2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info
*stmt_vec_info
;
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
31 /* Used for naming of new temporaries. */
39 /* Defines type of operation. */
46 /* Define type of available alignment support. */
47 enum dr_alignment_support
{
48 dr_unaligned_unsupported
,
49 dr_unaligned_supported
,
51 dr_explicit_realign_optimized
,
55 /* Define type of def-use cross-iteration cycle. */
57 vect_uninitialized_def
= 0,
58 vect_constant_def
= 1,
63 vect_double_reduction_def
,
68 /* Define type of reduction. */
69 enum vect_reduction_type
{
72 INTEGER_INDUC_COND_REDUCTION
,
75 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
78 for (int i = 0; i < VF; ++i)
79 res = cond[i] ? val[i] : res; */
80 EXTRACT_LAST_REDUCTION
,
82 /* Use a folding reduction within the loop to implement:
84 for (int i = 0; i < VF; ++i)
87 (with no reassocation). */
91 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
92 || ((D) == vect_double_reduction_def) \
93 || ((D) == vect_nested_cycle))
95 /* Structure to encapsulate information about a group of like
96 instructions to be presented to the target cost model. */
97 struct stmt_info_for_cost
{
99 enum vect_cost_for_stmt kind
;
100 enum vect_cost_model_location where
;
101 stmt_vec_info stmt_info
;
106 typedef vec
<stmt_info_for_cost
> stmt_vector_for_cost
;
108 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
109 known alignment for that base. */
110 typedef hash_map
<tree_operand_hash
,
111 innermost_loop_behavior
*> vec_base_alignments
;
113 /************************************************************************
115 ************************************************************************/
116 typedef struct _slp_tree
*slp_tree
;
118 /* A computation tree of an SLP instance. Each node corresponds to a group of
119 stmts to be packed in a SIMD stmt. */
124 /* Nodes that contain def-stmts of this node statements operands. */
125 vec
<slp_tree
> children
;
127 /* A group of scalar stmts to be vectorized together. */
128 vec
<stmt_vec_info
> stmts
;
129 /* A group of scalar operands to be vectorized together. */
131 /* The representative that should be used for analysis and
133 stmt_vec_info representative
;
135 /* Load permutation relative to the stores, NULL if there is no
137 vec
<unsigned> load_permutation
;
138 /* Lane permutation of the operands scalar lanes encoded as pairs
139 of { operand number, lane number }. The number of elements
140 denotes the number of output lanes. */
141 vec
<std::pair
<unsigned, unsigned> > lane_permutation
;
144 /* Vectorized stmt/s. */
145 vec
<gimple
*> vec_stmts
;
147 /* Number of vector stmts that are created to replace the group of scalar
148 stmts. It is calculated during the transformation phase as the number of
149 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
150 divided by vector size. */
151 unsigned int vec_stmts_size
;
153 /* Reference count in the SLP graph. */
155 /* The maximum number of vector elements for the subtree rooted
157 poly_uint64 max_nunits
;
158 /* The DEF type of this node. */
159 enum vect_def_type def_type
;
160 /* The number of scalar lanes produced by this node. */
162 /* The operation of this node. */
167 /* Allocate from slp_tree_pool. */
168 static void *operator new (size_t);
170 /* Return memory to slp_tree_pool. */
171 static void operator delete (void *, size_t);
173 /* Linked list of nodes to release when we free the slp_tree_pool. */
178 /* The enum describes the type of operations that an SLP instance
181 enum slp_instance_kind
{
183 slp_inst_kind_reduc_group
,
184 slp_inst_kind_reduc_chain
,
188 /* SLP instance is a sequence of stmts in a loop that can be packed into
190 typedef class _slp_instance
{
192 /* The root of SLP tree. */
195 /* For vector constructors, the constructor stmt that the SLP tree is built
196 from, NULL otherwise. */
197 stmt_vec_info root_stmt
;
199 /* The unrolling factor required to vectorized this SLP instance. */
200 poly_uint64 unrolling_factor
;
202 /* The group of nodes that contain loads of this SLP instance. */
205 /* The SLP node containing the reduction PHIs. */
208 /* Vector cost of this entry to the SLP graph. */
209 stmt_vector_for_cost cost_vec
;
211 /* If this instance is the main entry of a subgraph the set of
212 entries into the same subgraph, including itself. */
213 vec
<_slp_instance
*> subgraph_entries
;
215 /* The type of operation the SLP instance is performing. */
216 slp_instance_kind kind
;
218 dump_user_location_t
location () const;
222 /* Access Functions. */
223 #define SLP_INSTANCE_TREE(S) (S)->root
224 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
225 #define SLP_INSTANCE_LOADS(S) (S)->loads
226 #define SLP_INSTANCE_ROOT_STMT(S) (S)->root_stmt
227 #define SLP_INSTANCE_KIND(S) (S)->kind
229 #define SLP_TREE_CHILDREN(S) (S)->children
230 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
231 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
232 #define SLP_TREE_REF_COUNT(S) (S)->refcnt
233 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
234 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
235 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
236 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
237 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
238 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
239 #define SLP_TREE_VECTYPE(S) (S)->vectype
240 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
241 #define SLP_TREE_LANES(S) (S)->lanes
242 #define SLP_TREE_CODE(S) (S)->code
244 /* Key for map that records association between
245 scalar conditions and corresponding loop mask, and
246 is populated by vect_record_loop_mask. */
248 struct scalar_cond_masked_key
250 scalar_cond_masked_key (tree t
, unsigned ncopies_
)
253 get_cond_ops_from_tree (t
);
256 void get_cond_ops_from_tree (tree
);
265 struct default_hash_traits
<scalar_cond_masked_key
>
267 typedef scalar_cond_masked_key compare_type
;
268 typedef scalar_cond_masked_key value_type
;
270 static inline hashval_t
275 inchash::add_expr (v
.op0
, h
, 0);
276 inchash::add_expr (v
.op1
, h
, 0);
277 h
.add_int (v
.ncopies
);
282 equal (value_type existing
, value_type candidate
)
284 return (existing
.ncopies
== candidate
.ncopies
285 && existing
.code
== candidate
.code
286 && operand_equal_p (existing
.op0
, candidate
.op0
, 0)
287 && operand_equal_p (existing
.op1
, candidate
.op1
, 0));
290 static const bool empty_zero_p
= true;
293 mark_empty (value_type
&v
)
299 is_empty (value_type v
)
301 return v
.ncopies
== 0;
304 static inline void mark_deleted (value_type
&) {}
306 static inline bool is_deleted (const value_type
&)
311 static inline void remove (value_type
&) {}
314 typedef hash_set
<scalar_cond_masked_key
> scalar_cond_masked_set_type
;
316 /* Describes two objects whose addresses must be unequal for the vectorized
318 typedef std::pair
<tree
, tree
> vec_object_pair
;
320 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
321 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
322 class vec_lower_bound
{
324 vec_lower_bound () {}
325 vec_lower_bound (tree e
, bool u
, poly_uint64 m
)
326 : expr (e
), unsigned_p (u
), min_value (m
) {}
330 poly_uint64 min_value
;
333 /* Vectorizer state shared between different analyses like vector sizes
334 of the same CFG region. */
335 class vec_info_shared
{
340 void save_datarefs();
341 void check_datarefs();
343 /* All data references. Freed by free_data_refs, so not an auto_vec. */
344 vec
<data_reference_p
> datarefs
;
345 vec
<data_reference
> datarefs_copy
;
347 /* The loop nest in which the data dependences are computed. */
348 auto_vec
<loop_p
> loop_nest
;
350 /* All data dependences. Freed by free_dependence_relations, so not
355 /* Vectorizer state common between loop and basic-block vectorization. */
358 typedef hash_set
<int_hash
<machine_mode
, E_VOIDmode
, E_BLKmode
> > mode_set
;
359 enum vec_kind
{ bb
, loop
};
361 vec_info (vec_kind
, void *, vec_info_shared
*);
364 stmt_vec_info
add_stmt (gimple
*);
365 stmt_vec_info
lookup_stmt (gimple
*);
366 stmt_vec_info
lookup_def (tree
);
367 stmt_vec_info
lookup_single_use (tree
);
368 class dr_vec_info
*lookup_dr (data_reference
*);
369 void move_dr (stmt_vec_info
, stmt_vec_info
);
370 void remove_stmt (stmt_vec_info
);
371 void replace_stmt (gimple_stmt_iterator
*, stmt_vec_info
, gimple
*);
372 void insert_on_entry (stmt_vec_info
, gimple
*);
373 void insert_seq_on_entry (stmt_vec_info
, gimple_seq
);
375 /* The type of vectorization. */
378 /* Shared vectorizer state. */
379 vec_info_shared
*shared
;
381 /* The mapping of GIMPLE UID to stmt_vec_info. */
382 vec
<stmt_vec_info
> stmt_vec_infos
;
383 /* Whether the above mapping is complete. */
384 bool stmt_vec_info_ro
;
387 auto_vec
<slp_instance
> slp_instances
;
389 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
390 known alignment for that base. */
391 vec_base_alignments base_alignments
;
393 /* All interleaving chains of stores, represented by the first
394 stmt in the chain. */
395 auto_vec
<stmt_vec_info
> grouped_stores
;
397 /* Cost data used by the target cost model. */
398 void *target_cost_data
;
400 /* The set of vector modes used in the vectorized region. */
401 mode_set used_vector_modes
;
403 /* The argument we should pass to related_vector_mode when looking up
404 the vector mode for a scalar mode, or VOIDmode if we haven't yet
405 made any decisions about which vector modes to use. */
406 machine_mode vector_mode
;
409 stmt_vec_info
new_stmt_vec_info (gimple
*stmt
);
410 void set_vinfo_for_stmt (gimple
*, stmt_vec_info
);
411 void free_stmt_vec_infos ();
412 void free_stmt_vec_info (stmt_vec_info
);
415 class _loop_vec_info
;
421 is_a_helper
<_loop_vec_info
*>::test (vec_info
*i
)
423 return i
->kind
== vec_info::loop
;
429 is_a_helper
<_bb_vec_info
*>::test (vec_info
*i
)
431 return i
->kind
== vec_info::bb
;
434 /* In general, we can divide the vector statements in a vectorized loop
435 into related groups ("rgroups") and say that for each rgroup there is
436 some nS such that the rgroup operates on nS values from one scalar
437 iteration followed by nS values from the next. That is, if VF is the
438 vectorization factor of the loop, the rgroup operates on a sequence:
440 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
442 where (i,j) represents a scalar value with index j in a scalar
443 iteration with index i.
