are nonzero, in some rare cases we might
768 want to make two separate reloads. (Actually we never do this now.)
769 Therefore, the reload-number for OUT is stored in
770 output_reloadnum when we return; the return value applies to IN.
771 Usually (presently always), when IN and OUT are nonzero,
772 the two reload-numbers are equal, but the caller should be careful to
773 distinguish them. */
775 static int
776 push_reload (in, out, inloc, outloc, class,
777 inmode, outmode, strict_low, optional, opnum, type)
778 register rtx in, out;
779 rtx *inloc, *outloc;
780 enum reg_class class;
781 enum machine_mode inmode, outmode;
782 int strict_low;
783 int optional;
784 int opnum;
785 enum reload_type type;
787 register int i;
788 int dont_share = 0;
789 int dont_remove_subreg = 0;
790 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
791 int secondary_in_reload = -1, secondary_out_reload = -1;
792 enum insn_code secondary_in_icode = CODE_FOR_nothing;
793 enum insn_code secondary_out_icode = CODE_FOR_nothing;
795 /* INMODE and/or OUTMODE could be VOIDmode if no mode
796 has been specified for the operand. In that case,
797 use the operand's mode as the mode to reload. */
798 if (inmode == VOIDmode && in != 0)
799 inmode = GET_MODE (in);
800 if (outmode == VOIDmode && out != 0)
801 outmode = GET_MODE (out);
803 /* If IN is a pseudo register everywhere-equivalent to a constant, and
804 it is not in a hard register, reload straight from the constant,
805 since we want to get rid of such pseudo registers.
806 Often this is done earlier, but not always in find_reloads_address. */
807 if (in != 0 && GET_CODE (in) == REG)
809 register int regno = REGNO (in);
811 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
812 && reg_equiv_constant[regno] != 0)
813 in = reg_equiv_constant[regno];
816 /* Likewise for OUT. Of course, OUT will never be equivalent to
817 an actual constant, but it might be equivalent to a memory location
818 (in the case of a parameter). */
819 if (out != 0 && GET_CODE (out) == REG)
821 register int regno = REGNO (out);
823 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
824 && reg_equiv_constant[regno] != 0)
825 out = reg_equiv_constant[regno];
828 /* If we have a read-write operand with an address side-effect,
829 change either IN or OUT so the side-effect happens only once. */
830 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
832 if (GET_CODE (XEXP (in, 0)) == POST_INC
833 || GET_CODE (XEXP (in, 0)) == POST_DEC)
834 in = gen_rtx_MEM (GET_MODE (in), XEXP (XEXP (in, 0), 0));
835 if (GET_CODE (XEXP (in, 0)) == PRE_INC
836 || GET_CODE (XEXP (in, 0)) == PRE_DEC)
837 out = gen_rtx_MEM (GET_MODE (out), XEXP (XEXP (out, 0), 0));
840 /* If we are reloading a (SUBREG constant ...), really reload just the
841 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
842 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
843 a pseudo and hence will become a MEM) with M1 wider than M2 and the
844 register is a pseudo, also reload the inside expression.
845 For machines that extend byte loads, do this for any SUBREG of a pseudo
846 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
847 M2 is an integral mode that gets extended when loaded.
848 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
849 either M1 is not valid for R or M2 is wider than a word but we only
850 need one word to store an M2-sized quantity in R.
851 (However, if OUT is nonzero, we need to reload the reg *and*
852 the subreg, so do nothing here, and let following statement handle it.)
854 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
855 we can't handle it here because CONST_INT does not indicate a mode.
857 Similarly, we must reload the inside expression if we have a
858 STRICT_LOW_PART (presumably, in == out in the cas).
860 Also reload the inner expression if it does not require a secondary
861 reload but the SUBREG does.
863 Finally, reload the inner expression if it is a register that is in
864 the class whose registers cannot be referenced in a different size
865 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
866 cannot reload just the inside since we might end up with the wrong
867 register class. */
869 if (in != 0 && GET_CODE (in) == SUBREG && SUBREG_WORD (in) == 0
870 #ifdef CLASS_CANNOT_CHANGE_SIZE
871 && class != CLASS_CANNOT_CHANGE_SIZE
872 #endif
873 && (CONSTANT_P (SUBREG_REG (in))
874 || GET_CODE (SUBREG_REG (in)) == PLUS
875 || strict_low
876 || (((GET_CODE (SUBREG_REG (in)) == REG
877 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
878 || GET_CODE (SUBREG_REG (in)) == MEM)
879 && ((GET_MODE_SIZE (inmode)
880 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
881 #ifdef LOAD_EXTEND_OP
882 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
883 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
884 <= UNITS_PER_WORD)
885 && (GET_MODE_SIZE (inmode)
886 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
887 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
888 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
889 #endif
890 #ifdef WORD_REGISTER_OPERATIONS
891 || ((GET_MODE_SIZE (inmode)
892 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
893 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
894 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
895 / UNITS_PER_WORD)))
896 #endif
898 || (GET_CODE (SUBREG_REG (in)) == REG
899 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
900 /* The case where out is nonzero
901 is handled differently in the following statement. */
902 && (out == 0 || SUBREG_WORD (in) == 0)
903 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
904 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
905 > UNITS_PER_WORD)
906 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
907 / UNITS_PER_WORD)
908 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
909 GET_MODE (SUBREG_REG (in)))))
910 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in))
911 + SUBREG_WORD (in)),
912 inmode)))
913 #ifdef SECONDARY_INPUT_RELOAD_CLASS
914 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
915 && (SECONDARY_INPUT_RELOAD_CLASS (class,
916 GET_MODE (SUBREG_REG (in)),
917 SUBREG_REG (in))
918 == NO_REGS))
919 #endif
920 #ifdef CLASS_CANNOT_CHANGE_SIZE
921 || (GET_CODE (SUBREG_REG (in)) == REG
922 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
923 && (TEST_HARD_REG_BIT
924 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
925 REGNO (SUBREG_REG (in))))
926 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
927 != GET_MODE_SIZE (inmode)))
928 #endif
931 in_subreg_loc = inloc;
932 inloc = &SUBREG_REG (in);
933 in = *inloc;
934 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
935 if (GET_CODE (in) == MEM)
936 /* This is supposed to happen only for paradoxical subregs made by
937 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
938 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
939 abort ();
940 #endif
941 inmode = GET_MODE (in);
944 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
945 either M1 is not valid for R or M2 is wider than a word but we only
946 need one word to store an M2-sized quantity in R.
948 However, we must reload the inner reg *as well as* the subreg in
949 that case. */
951 /* Similar issue for (SUBREG constant ...) if it was not handled by the
952 code above. This can happen if SUBREG_WORD != 0. */
954 if (in != 0 && GET_CODE (in) == SUBREG
955 && (CONSTANT_P (SUBREG_REG (in))
956 || (GET_CODE (SUBREG_REG (in)) == REG
957 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
958 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in))
959 + SUBREG_WORD (in),
960 inmode)
961 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
962 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
963 > UNITS_PER_WORD)
964 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
965 / UNITS_PER_WORD)
966 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
967 GET_MODE (SUBREG_REG (in)))))))))
969 /* This relies on the fact that emit_reload_insns outputs the
970 instructions for input reloads of type RELOAD_OTHER in the same
971 order as the reloads. Thus if the outer reload is also of type
972 RELOAD_OTHER, we are guaranteed that this inner reload will be
973 output before the outer reload. */
974 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), NULL_PTR,
975 find_valid_class (inmode, SUBREG_WORD (in)),
976 VOIDmode, VOIDmode, 0, 0, opnum, type);
977 dont_remove_subreg = 1;
980 /* Similarly for paradoxical and problematical SUBREGs on the output.
981 Note that there is no reason we need worry about the previous value
982 of SUBREG_REG (out); even if wider than out,
983 storing in a subreg is entitled to clobber it all
984 (except in the case of STRICT_LOW_PART,
985 and in that case the constraint should label it input-output.) */
986 if (out != 0 && GET_CODE (out) == SUBREG && SUBREG_WORD (out) == 0
987 #ifdef CLASS_CANNOT_CHANGE_SIZE
988 && class != CLASS_CANNOT_CHANGE_SIZE
989 #endif
990 && (CONSTANT_P (SUBREG_REG (out))
991 || strict_low
992 || (((GET_CODE (SUBREG_REG (out)) == REG
993 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
994 || GET_CODE (SUBREG_REG (out)) == MEM)
995 && ((GET_MODE_SIZE (outmode)
996 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
997 #ifdef WORD_REGISTER_OPERATIONS
998 || ((GET_MODE_SIZE (outmode)
999 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1000 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1001 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1002 / UNITS_PER_WORD)))
1003 #endif
1005 || (GET_CODE (SUBREG_REG (out)) == REG
1006 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1007 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1008 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1009 > UNITS_PER_WORD)
1010 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1011 / UNITS_PER_WORD)
1012 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1013 GET_MODE (SUBREG_REG (out)))))
1014 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out))
1015 + SUBREG_WORD (out)),
1016 outmode)))
1017 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1018 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1019 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1020 GET_MODE (SUBREG_REG (out)),
1021 SUBREG_REG (out))
1022 == NO_REGS))
1023 #endif
1024 #ifdef CLASS_CANNOT_CHANGE_SIZE
1025 || (GET_CODE (SUBREG_REG (out)) == REG
1026 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1027 && (TEST_HARD_REG_BIT
1028 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE],
1029 REGNO (SUBREG_REG (out))))
1030 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1031 != GET_MODE_SIZE (outmode)))
1032 #endif
1035 out_subreg_loc = outloc;
1036 outloc = &SUBREG_REG (out);
1037 out = *outloc;
1038 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1039 if (GET_CODE (out) == MEM
1040 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1041 abort ();
1042 #endif
1043 outmode = GET_MODE (out);
1046 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1047 either M1 is not valid for R or M2 is wider than a word but we only
1048 need one word to store an M2-sized quantity in R.
1050 However, we must reload the inner reg *as well as* the subreg in
1051 that case. In this case, the inner reg is an in-out reload. */
1053 if (out != 0 && GET_CODE (out) == SUBREG
1054 && GET_CODE (SUBREG_REG (out)) == REG
1055 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1056 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out)) + SUBREG_WORD (out),
1057 outmode)
1058 || (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1059 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1060 > UNITS_PER_WORD)
1061 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1062 / UNITS_PER_WORD)
1063 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1064 GET_MODE (SUBREG_REG (out)))))))
1066 /* This relies on the fact that emit_reload_insns outputs the
1067 instructions for output reloads of type RELOAD_OTHER in reverse
1068 order of the reloads. Thus if the outer reload is also of type
1069 RELOAD_OTHER, we are guaranteed that this inner reload will be
1070 output after the outer reload. */
1071 dont_remove_subreg = 1;
1072 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1073 &SUBREG_REG (out),
1074 find_valid_class (outmode, SUBREG_WORD (out)),
1075 VOIDmode, VOIDmode, 0, 0,
1076 opnum, RELOAD_OTHER);
1079 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1080 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1081 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1082 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1083 dont_share = 1;
1085 /* If IN is a SUBREG of a hard register, make a new REG. This
1086 simplifies some of the cases below. */
1088 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1089 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1090 && ! dont_remove_subreg)
1091 in = gen_rtx_REG (GET_MODE (in),
1092 REGNO (SUBREG_REG (in)) + SUBREG_WORD (in));
1094 /* Similarly for OUT. */
1095 if (out != 0 && GET_CODE (out) == SUBREG
1096 && GET_CODE (SUBREG_REG (out)) == REG
1097 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1098 && ! dont_remove_subreg)
1099 out = gen_rtx_REG (GET_MODE (out),
1100 REGNO (SUBREG_REG (out)) + SUBREG_WORD (out));
1102 /* Narrow down the class of register wanted if that is
1103 desirable on this machine for efficiency. */
1104 if (in != 0)
1105 class = PREFERRED_RELOAD_CLASS (in, class);
1107 /* Output reloads may need analogous treatment, different in detail. */
1108 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1109 if (out != 0)
1110 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1111 #endif
1113 /* Make sure we use a class that can handle the actual pseudo
1114 inside any subreg. For example, on the 386, QImode regs
1115 can appear within SImode subregs. Although GENERAL_REGS
1116 can handle SImode, QImode needs a smaller class. */
1117 #ifdef LIMIT_RELOAD_CLASS
1118 if (in_subreg_loc)
1119 class = LIMIT_RELOAD_CLASS (inmode, class);
1120 else if (in != 0 && GET_CODE (in) == SUBREG)
1121 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1123 if (out_subreg_loc)
1124 class = LIMIT_RELOAD_CLASS (outmode, class);
1125 if (out != 0 && GET_CODE (out) == SUBREG)
1126 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1127 #endif
1129 /* Verify that this class is at least possible for the mode that
1130 is specified. */
1131 if (this_insn_is_asm)
1133 enum machine_mode mode;
1134 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1135 mode = inmode;
1136 else
1137 mode = outmode;
1138 if (mode == VOIDmode)
1140 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1141 mode = word_mode;
1142 if (in != 0)
1143 inmode = word_mode;
1144 if (out != 0)
1145 outmode = word_mode;
1147 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1148 if (HARD_REGNO_MODE_OK (i, mode)
1149 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1151 int nregs = HARD_REGNO_NREGS (i, mode);
1153 int j;
1154 for (j = 1; j < nregs; j++)
1155 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1156 break;
1157 if (j == nregs)
1158 break;
1160 if (i == FIRST_PSEUDO_REGISTER)
1162 error_for_asm (this_insn, "impossible register constraint in `asm'");
1163 class = ALL_REGS;
1167 if (class == NO_REGS)
1168 abort ();
1170 /* We can use an existing reload if the class is right
1171 and at least one of IN and OUT is a match
1172 and the other is at worst neutral.
1173 (A zero compared against anything is neutral.)
1175 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
1176 for the same thing since that can cause us to need more reload registers
1177 than we otherwise would. */
1179 for (i = 0; i < n_reloads; i++)
1180 if ((reg_class_subset_p (class, reload_reg_class[i])
1181 || reg_class_subset_p (reload_reg_class[i], class))
1182 /* If the existing reload has a register, it must fit our class. */
1183 && (reload_reg_rtx[i] == 0
1184 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1185 true_regnum (reload_reg_rtx[i])))
1186 && ((in != 0 && MATCHES (reload_in[i], in) && ! dont_share
1187 && (out == 0 || reload_out[i] == 0 || MATCHES (reload_out[i], out)))
1189 (out != 0 && MATCHES (reload_out[i], out)
1190 && (in == 0 || reload_in[i] == 0 || MATCHES (reload_in[i], in))))
1191 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
1192 && MERGABLE_RELOADS (type, reload_when_needed[i],
1193 opnum, reload_opnum[i]))
1194 break;
1196 /* Reloading a plain reg for input can match a reload to postincrement
1197 that reg, since the postincrement's value is the right value.
1198 Likewise, it can match a preincrement reload, since we regard
1199 the preincrementation as happening before any ref in this insn
1200 to that register. */
1201 if (i == n_reloads)
1202 for (i = 0; i < n_reloads; i++)
1203 if ((reg_class_subset_p (class, reload_reg_class[i])
1204 || reg_class_subset_p (reload_reg_class[i], class))
1205 /* If the existing reload has a register, it must fit our class. */
1206 && (reload_reg_rtx[i] == 0
1207 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1208 true_regnum (reload_reg_rtx[i])))
1209 && out == 0 && reload_out[i] == 0 && reload_in[i] != 0
1210 && ((GET_CODE (in) == REG
1211 && (GET_CODE (reload_in[i]) == POST_INC
1212 || GET_CODE (reload_in[i]) == POST_DEC
1213 || GET_CODE (reload_in[i]) == PRE_INC
1214 || GET_CODE (reload_in[i]) == PRE_DEC)
1215 && MATCHES (XEXP (reload_in[i], 0), in))
1217 (GET_CODE (reload_in[i]) == REG
1218 && (GET_CODE (in) == POST_INC
1219 || GET_CODE (in) == POST_DEC
1220 || GET_CODE (in) == PRE_INC
1221 || GET_CODE (in) == PRE_DEC)
1222 && MATCHES (XEXP (in, 0), reload_in[i])))
1223 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
1224 && MERGABLE_RELOADS (type, reload_when_needed[i],
1225 opnum, reload_opnum[i]))
1227 /* Make sure reload_in ultimately has the increment,
1228 not the plain register. */
1229 if (GET_CODE (in) == REG)
1230 in = reload_in[i];
1231 break;
1234 if (i == n_reloads)
1236 /* See if we need a secondary reload register to move between CLASS
1237 and IN or CLASS and OUT. Get the icode and push any required reloads
1238 needed for each of them if so. */
1240 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1241 if (in != 0)
1242 secondary_in_reload
1243 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1244 &secondary_in_icode);
1245 #endif
1247 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1248 if (out != 0 && GET_CODE (out) != SCRATCH)
1249 secondary_out_reload
1250 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1251 type, &secondary_out_icode);
1252 #endif
1254 /* We found no existing reload suitable for re-use.
1255 So add an additional reload. */
1257 #ifdef SECONDARY_MEMORY_NEEDED
1258 /* If a memory location is needed for the copy, make one. */
1259 if (in != 0 && GET_CODE (in) == REG
1260 && REGNO (in) < FIRST_PSEUDO_REGISTER
1261 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1262 class, inmode))
1263 get_secondary_mem (in, inmode, opnum, type);
1264 #endif
1266 i = n_reloads;
1267 reload_in[i] = in;
1268 reload_out[i] = out;
1269 reload_reg_class[i] = class;
1270 reload_inmode[i] = inmode;
1271 reload_outmode[i] = outmode;
1272 reload_reg_rtx[i] = 0;
1273 reload_optional[i] = optional;
1274 reload_inc[i] = 0;
1275 reload_nocombine[i] = 0;
1276 reload_in_reg[i] = inloc ? *inloc : 0;
1277 reload_opnum[i] = opnum;
1278 reload_when_needed[i] = type;
1279 reload_secondary_in_reload[i] = secondary_in_reload;
1280 reload_secondary_out_reload[i] = secondary_out_reload;
1281 reload_secondary_in_icode[i] = secondary_in_icode;
1282 reload_secondary_out_icode[i] = secondary_out_icode;
1283 reload_secondary_p[i] = 0;
1285 n_reloads++;
1287 #ifdef SECONDARY_MEMORY_NEEDED
1288 if (out != 0 && GET_CODE (out) == REG
1289 && REGNO (out) < FIRST_PSEUDO_REGISTER
1290 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1291 outmode))
1292 get_secondary_mem (out, outmode, opnum, type);
1293 #endif
1295 else
1297 /* We are reusing an existing reload,
1298 but we may have additional information for it.
1299 For example, we may now have both IN and OUT
1300 while the old one may have just one of them. */
1302 /* The modes can be different. If they are, we want to reload in
1303 the larger mode, so that the value is valid for both modes. */
1304 if (inmode != VOIDmode
1305 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (reload_inmode[i]))
1306 reload_inmode[i] = inmode;
1307 if (outmode != VOIDmode
1308 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (reload_outmode[i]))
1309 reload_outmode[i] = outmode;
1310 if (in != 0)
1311 reload_in[i] = in;
1312 if (out != 0)
1313 reload_out[i] = out;
1314 if (reg_class_subset_p (class, reload_reg_class[i]))
1315 reload_reg_class[i] = class;
1316 reload_optional[i] &= optional;
1317 if (MERGE_TO_OTHER (type, reload_when_needed[i],
1318 opnum, reload_opnum[i]))
1319 reload_when_needed[i] = RELOAD_OTHER;
1320 reload_opnum[i] = MIN (reload_opnum[i], opnum);
1323 /* If the ostensible rtx being reload differs from the rtx found
1324 in the location to substitute, this reload is not safe to combine
1325 because we cannot reliably tell whether it appears in the insn. */
1327 if (in != 0 && in != *inloc)
1328 reload_nocombine[i] = 1;
1330 #if 0
1331 /* This was replaced by changes in find_reloads_address_1 and the new
1332 function inc_for_reload, which go with a new meaning of reload_inc. */
1334 /* If this is an IN/OUT reload in an insn that sets the CC,
1335 it must be for an autoincrement. It doesn't work to store
1336 the incremented value after the insn because that would clobber the CC.
1337 So we must do the increment of the value reloaded from,
1338 increment it, store it back, then decrement again. */
1339 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1341 out = 0;
1342 reload_out[i] = 0;
1343 reload_inc[i] = find_inc_amount (PATTERN (this_insn), in);
1344 /* If we did not find a nonzero amount-to-increment-by,
1345 that contradicts the belief that IN is being incremented
1346 in an address in this insn. */
1347 if (reload_inc[i] == 0)
1348 abort ();
1350 #endif
1352 /* If we will replace IN and OUT with the reload-reg,
1353 record where they are located so that substitution need
1354 not do a tree walk. */
1356 if (replace_reloads)
1358 if (inloc != 0)
1360 register struct replacement *r = &replacements[n_replacements++];
1361 r->what = i;
1362 r->subreg_loc = in_subreg_loc;
1363 r->where = inloc;
1364 r->mode = inmode;
1366 if (outloc != 0 && outloc != inloc)
1368 register struct replacement *r = &replacements[n_replacements++];
1369 r->what = i;
1370 r->where = outloc;
1371 r->subreg_loc = out_subreg_loc;
1372 r->mode = outmode;
1376 /* If this reload is just being introduced and it has both
1377 an incoming quantity and an outgoing quantity that are
1378 supposed to be made to match, see if either one of the two
1379 can serve as the place to reload into.
1381 If one of them is acceptable, set reload_reg_rtx[i]
1382 to that one. */
1384 if (in != 0 && out != 0 && in != out && reload_reg_rtx[i] == 0)
1386 reload_reg_rtx[i] = find_dummy_reload (in, out, inloc, outloc,
1387 inmode, outmode,
1388 reload_reg_class[i], i,
1389 earlyclobber_operand_p (out));
1391 /* If the outgoing register already contains the same value
1392 as the incoming one, we can dispense with loading it.
