PR rtl-optimization/54900
[official-gcc.git] / gcc / alias.c
blobc5e64176313ae990a60855d4c01cc8af17efa2f6
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "function.h"
30 #include "alias.h"
31 #include "emit-rtl.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "flags.h"
36 #include "diagnostic-core.h"
37 #include "cselib.h"
38 #include "splay-tree.h"
39 #include "ggc.h"
40 #include "langhooks.h"
41 #include "timevar.h"
42 #include "dumpfile.h"
43 #include "target.h"
44 #include "cgraph.h"
45 #include "df.h"
46 #include "tree-ssa-alias.h"
47 #include "pointer-set.h"
48 #include "tree-flow.h"
50 /* The aliasing API provided here solves related but different problems:
52 Say there exists (in c)
54 struct X {
55 struct Y y1;
56 struct Z z2;
57 } x1, *px1, *px2;
59 struct Y y2, *py;
60 struct Z z2, *pz;
63 py = &x1.y1;
64 px2 = &x1;
66 Consider the four questions:
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
70 Can a store to x1 change the value pointed to by with py?
71 Can a store to x1 change the value pointed to by with pz?
73 The answer to these questions can be yes, yes, yes, and maybe.
75 The first two questions can be answered with a simple examination
76 of the type system. If structure X contains a field of type Y then
77 a store through a pointer to an X can overwrite any field that is
78 contained (recursively) in an X (unless we know that px1 != px2).
80 The last two questions can be solved in the same way as the first
81 two questions but this is too conservative. The observation is
82 that in some cases we can know which (if any) fields are addressed
83 and if those addresses are used in bad ways. This analysis may be
84 language specific. In C, arbitrary operations may be applied to
85 pointers. However, there is some indication that this may be too
86 conservative for some C++ types.
88 The pass ipa-type-escape does this analysis for the types whose
89 instances do not escape across the compilation boundary.
91 Historically in GCC, these two problems were combined and a single
92 data structure that was used to represent the solution to these
93 problems. We now have two similar but different data structures,
94 The data structure to solve the last two questions is similar to
95 the first, but does not contain the fields whose address are never
96 taken. For types that do escape the compilation unit, the data
97 structures will have identical information.
100 /* The alias sets assigned to MEMs assist the back-end in determining
101 which MEMs can alias which other MEMs. In general, two MEMs in
102 different alias sets cannot alias each other, with one important
103 exception. Consider something like:
105 struct S { int i; double d; };
107 a store to an `S' can alias something of either type `int' or type
108 `double'. (However, a store to an `int' cannot alias a `double'
109 and vice versa.) We indicate this via a tree structure that looks
110 like:
111 struct S
114 |/_ _\|
115 int double
117 (The arrows are directed and point downwards.)
118 In this situation we say the alias set for `struct S' is the
119 `superset' and that those for `int' and `double' are `subsets'.
121 To see whether two alias sets can point to the same memory, we must
122 see if either alias set is a subset of the other. We need not trace
123 past immediate descendants, however, since we propagate all
124 grandchildren up one level.
126 Alias set zero is implicitly a superset of all other alias sets.
127 However, this is no actual entry for alias set zero. It is an
128 error to attempt to explicitly construct a subset of zero. */
130 struct GTY(()) alias_set_entry_d {
131 /* The alias set number, as stored in MEM_ALIAS_SET. */
132 alias_set_type alias_set;
134 /* Nonzero if would have a child of zero: this effectively makes this
135 alias set the same as alias set zero. */
136 int has_zero_child;
138 /* The children of the alias set. These are not just the immediate
139 children, but, in fact, all descendants. So, if we have:
141 struct T { struct S s; float f; }
143 continuing our example above, the children here will be all of
144 `int', `double', `float', and `struct S'. */
145 splay_tree GTY((param1_is (int), param2_is (int))) children;
147 typedef struct alias_set_entry_d *alias_set_entry;
149 static int rtx_equal_for_memref_p (const_rtx, const_rtx);
150 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
151 static void record_set (rtx, const_rtx, void *);
152 static int base_alias_check (rtx, rtx, enum machine_mode,
153 enum machine_mode);
154 static rtx find_base_value (rtx);
155 static int mems_in_disjoint_alias_sets_p (const_rtx, const_rtx);
156 static int insert_subset_children (splay_tree_node, void*);
157 static alias_set_entry get_alias_set_entry (alias_set_type);
158 static bool nonoverlapping_component_refs_p (const_rtx, const_rtx);
159 static tree decl_for_component_ref (tree);
160 static int write_dependence_p (const_rtx, const_rtx, int);
162 static void memory_modified_1 (rtx, const_rtx, void *);
164 /* Set up all info needed to perform alias analysis on memory references. */
166 /* Returns the size in bytes of the mode of X. */
167 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
169 /* Cap the number of passes we make over the insns propagating alias
170 information through set chains.
171 ??? 10 is a completely arbitrary choice. This should be based on the
172 maximum loop depth in the CFG, but we do not have this information
173 available (even if current_loops _is_ available). */
174 #define MAX_ALIAS_LOOP_PASSES 10
176 /* reg_base_value[N] gives an address to which register N is related.
177 If all sets after the first add or subtract to the current value
178 or otherwise modify it so it does not point to a different top level
179 object, reg_base_value[N] is equal to the address part of the source
180 of the first set.
182 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
183 expressions represent three types of base:
185 1. incoming arguments. There is just one ADDRESS to represent all
186 arguments, since we do not know at this level whether accesses
187 based on different arguments can alias. The ADDRESS has id 0.
189 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
190 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
191 Each of these rtxes has a separate ADDRESS associated with it,
192 each with a negative id.
194 GCC is (and is required to be) precise in which register it
195 chooses to access a particular region of stack. We can therefore
196 assume that accesses based on one of these rtxes do not alias
197 accesses based on another of these rtxes.
199 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
200 Each such piece of memory has a separate ADDRESS associated
201 with it, each with an id greater than 0.
203 Accesses based on one ADDRESS do not alias accesses based on other
204 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
205 alias globals either; the ADDRESSes have Pmode to indicate this.
206 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
207 indicate this. */
209 static GTY(()) VEC(rtx,gc) *reg_base_value;
210 static rtx *new_reg_base_value;
212 /* The single VOIDmode ADDRESS that represents all argument bases.
213 It has id 0. */
214 static GTY(()) rtx arg_base_value;
216 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
217 static int unique_id;
219 /* We preserve the copy of old array around to avoid amount of garbage
220 produced. About 8% of garbage produced were attributed to this
221 array. */
222 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
224 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
225 registers. */
226 #define UNIQUE_BASE_VALUE_SP -1
227 #define UNIQUE_BASE_VALUE_ARGP -2
228 #define UNIQUE_BASE_VALUE_FP -3
229 #define UNIQUE_BASE_VALUE_HFP -4
231 #define static_reg_base_value \
232 (this_target_rtl->x_static_reg_base_value)
234 #define REG_BASE_VALUE(X) \
235 (REGNO (X) < VEC_length (rtx, reg_base_value) \
236 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
238 /* Vector indexed by N giving the initial (unchanging) value known for
239 pseudo-register N. This vector is initialized in init_alias_analysis,
240 and does not change until end_alias_analysis is called. */
241 static GTY(()) VEC(rtx,gc) *reg_known_value;
243 /* Vector recording for each reg_known_value whether it is due to a
244 REG_EQUIV note. Future passes (viz., reload) may replace the
245 pseudo with the equivalent expression and so we account for the
246 dependences that would be introduced if that happens.
248 The REG_EQUIV notes created in assign_parms may mention the arg
249 pointer, and there are explicit insns in the RTL that modify the
250 arg pointer. Thus we must ensure that such insns don't get
251 scheduled across each other because that would invalidate the
252 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
253 wrong, but solving the problem in the scheduler will likely give
254 better code, so we do it here. */
255 static sbitmap reg_known_equiv_p;
257 /* True when scanning insns from the start of the rtl to the
258 NOTE_INSN_FUNCTION_BEG note. */
259 static bool copying_arguments;
261 DEF_VEC_P(alias_set_entry);
262 DEF_VEC_ALLOC_P(alias_set_entry,gc);
264 /* The splay-tree used to store the various alias set entries. */
265 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
267 /* Build a decomposed reference object for querying the alias-oracle
268 from the MEM rtx and store it in *REF.
269 Returns false if MEM is not suitable for the alias-oracle. */
271 static bool
272 ao_ref_from_mem (ao_ref *ref, const_rtx mem)
274 tree expr = MEM_EXPR (mem);
275 tree base;
277 if (!expr)
278 return false;
280 ao_ref_init (ref, expr);
282 /* Get the base of the reference and see if we have to reject or
283 adjust it. */
284 base = ao_ref_base (ref);
285 if (base == NULL_TREE)
286 return false;
288 /* The tree oracle doesn't like to have these. */
289 if (TREE_CODE (base) == FUNCTION_DECL
290 || TREE_CODE (base) == LABEL_DECL)
291 return false;
293 /* If this is a pointer dereference of a non-SSA_NAME punt.