445 [ We use the term "rgroup" to emphasise that this grouping isn't
446 necessarily the same as the grouping of statements used elsewhere.
447 For example, if we implement a group of scalar loads using gather
448 loads, we'll use a separate gather load for each scalar load, and
449 thus each gather load will belong to its own rgroup. ]
451 In general this sequence will occupy nV vectors concatenated
452 together. If these vectors have nL lanes each, the total number
453 of scalar values N is given by:
455 N = nS * VF = nV * nL
457 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
458 are compile-time constants but VF and nL can be variable (if the target
459 supports variable-length vectors).
461 In classical vectorization, each iteration of the vector loop would
462 handle exactly VF iterations of the original scalar loop. However,
463 in vector loops that are able to operate on partial vectors, a
464 particular iteration of the vector loop might handle fewer than VF
465 iterations of the scalar loop. The vector lanes that correspond to
466 iterations of the scalar loop are said to be "active" and the other
467 lanes are said to be "inactive".
469 In such vector loops, many rgroups need to be controlled to ensure
470 that they have no effect for the inactive lanes. Conceptually, each
471 such rgroup needs a sequence of booleans in the same order as above,
472 but with each (i,j) replaced by a boolean that indicates whether
473 iteration i is active. This sequence occupies nV vector controls
474 that again have nL lanes each. Thus the control sequence as a whole
475 consists of VF independent booleans that are each repeated nS times.
477 Taking mask-based approach as a partially-populated vectors example.
478 We make the simplifying assumption that if a sequence of nV masks is
479 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
480 VIEW_CONVERTing it. This holds for all current targets that support
481 fully-masked loops. For example, suppose the scalar loop is:
485 for (int i = 0; i < n; ++i)
487 f[i * 2 + 0] += 1.0f;
488 f[i * 2 + 1] += 2.0f;
492 and suppose that vectors have 256 bits. The vectorized f accesses
493 will belong to one rgroup and the vectorized d access to another:
495 f rgroup: nS = 2, nV = 1, nL = 8
496 d rgroup: nS = 1, nV = 1, nL = 4
499 [ In this simple example the rgroups do correspond to the normal
500 SLP grouping scheme. ]
502 If only the first three lanes are active, the masks we need are:
504 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
505 d rgroup: 1 | 1 | 1 | 0
507 Here we can use a mask calculated for f's rgroup for d's, but not
510 Thus for each value of nV, it is enough to provide nV masks, with the
511 mask being calculated based on the highest nL (or, equivalently, based
512 on the highest nS) required by any rgroup with that nV. We therefore
513 represent the entire collection of masks as a two-level table, with the
514 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
515 the second being indexed by the mask index 0 <= i < nV. */
517 /* The controls (like masks or lengths) needed by rgroups with nV vectors,
518 according to the description above. */
519 struct rgroup_controls
{
520 /* The largest nS for all rgroups that use these controls. */
521 unsigned int max_nscalars_per_iter
;
523 /* For the largest nS recorded above, the loop controls divide each scalar
524 into FACTOR equal-sized pieces. This is useful if we need to split
525 element-based accesses into byte-based accesses. */
528 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
529 For mask-based controls, it is the type of the masks in CONTROLS.
530 For length-based controls, it can be any vector type that has the
531 specified number of elements; the type of the elements doesn't matter. */
534 /* A vector of nV controls, in iteration order. */
538 typedef auto_vec
<rgroup_controls
> vec_loop_masks
;
540 typedef auto_vec
<rgroup_controls
> vec_loop_lens
;
542 typedef auto_vec
<std::pair
<data_reference
*, tree
> > drs_init_vec
;
544 /*-----------------------------------------------------------------*/
545 /* Info on vectorized loops. */
546 /*-----------------------------------------------------------------*/
547 typedef class _loop_vec_info
: public vec_info
{
549 _loop_vec_info (class loop
*, vec_info_shared
*);
552 /* The loop to which this info struct refers to. */
555 /* The loop basic blocks. */
558 /* Number of latch executions. */
560 /* Number of iterations. */
562 /* Number of iterations of the original loop. */
563 tree num_iters_unchanged
;
564 /* Condition under which this loop is analyzed and versioned. */
565 tree num_iters_assumptions
;
567 /* Threshold of number of iterations below which vectorization will not be
568 performed. It is calculated from MIN_PROFITABLE_ITERS and
569 param_min_vect_loop_bound. */
572 /* When applying loop versioning, the vector form should only be used
573 if the number of scalar iterations is >= this value, on top of all
574 the other requirements. Ignored when loop versioning is not being
576 poly_uint64 versioning_threshold
;
578 /* Unrolling factor */
579 poly_uint64 vectorization_factor
;
581 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
582 if there is no particular limit. */
583 unsigned HOST_WIDE_INT max_vectorization_factor
;
585 /* The masks that a fully-masked loop should use to avoid operating
586 on inactive scalars. */
587 vec_loop_masks masks
;
589 /* The lengths that a loop with length should use to avoid operating
590 on inactive scalars. */
593 /* Set of scalar conditions that have loop mask applied. */
594 scalar_cond_masked_set_type scalar_cond_masked_set
;
596 /* If we are using a loop mask to align memory addresses, this variable
597 contains the number of vector elements that we should skip in the
598 first iteration of the vector loop (i.e. the number of leading
599 elements that should be false in the first mask). */
600 tree mask_skip_niters
;
602 /* The type that the loop control IV should be converted to before
603 testing which of the VF scalars are active and inactive.