1393 The easiest way to tell the caller that is to give a phony
1394 value for the incoming operand (same as outgoing one). */
1395 if (reload_reg_rtx[i] == out
1396 && (GET_CODE (in) == REG || CONSTANT_P (in))
1397 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1398 static_reload_reg_p, i, inmode))
1399 reload_in[i] = out;
1402 /* If this is an input reload and the operand contains a register that
1403 dies in this insn and is used nowhere else, see if it is the right class
1404 to be used for this reload. Use it if so. (This occurs most commonly
1405 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1406 this if it is also an output reload that mentions the register unless
1407 the output is a SUBREG that clobbers an entire register.
1409 Note that the operand might be one of the spill regs, if it is a
1410 pseudo reg and we are in a block where spilling has not taken place.
1411 But if there is no spilling in this block, that is OK.
1412 An explicitly used hard reg cannot be a spill reg. */
1414 if (reload_reg_rtx[i] == 0 && in != 0)
1416 rtx note;
1417 int regno;
1419 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1420 if (REG_NOTE_KIND (note) == REG_DEAD
1421 && GET_CODE (XEXP (note, 0)) == REG
1422 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1423 && reg_mentioned_p (XEXP (note, 0), in)
1424 && ! refers_to_regno_for_reload_p (regno,
1425 (regno
1426 + HARD_REGNO_NREGS (regno,
1427 inmode)),
1428 PATTERN (this_insn), inloc)
1429 /* If this is also an output reload, IN cannot be used as
1430 the reload register if it is set in this insn unless IN
1431 is also OUT. */
1432 && (out == 0 || in == out
1433 || ! hard_reg_set_here_p (regno,
1434 (regno
1435 + HARD_REGNO_NREGS (regno,
1436 inmode)),
1437 PATTERN (this_insn)))
1438 /* ??? Why is this code so different from the previous?
1439 Is there any simple coherent way to describe the two together?
1440 What's going on here. */
1441 && (in != out
1442 || (GET_CODE (in) == SUBREG
1443 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1444 / UNITS_PER_WORD)
1445 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1446 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1447 /* Make sure the operand fits in the reg that dies. */
1448 && GET_MODE_SIZE (inmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1449 && HARD_REGNO_MODE_OK (regno, inmode)
1450 && GET_MODE_SIZE (outmode) <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
1451 && HARD_REGNO_MODE_OK (regno, outmode)
1452 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno)
1453 && !fixed_regs[regno])
1455 reload_reg_rtx[i] = gen_rtx_REG (inmode, regno);
1456 break;
1460 if (out)
1461 output_reloadnum = i;
1463 return i;
1466 /* Record an additional place we must replace a value
1467 for which we have already recorded a reload.
1468 RELOADNUM is the value returned by push_reload
1469 when the reload was recorded.
1470 This is used in insn patterns that use match_dup. */
1472 static void
1473 push_replacement (loc, reloadnum, mode)
1474 rtx *loc;
1475 int reloadnum;
1476 enum machine_mode mode;
1478 if (replace_reloads)
1480 register struct replacement *r = &replacements[n_replacements++];
1481 r->what = reloadnum;
1482 r->where = loc;
1483 r->subreg_loc = 0;
1484 r->mode = mode;
1488 /* Transfer all replacements that used to be in reload FROM to be in
1489 reload TO. */
1491 void
1492 transfer_replacements (to, from)
1493 int to, from;
1495 int i;
1497 for (i = 0; i < n_replacements; i++)
1498 if (replacements[i].what == from)
1499 replacements[i].what = to;
1502 /* If there is only one output reload, and it is not for an earlyclobber
1503 operand, try to combine it with a (logically unrelated) input reload
1504 to reduce the number of reload registers needed.
1506 This is safe if the input reload does not appear in
1507 the value being output-reloaded, because this implies
1508 it is not needed any more once the original insn completes.
1510 If that doesn't work, see we can use any of the registers that
1511 die in this insn as a reload register. We can if it is of the right
1512 class and does not appear in the value being output-reloaded. */
1514 static void
1515 combine_reloads ()
1517 int i;
1518 int output_reload = -1;
1519 int secondary_out = -1;
1520 rtx note;
1522 /* Find the output reload; return unless there is exactly one
1523 and that one is mandatory. */
1525 for (i = 0; i < n_reloads; i++)
1526 if (reload_out[i] != 0)
1528 if (output_reload >= 0)
1529 return;
1530 output_reload = i;
1533 if (output_reload < 0 || reload_optional[output_reload])
1534 return;
1536 /* An input-output reload isn't combinable. */
1538 if (reload_in[output_reload] != 0)
1539 return;
1541 /* If this reload is for an earlyclobber operand, we can't do anything. */
1542 if (earlyclobber_operand_p (reload_out[output_reload]))
1543 return;
1545 /* Check each input reload; can we combine it? */
1547 for (i = 0; i < n_reloads; i++)
1548 if (reload_in[i] && ! reload_optional[i] && ! reload_nocombine[i]
1549 /* Life span of this reload must not extend past main insn. */
1550 && reload_when_needed[i] != RELOAD_FOR_OUTPUT_ADDRESS
1551 && reload_when_needed[i] != RELOAD_FOR_OUTADDR_ADDRESS
1552 && reload_when_needed[i] != RELOAD_OTHER
1553 && (CLASS_MAX_NREGS (reload_reg_class[i], reload_inmode[i])
1554 == CLASS_MAX_NREGS (reload_reg_class[output_reload],
1555 reload_outmode[output_reload]))
1556 && reload_inc[i] == 0
1557 && reload_reg_rtx[i] == 0
1558 #ifdef SECONDARY_MEMORY_NEEDED
1559 /* Don't combine two reloads with different secondary
1560 memory locations. */
1561 && (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]] == 0
1562 || secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] == 0
1563 || rtx_equal_p (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]],
1564 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]]))
1565 #endif
1566 && (SMALL_REGISTER_CLASSES
1567 ? (reload_reg_class[i] == reload_reg_class[output_reload])
1568 : (reg_class_subset_p (reload_reg_class[i],
1569 reload_reg_class[output_reload])
1570 || reg_class_subset_p (reload_reg_class[output_reload],
1571 reload_reg_class[i])))
1572 && (MATCHES (reload_in[i], reload_out[output_reload])
1573 /* Args reversed because the first arg seems to be
1574 the one that we imagine being modified
1575 while the second is the one that might be affected. */
1576 || (! reg_overlap_mentioned_for_reload_p (reload_out[output_reload],
1577 reload_in[i])
1578 /* However, if the input is a register that appears inside
1579 the output, then we also can't share.
1580 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1581 If the same reload reg is used for both reg 69 and the
1582 result to be stored in memory, then that result
1583 will clobber the address of the memory ref. */
1584 && ! (GET_CODE (reload_in[i]) == REG
1585 && reg_overlap_mentioned_for_reload_p (reload_in[i],
1586 reload_out[output_reload]))))
1587 && (reg_class_size[(int) reload_reg_class[i]]
1588 || SMALL_REGISTER_CLASSES)
1589 /* We will allow making things slightly worse by combining an
1590 input and an output, but no worse than that. */
1591 && (reload_when_needed[i] == RELOAD_FOR_INPUT
1592 || reload_when_needed[i] == RELOAD_FOR_OUTPUT))
1594 int j;
1596 /* We have found a reload to combine with! */
1597 reload_out[i] = reload_out[output_reload];
1598 reload_outmode[i] = reload_outmode[output_reload];
1599 /* Mark the old output reload as inoperative. */
1600 reload_out[output_reload] = 0;
1601 /* The combined reload is needed for the entire insn. */
1602 reload_when_needed[i] = RELOAD_OTHER;
1603 /* If the output reload had a secondary reload, copy it. */
1604 if (reload_secondary_out_reload[output_reload] != -1)
1606 reload_secondary_out_reload[i]
1607 = reload_secondary_out_reload[output_reload];
1608 reload_secondary_out_icode[i]
1609 = reload_secondary_out_icode[output_reload];
1612 #ifdef SECONDARY_MEMORY_NEEDED
1613 /* Copy any secondary MEM. */
1614 if (secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]] != 0)
1615 secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[i]]
1616 = secondary_memlocs_elim[(int) reload_outmode[output_reload]][reload_opnum[output_reload]];
1617 #endif
1618 /* If required, minimize the register class. */
1619 if (reg_class_subset_p (reload_reg_class[output_reload],
1620 reload_reg_class[i]))
1621 reload_reg_class[i] = reload_reg_class[output_reload];
1623 /* Transfer all replacements from the old reload to the combined. */
1624 for (j = 0; j < n_replacements; j++)
1625 if (replacements[j].what == output_reload)
1626 replacements[j].what = i;
1628 return;
1631 /* If this insn has only one operand that is modified or written (assumed
1632 to be the first), it must be the one corresponding to this reload. It
1633 is safe to use anything that dies in this insn for that output provided
1634 that it does not occur in the output (we already know it isn't an
1635 earlyclobber. If this is an asm insn, give up. */
1637 if (INSN_CODE (this_insn) == -1)
1638 return;
1640 for (i = 1; i < insn_n_operands[INSN_CODE (this_insn)]; i++)
1641 if (insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '='
1642 || insn_operand_constraint[INSN_CODE (this_insn)][i][0] == '+')
1643 return;
1645 /* See if some hard register that dies in this insn and is not used in
1646 the output is the right class. Only works if the register we pick
1647 up can fully hold our output reload. */
1648 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1649 if (REG_NOTE_KIND (note) == REG_DEAD
1650 && GET_CODE (XEXP (note, 0)) == REG
1651 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1652 reload_out[output_reload])
1653 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1654 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1655 && TEST_HARD_REG_BIT (reg_class_contents[(int) reload_reg_class[output_reload]],
1656 REGNO (XEXP (note, 0)))
1657 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), reload_outmode[output_reload])
1658 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1659 /* Ensure that a secondary or tertiary reload for this output
1660 won't want this register. */
1661 && ((secondary_out = reload_secondary_out_reload[output_reload]) == -1
1662 || (! (TEST_HARD_REG_BIT
1663 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1664 REGNO (XEXP (note, 0))))
1665 && ((secondary_out = reload_secondary_out_reload[secondary_out]) == -1
1666 || ! (TEST_HARD_REG_BIT
1667 (reg_class_contents[(int) reload_reg_class[secondary_out]],
1668 REGNO (XEXP (note, 0)))))))
1669 && ! fixed_regs[REGNO (XEXP (note, 0))])
1671 reload_reg_rtx[output_reload]
1672 = gen_rtx_REG (reload_outmode[output_reload],
1673 REGNO (XEXP (note, 0)));
1674 return;
1678 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1679 See if one of IN and OUT is a register that may be used;
1680 this is desirable since a spill-register won't be needed.
1681 If so, return the register rtx that proves acceptable.
1683 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1684 CLASS is the register class required for the reload.
1686 If FOR_REAL is >= 0, it is the number of the reload,
1687 and in some cases when it can be discovered that OUT doesn't need
1688 to be computed, clear out reload_out[FOR_REAL].
1690 If FOR_REAL is -1, this should not be done, because this call
1691 is just to see if a register can be found, not to find and install it.
1693 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1694 puts an additional constraint on being able to use IN for OUT since
1695 IN must not appear elsewhere in the insn (it is assumed that IN itself
1696 is safe from the earlyclobber). */
1698 static rtx
1699 find_dummy_reload (real_in, real_out, inloc, outloc,
1700 inmode, outmode, class, for_real, earlyclobber)
1701 rtx real_in, real_out;
1702 rtx *inloc, *outloc;
1703 enum machine_mode inmode, outmode;
1704 enum reg_class class;
1705 int for_real;
1706 int earlyclobber;
1708 rtx in = real_in;
1709 rtx out = real_out;
1710 int in_offset = 0;
1711 int out_offset = 0;
1712 rtx value = 0;
1714 /* If operands exceed a word, we can't use either of them
1715 unless they have the same size. */
1716 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1717 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1718 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1719 return 0;
1721 /* Find the inside of any subregs. */
1722 while (GET_CODE (out) == SUBREG)
1724 out_offset = SUBREG_WORD (out);
1725 out = SUBREG_REG (out);
1727 while (GET_CODE (in) == SUBREG)
1729 in_offset = SUBREG_WORD (in);
1730 in = SUBREG_REG (in);
1733 /* Narrow down the reg class, the same way push_reload will;
1734 otherwise we might find a dummy now, but push_reload won't. */
1735 class = PREFERRED_RELOAD_CLASS (in, class);
1737 /* See if OUT will do. */
1738 if (GET_CODE (out) == REG
1739 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1741 register int regno = REGNO (out) + out_offset;
1742 int nwords = HARD_REGNO_NREGS (regno, outmode);
1743 rtx saved_rtx;
1745 /* When we consider whether the insn uses OUT,
1746 ignore references within IN. They don't prevent us
1747 from copying IN into OUT, because those refs would
1748 move into the insn that reloads IN.
1750 However, we only ignore IN in its role as this reload.
1751 If the insn uses IN elsewhere and it contains OUT,
1752 that counts. We can't be sure it's the "same" operand
1753 so it might not go through this reload. */
1754 saved_rtx = *inloc;
1755 *inloc = const0_rtx;
1757 if (regno < FIRST_PSEUDO_REGISTER
1758 /* A fixed reg that can overlap other regs better not be used
1759 for reloading in any way. */
1760 #ifdef OVERLAPPING_REGNO_P
1761 && ! (fixed_regs[regno] && OVERLAPPING_REGNO_P (regno))
1762 #endif
1763 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1764 PATTERN (this_insn), outloc))
1766 int i;
1767 for (i = 0; i < nwords; i++)
1768 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1769 regno + i))
1770 break;
1772 if (i == nwords)
1774 if (GET_CODE (real_out) == REG)
1775 value = real_out;
1776 else
1777 value = gen_rtx_REG (outmode, regno);
1781 *inloc = saved_rtx;
1784 /* Consider using IN if OUT was not acceptable
1785 or if OUT dies in this insn (like the quotient in a divmod insn).
1786 We can't use IN unless it is dies in this insn,
1787 which means we must know accurately which hard regs are live.
1788 Also, the result can't go in IN if IN is used within OUT,
1789 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1790 if (hard_regs_live_known
1791 && GET_CODE (in) == REG
1792 && REGNO (in) < FIRST_PSEUDO_REGISTER
1793 && (value == 0
1794 || find_reg_note (this_insn, REG_UNUSED, real_out))
1795 && find_reg_note (this_insn, REG_DEAD, real_in)
1796 && !fixed_regs[REGNO (in)]
1797 && HARD_REGNO_MODE_OK (REGNO (in),
1798 /* The only case where out and real_out might
1799 have different modes is where real_out
1800 is a subreg, and in that case, out
1801 has a real mode. */
1802 (GET_MODE (out) != VOIDmode
1803 ? GET_MODE (out) : outmode)))
1805 register int regno = REGNO (in) + in_offset;
1806 int nwords = HARD_REGNO_NREGS (regno, inmode);
1808 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, NULL_PTR)
1809 && ! hard_reg_set_here_p (regno, regno + nwords,
1810 PATTERN (this_insn))
1811 && (! earlyclobber
1812 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1813 PATTERN (this_insn), inloc)))
1815 int i;
1816 for (i = 0; i < nwords; i++)
1817 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1818 regno + i))
1819 break;
1821 if (i == nwords)
1823 /* If we were going to use OUT as the reload reg
1824 and changed our mind, it means OUT is a dummy that
1825 dies here. So don't bother copying value to it. */
1826 if (for_real >= 0 && value == real_out)
1827 reload_out[for_real] = 0;
1828 if (GET_CODE (real_in) == REG)
1829 value = real_in;
1830 else
1831 value = gen_rtx_REG (inmode, regno);
1836 return value;
1839 /* This page contains subroutines used mainly for determining
1840 whether the IN or an OUT of a reload can serve as the
1841 reload register. */
1843 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1845 static int
1846 earlyclobber_operand_p (x)
1847 rtx x;
1849 int i;
1851 for (i = 0; i < n_earlyclobbers; i++)
1852 if (reload_earlyclobbers[i] == x)
1853 return 1;
1855 return 0;
1858 /* Return 1 if expression X alters a hard reg in the range
1859 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1860 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1861 X should be the body of an instruction. */
1863 static int
1864 hard_reg_set_here_p (beg_regno, end_regno, x)
1865 register int beg_regno, end_regno;
1866 rtx x;
1868 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1870 register rtx op0 = SET_DEST (x);
1871 while (GET_CODE (op0) == SUBREG)
1872 op0 = SUBREG_REG (op0);
1873 if (GET_CODE (op0) == REG)
1875 register int r = REGNO (op0);
1876 /* See if this reg overlaps range under consideration. */
1877 if (r < end_regno
1878 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
1879 return 1;
1882 else if (GET_CODE (x) == PARALLEL)
1884 register int i = XVECLEN (x, 0) - 1;
1885 for (; i >= 0; i--)
1886 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
1887 return 1;
1890 return 0;
1893 /* Return 1 if ADDR is a valid memory address for mode MODE,
1894 and check that each pseudo reg has the proper kind of
1895 hard reg. */
1898 strict_memory_address_p (mode, addr)
1899 enum machine_mode mode;
1900 register rtx addr;
1902 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1903 return 0;
1905 win:
1906 return 1;
1909 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1910 if they are the same hard reg, and has special hacks for
1911 autoincrement and autodecrement.
1912 This is specifically intended for find_reloads to use
1913 in determining whether two operands match.
1914 X is the operand whose number is the lower of the two.
1916 The value is 2 if Y contains a pre-increment that matches
1917 a non-incrementing address in X. */
1919 /* ??? To be completely correct, we should arrange to pass
1920 for X the output operand and for Y the input operand.
1921 For now, we assume that the output operand has the lower number
1922 because that is natural in (SET output (... input ...)). */
1925 operands_match_p (x, y)
1926 register rtx x, y;
1928 register int i;
1929 register RTX_CODE code = GET_CODE (x);
1930 register char *fmt;
1931 int success_2;
1933 if (x == y)
1934 return 1;
1935 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
1936 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
1937 && GET_CODE (SUBREG_REG (y)) == REG)))
1939 register int j;
1941 if (code == SUBREG)
1943 i = REGNO (SUBREG_REG (x));
1944 if (i >= FIRST_PSEUDO_REGISTER)
1945 goto slow;
1946 i += SUBREG_WORD (x);
1948 else
1949 i = REGNO (x);
1951 if (GET_CODE (y) == SUBREG)
1953 j = REGNO (SUBREG_REG (y));
1954 if (j >= FIRST_PSEUDO_REGISTER)
1955 goto slow;
1956 j += SUBREG_WORD (y);
1958 else
1959 j = REGNO (y);
1961 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
1962 multiple hard register group, so that for example (reg:DI 0) and
1963 (reg:SI 1) will be considered the same register. */
1964 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
1965 && i < FIRST_PSEUDO_REGISTER)
1966 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
1967 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
1968 && j < FIRST_PSEUDO_REGISTER)
1969 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
1971 return i == j;
1973 /* If two operands must match, because they are really a single
1974 operand of an assembler insn, then two postincrements are invalid
1975 because the assembler insn would increment only once.
1976 On the other hand, an postincrement matches ordinary indexing
1977 if the postincrement is the output operand. */
1978 if (code == POST_DEC || code == POST_INC)
1979 return operands_match_p (XEXP (x, 0), y);
1980 /* Two preincrements are invalid
1981 because the assembler insn would increment only once.
1982 On the other hand, an preincrement matches ordinary indexing
1983 if the preincrement is the input operand.
1984 In this case, return 2, since some callers need to do special
1985 things when this happens. */
1986 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC)
1987 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
1989 slow:
1991 /* Now we have disposed of all the cases
1992 in which different rtx codes can match. */
1993 if (code != GET_CODE (y))
1994 return 0;
1995 if (code == LABEL_REF)
1996 return XEXP (x, 0) == XEXP (y, 0);
1997 if (code == SYMBOL_REF)
1998 return XSTR (x, 0) == XSTR (y, 0);
2000 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2002 if (GET_MODE (x) != GET_MODE (y))
2003 return 0;
2005 /* Compare the elements. If any pair of corresponding elements
2006 fail to match, return 0 for the whole things. */
2008 success_2 = 0;
2009 fmt = GET_RTX_FORMAT (code);
2010 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2012 int val;
2013 switch (fmt[i])
2015 case 'w':
2016 if (XWINT (x, i) != XWINT (y, i))
2017 return 0;
2018 break;
2020 case 'i':
2021 if (XINT (x, i) != XINT (y, i))
2022 return 0;
2023 break;
2025 case 'e':
2026 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2027 if (val == 0)
2028 return 0;
2029 /* If any subexpression returns 2,
2030 we should return 2 if we are successful. */
2031 if (val == 2)
2032 success_2 = 1;
2033 break;
2035 case '0':
2036 break;
2038 /* It is believed that rtx's at this level will never
2039 contain anything but integers and other rtx's,
2040 except for within LABEL_REFs and SYMBOL_REFs. */
2041 default:
2042 abort ();
2045 return 1 + success_2;
2048 /* Return the number of times character C occurs in string S. */
2051 n_occurrences (c, s)
2052 int c;
2053 char *s;
2055 int n = 0;
2056 while (*s)
2057 n += (*s++ == c);
2058 return n;
2061 /* Describe the range of registers or memory referenced by X.
2062 If X is a register, set REG_FLAG and put the first register
2063 number into START and the last plus one into END.
2064 If X is a memory reference, put a base address into BASE
2065 and a range of integer offsets into START and END.