294 ??? We could replace it with a pointer to anything. */
295 if ((INDIRECT_REF_P (base)
296 || TREE_CODE (base) == MEM_REF)
297 && TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME)
298 return false;
299 if (TREE_CODE (base) == TARGET_MEM_REF
300 && TMR_BASE (base)
301 && TREE_CODE (TMR_BASE (base)) != SSA_NAME)
302 return false;
304 /* If this is a reference based on a partitioned decl replace the
305 base with an INDIRECT_REF of the pointer representative we
306 created during stack slot partitioning. */
307 if (TREE_CODE (base) == VAR_DECL
308 && ! TREE_STATIC (base)
309 && cfun->gimple_df->decls_to_pointers != NULL)
311 void *namep;
312 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers, base);
313 if (namep)
314 ref->base = build_simple_mem_ref (*(tree *)namep);
316 else if (TREE_CODE (base) == TARGET_MEM_REF
317 && TREE_CODE (TMR_BASE (base)) == ADDR_EXPR
318 && TREE_CODE (TREE_OPERAND (TMR_BASE (base), 0)) == VAR_DECL
319 && ! TREE_STATIC (TREE_OPERAND (TMR_BASE (base), 0))
320 && cfun->gimple_df->decls_to_pointers != NULL)
322 void *namep;
323 namep = pointer_map_contains (cfun->gimple_df->decls_to_pointers,
324 TREE_OPERAND (TMR_BASE (base), 0));
325 if (namep)
326 ref->base = build_simple_mem_ref (*(tree *)namep);
329 ref->ref_alias_set = MEM_ALIAS_SET (mem);
331 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
332 is conservative, so trust it. */
333 if (!MEM_OFFSET_KNOWN_P (mem)
334 || !MEM_SIZE_KNOWN_P (mem))
335 return true;
337 /* If the base decl is a parameter we can have negative MEM_OFFSET in
338 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
339 here. */
340 if (MEM_OFFSET (mem) < 0
341 && (MEM_SIZE (mem) + MEM_OFFSET (mem)) * BITS_PER_UNIT == ref->size)
342 return true;
344 /* Otherwise continue and refine size and offset we got from analyzing
345 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
347 ref->offset += MEM_OFFSET (mem) * BITS_PER_UNIT;
348 ref->size = MEM_SIZE (mem) * BITS_PER_UNIT;
350 /* The MEM may extend into adjacent fields, so adjust max_size if
351 necessary. */
352 if (ref->max_size != -1
353 && ref->size > ref->max_size)
354 ref->max_size = ref->size;
356 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
357 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
358 if (MEM_EXPR (mem) != get_spill_slot_decl (false)
359 && (ref->offset < 0
360 || (DECL_P (ref->base)
361 && (!host_integerp (DECL_SIZE (ref->base), 1)
362 || (TREE_INT_CST_LOW (DECL_SIZE ((ref->base)))
363 < (unsigned HOST_WIDE_INT)(ref->offset + ref->size))))))
364 return false;
366 return true;
369 /* Query the alias-oracle on whether the two memory rtx X and MEM may
370 alias. If TBAA_P is set also apply TBAA. Returns true if the
371 two rtxen may alias, false otherwise. */
373 static bool
374 rtx_refs_may_alias_p (const_rtx x, const_rtx mem, bool tbaa_p)
376 ao_ref ref1, ref2;
378 if (!ao_ref_from_mem (&ref1, x)
379 || !ao_ref_from_mem (&ref2, mem))
380 return true;
382 return refs_may_alias_p_1 (&ref1, &ref2,
383 tbaa_p
384 && MEM_ALIAS_SET (x) != 0
385 && MEM_ALIAS_SET (mem) != 0);
388 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
389 such an entry, or NULL otherwise. */
391 static inline alias_set_entry
392 get_alias_set_entry (alias_set_type alias_set)
394 return VEC_index (alias_set_entry, alias_sets, alias_set);
397 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
398 the two MEMs cannot alias each other. */
400 static inline int
401 mems_in_disjoint_alias_sets_p (const_rtx mem1, const_rtx mem2)
403 /* Perform a basic sanity check. Namely, that there are no alias sets
404 if we're not using strict aliasing. This helps to catch bugs
405 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
406 where a MEM is allocated in some way other than by the use of
407 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
408 use alias sets to indicate that spilled registers cannot alias each
409 other, we might need to remove this check. */
410 gcc_assert (flag_strict_aliasing
411 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
413 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
416 /* Insert the NODE into the splay tree given by DATA. Used by
417 record_alias_subset via splay_tree_foreach. */
419 static int
420 insert_subset_children (splay_tree_node node, void *data)
422 splay_tree_insert ((splay_tree) data, node->key, node->value);
424 return 0;
427 /* Return true if the first alias set is a subset of the second. */
429 bool
430 alias_set_subset_of (alias_set_type set1, alias_set_type set2)
432 alias_set_entry ase;
434 /* Everything is a subset of the "aliases everything" set. */
435 if (set2 == 0)
436 return true;
438 /* Otherwise, check if set1 is a subset of set2. */
439 ase = get_alias_set_entry (set2);
440 if (ase != 0
441 && (ase->has_zero_child
442 || splay_tree_lookup (ase->children,
443 (splay_tree_key) set1)))
444 return true;
445 return false;
448 /* Return 1 if the two specified alias sets may conflict. */
451 alias_sets_conflict_p (alias_set_type set1, alias_set_type set2)
453 alias_set_entry ase;
455 /* The easy case. */
456 if (alias_sets_must_conflict_p (set1, set2))
457 return 1;
459 /* See if the first alias set is a subset of the second. */
460 ase = get_alias_set_entry (set1);
461 if (ase != 0
462 && (ase->has_zero_child
463 || splay_tree_lookup (ase->children,
464 (splay_tree_key) set2)))
465 return 1;
467 /* Now do the same, but with the alias sets reversed. */
468 ase = get_alias_set_entry (set2);
469 if (ase != 0
470 && (ase->has_zero_child
471 || splay_tree_lookup (ase->children,
472 (splay_tree_key) set1)))
473 return 1;
475 /* The two alias sets are distinct and neither one is the
476 child of the other. Therefore, they cannot conflict. */
477 return 0;
480 /* Return 1 if the two specified alias sets will always conflict. */
483 alias_sets_must_conflict_p (alias_set_type set1, alias_set_type set2)
485 if (set1 == 0 || set2 == 0 || set1 == set2)
486 return 1;
488 return 0;
491 /* Return 1 if any MEM object of type T1 will always conflict (using the
492 dependency routines in this file) with any MEM object of type T2.
493 This is used when allocating temporary storage. If T1 and/or T2 are
494 NULL_TREE, it means we know nothing about the storage. */
497 objects_must_conflict_p (tree t1, tree t2)
499 alias_set_type set1, set2;
501 /* If neither has a type specified, we don't know if they'll conflict
502 because we may be using them to store objects of various types, for
503 example the argument and local variables areas of inlined functions. */
504 if (t1 == 0 && t2 == 0)
505 return 0;
507 /* If they are the same type, they must conflict. */
508 if (t1 == t2
509 /* Likewise if both are volatile. */
510 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
511 return 1;
513 set1 = t1 ? get_alias_set (t1) : 0;
514 set2 = t2 ? get_alias_set (t2) : 0;
516 /* We can't use alias_sets_conflict_p because we must make sure
517 that every subtype of t1 will conflict with every subtype of
518 t2 for which a pair of subobjects of these respective subtypes
519 overlaps on the stack. */
520 return alias_sets_must_conflict_p (set1, set2);
523 /* Return true if all nested component references handled by
524 get_inner_reference in T are such that we should use the alias set
525 provided by the object at the heart of T.
527 This is true for non-addressable components (which don't have their
528 own alias set), as well as components of objects in alias set zero.
529 This later point is a special case wherein we wish to override the
530 alias set used by the component, but we don't have per-FIELD_DECL
531 assignable alias sets. */
533 bool
534 component_uses_parent_alias_set (const_tree t)
536 while (1)
538 /* If we're at the end, it vacuously uses its own alias set. */
539 if (!handled_component_p (t))
540 return false;
542 switch (TREE_CODE (t))
544 case COMPONENT_REF:
545 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
546 return true;
547 break;
549 case ARRAY_REF:
550 case ARRAY_RANGE_REF:
551 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
552 return true;
553 break;
555 case REALPART_EXPR:
556 case IMAGPART_EXPR:
557 break;
559 default:
560 /* Bitfields and casts are never addressable. */
561 return true;
564 t = TREE_OPERAND (t, 0);
565 if (get_alias_set (TREE_TYPE (t)) == 0)
566 return true;
570 /* Return the alias set for the memory pointed to by T, which may be
571 either a type or an expression. Return -1 if there is nothing
572 special about dereferencing T. */
574 static alias_set_type
575 get_deref_alias_set_1 (tree t)
577 /* If we're not doing any alias analysis, just assume everything
578 aliases everything else. */
579 if (!flag_strict_aliasing)
580 return 0;
582 /* All we care about is the type. */
583 if (! TYPE_P (t))
584 t = TREE_TYPE (t);
586 /* If we have an INDIRECT_REF via a void pointer, we don't
587 know anything about what that might alias. Likewise if the
588 pointer is marked that way. */
589 if (TREE_CODE (TREE_TYPE (t)) == VOID_TYPE
590 || TYPE_REF_CAN_ALIAS_ALL (t))
591 return 0;
593 return -1;
596 /* Return the alias set for the memory pointed to by T, which may be
597 either a type or an expression. */
599 alias_set_type
600 get_deref_alias_set (tree t)
602 alias_set_type set = get_deref_alias_set_1 (t);
604 /* Fall back to the alias-set of the pointed-to type. */
605 if (set == -1)
607 if (! TYPE_P (t))
608 t = TREE_TYPE (t);
609 set = get_alias_set (TREE_TYPE (t));
612 return set;
615 /* Return the alias set for T, which may be either a type or an
616 expression. Call language-specific routine for help, if needed. */
618 alias_set_type
619 get_alias_set (tree t)
621 alias_set_type set;
623 /* If we're not doing any alias analysis, just assume everything
624 aliases everything else. Also return 0 if this or its type is
625 an error. */
626 if (! flag_strict_aliasing || t == error_mark_node
627 || (! TYPE_P (t)
628 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
629 return 0;
631 /* We can be passed either an expression or a type. This and the
632 language-specific routine may make mutually-recursive calls to each other
633 to figure out what to do. At each juncture, we see if this is a tree
634 that the language may need to handle specially. First handle things that
635 aren't types. */
636 if (! TYPE_P (t))
638 tree inner;
640 /* Give the language a chance to do something with this tree
641 before we look at it. */
642 STRIP_NOPS (t);
643 set = lang_hooks.get_alias_set (t);
644 if (set != -1)
645 return set;
647 /* Get the base object of the reference. */
648 inner = t;
649 while (handled_component_p (inner))
651 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
652 the type of any component references that wrap it to
653 determine the alias-set. */
654 if (TREE_CODE (inner) == VIEW_CONVERT_EXPR)
655 t = TREE_OPERAND (inner, 0);
656 inner = TREE_OPERAND (inner, 0);
659 /* Handle pointer dereferences here, they can override the
660 alias-set. */
661 if (INDIRECT_REF_P (inner))
663 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 0));
664 if (set != -1)
665 return set;
667 else if (TREE_CODE (inner) == TARGET_MEM_REF)
668 return get_deref_alias_set (TMR_OFFSET (inner));
669 else if (TREE_CODE (inner) == MEM_REF)
671 set = get_deref_alias_set_1 (TREE_OPERAND (inner, 1));
672 if (set != -1)
673 return set;
676 /* If the innermost reference is a MEM_REF that has a
677 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
678 using the memory access type for determining the alias-set. */
679 if (TREE_CODE (inner) == MEM_REF
680 && TYPE_MAIN_VARIANT (TREE_TYPE (inner))
681 != TYPE_MAIN_VARIANT
682 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner, 1)))))
683 return get_deref_alias_set (TREE_OPERAND (inner, 1));
685 /* Otherwise, pick up the outermost object that we could have a pointer
686 to, processing conversions as above. */
687 while (component_uses_parent_alias_set (t))
689 t = TREE_OPERAND (t, 0);
690 STRIP_NOPS (t);
693 /* If we've already determined the alias set for a decl, just return
694 it. This is necessary for C++ anonymous unions, whose component
695 variables don't look like union members (boo!). */
696 if (TREE_CODE (t) == VAR_DECL
697 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
698 return MEM_ALIAS_SET (DECL_RTL (t));
700 /* Now all we care about is the type. */
701 t = TREE_TYPE (t);
704 /* Variant qualifiers don't affect the alias set, so get the main
705 variant. */
706 t = TYPE_MAIN_VARIANT (t);
708 /* Always use the canonical type as well. If this is a type that
709 requires structural comparisons to identify compatible types
710 use alias set zero. */
711 if (TYPE_STRUCTURAL_EQUALITY_P (t))
713 /* Allow the language to specify another alias set for this
714 type. */
715 set = lang_hooks.get_alias_set (t);
716 if (set != -1)
717 return set;
718 return 0;
721 t = TYPE_CANONICAL (t);
723 /* The canonical type should not require structural equality checks. */
724 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t));
726 /* If this is a type with a known alias set, return it. */
727 if (TYPE_ALIAS_SET_KNOWN_P (t))
728 return TYPE_ALIAS_SET (t);
730 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
731 if (!COMPLETE_TYPE_P (t))
733 /* For arrays with unknown size the conservative answer is the
734 alias set of the element type. */
735 if (TREE_CODE (t) == ARRAY_TYPE)
736 return get_alias_set (TREE_TYPE (t));
738 /* But return zero as a conservative answer for incomplete types. */
739 return 0;
742 /* See if the language has special handling for this type. */
743 set = lang_hooks.get_alias_set (t);
744 if (set != -1)
745 return set;
747 /* There are no objects of FUNCTION_TYPE, so there's no point in
748 using up an alias set for them. (There are, of course, pointers
749 and references to functions, but that's different.) */
750 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
751 set = 0;
753 /* Unless the language specifies otherwise, let vector types alias
754 their components. This avoids some nasty type punning issues in
755 normal usage. And indeed lets vectors be treated more like an
756 array slice. */
757 else if (TREE_CODE (t) == VECTOR_TYPE)
758 set = get_alias_set (TREE_TYPE (t));
760 /* Unless the language specifies otherwise, treat array types the
761 same as their components. This avoids the asymmetry we get
762 through recording the components. Consider accessing a
763 character(kind=1) through a reference to a character(kind=1)[1:1].