604 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
605 tree rgroup_compare_type
;
607 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
608 the loop should not be vectorized, if constant non-zero, simd_if_cond
609 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
610 should be versioned on that condition, using scalar loop if the condition
611 is false and vectorized loop otherwise. */
614 /* The type that the vector loop control IV should have when
615 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
618 /* Unknown DRs according to which loop was peeled. */
619 class dr_vec_info
*unaligned_dr
;
621 /* peeling_for_alignment indicates whether peeling for alignment will take
622 place, and what the peeling factor should be:
623 peeling_for_alignment = X means:
624 If X=0: Peeling for alignment will not be applied.
625 If X>0: Peel first X iterations.
626 If X=-1: Generate a runtime test to calculate the number of iterations
627 to be peeled, using the dataref recorded in the field
629 int peeling_for_alignment
;
631 /* The mask used to check the alignment of pointers or arrays. */
634 /* Data Dependence Relations defining address ranges that are candidates
635 for a run-time aliasing check. */
636 auto_vec
<ddr_p
> may_alias_ddrs
;
638 /* Data Dependence Relations defining address ranges together with segment
639 lengths from which the run-time aliasing check is built. */
640 auto_vec
<dr_with_seg_len_pair_t
> comp_alias_ddrs
;
642 /* Check that the addresses of each pair of objects is unequal. */
643 auto_vec
<vec_object_pair
> check_unequal_addrs
;
645 /* List of values that are required to be nonzero. This is used to check
646 whether things like "x[i * n] += 1;" are safe and eventually gets added
647 to the checks for lower bounds below. */
648 auto_vec
<tree
> check_nonzero
;
650 /* List of values that need to be checked for a minimum value. */
651 auto_vec
<vec_lower_bound
> lower_bounds
;
653 /* Statements in the loop that have data references that are candidates for a
654 runtime (loop versioning) misalignment check. */
655 auto_vec
<stmt_vec_info
> may_misalign_stmts
;
657 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
658 auto_vec
<stmt_vec_info
> reductions
;
660 /* All reduction chains in the loop, represented by the first
661 stmt in the chain. */
662 auto_vec
<stmt_vec_info
> reduction_chains
;
664 /* Cost vector for a single scalar iteration. */
665 auto_vec
<stmt_info_for_cost
> scalar_cost_vec
;
667 /* Map of IV base/step expressions to inserted name in the preheader. */
668 hash_map
<tree_operand_hash
, tree
> *ivexpr_map
;
670 /* Map of OpenMP "omp simd array" scan variables to corresponding
671 rhs of the store of the initializer. */
672 hash_map
<tree
, tree
> *scan_map
;
674 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
675 applied to the loop, i.e., no unrolling is needed, this is 1. */
676 poly_uint64 slp_unrolling_factor
;
678 /* Cost of a single scalar iteration. */
679 int single_scalar_iteration_cost
;
681 /* The cost of the vector prologue and epilogue, including peeled
682 iterations and set-up code. */
683 int vec_outside_cost
;
685 /* The cost of the vector loop body. */
688 /* Is the loop vectorizable? */
691 /* Records whether we still have the option of vectorizing this loop
692 using partially-populated vectors; in other words, whether it is
693 still possible for one iteration of the vector loop to handle
694 fewer than VF scalars. */
695 bool can_use_partial_vectors_p
;
697 /* True if we've decided to use partially-populated vectors, so that
698 the vector loop can handle fewer than VF scalars. */
699 bool using_partial_vectors_p
;
701 /* True if we've decided to use partially-populated vectors for the
703 bool epil_using_partial_vectors_p
;
705 /* When we have grouped data accesses with gaps, we may introduce invalid
706 memory accesses. We peel the last iteration of the loop to prevent
708 bool peeling_for_gaps
;
710 /* When the number of iterations is not a multiple of the vector size
711 we need to peel off iterations at the end to form an epilogue loop. */
712 bool peeling_for_niter
;
714 /* True if there are no loop carried data dependencies in the loop.
715 If loop->safelen <= 1, then this is always true, either the loop
716 didn't have any loop carried data dependencies, or the loop is being
717 vectorized guarded with some runtime alias checks, or couldn't
718 be vectorized at all, but then this field shouldn't be used.
719 For loop->safelen >= 2, the user has asserted that there are no
720 backward dependencies, but there still could be loop carried forward
721 dependencies in such loops. This flag will be false if normal
722 vectorizer data dependency analysis would fail or require versioning
723 for alias, but because of loop->safelen >= 2 it has been vectorized
724 even without versioning for alias. E.g. in:
726 for (int i = 0; i < m; i++)
728 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
729 DTRT even for k > 0 && k < m, but without safelen we would not
730 vectorize this, so this field would be false. */
731 bool no_data_dependencies
;
733 /* Mark loops having masked stores. */
736 /* Queued scaling factor for the scalar loop. */
737 profile_probability scalar_loop_scaling
;
739 /* If if-conversion versioned this loop before conversion, this is the
740 loop version without if-conversion. */
741 class loop
*scalar_loop
;
743 /* For loops being epilogues of already vectorized loops
744 this points to the original vectorized loop. Otherwise NULL. */
745 _loop_vec_info
*orig_loop_info
;
747 /* Used to store loop_vec_infos of epilogues of this loop during
749 vec
<_loop_vec_info
*> epilogue_vinfos
;
753 /* Access Functions. */
754 #define LOOP_VINFO_LOOP(L) (L)->loop
755 #define LOOP_VINFO_BBS(L) (L)->bbs
756 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
757 #define LOOP_VINFO_NITERS(L) (L)->num_iters
758 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
759 prologue peeling retain total unchanged scalar loop iterations for
761 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
762 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
763 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
764 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
765 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
766 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
767 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
768 #define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
769 (L)->epil_using_partial_vectors_p
770 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
771 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
772 #define LOOP_VINFO_MASKS(L) (L)->masks
773 #define LOOP_VINFO_LENS(L) (L)->lens
774 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
775 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
776 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
777 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
778 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
779 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
780 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
781 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
782 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
783 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
784 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
785 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
786 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
787 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
788 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
789 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
790 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
791 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
792 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
793 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
794 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
795 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
796 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
797 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
798 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
799 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
800 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
801 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
802 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
803 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
804 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
805 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
807 #define LOOP_VINFO_FULLY_MASKED_P(L) \
808 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
809 && !LOOP_VINFO_MASKS (L).is_empty ())
811 #define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
812 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
813 && !LOOP_VINFO_LENS (L).is_empty ())
815 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
816 ((L)->may_misalign_stmts.length () > 0)
817 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
818 ((L)->comp_alias_ddrs.length () > 0 \
819 || (L)->check_unequal_addrs.length () > 0 \
820 || (L)->lower_bounds.length () > 0)
821 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
822 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
823 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
824 (LOOP_VINFO_SIMD_IF_COND (L))
825 #define LOOP_REQUIRES_VERSIONING(L) \
826 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
827 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
828 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
829 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
831 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
832 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
834 #define LOOP_VINFO_EPILOGUE_P(L) \
835 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
837 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
838 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
840 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
841 value signifies success, and a NULL value signifies failure, supporting
842 propagating an opt_problem * describing the failure back up the call
844 typedef opt_pointer_wrapper
<loop_vec_info
> opt_loop_vec_info
;
846 static inline loop_vec_info
847 loop_vec_info_for_loop (class loop
*loop
)
849 return (loop_vec_info
) loop
->aux
;
852 typedef class _bb_vec_info
: public vec_info
855 _bb_vec_info (vec
<basic_block
> bbs
, vec_info_shared
*);
858 /* The region we are operating on. bbs[0] is the entry, excluding
859 its PHI nodes. In the future we might want to track an explicit
860 entry edge to cover bbs[0] PHI nodes and have a region entry
862 vec
<basic_block
> bbs
;
865 #define BB_VINFO_BB(B) (B)->bb
866 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
867 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
868 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
869 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
871 static inline bb_vec_info
872 vec_info_for_bb (basic_block bb
)
874 return (bb_vec_info
) bb
->aux
;
877 /*-----------------------------------------------------------------*/
878 /* Info on vectorized defs. */
879 /*-----------------------------------------------------------------*/
880 enum stmt_vec_info_type
{
881 undef_vec_info_type
= 0,
887 call_simd_clone_vec_info_type
,
888 assignment_vec_info_type
,
889 condition_vec_info_type
,
890 comparison_vec_info_type
,
893 type_promotion_vec_info_type
,
894 type_demotion_vec_info_type
,
895 type_conversion_vec_info_type
,
899 loop_exit_ctrl_vec_info_type
902 /* Indicates whether/how a variable is used in the scope of loop/basic
905 vect_unused_in_scope
= 0,
907 /* The def is only used outside the loop. */
909 /* The def is in the inner loop, and the use is in the outer loop, and the
910 use is a reduction stmt. */
911 vect_used_in_outer_by_reduction
,
912 /* The def is in the inner loop, and the use is in the outer loop (and is
913 not part of reduction). */
916 /* defs that feed computations that end up (only) in a reduction. These
917 defs may be used by non-reduction stmts, but eventually, any
918 computations/values that are affected by these defs are used to compute
919 a reduction (i.e. don't get stored to memory, for example). We use this
920 to identify computations that we can change the order in which they are
922 vect_used_by_reduction
,
927 /* The type of vectorization that can be applied to the stmt: regular loop-based
928 vectorization; pure SLP - the stmt is a part of SLP instances and does not
929 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
930 a part of SLP instance and also must be loop-based vectorized, since it has
931 uses outside SLP sequences.