2066 If X is pushing on the stack, we can assume it causes no trouble,
2067 so we set the SAFE field. */
2069 static struct decomposition
2070 decompose (x)
2071 rtx x;
2073 struct decomposition val;
2074 int all_const = 0;
2076 val.reg_flag = 0;
2077 val.safe = 0;
2078 val.base = 0;
2079 if (GET_CODE (x) == MEM)
2081 rtx base, offset = 0;
2082 rtx addr = XEXP (x, 0);
2084 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2085 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2087 val.base = XEXP (addr, 0);
2088 val.start = - GET_MODE_SIZE (GET_MODE (x));
2089 val.end = GET_MODE_SIZE (GET_MODE (x));
2090 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2091 return val;
2094 if (GET_CODE (addr) == CONST)
2096 addr = XEXP (addr, 0);
2097 all_const = 1;
2099 if (GET_CODE (addr) == PLUS)
2101 if (CONSTANT_P (XEXP (addr, 0)))
2103 base = XEXP (addr, 1);
2104 offset = XEXP (addr, 0);
2106 else if (CONSTANT_P (XEXP (addr, 1)))
2108 base = XEXP (addr, 0);
2109 offset = XEXP (addr, 1);
2113 if (offset == 0)
2115 base = addr;
2116 offset = const0_rtx;
2118 if (GET_CODE (offset) == CONST)
2119 offset = XEXP (offset, 0);
2120 if (GET_CODE (offset) == PLUS)
2122 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2124 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2125 offset = XEXP (offset, 0);
2127 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2129 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2130 offset = XEXP (offset, 1);
2132 else
2134 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2135 offset = const0_rtx;
2138 else if (GET_CODE (offset) != CONST_INT)
2140 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2141 offset = const0_rtx;
2144 if (all_const && GET_CODE (base) == PLUS)
2145 base = gen_rtx_CONST (GET_MODE (base), base);
2147 if (GET_CODE (offset) != CONST_INT)
2148 abort ();
2150 val.start = INTVAL (offset);
2151 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2152 val.base = base;
2153 return val;
2155 else if (GET_CODE (x) == REG)
2157 val.reg_flag = 1;
2158 val.start = true_regnum (x);
2159 if (val.start < 0)
2161 /* A pseudo with no hard reg. */
2162 val.start = REGNO (x);
2163 val.end = val.start + 1;
2165 else
2166 /* A hard reg. */
2167 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2169 else if (GET_CODE (x) == SUBREG)
2171 if (GET_CODE (SUBREG_REG (x)) != REG)
2172 /* This could be more precise, but it's good enough. */
2173 return decompose (SUBREG_REG (x));
2174 val.reg_flag = 1;
2175 val.start = true_regnum (x);
2176 if (val.start < 0)
2177 return decompose (SUBREG_REG (x));
2178 else
2179 /* A hard reg. */
2180 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2182 else if (CONSTANT_P (x)
2183 /* This hasn't been assigned yet, so it can't conflict yet. */
2184 || GET_CODE (x) == SCRATCH)
2185 val.safe = 1;
2186 else
2187 abort ();
2188 return val;
2191 /* Return 1 if altering Y will not modify the value of X.
2192 Y is also described by YDATA, which should be decompose (Y). */
2194 static int
2195 immune_p (x, y, ydata)
2196 rtx x, y;
2197 struct decomposition ydata;
2199 struct decomposition xdata;
2201 if (ydata.reg_flag)
2202 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, NULL_PTR);
2203 if (ydata.safe)
2204 return 1;
2206 if (GET_CODE (y) != MEM)
2207 abort ();
2208 /* If Y is memory and X is not, Y can't affect X. */
2209 if (GET_CODE (x) != MEM)
2210 return 1;
2212 xdata = decompose (x);
2214 if (! rtx_equal_p (xdata.base, ydata.base))
2216 /* If bases are distinct symbolic constants, there is no overlap. */
2217 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2218 return 1;
2219 /* Constants and stack slots never overlap. */
2220 if (CONSTANT_P (xdata.base)
2221 && (ydata.base == frame_pointer_rtx
2222 || ydata.base == hard_frame_pointer_rtx
2223 || ydata.base == stack_pointer_rtx))
2224 return 1;
2225 if (CONSTANT_P (ydata.base)
2226 && (xdata.base == frame_pointer_rtx
2227 || xdata.base == hard_frame_pointer_rtx
2228 || xdata.base == stack_pointer_rtx))
2229 return 1;
2230 /* If either base is variable, we don't know anything. */
2231 return 0;
2235 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2238 /* Similar, but calls decompose. */
2241 safe_from_earlyclobber (op, clobber)
2242 rtx op, clobber;
2244 struct decomposition early_data;
2246 early_data = decompose (clobber);
2247 return immune_p (op, clobber, early_data);
2250 /* Main entry point of this file: search the body of INSN
2251 for values that need reloading and record them with push_reload.
2252 REPLACE nonzero means record also where the values occur
2253 so that subst_reloads can be used.
2255 IND_LEVELS says how many levels of indirection are supported by this
2256 machine; a value of zero means that a memory reference is not a valid
2257 memory address.
2259 LIVE_KNOWN says we have valid information about which hard
2260 regs are live at each point in the program; this is true when
2261 we are called from global_alloc but false when stupid register
2262 allocation has been done.
2264 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2265 which is nonnegative if the reg has been commandeered for reloading into.
2266 It is copied into STATIC_RELOAD_REG_P and referenced from there
2267 by various subroutines. */
2269 void
2270 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2271 rtx insn;
2272 int replace, ind_levels;
2273 int live_known;
2274 short *reload_reg_p;
2276 #ifdef REGISTER_CONSTRAINTS
2278 register int insn_code_number;
2279 register int i, j;
2280 int noperands;
2281 /* These are the constraints for the insn. We don't change them. */
2282 char *constraints1[MAX_RECOG_OPERANDS];
2283 /* These start out as the constraints for the insn
2284 and they are chewed up as we consider alternatives. */
2285 char *constraints[MAX_RECOG_OPERANDS];
2286 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2287 a register. */
2288 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2289 char pref_or_nothing[MAX_RECOG_OPERANDS];
2290 /* Nonzero for a MEM operand whose entire address needs a reload. */
2291 int address_reloaded[MAX_RECOG_OPERANDS];
2292 /* Value of enum reload_type to use for operand. */
2293 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2294 /* Value of enum reload_type to use within address of operand. */
2295 enum reload_type address_type[MAX_RECOG_OPERANDS];
2296 /* Save the usage of each operand. */
2297 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2298 int no_input_reloads = 0, no_output_reloads = 0;
2299 int n_alternatives;
2300 int this_alternative[MAX_RECOG_OPERANDS];
2301 char this_alternative_win[MAX_RECOG_OPERANDS];
2302 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2303 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2304 int this_alternative_matches[MAX_RECOG_OPERANDS];
2305 int swapped;
2306 int goal_alternative[MAX_RECOG_OPERANDS];
2307 int this_alternative_number;
2308 int goal_alternative_number;
2309 int operand_reloadnum[MAX_RECOG_OPERANDS];
2310 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2311 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2312 char goal_alternative_win[MAX_RECOG_OPERANDS];
2313 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2314 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2315 int goal_alternative_swapped;
2316 int best;
2317 int commutative;
2318 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2319 rtx substed_operand[MAX_RECOG_OPERANDS];
2320 rtx body = PATTERN (insn);
2321 rtx set = single_set (insn);
2322 int goal_earlyclobber, this_earlyclobber;
2323 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2325 this_insn = insn;
2326 this_insn_is_asm = 0; /* Tentative. */
2327 n_reloads = 0;
2328 n_replacements = 0;
2329 n_memlocs = 0;
2330 n_earlyclobbers = 0;
2331 replace_reloads = replace;
2332 hard_regs_live_known = live_known;
2333 static_reload_reg_p = reload_reg_p;
2335 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2336 neither are insns that SET cc0. Insns that use CC0 are not allowed
2337 to have any input reloads. */
2338 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2339 no_output_reloads = 1;
2341 #ifdef HAVE_cc0
2342 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2343 no_input_reloads = 1;
2344 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2345 no_output_reloads = 1;
2346 #endif
2348 #ifdef SECONDARY_MEMORY_NEEDED
2349 /* The eliminated forms of any secondary memory locations are per-insn, so
2350 clear them out here. */
2352 bzero ((char *) secondary_memlocs_elim, sizeof secondary_memlocs_elim);
2353 #endif
2355 /* Find what kind of insn this is. NOPERANDS gets number of operands.
2356 Make OPERANDS point to a vector of operand values.
2357 Make OPERAND_LOCS point to a vector of pointers to
2358 where the operands were found.
2359 Fill CONSTRAINTS and CONSTRAINTS1 with pointers to the
2360 constraint-strings for this insn.
2361 Return if the insn needs no reload processing. */
2363 switch (GET_CODE (body))
2365 case USE:
2366 case CLOBBER:
2367 case ASM_INPUT:
2368 case ADDR_VEC:
2369 case ADDR_DIFF_VEC:
2370 return;
2372 case SET:
2373 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2374 is cheap to move between them. If it is not, there may not be an insn
2375 to do the copy, so we may need a reload. */
2376 if (GET_CODE (SET_DEST (body)) == REG
2377 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2378 && GET_CODE (SET_SRC (body)) == REG
2379 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2380 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2381 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2382 return;
2383 case PARALLEL:
2384 case ASM_OPERANDS:
2385 reload_n_operands = noperands = asm_noperands (body);
2386 if (noperands >= 0)
2388 /* This insn is an `asm' with operands. */
2390 insn_code_number = -1;
2391 this_insn_is_asm = 1;
2393 /* expand_asm_operands makes sure there aren't too many operands. */
2394 if (noperands > MAX_RECOG_OPERANDS)
2395 abort ();
2397 /* Now get the operand values and constraints out of the insn. */
2399 decode_asm_operands (body, recog_operand, recog_operand_loc,
2400 constraints, operand_mode);
2401 if (noperands > 0)
2403 bcopy ((char *) constraints, (char *) constraints1,
2404 noperands * sizeof (char *));
2405 n_alternatives = n_occurrences (',', constraints[0]) + 1;
2406 for (i = 1; i < noperands; i++)
2407 if (n_alternatives != n_occurrences (',', constraints[i]) + 1)
2409 error_for_asm (insn, "operand constraints differ in number of alternatives");
2410 /* Avoid further trouble with this insn. */
2411 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
2412 n_reloads = 0;
2413 return;
2416 break;
2419 default:
2420 /* Ordinary insn: recognize it, get the operands via insn_extract
2421 and get the constraints. */
2423 insn_code_number = recog_memoized (insn);
2424 if (insn_code_number < 0)
2425 fatal_insn_not_found (insn);
2427 reload_n_operands = noperands = insn_n_operands[insn_code_number];
2428 n_alternatives = insn_n_alternatives[insn_code_number];
2429 /* Just return "no reloads" if insn has no operands with constraints. */
2430 if (n_alternatives == 0)
2431 return;
2432 insn_extract (insn);
2433 for (i = 0; i < noperands; i++)
2435 constraints[i] = constraints1[i]
2436 = insn_operand_constraint[insn_code_number][i];
2437 operand_mode[i] = insn_operand_mode[insn_code_number][i];
2441 if (noperands == 0)
2442 return;
2444 commutative = -1;
2446 /* If we will need to know, later, whether some pair of operands
2447 are the same, we must compare them now and save the result.
2448 Reloading the base and index registers will clobber them
2449 and afterward they will fail to match. */
2451 for (i = 0; i < noperands; i++)
2453 register char *p;
2454 register int c;
2456 substed_operand[i] = recog_operand[i];
2457 p = constraints[i];
2459 modified[i] = RELOAD_READ;
2461 /* Scan this operand's constraint to see if it is an output operand,
2462 an in-out operand, is commutative, or should match another. */
2464 while ((c = *p++))
2466 if (c == '=')
2467 modified[i] = RELOAD_WRITE;
2468 else if (c == '+')
2469 modified[i] = RELOAD_READ_WRITE;
2470 else if (c == '%')
2472 /* The last operand should not be marked commutative. */
2473 if (i == noperands - 1)
2475 if (this_insn_is_asm)
2476 warning_for_asm (this_insn,
2477 "`%%' constraint used with last operand");
2478 else
2479 abort ();
2481 else
2482 commutative = i;
2484 else if (c >= '0' && c <= '9')
2486 c -= '0';
2487 operands_match[c][i]
2488 = operands_match_p (recog_operand[c], recog_operand[i]);
2490 /* An operand may not match itself. */
2491 if (c == i)
2493 if (this_insn_is_asm)
2494 warning_for_asm (this_insn,
2495 "operand %d has constraint %d", i, c);
2496 else
2497 abort ();
2500 /* If C can be commuted with C+1, and C might need to match I,
2501 then C+1 might also need to match I. */
2502 if (commutative >= 0)
2504 if (c == commutative || c == commutative + 1)
2506 int other = c + (c == commutative ? 1 : -1);
2507 operands_match[other][i]
2508 = operands_match_p (recog_operand[other], recog_operand[i]);
2510 if (i == commutative || i == commutative + 1)
2512 int other = i + (i == commutative ? 1 : -1);
2513 operands_match[c][other]
2514 = operands_match_p (recog_operand[c], recog_operand[other]);
2516 /* Note that C is supposed to be less than I.
2517 No need to consider altering both C and I because in
2518 that case we would alter one into the other. */
2524 /* Examine each operand that is a memory reference or memory address
2525 and reload parts of the addresses into index registers.
2526 Also here any references to pseudo regs that didn't get hard regs
2527 but are equivalent to constants get replaced in the insn itself
2528 with those constants. Nobody will ever see them again.
2530 Finally, set up the preferred classes of each operand. */
2532 for (i = 0; i < noperands; i++)
2534 register RTX_CODE code = GET_CODE (recog_operand[i]);
2536 address_reloaded[i] = 0;
2537 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2538 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2539 : RELOAD_OTHER);
2540 address_type[i]
2541 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2542 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2543 : RELOAD_OTHER);
2545 if (*constraints[i] == 0)
2546 /* Ignore things like match_operator operands. */
2548 else if (constraints[i][0] == 'p')
2550 find_reloads_address (VOIDmode, NULL_PTR,
2551 recog_operand[i], recog_operand_loc[i],
2552 i, operand_type[i], ind_levels, insn);
2554 /* If we now have a simple operand where we used to have a
2555 PLUS or MULT, re-recognize and try again. */
2556 if ((GET_RTX_CLASS (GET_CODE (*recog_operand_loc[i])) == 'o'
2557 || GET_CODE (*recog_operand_loc[i]) == SUBREG)
2558 && (GET_CODE (recog_operand[i]) == MULT
2559 || GET_CODE (recog_operand[i]) == PLUS))
2561 INSN_CODE (insn) = -1;
2562 find_reloads (insn, replace, ind_levels, live_known,
2563 reload_reg_p);
2564 return;
2567 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2569 else if (code == MEM)
2571 if (find_reloads_address (GET_MODE (recog_operand[i]),
2572 recog_operand_loc[i],
2573 XEXP (recog_operand[i], 0),
2574 &XEXP (recog_operand[i], 0),
2575 i, address_type[i], ind_levels, insn))
2576 address_reloaded[i] = 1;
2577 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2579 else if (code == SUBREG)
2580 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2581 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2582 ind_levels,
2583 set != 0
2584 && &SET_DEST (set) == recog_operand_loc[i]);
2585 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2586 /* We can get a PLUS as an "operand" as a result of register
2587 elimination. See eliminate_regs and gen_reload. We handle
2588 a unary operator by reloading the operand. */
2589 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i]
2590 = find_reloads_toplev (recog_operand[i], i, address_type[i],
2591 ind_levels, 0);
2592 else if (code == REG)
2594 /* This is equivalent to calling find_reloads_toplev.
2595 The code is duplicated for speed.
2596 When we find a pseudo always equivalent to a constant,
2597 we replace it by the constant. We must be sure, however,
2598 that we don't try to replace it in the insn in which it
2599 is being set. */
2600 register int regno = REGNO (recog_operand[i]);
2601 if (reg_equiv_constant[regno] != 0
2602 && (set == 0 || &SET_DEST (set) != recog_operand_loc[i]))
2603 substed_operand[i] = recog_operand[i]
2604 = reg_equiv_constant[regno];
2605 #if 0 /* This might screw code in reload1.c to delete prior output-reload
2606 that feeds this insn. */
2607 if (reg_equiv_mem[regno] != 0)
2608 substed_operand[i] = recog_operand[i]
2609 = reg_equiv_mem[regno];
2610 #endif
2611 if (reg_equiv_address[regno] != 0)
2613 /* If reg_equiv_address is not a constant address, copy it,
2614 since it may be shared. */
2615 /* We must rerun eliminate_regs, in case the elimination
2616 offsets have changed. */
2617 rtx address = XEXP (eliminate_regs (reg_equiv_memory_loc[regno],
2618 0, NULL_RTX),
2621 if (rtx_varies_p (address))
2622 address = copy_rtx (address);
2624 /* If this is an output operand, we must output a CLOBBER
2625 after INSN so find_equiv_reg knows REGNO is being written.
2626 Mark this insn specially, do we can put our output reloads
2627 after it. */
2629 if (modified[i] != RELOAD_READ)
2630 PUT_MODE (emit_insn_after (gen_rtx_CLOBBER (VOIDmode,
2631 recog_operand[i]),
2632 insn),
2633 DImode);
2635 *recog_operand_loc[i] = recog_operand[i]
2636 = gen_rtx_MEM (GET_MODE (recog_operand[i]), address);
2637 RTX_UNCHANGING_P (recog_operand[i])
2638 = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
2639 find_reloads_address (GET_MODE (recog_operand[i]),
2640 recog_operand_loc[i],
2641 XEXP (recog_operand[i], 0),
2642 &XEXP (recog_operand[i], 0),
2643 i, address_type[i], ind_levels, insn);
2644 substed_operand[i] = recog_operand[i] = *recog_operand_loc[i];
2647 /* If the operand is still a register (we didn't replace it with an
2648 equivalent), get the preferred class to reload it into. */
2649 code = GET_CODE (recog_operand[i]);
2650 preferred_class[i]
2651 = ((code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER)
2652 ? reg_preferred_class (REGNO (recog_operand[i])) : NO_REGS);
2653 pref_or_nothing[i]
2654 = (code == REG && REGNO (recog_operand[i]) >= FIRST_PSEUDO_REGISTER
2655 && reg_alternate_class (REGNO (recog_operand[i])) == NO_REGS);
2658 /* If this is simply a copy from operand 1 to operand 0, merge the
2659 preferred classes for the operands. */
2660 if (set != 0 && noperands >= 2 && recog_operand[0] == SET_DEST (set)
2661 && recog_operand[1] == SET_SRC (set))
2663 preferred_class[0] = preferred_class[1]
2664 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2665 pref_or_nothing[0] |= pref_or_nothing[1];
2666 pref_or_nothing[1] |= pref_or_nothing[0];
2669 /* Now see what we need for pseudo-regs that didn't get hard regs
2670 or got the wrong kind of hard reg. For this, we must consider
2671 all the operands together against the register constraints. */
2673 best = MAX_RECOG_OPERANDS * 2 + 600;
2675 swapped = 0;
2676 goal_alternative_swapped = 0;
2677 try_swapped:
2679 /* The constraints are made of several alternatives.
2680 Each operand's constraint looks like foo,bar,... with commas
2681 separating the alternatives. The first alternatives for all
2682 operands go together, the second alternatives go together, etc.
2684 First loop over alternatives. */
2686 for (this_alternative_number = 0;
2687 this_alternative_number < n_alternatives;
2688 this_alternative_number++)
2690 /* Loop over operands for one constraint alternative. */
2691 /* LOSERS counts those that don't fit this alternative
2692 and would require loading. */
2693 int losers = 0;
2694 /* BAD is set to 1 if it some operand can't fit this alternative
2695 even after reloading. */
2696 int bad = 0;
2697 /* REJECT is a count of how undesirable this alternative says it is
2698 if any reloading is required. If the alternative matches exactly
2699 then REJECT is ignored, but otherwise it gets this much
2700 counted against it in addition to the reloading needed. Each
2701 ? counts three times here since we want the disparaging caused by
2702 a bad register class to only count 1/3 as much. */
2703 int reject = 0;
2705 this_earlyclobber = 0;
2707 for (i = 0; i < noperands; i++)
2709 register char *p = constraints[i];
2710 register int win = 0;
2711 /* 0 => this operand can be reloaded somehow for this alternative */
2712 int badop = 1;
2713 /* 0 => this operand can be reloaded if the alternative allows regs. */
2714 int winreg = 0;
2715 int c;
2716 register rtx operand = recog_operand[i];
2717 int offset = 0;
2718 /* Nonzero means this is a MEM that must be reloaded into a reg
2719 regardless of what the constraint says. */
2720 int force_reload = 0;
2721 int offmemok = 0;
2722 /* Nonzero if a constant forced into memory would be OK for this
2723 operand. */
2724 int constmemok = 0;
2725 int earlyclobber = 0;
2727 /* If the predicate accepts a unary operator, it means that
2728 we need to reload the operand. */
2729 if (GET_RTX_CLASS (GET_CODE (operand)) == '1')
2730 operand = XEXP (operand, 0);
2732 /* If the operand is a SUBREG, extract
2733 the REG or MEM (or maybe even a constant) within.
2734 (Constants can occur as a result of reg_equiv_constant.) */
2736 while (GET_CODE (operand) == SUBREG)
2738 offset += SUBREG_WORD (operand);
2739 operand = SUBREG_REG (operand);
2740 /* Force reload if this is a constant or PLUS or if there may may
2741 be a problem accessing OPERAND in the outer mode. */
2742 if (CONSTANT_P (operand)
2743 || GET_CODE (operand) == PLUS
2744 /* We must force a reload of paradoxical SUBREGs
2745 of a MEM because the alignment of the inner value
2746 may not be enough to do the outer reference. On
2747 big-endian machines, it may also reference outside
2748 the object.
2750 On machines that extend byte operations and we have a
2751 SUBREG where both the inner and outer modes are no wider
2752 than a word and the inner mode is narrower, is integral,
2753 and gets extended when loaded from memory, combine.c has
2754 made assumptions about the behavior of the machine in such
2755 register access. If the data is, in fact, in memory we
2756 must always load using the size assumed to be in the
2757 register and let the insn do the different-sized
2758 accesses.
2760 This is doubly true if WORD_REGISTER_OPERATIONS. In
2761 this case eliminate_regs has left non-paradoxical
2762 subregs for push_reloads to see. Make sure it does
2763 by forcing the reload.