764 Or consider if we want to assign integer(kind=4)[0:D.1387] and
765 integer(kind=4)[4] the same alias set or not.
766 Just be pragmatic here and make sure the array and its element
767 type get the same alias set assigned. */
768 else if (TREE_CODE (t) == ARRAY_TYPE && !TYPE_NONALIASED_COMPONENT (t))
769 set = get_alias_set (TREE_TYPE (t));
771 /* From the former common C and C++ langhook implementation:
773 Unfortunately, there is no canonical form of a pointer type.
774 In particular, if we have `typedef int I', then `int *', and
775 `I *' are different types. So, we have to pick a canonical
776 representative. We do this below.
778 Technically, this approach is actually more conservative that
779 it needs to be. In particular, `const int *' and `int *'
780 should be in different alias sets, according to the C and C++
781 standard, since their types are not the same, and so,
782 technically, an `int **' and `const int **' cannot point at
783 the same thing.
785 But, the standard is wrong. In particular, this code is
786 legal C++:
788 int *ip;
789 int **ipp = &ip;
790 const int* const* cipp = ipp;
791 And, it doesn't make sense for that to be legal unless you
792 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
793 the pointed-to types. This issue has been reported to the
794 C++ committee.
796 In addition to the above canonicalization issue, with LTO
797 we should also canonicalize `T (*)[]' to `T *' avoiding
798 alias issues with pointer-to element types and pointer-to
799 array types.
801 Likewise we need to deal with the situation of incomplete
802 pointed-to types and make `*(struct X **)&a' and
803 `*(struct X {} **)&a' alias. Otherwise we will have to
804 guarantee that all pointer-to incomplete type variants
805 will be replaced by pointer-to complete type variants if
806 they are available.
808 With LTO the convenient situation of using `void *' to
809 access and store any pointer type will also become
810 more apparent (and `void *' is just another pointer-to
811 incomplete type). Assigning alias-set zero to `void *'
812 and all pointer-to incomplete types is a not appealing
813 solution. Assigning an effective alias-set zero only
814 affecting pointers might be - by recording proper subset
815 relationships of all pointer alias-sets.
817 Pointer-to function types are another grey area which
818 needs caution. Globbing them all into one alias-set
819 or the above effective zero set would work.
821 For now just assign the same alias-set to all pointers.
822 That's simple and avoids all the above problems. */
823 else if (POINTER_TYPE_P (t)
824 && t != ptr_type_node)
825 set = get_alias_set (ptr_type_node);
827 /* Otherwise make a new alias set for this type. */
828 else
830 /* Each canonical type gets its own alias set, so canonical types
831 shouldn't form a tree. It doesn't really matter for types
832 we handle specially above, so only check it where it possibly
833 would result in a bogus alias set. */
834 gcc_checking_assert (TYPE_CANONICAL (t) == t);
836 set = new_alias_set ();
839 TYPE_ALIAS_SET (t) = set;
841 /* If this is an aggregate type or a complex type, we must record any
842 component aliasing information. */
843 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
844 record_component_aliases (t);
846 return set;
849 /* Return a brand-new alias set. */
851 alias_set_type
852 new_alias_set (void)
854 if (flag_strict_aliasing)
856 if (alias_sets == 0)
857 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
858 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
859 return VEC_length (alias_set_entry, alias_sets) - 1;
861 else
862 return 0;
865 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
866 not everything that aliases SUPERSET also aliases SUBSET. For example,
867 in C, a store to an `int' can alias a load of a structure containing an
868 `int', and vice versa. But it can't alias a load of a 'double' member
869 of the same structure. Here, the structure would be the SUPERSET and
870 `int' the SUBSET. This relationship is also described in the comment at
871 the beginning of this file.
873 This function should be called only once per SUPERSET/SUBSET pair.
875 It is illegal for SUPERSET to be zero; everything is implicitly a
876 subset of alias set zero. */
878 void
879 record_alias_subset (alias_set_type superset, alias_set_type subset)
881 alias_set_entry superset_entry;
882 alias_set_entry subset_entry;
884 /* It is possible in complex type situations for both sets to be the same,
885 in which case we can ignore this operation. */
886 if (superset == subset)
887 return;
889 gcc_assert (superset);
891 superset_entry = get_alias_set_entry (superset);
892 if (superset_entry == 0)
894 /* Create an entry for the SUPERSET, so that we have a place to
895 attach the SUBSET. */
896 superset_entry = ggc_alloc_cleared_alias_set_entry_d ();
897 superset_entry->alias_set = superset;
898 superset_entry->children
899 = splay_tree_new_ggc (splay_tree_compare_ints,
900 ggc_alloc_splay_tree_scalar_scalar_splay_tree_s,
901 ggc_alloc_splay_tree_scalar_scalar_splay_tree_node_s);
902 superset_entry->has_zero_child = 0;
903 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
906 if (subset == 0)
907 superset_entry->has_zero_child = 1;
908 else
910 subset_entry = get_alias_set_entry (subset);
911 /* If there is an entry for the subset, enter all of its children
912 (if they are not already present) as children of the SUPERSET. */
913 if (subset_entry)
915 if (subset_entry->has_zero_child)
916 superset_entry->has_zero_child = 1;
918 splay_tree_foreach (subset_entry->children, insert_subset_children,
919 superset_entry->children);
922 /* Enter the SUBSET itself as a child of the SUPERSET. */
923 splay_tree_insert (superset_entry->children,
924 (splay_tree_key) subset, 0);
928 /* Record that component types of TYPE, if any, are part of that type for
929 aliasing purposes. For record types, we only record component types
930 for fields that are not marked non-addressable. For array types, we
931 only record the component type if it is not marked non-aliased. */
933 void
934 record_component_aliases (tree type)
936 alias_set_type superset = get_alias_set (type);
937 tree field;
939 if (superset == 0)
940 return;
942 switch (TREE_CODE (type))
944 case RECORD_TYPE:
945 case UNION_TYPE:
946 case QUAL_UNION_TYPE:
947 /* Recursively record aliases for the base classes, if there are any. */
948 if (TYPE_BINFO (type))
950 int i;
951 tree binfo, base_binfo;
953 for (binfo = TYPE_BINFO (type), i = 0;
954 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
955 record_alias_subset (superset,
956 get_alias_set (BINFO_TYPE (base_binfo)));
958 for (field = TYPE_FIELDS (type); field != 0; field = DECL_CHAIN (field))
959 if (TREE_CODE (field) == FIELD_DECL && !DECL_NONADDRESSABLE_P (field))
960 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
961 break;
963 case COMPLEX_TYPE:
964 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
965 break;
967 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
968 element type. */
970 default:
971 break;
975 /* Allocate an alias set for use in storing and reading from the varargs
976 spill area. */
978 static GTY(()) alias_set_type varargs_set = -1;
980 alias_set_type
981 get_varargs_alias_set (void)
983 #if 1
984 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
985 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
986 consistently use the varargs alias set for loads from the varargs
987 area. So don't use it anywhere. */
988 return 0;
989 #else
990 if (varargs_set == -1)
991 varargs_set = new_alias_set ();
993 return varargs_set;
994 #endif
997 /* Likewise, but used for the fixed portions of the frame, e.g., register
998 save areas. */
1000 static GTY(()) alias_set_type frame_set = -1;
1002 alias_set_type
1003 get_frame_alias_set (void)
1005 if (frame_set == -1)
1006 frame_set = new_alias_set ();
1008 return frame_set;
1011 /* Create a new, unique base with id ID. */
1013 static rtx
1014 unique_base_value (HOST_WIDE_INT id)
1016 return gen_rtx_ADDRESS (Pmode, id);
1019 /* Return true if accesses based on any other base value cannot alias
1020 those based on X. */
1022 static bool
1023 unique_base_value_p (rtx x)
1025 return GET_CODE (x) == ADDRESS && GET_MODE (x) == Pmode;
1028 /* Return true if X is known to be a base value. */
1030 static bool
1031 known_base_value_p (rtx x)
1033 switch (GET_CODE (x))
1035 case LABEL_REF:
1036 case SYMBOL_REF:
1037 return true;
1039 case ADDRESS:
1040 /* Arguments may or may not be bases; we don't know for sure. */
1041 return GET_MODE (x) != VOIDmode;
1043 default:
1044 return false;
1048 /* Inside SRC, the source of a SET, find a base address. */
1050 static rtx
1051 find_base_value (rtx src)
1053 unsigned int regno;
1055 #if defined (FIND_BASE_TERM)
1056 /* Try machine-dependent ways to find the base term. */
1057 src = FIND_BASE_TERM (src);
1058 #endif
1060 switch (GET_CODE (src))
1062 case SYMBOL_REF:
1063 case LABEL_REF:
1064 return src;
1066 case REG:
1067 regno = REGNO (src);
1068 /* At the start of a function, argument registers have known base
1069 values which may be lost later. Returning an ADDRESS
1070 expression here allows optimization based on argument values
1071 even when the argument registers are used for other purposes. */
1072 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
1073 return new_reg_base_value[regno];
1075 /* If a pseudo has a known base value, return it. Do not do this
1076 for non-fixed hard regs since it can result in a circular
1077 dependency chain for registers which have values at function entry.