933 In the loop context the meanings of pure and hybrid SLP are slightly
934 different. By saying that pure SLP is applied to the loop, we mean that we
935 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
936 vectorized without doing any conceptual unrolling, cause we don't pack
937 together stmts from different iterations, only within a single iteration.
938 Loop hybrid SLP means that we exploit both intra-iteration and
939 inter-iteration parallelism (e.g., number of elements in the vector is 4
940 and the slp-group-size is 2, in which case we don't have enough parallelism
941 within an iteration, so we obtain the rest of the parallelism from subsequent
942 iterations by unrolling the loop by 2). */
949 /* Says whether a statement is a load, a store of a vectorized statement
950 result, or a store of an invariant value. */
951 enum vec_load_store_type
{
957 /* Describes how we're going to vectorize an individual load or store,
958 or a group of loads or stores. */
959 enum vect_memory_access_type
{
960 /* An access to an invariant address. This is used only for loads. */
963 /* A simple contiguous access. */
966 /* A contiguous access that goes down in memory rather than up,
967 with no additional permutation. This is used only for stores
969 VMAT_CONTIGUOUS_DOWN
,
971 /* A simple contiguous access in which the elements need to be permuted
972 after loading or before storing. Only used for loop vectorization;
973 SLP uses separate permutes. */
974 VMAT_CONTIGUOUS_PERMUTE
,
976 /* A simple contiguous access in which the elements need to be reversed
977 after loading or before storing. */
978 VMAT_CONTIGUOUS_REVERSE
,
980 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
981 VMAT_LOAD_STORE_LANES
,
983 /* An access in which each scalar element is loaded or stored
987 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
988 SLP accesses. Each unrolled iteration uses a contiguous load
989 or store for the whole group, but the groups from separate iterations
990 are combined in the same way as for VMAT_ELEMENTWISE. */
993 /* The access uses gather loads or scatter stores. */
999 /* The data reference itself. */
1001 /* The statement that contains the data reference. */
1003 /* The misalignment in bytes of the reference, or -1 if not known. */
1005 /* The byte alignment that we'd ideally like the reference to have,
1006 and the value that misalignment is measured against. */
1007 poly_uint64 target_alignment
;
1008 /* If true the alignment of base_decl needs to be increased. */
1009 bool base_misaligned
;
1012 /* Stores current vectorized loop's offset. To be added to the DR's
1013 offset to calculate current offset of data reference. */
1017 typedef struct data_reference
*dr_p
;
1019 class _stmt_vec_info
{
1022 enum stmt_vec_info_type type
;
1024 /* Indicates whether this stmts is part of a computation whose result is
1025 used outside the loop. */
1028 /* Stmt is part of some pattern (computation idiom) */
1031 /* True if the statement was created during pattern recognition as
1032 part of the replacement for RELATED_STMT. This implies that the
1033 statement isn't part of any basic block, although for convenience
1034 its gimple_bb is the same as for RELATED_STMT. */
1035 bool pattern_stmt_p
;
1037 /* Is this statement vectorizable or should it be skipped in (partial)
1041 /* The stmt to which this info struct refers to. */
1044 /* The vector type to be used for the LHS of this statement. */
1047 /* The vectorized stmts. */
1048 vec
<gimple
*> vec_stmts
;
1050 /* The following is relevant only for stmts that contain a non-scalar
1051 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1052 at most one such data-ref. */
1056 /* Information about the data-ref relative to this loop
1057 nest (the loop that is being considered for vectorization). */
1058 innermost_loop_behavior dr_wrt_vec_loop
;
1060 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1061 this information is still available in vect_update_ivs_after_vectorizer
1062 where we may not be able to re-analyze the PHI nodes evolution as
1063 peeling for the prologue loop can make it unanalyzable. The evolution
1064 part is still correct after peeling, but the base may have changed from
1065 the version here. */
1066 tree loop_phi_evolution_base_unchanged
;
1067 tree loop_phi_evolution_part
;
1069 /* Used for various bookkeeping purposes, generally holding a pointer to
1070 some other stmt S that is in some way "related" to this stmt.
1071 Current use of this field is:
1072 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1073 true): S is the "pattern stmt" that represents (and replaces) the
1074 sequence of stmts that constitutes the pattern. Similarly, the
1075 related_stmt of the "pattern stmt" points back to this stmt (which is
1076 the last stmt in the original sequence of stmts that constitutes the
1078 stmt_vec_info related_stmt
;
1080 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1081 The sequence is attached to the original statement rather than the
1082 pattern statement. */
1083 gimple_seq pattern_def_seq
;
1085 /* Selected SIMD clone's function info. First vector element
1086 is SIMD clone's function decl, followed by a pair of trees (base + step)
1087 for linear arguments (pair of NULLs for other arguments). */
1088 vec
<tree
> simd_clone_info
;
1090 /* Classify the def of this stmt. */
1091 enum vect_def_type def_type
;
1093 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1094 enum slp_vect_type slp_type
;
1096 /* Interleaving and reduction chains info. */
1097 /* First element in the group. */
1098 stmt_vec_info first_element
;
1099 /* Pointer to the next element in the group. */
1100 stmt_vec_info next_element
;
1101 /* The size of the group. */
1103 /* For stores, number of stores from this group seen. We vectorize the last
1105 unsigned int store_count
;
1106 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1110 /* The minimum negative dependence distance this stmt participates in
1112 unsigned int min_neg_dist
;
1114 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1115 of the loop induction variable and computation of array indexes. relevant
1116 indicates whether the stmt needs to be vectorized. */
1117 enum vect_relevant relevant
;
1119 /* For loads if this is a gather, for stores if this is a scatter. */
1120 bool gather_scatter_p
;
1122 /* True if this is an access with loop-invariant stride. */
1125 /* For both loads and stores. */
1126 unsigned simd_lane_access_p
: 3;
1128 /* Classifies how the load or store is going to be implemented
1129 for loop vectorization. */
1130 vect_memory_access_type memory_access_type
;
1132 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1133 tree induc_cond_initial_val
;
1135 /* If not NULL the value to be added to compute final reduction value. */
1136 tree reduc_epilogue_adjustment
;
1138 /* On a reduction PHI the reduction type as detected by
1139 vect_is_simple_reduction and vectorizable_reduction. */
1140 enum vect_reduction_type reduc_type
;
1142 /* The original reduction code, to be used in the epilogue. */
1143 enum tree_code reduc_code
;
1144 /* An internal function we should use in the epilogue. */
1145 internal_fn reduc_fn
;
1147 /* On a stmt participating in the reduction the index of the operand
1148 on the reduction SSA cycle. */
1151 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1152 On the def returned by vect_force_simple_reduction the
1153 corresponding PHI. */
1154 stmt_vec_info reduc_def
;
1156 /* The vector input type relevant for reduction vectorization. */
1157 tree reduc_vectype_in
;
1159 /* The vector type for performing the actual reduction. */
1162 /* Whether we force a single cycle PHI during reduction vectorization. */
1163 bool force_single_cycle
;
1165 /* Whether on this stmt reduction meta is recorded. */
1168 /* If nonzero, the lhs of the statement could be truncated to this
1169 many bits without affecting any users of the result. */
1170 unsigned int min_output_precision
;
1172 /* If nonzero, all non-boolean input operands have the same precision,
1173 and they could each be truncated to this many bits without changing
1175 unsigned int min_input_precision
;
1177 /* If OPERATION_BITS is nonzero, the statement could be performed on
1178 an integer with the sign and number of bits given by OPERATION_SIGN
1179 and OPERATION_BITS without changing the result. */
1180 unsigned int operation_precision
;
1181 signop operation_sign
;
1183 /* If the statement produces a boolean result, this value describes
1184 how we should choose the associated vector type. The possible
1187 - an integer precision N if we should use the vector mask type
1188 associated with N-bit integers. This is only used if all relevant
1189 input booleans also want the vector mask type for N-bit integers,
1190 or if we can convert them into that form by pattern-matching.