2765 ??? When is it right at this stage to have a subreg
2766 of a mem that is _not_ to be handled specialy? IMO
2767 those should have been reduced to just a mem. */
2768 || ((GET_CODE (operand) == MEM
2769 || (GET_CODE (operand)== REG
2770 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2771 #ifndef WORD_REGISTER_OPERATIONS
2772 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2773 < BIGGEST_ALIGNMENT)
2774 && (GET_MODE_SIZE (operand_mode[i])
2775 > GET_MODE_SIZE (GET_MODE (operand))))
2776 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2777 #ifdef LOAD_EXTEND_OP
2778 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2779 && (GET_MODE_SIZE (GET_MODE (operand))
2780 <= UNITS_PER_WORD)
2781 && (GET_MODE_SIZE (operand_mode[i])
2782 > GET_MODE_SIZE (GET_MODE (operand)))
2783 && INTEGRAL_MODE_P (GET_MODE (operand))
2784 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2785 #endif
2787 #endif
2789 /* Subreg of a hard reg which can't handle the subreg's mode
2790 or which would handle that mode in the wrong number of
2791 registers for subregging to work. */
2792 || (GET_CODE (operand) == REG
2793 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2794 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2795 && (GET_MODE_SIZE (GET_MODE (operand))
2796 > UNITS_PER_WORD)
2797 && ((GET_MODE_SIZE (GET_MODE (operand))
2798 / UNITS_PER_WORD)
2799 != HARD_REGNO_NREGS (REGNO (operand),
2800 GET_MODE (operand))))
2801 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2802 operand_mode[i]))))
2803 force_reload = 1;
2806 this_alternative[i] = (int) NO_REGS;
2807 this_alternative_win[i] = 0;
2808 this_alternative_offmemok[i] = 0;
2809 this_alternative_earlyclobber[i] = 0;
2810 this_alternative_matches[i] = -1;
2812 /* An empty constraint or empty alternative
2813 allows anything which matched the pattern. */
2814 if (*p == 0 || *p == ',')
2815 win = 1, badop = 0;
2817 /* Scan this alternative's specs for this operand;
2818 set WIN if the operand fits any letter in this alternative.
2819 Otherwise, clear BADOP if this operand could
2820 fit some letter after reloads,
2821 or set WINREG if this operand could fit after reloads
2822 provided the constraint allows some registers. */
2824 while (*p && (c = *p++) != ',')
2825 switch (c)
2827 case '=':
2828 case '+':
2829 case '*':
2830 break;
2832 case '%':
2833 /* The last operand should not be marked commutative. */
2834 if (i != noperands - 1)
2835 commutative = i;
2836 break;
2838 case '?':
2839 reject += 6;
2840 break;
2842 case '!':
2843 reject = 600;
2844 break;
2846 case '#':
2847 /* Ignore rest of this alternative as far as
2848 reloading is concerned. */
2849 while (*p && *p != ',') p++;
2850 break;
2852 case '0':
2853 case '1':
2854 case '2':
2855 case '3':
2856 case '4':
2857 c -= '0';
2858 this_alternative_matches[i] = c;
2859 /* We are supposed to match a previous operand.
2860 If we do, we win if that one did.
2861 If we do not, count both of the operands as losers.
2862 (This is too conservative, since most of the time
2863 only a single reload insn will be needed to make
2864 the two operands win. As a result, this alternative
2865 may be rejected when it is actually desirable.) */
2866 if ((swapped && (c != commutative || i != commutative + 1))
2867 /* If we are matching as if two operands were swapped,
2868 also pretend that operands_match had been computed
2869 with swapped.
2870 But if I is the second of those and C is the first,
2871 don't exchange them, because operands_match is valid
2872 only on one side of its diagonal. */
2873 ? (operands_match
2874 [(c == commutative || c == commutative + 1)
2875 ? 2*commutative + 1 - c : c]
2876 [(i == commutative || i == commutative + 1)
2877 ? 2*commutative + 1 - i : i])
2878 : operands_match[c][i])
2880 /* If we are matching a non-offsettable address where an
2881 offsettable address was expected, then we must reject
2882 this combination, because we can't reload it. */
2883 if (this_alternative_offmemok[c]
2884 && GET_CODE (recog_operand[c]) == MEM
2885 && this_alternative[c] == (int) NO_REGS
2886 && ! this_alternative_win[c])
2887 bad = 1;
2889 win = this_alternative_win[c];
2891 else
2893 /* Operands don't match. */
2894 rtx value;
2895 /* Retroactively mark the operand we had to match
2896 as a loser, if it wasn't already. */
2897 if (this_alternative_win[c])
2898 losers++;
2899 this_alternative_win[c] = 0;
2900 if (this_alternative[c] == (int) NO_REGS)
2901 bad = 1;
2902 /* But count the pair only once in the total badness of
2903 this alternative, if the pair can be a dummy reload. */
2904 value
2905 = find_dummy_reload (recog_operand[i], recog_operand[c],
2906 recog_operand_loc[i], recog_operand_loc[c],
2907 operand_mode[i], operand_mode[c],
2908 this_alternative[c], -1,
2909 this_alternative_earlyclobber[c]);
2911 if (value != 0)
2912 losers--;
2914 /* This can be fixed with reloads if the operand
2915 we are supposed to match can be fixed with reloads. */
2916 badop = 0;
2917 this_alternative[i] = this_alternative[c];
2919 /* If we have to reload this operand and some previous
2920 operand also had to match the same thing as this
2921 operand, we don't know how to do that. So reject this
2922 alternative. */
2923 if (! win || force_reload)
2924 for (j = 0; j < i; j++)
2925 if (this_alternative_matches[j]
2926 == this_alternative_matches[i])
2927 badop = 1;
2929 break;
2931 case 'p':
2932 /* All necessary reloads for an address_operand
2933 were handled in find_reloads_address. */
2934 this_alternative[i] = (int) BASE_REG_CLASS;
2935 win = 1;
2936 break;
2938 case 'm':
2939 if (force_reload)
2940 break;
2941 if (GET_CODE (operand) == MEM
2942 || (GET_CODE (operand) == REG
2943 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
2944 && reg_renumber[REGNO (operand)] < 0))
2945 win = 1;
2946 if (CONSTANT_P (operand)
2947 /* force_const_mem does not accept HIGH. */
2948 && GET_CODE (operand) != HIGH)
2949 badop = 0;
2950 constmemok = 1;
2951 break;
2953 case '<':
2954 if (GET_CODE (operand) == MEM
2955 && ! address_reloaded[i]
2956 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
2957 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
2958 win = 1;
2959 break;
2961 case '>':
2962 if (GET_CODE (operand) == MEM
2963 && ! address_reloaded[i]
2964 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
2965 || GET_CODE (XEXP (operand, 0)) == POST_INC))
2966 win = 1;
2967 break;
2969 /* Memory operand whose address is not offsettable. */
2970 case 'V':
2971 if (force_reload)
2972 break;
2973 if (GET_CODE (operand) == MEM
2974 && ! (ind_levels ? offsettable_memref_p (operand)
2975 : offsettable_nonstrict_memref_p (operand))
2976 /* Certain mem addresses will become offsettable
2977 after they themselves are reloaded. This is important;
2978 we don't want our own handling of unoffsettables
2979 to override the handling of reg_equiv_address. */
2980 && !(GET_CODE (XEXP (operand, 0)) == REG
2981 && (ind_levels == 0
2982 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
2983 win = 1;
2984 break;
2986 /* Memory operand whose address is offsettable. */
2987 case 'o':
2988 if (force_reload)
2989 break;
2990 if ((GET_CODE (operand) == MEM
2991 /* If IND_LEVELS, find_reloads_address won't reload a
2992 pseudo that didn't get a hard reg, so we have to
2993 reject that case. */
2994 && (ind_levels ? offsettable_memref_p (operand)
2995 : offsettable_nonstrict_memref_p (operand)))
2996 /* A reloaded auto-increment address is offsettable,
2997 because it is now just a simple register indirect. */
2998 || (GET_CODE (operand) == MEM
2999 && address_reloaded[i]
3000 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3001 || GET_CODE (XEXP (operand, 0)) == PRE_DEC
3002 || GET_CODE (XEXP (operand, 0)) == POST_INC
3003 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3004 /* Certain mem addresses will become offsettable
3005 after they themselves are reloaded. This is important;
3006 we don't want our own handling of unoffsettables
3007 to override the handling of reg_equiv_address. */
3008 || (GET_CODE (operand) == MEM
3009 && GET_CODE (XEXP (operand, 0)) == REG
3010 && (ind_levels == 0
3011 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0))
3012 || (GET_CODE (operand) == REG
3013 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3014 && reg_renumber[REGNO (operand)] < 0
3015 /* If reg_equiv_address is nonzero, we will be
3016 loading it into a register; hence it will be
3017 offsettable, but we cannot say that reg_equiv_mem
3018 is offsettable without checking. */
3019 && ((reg_equiv_mem[REGNO (operand)] != 0
3020 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3021 || (reg_equiv_address[REGNO (operand)] != 0))))
3022 win = 1;
3023 /* force_const_mem does not accept HIGH. */
3024 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3025 || GET_CODE (operand) == MEM)
3026 badop = 0;
3027 constmemok = 1;
3028 offmemok = 1;
3029 break;
3031 case '&':
3032 /* Output operand that is stored before the need for the
3033 input operands (and their index registers) is over. */
3034 earlyclobber = 1, this_earlyclobber = 1;
3035 break;
3037 case 'E':
3038 #ifndef REAL_ARITHMETIC
3039 /* Match any floating double constant, but only if
3040 we can examine the bits of it reliably. */
3041 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
3042 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
3043 && GET_MODE (operand) != VOIDmode && ! flag_pretend_float)
3044 break;
3045 #endif
3046 if (GET_CODE (operand) == CONST_DOUBLE)
3047 win = 1;
3048 break;
3050 case 'F':
3051 if (GET_CODE (operand) == CONST_DOUBLE)
3052 win = 1;
3053 break;
3055 case 'G':
3056 case 'H':
3057 if (GET_CODE (operand) == CONST_DOUBLE
3058 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3059 win = 1;
3060 break;
3062 case 's':
3063 if (GET_CODE (operand) == CONST_INT
3064 || (GET_CODE (operand) == CONST_DOUBLE
3065 && GET_MODE (operand) == VOIDmode))
3066 break;
3067 case 'i':
3068 if (CONSTANT_P (operand)
3069 #ifdef LEGITIMATE_PIC_OPERAND_P
3070 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3071 #endif
3073 win = 1;
3074 break;
3076 case 'n':
3077 if (GET_CODE (operand) == CONST_INT
3078 || (GET_CODE (operand) == CONST_DOUBLE
3079 && GET_MODE (operand) == VOIDmode))
3080 win = 1;
3081 break;
3083 case 'I':
3084 case 'J':
3085 case 'K':
3086 case 'L':
3087 case 'M':
3088 case 'N':
3089 case 'O':
3090 case 'P':
3091 if (GET_CODE (operand) == CONST_INT
3092 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3093 win = 1;
3094 break;
3096 case 'X':
3097 win = 1;
3098 break;
3100 case 'g':
3101 if (! force_reload
3102 /* A PLUS is never a valid operand, but reload can make
3103 it from a register when eliminating registers. */
3104 && GET_CODE (operand) != PLUS
3105 /* A SCRATCH is not a valid operand. */
3106 && GET_CODE (operand) != SCRATCH
3107 #ifdef LEGITIMATE_PIC_OPERAND_P
3108 && (! CONSTANT_P (operand)
3109 || ! flag_pic
3110 || LEGITIMATE_PIC_OPERAND_P (operand))
3111 #endif
3112 && (GENERAL_REGS == ALL_REGS
3113 || GET_CODE (operand) != REG
3114 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3115 && reg_renumber[REGNO (operand)] < 0)))
3116 win = 1;
3117 /* Drop through into 'r' case */
3119 case 'r':
3120 this_alternative[i]
3121 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3122 goto reg;
3124 #ifdef EXTRA_CONSTRAINT
3125 case 'Q':
3126 case 'R':
3127 case 'S':
3128 case 'T':
3129 case 'U':
3130 if (EXTRA_CONSTRAINT (operand, c))
3131 win = 1;
3132 break;
3133 #endif
3135 default:
3136 this_alternative[i]
3137 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3139 reg:
3140 if (GET_MODE (operand) == BLKmode)
3141 break;
3142 winreg = 1;
3143 if (GET_CODE (operand) == REG
3144 && reg_fits_class_p (operand, this_alternative[i],
3145 offset, GET_MODE (recog_operand[i])))
3146 win = 1;
3147 break;
3150 constraints[i] = p;
3152 /* If this operand could be handled with a reg,
3153 and some reg is allowed, then this operand can be handled. */
3154 if (winreg && this_alternative[i] != (int) NO_REGS)
3155 badop = 0;
3157 /* Record which operands fit this alternative. */
3158 this_alternative_earlyclobber[i] = earlyclobber;
3159 if (win && ! force_reload)
3160 this_alternative_win[i] = 1;
3161 else
3163 int const_to_mem = 0;
3165 this_alternative_offmemok[i] = offmemok;
3166 losers++;
3167 if (badop)
3168 bad = 1;
3169 /* Alternative loses if it has no regs for a reg operand. */
3170 if (GET_CODE (operand) == REG
3171 && this_alternative[i] == (int) NO_REGS
3172 && this_alternative_matches[i] < 0)
3173 bad = 1;
3175 /* Alternative loses if it requires a type of reload not
3176 permitted for this insn. We can always reload SCRATCH
3177 and objects with a REG_UNUSED note. */
3178 if (GET_CODE (operand) != SCRATCH
3179 && modified[i] != RELOAD_READ && no_output_reloads
3180 && ! find_reg_note (insn, REG_UNUSED, operand))
3181 bad = 1;
3182 else if (modified[i] != RELOAD_WRITE && no_input_reloads)
3183 bad = 1;
3185 /* If this is a constant that is reloaded into the desired
3186 class by copying it to memory first, count that as another
3187 reload. This is consistent with other code and is
3188 required to avoid choosing another alternative when
3189 the constant is moved into memory by this function on
3190 an early reload pass. Note that the test here is
3191 precisely the same as in the code below that calls
3192 force_const_mem. */
3193 if (CONSTANT_P (operand)
3194 /* force_const_mem does not accept HIGH. */
3195 && GET_CODE (operand) != HIGH
3196 && (PREFERRED_RELOAD_CLASS (operand,
3197 (enum reg_class) this_alternative[i])
3198 == NO_REGS)
3199 && operand_mode[i] != VOIDmode)
3201 const_to_mem = 1;
3202 if (this_alternative[i] != (int) NO_REGS)
3203 losers++;
3206 /* If we can't reload this value at all, reject this
3207 alternative. Note that we could also lose due to
3208 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3209 here. */
3211 if (! CONSTANT_P (operand)
3212 && (enum reg_class) this_alternative[i] != NO_REGS
3213 && (PREFERRED_RELOAD_CLASS (operand,
3214 (enum reg_class) this_alternative[i])
3215 == NO_REGS))
3216 bad = 1;
3218 /* We prefer to reload pseudos over reloading other things,
3219 since such reloads may be able to be eliminated later.
3220 If we are reloading a SCRATCH, we won't be generating any
3221 insns, just using a register, so it is also preferred.
3222 So bump REJECT in other cases. Don't do this in the
3223 case where we are forcing a constant into memory and
3224 it will then win since we don't want to have a different
3225 alternative match then. */
3226 if (! (GET_CODE (operand) == REG
3227 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3228 && GET_CODE (operand) != SCRATCH
3229 && ! (const_to_mem && constmemok))
3230 reject += 2;
3232 /* Input reloads can be inherited more often than output
3233 reloads can be removed, so penalize output reloads. */
3234 if (operand_type[i] != RELOAD_FOR_INPUT)
3235 reject++;
3238 /* If this operand is a pseudo register that didn't get a hard
3239 reg and this alternative accepts some register, see if the
3240 class that we want is a subset of the preferred class for this
3241 register. If not, but it intersects that class, use the
3242 preferred class instead. If it does not intersect the preferred
3243 class, show that usage of this alternative should be discouraged;
3244 it will be discouraged more still if the register is `preferred
3245 or nothing'. We do this because it increases the chance of
3246 reusing our spill register in a later insn and avoiding a pair
3247 of memory stores and loads.
3249 Don't bother with this if this alternative will accept this
3250 operand.
3252 Don't do this for a multiword operand, since it is only a
3253 small win and has the risk of requiring more spill registers,
3254 which could cause a large loss.
3256 Don't do this if the preferred class has only one register
3257 because we might otherwise exhaust the class. */
3260 if (! win && this_alternative[i] != (int) NO_REGS
3261 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3262 && reg_class_size[(int) preferred_class[i]] > 1)
3264 if (! reg_class_subset_p (this_alternative[i],
3265 preferred_class[i]))
3267 /* Since we don't have a way of forming the intersection,
3268 we just do something special if the preferred class
3269 is a subset of the class we have; that's the most
3270 common case anyway. */
3271 if (reg_class_subset_p (preferred_class[i],
3272 this_alternative[i]))
3273 this_alternative[i] = (int) preferred_class[i];
3274 else
3275 reject += (2 + 2 * pref_or_nothing[i]);
3280 /* Now see if any output operands that are marked "earlyclobber"
3281 in this alternative conflict with any input operands
3282 or any memory addresses. */
3284 for (i = 0; i < noperands; i++)
3285 if (this_alternative_earlyclobber[i]
3286 && this_alternative_win[i])
3288 struct decomposition early_data;
3290 early_data = decompose (recog_operand[i]);
3292 if (modified[i] == RELOAD_READ)
3294 if (this_insn_is_asm)
3295 warning_for_asm (this_insn,
3296 "`&' constraint used with input operand");
3297 else
3298 abort ();
3299 continue;
3302 if (this_alternative[i] == NO_REGS)
3304 this_alternative_earlyclobber[i] = 0;
3305 if (this_insn_is_asm)
3306 error_for_asm (this_insn,
3307 "`&' constraint used with no register class");
3308 else
3309 abort ();
3312 for (j = 0; j < noperands; j++)
3313 /* Is this an input operand or a memory ref? */
3314 if ((GET_CODE (recog_operand[j]) == MEM
3315 || modified[j] != RELOAD_WRITE)
3316 && j != i
3317 /* Ignore things like match_operator operands. */
3318 && *constraints1[j] != 0
3319 /* Don't count an input operand that is constrained to match
3320 the early clobber operand. */
3321 && ! (this_alternative_matches[j] == i
3322 && rtx_equal_p (recog_operand[i], recog_operand[j]))
3323 /* Is it altered by storing the earlyclobber operand? */
3324 && !immune_p (recog_operand[j], recog_operand[i], early_data))
3326 /* If the output is in a single-reg class,
3327 it's costly to reload it, so reload the input instead. */
3328 if (reg_class_size[this_alternative[i]] == 1
3329 && (GET_CODE (recog_operand[j]) == REG
3330 || GET_CODE (recog_operand[j]) == SUBREG))
3332 losers++;
3333 this_alternative_win[j] = 0;
3335 else
3336 break;
3338 /* If an earlyclobber operand conflicts with something,
3339 it must be reloaded, so request this and count the cost. */
3340 if (j != noperands)
3342 losers++;
3343 this_alternative_win[i] = 0;
3344 for (j = 0; j < noperands; j++)
3345 if (this_alternative_matches[j] == i
3346 && this_alternative_win[j])
3348 this_alternative_win[j] = 0;
3349 losers++;
3354 /* If one alternative accepts all the operands, no reload required,
3355 choose that alternative; don't consider the remaining ones. */
3356 if (losers == 0)
3358 /* Unswap these so that they are never swapped at `finish'. */
3359 if (commutative >= 0)
3361 recog_operand[commutative] = substed_operand[commutative];
3362 recog_operand[commutative + 1]
3363 = substed_operand[commutative + 1];
3365 for (i = 0; i < noperands; i++)
3367 goal_alternative_win[i] = 1;
3368 goal_alternative[i] = this_alternative[i];
3369 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3370 goal_alternative_matches[i] = this_alternative_matches[i];
3371 goal_alternative_earlyclobber[i]
3372 = this_alternative_earlyclobber[i];
3374 goal_alternative_number = this_alternative_number;
3375 goal_alternative_swapped = swapped;
3376 goal_earlyclobber = this_earlyclobber;
3377 goto finish;
3380 /* REJECT, set by the ! and ? constraint characters and when a register
3381 would be reloaded into a non-preferred class, discourages the use of
3382 this alternative for a reload goal. REJECT is incremented by six
3383 for each ? and two for each non-preferred class. */
3384 losers = losers * 6 + reject;
3386 /* If this alternative can be made to work by reloading,
3387 and it needs less reloading than the others checked so far,
3388 record it as the chosen goal for reloading. */
3389 if (! bad && best > losers)
3391 for (i = 0; i < noperands; i++)
3393 goal_alternative[i] = this_alternative[i];
3394 goal_alternative_win[i] = this_alternative_win[i];
3395 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3396 goal_alternative_matches[i] = this_alternative_matches[i];
3397 goal_alternative_earlyclobber[i]
3398 = this_alternative_earlyclobber[i];
3400 goal_alternative_swapped = swapped;
3401 best = losers;
3402 goal_alternative_number = this_alternative_number;
3403 goal_earlyclobber = this_earlyclobber;
3407 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3408 then we need to try each alternative twice,
3409 the second time matching those two operands
3410 as if we had exchanged them.
3411 To do this, really exchange them in operands.
3413 If we have just tried the alternatives the second time,
3414 return operands to normal and drop through. */
3416 if (commutative >= 0)
3418 swapped = !swapped;
3419 if (swapped)
3421 register enum reg_class tclass;
3422 register int t;
3424 recog_operand[commutative] = substed_operand[commutative + 1];
3425 recog_operand[commutative + 1] = substed_operand[commutative];
3427 tclass = preferred_class[commutative];
3428 preferred_class[commutative] = preferred_class[commutative + 1];
3429 preferred_class[commutative + 1] = tclass;
3431 t = pref_or_nothing[commutative];
3432 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3433 pref_or_nothing[commutative + 1] = t;
3435 bcopy ((char *) constraints1, (char *) constraints,
3436 noperands * sizeof (char *));
3437 goto try_swapped;
3439 else
3441 recog_operand[commutative] = substed_operand[commutative];
3442 recog_operand[commutative + 1] = substed_operand[commutative + 1];
3446 /* The operands don't meet the constraints.
3447 goal_alternative describes the alternative
3448 that we could reach by reloading the fewest operands.
3449 Reload so as to fit it. */
3451 if (best == MAX_RECOG_OPERANDS + 300)
3453 /* No alternative works with reloads?? */
3454 if (insn_code_number >= 0)
3455 abort ();
3456 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3457 /* Avoid further trouble with this insn. */
3458 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3459 n_reloads = 0;
3460 return;
3463 /* Jump to `finish' from above if all operands are valid already.
3464 In that case, goal_alternative_win is all 1. */
3465 finish:
3467 /* Right now, for any pair of operands I and J that are required to match,
3468 with I < J,
3469 goal_alternative_matches[J] is I.