1079 The test above is not sufficient because the scheduler may move
1080 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1081 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
1082 && regno < VEC_length (rtx, reg_base_value))
1084 /* If we're inside init_alias_analysis, use new_reg_base_value
1085 to reduce the number of relaxation iterations. */
1086 if (new_reg_base_value && new_reg_base_value[regno]
1087 && DF_REG_DEF_COUNT (regno) == 1)
1088 return new_reg_base_value[regno];
1090 if (VEC_index (rtx, reg_base_value, regno))
1091 return VEC_index (rtx, reg_base_value, regno);
1094 return 0;
1096 case MEM:
1097 /* Check for an argument passed in memory. Only record in the
1098 copying-arguments block; it is too hard to track changes
1099 otherwise. */
1100 if (copying_arguments
1101 && (XEXP (src, 0) == arg_pointer_rtx
1102 || (GET_CODE (XEXP (src, 0)) == PLUS
1103 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
1104 return arg_base_value;
1105 return 0;
1107 case CONST:
1108 src = XEXP (src, 0);
1109 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
1110 break;
1112 /* ... fall through ... */
1114 case PLUS:
1115 case MINUS:
1117 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
1119 /* If either operand is a REG that is a known pointer, then it
1120 is the base. */
1121 if (REG_P (src_0) && REG_POINTER (src_0))
1122 return find_base_value (src_0);
1123 if (REG_P (src_1) && REG_POINTER (src_1))
1124 return find_base_value (src_1);
1126 /* If either operand is a REG, then see if we already have
1127 a known value for it. */
1128 if (REG_P (src_0))
1130 temp = find_base_value (src_0);
1131 if (temp != 0)
1132 src_0 = temp;
1135 if (REG_P (src_1))
1137 temp = find_base_value (src_1);
1138 if (temp!= 0)
1139 src_1 = temp;
1142 /* If either base is named object or a special address
1143 (like an argument or stack reference), then use it for the
1144 base term. */
1145 if (src_0 != 0 && known_base_value_p (src_0))
1146 return src_0;
1148 if (src_1 != 0 && known_base_value_p (src_1))
1149 return src_1;
1151 /* Guess which operand is the base address:
1152 If either operand is a symbol, then it is the base. If
1153 either operand is a CONST_INT, then the other is the base. */
1154 if (CONST_INT_P (src_1) || CONSTANT_P (src_0))
1155 return find_base_value (src_0);
1156 else if (CONST_INT_P (src_0) || CONSTANT_P (src_1))
1157 return find_base_value (src_1);
1159 return 0;
1162 case LO_SUM:
1163 /* The standard form is (lo_sum reg sym) so look only at the
1164 second operand. */
1165 return find_base_value (XEXP (src, 1));
1167 case AND:
1168 /* If the second operand is constant set the base
1169 address to the first operand. */
1170 if (CONST_INT_P (XEXP (src, 1)) && INTVAL (XEXP (src, 1)) != 0)
1171 return find_base_value (XEXP (src, 0));
1172 return 0;
1174 case TRUNCATE:
1175 /* As we do not know which address space the pointer is referring to, we can
1176 handle this only if the target does not support different pointer or
1177 address modes depending on the address space. */
1178 if (!target_default_pointer_address_modes_p ())
1179 break;
1180 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
1181 break;
1182 /* Fall through. */
1183 case HIGH:
1184 case PRE_INC:
1185 case PRE_DEC:
1186 case POST_INC:
1187 case POST_DEC:
1188 case PRE_MODIFY:
1189 case POST_MODIFY:
1190 return find_base_value (XEXP (src, 0));
1192 case ZERO_EXTEND:
1193 case SIGN_EXTEND: /* used for NT/Alpha pointers */
1194 /* As we do not know which address space the pointer is referring to, we can
1195 handle this only if the target does not support different pointer or
1196 address modes depending on the address space. */
1197 if (!target_default_pointer_address_modes_p ())
1198 break;
1201 rtx temp = find_base_value (XEXP (src, 0));
1203 if (temp != 0 && CONSTANT_P (temp))
1204 temp = convert_memory_address (Pmode, temp);
1206 return temp;
1209 default:
1210 break;
1213 return 0;
1216 /* Called from init_alias_analysis indirectly through note_stores,
1217 or directly if DEST is a register with a REG_NOALIAS note attached.
1218 SET is null in the latter case. */
1220 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1221 register N has been set in this function. */
1222 static sbitmap reg_seen;
1224 static void
1225 record_set (rtx dest, const_rtx set, void *data ATTRIBUTE_UNUSED)
1227 unsigned regno;
1228 rtx src;
1229 int n;
1231 if (!REG_P (dest))
1232 return;
1234 regno = REGNO (dest);
1236 gcc_checking_assert (regno < VEC_length (rtx, reg_base_value));
1238 /* If this spans multiple hard registers, then we must indicate that every
1239 register has an unusable value. */
1240 if (regno < FIRST_PSEUDO_REGISTER)
1241 n = hard_regno_nregs[regno][GET_MODE (dest)];
1242 else
1243 n = 1;
1244 if (n != 1)
1246 while (--n >= 0)
1248 SET_BIT (reg_seen, regno + n);
1249 new_reg_base_value[regno + n] = 0;
1251 return;
1254 if (set)
1256 /* A CLOBBER wipes out any old value but does not prevent a previously
1257 unset register from acquiring a base address (i.e. reg_seen is not
1258 set). */
1259 if (GET_CODE (set) == CLOBBER)
1261 new_reg_base_value[regno] = 0;
1262 return;
1264 src = SET_SRC (set);
1266 else
1268 /* There's a REG_NOALIAS note against DEST. */
1269 if (TEST_BIT (reg_seen, regno))
1271 new_reg_base_value[regno] = 0;
1272 return;
1274 SET_BIT (reg_seen, regno);
1275 new_reg_base_value[regno] = unique_base_value (unique_id++);
1276 return;
1279 /* If this is not the first set of REGNO, see whether the new value
1280 is related to the old one. There are two cases of interest:
1282 (1) The register might be assigned an entirely new value
1283 that has the same base term as the original set.
1285 (2) The set might be a simple self-modification that
1286 cannot change REGNO's base value.
1288 If neither case holds, reject the original base value as invalid.
1289 Note that the following situation is not detected:
1291 extern int x, y; int *p = &x; p += (&y-&x);
1293 ANSI C does not allow computing the difference of addresses
1294 of distinct top level objects. */
1295 if (new_reg_base_value[regno] != 0
1296 && find_base_value (src) != new_reg_base_value[regno])
1297 switch (GET_CODE (src))
1299 case LO_SUM:
1300 case MINUS:
1301 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1302 new_reg_base_value[regno] = 0;
1303 break;
1304 case PLUS:
1305 /* If the value we add in the PLUS is also a valid base value,
1306 this might be the actual base value, and the original value
1307 an index. */
1309 rtx other = NULL_RTX;
1311 if (XEXP (src, 0) == dest)
1312 other = XEXP (src, 1);
1313 else if (XEXP (src, 1) == dest)
1314 other = XEXP (src, 0);
1316 if (! other || find_base_value (other))
1317 new_reg_base_value[regno] = 0;
1318 break;
1320 case AND:
1321 if (XEXP (src, 0) != dest || !CONST_INT_P (XEXP (src, 1)))
1322 new_reg_base_value[regno] = 0;
1323 break;
1324 default:
1325 new_reg_base_value[regno] = 0;
1326 break;
1328 /* If this is the first set of a register, record the value. */
1329 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1330 && ! TEST_BIT (reg_seen, regno) && new_reg_base_value[regno] == 0)
1331 new_reg_base_value[regno] = find_base_value (src);
1333 SET_BIT (reg_seen, regno);
1336 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1337 using hard registers with non-null REG_BASE_VALUE for renaming. */
1339 get_reg_base_value (unsigned int regno)
1341 return VEC_index (rtx, reg_base_value, regno);
1344 /* If a value is known for REGNO, return it. */
1347 get_reg_known_value (unsigned int regno)
1349 if (regno >= FIRST_PSEUDO_REGISTER)
1351 regno -= FIRST_PSEUDO_REGISTER;
1352 if (regno < VEC_length (rtx, reg_known_value))
1353 return VEC_index (rtx, reg_known_value, regno);
1355 return NULL;
1358 /* Set it. */
1360 static void
1361 set_reg_known_value (unsigned int regno, rtx val)
1363 if (regno >= FIRST_PSEUDO_REGISTER)
1365 regno -= FIRST_PSEUDO_REGISTER;
1366 if (regno < VEC_length (rtx, reg_known_value))
1367 VEC_replace (rtx, reg_known_value, regno, val);
1371 /* Similarly for reg_known_equiv_p. */
1373 bool
1374 get_reg_known_equiv_p (unsigned int regno)
1376 if (regno >= FIRST_PSEUDO_REGISTER)
1378 regno -= FIRST_PSEUDO_REGISTER;
1379 if (regno < VEC_length (rtx, reg_known_value))
1380 return TEST_BIT (reg_known_equiv_p, regno);
1382 return false;
1385 static void
1386 set_reg_known_equiv_p (unsigned int regno, bool val)
1388 if (regno >= FIRST_PSEUDO_REGISTER)
1390 regno -= FIRST_PSEUDO_REGISTER;
1391 if (regno < VEC_length (rtx, reg_known_value))
1393 if (val)
1394 SET_BIT (reg_known_equiv_p, regno);
1395 else
1396 RESET_BIT (reg_known_equiv_p, regno);
1402 /* Returns a canonical version of X, from the point of view alias
1403 analysis. (For example, if X is a MEM whose address is a register,
1404 and the register has a known value (say a SYMBOL_REF), then a MEM
1405 whose address is the SYMBOL_REF is returned.) */
1408 canon_rtx (rtx x)
1410 /* Recursively look for equivalences. */
1411 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1413 rtx t = get_reg_known_value (REGNO (x));
1414 if (t == x)
1415 return x;
1416 if (t)
1417 return canon_rtx (t);
1420 if (GET_CODE (x) == PLUS)
1422 rtx x0 = canon_rtx (XEXP (x, 0));
1423 rtx x1 = canon_rtx (XEXP (x, 1));
1425 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1427 if (CONST_INT_P (x0))
1428 return plus_constant (GET_MODE (x), x1, INTVAL (x0));
1429 else if (CONST_INT_P (x1))
1430 return plus_constant (GET_MODE (x), x0, INTVAL (x1));
1431 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1435 /* This gives us much better alias analysis when called from
1436 the loop optimizer. Note we want to leave the original
1437 MEM alone, but need to return the canonicalized MEM with
1438 all the flags with their original values. */
1439 else if (MEM_P (x))
1440 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1442 return x;
1445 /* Return 1 if X and Y are identical-looking rtx's.
1446 Expect that X and Y has been already canonicalized.
1448 We use the data in reg_known_value above to see if two registers with
1449 different numbers are, in fact, equivalent. */
1451 static int
1452 rtx_equal_for_memref_p (const_rtx x, const_rtx y)
1454 int i;
1455 int j;
1456 enum rtx_code code;
1457 const char *fmt;
1459 if (x == 0 && y == 0)
1460 return 1;
1461 if (x == 0 || y == 0)
1462 return 0;
1464 if (x == y)
1465 return 1;
1467 code = GET_CODE (x);
1468 /* Rtx's of different codes cannot be equal. */
1469 if (code != GET_CODE (y))
1470 return 0;
1472 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1473 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1475 if (GET_MODE (x) != GET_MODE (y))
1476 return 0;
1478 /* Some RTL can be compared without a recursive examination. */
1479 switch (code)
1481 case REG:
1482 return REGNO (x) == REGNO (y);
1484 case LABEL_REF:
1485 return XEXP (x, 0) == XEXP (y, 0);
1487 case SYMBOL_REF:
1488 return XSTR (x, 0) == XSTR (y, 0);
1490 case VALUE:
1491 CASE_CONST_UNIQUE:
1492 /* There's no need to compare the contents of CONST_DOUBLEs or
1493 CONST_INTs because pointer equality is a good enough
1494 comparison for these nodes. */
1495 return 0;
1497 default:
1498 break;
1501 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1502 if (code == PLUS)
1503 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1504 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1505 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1506 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1507 /* For commutative operations, the RTX match if the operand match in any
1508 order. Also handle the simple binary and unary cases without a loop. */
1509 if (COMMUTATIVE_P (x))
1511 rtx xop0 = canon_rtx (XEXP (x, 0));
1512 rtx yop0 = canon_rtx (XEXP (y, 0));
1513 rtx yop1 = canon_rtx (XEXP (y, 1));
1515 return ((rtx_equal_for_memref_p (xop0, yop0)
1516 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1517 || (rtx_equal_for_memref_p (xop0, yop1)
1518 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1520 else if (NON_COMMUTATIVE_P (x))
1522 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1523 canon_rtx (XEXP (y, 0)))
1524 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1525 canon_rtx (XEXP (y, 1))));
1527 else if (UNARY_P (x))
1528 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1529 canon_rtx (XEXP (y, 0)));
1531 /* Compare the elements. If any pair of corresponding elements
1532 fail to match, return 0 for the whole things.