1192 - ~0U if we considered choosing a vector mask type but decided
1193 to treat the boolean as a normal integer type instead.
1195 - 0 otherwise. This means either that the operation isn't one that
1196 could have a vector mask type (and so should have a normal vector
1197 type instead) or that we simply haven't made a choice either way. */
1198 unsigned int mask_precision
;
1200 /* True if this is only suitable for SLP vectorization. */
1201 bool slp_vect_only_p
;
1204 /* Information about a gather/scatter call. */
1205 struct gather_scatter_info
{
1206 /* The internal function to use for the gather/scatter operation,
1207 or IFN_LAST if a built-in function should be used instead. */
1210 /* The FUNCTION_DECL for the built-in gather/scatter function,
1211 or null if an internal function should be used instead. */
1214 /* The loop-invariant base value. */
1217 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1220 /* Each offset element should be multiplied by this amount before
1221 being added to the base. */
1224 /* The definition type for the vectorized offset. */
1225 enum vect_def_type offset_dt
;
1227 /* The type of the vectorized offset. */
1228 tree offset_vectype
;
1230 /* The type of the scalar elements after loading or before storing. */
1233 /* The type of the scalar elements being loaded or stored. */
1237 /* Access Functions. */
1238 #define STMT_VINFO_TYPE(S) (S)->type
1239 #define STMT_VINFO_STMT(S) (S)->stmt
1240 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1241 #define STMT_VINFO_LIVE_P(S) (S)->live
1242 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1243 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1244 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1245 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1246 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1247 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1248 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1249 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1250 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1251 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1252 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1253 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1255 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1256 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1257 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1258 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1259 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1260 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1261 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1262 (S)->dr_wrt_vec_loop.base_misalignment
1263 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1264 (S)->dr_wrt_vec_loop.offset_alignment
1265 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1266 (S)->dr_wrt_vec_loop.step_alignment
1268 #define STMT_VINFO_DR_INFO(S) \
1269 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1271 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1272 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1273 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1274 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1275 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1276 #define STMT_VINFO_GROUPED_ACCESS(S) \
1277 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1278 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1279 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1280 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1281 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1282 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1283 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1284 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1285 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1286 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1287 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1289 #define DR_GROUP_FIRST_ELEMENT(S) \
1290 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1291 #define DR_GROUP_NEXT_ELEMENT(S) \
1292 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1293 #define DR_GROUP_SIZE(S) \
1294 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1295 #define DR_GROUP_STORE_COUNT(S) \
1296 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1297 #define DR_GROUP_GAP(S) \
1298 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1300 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1301 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1302 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1303 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1304 #define REDUC_GROUP_SIZE(S) \
1305 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1307 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1309 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1310 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1311 #define STMT_SLP_TYPE(S) (S)->slp_type
1313 #define VECT_MAX_COST 1000
1315 /* The maximum number of intermediate steps required in multi-step type
1317 #define MAX_INTERM_CVT_STEPS 3
1319 #define MAX_VECTORIZATION_FACTOR INT_MAX
1321 /* Nonzero if TYPE represents a (scalar) boolean type or type
1322 in the middle-end compatible with it (unsigned precision 1 integral
1323 types). Used to determine which types should be vectorized as
1324 VECTOR_BOOLEAN_TYPE_P. */
1326 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1327 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1328 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1329 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1330 && TYPE_PRECISION (TYPE) == 1 \
1331 && TYPE_UNSIGNED (TYPE)))
1334 nested_in_vect_loop_p (class loop
*loop
, stmt_vec_info stmt_info
)
1337 && (loop
->inner
== (gimple_bb (stmt_info
->stmt
))->loop_father
));
1340 /* Return true if STMT_INFO should produce a vector mask type rather than
1341 a normal nonmask type. */
1344 vect_use_mask_type_p (stmt_vec_info stmt_info
)
1346 return stmt_info
->mask_precision
&& stmt_info
->mask_precision
!= ~0U;
1349 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1353 is_pattern_stmt_p (stmt_vec_info stmt_info
)
1355 return stmt_info
->pattern_stmt_p
;
1358 /* If STMT_INFO is a pattern statement, return the statement that it
1359 replaces, otherwise return STMT_INFO itself. */
1361 inline stmt_vec_info
1362 vect_orig_stmt (stmt_vec_info stmt_info
)
1364 if (is_pattern_stmt_p (stmt_info
))
1365 return STMT_VINFO_RELATED_STMT (stmt_info
);
1369 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1371 static inline stmt_vec_info
1372 get_later_stmt (stmt_vec_info stmt1_info
, stmt_vec_info stmt2_info
)
1374 if (gimple_uid (vect_orig_stmt (stmt1_info
)->stmt
)
1375 > gimple_uid (vect_orig_stmt (stmt2_info
)->stmt
))
1381 /* If STMT_INFO has been replaced by a pattern statement, return the
1382 replacement statement, otherwise return STMT_INFO itself. */
1384 inline stmt_vec_info
1385 vect_stmt_to_vectorize (stmt_vec_info stmt_info
)
1387 if (STMT_VINFO_IN_PATTERN_P (stmt_info
))
1388 return STMT_VINFO_RELATED_STMT (stmt_info
);
1392 /* Return true if BB is a loop header. */
1395 is_loop_header_bb_p (basic_block bb
)
1397 if (bb
== (bb
->loop_father
)->header
)
1399 gcc_checking_assert (EDGE_COUNT (bb
->preds
) == 1);
1403 /* Return pow2 (X). */
1410 for (i
= 0; i
< x
; i
++)
1416 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1419 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost
,
1420 tree vectype
, int misalign
)
1422 return targetm
.vectorize
.builtin_vectorization_cost (type_of_cost
,
1426 /* Get cost by calling cost target builtin. */
1429 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost
)
1431 return builtin_vectorization_cost (type_of_cost
, NULL
, 0);
1434 /* Alias targetm.vectorize.init_cost. */
1436 static inline void *
1437 init_cost (class loop
*loop_info
)
1439 return targetm
.vectorize
.init_cost (loop_info
);
1442 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt
,
1443 stmt_vec_info
, tree
, int, unsigned,
1444 enum vect_cost_model_location
);
1446 /* Alias targetm.vectorize.add_stmt_cost. */
1448 static inline unsigned
1449 add_stmt_cost (vec_info
*vinfo
, void *data
, int count
,
1450 enum vect_cost_for_stmt kind
,
1451 stmt_vec_info stmt_info
, tree vectype
, int misalign
,
1452 enum vect_cost_model_location where
)
1454 unsigned cost
= targetm
.vectorize
.add_stmt_cost (vinfo
, data
, count
, kind
,
1457 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1458 dump_stmt_cost (dump_file
, data
, count
, kind
, stmt_info
, vectype
, misalign
,
1463 /* Alias targetm.vectorize.finish_cost. */
1466 finish_cost (void *data
, unsigned *prologue_cost
,
