1 /* Save and restore call-clobbered registers which are live across a call.
2 Copyright (C) 1989-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
26 #include "insn-config.h"
28 #include "hard-reg-set.h"
30 #include "basic-block.h"
35 #include "diagnostic-core.h"
37 #include "addresses.h"
41 #define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
43 #define regno_save_mode \
44 (this_target_reload->x_regno_save_mode)
45 #define cached_reg_save_code \
46 (this_target_reload->x_cached_reg_save_code)
47 #define cached_reg_restore_code \
48 (this_target_reload->x_cached_reg_restore_code)
50 /* For each hard register, a place on the stack where it can be saved,
54 regno_save_mem
[FIRST_PSEUDO_REGISTER
][MAX_MOVE_MAX
/ MIN_UNITS_PER_WORD
+ 1];
56 /* The number of elements in the subsequent array. */
57 static int save_slots_num
;
59 /* Allocated slots so far. */
60 static rtx save_slots
[FIRST_PSEUDO_REGISTER
];
62 /* Set of hard regs currently residing in save area (during insn scan). */
64 static HARD_REG_SET hard_regs_saved
;
66 /* Number of registers currently in hard_regs_saved. */
68 static int n_regs_saved
;
70 /* Computed by mark_referenced_regs, all regs referenced in a given
72 static HARD_REG_SET referenced_regs
;
75 typedef void refmarker_fn (rtx
*loc
, enum machine_mode mode
, int hardregno
,
78 static int reg_save_code (int, enum machine_mode
);
79 static int reg_restore_code (int, enum machine_mode
);
81 struct saved_hard_reg
;
82 static void initiate_saved_hard_regs (void);
83 static void new_saved_hard_reg (int, int);
84 static void finish_saved_hard_regs (void);
85 static int saved_hard_reg_compare_func (const void *, const void *);
87 static void mark_set_regs (rtx
, const_rtx
, void *);
88 static void mark_referenced_regs (rtx
*, refmarker_fn
*mark
, void *mark_arg
);
89 static refmarker_fn mark_reg_as_referenced
;
90 static refmarker_fn replace_reg_with_saved_mem
;
91 static int insert_save (struct insn_chain
*, int, int, HARD_REG_SET
*,
93 static int insert_restore (struct insn_chain
*, int, int, int,
95 static struct insn_chain
*insert_one_insn (struct insn_chain
*, int, int,
97 static void add_stored_regs (rtx
, const_rtx
, void *);
101 static GTY(()) rtx savepat
;
102 static GTY(()) rtx restpat
;
103 static GTY(()) rtx test_reg
;
104 static GTY(()) rtx test_mem
;
105 static GTY(()) rtx saveinsn
;
106 static GTY(()) rtx restinsn
;
108 /* Return the INSN_CODE used to save register REG in mode MODE. */
110 reg_save_code (int reg
, enum machine_mode mode
)
113 if (cached_reg_save_code
[reg
][mode
])
114 return cached_reg_save_code
[reg
][mode
];
115 if (!HARD_REGNO_MODE_OK (reg
, mode
))
117 /* Depending on how HARD_REGNO_MODE_OK is defined, range propagation
118 might deduce here that reg >= FIRST_PSEUDO_REGISTER. So the assert
119 below silences a warning. */
120 gcc_assert (reg
< FIRST_PSEUDO_REGISTER
);
121 cached_reg_save_code
[reg
][mode
] = -1;
122 cached_reg_restore_code
[reg
][mode
] = -1;
126 /* Update the register number and modes of the register
127 and memory operand. */
128 SET_REGNO_RAW (test_reg
, reg
);
129 PUT_MODE (test_reg
, mode
);
130 PUT_MODE (test_mem
, mode
);
132 /* Force re-recognition of the modified insns. */
133 INSN_CODE (saveinsn
) = -1;
134 INSN_CODE (restinsn
) = -1;
136 cached_reg_save_code
[reg
][mode
] = recog_memoized (saveinsn
);
137 cached_reg_restore_code
[reg
][mode
] = recog_memoized (restinsn
);
139 /* Now extract both insns and see if we can meet their
141 ok
= (cached_reg_save_code
[reg
][mode
] != -1
142 && cached_reg_restore_code
[reg
][mode
] != -1);
145 extract_insn (saveinsn
);
146 ok
= constrain_operands (1);
147 extract_insn (restinsn
);
148 ok
&= constrain_operands (1);
153 cached_reg_save_code
[reg
][mode
] = -1;
154 cached_reg_restore_code
[reg
][mode
] = -1;
156 gcc_assert (cached_reg_save_code
[reg
][mode
]);
157 return cached_reg_save_code
[reg
][mode
];
160 /* Return the INSN_CODE used to restore register REG in mode MODE. */
162 reg_restore_code (int reg
, enum machine_mode mode
)
164 if (cached_reg_restore_code
[reg
][mode
])
165 return cached_reg_restore_code
[reg
][mode
];
166 /* Populate our cache. */
167 reg_save_code (reg
, mode
);
168 return cached_reg_restore_code
[reg
][mode
];
171 /* Initialize for caller-save.
173 Look at all the hard registers that are used by a call and for which
174 reginfo.c has not already excluded from being used across a call.
176 Ensure that we can find a mode to save the register and that there is a
177 simple insn to save and restore the register. This latter check avoids
178 problems that would occur if we tried to save the MQ register of some
179 machines directly into memory. */
182 init_caller_save (void)
189 if (caller_save_initialized_p
)
192 caller_save_initialized_p
= true;
194 CLEAR_HARD_REG_SET (no_caller_save_reg_set
);
195 /* First find all the registers that we need to deal with and all
196 the modes that they can have. If we can't find a mode to use,
197 we can't have the register live over calls. */
199 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
201 if (call_used_regs
[i
]
202 && !TEST_HARD_REG_BIT (call_fixed_reg_set
, i
))
204 for (j
= 1; j
<= MOVE_MAX_WORDS
; j
++)
206 regno_save_mode
[i
][j
] = HARD_REGNO_CALLER_SAVE_MODE (i
, j
,
208 if (regno_save_mode
[i
][j
] == VOIDmode
&& j
== 1)
210 SET_HARD_REG_BIT (call_fixed_reg_set
, i
);
215 regno_save_mode
[i
][1] = VOIDmode
;
218 /* The following code tries to approximate the conditions under which
219 we can easily save and restore a register without scratch registers or
220 other complexities. It will usually work, except under conditions where
221 the validity of an insn operand is dependent on the address offset.