1534 Limit cases to types which actually appear in addresses. */
1536 fmt = GET_RTX_FORMAT (code);
1537 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1539 switch (fmt[i])
1541 case 'i':
1542 if (XINT (x, i) != XINT (y, i))
1543 return 0;
1544 break;
1546 case 'E':
1547 /* Two vectors must have the same length. */
1548 if (XVECLEN (x, i) != XVECLEN (y, i))
1549 return 0;
1551 /* And the corresponding elements must match. */
1552 for (j = 0; j < XVECLEN (x, i); j++)
1553 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1554 canon_rtx (XVECEXP (y, i, j))) == 0)
1555 return 0;
1556 break;
1558 case 'e':
1559 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1560 canon_rtx (XEXP (y, i))) == 0)
1561 return 0;
1562 break;
1564 /* This can happen for asm operands. */
1565 case 's':
1566 if (strcmp (XSTR (x, i), XSTR (y, i)))
1567 return 0;
1568 break;
1570 /* This can happen for an asm which clobbers memory. */
1571 case '0':
1572 break;
1574 /* It is believed that rtx's at this level will never
1575 contain anything but integers and other rtx's,
1576 except for within LABEL_REFs and SYMBOL_REFs. */
1577 default:
1578 gcc_unreachable ();
1581 return 1;
1584 static rtx
1585 find_base_term (rtx x)
1587 cselib_val *val;
1588 struct elt_loc_list *l, *f;
1589 rtx ret;
1591 #if defined (FIND_BASE_TERM)
1592 /* Try machine-dependent ways to find the base term. */
1593 x = FIND_BASE_TERM (x);
1594 #endif
1596 switch (GET_CODE (x))
1598 case REG:
1599 return REG_BASE_VALUE (x);
1601 case TRUNCATE:
1602 /* As we do not know which address space the pointer is referring to, we can
1603 handle this only if the target does not support different pointer or
1604 address modes depending on the address space. */
1605 if (!target_default_pointer_address_modes_p ())
1606 return 0;
1607 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1608 return 0;
1609 /* Fall through. */
1610 case HIGH:
1611 case PRE_INC:
1612 case PRE_DEC:
1613 case POST_INC:
1614 case POST_DEC:
1615 case PRE_MODIFY:
1616 case POST_MODIFY:
1617 return find_base_term (XEXP (x, 0));
1619 case ZERO_EXTEND:
1620 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1621 /* As we do not know which address space the pointer is referring to, we can
1622 handle this only if the target does not support different pointer or
1623 address modes depending on the address space. */
1624 if (!target_default_pointer_address_modes_p ())
1625 return 0;
1628 rtx temp = find_base_term (XEXP (x, 0));
1630 if (temp != 0 && CONSTANT_P (temp))
1631 temp = convert_memory_address (Pmode, temp);
1633 return temp;
1636 case VALUE:
1637 val = CSELIB_VAL_PTR (x);
1638 ret = NULL_RTX;
1640 if (!val)
1641 return ret;
1643 if (cselib_sp_based_value_p (val))
1644 return static_reg_base_value[STACK_POINTER_REGNUM];
1646 f = val->locs;
1647 /* Temporarily reset val->locs to avoid infinite recursion. */
1648 val->locs = NULL;
1650 for (l = f; l; l = l->next)
1651 if (GET_CODE (l->loc) == VALUE
1652 && CSELIB_VAL_PTR (l->loc)->locs
1653 && !CSELIB_VAL_PTR (l->loc)->locs->next
1654 && CSELIB_VAL_PTR (l->loc)->locs->loc == x)
1655 continue;
1656 else if ((ret = find_base_term (l->loc)) != 0)
1657 break;
1659 val->locs = f;
1660 return ret;
1662 case LO_SUM:
1663 /* The standard form is (lo_sum reg sym) so look only at the
1664 second operand. */
1665 return find_base_term (XEXP (x, 1));
1667 case CONST:
1668 x = XEXP (x, 0);
1669 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1670 return 0;
1671 /* Fall through. */
1672 case PLUS:
1673 case MINUS:
1675 rtx tmp1 = XEXP (x, 0);
1676 rtx tmp2 = XEXP (x, 1);
1678 /* This is a little bit tricky since we have to determine which of
1679 the two operands represents the real base address. Otherwise this
1680 routine may return the index register instead of the base register.
1682 That may cause us to believe no aliasing was possible, when in
1683 fact aliasing is possible.
1685 We use a few simple tests to guess the base register. Additional
1686 tests can certainly be added. For example, if one of the operands
1687 is a shift or multiply, then it must be the index register and the
1688 other operand is the base register. */
1690 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1691 return find_base_term (tmp2);
1693 /* If either operand is known to be a pointer, then use it
1694 to determine the base term. */
1695 if (REG_P (tmp1) && REG_POINTER (tmp1))
1697 rtx base = find_base_term (tmp1);
1698 if (base)
1699 return base;
1702 if (REG_P (tmp2) && REG_POINTER (tmp2))
1704 rtx base = find_base_term (tmp2);
1705 if (base)
1706 return base;
1709 /* Neither operand was known to be a pointer. Go ahead and find the
1710 base term for both operands. */
1711 tmp1 = find_base_term (tmp1);
1712 tmp2 = find_base_term (tmp2);
1714 /* If either base term is named object or a special address
1715 (like an argument or stack reference), then use it for the
1716 base term. */
1717 if (tmp1 != 0 && known_base_value_p (tmp1))
1718 return tmp1;
1720 if (tmp2 != 0 && known_base_value_p (tmp2))
1721 return tmp2;
1723 /* We could not determine which of the two operands was the
1724 base register and which was the index. So we can determine
1725 nothing from the base alias check. */
1726 return 0;
1729 case AND:
1730 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) != 0)
1731 return find_base_term (XEXP (x, 0));
1732 return 0;
1734 case SYMBOL_REF:
1735 case LABEL_REF:
1736 return x;
1738 default:
1739 return 0;
1743 /* Return true if accesses to address X may alias accesses based
1744 on the stack pointer. */
1746 bool
1747 may_be_sp_based_p (rtx x)
1749 rtx base = find_base_term (x);
1750 return !base || base == static_reg_base_value[STACK_POINTER_REGNUM];
1753 /* Return 0 if the addresses X and Y are known to point to different
1754 objects, 1 if they might be pointers to the same object. */
1756 static int
1757 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1758 enum machine_mode y_mode)
1760 rtx x_base = find_base_term (x);
1761 rtx y_base = find_base_term (y);
1763 /* If the address itself has no known base see if a known equivalent
1764 value has one. If either address still has no known base, nothing
1765 is known about aliasing. */
1766 if (x_base == 0)
1768 rtx x_c;
1770 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1771 return 1;
1773 x_base = find_base_term (x_c);
1774 if (x_base == 0)
1775 return 1;
1778 if (y_base == 0)
1780 rtx y_c;
1781 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1782 return 1;
1784 y_base = find_base_term (y_c);
1785 if (y_base == 0)
1786 return 1;
1789 /* If the base addresses are equal nothing is known about aliasing. */
1790 if (rtx_equal_p (x_base, y_base))
1791 return 1;
1793 /* The base addresses are different expressions. If they are not accessed
1794 via AND, there is no conflict. We can bring knowledge of object
1795 alignment into play here. For example, on alpha, "char a, b;" can
1796 alias one another, though "char a; long b;" cannot. AND addesses may
1797 implicitly alias surrounding objects; i.e. unaligned access in DImode
1798 via AND address can alias all surrounding object types except those
1799 with aligment 8 or higher. */
1800 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1801 return 1;
1802 if (GET_CODE (x) == AND
1803 && (!CONST_INT_P (XEXP (x, 1))
1804 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1805 return 1;
1806 if (GET_CODE (y) == AND
1807 && (!CONST_INT_P (XEXP (y, 1))
1808 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1809 return 1;
1811 /* Differing symbols not accessed via AND never alias. */
1812 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1813 return 0;
1815 if (unique_base_value_p (x_base) || unique_base_value_p (y_base))
1816 return 0;
1818 return 1;
1821 /* Callback for for_each_rtx, that returns 1 upon encountering a VALUE
1822 whose UID is greater than the int uid that D points to. */
1824 static int
1825 refs_newer_value_cb (rtx *x, void *d)
1827 if (GET_CODE (*x) == VALUE && CSELIB_VAL_PTR (*x)->uid > *(int *)d)
1828 return 1;
1830 return 0;
1833 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
1834 that of V. */
1836 static bool
1837 refs_newer_value_p (rtx expr, rtx v)
1839 int minuid = CSELIB_VAL_PTR (v)->uid;
1841 return for_each_rtx (&expr, refs_newer_value_cb, &minuid);
1844 /* Convert the address X into something we can use. This is done by returning
1845 it unchanged unless it is a value; in the latter case we call cselib to get
1846 a more useful rtx. */
1849 get_addr (rtx x)
1851 cselib_val *v;
1852 struct elt_loc_list *l;
1854 if (GET_CODE (x) != VALUE)
1855 return x;
1856 v = CSELIB_VAL_PTR (x);
1857 if (v)
1859 bool have_equivs = cselib_have_permanent_equivalences ();
1860 if (have_equivs)
1861 v = canonical_cselib_val (v);
1862 for (l = v->locs; l; l = l->next)
1863 if (CONSTANT_P (l->loc))
1864 return l->loc;
1865 for (l = v->locs; l; l = l->next)
1866 if (!REG_P (l->loc) && !MEM_P (l->loc)
1867 /* Avoid infinite recursion when potentially dealing with
1868 var-tracking artificial equivalences, by skipping the
1869 equivalences themselves, and not choosing expressions
1870 that refer to newer VALUEs. */
1871 && (!have_equivs
1872 || (GET_CODE (l->loc) != VALUE
1873 && !refs_newer_value_p (l->loc, x))))
1874 return l->loc;
1875 if (have_equivs)
1877 for (l = v->locs; l; l = l->next)
1878 if (REG_P (l->loc)
1879 || (GET_CODE (l->loc) != VALUE
1880 && !refs_newer_value_p (l->loc, x)))
1881 return l->loc;
1882 /* Return the canonical value. */
1883 return v->val_rtx;
1885 if (v->locs)
1886 return v->locs->loc;
1888 return x;
1891 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1892 where SIZE is the size in bytes of the memory reference. If ADDR
1893 is not modified by the memory reference then ADDR is returned. */
1895 static rtx
1896 addr_side_effect_eval (rtx addr, int size, int n_refs)
1898 int offset = 0;
1900 switch (GET_CODE (addr))
1902 case PRE_INC:
1903 offset = (n_refs + 1) * size;
1904 break;
1905 case PRE_DEC:
1906 offset = -(n_refs + 1) * size;
1907 break;
1908 case POST_INC:
1909 offset = n_refs * size;
1910 break;
1911 case POST_DEC:
1912 offset = -n_refs * size;
1913 break;
1915 default:
1916 return addr;
1919 if (offset)
1920 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1921 GEN_INT (offset));
1922 else
1923 addr = XEXP (addr, 0);
1924 addr = canon_rtx (addr);
1926 return addr;
1929 /* Return one if X and Y (memory addresses) reference the
1930 same location in memory or if the references overlap.
1931 Return zero if they do not overlap, else return
1932 minus one in which case they still might reference the same location.