3470 Set up goal_alternative_matched as the inverse function:
3471 goal_alternative_matched[I] = J. */
3473 for (i = 0; i < noperands; i++)
3474 goal_alternative_matched[i] = -1;
3476 for (i = 0; i < noperands; i++)
3477 if (! goal_alternative_win[i]
3478 && goal_alternative_matches[i] >= 0)
3479 goal_alternative_matched[goal_alternative_matches[i]] = i;
3481 /* If the best alternative is with operands 1 and 2 swapped,
3482 consider them swapped before reporting the reloads. Update the
3483 operand numbers of any reloads already pushed. */
3485 if (goal_alternative_swapped)
3487 register rtx tem;
3489 tem = substed_operand[commutative];
3490 substed_operand[commutative] = substed_operand[commutative + 1];
3491 substed_operand[commutative + 1] = tem;
3492 tem = recog_operand[commutative];
3493 recog_operand[commutative] = recog_operand[commutative + 1];
3494 recog_operand[commutative + 1] = tem;
3496 for (i = 0; i < n_reloads; i++)
3498 if (reload_opnum[i] == commutative)
3499 reload_opnum[i] = commutative + 1;
3500 else if (reload_opnum[i] == commutative + 1)
3501 reload_opnum[i] = commutative;
3505 /* Perform whatever substitutions on the operands we are supposed
3506 to make due to commutativity or replacement of registers
3507 with equivalent constants or memory slots. */
3509 for (i = 0; i < noperands; i++)
3511 *recog_operand_loc[i] = substed_operand[i];
3512 /* While we are looping on operands, initialize this. */
3513 operand_reloadnum[i] = -1;
3515 /* If this is an earlyclobber operand, we need to widen the scope.
3516 The reload must remain valid from the start of the insn being
3517 reloaded until after the operand is stored into its destination.
3518 We approximate this with RELOAD_OTHER even though we know that we
3519 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3521 One special case that is worth checking is when we have an
3522 output that is earlyclobber but isn't used past the insn (typically
3523 a SCRATCH). In this case, we only need have the reload live
3524 through the insn itself, but not for any of our input or output
3525 reloads.
3527 In any case, anything needed to address this operand can remain
3528 however they were previously categorized. */
3530 if (goal_alternative_earlyclobber[i])
3531 operand_type[i]
3532 = (find_reg_note (insn, REG_UNUSED, recog_operand[i])
3533 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3536 /* Any constants that aren't allowed and can't be reloaded
3537 into registers are here changed into memory references. */
3538 for (i = 0; i < noperands; i++)
3539 if (! goal_alternative_win[i]
3540 && CONSTANT_P (recog_operand[i])
3541 /* force_const_mem does not accept HIGH. */
3542 && GET_CODE (recog_operand[i]) != HIGH
3543 && (PREFERRED_RELOAD_CLASS (recog_operand[i],
3544 (enum reg_class) goal_alternative[i])
3545 == NO_REGS)
3546 && operand_mode[i] != VOIDmode)
3548 *recog_operand_loc[i] = recog_operand[i]
3549 = find_reloads_toplev (force_const_mem (operand_mode[i],
3550 recog_operand[i]),
3551 i, address_type[i], ind_levels, 0);
3552 if (alternative_allows_memconst (constraints1[i],
3553 goal_alternative_number))
3554 goal_alternative_win[i] = 1;
3557 /* Record the values of the earlyclobber operands for the caller. */
3558 if (goal_earlyclobber)
3559 for (i = 0; i < noperands; i++)
3560 if (goal_alternative_earlyclobber[i])
3561 reload_earlyclobbers[n_earlyclobbers++] = recog_operand[i];
3563 /* Now record reloads for all the operands that need them. */
3564 for (i = 0; i < noperands; i++)
3565 if (! goal_alternative_win[i])
3567 /* Operands that match previous ones have already been handled. */
3568 if (goal_alternative_matches[i] >= 0)
3570 /* Handle an operand with a nonoffsettable address
3571 appearing where an offsettable address will do
3572 by reloading the address into a base register.
3574 ??? We can also do this when the operand is a register and
3575 reg_equiv_mem is not offsettable, but this is a bit tricky,
3576 so we don't bother with it. It may not be worth doing. */
3577 else if (goal_alternative_matched[i] == -1
3578 && goal_alternative_offmemok[i]
3579 && GET_CODE (recog_operand[i]) == MEM)
3581 operand_reloadnum[i]
3582 = push_reload (XEXP (recog_operand[i], 0), NULL_RTX,
3583 &XEXP (recog_operand[i], 0), NULL_PTR,
3584 BASE_REG_CLASS, GET_MODE (XEXP (recog_operand[i], 0)),
3585 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3586 reload_inc[operand_reloadnum[i]]
3587 = GET_MODE_SIZE (GET_MODE (recog_operand[i]));
3589 /* If this operand is an output, we will have made any
3590 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3591 now we are treating part of the operand as an input, so
3592 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3594 if (modified[i] == RELOAD_WRITE)
3596 for (j = 0; j < n_reloads; j++)
3598 if (reload_opnum[j] == i)
3600 if (reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS)
3601 reload_when_needed[j] = RELOAD_FOR_INPUT_ADDRESS;
3602 else if (reload_when_needed[j]
3603 == RELOAD_FOR_OUTADDR_ADDRESS)
3604 reload_when_needed[j] = RELOAD_FOR_INPADDR_ADDRESS;
3609 else if (goal_alternative_matched[i] == -1)
3610 operand_reloadnum[i]
3611 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3612 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3613 (modified[i] != RELOAD_WRITE
3614 ? recog_operand_loc[i] : 0),
3615 modified[i] != RELOAD_READ ? recog_operand_loc[i] : 0,
3616 (enum reg_class) goal_alternative[i],
3617 (modified[i] == RELOAD_WRITE
3618 ? VOIDmode : operand_mode[i]),
3619 (modified[i] == RELOAD_READ
3620 ? VOIDmode : operand_mode[i]),
3621 (insn_code_number < 0 ? 0
3622 : insn_operand_strict_low[insn_code_number][i]),
3623 0, i, operand_type[i]);
3624 /* In a matching pair of operands, one must be input only
3625 and the other must be output only.
3626 Pass the input operand as IN and the other as OUT. */
3627 else if (modified[i] == RELOAD_READ
3628 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3630 operand_reloadnum[i]
3631 = push_reload (recog_operand[i],
3632 recog_operand[goal_alternative_matched[i]],
3633 recog_operand_loc[i],
3634 recog_operand_loc[goal_alternative_matched[i]],
3635 (enum reg_class) goal_alternative[i],
3636 operand_mode[i],
3637 operand_mode[goal_alternative_matched[i]],
3638 0, 0, i, RELOAD_OTHER);
3639 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3641 else if (modified[i] == RELOAD_WRITE
3642 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3644 operand_reloadnum[goal_alternative_matched[i]]
3645 = push_reload (recog_operand[goal_alternative_matched[i]],
3646 recog_operand[i],
3647 recog_operand_loc[goal_alternative_matched[i]],
3648 recog_operand_loc[i],
3649 (enum reg_class) goal_alternative[i],
3650 operand_mode[goal_alternative_matched[i]],
3651 operand_mode[i],
3652 0, 0, i, RELOAD_OTHER);
3653 operand_reloadnum[i] = output_reloadnum;
3655 else if (insn_code_number >= 0)
3656 abort ();
3657 else
3659 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3660 /* Avoid further trouble with this insn. */
3661 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3662 n_reloads = 0;
3663 return;
3666 else if (goal_alternative_matched[i] < 0
3667 && goal_alternative_matches[i] < 0
3668 && optimize)
3670 /* For each non-matching operand that's a MEM or a pseudo-register
3671 that didn't get a hard register, make an optional reload.
3672 This may get done even if the insn needs no reloads otherwise. */
3674 rtx operand = recog_operand[i];
3676 while (GET_CODE (operand) == SUBREG)
3677 operand = XEXP (operand, 0);
3678 if ((GET_CODE (operand) == MEM
3679 || (GET_CODE (operand) == REG
3680 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3681 && (enum reg_class) goal_alternative[i] != NO_REGS
3682 && ! no_input_reloads
3683 /* Optional output reloads don't do anything and we mustn't
3684 make in-out reloads on insns that are not permitted output
3685 reloads. */
3686 && (modified[i] == RELOAD_READ
3687 || (modified[i] == RELOAD_READ_WRITE && ! no_output_reloads)))
3688 operand_reloadnum[i]
3689 = push_reload (modified[i] != RELOAD_WRITE ? recog_operand[i] : 0,
3690 modified[i] != RELOAD_READ ? recog_operand[i] : 0,
3691 (modified[i] != RELOAD_WRITE
3692 ? recog_operand_loc[i] : 0),
3693 (modified[i] != RELOAD_READ
3694 ? recog_operand_loc[i] : 0),
3695 (enum reg_class) goal_alternative[i],
3696 (modified[i] == RELOAD_WRITE
3697 ? VOIDmode : operand_mode[i]),
3698 (modified[i] == RELOAD_READ
3699 ? VOIDmode : operand_mode[i]),
3700 (insn_code_number < 0 ? 0
3701 : insn_operand_strict_low[insn_code_number][i]),
3702 1, i, operand_type[i]);
3704 else if (goal_alternative_matches[i] >= 0
3705 && goal_alternative_win[goal_alternative_matches[i]]
3706 && modified[i] == RELOAD_READ
3707 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3708 && ! no_input_reloads && ! no_output_reloads
3709 && optimize)
3711 /* Similarly, make an optional reload for a pair of matching
3712 objects that are in MEM or a pseudo that didn't get a hard reg. */
3714 rtx operand = recog_operand[i];
3716 while (GET_CODE (operand) == SUBREG)
3717 operand = XEXP (operand, 0);
3718 if ((GET_CODE (operand) == MEM
3719 || (GET_CODE (operand) == REG
3720 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3721 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3722 != NO_REGS))
3723 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3724 = push_reload (recog_operand[goal_alternative_matches[i]],
3725 recog_operand[i],
3726 recog_operand_loc[goal_alternative_matches[i]],
3727 recog_operand_loc[i],
3728 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3729 operand_mode[goal_alternative_matches[i]],
3730 operand_mode[i],
3731 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3734 /* If this insn pattern contains any MATCH_DUP's, make sure that
3735 they will be substituted if the operands they match are substituted.
3736 Also do now any substitutions we already did on the operands.
3738 Don't do this if we aren't making replacements because we might be
3739 propagating things allocated by frame pointer elimination into places
3740 it doesn't expect. */
3742 if (insn_code_number >= 0 && replace)
3743 for (i = insn_n_dups[insn_code_number] - 1; i >= 0; i--)
3745 int opno = recog_dup_num[i];
3746 *recog_dup_loc[i] = *recog_operand_loc[opno];
3747 if (operand_reloadnum[opno] >= 0)
3748 push_replacement (recog_dup_loc[i], operand_reloadnum[opno],
3749 insn_operand_mode[insn_code_number][opno]);
3752 #if 0
3753 /* This loses because reloading of prior insns can invalidate the equivalence
3754 (or at least find_equiv_reg isn't smart enough to find it any more),
3755 causing this insn to need more reload regs than it needed before.
3756 It may be too late to make the reload regs available.
3757 Now this optimization is done safely in choose_reload_regs. */
3759 /* For each reload of a reg into some other class of reg,
3760 search for an existing equivalent reg (same value now) in the right class.
3761 We can use it as long as we don't need to change its contents. */
3762 for (i = 0; i < n_reloads; i++)
3763 if (reload_reg_rtx[i] == 0
3764 && reload_in[i] != 0
3765 && GET_CODE (reload_in[i]) == REG
3766 && reload_out[i] == 0)
3768 reload_reg_rtx[i]
3769 = find_equiv_reg (reload_in[i], insn, reload_reg_class[i], -1,
3770 static_reload_reg_p, 0, reload_inmode[i]);
3771 /* Prevent generation of insn to load the value
3772 because the one we found already has the value. */
3773 if (reload_reg_rtx[i])
3774 reload_in[i] = reload_reg_rtx[i];
3776 #endif
3778 /* Perhaps an output reload can be combined with another
3779 to reduce needs by one. */
3780 if (!goal_earlyclobber)
3781 combine_reloads ();
3783 /* If we have a pair of reloads for parts of an address, they are reloading
3784 the same object, the operands themselves were not reloaded, and they
3785 are for two operands that are supposed to match, merge the reloads and
3786 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3788 for (i = 0; i < n_reloads; i++)
3790 int k;
3792 for (j = i + 1; j < n_reloads; j++)
3793 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3794 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3795 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3796 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3797 && (reload_when_needed[j] == RELOAD_FOR_INPUT_ADDRESS
3798 || reload_when_needed[j] == RELOAD_FOR_OUTPUT_ADDRESS
3799 || reload_when_needed[j] == RELOAD_FOR_INPADDR_ADDRESS
3800 || reload_when_needed[j] == RELOAD_FOR_OUTADDR_ADDRESS)
3801 && rtx_equal_p (reload_in[i], reload_in[j])
3802 && (operand_reloadnum[reload_opnum[i]] < 0
3803 || reload_optional[operand_reloadnum[reload_opnum[i]]])
3804 && (operand_reloadnum[reload_opnum[j]] < 0
3805 || reload_optional[operand_reloadnum[reload_opnum[j]]])
3806 && (goal_alternative_matches[reload_opnum[i]] == reload_opnum[j]
3807 || (goal_alternative_matches[reload_opnum[j]]
3808 == reload_opnum[i])))
3810 for (k = 0; k < n_replacements; k++)
3811 if (replacements[k].what == j)
3812 replacements[k].what = i;
3814 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3815 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3816 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3817 else
3818 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3819 reload_in[j] = 0;
3823 /* Scan all the reloads and update their type.
3824 If a reload is for the address of an operand and we didn't reload
3825 that operand, change the type. Similarly, change the operand number
3826 of a reload when two operands match. If a reload is optional, treat it
3827 as though the operand isn't reloaded.
3829 ??? This latter case is somewhat odd because if we do the optional
3830 reload, it means the object is hanging around. Thus we need only
3831 do the address reload if the optional reload was NOT done.
3833 Change secondary reloads to be the address type of their operand, not
3834 the normal type.
3836 If an operand's reload is now RELOAD_OTHER, change any
3837 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3838 RELOAD_FOR_OTHER_ADDRESS. */
3840 for (i = 0; i < n_reloads; i++)
3842 if (reload_secondary_p[i]
3843 && reload_when_needed[i] == operand_type[reload_opnum[i]])
3844 reload_when_needed[i] = address_type[reload_opnum[i]];
3846 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3847 || reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3848 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3849 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3850 && (operand_reloadnum[reload_opnum[i]] < 0
3851 || reload_optional[operand_reloadnum[reload_opnum[i]]]))
3853 /* If we have a secondary reload to go along with this reload,
3854 change its type to RELOAD_FOR_OPADDR_ADDR. */
3856 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3857 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
3858 && reload_secondary_in_reload[i] != -1)
3860 int secondary_in_reload = reload_secondary_in_reload[i];
3862 reload_when_needed[secondary_in_reload]
3863 = RELOAD_FOR_OPADDR_ADDR;
3865 /* If there's a tertiary reload we have to change it also. */
3866 if (secondary_in_reload > 0
3867 && reload_secondary_in_reload[secondary_in_reload] != -1)
3868 reload_when_needed[reload_secondary_in_reload[secondary_in_reload]]
3869 = RELOAD_FOR_OPADDR_ADDR;
3872 if ((reload_when_needed[i] == RELOAD_FOR_OUTPUT_ADDRESS
3873 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3874 && reload_secondary_out_reload[i] != -1)
3876 int secondary_out_reload = reload_secondary_out_reload[i];
3878 reload_when_needed[secondary_out_reload]
3879 = RELOAD_FOR_OPADDR_ADDR;
3881 /* If there's a tertiary reload we have to change it also. */
3882 if (secondary_out_reload
3883 && reload_secondary_out_reload[secondary_out_reload] != -1)
3884 reload_when_needed[reload_secondary_out_reload[secondary_out_reload]]
3885 = RELOAD_FOR_OPADDR_ADDR;
3887 if (reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS
3888 || reload_when_needed[i] == RELOAD_FOR_OUTADDR_ADDRESS)
3889 reload_when_needed[i] = RELOAD_FOR_OPADDR_ADDR;
3890 else
3891 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3894 if ((reload_when_needed[i] == RELOAD_FOR_INPUT_ADDRESS
3895 || reload_when_needed[i] == RELOAD_FOR_INPADDR_ADDRESS)
3896 && operand_reloadnum[reload_opnum[i]] >= 0
3897 && (reload_when_needed[operand_reloadnum[reload_opnum[i]]]
3898 == RELOAD_OTHER))
3899 reload_when_needed[i] = RELOAD_FOR_OTHER_ADDRESS;
3901 if (goal_alternative_matches[reload_opnum[i]] >= 0)
3902 reload_opnum[i] = goal_alternative_matches[reload_opnum[i]];
3905 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
3906 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
3907 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
3909 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
3910 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
3911 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
3912 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
3913 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
3914 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
3915 This is complicated by the fact that a single operand can have more
3916 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
3917 choose_reload_regs without affecting code quality, and cases that
3918 actually fail are extremely rare, so it turns out to be better to fix
3919 the problem here by not generating cases that choose_reload_regs will
3920 fail for. */
3923 int op_addr_reloads = 0;
3924 for (i = 0; i < n_reloads; i++)
3925 if (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS)
3926 op_addr_reloads++;
3928 if (op_addr_reloads > 1)
3929 for (i = 0; i < n_reloads; i++)
3930 if (reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR)
3931 reload_when_needed[i] = RELOAD_FOR_OPERAND_ADDRESS;
3934 /* See if we have any reloads that are now allowed to be merged
3935 because we've changed when the reload is needed to
3936 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
3937 check for the most common cases. */
3939 for (i = 0; i < n_reloads; i++)
3940 if (reload_in[i] != 0 && reload_out[i] == 0
3941 && (reload_when_needed[i] == RELOAD_FOR_OPERAND_ADDRESS
3942 || reload_when_needed[i] == RELOAD_FOR_OPADDR_ADDR
3943 || reload_when_needed[i] == RELOAD_FOR_OTHER_ADDRESS))
3944 for (j = 0; j < n_reloads; j++)
3945 if (i != j && reload_in[j] != 0 && reload_out[j] == 0
3946 && reload_when_needed[j] == reload_when_needed[i]
3947 && MATCHES (reload_in[i], reload_in[j])
3948 && reload_reg_class[i] == reload_reg_class[j]
3949 && !reload_nocombine[i] && !reload_nocombine[j]
3950 && reload_reg_rtx[i] == reload_reg_rtx[j])
3952 reload_opnum[i] = MIN (reload_opnum[i], reload_opnum[j]);
3953 transfer_replacements (i, j);
3954 reload_in[j] = 0;
3957 #else /* no REGISTER_CONSTRAINTS */
3958 int noperands;
3959 int insn_code_number;
3960 int goal_earlyclobber = 0; /* Always 0, to make combine_reloads happen. */
3961 register int i;
3962 rtx body = PATTERN (insn);
3964 n_reloads = 0;
3965 n_replacements = 0;
3966 n_earlyclobbers = 0;
3967 replace_reloads = replace;
3968 this_insn = insn;
3970 /* Find what kind of insn this is. NOPERANDS gets number of operands.
3971 Store the operand values in RECOG_OPERAND and the locations
3972 of the words in the insn that point to them in RECOG_OPERAND_LOC.
3973 Return if the insn needs no reload processing. */
3975 switch (GET_CODE (body))
3977 case USE:
3978 case CLOBBER:
3979 case ASM_INPUT:
3980 case ADDR_VEC:
3981 case ADDR_DIFF_VEC:
3982 return;
3984 case PARALLEL:
3985 case SET:
3986 noperands = asm_noperands (body);
3987 if (noperands >= 0)
3989 /* This insn is an `asm' with operands.
3990 First, find out how many operands, and allocate space. */
3992 insn_code_number = -1;
3993 /* ??? This is a bug! ???
3994 Give up and delete this insn if it has too many operands. */
3995 if (noperands > MAX_RECOG_OPERANDS)
3996 abort ();
3998 /* Now get the operand values out of the insn. */
4000 decode_asm_operands (body, recog_operand, recog_operand_loc,
4001 NULL_PTR, NULL_PTR);
4002 break;
4005 default:
4006 /* Ordinary insn: recognize it, allocate space for operands and
4007 constraints, and get them out via insn_extract. */
4009 insn_code_number = recog_memoized (insn);
4010 noperands = insn_n_operands[insn_code_number];
4011 insn_extract (insn);
4014 if (noperands == 0)
4015 return;
4017 for (i = 0; i < noperands; i++)
4019 register RTX_CODE code = GET_CODE (recog_operand[i]);
4020 int is_set_dest = GET_CODE (body) == SET && (i == 0);
4022 if (insn_code_number >= 0)
4023 if (insn_operand_address_p[insn_code_number][i])
4024 find_reloads_address (VOIDmode, NULL_PTR,
4025 recog_operand[i], recog_operand_loc[i],
4026 i, RELOAD_FOR_INPUT, ind_levels, insn);
4028 /* In these cases, we can't tell if the operand is an input
4029 or an output, so be conservative. In practice it won't be
4030 problem. */
4032 if (code == MEM)
4033 find_reloads_address (GET_MODE (recog_operand[i]),
4034 recog_operand_loc[i],
4035 XEXP (recog_operand[i], 0),
4036 &XEXP (recog_operand[i], 0),
4037 i, RELOAD_OTHER, ind_levels, insn);
4038 if (code == SUBREG)
4039 recog_operand[i] = *recog_operand_loc[i]
4040 = find_reloads_toplev (recog_operand[i], i, RELOAD_OTHER,
4041 ind_levels, is_set_dest);
4042 if (code == REG)
4044 register int regno = REGNO (recog_operand[i]);
4045 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4046 recog_operand[i] = *recog_operand_loc[i]
4047 = reg_equiv_constant[regno];
4048 #if 0 /* This might screw code in reload1.c to delete prior output-reload
4049 that feeds this insn. */
4050 if (reg_equiv_mem[regno] != 0)
4051 recog_operand[i] = *recog_operand_loc[i]
4052 = reg_equiv_mem[regno];
4053 #endif
4057 /* Perhaps an output reload can be combined with another
4058 to reduce needs by one. */
4059 if (!goal_earlyclobber)
4060 combine_reloads ();
4061 #endif /* no REGISTER_CONSTRAINTS */
4064 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4065 accepts a memory operand with constant address. */
4067 static int
4068 alternative_allows_memconst (constraint, altnum)
4069 char *constraint;
4070 int altnum;
4072 register int c;
4073 /* Skip alternatives before the one requested. */
4074 while (altnum > 0)
4076 while (*constraint++ != ',');
4077 altnum--;
4079 /* Scan the requested alternative for 'm' or 'o'.