222 No such cases are currently known.
224 We first find a typical offset from some BASE_REG_CLASS register.
225 This address is chosen by finding the first register in the class
226 and by finding the smallest power of two that is a valid offset from
227 that register in every mode we will use to save registers. */
229 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
230 if (TEST_HARD_REG_BIT
232 [(int) base_reg_class (regno_save_mode
[i
][1], ADDR_SPACE_GENERIC
,
233 PLUS
, CONST_INT
)], i
))
236 gcc_assert (i
< FIRST_PSEUDO_REGISTER
);
238 addr_reg
= gen_rtx_REG (Pmode
, i
);
240 for (offset
= 1 << (HOST_BITS_PER_INT
/ 2); offset
; offset
>>= 1)
242 address
= gen_rtx_PLUS (Pmode
, addr_reg
, GEN_INT (offset
));
244 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
245 if (regno_save_mode
[i
][1] != VOIDmode
246 && ! strict_memory_address_p (regno_save_mode
[i
][1], address
))
249 if (i
== FIRST_PSEUDO_REGISTER
)
253 /* If we didn't find a valid address, we must use register indirect. */
257 /* Next we try to form an insn to save and restore the register. We
258 see if such an insn is recognized and meets its constraints.
260 To avoid lots of unnecessary RTL allocation, we construct all the RTL
261 once, then modify the memory and register operands in-place. */
263 test_reg
= gen_rtx_REG (VOIDmode
, 0);
264 test_mem
= gen_rtx_MEM (VOIDmode
, address
);
265 savepat
= gen_rtx_SET (VOIDmode
, test_mem
, test_reg
);
266 restpat
= gen_rtx_SET (VOIDmode
, test_reg
, test_mem
);
268 saveinsn
= gen_rtx_INSN (VOIDmode
, 0, 0, 0, 0, savepat
, 0, -1, 0);
269 restinsn
= gen_rtx_INSN (VOIDmode
, 0, 0, 0, 0, restpat
, 0, -1, 0);
271 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
272 for (j
= 1; j
<= MOVE_MAX_WORDS
; j
++)
273 if (reg_save_code (i
,regno_save_mode
[i
][j
]) == -1)
275 regno_save_mode
[i
][j
] = VOIDmode
;
278 SET_HARD_REG_BIT (call_fixed_reg_set
, i
);
279 if (call_used_regs
[i
])
280 SET_HARD_REG_BIT (no_caller_save_reg_set
, i
);
287 /* Initialize save areas by showing that we haven't allocated any yet. */
290 init_save_areas (void)
294 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
295 for (j
= 1; j
<= MOVE_MAX_WORDS
; j
++)
296 regno_save_mem
[i
][j
] = 0;
301 /* The structure represents a hard register which should be saved
302 through the call. It is used when the integrated register
303 allocator (IRA) is used and sharing save slots is on. */
304 struct saved_hard_reg
306 /* Order number starting with 0. */
308 /* The hard regno. */
310 /* Execution frequency of all calls through which given hard
311 register should be saved. */
313 /* Stack slot reserved to save the hard register through calls. */
315 /* True if it is first hard register in the chain of hard registers
316 sharing the same stack slot. */
318 /* Order number of the next hard register structure with the same
319 slot in the chain. -1 represents end of the chain. */
323 /* Map: hard register number to the corresponding structure. */
324 static struct saved_hard_reg
*hard_reg_map
[FIRST_PSEUDO_REGISTER
];
326 /* The number of all structures representing hard registers should be
327 saved, in order words, the number of used elements in the following
329 static int saved_regs_num
;
331 /* Pointers to all the structures. Index is the order number of the
332 corresponding structure. */
333 static struct saved_hard_reg
*all_saved_regs
[FIRST_PSEUDO_REGISTER
];
335 /* First called function for work with saved hard registers. */
337 initiate_saved_hard_regs (void)
342 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
343 hard_reg_map
[i
] = NULL
;
346 /* Allocate and return new saved hard register with given REGNO and
349 new_saved_hard_reg (int regno
, int call_freq
)
351 struct saved_hard_reg
*saved_reg
;
354 = (struct saved_hard_reg
*) xmalloc (sizeof (struct saved_hard_reg
));
355 hard_reg_map
[regno
] = all_saved_regs
[saved_regs_num
] = saved_reg
;
356 saved_reg
->num
= saved_regs_num
++;
357 saved_reg
->hard_regno
= regno
;
358 saved_reg
->call_freq
= call_freq
;
359 saved_reg
->first_p
= FALSE
;
360 saved_reg
->next
= -1;
363 /* Free memory allocated for the saved hard registers. */
365 finish_saved_hard_regs (void)
369 for (i
= 0; i
< saved_regs_num
; i
++)
370 free (all_saved_regs
[i
]);
373 /* The function is used to sort the saved hard register structures
374 according their frequency. */
376 saved_hard_reg_compare_func (const void *v1p
, const void *v2p
)
378 const struct saved_hard_reg
*p1
= *(struct saved_hard_reg
* const *) v1p
;
379 const struct saved_hard_reg
*p2
= *(struct saved_hard_reg
* const *) v2p
;
381 if (flag_omit_frame_pointer
)
383 if (p1
->call_freq
- p2
->call_freq
!= 0)
384 return p1
->call_freq
- p2
->call_freq
;
386 else if (p2
->call_freq
- p1
->call_freq
!= 0)
387 return p2
->call_freq
- p1
->call_freq
;
389 return p1
->num
- p2
->num
;
392 /* Allocate save areas for any hard registers that might need saving.
393 We take a conservative approach here and look for call-clobbered hard
394 registers that are assigned to pseudos that cross calls. This may
395 overestimate slightly (especially if some of these registers are later
396 used as spill registers), but it should not be significant.
398 For IRA we use priority coloring to decrease stack slots needed for
399 saving hard registers through calls. We build conflicts for them
404 In the fallback case we should iterate backwards across all possible
405 modes for the save, choosing the largest available one instead of
406 falling back to the smallest mode immediately. (eg TF -> DF -> SF).