1934 C is an offset accumulator. When
1935 C is nonzero, we are testing aliases between X and Y + C.
1936 XSIZE is the size in bytes of the X reference,
1937 similarly YSIZE is the size in bytes for Y.
1938 Expect that canon_rtx has been already called for X and Y.
1940 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1941 referenced (the reference was BLKmode), so make the most pessimistic
1942 assumptions.
1944 If XSIZE or YSIZE is negative, we may access memory outside the object
1945 being referenced as a side effect. This can happen when using AND to
1946 align memory references, as is done on the Alpha.
1948 Nice to notice that varying addresses cannot conflict with fp if no
1949 local variables had their addresses taken, but that's too hard now.
1951 ??? Contrary to the tree alias oracle this does not return
1952 one for X + non-constant and Y + non-constant when X and Y are equal.
1953 If that is fixed the TBAA hack for union type-punning can be removed. */
1955 static int
1956 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1958 if (GET_CODE (x) == VALUE)
1960 if (REG_P (y))
1962 struct elt_loc_list *l = NULL;
1963 if (CSELIB_VAL_PTR (x))
1964 for (l = canonical_cselib_val (CSELIB_VAL_PTR (x))->locs;
1965 l; l = l->next)
1966 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, y))
1967 break;
1968 if (l)
1969 x = y;
1970 else
1971 x = get_addr (x);
1973 /* Don't call get_addr if y is the same VALUE. */
1974 else if (x != y)
1975 x = get_addr (x);
1977 if (GET_CODE (y) == VALUE)
1979 if (REG_P (x))
1981 struct elt_loc_list *l = NULL;
1982 if (CSELIB_VAL_PTR (y))
1983 for (l = canonical_cselib_val (CSELIB_VAL_PTR (y))->locs;
1984 l; l = l->next)
1985 if (REG_P (l->loc) && rtx_equal_for_memref_p (l->loc, x))
1986 break;
1987 if (l)
1988 y = x;
1989 else
1990 y = get_addr (y);
1992 /* Don't call get_addr if x is the same VALUE. */
1993 else if (y != x)
1994 y = get_addr (y);
1996 if (GET_CODE (x) == HIGH)
1997 x = XEXP (x, 0);
1998 else if (GET_CODE (x) == LO_SUM)
1999 x = XEXP (x, 1);
2000 else
2001 x = addr_side_effect_eval (x, xsize, 0);
2002 if (GET_CODE (y) == HIGH)
2003 y = XEXP (y, 0);
2004 else if (GET_CODE (y) == LO_SUM)
2005 y = XEXP (y, 1);
2006 else
2007 y = addr_side_effect_eval (y, ysize, 0);
2009 if (rtx_equal_for_memref_p (x, y))
2011 if (xsize <= 0 || ysize <= 0)
2012 return 1;
2013 if (c >= 0 && xsize > c)
2014 return 1;
2015 if (c < 0 && ysize+c > 0)
2016 return 1;
2017 return 0;
2020 /* This code used to check for conflicts involving stack references and
2021 globals but the base address alias code now handles these cases. */
2023 if (GET_CODE (x) == PLUS)
2025 /* The fact that X is canonicalized means that this
2026 PLUS rtx is canonicalized. */
2027 rtx x0 = XEXP (x, 0);
2028 rtx x1 = XEXP (x, 1);
2030 if (GET_CODE (y) == PLUS)
2032 /* The fact that Y is canonicalized means that this
2033 PLUS rtx is canonicalized. */
2034 rtx y0 = XEXP (y, 0);
2035 rtx y1 = XEXP (y, 1);
2037 if (rtx_equal_for_memref_p (x1, y1))
2038 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2039 if (rtx_equal_for_memref_p (x0, y0))
2040 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
2041 if (CONST_INT_P (x1))
2043 if (CONST_INT_P (y1))
2044 return memrefs_conflict_p (xsize, x0, ysize, y0,
2045 c - INTVAL (x1) + INTVAL (y1));
2046 else
2047 return memrefs_conflict_p (xsize, x0, ysize, y,
2048 c - INTVAL (x1));
2050 else if (CONST_INT_P (y1))
2051 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2053 return -1;
2055 else if (CONST_INT_P (x1))
2056 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
2058 else if (GET_CODE (y) == PLUS)
2060 /* The fact that Y is canonicalized means that this
2061 PLUS rtx is canonicalized. */
2062 rtx y0 = XEXP (y, 0);
2063 rtx y1 = XEXP (y, 1);
2065 if (CONST_INT_P (y1))
2066 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
2067 else
2068 return -1;
2071 if (GET_CODE (x) == GET_CODE (y))
2072 switch (GET_CODE (x))
2074 case MULT:
2076 /* Handle cases where we expect the second operands to be the
2077 same, and check only whether the first operand would conflict
2078 or not. */
2079 rtx x0, y0;
2080 rtx x1 = canon_rtx (XEXP (x, 1));
2081 rtx y1 = canon_rtx (XEXP (y, 1));
2082 if (! rtx_equal_for_memref_p (x1, y1))
2083 return -1;
2084 x0 = canon_rtx (XEXP (x, 0));
2085 y0 = canon_rtx (XEXP (y, 0));
2086 if (rtx_equal_for_memref_p (x0, y0))
2087 return (xsize == 0 || ysize == 0
2088 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2090 /* Can't properly adjust our sizes. */
2091 if (!CONST_INT_P (x1))
2092 return -1;
2093 xsize /= INTVAL (x1);
2094 ysize /= INTVAL (x1);
2095 c /= INTVAL (x1);
2096 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
2099 default:
2100 break;
2103 /* Deal with alignment ANDs by adjusting offset and size so as to
2104 cover the maximum range, without taking any previously known
2105 alignment into account. */
2106 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1)))
2108 HOST_WIDE_INT sc = INTVAL (XEXP (x, 1));
2109 unsigned HOST_WIDE_INT uc = sc;
2110 if (xsize > 0 && sc < 0 && -uc == (uc & -uc))
2112 xsize -= sc + 1;
2113 c -= sc + 1;
2114 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2115 ysize, y, c);
2118 if (GET_CODE (y) == AND && CONST_INT_P (XEXP (y, 1)))
2120 HOST_WIDE_INT sc = INTVAL (XEXP (y, 1));
2121 unsigned HOST_WIDE_INT uc = sc;
2122 if (ysize > 0 && sc < 0 && -uc == (uc & -uc))
2124 ysize -= sc + 1;
2125 c += sc + 1;
2126 return memrefs_conflict_p (xsize, x,
2127 ysize, canon_rtx (XEXP (y, 0)), c);
2131 if (CONSTANT_P (x))
2133 if (CONST_INT_P (x) && CONST_INT_P (y))
2135 c += (INTVAL (y) - INTVAL (x));
2136 return (xsize <= 0 || ysize <= 0
2137 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
2140 if (GET_CODE (x) == CONST)
2142 if (GET_CODE (y) == CONST)
2143 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2144 ysize, canon_rtx (XEXP (y, 0)), c);
2145 else
2146 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
2147 ysize, y, c);
2149 if (GET_CODE (y) == CONST)
2150 return memrefs_conflict_p (xsize, x, ysize,
2151 canon_rtx (XEXP (y, 0)), c);
2153 if (CONSTANT_P (y))
2154 return (xsize <= 0 || ysize <= 0
2155 || (rtx_equal_for_memref_p (x, y)
2156 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
2158 return -1;
2161 return -1;
2164 /* Functions to compute memory dependencies.
2166 Since we process the insns in execution order, we can build tables
2167 to keep track of what registers are fixed (and not aliased), what registers
2168 are varying in known ways, and what registers are varying in unknown
2169 ways.
2171 If both memory references are volatile, then there must always be a
2172 dependence between the two references, since their order can not be
2173 changed. A volatile and non-volatile reference can be interchanged
2174 though.
2176 We also must allow AND addresses, because they may generate accesses
2177 outside the object being referenced. This is used to generate aligned
2178 addresses from unaligned addresses, for instance, the alpha
2179 storeqi_unaligned pattern. */
2181 /* Read dependence: X is read after read in MEM takes place. There can
2182 only be a dependence here if both reads are volatile, or if either is
2183 an explicit barrier. */
2186 read_dependence (const_rtx mem, const_rtx x)
2188 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2189 return true;
2190 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2191 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2192 return true;
2193 return false;
2196 /* Return true if we can determine that the fields referenced cannot
2197 overlap for any pair of objects. */
2199 static bool
2200 nonoverlapping_component_refs_p (const_rtx rtlx, const_rtx rtly)
2202 const_tree x = MEM_EXPR (rtlx), y = MEM_EXPR (rtly);
2203 const_tree fieldx, fieldy, typex, typey, orig_y;
2205 if (!flag_strict_aliasing
2206 || !x || !y
2207 || TREE_CODE (x) != COMPONENT_REF
2208 || TREE_CODE (y) != COMPONENT_REF)
2209 return false;
2213 /* The comparison has to be done at a common type, since we don't
2214 know how the inheritance hierarchy works. */
2215 orig_y = y;
2218 fieldx = TREE_OPERAND (x, 1);
2219 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
2221 y = orig_y;
2224 fieldy = TREE_OPERAND (y, 1);
2225 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
2227 if (typex == typey)
2228 goto found;
2230 y = TREE_OPERAND (y, 0);
2232 while (y && TREE_CODE (y) == COMPONENT_REF);
2234 x = TREE_OPERAND (x, 0);
2236 while (x && TREE_CODE (x) == COMPONENT_REF);
2237 /* Never found a common type. */
2238 return false;
2240 found:
2241 /* If we're left with accessing different fields of a structure,
2242 then no overlap. */
2243 if (TREE_CODE (typex) == RECORD_TYPE
2244 && fieldx != fieldy)
2245 return true;
2247 /* The comparison on the current field failed. If we're accessing
2248 a very nested structure, look at the next outer level. */
2249 x = TREE_OPERAND (x, 0);
2250 y = TREE_OPERAND (y, 0);
2252 while (x && y
2253 && TREE_CODE (x) == COMPONENT_REF
2254 && TREE_CODE (y) == COMPONENT_REF);
2256 return false;
2259 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2261 static tree
2262 decl_for_component_ref (tree x)
2266 x = TREE_OPERAND (x, 0);
2268 while (x && TREE_CODE (x) == COMPONENT_REF);
2270 return x && DECL_P (x) ? x : NULL_TREE;
2273 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2274 for the offset of the field reference. *KNOWN_P says whether the
2275 offset is known. */
2277 static void
2278 adjust_offset_for_component_ref (tree x, bool *known_p,
2279 HOST_WIDE_INT *offset)
2281 if (!*known_p)
2282 return;
2285 tree xoffset = component_ref_field_offset (x);
2286 tree field = TREE_OPERAND (x, 1);
2288 if (! host_integerp (xoffset, 1))
2290 *known_p = false;
2291 return;
2293 *offset += (tree_low_cst (xoffset, 1)
2294 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2295 / BITS_PER_UNIT));
2297 x = TREE_OPERAND (x, 0);
2299 while (x && TREE_CODE (x) == COMPONENT_REF);
2302 /* Return nonzero if we can determine the exprs corresponding to memrefs
2303 X and Y and they do not overlap.
2304 If LOOP_VARIANT is set, skip offset-based disambiguation */
2307 nonoverlapping_memrefs_p (const_rtx x, const_rtx y, bool loop_invariant)
2309 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
2310 rtx rtlx, rtly;
2311 rtx basex, basey;
2312 bool moffsetx_known_p, moffsety_known_p;
2313 HOST_WIDE_INT moffsetx = 0, moffsety = 0;
2314 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
2316 /* Unless both have exprs, we can't tell anything. */
2317 if (exprx == 0 || expry == 0)
2318 return 0;
2320 /* For spill-slot accesses make sure we have valid offsets. */
2321 if ((exprx == get_spill_slot_decl (false)
2322 && ! MEM_OFFSET_KNOWN_P (x))
2323 || (expry == get_spill_slot_decl (false)
2324 && ! MEM_OFFSET_KNOWN_P (y)))
2325 return 0;
2327 /* If the field reference test failed, look at the DECLs involved. */
2328 moffsetx_known_p = MEM_OFFSET_KNOWN_P (x);
2329 if (moffsetx_known_p)
2330 moffsetx = MEM_OFFSET (x);
2331 if (TREE_CODE (exprx) == COMPONENT_REF)
2333 tree t = decl_for_component_ref (exprx);
2334 if (! t)
2335 return 0;
2336 adjust_offset_for_component_ref (exprx, &moffsetx_known_p, &moffsetx);
2337 exprx = t;
2340 moffsety_known_p = MEM_OFFSET_KNOWN_P (y);
2341 if (moffsety_known_p)
2342 moffsety = MEM_OFFSET (y);
2343 if (TREE_CODE (expry) == COMPONENT_REF)
2345 tree t = decl_for_component_ref (expry);
2346 if (! t)
2347 return 0;
2348 adjust_offset_for_component_ref (expry, &moffsety_known_p, &moffsety);
2349 expry = t;
2352 if (! DECL_P (exprx) || ! DECL_P (expry))
2353 return 0;
2355 /* With invalid code we can end up storing into the constant pool.