4080 If one of them is present, this alternative accepts memory constants. */
4081 while ((c = *constraint++) && c != ',' && c != '#')
4082 if (c == 'm' || c == 'o')
4083 return 1;
4084 return 0;
4087 /* Scan X for memory references and scan the addresses for reloading.
4088 Also checks for references to "constant" regs that we want to eliminate
4089 and replaces them with the values they stand for.
4090 We may alter X destructively if it contains a reference to such.
4091 If X is just a constant reg, we return the equivalent value
4092 instead of X.
4094 IND_LEVELS says how many levels of indirect addressing this machine
4095 supports.
4097 OPNUM and TYPE identify the purpose of the reload.
4099 IS_SET_DEST is true if X is the destination of a SET, which is not
4100 appropriate to be replaced by a constant. */
4102 static rtx
4103 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest)
4104 rtx x;
4105 int opnum;
4106 enum reload_type type;
4107 int ind_levels;
4108 int is_set_dest;
4110 register RTX_CODE code = GET_CODE (x);
4112 register char *fmt = GET_RTX_FORMAT (code);
4113 register int i;
4115 if (code == REG)
4117 /* This code is duplicated for speed in find_reloads. */
4118 register int regno = REGNO (x);
4119 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4120 x = reg_equiv_constant[regno];
4121 #if 0
4122 /* This creates (subreg (mem...)) which would cause an unnecessary
4123 reload of the mem. */
4124 else if (reg_equiv_mem[regno] != 0)
4125 x = reg_equiv_mem[regno];
4126 #endif
4127 else if (reg_equiv_address[regno] != 0)
4129 /* If reg_equiv_address varies, it may be shared, so copy it. */
4130 /* We must rerun eliminate_regs, in case the elimination
4131 offsets have changed. */
4132 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
4133 NULL_RTX),
4136 if (rtx_varies_p (addr))
4137 addr = copy_rtx (addr);
4139 x = gen_rtx_MEM (GET_MODE (x), addr);
4140 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4141 find_reloads_address (GET_MODE (x), NULL_PTR,
4142 XEXP (x, 0),
4143 &XEXP (x, 0), opnum, type, ind_levels, 0);
4145 return x;
4147 if (code == MEM)
4149 rtx tem = x;
4150 find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4151 opnum, type, ind_levels, 0);
4152 return tem;
4155 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4157 /* Check for SUBREG containing a REG that's equivalent to a constant.
4158 If the constant has a known value, truncate it right now.
4159 Similarly if we are extracting a single-word of a multi-word
4160 constant. If the constant is symbolic, allow it to be substituted
4161 normally. push_reload will strip the subreg later. If the
4162 constant is VOIDmode, abort because we will lose the mode of
4163 the register (this should never happen because one of the cases
4164 above should handle it). */
4166 register int regno = REGNO (SUBREG_REG (x));
4167 rtx tem;
4169 if (subreg_lowpart_p (x)
4170 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4171 && reg_equiv_constant[regno] != 0
4172 && (tem = gen_lowpart_common (GET_MODE (x),
4173 reg_equiv_constant[regno])) != 0)
4174 return tem;
4176 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4177 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4178 && reg_equiv_constant[regno] != 0
4179 && (tem = operand_subword (reg_equiv_constant[regno],
4180 SUBREG_WORD (x), 0,
4181 GET_MODE (SUBREG_REG (x)))) != 0)
4182 return tem;
4184 /* If the SUBREG is wider than a word, the above test will fail.
4185 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4186 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4187 a 32 bit target. We still can - and have to - handle this
4188 for non-paradoxical subregs of CONST_INTs. */
4189 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4190 && reg_equiv_constant[regno] != 0
4191 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4192 && (GET_MODE_SIZE (GET_MODE (x))
4193 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4195 int shift = SUBREG_WORD (x) * BITS_PER_WORD;
4196 if (WORDS_BIG_ENDIAN)
4197 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4198 - GET_MODE_BITSIZE (GET_MODE (x))
4199 - shift);
4200 /* Here we use the knowledge that CONST_INTs have a
4201 HOST_WIDE_INT field. */
4202 if (shift >= HOST_BITS_PER_WIDE_INT)
4203 shift = HOST_BITS_PER_WIDE_INT - 1;
4204 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4207 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4208 && reg_equiv_constant[regno] != 0
4209 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4210 abort ();
4212 /* If the subreg contains a reg that will be converted to a mem,
4213 convert the subreg to a narrower memref now.
4214 Otherwise, we would get (subreg (mem ...) ...),
4215 which would force reload of the mem.
4217 We also need to do this if there is an equivalent MEM that is
4218 not offsettable. In that case, alter_subreg would produce an
4219 invalid address on big-endian machines.
4221 For machines that extend byte loads, we must not reload using
4222 a wider mode if we have a paradoxical SUBREG. find_reloads will
4223 force a reload in that case. So we should not do anything here. */
4225 else if (regno >= FIRST_PSEUDO_REGISTER
4226 #ifdef LOAD_EXTEND_OP
4227 && (GET_MODE_SIZE (GET_MODE (x))
4228 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4229 #endif
4230 && (reg_equiv_address[regno] != 0
4231 || (reg_equiv_mem[regno] != 0
4232 && (! strict_memory_address_p (GET_MODE (x),
4233 XEXP (reg_equiv_mem[regno], 0))
4234 || ! offsettable_memref_p (reg_equiv_mem[regno])))))
4236 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
4237 /* We must rerun eliminate_regs, in case the elimination
4238 offsets have changed. */
4239 rtx addr = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0,
4240 NULL_RTX),
4242 if (BYTES_BIG_ENDIAN)
4244 int size;
4245 size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
4246 offset += MIN (size, UNITS_PER_WORD);
4247 size = GET_MODE_SIZE (GET_MODE (x));
4248 offset -= MIN (size, UNITS_PER_WORD);
4250 addr = plus_constant (addr, offset);
4251 x = gen_rtx_MEM (GET_MODE (x), addr);
4252 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4253 find_reloads_address (GET_MODE (x), NULL_PTR,
4254 XEXP (x, 0),
4255 &XEXP (x, 0), opnum, type, ind_levels, 0);
4260 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4262 if (fmt[i] == 'e')
4263 XEXP (x, i) = find_reloads_toplev (XEXP (x, i), opnum, type,
4264 ind_levels, is_set_dest);
4266 return x;
4269 /* Return a mem ref for the memory equivalent of reg REGNO.
4270 This mem ref is not shared with anything. */
4272 static rtx
4273 make_memloc (ad, regno)
4274 rtx ad;
4275 int regno;
4277 #if 0
4278 register int i;
4279 #endif
4280 /* We must rerun eliminate_regs, in case the elimination
4281 offsets have changed. */
4282 rtx tem = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4284 #if 0 /* We cannot safely reuse a memloc made here;
4285 if the pseudo appears twice, and its mem needs a reload,
4286 it gets two separate reloads assigned, but it only
4287 gets substituted with the second of them;
4288 then it can get used before that reload reg gets loaded up. */
4289 for (i = 0; i < n_memlocs; i++)
4290 if (rtx_equal_p (tem, XEXP (memlocs[i], 0)))
4291 return memlocs[i];
4292 #endif
4294 /* If TEM might contain a pseudo, we must copy it to avoid
4295 modifying it when we do the substitution for the reload. */
4296 if (rtx_varies_p (tem))
4297 tem = copy_rtx (tem);
4299 tem = gen_rtx_MEM (GET_MODE (ad), tem);
4300 RTX_UNCHANGING_P (tem) = RTX_UNCHANGING_P (regno_reg_rtx[regno]);
4301 memlocs[n_memlocs++] = tem;
4302 return tem;
4305 /* Record all reloads needed for handling memory address AD
4306 which appears in *LOC in a memory reference to mode MODE
4307 which itself is found in location *MEMREFLOC.
4308 Note that we take shortcuts assuming that no multi-reg machine mode
4309 occurs as part of an address.
4311 OPNUM and TYPE specify the purpose of this reload.
4313 IND_LEVELS says how many levels of indirect addressing this machine
4314 supports.
4316 INSN, if nonzero, is the insn in which we do the reload. It is used
4317 to determine if we may generate output reloads.
4319 Value is nonzero if this address is reloaded or replaced as a whole.
4320 This is interesting to the caller if the address is an autoincrement.
4322 Note that there is no verification that the address will be valid after
4323 this routine does its work. Instead, we rely on the fact that the address
4324 was valid when reload started. So we need only undo things that reload
4325 could have broken. These are wrong register types, pseudos not allocated
4326 to a hard register, and frame pointer elimination. */
4328 static int
4329 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4330 enum machine_mode mode;
4331 rtx *memrefloc;
4332 rtx ad;
4333 rtx *loc;
4334 int opnum;
4335 enum reload_type type;
4336 int ind_levels;
4337 rtx insn;
4339 register int regno;
4340 rtx tem;
4342 /* If the address is a register, see if it is a legitimate address and
4343 reload if not. We first handle the cases where we need not reload
4344 or where we must reload in a non-standard way. */
4346 if (GET_CODE (ad) == REG)
4348 regno = REGNO (ad);
4350 if (reg_equiv_constant[regno] != 0
4351 && strict_memory_address_p (mode, reg_equiv_constant[regno]))
4353 *loc = ad = reg_equiv_constant[regno];
4354 return 1;
4357 else if (reg_equiv_address[regno] != 0)
4359 tem = make_memloc (ad, regno);
4360 find_reloads_address (GET_MODE (tem), NULL_PTR, XEXP (tem, 0),
4361 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4362 ind_levels, insn);
4363 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4364 reload_address_base_reg_class,
4365 GET_MODE (ad), VOIDmode, 0, 0,
4366 opnum, type);
4367 return 1;
4370 /* We can avoid a reload if the register's equivalent memory expression
4371 is valid as an indirect memory address.
4372 But not all addresses are valid in a mem used as an indirect address:
4373 only reg or reg+constant. */
4375 else if (reg_equiv_mem[regno] != 0 && ind_levels > 0
4376 && strict_memory_address_p (mode, reg_equiv_mem[regno])
4377 && (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == REG
4378 || (GET_CODE (XEXP (reg_equiv_mem[regno], 0)) == PLUS
4379 && GET_CODE (XEXP (XEXP (reg_equiv_mem[regno], 0), 0)) == REG
4380 && CONSTANT_P (XEXP (XEXP (reg_equiv_mem[regno], 0), 1)))))
4381 return 0;
4383 /* The only remaining case where we can avoid a reload is if this is a
4384 hard register that is valid as a base register and which is not the
4385 subject of a CLOBBER in this insn. */
4387 else if (regno < FIRST_PSEUDO_REGISTER
4388 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4389 && ! regno_clobbered_p (regno, this_insn))
4390 return 0;
4392 /* If we do not have one of the cases above, we must do the reload. */
4393 push_reload (ad, NULL_RTX, loc, NULL_PTR, reload_address_base_reg_class,
4394 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4395 return 1;
4398 if (strict_memory_address_p (mode, ad))
4400 /* The address appears valid, so reloads are not needed.
4401 But the address may contain an eliminable register.
4402 This can happen because a machine with indirect addressing
4403 may consider a pseudo register by itself a valid address even when
4404 it has failed to get a hard reg.
4405 So do a tree-walk to find and eliminate all such regs. */
4407 /* But first quickly dispose of a common case. */
4408 if (GET_CODE (ad) == PLUS
4409 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4410 && GET_CODE (XEXP (ad, 0)) == REG
4411 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4412 return 0;
4414 subst_reg_equivs_changed = 0;
4415 *loc = subst_reg_equivs (ad);
4417 if (! subst_reg_equivs_changed)
4418 return 0;
4420 /* Check result for validity after substitution. */
4421 if (strict_memory_address_p (mode, ad))
4422 return 0;
4425 /* The address is not valid. We have to figure out why. One possibility
4426 is that it is itself a MEM. This can happen when the frame pointer is
4427 being eliminated, a pseudo is not allocated to a hard register, and the
4428 offset between the frame and stack pointers is not its initial value.
4429 In that case the pseudo will have been replaced by a MEM referring to
4430 the stack pointer. */
4431 if (GET_CODE (ad) == MEM)
4433 /* First ensure that the address in this MEM is valid. Then, unless
4434 indirect addresses are valid, reload the MEM into a register. */
4435 tem = ad;
4436 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4437 opnum, ADDR_TYPE (type),
4438 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4440 /* If tem was changed, then we must create a new memory reference to
4441 hold it and store it back into memrefloc. */
4442 if (tem != ad && memrefloc)
4444 *memrefloc = copy_rtx (*memrefloc);
4445 copy_replacements (tem, XEXP (*memrefloc, 0));
4446 loc = &XEXP (*memrefloc, 0);
4449 /* Check similar cases as for indirect addresses as above except
4450 that we can allow pseudos and a MEM since they should have been
4451 taken care of above. */
4453 if (ind_levels == 0
4454 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4455 || GET_CODE (XEXP (tem, 0)) == MEM
4456 || ! (GET_CODE (XEXP (tem, 0)) == REG
4457 || (GET_CODE (XEXP (tem, 0)) == PLUS
4458 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4459 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4461 /* Must use TEM here, not AD, since it is the one that will
4462 have any subexpressions reloaded, if needed. */
4463 push_reload (tem, NULL_RTX, loc, NULL_PTR,
4464 reload_address_base_reg_class, GET_MODE (tem),
4465 VOIDmode, 0,
4466 0, opnum, type);
4467 return 1;
4469 else
4470 return 0;
4473 /* If we have address of a stack slot but it's not valid because the
4474 displacement is too large, compute the sum in a register.
4475 Handle all base registers here, not just fp/ap/sp, because on some
4476 targets (namely SH) we can also get too large displacements from
4477 big-endian corrections. */
4478 else if (GET_CODE (ad) == PLUS
4479 && GET_CODE (XEXP (ad, 0)) == REG
4480 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4481 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4482 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4484 /* Unshare the MEM rtx so we can safely alter it. */
4485 if (memrefloc)
4487 *memrefloc = copy_rtx (*memrefloc);
4488 loc = &XEXP (*memrefloc, 0);
4490 if (double_reg_address_ok)
4492 /* Unshare the sum as well. */
4493 *loc = ad = copy_rtx (ad);
4494 /* Reload the displacement into an index reg.
4495 We assume the frame pointer or arg pointer is a base reg. */
4496 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4497 reload_address_index_reg_class,
4498 GET_MODE (ad), opnum, type, ind_levels);
4500 else
4502 /* If the sum of two regs is not necessarily valid,
4503 reload the sum into a base reg.
4504 That will at least work. */
4505 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4506 Pmode, opnum, type, ind_levels);
4508 return 1;
4511 /* If we have an indexed stack slot, there are three possible reasons why
4512 it might be invalid: The index might need to be reloaded, the address
4513 might have been made by frame pointer elimination and hence have a
4514 constant out of range, or both reasons might apply.
4516 We can easily check for an index needing reload, but even if that is the
4517 case, we might also have an invalid constant. To avoid making the
4518 conservative assumption and requiring two reloads, we see if this address
4519 is valid when not interpreted strictly. If it is, the only problem is
4520 that the index needs a reload and find_reloads_address_1 will take care
4521 of it.
4523 There is still a case when we might generate an extra reload,
4524 however. In certain cases eliminate_regs will return a MEM for a REG
4525 (see the code there for details). In those cases, memory_address_p
4526 applied to our address will return 0 so we will think that our offset
4527 must be too large. But it might indeed be valid and the only problem
4528 is that a MEM is present where a REG should be. This case should be
4529 very rare and there doesn't seem to be any way to avoid it.
4531 If we decide to do something here, it must be that
4532 `double_reg_address_ok' is true and that this address rtl was made by
4533 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4534 rework the sum so that the reload register will be added to the index.
4535 This is safe because we know the address isn't shared.
4537 We check for fp/ap/sp as both the first and second operand of the
4538 innermost PLUS. */
4540 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4541 && GET_CODE (XEXP (ad, 0)) == PLUS
4542 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4543 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4544 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4545 #endif
4546 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4547 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4548 #endif
4549 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4550 && ! memory_address_p (mode, ad))
4552 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4553 plus_constant (XEXP (XEXP (ad, 0), 0),
4554 INTVAL (XEXP (ad, 1))),
4555 XEXP (XEXP (ad, 0), 1));
4556 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4557 reload_address_base_reg_class,
4558 GET_MODE (ad), opnum, type, ind_levels);
4559 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4560 type, 0, insn);
4562 return 1;
4565 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4566 && GET_CODE (XEXP (ad, 0)) == PLUS
4567 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4568 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4569 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4570 #endif
4571 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4572 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4573 #endif
4574 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4575 && ! memory_address_p (mode, ad))
4577 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4578 XEXP (XEXP (ad, 0), 0),
4579 plus_constant (XEXP (XEXP (ad, 0), 1),
4580 INTVAL (XEXP (ad, 1))));
4581 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4582 reload_address_base_reg_class,
4583 GET_MODE (ad), opnum, type, ind_levels);
4584 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4585 type, 0, insn);
4587 return 1;
4590 /* See if address becomes valid when an eliminable register
4591 in a sum is replaced. */
4593 tem = ad;
4594 if (GET_CODE (ad) == PLUS)
4595 tem = subst_indexed_address (ad);
4596 if (tem != ad && strict_memory_address_p (mode, tem))
4598 /* Ok, we win that way. Replace any additional eliminable
4599 registers. */
4601 subst_reg_equivs_changed = 0;
4602 tem = subst_reg_equivs (tem);
4604 /* Make sure that didn't make the address invalid again. */
4606 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4608 *loc = tem;
4609 return 0;
4613 /* If constants aren't valid addresses, reload the constant address
4614 into a register. */
4615 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4617 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4618 Unshare it so we can safely alter it. */
4619 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4620 && CONSTANT_POOL_ADDRESS_P (ad))
4622 *memrefloc = copy_rtx (*memrefloc);
4623 loc = &XEXP (*memrefloc, 0);
4626 find_reloads_address_part (ad, loc, reload_address_base_reg_class,
4627 Pmode, opnum, type,
4628 ind_levels);
4629 return 1;
4632 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4633 insn);
4636 /* Find all pseudo regs appearing in AD
4637 that are eliminable in favor of equivalent values
4638 and do not have hard regs; replace them by their equivalents. */
4640 static rtx
4641 subst_reg_equivs (ad)
4642 rtx ad;
4644 register RTX_CODE code = GET_CODE (ad);
4645 register int i;
4646 register char *fmt;
4648 switch (code)
4650 case HIGH:
4651 case CONST_INT:
4652 case CONST:
4653 case CONST_DOUBLE:
4654 case SYMBOL_REF:
4655 case LABEL_REF:
4656 case PC:
4657 case CC0:
4658 return ad;
4660 case REG:
4662 register int regno = REGNO (ad);
4664 if (reg_equiv_constant[regno] != 0)
4666 subst_reg_equivs_changed = 1;
4667 return reg_equiv_constant[regno];
4670 return ad;
4672 case PLUS:
4673 /* Quickly dispose of a common case. */
4674 if (XEXP (ad, 0) == frame_pointer_rtx
4675 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4676 return ad;
4677 break;
4679 default:
4680 break;
4683 fmt = GET_RTX_FORMAT (code);
4684 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4685 if (fmt[i] == 'e')
4686 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i));
4687 return ad;
4690 /* Compute the sum of X and Y, making canonicalizations assumed in an
4691 address, namely: sum constant integers, surround the sum of two
4692 constants with a CONST, put the constant as the second operand, and
4693 group the constant on the outermost sum.
4695 This routine assumes both inputs are already in canonical form. */
4698 form_sum (x, y)
4699 rtx x, y;
4701 rtx tem;
4702 enum machine_mode mode = GET_MODE (x);
4704 if (mode == VOIDmode)
4705 mode = GET_MODE (y);
4707 if (mode == VOIDmode)
4708 mode = Pmode;
4710 if (GET_CODE (x) == CONST_INT)
4711 return plus_constant (y, INTVAL (x));
4712 else if (GET_CODE (y) == CONST_INT)
4713 return plus_constant (x, INTVAL (y));
4714 else if (CONSTANT_P (x))
4715 tem = x, x = y, y = tem;
4717 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
4718 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
4720 /* Note that if the operands of Y are specified in the opposite
4721 order in the recursive calls below, infinite recursion will occur. */
4722 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
4723 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
4725 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4726 constant will have been placed second. */
4727 if (CONSTANT_P (x) && CONSTANT_P (y))
4729 if (GET_CODE (x) == CONST)
4730 x = XEXP (x, 0);
4731 if (GET_CODE (y) == CONST)
4732 y = XEXP (y, 0);
4734 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
4737 return gen_rtx_PLUS (mode, x, y);
4740 /* If ADDR is a sum containing a pseudo register that should be
4741 replaced with a constant (from reg_equiv_constant),
4742 return the result of doing so, and also apply the associative
4743 law so that the result is more likely to be a valid address.
4744 (But it is not guaranteed to be one.)
4746 Note that at most one register is replaced, even if more are
4747 replaceable. Also, we try to put the result into a canonical form
4748 so it is more likely to be a valid address.