408 We do not try to use "move multiple" instructions that exist
409 on some machines (such as the 68k moveml). It could be a win to try
410 and use them when possible. The hard part is doing it in a way that is
411 machine independent since they might be saving non-consecutive
412 registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
415 setup_save_areas (void)
418 HARD_REG_SET hard_regs_used
;
419 struct saved_hard_reg
*saved_reg
;
421 struct insn_chain
*chain
, *next
;
423 HARD_REG_SET hard_regs_to_save
, used_regs
, this_insn_sets
;
424 reg_set_iterator rsi
;
426 CLEAR_HARD_REG_SET (hard_regs_used
);
428 /* Find every CALL_INSN and record which hard regs are live across the
429 call into HARD_REG_MAP and HARD_REGS_USED. */
430 initiate_saved_hard_regs ();
431 /* Create hard reg saved regs. */
432 for (chain
= reload_insn_chain
; chain
!= 0; chain
= next
)
439 || find_reg_note (insn
, REG_NORETURN
, NULL
))
441 freq
= REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn
));
442 REG_SET_TO_HARD_REG_SET (hard_regs_to_save
,
443 &chain
->live_throughout
);
444 COPY_HARD_REG_SET (used_regs
, call_used_reg_set
);
446 /* Record all registers set in this call insn. These don't
447 need to be saved. N.B. the call insn might set a subreg
448 of a multi-hard-reg pseudo; then the pseudo is considered
449 live during the call, but the subreg that is set
451 CLEAR_HARD_REG_SET (this_insn_sets
);
452 note_stores (PATTERN (insn
), mark_set_regs
, &this_insn_sets
);
453 /* Sibcalls are considered to set the return value. */
454 if (SIBLING_CALL_P (insn
) && crtl
->return_rtx
)
455 mark_set_regs (crtl
->return_rtx
, NULL_RTX
, &this_insn_sets
);
457 AND_COMPL_HARD_REG_SET (used_regs
, call_fixed_reg_set
);
458 AND_COMPL_HARD_REG_SET (used_regs
, this_insn_sets
);
459 AND_HARD_REG_SET (hard_regs_to_save
, used_regs
);
460 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
461 if (TEST_HARD_REG_BIT (hard_regs_to_save
, regno
))
463 if (hard_reg_map
[regno
] != NULL
)
464 hard_reg_map
[regno
]->call_freq
+= freq
;
466 new_saved_hard_reg (regno
, freq
);
467 SET_HARD_REG_BIT (hard_regs_used
, regno
);
469 cheap
= find_reg_note (insn
, REG_RETURNED
, NULL
);
471 cheap
= XEXP (cheap
, 0);
472 /* Look through all live pseudos, mark their hard registers. */
473 EXECUTE_IF_SET_IN_REG_SET
474 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, regno
, rsi
)
476 int r
= reg_renumber
[regno
];
479 if (r
< 0 || regno_reg_rtx
[regno
] == cheap
)
482 bound
= r
+ hard_regno_nregs
[r
][PSEUDO_REGNO_MODE (regno
)];
483 for (; r
< bound
; r
++)
484 if (TEST_HARD_REG_BIT (used_regs
, r
))
486 if (hard_reg_map
[r
] != NULL
)
487 hard_reg_map
[r
]->call_freq
+= freq
;
489 new_saved_hard_reg (r
, freq
);
490 SET_HARD_REG_BIT (hard_regs_to_save
, r
);
491 SET_HARD_REG_BIT (hard_regs_used
, r
);
496 /* If requested, figure out which hard regs can share save slots. */
497 if (optimize
&& flag_ira_share_save_slots
)
500 char *saved_reg_conflicts
;
502 struct saved_hard_reg
*saved_reg2
, *saved_reg3
;
503 int call_saved_regs_num
;
504 struct saved_hard_reg
*call_saved_regs
[FIRST_PSEUDO_REGISTER
];
506 int prev_save_slots_num
;
507 rtx prev_save_slots
[FIRST_PSEUDO_REGISTER
];
509 /* Find saved hard register conflicts. */
510 saved_reg_conflicts
= (char *) xmalloc (saved_regs_num
* saved_regs_num
);
511 memset (saved_reg_conflicts
, 0, saved_regs_num
* saved_regs_num
);
512 for (chain
= reload_insn_chain
; chain
!= 0; chain
= next
)
515 call_saved_regs_num
= 0;
519 || find_reg_note (insn
, REG_NORETURN
, NULL
))
522 cheap
= find_reg_note (insn
, REG_RETURNED
, NULL
);
524 cheap
= XEXP (cheap
, 0);
526 REG_SET_TO_HARD_REG_SET (hard_regs_to_save
,
527 &chain
->live_throughout
);
528 COPY_HARD_REG_SET (used_regs
, call_used_reg_set
);
530 /* Record all registers set in this call insn. These don't
531 need to be saved. N.B. the call insn might set a subreg
532 of a multi-hard-reg pseudo; then the pseudo is considered
533 live during the call, but the subreg that is set
535 CLEAR_HARD_REG_SET (this_insn_sets
);
536 note_stores (PATTERN (insn
), mark_set_regs
, &this_insn_sets
);
537 /* Sibcalls are considered to set the return value,
538 compare df-scan.c:df_get_call_refs. */
539 if (SIBLING_CALL_P (insn
) && crtl
->return_rtx
)
540 mark_set_regs (crtl
->return_rtx
, NULL_RTX
, &this_insn_sets
);
542 AND_COMPL_HARD_REG_SET (used_regs
, call_fixed_reg_set
);
543 AND_COMPL_HARD_REG_SET (used_regs
, this_insn_sets
);
544 AND_HARD_REG_SET (hard_regs_to_save
, used_regs
);
545 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