1467 unsigned *body_cost
, unsigned *epilogue_cost
)
1469 targetm
.vectorize
.finish_cost (data
, prologue_cost
, body_cost
, epilogue_cost
);
1472 /* Alias targetm.vectorize.destroy_cost_data. */
1475 destroy_cost_data (void *data
)
1477 targetm
.vectorize
.destroy_cost_data (data
);
1481 add_stmt_costs (vec_info
*vinfo
, void *data
, stmt_vector_for_cost
*cost_vec
)
1483 stmt_info_for_cost
*cost
;
1485 FOR_EACH_VEC_ELT (*cost_vec
, i
, cost
)
1486 add_stmt_cost (vinfo
, data
, cost
->count
, cost
->kind
, cost
->stmt_info
,
1487 cost
->vectype
, cost
->misalign
, cost
->where
);
1490 /*-----------------------------------------------------------------*/
1491 /* Info on data references alignment. */
1492 /*-----------------------------------------------------------------*/
1493 #define DR_MISALIGNMENT_UNKNOWN (-1)
1494 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1497 set_dr_misalignment (dr_vec_info
*dr_info
, int val
)
1499 dr_info
->misalignment
= val
;
1503 dr_misalignment (dr_vec_info
*dr_info
)
1505 int misalign
= dr_info
->misalignment
;
1506 gcc_assert (misalign
!= DR_MISALIGNMENT_UNINITIALIZED
);
1510 /* Reflects actual alignment of first access in the vectorized loop,
1511 taking into account peeling/versioning if applied. */
1512 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1513 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1515 /* Only defined once DR_MISALIGNMENT is defined. */
1516 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1518 /* Return true if data access DR_INFO is aligned to its target alignment
1519 (which may be less than a full vector). */
1522 aligned_access_p (dr_vec_info
*dr_info
)
1524 return (DR_MISALIGNMENT (dr_info
) == 0);
1527 /* Return TRUE if the alignment of the data access is known, and FALSE
1531 known_alignment_for_access_p (dr_vec_info
*dr_info
)
1533 return (DR_MISALIGNMENT (dr_info
) != DR_MISALIGNMENT_UNKNOWN
);
1536 /* Return the minimum alignment in bytes that the vectorized version
1537 of DR_INFO is guaranteed to have. */
1539 static inline unsigned int
1540 vect_known_alignment_in_bytes (dr_vec_info
*dr_info
)
1542 if (DR_MISALIGNMENT (dr_info
) == DR_MISALIGNMENT_UNKNOWN
)
1543 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info
->dr
)));
1544 if (DR_MISALIGNMENT (dr_info
) == 0)
1545 return known_alignment (DR_TARGET_ALIGNMENT (dr_info
));
1546 return DR_MISALIGNMENT (dr_info
) & -DR_MISALIGNMENT (dr_info
);
1549 /* Return the behavior of DR_INFO with respect to the vectorization context
1550 (which for outer loop vectorization might not be the behavior recorded
1551 in DR_INFO itself). */
1553 static inline innermost_loop_behavior
*
1554 vect_dr_behavior (vec_info
*vinfo
, dr_vec_info
*dr_info
)
1556 stmt_vec_info stmt_info
= dr_info
->stmt
;
1557 loop_vec_info loop_vinfo
= dyn_cast
<loop_vec_info
> (vinfo
);
1558 if (loop_vinfo
== NULL
1559 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo
), stmt_info
))
1560 return &DR_INNERMOST (dr_info
->dr
);
1562 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info
);
1565 /* Return the offset calculated by adding the offset of this DR_INFO to the
1566 corresponding data_reference's offset. If CHECK_OUTER then use
1567 vect_dr_behavior to select the appropriate data_reference to use. */
1570 get_dr_vinfo_offset (vec_info
*vinfo
,
1571 dr_vec_info
*dr_info
, bool check_outer
= false)
1573 innermost_loop_behavior
*base
;
1575 base
= vect_dr_behavior (vinfo
, dr_info
);
1577 base
= &dr_info
->dr
->innermost
;
1579 tree offset
= base
->offset
;
1581 if (!dr_info
->offset
)
1584 offset
= fold_convert (sizetype
, offset
);
1585 return fold_build2 (PLUS_EXPR
, TREE_TYPE (dr_info
->offset
), offset
,
1590 /* Return true if the vect cost model is unlimited. */
1592 unlimited_cost_model (loop_p loop
)
1594 if (loop
!= NULL
&& loop
->force_vectorize
1595 && flag_simd_cost_model
!= VECT_COST_MODEL_DEFAULT
)
1596 return flag_simd_cost_model
== VECT_COST_MODEL_UNLIMITED
;
1597 return (flag_vect_cost_model
== VECT_COST_MODEL_UNLIMITED
);
1600 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1601 if the first iteration should use a partial mask in order to achieve
1605 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo
)
1607 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo
)
1608 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo
));
1611 /* Return the number of vectors of type VECTYPE that are needed to get
1612 NUNITS elements. NUNITS should be based on the vectorization factor,
1613 so it is always a known multiple of the number of elements in VECTYPE. */
1615 static inline unsigned int
1616 vect_get_num_vectors (poly_uint64 nunits
, tree vectype
)
1618 return exact_div (nunits
, TYPE_VECTOR_SUBPARTS (vectype
)).to_constant ();
1621 /* Return the number of copies needed for loop vectorization when
1622 a statement operates on vectors of type VECTYPE. This is the
1623 vectorization factor divided by the number of elements in
1624 VECTYPE and is always known at compile time. */
1626 static inline unsigned int
1627 vect_get_num_copies (loop_vec_info loop_vinfo
, tree vectype
)
1629 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo
), vectype
);
1632 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1633 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1636 vect_update_max_nunits (poly_uint64
*max_nunits
, poly_uint64 nunits
)
1638 /* All unit counts have the form vec_info::vector_size * X for some
1639 rational X, so two unit sizes must have a common multiple.
1640 Everything is a multiple of the initial value of 1. */
1641 *max_nunits
= force_common_multiple (*max_nunits
, nunits
);
1644 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1645 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1646 if we haven't yet recorded any vector types. */
1649 vect_update_max_nunits (poly_uint64
*max_nunits
, tree vectype
)
1651 vect_update_max_nunits (max_nunits
, TYPE_VECTOR_SUBPARTS (vectype
));
1654 /* Return the vectorization factor that should be used for costing
1655 purposes while vectorizing the loop described by LOOP_VINFO.
1656 Pick a reasonable estimate if the vectorization factor isn't
1657 known at compile time. */
1659 static inline unsigned int
1660 vect_vf_for_cost (loop_vec_info loop_vinfo
)
1662 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo
));
1665 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1666 Pick a reasonable estimate if the exact number isn't known at
1669 static inline unsigned int
1670 vect_nunits_for_cost (tree vec_type
)
1672 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type
));
1675 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1677 static inline unsigned HOST_WIDE_INT
1678 vect_max_vf (loop_vec_info loop_vinfo
)
1680 unsigned HOST_WIDE_INT vf
;
1681 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo
).is_constant (&vf
))
1683 return MAX_VECTORIZATION_FACTOR
;
1686 /* Return the size of the value accessed by unvectorized data reference
1687 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1688 for the associated gimple statement, since that guarantees that DR_INFO
1689 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1690 here includes things like V1SI, which can be vectorized in the same way
1694 vect_get_scalar_dr_size (dr_vec_info
*dr_info
)
1696 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info
->dr
))));
1699 /* Return true if LOOP_VINFO requires a runtime check for whether the
1700 vector loop is profitable. */
1703 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo
)
1705 unsigned int th
= LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo
);
1706 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo
)
1707 && th
>= vect_vf_for_cost (loop_vinfo
));
1710 /* Source location + hotness information. */
1711 extern dump_user_location_t vect_location
;
1713 /* A macro for calling:
1714 dump_begin_scope (MSG, vect_location);
1715 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1718 once the object goes out of scope, thus capturing the nesting of
1721 These scopes affect dump messages within them: dump messages at the
1722 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1723 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1725 #define DUMP_VECT_SCOPE(MSG) \
1726 AUTO_DUMP_SCOPE (MSG, vect_location)
1728 /* A sentinel class for ensuring that the "vect_location" global gets
1729 reset at the end of a scope.
1731 The "vect_location" global is used during dumping and contains a
1732 location_t, which could contain references to a tree block via the
1733 ad-hoc data. This data is used for tracking inlining information,
1734 but it's not a GC root; it's simply assumed that such locations never
1735 get accessed if the blocks are optimized away.