2356 Bail out to avoid ICEing when creating RTL for this.
2357 See gfortran.dg/lto/20091028-2_0.f90. */
2358 if (TREE_CODE (exprx) == CONST_DECL
2359 || TREE_CODE (expry) == CONST_DECL)
2360 return 1;
2362 rtlx = DECL_RTL (exprx);
2363 rtly = DECL_RTL (expry);
2365 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2366 can't overlap unless they are the same because we never reuse that part
2367 of the stack frame used for locals for spilled pseudos. */
2368 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2369 && ! rtx_equal_p (rtlx, rtly))
2370 return 1;
2372 /* If we have MEMs referring to different address spaces (which can
2373 potentially overlap), we cannot easily tell from the addresses
2374 whether the references overlap. */
2375 if (MEM_P (rtlx) && MEM_P (rtly)
2376 && MEM_ADDR_SPACE (rtlx) != MEM_ADDR_SPACE (rtly))
2377 return 0;
2379 /* Get the base and offsets of both decls. If either is a register, we
2380 know both are and are the same, so use that as the base. The only
2381 we can avoid overlap is if we can deduce that they are nonoverlapping
2382 pieces of that decl, which is very rare. */
2383 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2384 if (GET_CODE (basex) == PLUS && CONST_INT_P (XEXP (basex, 1)))
2385 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2387 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2388 if (GET_CODE (basey) == PLUS && CONST_INT_P (XEXP (basey, 1)))
2389 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2391 /* If the bases are different, we know they do not overlap if both
2392 are constants or if one is a constant and the other a pointer into the
2393 stack frame. Otherwise a different base means we can't tell if they
2394 overlap or not. */
2395 if (! rtx_equal_p (basex, basey))
2396 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2397 || (CONSTANT_P (basex) && REG_P (basey)
2398 && REGNO_PTR_FRAME_P (REGNO (basey)))
2399 || (CONSTANT_P (basey) && REG_P (basex)
2400 && REGNO_PTR_FRAME_P (REGNO (basex))));
2402 /* Offset based disambiguation not appropriate for loop invariant */
2403 if (loop_invariant)
2404 return 0;
2406 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2407 : MEM_SIZE_KNOWN_P (rtlx) ? MEM_SIZE (rtlx)
2408 : -1);
2409 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2410 : MEM_SIZE_KNOWN_P (rtly) ? MEM_SIZE (rtly)
2411 : -1);
2413 /* If we have an offset for either memref, it can update the values computed
2414 above. */
2415 if (moffsetx_known_p)
2416 offsetx += moffsetx, sizex -= moffsetx;
2417 if (moffsety_known_p)
2418 offsety += moffsety, sizey -= moffsety;
2420 /* If a memref has both a size and an offset, we can use the smaller size.
2421 We can't do this if the offset isn't known because we must view this
2422 memref as being anywhere inside the DECL's MEM. */
2423 if (MEM_SIZE_KNOWN_P (x) && moffsetx_known_p)
2424 sizex = MEM_SIZE (x);
2425 if (MEM_SIZE_KNOWN_P (y) && moffsety_known_p)
2426 sizey = MEM_SIZE (y);
2428 /* Put the values of the memref with the lower offset in X's values. */
2429 if (offsetx > offsety)
2431 tem = offsetx, offsetx = offsety, offsety = tem;
2432 tem = sizex, sizex = sizey, sizey = tem;
2435 /* If we don't know the size of the lower-offset value, we can't tell
2436 if they conflict. Otherwise, we do the test. */
2437 return sizex >= 0 && offsety >= offsetx + sizex;
2440 /* Helper for true_dependence and canon_true_dependence.
2441 Checks for true dependence: X is read after store in MEM takes place.
2443 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2444 NULL_RTX, and the canonical addresses of MEM and X are both computed
2445 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2447 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2449 Returns 1 if there is a true dependence, 0 otherwise. */
2451 static int
2452 true_dependence_1 (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2453 const_rtx x, rtx x_addr, bool mem_canonicalized)
2455 rtx base;
2456 int ret;
2458 gcc_checking_assert (mem_canonicalized ? (mem_addr != NULL_RTX)
2459 : (mem_addr == NULL_RTX && x_addr == NULL_RTX));
2461 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2462 return 1;
2464 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2465 This is used in epilogue deallocation functions, and in cselib. */
2466 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2467 return 1;
2468 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2469 return 1;
2470 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2471 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2472 return 1;
2474 /* Read-only memory is by definition never modified, and therefore can't
2475 conflict with anything. We don't expect to find read-only set on MEM,
2476 but stupid user tricks can produce them, so don't die. */
2477 if (MEM_READONLY_P (x))
2478 return 0;
2480 /* If we have MEMs referring to different address spaces (which can
2481 potentially overlap), we cannot easily tell from the addresses
2482 whether the references overlap. */
2483 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2484 return 1;
2486 if (! mem_addr)
2488 mem_addr = XEXP (mem, 0);
2489 if (mem_mode == VOIDmode)
2490 mem_mode = GET_MODE (mem);
2493 if (! x_addr)
2495 x_addr = XEXP (x, 0);
2496 if (!((GET_CODE (x_addr) == VALUE
2497 && GET_CODE (mem_addr) != VALUE
2498 && reg_mentioned_p (x_addr, mem_addr))
2499 || (GET_CODE (x_addr) != VALUE
2500 && GET_CODE (mem_addr) == VALUE
2501 && reg_mentioned_p (mem_addr, x_addr))))
2503 x_addr = get_addr (x_addr);
2504 if (! mem_canonicalized)
2505 mem_addr = get_addr (mem_addr);
2509 base = find_base_term (x_addr);
2510 if (base && (GET_CODE (base) == LABEL_REF
2511 || (GET_CODE (base) == SYMBOL_REF
2512 && CONSTANT_POOL_ADDRESS_P (base))))
2513 return 0;
2515 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2516 return 0;
2518 x_addr = canon_rtx (x_addr);
2519 if (!mem_canonicalized)
2520 mem_addr = canon_rtx (mem_addr);
2522 if ((ret = memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2523 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2524 return ret;
2526 if (mems_in_disjoint_alias_sets_p (x, mem))
2527 return 0;
2529 if (nonoverlapping_memrefs_p (mem, x, false))
2530 return 0;
2532 if (nonoverlapping_component_refs_p (mem, x))
2533 return 0;
2535 return rtx_refs_may_alias_p (x, mem, true);
2538 /* True dependence: X is read after store in MEM takes place. */
2541 true_dependence (const_rtx mem, enum machine_mode mem_mode, const_rtx x)
2543 return true_dependence_1 (mem, mem_mode, NULL_RTX,
2544 x, NULL_RTX, /*mem_canonicalized=*/false);
2547 /* Canonical true dependence: X is read after store in MEM takes place.
2548 Variant of true_dependence which assumes MEM has already been
2549 canonicalized (hence we no longer do that here).