4750 In all other cases, return ADDR. */
4752 static rtx
4753 subst_indexed_address (addr)
4754 rtx addr;
4756 rtx op0 = 0, op1 = 0, op2 = 0;
4757 rtx tem;
4758 int regno;
4760 if (GET_CODE (addr) == PLUS)
4762 /* Try to find a register to replace. */
4763 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
4764 if (GET_CODE (op0) == REG
4765 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
4766 && reg_renumber[regno] < 0
4767 && reg_equiv_constant[regno] != 0)
4768 op0 = reg_equiv_constant[regno];
4769 else if (GET_CODE (op1) == REG
4770 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
4771 && reg_renumber[regno] < 0
4772 && reg_equiv_constant[regno] != 0)
4773 op1 = reg_equiv_constant[regno];
4774 else if (GET_CODE (op0) == PLUS
4775 && (tem = subst_indexed_address (op0)) != op0)
4776 op0 = tem;
4777 else if (GET_CODE (op1) == PLUS
4778 && (tem = subst_indexed_address (op1)) != op1)
4779 op1 = tem;
4780 else
4781 return addr;
4783 /* Pick out up to three things to add. */
4784 if (GET_CODE (op1) == PLUS)
4785 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
4786 else if (GET_CODE (op0) == PLUS)
4787 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4789 /* Compute the sum. */
4790 if (op2 != 0)
4791 op1 = form_sum (op1, op2);
4792 if (op1 != 0)
4793 op0 = form_sum (op0, op1);
4795 return op0;
4797 return addr;
4800 /* Record the pseudo registers we must reload into hard registers in a
4801 subexpression of a would-be memory address, X referring to a value
4802 in mode MODE. (This function is not called if the address we find
4803 is strictly valid.)
4805 CONTEXT = 1 means we are considering regs as index regs,
4806 = 0 means we are considering them as base regs.
4808 OPNUM and TYPE specify the purpose of any reloads made.
4810 IND_LEVELS says how many levels of indirect addressing are
4811 supported at this point in the address.
4813 INSN, if nonzero, is the insn in which we do the reload. It is used
4814 to determine if we may generate output reloads.
4816 We return nonzero if X, as a whole, is reloaded or replaced. */
4818 /* Note that we take shortcuts assuming that no multi-reg machine mode
4819 occurs as part of an address.
4820 Also, this is not fully machine-customizable; it works for machines
4821 such as vaxes and 68000's and 32000's, but other possible machines
4822 could have addressing modes that this does not handle right. */
4824 static int
4825 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
4826 enum machine_mode mode;
4827 rtx x;
4828 int context;
4829 rtx *loc;
4830 int opnum;
4831 enum reload_type type;
4832 int ind_levels;
4833 rtx insn;
4835 register RTX_CODE code = GET_CODE (x);
4837 switch (code)
4839 case PLUS:
4841 register rtx orig_op0 = XEXP (x, 0);
4842 register rtx orig_op1 = XEXP (x, 1);
4843 register RTX_CODE code0 = GET_CODE (orig_op0);
4844 register RTX_CODE code1 = GET_CODE (orig_op1);
4845 register rtx op0 = orig_op0;
4846 register rtx op1 = orig_op1;
4848 if (GET_CODE (op0) == SUBREG)
4850 op0 = SUBREG_REG (op0);
4851 code0 = GET_CODE (op0);
4852 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
4853 op0 = gen_rtx_REG (word_mode,
4854 REGNO (op0) + SUBREG_WORD (orig_op0));
4857 if (GET_CODE (op1) == SUBREG)
4859 op1 = SUBREG_REG (op1);
4860 code1 = GET_CODE (op1);
4861 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
4862 op1 = gen_rtx_REG (GET_MODE (op1),
4863 REGNO (op1) + SUBREG_WORD (orig_op1));
4866 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
4867 || code0 == ZERO_EXTEND || code1 == MEM)
4869 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4870 type, ind_levels, insn);
4871 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4872 type, ind_levels, insn);
4875 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
4876 || code1 == ZERO_EXTEND || code0 == MEM)
4878 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4879 type, ind_levels, insn);
4880 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
4881 type, ind_levels, insn);
4884 else if (code0 == CONST_INT || code0 == CONST
4885 || code0 == SYMBOL_REF || code0 == LABEL_REF)
4886 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4887 type, ind_levels, insn);
4889 else if (code1 == CONST_INT || code1 == CONST
4890 || code1 == SYMBOL_REF || code1 == LABEL_REF)
4891 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4892 type, ind_levels, insn);
4894 else if (code0 == REG && code1 == REG)
4896 if (REG_OK_FOR_INDEX_P (op0)
4897 && REG_MODE_OK_FOR_BASE_P (op1, mode))
4898 return 0;
4899 else if (REG_OK_FOR_INDEX_P (op1)
4900 && REG_MODE_OK_FOR_BASE_P (op0, mode))
4901 return 0;
4902 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
4903 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4904 type, ind_levels, insn);
4905 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
4906 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
4907 type, ind_levels, insn);
4908 else if (REG_OK_FOR_INDEX_P (op1))
4909 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4910 type, ind_levels, insn);
4911 else if (REG_OK_FOR_INDEX_P (op0))
4912 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4913 type, ind_levels, insn);
4914 else
4916 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4917 type, ind_levels, insn);
4918 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4919 type, ind_levels, insn);
4923 else if (code0 == REG)
4925 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
4926 type, ind_levels, insn);
4927 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
4928 type, ind_levels, insn);
4931 else if (code1 == REG)
4933 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
4934 type, ind_levels, insn);
4935 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
4936 type, ind_levels, insn);
4940 return 0;
4942 case POST_INC:
4943 case POST_DEC:
4944 case PRE_INC:
4945 case PRE_DEC:
4946 if (GET_CODE (XEXP (x, 0)) == REG)
4948 register int regno = REGNO (XEXP (x, 0));
4949 int value = 0;
4950 rtx x_orig = x;
4952 /* A register that is incremented cannot be constant! */
4953 if (regno >= FIRST_PSEUDO_REGISTER
4954 && reg_equiv_constant[regno] != 0)
4955 abort ();
4957 /* Handle a register that is equivalent to a memory location
4958 which cannot be addressed directly. */
4959 if (reg_equiv_address[regno] != 0)
4961 rtx tem = make_memloc (XEXP (x, 0), regno);
4962 /* First reload the memory location's address.
4963 We can't use ADDR_TYPE (type) here, because we need to
4964 write back the value after reading it, hence we actually
4965 need two registers. */
4966 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
4967 &XEXP (tem, 0), opnum, type,
4968 ind_levels, insn);
4969 /* Put this inside a new increment-expression. */
4970 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
4971 /* Proceed to reload that, as if it contained a register. */
4974 /* If we have a hard register that is ok as an index,
4975 don't make a reload. If an autoincrement of a nice register
4976 isn't "valid", it must be that no autoincrement is "valid".
4977 If that is true and something made an autoincrement anyway,
4978 this must be a special context where one is allowed.
4979 (For example, a "push" instruction.)
4980 We can't improve this address, so leave it alone. */
4982 /* Otherwise, reload the autoincrement into a suitable hard reg
4983 and record how much to increment by. */
4985 if (reg_renumber[regno] >= 0)
4986 regno = reg_renumber[regno];
4987 if ((regno >= FIRST_PSEUDO_REGISTER
4988 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
4989 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
4991 #ifdef AUTO_INC_DEC
4992 register rtx link;
4993 #endif
4994 int reloadnum;
4996 /* If we can output the register afterwards, do so, this
4997 saves the extra update.
4998 We can do so if we have an INSN - i.e. no JUMP_INSN nor
4999 CALL_INSN - and it does not set CC0.
5000 But don't do this if we cannot directly address the
5001 memory location, since this will make it harder to
5002 reuse address reloads, and increases register pressure.
5003 Also don't do this if we can probably update x directly. */
5004 rtx equiv = reg_equiv_mem[regno];
5005 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5006 if (insn && GET_CODE (insn) == INSN && equiv
5007 #ifdef HAVE_cc0
5008 && ! sets_cc0_p (PATTERN (insn))
5009 #endif
5010 && ! (icode != CODE_FOR_nothing
5011 && (*insn_operand_predicate[icode][0]) (equiv, Pmode)
5012 && (*insn_operand_predicate[icode][1]) (equiv, Pmode)))
5014 loc = &XEXP (x, 0);
5015 x = XEXP (x, 0);
5016 reloadnum
5017 = push_reload (x, x, loc, loc,
5018 (context
5019 ? reload_address_index_reg_class
5020 : reload_address_base_reg_class),
5021 GET_MODE (x), GET_MODE (x), 0, 0,
5022 opnum, RELOAD_OTHER);
5024 else
5026 reloadnum
5027 = push_reload (x, NULL_RTX, loc, NULL_PTR,
5028 (context
5029 ? reload_address_index_reg_class
5030 : reload_address_base_reg_class),
5031 GET_MODE (x), GET_MODE (x), 0, 0,
5032 opnum, type);
5033 reload_inc[reloadnum]
5034 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5036 value = 1;
5039 #ifdef AUTO_INC_DEC
5040 /* Update the REG_INC notes. */
5042 for (link = REG_NOTES (this_insn);
5043 link; link = XEXP (link, 1))
5044 if (REG_NOTE_KIND (link) == REG_INC
5045 && REGNO (XEXP (link, 0)) == REGNO (XEXP (x_orig, 0)))
5046 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5047 #endif
5049 return value;
5052 else if (GET_CODE (XEXP (x, 0)) == MEM)
5054 /* This is probably the result of a substitution, by eliminate_regs,
5055 of an equivalent address for a pseudo that was not allocated to a
5056 hard register. Verify that the specified address is valid and
5057 reload it into a register. */
5058 rtx tem = XEXP (x, 0);
5059 register rtx link;
5060 int reloadnum;
5062 /* Since we know we are going to reload this item, don't decrement
5063 for the indirection level.
5065 Note that this is actually conservative: it would be slightly
5066 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5067 reload1.c here. */
5068 /* We can't use ADDR_TYPE (type) here, because we need to
5069 write back the value after reading it, hence we actually
5070 need two registers. */
5071 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5072 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5073 opnum, type, ind_levels, insn);
5075 reloadnum = push_reload (x, NULL_RTX, loc, NULL_PTR,
5076 (context
5077 ? reload_address_index_reg_class
5078 : reload_address_base_reg_class),
5079 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5080 reload_inc[reloadnum]
5081 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5083 link = FIND_REG_INC_NOTE (this_insn, tem);
5084 if (link != 0)
5085 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5087 return 1;
5089 return 0;
5091 case MEM:
5092 /* This is probably the result of a substitution, by eliminate_regs, of
5093 an equivalent address for a pseudo that was not allocated to a hard
5094 register. Verify that the specified address is valid and reload it
5095 into a register.
5097 Since we know we are going to reload this item, don't decrement for
5098 the indirection level.
5100 Note that this is actually conservative: it would be slightly more
5101 efficient to use the value of SPILL_INDIRECT_LEVELS from
5102 reload1.c here. */
5104 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5105 opnum, ADDR_TYPE (type), ind_levels, insn);
5106 push_reload (*loc, NULL_RTX, loc, NULL_PTR,
5107 (context ? reload_address_index_reg_class
5108 : reload_address_base_reg_class),
5109 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5110 return 1;
5112 case REG:
5114 register int regno = REGNO (x);
5116 if (reg_equiv_constant[regno] != 0)
5118 find_reloads_address_part (reg_equiv_constant[regno], loc,
5119 (context
5120 ? reload_address_index_reg_class
5121 : reload_address_base_reg_class),
5122 GET_MODE (x), opnum, type, ind_levels);
5123 return 1;
5126 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5127 that feeds this insn. */
5128 if (reg_equiv_mem[regno] != 0)
5130 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, NULL_PTR,
5131 (context
5132 ? reload_address_index_reg_class
5133 : reload_address_base_reg_class),
5134 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5135 return 1;
5137 #endif
5139 if (reg_equiv_address[regno] != 0)
5141 x = make_memloc (x, regno);
5142 find_reloads_address (GET_MODE (x), 0, XEXP (x, 0), &XEXP (x, 0),
5143 opnum, ADDR_TYPE (type), ind_levels, insn);
5146 if (reg_renumber[regno] >= 0)
5147 regno = reg_renumber[regno];
5149 if ((regno >= FIRST_PSEUDO_REGISTER
5150 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5151 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5153 push_reload (x, NULL_RTX, loc, NULL_PTR,
5154 (context
5155 ? reload_address_index_reg_class
5156 : reload_address_base_reg_class),
5157 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5158 return 1;
5161 /* If a register appearing in an address is the subject of a CLOBBER
5162 in this insn, reload it into some other register to be safe.
5163 The CLOBBER is supposed to make the register unavailable
5164 from before this insn to after it. */
5165 if (regno_clobbered_p (regno, this_insn))
5167 push_reload (x, NULL_RTX, loc, NULL_PTR,
5168 (context
5169 ? reload_address_index_reg_class
5170 : reload_address_base_reg_class),
5171 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5172 return 1;
5175 return 0;
5177 case SUBREG:
5178 if (GET_CODE (SUBREG_REG (x)) == REG)
5180 /* If this is a SUBREG of a hard register and the resulting register
5181 is of the wrong class, reload the whole SUBREG. This avoids
5182 needless copies if SUBREG_REG is multi-word. */
5183 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5185 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5187 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5188 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5190 push_reload (x, NULL_RTX, loc, NULL_PTR,
5191 (context
5192 ? reload_address_index_reg_class
5193 : reload_address_base_reg_class),
5194 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5195 return 1;
5198 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5199 is larger than the class size, then reload the whole SUBREG. */
5200 else
5202 enum reg_class class = (context
5203 ? reload_address_index_reg_class
5204 : reload_address_base_reg_class);
5205 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5206 > reg_class_size[class])
5208 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5209 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5210 return 1;
5214 break;
5216 default:
5217 break;
5221 register char *fmt = GET_RTX_FORMAT (code);
5222 register int i;
5224 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5226 if (fmt[i] == 'e')
5227 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5228 opnum, type, ind_levels, insn);
5232 return 0;
5235 /* X, which is found at *LOC, is a part of an address that needs to be
5236 reloaded into a register of class CLASS. If X is a constant, or if
5237 X is a PLUS that contains a constant, check that the constant is a
5238 legitimate operand and that we are supposed to be able to load
5239 it into the register.
5241 If not, force the constant into memory and reload the MEM instead.
5243 MODE is the mode to use, in case X is an integer constant.
5245 OPNUM and TYPE describe the purpose of any reloads made.
5247 IND_LEVELS says how many levels of indirect addressing this machine
5248 supports. */
5250 static void
5251 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5252 rtx x;
5253 rtx *loc;
5254 enum reg_class class;
5255 enum machine_mode mode;
5256 int opnum;
5257 enum reload_type type;
5258 int ind_levels;
5260 if (CONSTANT_P (x)
5261 && (! LEGITIMATE_CONSTANT_P (x)
5262 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5264 rtx tem = x = force_const_mem (mode, x);
5265 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5266 opnum, type, ind_levels, 0);
5269 else if (GET_CODE (x) == PLUS
5270 && CONSTANT_P (XEXP (x, 1))
5271 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5272 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5274 rtx tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5276 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5277 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5278 opnum, type, ind_levels, 0);
5281 push_reload (x, NULL_RTX, loc, NULL_PTR, class,
5282 mode, VOIDmode, 0, 0, opnum, type);
5285 /* Substitute into the current INSN the registers into which we have reloaded
5286 the things that need reloading. The array `replacements'
5287 says contains the locations of all pointers that must be changed
5288 and says what to replace them with.
5290 Return the rtx that X translates into; usually X, but modified. */
5292 void
5293 subst_reloads ()
5295 register int i;
5297 for (i = 0; i < n_replacements; i++)
5299 register struct replacement *r = &replacements[i];
5300 register rtx reloadreg = reload_reg_rtx[r->what];
5301 if (reloadreg)
5303 /* Encapsulate RELOADREG so its machine mode matches what
5304 used to be there. Note that gen_lowpart_common will
5305 do the wrong thing if RELOADREG is multi-word. RELOADREG
5306 will always be a REG here. */
5307 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5308 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5310 /* If we are putting this into a SUBREG and RELOADREG is a
5311 SUBREG, we would be making nested SUBREGs, so we have to fix
5312 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5314 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5316 if (GET_MODE (*r->subreg_loc)
5317 == GET_MODE (SUBREG_REG (reloadreg)))
5318 *r->subreg_loc = SUBREG_REG (reloadreg);
5319 else
5321 *r->where = SUBREG_REG (reloadreg);
5322 SUBREG_WORD (*r->subreg_loc) += SUBREG_WORD (reloadreg);
5325 else
5326 *r->where = reloadreg;
5328 /* If reload got no reg and isn't optional, something's wrong. */
5329 else if (! reload_optional[r->what])
5330 abort ();
5334 /* Make a copy of any replacements being done into X and move those copies
5335 to locations in Y, a copy of X. We only look at the highest level of
5336 the RTL. */
5338 void
5339 copy_replacements (x, y)
5340 rtx x;
5341 rtx y;
5343 int i, j;
5344 enum rtx_code code = GET_CODE (x);
5345 char *fmt = GET_RTX_FORMAT (code);
5346 struct replacement *r;
5348 /* We can't support X being a SUBREG because we might then need to know its
5349 location if something inside it was replaced. */
5350 if (code == SUBREG)
5351 abort ();
5353 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5354 if (fmt[i] == 'e')
5355 for (j = 0; j < n_replacements; j++)
5357 if (replacements[j].subreg_loc == &XEXP (x, i))
5359 r = &replacements[n_replacements++];
5360 r->where = replacements[j].where;
5361 r->subreg_loc = &XEXP (y, i);
5362 r->what = replacements[j].what;
5363 r->mode = replacements[j].mode;
5365 else if (replacements[j].where == &XEXP (x, i))
5367 r = &replacements[n_replacements++];
5368 r->where = &XEXP (y, i);
5369 r->subreg_loc = 0;
5370 r->what = replacements[j].what;
5371 r->mode = replacements[j].mode;
5376 /* If LOC was scheduled to be replaced by something, return the replacement.
5377 Otherwise, return *LOC. */
5380 find_replacement (loc)
5381 rtx *loc;
5383 struct replacement *r;
5385 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
5387 rtx reloadreg = reload_reg_rtx[r->what];
5389 if (reloadreg && r->where == loc)
5391 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
5392 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5394 return reloadreg;
5396 else if (reloadreg && r->subreg_loc == loc)
5398 /* RELOADREG must be either a REG or a SUBREG.
5400 ??? Is it actually still ever a SUBREG? If so, why? */
5402 if (GET_CODE (reloadreg) == REG)
5403 return gen_rtx_REG (GET_MODE (*loc),
5404 REGNO (reloadreg) + SUBREG_WORD (*loc));
5405 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
5406 return reloadreg;
5407 else
5408 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
5409 SUBREG_WORD (reloadreg) + SUBREG_WORD (*loc));
5413 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5414 what's inside and make a new rtl if so. */
5415 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
5416 || GET_CODE (*loc) == MULT)
5418 rtx x = find_replacement (&XEXP (*loc, 0));
5419 rtx y = find_replacement (&XEXP (*loc, 1));
5421 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
5422 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
5425 return *loc;
5428 /* Return nonzero if register in range [REGNO, ENDREGNO)
5429 appears either explicitly or implicitly in X
5430 other than being stored into (except for earlyclobber operands).
5432 References contained within the substructure at LOC do not count.
5433 LOC may be zero, meaning don't ignore anything.
5435 This is similar to refers_to_regno_p in rtlanal.c except that we
5436 look at equivalences for pseudos that didn't get hard registers. */
5439 refers_to_regno_for_reload_p (regno, endregno, x, loc)
5440 int regno, endregno;
5441 rtx x;
5442 rtx *loc;
5444 register int i;
5445 register RTX_CODE code;
5446 register char *fmt;
5448 if (x == 0)
5449 return 0;
5451 repeat:
5452 code = GET_CODE (x);
5454 switch (code)
5456 case REG:
5457 i = REGNO (x);
5459 /* If this is a pseudo, a hard register must not have been allocated.
5460 X must therefore either be a constant or be in memory. */
5461 if (i >= FIRST_PSEUDO_REGISTER)
5463 if (reg_equiv_memory_loc[i])
5464 return refers_to_regno_for_reload_p (regno, endregno,
5465 reg_equiv_memory_loc[i],
5466 NULL_PTR);
5468 if (reg_equiv_constant[i])
5469 return 0;
5471 abort ();
5474 return (endregno > i
5475 && regno < i + (i < FIRST_PSEUDO_REGISTER
5476 ? HARD_REGNO_NREGS (i, GET_MODE (x))
5477 : 1));
5479 case SUBREG:
5480 /* If this is a SUBREG of a hard reg, we can see exactly which
5481 registers are being modified. Otherwise, handle normally. */
5482 if (GET_CODE (SUBREG_REG (x)) == REG
5483 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5485 int inner_regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
5486 int inner_endregno
5487 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
5488 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5490 return endregno > inner_regno && regno < inner_endregno;
5492 break;
5494 case CLOBBER:
5495 case SET:
5496 if (&SET_DEST (x) != loc
5497 /* Note setting a SUBREG counts as referring to the REG it is in for
5498 a pseudo but not for hard registers since we can
5499 treat each word individually. */
5500 && ((GET_CODE (SET_DEST (x)) == SUBREG
5501 && loc != &SUBREG_REG (SET_DEST (x))
5502 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
5503 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
5504 && refers_to_regno_for_reload_p (regno, endregno,
5505 SUBREG_REG (SET_DEST (x)),
5506 loc))
5507 /* If the output is an earlyclobber operand, this is
5508 a conflict. */
5509 || ((GET_CODE (SET_DEST (x)) != REG
5510 || earlyclobber_operand_p (SET_DEST (x)))
5511 && refers_to_regno_for_reload_p (regno, endregno,
5512 SET_DEST (x), loc))))
5513 return 1;
5515 if (code == CLOBBER || loc == &SET_SRC (x))
5516 return 0;
5517 x = SET_SRC (x);
5518 goto repeat;
5520 default:
5521 break;
5524 /* X does not match, so try its subexpressions. */
5526 fmt = GET_RTX_FORMAT (code);
5527 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5529 if (fmt[i] == 'e' && loc != &XEXP (x, i))
5531 if (i == 0)
5533 x = XEXP (x, 0);
5534 goto repeat;
5536 else
5537 if (refers_to_regno_for_reload_p (regno, endregno,
5538 XEXP (x, i), loc))
5539 return 1;
5541 else if (fmt[i] == 'E')
5543 register int j;
5544 for (j = XVECLEN (x, i) - 1; j >=0; j--)
5545 if (loc != &XVECEXP (x, i, j)
5546 && refers_to_regno_for_reload_p (regno, endregno,
5547 XVECEXP (x, i, j), loc))
5548 return 1;
5551 return 0;
5554 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5555 we check if any register number in X conflicts with the relevant register
5556 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5557 contains a MEM (we don't bother checking for memory addresses that can't
5558 conflict because we expect this to be a rare case.