546 if (TEST_HARD_REG_BIT (hard_regs_to_save
, regno
))
548 gcc_assert (hard_reg_map
[regno
] != NULL
);
549 call_saved_regs
[call_saved_regs_num
++] = hard_reg_map
[regno
];
551 /* Look through all live pseudos, mark their hard registers. */
552 EXECUTE_IF_SET_IN_REG_SET
553 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, regno
, rsi
)
555 int r
= reg_renumber
[regno
];
558 if (r
< 0 || regno_reg_rtx
[regno
] == cheap
)
561 bound
= r
+ hard_regno_nregs
[r
][PSEUDO_REGNO_MODE (regno
)];
562 for (; r
< bound
; r
++)
563 if (TEST_HARD_REG_BIT (used_regs
, r
))
564 call_saved_regs
[call_saved_regs_num
++] = hard_reg_map
[r
];
566 for (i
= 0; i
< call_saved_regs_num
; i
++)
568 saved_reg
= call_saved_regs
[i
];
569 for (j
= 0; j
< call_saved_regs_num
; j
++)
572 saved_reg2
= call_saved_regs
[j
];
573 saved_reg_conflicts
[saved_reg
->num
* saved_regs_num
575 = saved_reg_conflicts
[saved_reg2
->num
* saved_regs_num
581 /* Sort saved hard regs. */
582 qsort (all_saved_regs
, saved_regs_num
, sizeof (struct saved_hard_reg
*),
583 saved_hard_reg_compare_func
);
584 /* Initiate slots available from the previous reload
586 prev_save_slots_num
= save_slots_num
;
587 memcpy (prev_save_slots
, save_slots
, save_slots_num
* sizeof (rtx
));
589 /* Allocate stack slots for the saved hard registers. */
590 for (i
= 0; i
< saved_regs_num
; i
++)
592 saved_reg
= all_saved_regs
[i
];
593 regno
= saved_reg
->hard_regno
;
594 for (j
= 0; j
< i
; j
++)
596 saved_reg2
= all_saved_regs
[j
];
597 if (! saved_reg2
->first_p
)
599 slot
= saved_reg2
->slot
;
600 for (k
= j
; k
>= 0; k
= next_k
)
602 saved_reg3
= all_saved_regs
[k
];
603 next_k
= saved_reg3
->next
;
604 if (saved_reg_conflicts
[saved_reg
->num
* saved_regs_num
609 && (GET_MODE_SIZE (regno_save_mode
[regno
][1])
610 <= GET_MODE_SIZE (regno_save_mode
611 [saved_reg2
->hard_regno
][1])))
615 (slot
, regno_save_mode
[saved_reg
->hard_regno
][1], 0);
616 regno_save_mem
[regno
][1] = saved_reg
->slot
;
617 saved_reg
->next
= saved_reg2
->next
;
618 saved_reg2
->next
= i
;
619 if (dump_file
!= NULL
)
620 fprintf (dump_file
, "%d uses slot of %d\n",
621 regno
, saved_reg2
->hard_regno
);
627 saved_reg
->first_p
= TRUE
;
628 for (best_slot_num
= -1, j
= 0; j
< prev_save_slots_num
; j
++)
630 slot
= prev_save_slots
[j
];
631 if (slot
== NULL_RTX
)
633 if (GET_MODE_SIZE (regno_save_mode
[regno
][1])
634 <= GET_MODE_SIZE (GET_MODE (slot
))
635 && best_slot_num
< 0)
637 if (GET_MODE (slot
) == regno_save_mode
[regno
][1])
640 if (best_slot_num
>= 0)
642 saved_reg
->slot
= prev_save_slots
[best_slot_num
];
646 regno_save_mode
[saved_reg
->hard_regno
][1], 0);
647 if (dump_file
!= NULL
)
649 "%d uses a slot from prev iteration\n", regno
);
650 prev_save_slots
[best_slot_num
] = NULL_RTX
;
651 if (best_slot_num
+ 1 == prev_save_slots_num
)
652 prev_save_slots_num
--;
657 = assign_stack_local_1
658 (regno_save_mode
[regno
][1],
659 GET_MODE_SIZE (regno_save_mode
[regno
][1]), 0,
661 if (dump_file
!= NULL
)
662 fprintf (dump_file
, "%d uses a new slot\n", regno
);
664 regno_save_mem
[regno
][1] = saved_reg
->slot
;
665 save_slots
[save_slots_num
++] = saved_reg
->slot
;
668 free (saved_reg_conflicts
);
669 finish_saved_hard_regs ();
673 /* We are not sharing slots.
675 Run through all the call-used hard-registers and allocate
676 space for each in the caller-save area. Try to allocate space
677 in a manner which allows multi-register saves/restores to be done. */
679 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
680 for (j
= MOVE_MAX_WORDS
; j
> 0; j
--)
684 /* If no mode exists for this size, try another. Also break out
685 if we have already saved this hard register. */
686 if (regno_save_mode
[i
][j
] == VOIDmode
|| regno_save_mem
[i
][1] != 0)
689 /* See if any register in this group has been saved. */
690 for (k
= 0; k
< j
; k
++)
691 if (regno_save_mem
[i
+ k
][1])
699 for (k
= 0; k
< j
; k
++)
700 if (! TEST_HARD_REG_BIT (hard_regs_used
, i
+ k
))
708 /* We have found an acceptable mode to store in. Since
709 hard register is always saved in the widest mode
710 available, the mode may be wider than necessary, it is
711 OK to reduce the alignment of spill space. We will
712 verify that it is equal to or greater than required
713 when we restore and save the hard register in
714 insert_restore and insert_save. */
716 = assign_stack_local_1 (regno_save_mode
[i
][j
],
717 GET_MODE_SIZE (regno_save_mode
[i
][j
]),
718 0, ASLK_REDUCE_ALIGN
);
720 /* Setup single word save area just in case... */
721 for (k
= 0; k
< j
; k
++)
722 /* This should not depend on WORDS_BIG_ENDIAN.