2550 The mem_addr argument has been added, since true_dependence_1 computed
2551 this value prior to canonicalizing. */
2554 canon_true_dependence (const_rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2555 const_rtx x, rtx x_addr)
2557 return true_dependence_1 (mem, mem_mode, mem_addr,
2558 x, x_addr, /*mem_canonicalized=*/true);
2561 /* Returns nonzero if a write to X might alias a previous read from
2562 (or, if WRITEP is nonzero, a write to) MEM. */
2564 static int
2565 write_dependence_p (const_rtx mem, const_rtx x, int writep)
2567 rtx x_addr, mem_addr;
2568 rtx base;
2569 int ret;
2571 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2572 return 1;
2574 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2575 This is used in epilogue deallocation functions. */
2576 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2577 return 1;
2578 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2579 return 1;
2580 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2581 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2582 return 1;
2584 /* A read from read-only memory can't conflict with read-write memory. */
2585 if (!writep && MEM_READONLY_P (mem))
2586 return 0;
2588 /* If we have MEMs referring to different address spaces (which can
2589 potentially overlap), we cannot easily tell from the addresses
2590 whether the references overlap. */
2591 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2592 return 1;
2594 x_addr = XEXP (x, 0);
2595 mem_addr = XEXP (mem, 0);
2596 if (!((GET_CODE (x_addr) == VALUE
2597 && GET_CODE (mem_addr) != VALUE
2598 && reg_mentioned_p (x_addr, mem_addr))
2599 || (GET_CODE (x_addr) != VALUE
2600 && GET_CODE (mem_addr) == VALUE
2601 && reg_mentioned_p (mem_addr, x_addr))))
2603 x_addr = get_addr (x_addr);
2604 mem_addr = get_addr (mem_addr);
2607 if (! writep)
2609 base = find_base_term (mem_addr);
2610 if (base && (GET_CODE (base) == LABEL_REF
2611 || (GET_CODE (base) == SYMBOL_REF
2612 && CONSTANT_POOL_ADDRESS_P (base))))
2613 return 0;
2616 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2617 GET_MODE (mem)))
2618 return 0;
2620 x_addr = canon_rtx (x_addr);
2621 mem_addr = canon_rtx (mem_addr);
2623 if ((ret = memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2624 SIZE_FOR_MODE (x), x_addr, 0)) != -1)
2625 return ret;
2627 if (nonoverlapping_memrefs_p (x, mem, false))
2628 return 0;
2630 return rtx_refs_may_alias_p (x, mem, false);
2633 /* Anti dependence: X is written after read in MEM takes place. */
2636 anti_dependence (const_rtx mem, const_rtx x)
2638 return write_dependence_p (mem, x, /*writep=*/0);
2641 /* Output dependence: X is written after store in MEM takes place. */
2644 output_dependence (const_rtx mem, const_rtx x)
2646 return write_dependence_p (mem, x, /*writep=*/1);
2651 /* Check whether X may be aliased with MEM. Don't do offset-based
2652 memory disambiguation & TBAA. */
2654 may_alias_p (const_rtx mem, const_rtx x)
2656 rtx x_addr, mem_addr;
2658 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2659 return 1;
2661 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2662 This is used in epilogue deallocation functions. */
2663 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2664 return 1;
2665 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2666 return 1;
2667 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2668 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2669 return 1;
2671 /* Read-only memory is by definition never modified, and therefore can't
2672 conflict with anything. We don't expect to find read-only set on MEM,
2673 but stupid user tricks can produce them, so don't die. */
2674 if (MEM_READONLY_P (x))
2675 return 0;
2677 /* If we have MEMs referring to different address spaces (which can
2678 potentially overlap), we cannot easily tell from the addresses
2679 whether the references overlap. */
2680 if (MEM_ADDR_SPACE (mem) != MEM_ADDR_SPACE (x))
2681 return 1;
2683 x_addr = XEXP (x, 0);
2684 mem_addr = XEXP (mem, 0);
2685 if (!((GET_CODE (x_addr) == VALUE
2686 && GET_CODE (mem_addr) != VALUE
2687 && reg_mentioned_p (x_addr, mem_addr))
2688 || (GET_CODE (x_addr) != VALUE
2689 && GET_CODE (mem_addr) == VALUE
2690 && reg_mentioned_p (mem_addr, x_addr))))
2692 x_addr = get_addr (x_addr);
2693 mem_addr = get_addr (mem_addr);
2696 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), GET_MODE (mem_addr)))
2697 return 0;
2699 x_addr = canon_rtx (x_addr);
2700 mem_addr = canon_rtx (mem_addr);
2702 if (nonoverlapping_memrefs_p (mem, x, true))
2703 return 0;
2705 /* TBAA not valid for loop_invarint */
2706 return rtx_refs_may_alias_p (x, mem, false);
2709 void
2710 init_alias_target (void)
2712 int i;
2714 if (!arg_base_value)
2715 arg_base_value = gen_rtx_ADDRESS (VOIDmode, 0);
2717 memset (static_reg_base_value, 0, sizeof static_reg_base_value);
2719 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2720 /* Check whether this register can hold an incoming pointer
2721 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2722 numbers, so translate if necessary due to register windows. */
2723 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2724 && HARD_REGNO_MODE_OK (i, Pmode))
2725 static_reg_base_value[i] = arg_base_value;
2727 static_reg_base_value[STACK_POINTER_REGNUM]
2728 = unique_base_value (UNIQUE_BASE_VALUE_SP);
2729 static_reg_base_value[ARG_POINTER_REGNUM]
2730 = unique_base_value (UNIQUE_BASE_VALUE_ARGP);
2731 static_reg_base_value[FRAME_POINTER_REGNUM]
2732 = unique_base_value (UNIQUE_BASE_VALUE_FP);
2733 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2734 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2735 = unique_base_value (UNIQUE_BASE_VALUE_HFP);
2736 #endif
2739 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2740 to be memory reference. */
2741 static bool memory_modified;
2742 static void
2743 memory_modified_1 (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
2745 if (MEM_P (x))
2747 if (anti_dependence (x, (const_rtx)data) || output_dependence (x, (const_rtx)data))
2748 memory_modified = true;
2753 /* Return true when INSN possibly modify memory contents of MEM
2754 (i.e. address can be modified). */
2755 bool
2756 memory_modified_in_insn_p (const_rtx mem, const_rtx insn)
2758 if (!INSN_P (insn))
2759 return false;
2760 memory_modified = false;
2761 note_stores (PATTERN (insn), memory_modified_1, CONST_CAST_RTX(mem));
2762 return memory_modified;
2765 /* Return TRUE if the destination of a set is rtx identical to
2766 ITEM. */
2767 static inline bool
2768 set_dest_equal_p (const_rtx set, const_rtx item)
2770 rtx dest = SET_DEST (set);
2771 return rtx_equal_p (dest, item);
2774 /* Like memory_modified_in_insn_p, but return TRUE if INSN will
2775 *DEFINITELY* modify the memory contents of MEM. */
2776 bool
2777 memory_must_be_modified_in_insn_p (const_rtx mem, const_rtx insn)
2779 if (!INSN_P (insn))
2780 return false;
2781 insn = PATTERN (insn);
2782 if (GET_CODE (insn) == SET)
2783 return set_dest_equal_p (insn, mem);
2784 else if (GET_CODE (insn) == PARALLEL)
2786 int i;
2787 for (i = 0; i < XVECLEN (insn, 0); i++)
2789 rtx sub = XVECEXP (insn, 0, i);
2790 if (GET_CODE (sub) == SET
2791 && set_dest_equal_p (sub, mem))
2792 return true;
2795 return false;
2798 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2799 array. */
2801 void
2802 init_alias_analysis (void)
2804 unsigned int maxreg = max_reg_num ();
2805 int changed, pass;
2806 int i;
2807 unsigned int ui;
2808 rtx insn, val;
2809 int rpo_cnt;
2810 int *rpo;
2812 timevar_push (TV_ALIAS_ANALYSIS);
2814 reg_known_value = VEC_alloc (rtx, gc, maxreg - FIRST_PSEUDO_REGISTER);
2815 reg_known_equiv_p = sbitmap_alloc (maxreg - FIRST_PSEUDO_REGISTER);
2817 /* If we have memory allocated from the previous run, use it. */
2818 if (old_reg_base_value)
2819 reg_base_value = old_reg_base_value;
2821 if (reg_base_value)
2822 VEC_truncate (rtx, reg_base_value, 0);
2824 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2826 new_reg_base_value = XNEWVEC (rtx, maxreg);
2827 reg_seen = sbitmap_alloc (maxreg);
2829 /* The basic idea is that each pass through this loop will use the
2830 "constant" information from the previous pass to propagate alias
2831 information through another level of assignments.
2833 The propagation is done on the CFG in reverse post-order, to propagate
2834 things forward as far as possible in each iteration.
2836 This could get expensive if the assignment chains are long. Maybe
2837 we should throttle the number of iterations, possibly based on
2838 the optimization level or flag_expensive_optimizations.
2840 We could propagate more information in the first pass by making use
2841 of DF_REG_DEF_COUNT to determine immediately that the alias information
2842 for a pseudo is "constant".
2844 A program with an uninitialized variable can cause an infinite loop
2845 here. Instead of doing a full dataflow analysis to detect such problems
2846 we just cap the number of iterations for the loop.
2848 The state of the arrays for the set chain in question does not matter
2849 since the program has undefined behavior. */
2851 rpo = XNEWVEC (int, n_basic_blocks);
2852 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
2854 pass = 0;
2857 /* Assume nothing will change this iteration of the loop. */
2858 changed = 0;
2860 /* We want to assign the same IDs each iteration of this loop, so
2861 start counting from one each iteration of the loop. */
2862 unique_id = 1;
2864 /* We're at the start of the function each iteration through the
2865 loop, so we're copying arguments. */
2866 copying_arguments = true;
2868 /* Wipe the potential alias information clean for this pass. */
2869 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2871 /* Wipe the reg_seen array clean. */
2872 sbitmap_zero (reg_seen);
2874 /* Mark all hard registers which may contain an address.
2875 The stack, frame and argument pointers may contain an address.
2876 An argument register which can hold a Pmode value may contain
2877 an address even if it is not in BASE_REGS.
2879 The address expression is VOIDmode for an argument and
2880 Pmode for other registers. */
2882 memcpy (new_reg_base_value, static_reg_base_value,
2883 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2885 /* Walk the insns adding values to the new_reg_base_value array. */
2886 for (i = 0; i < rpo_cnt; i++)
2888 basic_block bb = BASIC_BLOCK (rpo[i]);
2889 FOR_BB_INSNS (bb, insn)
2891 if (NONDEBUG_INSN_P (insn))
2893 rtx note, set;
2895 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2896 /* The prologue/epilogue insns are not threaded onto the
2897 insn chain until after reload has completed. Thus,
2898 there is no sense wasting time checking if INSN is in
2899 the prologue/epilogue until after reload has completed. */
2900 if (reload_completed
2901 && prologue_epilogue_contains (insn))
2902 continue;
2903 #endif
2905 /* If this insn has a noalias note, process it, Otherwise,
2906 scan for sets. A simple set will have no side effects
2907 which could change the base value of any other register. */
2909 if (GET_CODE (PATTERN (insn)) == SET
2910 && REG_NOTES (insn) != 0
2911 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2912 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2913 else
2914 note_stores (PATTERN (insn), record_set, NULL);
2916 set = single_set (insn);
2918 if (set != 0
2919 && REG_P (SET_DEST (set))
2920 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2922 unsigned int regno = REGNO (SET_DEST (set));
2923 rtx src = SET_SRC (set);
2924 rtx t;
2926 note = find_reg_equal_equiv_note (insn);
2927 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2928 && DF_REG_DEF_COUNT (regno) != 1)
2929 note = NULL_RTX;
2931 if (note != NULL_RTX
2932 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2933 && ! rtx_varies_p (XEXP (note, 0), 1)
2934 && ! reg_overlap_mentioned_p (SET_DEST (set),
2935 XEXP (note, 0)))
2937 set_reg_known_value (regno, XEXP (note, 0));
2938 set_reg_known_equiv_p (regno,
2939 REG_NOTE_KIND (note) == REG_EQUIV);
2941 else if (DF_REG_DEF_COUNT (regno) == 1
2942 && GET_CODE (src) == PLUS
2943 && REG_P (XEXP (src, 0))
2944 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2945 && CONST_INT_P (XEXP (src, 1)))
2947 t = plus_constant (GET_MODE (src), t,
2948 INTVAL (XEXP (src, 1)));
2949 set_reg_known_value (regno, t);
2950 set_reg_known_equiv_p (regno, false);
2952 else if (DF_REG_DEF_COUNT (regno) == 1
2953 && ! rtx_varies_p (src, 1))
2955 set_reg_known_value (regno, src);
2956 set_reg_known_equiv_p (regno, false);
2960 else if (NOTE_P (insn)
2961 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2962 copying_arguments = false;
2966 /* Now propagate values from new_reg_base_value to reg_base_value. */
2967 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2969 for (ui = 0; ui < maxreg; ui++)
2971 if (new_reg_base_value[ui]
2972 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2973 && ! rtx_equal_p (new_reg_base_value[ui],
2974 VEC_index (rtx, reg_base_value, ui)))
2976 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2977 changed = 1;
2981 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2982 XDELETEVEC (rpo);
2984 /* Fill in the remaining entries. */
2985 FOR_EACH_VEC_ELT (rtx, reg_known_value, i, val)
2987 int regno = i + FIRST_PSEUDO_REGISTER;
2988 if (! val)
2989 set_reg_known_value (regno, regno_reg_rtx[regno]);
2992 /* Clean up. */
2993 free (new_reg_base_value);
2994 new_reg_base_value = 0;
2995 sbitmap_free (reg_seen);
2996 reg_seen = 0;
2997 timevar_pop (TV_ALIAS_ANALYSIS);
3000 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3001 Special API for var-tracking pass purposes. */
3003 void
3004 vt_equate_reg_base_value (const_rtx reg1, const_rtx reg2)
3006 VEC_replace (rtx, reg_base_value, REGNO (reg1), REG_BASE_VALUE (reg2));
3009 void
3010 end_alias_analysis (void)
3012 old_reg_base_value = reg_base_value;
3013 VEC_free (rtx, gc, reg_known_value);
3014 sbitmap_free (reg_known_equiv_p);
3017 #include "gt-alias.h"