1737 Hence we need to ensure that such locations are purged at the end
1738 of any operations using them (e.g. via this class). */
1740 class auto_purge_vect_location
1743 ~auto_purge_vect_location ();
1746 /*-----------------------------------------------------------------*/
1747 /* Function prototypes. */
1748 /*-----------------------------------------------------------------*/
1750 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1751 in tree-vect-loop-manip.c. */
1752 extern void vect_set_loop_condition (class loop
*, loop_vec_info
,
1753 tree
, tree
, tree
, bool);
1754 extern bool slpeel_can_duplicate_loop_p (const class loop
*, const_edge
);
1755 class loop
*slpeel_tree_duplicate_loop_to_edge_cfg (class loop
*,
1756 class loop
*, edge
);
1757 class loop
*vect_loop_versioning (loop_vec_info
, gimple
*);
1758 extern class loop
*vect_do_peeling (loop_vec_info
, tree
, tree
,
1759 tree
*, tree
*, tree
*, int, bool, bool,
1761 extern void vect_prepare_for_masked_peels (loop_vec_info
);
1762 extern dump_user_location_t
find_loop_location (class loop
*);
1763 extern bool vect_can_advance_ivs_p (loop_vec_info
);
1764 extern void vect_update_inits_of_drs (loop_vec_info
, tree
, tree_code
);
1766 /* In tree-vect-stmts.c. */
1767 extern tree
get_related_vectype_for_scalar_type (machine_mode
, tree
,
1769 extern tree
get_vectype_for_scalar_type (vec_info
*, tree
, unsigned int = 0);
1770 extern tree
get_vectype_for_scalar_type (vec_info
*, tree
, slp_tree
);
1771 extern tree
get_mask_type_for_scalar_type (vec_info
*, tree
, unsigned int = 0);
1772 extern tree
get_same_sized_vectype (tree
, tree
);
1773 extern bool vect_chooses_same_modes_p (vec_info
*, machine_mode
);
1774 extern bool vect_get_loop_mask_type (loop_vec_info
);
1775 extern bool vect_is_simple_use (tree
, vec_info
*, enum vect_def_type
*,
1776 stmt_vec_info
* = NULL
, gimple
** = NULL
);
1777 extern bool vect_is_simple_use (tree
, vec_info
*, enum vect_def_type
*,
1778 tree
*, stmt_vec_info
* = NULL
,
1780 extern bool vect_is_simple_use (vec_info
*, stmt_vec_info
, slp_tree
,
1781 unsigned, tree
*, slp_tree
*,
1782 enum vect_def_type
*,
1783 tree
*, stmt_vec_info
* = NULL
);
1784 extern bool vect_maybe_update_slp_op_vectype (slp_tree
, tree
);
1785 extern bool supportable_widening_operation (vec_info
*,
1786 enum tree_code
, stmt_vec_info
,
1787 tree
, tree
, enum tree_code
*,
1788 enum tree_code
*, int *,
1790 extern bool supportable_narrowing_operation (enum tree_code
, tree
, tree
,
1791 enum tree_code
*, int *,
1794 extern unsigned record_stmt_cost (stmt_vector_for_cost
*, int,
1795 enum vect_cost_for_stmt
, stmt_vec_info
,
1796 tree
, int, enum vect_cost_model_location
);
1798 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
1800 static inline unsigned
1801 record_stmt_cost (stmt_vector_for_cost
*body_cost_vec
, int count
,
1802 enum vect_cost_for_stmt kind
, stmt_vec_info stmt_info
,
1803 int misalign
, enum vect_cost_model_location where
)
1805 return record_stmt_cost (body_cost_vec
, count
, kind
, stmt_info
,
1806 STMT_VINFO_VECTYPE (stmt_info
), misalign
, where
);
1809 extern void vect_finish_replace_stmt (vec_info
*, stmt_vec_info
, gimple
*);
1810 extern void vect_finish_stmt_generation (vec_info
*, stmt_vec_info
, gimple
*,
1811 gimple_stmt_iterator
*);
1812 extern opt_result
vect_mark_stmts_to_be_vectorized (loop_vec_info
, bool *);
1813 extern tree
vect_get_store_rhs (stmt_vec_info
);
1814 void vect_get_vec_defs_for_operand (vec_info
*vinfo
, stmt_vec_info
, unsigned,
1815 tree op
, vec
<tree
> *, tree
= NULL
);
1816 void vect_get_vec_defs (vec_info
*, stmt_vec_info
, slp_tree
, unsigned,
1818 tree
= NULL
, vec
<tree
> * = NULL
,
1819 tree
= NULL
, vec
<tree
> * = NULL
,
1820 tree
= NULL
, vec
<tree
> * = NULL
);
1821 void vect_get_vec_defs (vec_info
*, stmt_vec_info
, slp_tree
, unsigned,
1822 tree
, vec
<tree
> *, tree
,
1823 tree
= NULL
, vec
<tree
> * = NULL
, tree
= NULL
,
1824 tree
= NULL
, vec
<tree
> * = NULL
, tree
= NULL
,
1825 tree
= NULL
, vec
<tree
> * = NULL
, tree
= NULL
);
1826 extern tree
vect_init_vector (vec_info
*, stmt_vec_info
, tree
, tree
,
1827 gimple_stmt_iterator
*);
1828 extern tree
vect_get_slp_vect_def (slp_tree
, unsigned);
1829 extern bool vect_transform_stmt (vec_info
*, stmt_vec_info
,
1830 gimple_stmt_iterator
*,
1831 slp_tree
, slp_instance
);
1832 extern void vect_remove_stores (vec_info
*, stmt_vec_info
);
1833 extern bool vect_nop_conversion_p (stmt_vec_info
);
1834 extern opt_result
vect_analyze_stmt (vec_info
*, stmt_vec_info
, bool *,
1836 slp_instance
, stmt_vector_for_cost
*);
1837 extern void vect_get_load_cost (vec_info
*, stmt_vec_info
, int, bool,
1838 unsigned int *, unsigned int *,
1839 stmt_vector_for_cost
*,
1840 stmt_vector_for_cost
*, bool);
1841 extern void vect_get_store_cost (vec_info
*, stmt_vec_info
, int,
1842 unsigned int *, stmt_vector_for_cost
*);
1843 extern bool vect_supportable_shift (vec_info
*, enum tree_code
, tree
);
1844 extern tree
vect_gen_perm_mask_any (tree
, const vec_perm_indices
&);
1845 extern tree
vect_gen_perm_mask_checked (tree
, const vec_perm_indices
&);
1846 extern void optimize_mask_stores (class loop
*);
1847 extern gcall
*vect_gen_while (tree
, tree
, tree
);
1848 extern tree
vect_gen_while_not (gimple_seq
*, tree
, tree
, tree
);
1849 extern opt_result
vect_get_vector_types_for_stmt (vec_info
*,
1850 stmt_vec_info
, tree
*,
1851 tree
*, unsigned int = 0);
1852 extern opt_tree
vect_get_mask_type_for_stmt (stmt_vec_info
, unsigned int = 0);
1854 /* In tree-vect-data-refs.c. */
1855 extern bool vect_can_force_dr_alignment_p (const_tree
, poly_uint64
);
1856 extern enum dr_alignment_support vect_supportable_dr_alignment
1857 (vec_info
*, dr_vec_info
*, bool);
1858 extern tree
vect_get_smallest_scalar_type (stmt_vec_info
, HOST_WIDE_INT
*,
1860 extern opt_result
vect_analyze_data_ref_dependences (loop_vec_info
, unsigned int *);
1861 extern bool vect_slp_analyze_instance_dependence (vec_info
*, slp_instance
);
1862 extern opt_result
vect_enhance_data_refs_alignment (loop_vec_info
);
1863 extern opt_result
vect_analyze_data_refs_alignment (loop_vec_info
);
1864 extern bool vect_slp_analyze_instance_alignment (vec_info
*, slp_instance
);
1865 extern opt_result
vect_analyze_data_ref_accesses (vec_info
*, vec
<int> *);
1866 extern opt_result
vect_prune_runtime_alias_test_list (loop_vec_info
);
1867 extern bool vect_gather_scatter_fn_p (vec_info
*, bool, bool, tree
, tree
,
1868 tree
, int, internal_fn
*, tree
*);
1869 extern bool vect_check_gather_scatter (stmt_vec_info
, loop_vec_info
,
1870 gather_scatter_info
*);
1871 extern opt_result
vect_find_stmt_data_reference (loop_p
, gimple
*,
1872 vec
<data_reference_p
> *,