723 The order of words in regs is the same as in memory. */
724 regno_save_mem
[i
+ k
][1]
725 = adjust_address_nv (regno_save_mem
[i
][j
],
726 regno_save_mode
[i
+ k
][1],
731 /* Now loop again and set the alias set of any save areas we made to
732 the alias set used to represent frame objects. */
733 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
734 for (j
= MOVE_MAX_WORDS
; j
> 0; j
--)
735 if (regno_save_mem
[i
][j
] != 0)
736 set_mem_alias_set (regno_save_mem
[i
][j
], get_frame_alias_set ());
741 /* Find the places where hard regs are live across calls and save them. */
744 save_call_clobbered_regs (void)
746 struct insn_chain
*chain
, *next
, *last
= NULL
;
747 enum machine_mode save_mode
[FIRST_PSEUDO_REGISTER
];
749 /* Computed in mark_set_regs, holds all registers set by the current
751 HARD_REG_SET this_insn_sets
;
753 CLEAR_HARD_REG_SET (hard_regs_saved
);
756 for (chain
= reload_insn_chain
; chain
!= 0; chain
= next
)
758 rtx insn
= chain
->insn
;
759 enum rtx_code code
= GET_CODE (insn
);
763 gcc_assert (!chain
->is_caller_save_insn
);
765 if (NONDEBUG_INSN_P (insn
))
767 /* If some registers have been saved, see if INSN references
768 any of them. We must restore them before the insn if so. */
773 HARD_REG_SET this_insn_sets
;
775 if (code
== JUMP_INSN
)
776 /* Restore all registers if this is a JUMP_INSN. */
777 COPY_HARD_REG_SET (referenced_regs
, hard_regs_saved
);
780 CLEAR_HARD_REG_SET (referenced_regs
);
781 mark_referenced_regs (&PATTERN (insn
),
782 mark_reg_as_referenced
, NULL
);
783 AND_HARD_REG_SET (referenced_regs
, hard_regs_saved
);
786 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
787 if (TEST_HARD_REG_BIT (referenced_regs
, regno
))
788 regno
+= insert_restore (chain
, 1, regno
, MOVE_MAX_WORDS
,
790 /* If a saved register is set after the call, this means we no
791 longer should restore it. This can happen when parts of a
792 multi-word pseudo do not conflict with other pseudos, so
793 IRA may allocate the same hard register for both. One may
794 be live across the call, while the other is set
796 CLEAR_HARD_REG_SET (this_insn_sets
);
797 note_stores (PATTERN (insn
), mark_set_regs
, &this_insn_sets
);
798 AND_COMPL_HARD_REG_SET (hard_regs_saved
, this_insn_sets
);
801 if (code
== CALL_INSN
802 && ! SIBLING_CALL_P (insn
)
803 && ! find_reg_note (insn
, REG_NORETURN
, NULL
))
806 HARD_REG_SET hard_regs_to_save
;
807 reg_set_iterator rsi
;
810 cheap
= find_reg_note (insn
, REG_RETURNED
, NULL
);
812 cheap
= XEXP (cheap
, 0);
814 /* Use the register life information in CHAIN to compute which
815 regs are live during the call. */
816 REG_SET_TO_HARD_REG_SET (hard_regs_to_save
,
817 &chain
->live_throughout
);
818 /* Save hard registers always in the widest mode available. */
819 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
820 if (TEST_HARD_REG_BIT (hard_regs_to_save
, regno
))
821 save_mode
[regno
] = regno_save_mode
[regno
][1];
823 save_mode
[regno
] = VOIDmode
;
825 /* Look through all live pseudos, mark their hard registers
826 and choose proper mode for saving. */
827 EXECUTE_IF_SET_IN_REG_SET
828 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, regno
, rsi
)
830 int r
= reg_renumber
[regno
];
832 enum machine_mode mode
;
834 if (r
< 0 || regno_reg_rtx
[regno
] == cheap
)
836 nregs
= hard_regno_nregs
[r
][PSEUDO_REGNO_MODE (regno
)];
837 mode
= HARD_REGNO_CALLER_SAVE_MODE
838 (r
, nregs
, PSEUDO_REGNO_MODE (regno
));
839 if (GET_MODE_BITSIZE (mode
)
840 > GET_MODE_BITSIZE (save_mode
[r
]))
843 SET_HARD_REG_BIT (hard_regs_to_save
, r
+ nregs
);
846 /* Record all registers set in this call insn. These don't need
847 to be saved. N.B. the call insn might set a subreg of a
848 multi-hard-reg pseudo; then the pseudo is considered live
849 during the call, but the subreg that is set isn't. */
850 CLEAR_HARD_REG_SET (this_insn_sets
);
851 note_stores (PATTERN (insn
), mark_set_regs
, &this_insn_sets
);
853 /* Compute which hard regs must be saved before this call. */
854 AND_COMPL_HARD_REG_SET (hard_regs_to_save
, call_fixed_reg_set
);
855 AND_COMPL_HARD_REG_SET (hard_regs_to_save
, this_insn_sets
);
856 AND_COMPL_HARD_REG_SET (hard_regs_to_save
, hard_regs_saved
);
857 AND_HARD_REG_SET (hard_regs_to_save
, call_used_reg_set
);
859 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
860 if (TEST_HARD_REG_BIT (hard_regs_to_save
, regno
))
861 regno
+= insert_save (chain
, 1, regno
, &hard_regs_to_save
, save_mode
);
863 /* Must recompute n_regs_saved. */
865 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
866 if (TEST_HARD_REG_BIT (hard_regs_saved
, regno
))
870 && HARD_REGISTER_P (cheap
)
871 && TEST_HARD_REG_BIT (call_used_reg_set
, REGNO (cheap
)))
874 rtx pat
= PATTERN (insn
);
875 if (GET_CODE (pat
) == PARALLEL
)
876 pat
= XVECEXP (pat
, 0, 0);
877 dest
= SET_DEST (pat
);
878 newpat
= gen_rtx_SET (VOIDmode
, cheap
, copy_rtx (dest
));
879 chain
= insert_one_insn (chain
, 0, -1, newpat
);
884 else if (DEBUG_INSN_P (insn
) && n_regs_saved
)
885 mark_referenced_regs (&PATTERN (insn
),
886 replace_reg_with_saved_mem
,
889 if (chain
->next
== 0 || chain
->next
->block
!= chain
->block
)
892 /* At the end of the basic block, we must restore any registers that
893 remain saved. If the last insn in the block is a JUMP_INSN, put
894 the restore before the insn, otherwise, put it after the insn. */
897 && DEBUG_INSN_P (insn
)
899 && last
->block
== chain
->block
)
902 basic_block bb
= BLOCK_FOR_INSN (insn
);
904 /* When adding hard reg restores after a DEBUG_INSN, move
905 all notes between last real insn and this DEBUG_INSN after
906 the DEBUG_INSN, otherwise we could get code
907 -g/-g0 differences. */
908 for (ins
= PREV_INSN (insn
); ins
!= last
->insn
; ins
= prev
)
910 prev
= PREV_INSN (ins
);
913 NEXT_INSN (prev
) = NEXT_INSN (ins
);
914 PREV_INSN (NEXT_INSN (ins
)) = prev
;
915 PREV_INSN (ins
) = insn
;
916 NEXT_INSN (ins
) = NEXT_INSN (insn
);
917 NEXT_INSN (insn
) = ins
;
919 PREV_INSN (NEXT_INSN (ins
)) = ins
;
920 if (BB_END (bb
) == insn
)
924 gcc_assert (DEBUG_INSN_P (ins
));
930 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
931 if (TEST_HARD_REG_BIT (hard_regs_saved
, regno
))
932 regno
+= insert_restore (chain
, JUMP_P (insn
),
933 regno
, MOVE_MAX_WORDS
, save_mode
);
938 /* Here from note_stores, or directly from save_call_clobbered_regs, when
939 an insn stores a value in a register.