5560 This function is similar to reg_overlap_mention_p in rtlanal.c except
5561 that we look at equivalences for pseudos that didn't get hard registers. */
5564 reg_overlap_mentioned_for_reload_p (x, in)
5565 rtx x, in;
5567 int regno, endregno;
5569 if (GET_CODE (x) == SUBREG)
5571 regno = REGNO (SUBREG_REG (x));
5572 if (regno < FIRST_PSEUDO_REGISTER)
5573 regno += SUBREG_WORD (x);
5575 else if (GET_CODE (x) == REG)
5577 regno = REGNO (x);
5579 /* If this is a pseudo, it must not have been assigned a hard register.
5580 Therefore, it must either be in memory or be a constant. */
5582 if (regno >= FIRST_PSEUDO_REGISTER)
5584 if (reg_equiv_memory_loc[regno])
5585 return refers_to_mem_for_reload_p (in);
5586 else if (reg_equiv_constant[regno])
5587 return 0;
5588 abort ();
5591 else if (CONSTANT_P (x))
5592 return 0;
5593 else if (GET_CODE (x) == MEM)
5594 return refers_to_mem_for_reload_p (in);
5595 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
5596 || GET_CODE (x) == CC0)
5597 return reg_mentioned_p (x, in);
5598 else
5599 abort ();
5601 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
5602 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
5604 return refers_to_regno_for_reload_p (regno, endregno, in, NULL_PTR);
5607 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
5608 registers. */
5611 refers_to_mem_for_reload_p (x)
5612 rtx x;
5614 char *fmt;
5615 int i;
5617 if (GET_CODE (x) == MEM)
5618 return 1;
5620 if (GET_CODE (x) == REG)
5621 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
5622 && reg_equiv_memory_loc[REGNO (x)]);
5624 fmt = GET_RTX_FORMAT (GET_CODE (x));
5625 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5626 if (fmt[i] == 'e'
5627 && (GET_CODE (XEXP (x, i)) == MEM
5628 || refers_to_mem_for_reload_p (XEXP (x, i))))
5629 return 1;
5631 return 0;
5634 /* Check the insns before INSN to see if there is a suitable register
5635 containing the same value as GOAL.
5636 If OTHER is -1, look for a register in class CLASS.
5637 Otherwise, just see if register number OTHER shares GOAL's value.
5639 Return an rtx for the register found, or zero if none is found.
5641 If RELOAD_REG_P is (short *)1,
5642 we reject any hard reg that appears in reload_reg_rtx
5643 because such a hard reg is also needed coming into this insn.
5645 If RELOAD_REG_P is any other nonzero value,
5646 it is a vector indexed by hard reg number
5647 and we reject any hard reg whose element in the vector is nonnegative
5648 as well as any that appears in reload_reg_rtx.
5650 If GOAL is zero, then GOALREG is a register number; we look
5651 for an equivalent for that register.
5653 MODE is the machine mode of the value we want an equivalence for.
5654 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5656 This function is used by jump.c as well as in the reload pass.
5658 If GOAL is the sum of the stack pointer and a constant, we treat it
5659 as if it were a constant except that sp is required to be unchanging. */
5662 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
5663 register rtx goal;
5664 rtx insn;
5665 enum reg_class class;
5666 register int other;
5667 short *reload_reg_p;
5668 int goalreg;
5669 enum machine_mode mode;
5671 register rtx p = insn;
5672 rtx goaltry, valtry, value, where;
5673 register rtx pat;
5674 register int regno = -1;
5675 int valueno;
5676 int goal_mem = 0;
5677 int goal_const = 0;
5678 int goal_mem_addr_varies = 0;
5679 int need_stable_sp = 0;
5680 int nregs;
5681 int valuenregs;
5683 if (goal == 0)
5684 regno = goalreg;
5685 else if (GET_CODE (goal) == REG)
5686 regno = REGNO (goal);
5687 else if (GET_CODE (goal) == MEM)
5689 enum rtx_code code = GET_CODE (XEXP (goal, 0));
5690 if (MEM_VOLATILE_P (goal))
5691 return 0;
5692 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
5693 return 0;
5694 /* An address with side effects must be reexecuted. */
5695 switch (code)
5697 case POST_INC:
5698 case PRE_INC:
5699 case POST_DEC:
5700 case PRE_DEC:
5701 return 0;
5702 default:
5703 break;
5705 goal_mem = 1;
5707 else if (CONSTANT_P (goal))
5708 goal_const = 1;
5709 else if (GET_CODE (goal) == PLUS
5710 && XEXP (goal, 0) == stack_pointer_rtx
5711 && CONSTANT_P (XEXP (goal, 1)))
5712 goal_const = need_stable_sp = 1;
5713 else if (GET_CODE (goal) == PLUS
5714 && XEXP (goal, 0) == frame_pointer_rtx
5715 && CONSTANT_P (XEXP (goal, 1)))
5716 goal_const = 1;
5717 else
5718 return 0;
5720 /* On some machines, certain regs must always be rejected
5721 because they don't behave the way ordinary registers do. */
5723 #ifdef OVERLAPPING_REGNO_P
5724 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5725 && OVERLAPPING_REGNO_P (regno))
5726 return 0;
5727 #endif
5729 /* Scan insns back from INSN, looking for one that copies
5730 a value into or out of GOAL.
5731 Stop and give up if we reach a label. */
5733 while (1)
5735 p = PREV_INSN (p);
5736 if (p == 0 || GET_CODE (p) == CODE_LABEL)
5737 return 0;
5738 if (GET_CODE (p) == INSN
5739 /* If we don't want spill regs ... */
5740 && (! (reload_reg_p != 0
5741 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
5742 /* ... then ignore insns introduced by reload; they aren't useful
5743 and can cause results in reload_as_needed to be different
5744 from what they were when calculating the need for spills.
5745 If we notice an input-reload insn here, we will reject it below,
5746 but it might hide a usable equivalent. That makes bad code.
5747 It may even abort: perhaps no reg was spilled for this insn
5748 because it was assumed we would find that equivalent. */
5749 || INSN_UID (p) < reload_first_uid))
5751 rtx tem;
5752 pat = single_set (p);
5753 /* First check for something that sets some reg equal to GOAL. */
5754 if (pat != 0
5755 && ((regno >= 0
5756 && true_regnum (SET_SRC (pat)) == regno
5757 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5759 (regno >= 0
5760 && true_regnum (SET_DEST (pat)) == regno
5761 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
5763 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
5764 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5765 || (goal_mem
5766 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
5767 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
5768 || (goal_mem
5769 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
5770 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
5771 /* If we are looking for a constant,
5772 and something equivalent to that constant was copied
5773 into a reg, we can use that reg. */
5774 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5775 NULL_RTX))
5776 && rtx_equal_p (XEXP (tem, 0), goal)
5777 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
5778 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5779 NULL_RTX))
5780 && GET_CODE (SET_DEST (pat)) == REG
5781 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5782 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5783 && GET_CODE (goal) == CONST_INT
5784 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 0, 0,
5785 VOIDmode))
5786 && rtx_equal_p (goal, goaltry)
5787 && (valtry = operand_subword (SET_DEST (pat), 0, 0,
5788 VOIDmode))
5789 && (valueno = true_regnum (valtry)) >= 0)
5790 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
5791 NULL_RTX))
5792 && GET_CODE (SET_DEST (pat)) == REG
5793 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
5794 && GET_MODE_CLASS (GET_MODE (XEXP (tem, 0))) == MODE_FLOAT
5795 && GET_CODE (goal) == CONST_INT
5796 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
5797 VOIDmode))
5798 && rtx_equal_p (goal, goaltry)
5799 && (valtry
5800 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
5801 && (valueno = true_regnum (valtry)) >= 0)))
5802 if (other >= 0
5803 ? valueno == other
5804 : ((unsigned) valueno < FIRST_PSEUDO_REGISTER
5805 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
5806 valueno)))
5808 value = valtry;
5809 where = p;
5810 break;
5815 /* We found a previous insn copying GOAL into a suitable other reg VALUE
5816 (or copying VALUE into GOAL, if GOAL is also a register).
5817 Now verify that VALUE is really valid. */
5819 /* VALUENO is the register number of VALUE; a hard register. */
5821 /* Don't try to re-use something that is killed in this insn. We want
5822 to be able to trust REG_UNUSED notes. */
5823 if (find_reg_note (where, REG_UNUSED, value))
5824 return 0;
5826 /* If we propose to get the value from the stack pointer or if GOAL is
5827 a MEM based on the stack pointer, we need a stable SP. */
5828 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
5829 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
5830 goal)))
5831 need_stable_sp = 1;
5833 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
5834 if (GET_MODE (value) != mode)
5835 return 0;
5837 /* Reject VALUE if it was loaded from GOAL
5838 and is also a register that appears in the address of GOAL. */
5840 if (goal_mem && value == SET_DEST (single_set (where))
5841 && refers_to_regno_for_reload_p (valueno,
5842 (valueno
5843 + HARD_REGNO_NREGS (valueno, mode)),
5844 goal, NULL_PTR))
5845 return 0;
5847 /* Reject registers that overlap GOAL. */
5849 if (!goal_mem && !goal_const
5850 && regno + HARD_REGNO_NREGS (regno, mode) > valueno
5851 && regno < valueno + HARD_REGNO_NREGS (valueno, mode))
5852 return 0;
5854 /* Reject VALUE if it is one of the regs reserved for reloads.
5855 Reload1 knows how to reuse them anyway, and it would get
5856 confused if we allocated one without its knowledge.
5857 (Now that insns introduced by reload are ignored above,
5858 this case shouldn't happen, but I'm not positive.) */
5860 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1
5861 && reload_reg_p[valueno] >= 0)
5862 return 0;
5864 /* On some machines, certain regs must always be rejected
5865 because they don't behave the way ordinary registers do. */
5867 #ifdef OVERLAPPING_REGNO_P
5868 if (OVERLAPPING_REGNO_P (valueno))
5869 return 0;
5870 #endif
5872 nregs = HARD_REGNO_NREGS (regno, mode);
5873 valuenregs = HARD_REGNO_NREGS (valueno, mode);
5875 /* Reject VALUE if it is a register being used for an input reload
5876 even if it is not one of those reserved. */
5878 if (reload_reg_p != 0)
5880 int i;
5881 for (i = 0; i < n_reloads; i++)
5882 if (reload_reg_rtx[i] != 0 && reload_in[i])
5884 int regno1 = REGNO (reload_reg_rtx[i]);
5885 int nregs1 = HARD_REGNO_NREGS (regno1,
5886 GET_MODE (reload_reg_rtx[i]));
5887 if (regno1 < valueno + valuenregs
5888 && regno1 + nregs1 > valueno)
5889 return 0;
5893 if (goal_mem)
5894 /* We must treat frame pointer as varying here,
5895 since it can vary--in a nonlocal goto as generated by expand_goto. */
5896 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
5898 /* Now verify that the values of GOAL and VALUE remain unaltered
5899 until INSN is reached. */
5901 p = insn;
5902 while (1)
5904 p = PREV_INSN (p);
5905 if (p == where)
5906 return value;
5908 /* Don't trust the conversion past a function call
5909 if either of the two is in a call-clobbered register, or memory. */
5910 if (GET_CODE (p) == CALL_INSN
5911 && ((regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5912 && call_used_regs[regno])
5914 (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5915 && call_used_regs[valueno])
5917 goal_mem
5918 || need_stable_sp))
5919 return 0;
5921 #ifdef NON_SAVING_SETJMP
5922 if (NON_SAVING_SETJMP && GET_CODE (p) == NOTE
5923 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
5924 return 0;
5925 #endif
5927 #ifdef INSN_CLOBBERS_REGNO_P
5928 if ((valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER
5929 && INSN_CLOBBERS_REGNO_P (p, valueno))
5930 || (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
5931 && INSN_CLOBBERS_REGNO_P (p, regno)))
5932 return 0;
5933 #endif
5935 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
5937 /* If this insn P stores in either GOAL or VALUE, return 0.
5938 If GOAL is a memory ref and this insn writes memory, return 0.
5939 If GOAL is a memory ref and its address is not constant,
5940 and this insn P changes a register used in GOAL, return 0. */
5942 pat = PATTERN (p);
5943 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
5945 register rtx dest = SET_DEST (pat);
5946 while (GET_CODE (dest) == SUBREG
5947 || GET_CODE (dest) == ZERO_EXTRACT
5948 || GET_CODE (dest) == SIGN_EXTRACT
5949 || GET_CODE (dest) == STRICT_LOW_PART)
5950 dest = XEXP (dest, 0);
5951 if (GET_CODE (dest) == REG)
5953 register int xregno = REGNO (dest);
5954 int xnregs;
5955 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5956 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5957 else
5958 xnregs = 1;
5959 if (xregno < regno + nregs && xregno + xnregs > regno)
5960 return 0;
5961 if (xregno < valueno + valuenregs
5962 && xregno + xnregs > valueno)
5963 return 0;
5964 if (goal_mem_addr_varies
5965 && reg_overlap_mentioned_for_reload_p (dest, goal))
5966 return 0;
5968 else if (goal_mem && GET_CODE (dest) == MEM
5969 && ! push_operand (dest, GET_MODE (dest)))
5970 return 0;
5971 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
5972 && reg_equiv_memory_loc[regno] != 0)
5973 return 0;
5974 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
5975 return 0;
5977 else if (GET_CODE (pat) == PARALLEL)
5979 register int i;
5980 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
5982 register rtx v1 = XVECEXP (pat, 0, i);
5983 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
5985 register rtx dest = SET_DEST (v1);
5986 while (GET_CODE (dest) == SUBREG
5987 || GET_CODE (dest) == ZERO_EXTRACT
5988 || GET_CODE (dest) == SIGN_EXTRACT
5989 || GET_CODE (dest) == STRICT_LOW_PART)
5990 dest = XEXP (dest, 0);
5991 if (GET_CODE (dest) == REG)
5993 register int xregno = REGNO (dest);
5994 int xnregs;
5995 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
5996 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
5997 else
5998 xnregs = 1;
5999 if (xregno < regno + nregs
6000 && xregno + xnregs > regno)
6001 return 0;
6002 if (xregno < valueno + valuenregs
6003 && xregno + xnregs > valueno)
6004 return 0;
6005 if (goal_mem_addr_varies
6006 && reg_overlap_mentioned_for_reload_p (dest,
6007 goal))
6008 return 0;
6010 else if (goal_mem && GET_CODE (dest) == MEM
6011 && ! push_operand (dest, GET_MODE (dest)))
6012 return 0;
6013 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6014 && reg_equiv_memory_loc[regno] != 0)
6015 return 0;
6016 else if (need_stable_sp
6017 && push_operand (dest, GET_MODE (dest)))
6018 return 0;
6023 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6025 rtx link;
6027 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6028 link = XEXP (link, 1))
6030 pat = XEXP (link, 0);
6031 if (GET_CODE (pat) == CLOBBER)
6033 register rtx dest = SET_DEST (pat);
6034 while (GET_CODE (dest) == SUBREG
6035 || GET_CODE (dest) == ZERO_EXTRACT
6036 || GET_CODE (dest) == SIGN_EXTRACT
6037 || GET_CODE (dest) == STRICT_LOW_PART)
6038 dest = XEXP (dest, 0);
6039 if (GET_CODE (dest) == REG)
6041 register int xregno = REGNO (dest);
6042 int xnregs;
6043 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6044 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6045 else
6046 xnregs = 1;
6047 if (xregno < regno + nregs
6048 && xregno + xnregs > regno)
6049 return 0;
6050 if (xregno < valueno + valuenregs
6051 && xregno + xnregs > valueno)
6052 return 0;
6053 if (goal_mem_addr_varies
6054 && reg_overlap_mentioned_for_reload_p (dest,
6055 goal))
6056 return 0;
6058 else if (goal_mem && GET_CODE (dest) == MEM
6059 && ! push_operand (dest, GET_MODE (dest)))
6060 return 0;
6061 else if (need_stable_sp
6062 && push_operand (dest, GET_MODE (dest)))
6063 return 0;
6068 #ifdef AUTO_INC_DEC
6069 /* If this insn auto-increments or auto-decrements
6070 either regno or valueno, return 0 now.
6071 If GOAL is a memory ref and its address is not constant,
6072 and this insn P increments a register used in GOAL, return 0. */
6074 register rtx link;
6076 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6077 if (REG_NOTE_KIND (link) == REG_INC
6078 && GET_CODE (XEXP (link, 0)) == REG)
6080 register int incno = REGNO (XEXP (link, 0));
6081 if (incno < regno + nregs && incno >= regno)
6082 return 0;
6083 if (incno < valueno + valuenregs && incno >= valueno)
6084 return 0;
6085 if (goal_mem_addr_varies
6086 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6087 goal))
6088 return 0;
6091 #endif
6096 /* Find a place where INCED appears in an increment or decrement operator
6097 within X, and return the amount INCED is incremented or decremented by.
6098 The value is always positive. */
6100 static int
6101 find_inc_amount (x, inced)
6102 rtx x, inced;
6104 register enum rtx_code code = GET_CODE (x);
6105 register char *fmt;
6106 register int i;
6108 if (code == MEM)
6110 register rtx addr = XEXP (x, 0);
6111 if ((GET_CODE (addr) == PRE_DEC
6112 || GET_CODE (addr) == POST_DEC
6113 || GET_CODE (addr) == PRE_INC
6114 || GET_CODE (addr) == POST_INC)
6115 && XEXP (addr, 0) == inced)
6116 return GET_MODE_SIZE (GET_MODE (x));
6119 fmt = GET_RTX_FORMAT (code);
6120 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6122 if (fmt[i] == 'e')
6124 register int tem = find_inc_amount (XEXP (x, i), inced);
6125 if (tem != 0)
6126 return tem;
6128 if (fmt[i] == 'E')
6130 register int j;
6131 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6133 register int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6134 if (tem != 0)
6135 return tem;
6140 return 0;
6143 /* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6146 regno_clobbered_p (regno, insn)
6147 int regno;
6148 rtx insn;
6150 if (GET_CODE (PATTERN (insn)) == CLOBBER
6151 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6152 return REGNO (XEXP (PATTERN (insn), 0)) == regno;
6154 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6156 int i = XVECLEN (PATTERN (insn), 0) - 1;
6158 for (; i >= 0; i--)
6160 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6161 if (GET_CODE (elt) == CLOBBER && GET_CODE (XEXP (elt, 0)) == REG
6162 && REGNO (XEXP (elt, 0)) == regno)
6163 return 1;
6167 return 0;
6170 static char *reload_when_needed_name[] =
6172 "RELOAD_FOR_INPUT",
6173 "RELOAD_FOR_OUTPUT",
6174 "RELOAD_FOR_INSN",
6175 "RELOAD_FOR_INPUT_ADDRESS",
6176 "RELOAD_FOR_INPADDR_ADDRESS",
6177 "RELOAD_FOR_OUTPUT_ADDRESS",
6178 "RELOAD_FOR_OUTADDR_ADDRESS",
6179 "RELOAD_FOR_OPERAND_ADDRESS",
6180 "RELOAD_FOR_OPADDR_ADDR",
6181 "RELOAD_OTHER",
6182 "RELOAD_FOR_OTHER_ADDRESS"
6185 static char *reg_class_names[] = REG_CLASS_NAMES;
6187 /* These functions are used to print the variables set by 'find_reloads' */
6189 void
6190 debug_reload_to_stream (f)
6191 FILE *f;
6193 int r;
6194 char *prefix;
6196 if (! f)
6197 f = stderr;
6198 for (r = 0; r < n_reloads; r++)
6200 fprintf (f, "Reload %d: ", r);
6202 if (reload_in[r] != 0)
6204 fprintf (f, "reload_in (%s) = ",
6205 GET_MODE_NAME (reload_inmode[r]));
6206 print_inline_rtx (f, reload_in[r], 24);
6207 fprintf (f, "\n\t");
6210 if (reload_out[r] != 0)
6212 fprintf (f, "reload_out (%s) = ",
6213 GET_MODE_NAME (reload_outmode[r]));
6214 print_inline_rtx (f, reload_out[r], 24);
6215 fprintf (f, "\n\t");
6218 fprintf (f, "%s, ", reg_class_names[(int) reload_reg_class[r]]);
6220 fprintf (f, "%s (opnum = %d)",
6221 reload_when_needed_name[(int) reload_when_needed[r]],
6222 reload_opnum[r]);
6224 if (reload_optional[r])
6225 fprintf (f, ", optional");
6227 if (reload_inc[r] != 0)
6228 fprintf (f, ", inc by %d", reload_inc[r]);
6230 if (reload_nocombine[r])
6231 fprintf (f, ", can't combine");
6233 if (reload_secondary_p[r])
6234 fprintf (f, ", secondary_reload_p");
6236 if (reload_in_reg[r] != 0)
6238 fprintf (f, "\n\treload_in_reg: ");
6239 print_inline_rtx (f, reload_in_reg[r], 24);
6242 if (reload_reg_rtx[r] != 0)
6244 fprintf (f, "\n\treload_reg_rtx: ");
6245 print_inline_rtx (f, reload_reg_rtx[r], 24);
6248 prefix = "\n\t";
6249 if (reload_secondary_in_reload[r] != -1)
6251 fprintf (f, "%ssecondary_in_reload = %d",
6252 prefix, reload_secondary_in_reload[r]);
6253 prefix = ", ";
6256 if (reload_secondary_out_reload[r] != -1)
6257 fprintf (f, "%ssecondary_out_reload = %d\n",
6258 prefix, reload_secondary_out_reload[r]);
6260 prefix = "\n\t";
6261 if (reload_secondary_in_icode[r] != CODE_FOR_nothing)
6263 fprintf (f, "%ssecondary_in_icode = %s", prefix, insn_name[r]);
6264 prefix = ", ";
6267 if (reload_secondary_out_icode[r] != CODE_FOR_nothing)
6268 fprintf (f, "%ssecondary_out_icode = %s", prefix, insn_name[r]);
6270 fprintf (f, "\n");
6274 void
6275 debug_reload ()
6277 debug_reload_to_stream (stderr);