1874 extern opt_result
vect_analyze_data_refs (vec_info
*, poly_uint64
*, bool *);
1875 extern void vect_record_base_alignments (vec_info
*);
1876 extern tree
vect_create_data_ref_ptr (vec_info
*,
1877 stmt_vec_info
, tree
, class loop
*, tree
,
1878 tree
*, gimple_stmt_iterator
*,
1880 tree
= NULL_TREE
, tree
= NULL_TREE
);
1881 extern tree
bump_vector_ptr (vec_info
*, tree
, gimple
*, gimple_stmt_iterator
*,
1882 stmt_vec_info
, tree
);
1883 extern void vect_copy_ref_info (tree
, tree
);
1884 extern tree
vect_create_destination_var (tree
, tree
);
1885 extern bool vect_grouped_store_supported (tree
, unsigned HOST_WIDE_INT
);
1886 extern bool vect_store_lanes_supported (tree
, unsigned HOST_WIDE_INT
, bool);
1887 extern bool vect_grouped_load_supported (tree
, bool, unsigned HOST_WIDE_INT
);
1888 extern bool vect_load_lanes_supported (tree
, unsigned HOST_WIDE_INT
, bool);
1889 extern void vect_permute_store_chain (vec_info
*,
1890 vec
<tree
> ,unsigned int, stmt_vec_info
,
1891 gimple_stmt_iterator
*, vec
<tree
> *);
1892 extern tree
vect_setup_realignment (vec_info
*,
1893 stmt_vec_info
, gimple_stmt_iterator
*,
1894 tree
*, enum dr_alignment_support
, tree
,
1896 extern void vect_transform_grouped_load (vec_info
*, stmt_vec_info
, vec
<tree
>,
1897 int, gimple_stmt_iterator
*);
1898 extern void vect_record_grouped_load_vectors (vec_info
*,
1899 stmt_vec_info
, vec
<tree
>);
1900 extern tree
vect_get_new_vect_var (tree
, enum vect_var_kind
, const char *);
1901 extern tree
vect_get_new_ssa_name (tree
, enum vect_var_kind
,
1902 const char * = NULL
);
1903 extern tree
vect_create_addr_base_for_vector_ref (vec_info
*,
1904 stmt_vec_info
, gimple_seq
*,
1905 tree
, tree
= NULL_TREE
);
1907 /* In tree-vect-loop.c. */
1908 extern widest_int
vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo
);
1909 bool vect_rgroup_iv_might_wrap_p (loop_vec_info
, rgroup_controls
*);
1910 /* Used in tree-vect-loop-manip.c */
1911 extern opt_result
vect_determine_partial_vectors_and_peeling (loop_vec_info
,
1913 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
1914 extern bool check_reduction_path (dump_user_location_t
, loop_p
, gphi
*, tree
,
1916 extern bool needs_fold_left_reduction_p (tree
, tree_code
);
1917 /* Drive for loop analysis stage. */
1918 extern opt_loop_vec_info
vect_analyze_loop (class loop
*, vec_info_shared
*);
1919 extern tree
vect_build_loop_niters (loop_vec_info
, bool * = NULL
);
1920 extern void vect_gen_vector_loop_niters (loop_vec_info
, tree
, tree
*,
1922 extern tree
vect_halve_mask_nunits (tree
, machine_mode
);
1923 extern tree
vect_double_mask_nunits (tree
, machine_mode
);
1924 extern void vect_record_loop_mask (loop_vec_info
, vec_loop_masks
*,
1925 unsigned int, tree
, tree
);
1926 extern tree
vect_get_loop_mask (gimple_stmt_iterator
*, vec_loop_masks
*,
1927 unsigned int, tree
, unsigned int);
1928 extern void vect_record_loop_len (loop_vec_info
, vec_loop_lens
*, unsigned int,
1929 tree
, unsigned int);
1930 extern tree
vect_get_loop_len (loop_vec_info
, vec_loop_lens
*, unsigned int,
1932 extern gimple_seq
vect_gen_len (tree
, tree
, tree
, tree
);
1933 extern stmt_vec_info
info_for_reduction (vec_info
*, stmt_vec_info
);
1935 /* Drive for loop transformation stage. */
1936 extern class loop
*vect_transform_loop (loop_vec_info
, gimple
*);
1937 extern opt_loop_vec_info
vect_analyze_loop_form (class loop
*,
1939 extern bool vectorizable_live_operation (vec_info
*,
1940 stmt_vec_info
, gimple_stmt_iterator
*,
1941 slp_tree
, slp_instance
, int,
1942 bool, stmt_vector_for_cost
*);
1943 extern bool vectorizable_reduction (loop_vec_info
, stmt_vec_info
,
1944 slp_tree
, slp_instance
,
1945 stmt_vector_for_cost
*);
1946 extern bool vectorizable_induction (loop_vec_info
, stmt_vec_info
,
1947 gimple
**, slp_tree
,
1948 stmt_vector_for_cost
*);
1949 extern bool vect_transform_reduction (loop_vec_info
, stmt_vec_info
,
1950 gimple_stmt_iterator
*,
1951 gimple
**, slp_tree
);
1952 extern bool vect_transform_cycle_phi (loop_vec_info
, stmt_vec_info
,
1954 slp_tree
, slp_instance
);
1955 extern bool vectorizable_lc_phi (loop_vec_info
, stmt_vec_info
,
1956 gimple
**, slp_tree
);
1957 extern bool vectorizable_phi (vec_info
*, stmt_vec_info
, gimple
**, slp_tree
,
1958 stmt_vector_for_cost
*);
1959 extern bool vect_worthwhile_without_simd_p (vec_info
*, tree_code
);
1960 extern int vect_get_known_peeling_cost (loop_vec_info
, int, int *,
1961 stmt_vector_for_cost
*,
1962 stmt_vector_for_cost
*,
1963 stmt_vector_for_cost
*);
1964 extern tree
cse_and_gimplify_to_preheader (loop_vec_info
, tree
);
1966 /* In tree-vect-slp.c. */
1967 extern void vect_slp_init (void);
1968 extern void vect_slp_fini (void);
1969 extern void vect_free_slp_instance (slp_instance
);
1970 extern bool vect_transform_slp_perm_load (vec_info
*, slp_tree
, vec
<tree
>,
1971 gimple_stmt_iterator
*, poly_uint64
,
1973 unsigned * = nullptr);
1974 extern bool vect_slp_analyze_operations (vec_info
*);
1975 extern void vect_schedule_slp (vec_info
*, vec
<slp_instance
>);
1976 extern opt_result
vect_analyze_slp (vec_info
*, unsigned);
1977 extern bool vect_make_slp_decision (loop_vec_info
);
1978 extern void vect_detect_hybrid_slp (loop_vec_info
);
1979 extern void vect_optimize_slp (vec_info
*);
1980 extern void vect_gather_slp_loads (vec_info
*);
1981 extern void vect_get_slp_defs (slp_tree
, vec
<tree
> *);
1982 extern void vect_get_slp_defs (vec_info
*, slp_tree
, vec
<vec
<tree
> > *,
1984 extern bool vect_slp_bb (basic_block
);
1985 extern bool vect_slp_function (function
*);
1986 extern stmt_vec_info
vect_find_last_scalar_stmt_in_slp (slp_tree
);
1987 extern stmt_vec_info
vect_find_first_scalar_stmt_in_slp (slp_tree
);
1988 extern bool is_simple_and_all_uses_invariant (stmt_vec_info
, loop_vec_info
);
1989 extern bool can_duplicate_and_interleave_p (vec_info
*, unsigned int, tree
,
1990 unsigned int * = NULL
,
1991 tree
* = NULL
, tree
* = NULL
);
1992 extern void duplicate_and_interleave (vec_info
*, gimple_seq
*, tree
,
1993 vec
<tree
>, unsigned int, vec
<tree
> &);
1994 extern int vect_get_place_in_interleaving_chain (stmt_vec_info
, stmt_vec_info
);
1995 extern bool vect_update_shared_vectype (stmt_vec_info
, tree
);
1997 /* In tree-vect-patterns.c. */
1998 /* Pattern recognition functions.
1999 Additional pattern recognition functions can (and will) be added
2001 void vect_pattern_recog (vec_info
*);
2003 /* In tree-vectorizer.c. */
2004 unsigned vectorize_loops (void);
2005 void vect_free_loop_info_assumptions (class loop
*);
2006 gimple
*vect_loop_vectorized_call (class loop
*, gcond
**cond
= NULL
);
2007 bool vect_stmt_dominates_stmt_p (gimple
*, gimple
*);
2009 #endif /* GCC_TREE_VECTORIZER_H */