940 Set the proper bit or bits in this_insn_sets. All pseudos that have
941 been assigned hard regs have had their register number changed already,
942 so we can ignore pseudos. */
944 mark_set_regs (rtx reg
, const_rtx setter ATTRIBUTE_UNUSED
, void *data
)
946 int regno
, endregno
, i
;
947 HARD_REG_SET
*this_insn_sets
= (HARD_REG_SET
*) data
;
949 if (GET_CODE (reg
) == SUBREG
)
951 rtx inner
= SUBREG_REG (reg
);
952 if (!REG_P (inner
) || REGNO (inner
) >= FIRST_PSEUDO_REGISTER
)
954 regno
= subreg_regno (reg
);
955 endregno
= regno
+ subreg_nregs (reg
);
958 && REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
961 endregno
= END_HARD_REGNO (reg
);
966 for (i
= regno
; i
< endregno
; i
++)
967 SET_HARD_REG_BIT (*this_insn_sets
, i
);
970 /* Here from note_stores when an insn stores a value in a register.
971 Set the proper bit or bits in the passed regset. All pseudos that have
972 been assigned hard regs have had their register number changed already,
973 so we can ignore pseudos. */
975 add_stored_regs (rtx reg
, const_rtx setter
, void *data
)
977 int regno
, endregno
, i
;
978 enum machine_mode mode
= GET_MODE (reg
);
981 if (GET_CODE (setter
) == CLOBBER
)
984 if (GET_CODE (reg
) == SUBREG
985 && REG_P (SUBREG_REG (reg
))
986 && REGNO (SUBREG_REG (reg
)) < FIRST_PSEUDO_REGISTER
)
988 offset
= subreg_regno_offset (REGNO (SUBREG_REG (reg
)),
989 GET_MODE (SUBREG_REG (reg
)),
992 regno
= REGNO (SUBREG_REG (reg
)) + offset
;
993 endregno
= regno
+ subreg_nregs (reg
);
997 if (!REG_P (reg
) || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
1000 regno
= REGNO (reg
) + offset
;
1001 endregno
= end_hard_regno (mode
, regno
);
1004 for (i
= regno
; i
< endregno
; i
++)
1005 SET_REGNO_REG_SET ((regset
) data
, i
);
1008 /* Walk X and record all referenced registers in REFERENCED_REGS. */
1010 mark_referenced_regs (rtx
*loc
, refmarker_fn
*mark
, void *arg
)
1012 enum rtx_code code
= GET_CODE (*loc
);
1017 mark_referenced_regs (&SET_SRC (*loc
), mark
, arg
);
1018 if (code
== SET
|| code
== CLOBBER
)
1020 loc
= &SET_DEST (*loc
);
1021 code
= GET_CODE (*loc
);
1022 if ((code
== REG
&& REGNO (*loc
) < FIRST_PSEUDO_REGISTER
)
1023 || code
== PC
|| code
== CC0
1024 || (code
== SUBREG
&& REG_P (SUBREG_REG (*loc
))
1025 && REGNO (SUBREG_REG (*loc
)) < FIRST_PSEUDO_REGISTER
1026 /* If we're setting only part of a multi-word register,
1027 we shall mark it as referenced, because the words
1028 that are not being set should be restored. */
1029 && ((GET_MODE_SIZE (GET_MODE (*loc
))
1030 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc
))))
1031 || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc
)))
1032 <= UNITS_PER_WORD
))))
1035 if (code
== MEM
|| code
== SUBREG
)
1037 loc
= &XEXP (*loc
, 0);
1038 code
= GET_CODE (*loc
);
1043 int regno
= REGNO (*loc
);
1044 int hardregno
= (regno
< FIRST_PSEUDO_REGISTER
? regno
1045 : reg_renumber
[regno
]);
1048 mark (loc
, GET_MODE (*loc
), hardregno
, arg
);
1050 /* ??? Will we ever end up with an equiv expression in a debug
1051 insn, that would have required restoring a reg, or will
1052 reload take care of it for us? */
1054 /* If this is a pseudo that did not get a hard register, scan its
1055 memory location, since it might involve the use of another
1056 register, which might be saved. */
1057 else if (reg_equiv_mem (regno
) != 0)
1058 mark_referenced_regs (&XEXP (reg_equiv_mem (regno
), 0), mark
, arg
);
1059 else if (reg_equiv_address (regno
) != 0)
1060 mark_referenced_regs (®_equiv_address (regno
), mark
, arg
);
1064 fmt
= GET_RTX_FORMAT (code
);
1065 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1068 mark_referenced_regs (&XEXP (*loc
, i
), mark
, arg
);
1069 else if (fmt
[i
] == 'E')
1070 for (j
= XVECLEN (*loc
, i
) - 1; j
>= 0; j
--)
1071 mark_referenced_regs (&XVECEXP (*loc
, i
, j
), mark
, arg
);
1075 /* Parameter function for mark_referenced_regs() that adds registers
1076 present in the insn and in equivalent mems and addresses to
1080 mark_reg_as_referenced (rtx
*loc ATTRIBUTE_UNUSED
,
1081 enum machine_mode mode
,
1083 void *arg ATTRIBUTE_UNUSED
)
1085 add_to_hard_reg_set (&referenced_regs
, mode
, hardregno
);
1088 /* Parameter function for mark_referenced_regs() that replaces
1089 registers referenced in a debug_insn that would have been restored,
1090 should it be a non-debug_insn, with their save locations. */
1093 replace_reg_with_saved_mem (rtx
*loc
,
1094 enum machine_mode mode
,
1098 unsigned int i
, nregs
= hard_regno_nregs
[regno
][mode
];
1100 enum machine_mode
*save_mode
= (enum machine_mode
*)arg
;
1102 for (i
= 0; i
< nregs
; i
++)
1103 if (TEST_HARD_REG_BIT (hard_regs_saved
, regno
+ i
))
1106 /* If none of the registers in the range would need restoring, we're
1112 if (!TEST_HARD_REG_BIT (hard_regs_saved
, regno
+ i
))
1116 && regno_save_mem
[regno
][nregs
])
1118 mem
= copy_rtx (regno_save_mem
[regno
][nregs
]);
1120 if (nregs
== (unsigned int) hard_regno_nregs
[regno
][save_mode
[regno
]])
1121 mem
= adjust_address_nv (mem
, save_mode
[regno
], 0);
1123 if (GET_MODE (mem
) != mode
)
1125 /* This is gen_lowpart_if_possible(), but without validating
1126 the newly-formed address. */
1129 if (WORDS_BIG_ENDIAN
)
1130 offset
= (MAX (GET_MODE_SIZE (GET_MODE (mem
)), UNITS_PER_WORD
)
1131 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
1132 if (BYTES_BIG_ENDIAN
)
1133 /* Adjust the address so that the address-after-the-data is
1135 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
1136 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (mem
))));
1138 mem
= adjust_address_nv (mem
, mode
, offset
);
1143 mem
= gen_rtx_CONCATN (mode
, rtvec_alloc (nregs
));
1144 for (i
= 0; i
< nregs
; i
++)
1145 if (TEST_HARD_REG_BIT (hard_regs_saved
, regno
+ i
))
1147 gcc_assert (regno_save_mem
[regno
+ i
][1]);
1148 XVECEXP (mem
, 0, i
) = copy_rtx (regno_save_mem
[regno
+ i
][1]);
1152 gcc_assert (save_mode
[regno
] != VOIDmode
);
1153 XVECEXP (mem
, 0, i
) = gen_rtx_REG (save_mode
[regno
],
1158 gcc_assert (GET_MODE (mem
) == mode
);
1163 /* Insert a sequence of insns to restore. Place these insns in front of
1164 CHAIN if BEFORE_P is nonzero, behind the insn otherwise. MAXRESTORE is
1165 the maximum number of registers which should be restored during this call.
1166 It should never be less than 1 since we only work with entire registers.
1168 Note that we have verified in init_caller_save that we can do this
1169 with a simple SET, so use it. Set INSN_CODE to what we save there
1170 since the address might not be valid so the insn might not be recognized.
1171 These insns will be reloaded and have register elimination done by
1172 find_reload, so we need not worry about that here.
1174 Return the extra number of registers saved. */
1177 insert_restore (struct insn_chain
*chain
, int before_p
, int regno
,
1178 int maxrestore
, enum machine_mode
*save_mode
)
1183 unsigned int numregs
= 0;
1184 struct insn_chain
*new_chain
;
1187 /* A common failure mode if register status is not correct in the
1188 RTL is for this routine to be called with a REGNO we didn't
1189 expect to save. That will cause us to write an insn with a (nil)
1190 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1191 later, check for this common case here instead. This will remove
1192 one step in debugging such problems. */
1193 gcc_assert (regno_save_mem
[regno
][1]);
1195 /* Get the pattern to emit and update our status.
1197 See if we can restore `maxrestore' registers at once. Work
1198 backwards to the single register case. */
1199 for (i
= maxrestore
; i
> 0; i
--)
1204 if (regno_save_mem
[regno
][i
] == 0)
1207 for (j
= 0; j
< i
; j
++)
1208 if (! TEST_HARD_REG_BIT (hard_regs_saved
, regno
+ j
))
1213 /* Must do this one restore at a time. */
1221 mem
= regno_save_mem
[regno
][numregs
];
1222 if (save_mode
[regno
] != VOIDmode
1223 && save_mode
[regno
] != GET_MODE (mem
)
1224 && numregs
== (unsigned int) hard_regno_nregs
[regno
][save_mode
[regno
]]
1225 /* Check that insn to restore REGNO in save_mode[regno] is
1227 && reg_save_code (regno
, save_mode
[regno
]) >= 0)
1228 mem
= adjust_address_nv (mem
, save_mode
[regno
], 0);
1230 mem
= copy_rtx (mem
);
1232 /* Verify that the alignment of spill space is equal to or greater
1234 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT
,
1235 GET_MODE_ALIGNMENT (GET_MODE (mem
))) <= MEM_ALIGN (mem
));
1237 pat
= gen_rtx_SET (VOIDmode
,
1238 gen_rtx_REG (GET_MODE (mem
),
1240 code
= reg_restore_code (regno
, GET_MODE (mem
));
1241 new_chain
= insert_one_insn (chain
, before_p
, code
, pat
);
1243 /* Clear status for all registers we restored. */
1244 for (k
= 0; k
< i
; k
++)
1246 CLEAR_HARD_REG_BIT (hard_regs_saved
, regno
+ k
);
1247 SET_REGNO_REG_SET (&new_chain
->dead_or_set
, regno
+ k
);
1251 /* Tell our callers how many extra registers we saved/restored. */
1255 /* Like insert_restore above, but save registers instead. */
1258 insert_save (struct insn_chain
*chain
, int before_p
, int regno
,
1259 HARD_REG_SET (*to_save
), enum machine_mode
*save_mode
)
1265 unsigned int numregs
= 0;
1266 struct insn_chain
*new_chain
;
1269 /* A common failure mode if register status is not correct in the
1270 RTL is for this routine to be called with a REGNO we didn't
1271 expect to save. That will cause us to write an insn with a (nil)
1272 SET_DEST or SET_SRC. Instead of doing so and causing a crash
1273 later, check for this common case here. This will remove one
1274 step in debugging such problems. */
1275 gcc_assert (regno_save_mem
[regno
][1]);
1277 /* Get the pattern to emit and update our status.
1279 See if we can save several registers with a single instruction.
1280 Work backwards to the single register case. */
1281 for (i
= MOVE_MAX_WORDS
; i
> 0; i
--)
1285 if (regno_save_mem
[regno
][i
] == 0)
1288 for (j
= 0; j
< i
; j
++)
1289 if (! TEST_HARD_REG_BIT (*to_save
, regno
+ j
))
1294 /* Must do this one save at a time. */
1302 mem
= regno_save_mem
[regno
][numregs
];
1303 if (save_mode
[regno
] != VOIDmode
1304 && save_mode
[regno
] != GET_MODE (mem
)
1305 && numregs
== (unsigned int) hard_regno_nregs
[regno
][save_mode
[regno
]]
1306 /* Check that insn to save REGNO in save_mode[regno] is
1308 && reg_save_code (regno
, save_mode
[regno
]) >= 0)
1309 mem
= adjust_address_nv (mem
, save_mode
[regno
], 0);
1311 mem
= copy_rtx (mem
);
1313 /* Verify that the alignment of spill space is equal to or greater
1315 gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT
,
1316 GET_MODE_ALIGNMENT (GET_MODE (mem
))) <= MEM_ALIGN (mem
));
1318 pat
= gen_rtx_SET (VOIDmode
, mem
,
1319 gen_rtx_REG (GET_MODE (mem
),
1321 code
= reg_save_code (regno
, GET_MODE (mem
));
1322 new_chain
= insert_one_insn (chain
, before_p
, code
, pat
);
1324 /* Set hard_regs_saved and dead_or_set for all the registers we saved. */
1325 for (k
= 0; k
< numregs
; k
++)
1327 SET_HARD_REG_BIT (hard_regs_saved
, regno
+ k
);
1328 SET_REGNO_REG_SET (&new_chain
->dead_or_set
, regno
+ k
);
1332 /* Tell our callers how many extra registers we saved/restored. */
1336 /* A for_each_rtx callback used by add_used_regs. Add the hard-register
1337 equivalent of each REG to regset DATA. */
1340 add_used_regs_1 (rtx
*loc
, void *data
)
1347 live
= (regset
) data
;
1351 if (HARD_REGISTER_NUM_P (regno
))
1352 bitmap_set_range (live
, regno
, hard_regno_nregs
[regno
][GET_MODE (x
)]);
1354 regno
= reg_renumber
[regno
];
1359 /* A note_uses callback used by insert_one_insn. Add the hard-register
1360 equivalent of each REG to regset DATA. */
1363 add_used_regs (rtx
*loc
, void *data
)
1365 for_each_rtx (loc
, add_used_regs_1
, data
);
1368 /* Emit a new caller-save insn and set the code. */
1369 static struct insn_chain
*
1370 insert_one_insn (struct insn_chain
*chain
, int before_p
, int code
, rtx pat
)
1372 rtx insn
= chain
->insn
;
1373 struct insn_chain
*new_chain
;
1376 /* If INSN references CC0, put our insns in front of the insn that sets
1377 CC0. This is always safe, since the only way we could be passed an
1378 insn that references CC0 is for a restore, and doing a restore earlier
1379 isn't a problem. We do, however, assume here that CALL_INSNs don't
1380 reference CC0. Guard against non-INSN's like CODE_LABEL. */
1382 if ((NONJUMP_INSN_P (insn
) || JUMP_P (insn
))
1384 && reg_referenced_p (cc0_rtx
, PATTERN (insn
)))
1385 chain
= chain
->prev
, insn
= chain
->insn
;
1388 new_chain
= new_insn_chain ();
1393 new_chain
->prev
= chain
->prev
;
1394 if (new_chain
->prev
!= 0)
1395 new_chain
->prev
->next
= new_chain
;
1397 reload_insn_chain
= new_chain
;
1399 chain
->prev
= new_chain
;
1400 new_chain
->next
= chain
;
1401 new_chain
->insn
= emit_insn_before (pat
, insn
);
1402 /* ??? It would be nice if we could exclude the already / still saved
1403 registers from the live sets. */
1404 COPY_REG_SET (&new_chain
->live_throughout
, &chain
->live_throughout
);
1405 note_uses (&PATTERN (chain
->insn
), add_used_regs
,
1406 &new_chain
->live_throughout
);
1407 /* If CHAIN->INSN is a call, then the registers which contain
1408 the arguments to the function are live in the new insn. */
1409 if (CALL_P (chain
->insn
))
1410 for (link
= CALL_INSN_FUNCTION_USAGE (chain
->insn
);
1412 link
= XEXP (link
, 1))
1413 note_uses (&XEXP (link
, 0), add_used_regs
,
1414 &new_chain
->live_throughout
);
1416 CLEAR_REG_SET (&new_chain
->dead_or_set
);
1417 if (chain
->insn
== BB_HEAD (BASIC_BLOCK (chain
->block
)))
1418 BB_HEAD (BASIC_BLOCK (chain
->block
)) = new_chain
->insn
;
1422 new_chain
->next
= chain
->next
;
1423 if (new_chain
->next
!= 0)
1424 new_chain
->next
->prev
= new_chain
;
1425 chain
->next
= new_chain
;
1426 new_chain
->prev
= chain
;
1427 new_chain
->insn
= emit_insn_after (pat
, insn
);
1428 /* ??? It would be nice if we could exclude the already / still saved
1429 registers from the live sets, and observe REG_UNUSED notes. */
1430 COPY_REG_SET (&new_chain
->live_throughout
, &chain
->live_throughout
);
1431 /* Registers that are set in CHAIN->INSN live in the new insn.
1432 (Unless there is a REG_UNUSED note for them, but we don't
1433 look for them here.) */
1434 note_stores (PATTERN (chain
->insn
), add_stored_regs
,
1435 &new_chain
->live_throughout
);
1436 CLEAR_REG_SET (&new_chain
->dead_or_set
);
1437 if (chain
->insn
== BB_END (BASIC_BLOCK (chain
->block
)))
1438 BB_END (BASIC_BLOCK (chain
->block
)) = new_chain
->insn
;
1440 new_chain
->block
= chain
->block
;
1441 new_chain
->is_caller_save_insn
= 1;
1443 INSN_CODE (new_chain
->insn
) = code
;
1446 #include "gt-caller-save.h"