1 /* Target macros for the FRV port of GCC.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
3 Free Software Foundation, Inc.
4 Contributed by Red Hat Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 3, or (at your
11 option) any later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 /* Frv general purpose macros. */
26 /* Align an address. */
27 #define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
29 /* Return true if a value is inside a range. */
30 #define IN_RANGE_P(VALUE, LOW, HIGH) \
31 ( (((HOST_WIDE_INT)(VALUE)) >= (HOST_WIDE_INT)(LOW)) \
32 && (((HOST_WIDE_INT)(VALUE)) <= ((HOST_WIDE_INT)(HIGH))))
35 /* Driver configuration. */
37 /* A C expression which determines whether the option `-CHAR' takes arguments.
38 The value should be the number of arguments that option takes-zero, for many
41 By default, this macro is defined to handle the standard options properly.
42 You need not define it unless you wish to add additional options which take
46 #undef SWITCH_TAKES_ARG
47 #define SWITCH_TAKES_ARG(CHAR) \
48 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
50 /* A C expression which determines whether the option `-NAME' takes arguments.
51 The value should be the number of arguments that option takes-zero, for many
52 options. This macro rather than `SWITCH_TAKES_ARG' is used for
53 multi-character option names.
55 By default, this macro is defined as `DEFAULT_WORD_SWITCH_TAKES_ARG', which
56 handles the standard options properly. You need not define
57 `WORD_SWITCH_TAKES_ARG' unless you wish to add additional options which take
58 arguments. Any redefinition should call `DEFAULT_WORD_SWITCH_TAKES_ARG' and
59 then check for additional options.
62 #undef WORD_SWITCH_TAKES_ARG
64 /* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
65 FDPIC which multilib to use depends on whether FDPIC is in use or
66 not. The trick we use is to introduce -multilib-library-pic as a
67 pseudo-flag that selects the library-pic multilib, and map fpic
68 and fPIC to it only if fdpic is not selected. Also, if fdpic is
69 selected and no PIC/PIE options are present, we imply -fPIE.
70 Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
71 speed, or if we have -On with n>=3, enable inlining of PLTs. As
72 for -mgprel-ro, we want to enable it by default, but not for -fpic or
75 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
77 %{!mhard-float:-msoft-float}\
78 %{!mmedia:-mno-media}}\
79 %{!mfdpic:%{fpic|fPIC: -multilib-library-pic}}\
80 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
81 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
82 %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{fpic|fPIC:-minline-plt} \
83 %{!fpic:%{!fPIC:%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}}} \
84 %{!mno-gprel-ro:%{!fpic:%{!fpie:-mgprel-ro}}}} \
86 #ifndef SUBTARGET_DRIVER_SELF_SPECS
87 # define SUBTARGET_DRIVER_SELF_SPECS
90 /* A C string constant that tells the GCC driver program options to pass to
91 the assembler. It can also specify how to translate options you give to GNU
92 CC into options for GCC to pass to the assembler. See the file `sun3.h'
93 for an example of this.
95 Do not define this macro if it does not need to do anything.
100 %{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
104 %{mgpr-*} %{mfpr-*} \
105 %{msoft-float} %{mhard-float} \
106 %{mdword} %{mno-dword} \
107 %{mdouble} %{mno-double} \
108 %{mmedia} %{mno-media} \
109 %{mmuladd} %{mno-muladd} \
110 %{mpack} %{mno-pack} \
111 %{mno-fdpic:-mnopic} %{mfdpic} \
112 %{fpic|fpie: -mpic} %{fPIC|fPIE: -mPIC} %{mlibrary-pic}}"
114 /* Another C string constant used much like `LINK_SPEC'. The difference
115 between the two is that `STARTFILE_SPEC' is used at the very beginning of
116 the command given to the linker.
118 If this macro is not defined, a default is provided that loads the standard
119 C startup file from the usual place. See `gcc.c'.
121 Defined in svr4.h. */
122 #undef STARTFILE_SPEC
123 #define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
125 /* Another C string constant used much like `LINK_SPEC'. The difference
126 between the two is that `ENDFILE_SPEC' is used at the very end of the
127 command given to the linker.
129 Do not define this macro if it does not need to do anything.
131 Defined in svr4.h. */
133 #define ENDFILE_SPEC "frvend%O%s"
136 #define MASK_DEFAULT_FRV \
143 #define MASK_DEFAULT_FR500 \
144 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
146 #define MASK_DEFAULT_FR550 \
147 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
149 #define MASK_DEFAULT_FR450 \
157 #define MASK_DEFAULT_FR400 \
166 #define MASK_DEFAULT_SIMPLE \
167 (MASK_GPR_32 | MASK_SOFT_FLOAT)
169 /* A C string constant that tells the GCC driver program options to pass to
170 `cc1'. It can also specify how to translate options you give to GCC into
171 options for GCC to pass to the `cc1'.
173 Do not define this macro if it does not need to do anything. */
174 /* For ABI compliance, we need to put bss data into the normal data section. */
175 #define CC1_SPEC "%{G*}"
177 /* A C string constant that tells the GCC driver program options to pass to
178 the linker. It can also specify how to translate options you give to GCC
179 into options for GCC to pass to the linker.
181 Do not define this macro if it does not need to do anything.
183 Defined in svr4.h. */
184 /* Override the svr4.h version with one that dispenses without the svr4
185 shared library options, notably -G. */
190 %{mfdpic:-melf32frvfd -z text} \
191 %{static:-dn -Bstatic} \
192 %{shared:-Bdynamic} \
193 %{symbolic:-Bsymbolic} \
198 /* Another C string constant used much like `LINK_SPEC'. The difference
199 between the two is that `LIB_SPEC' is used at the end of the command given
202 If this macro is not defined, a default is provided that loads the standard
203 C library from the usual place. See `gcc.c'.
205 Defined in svr4.h. */
208 #define LIB_SPEC "--start-group -lc -lsim --end-group"
211 #define CPU_TYPE FRV_CPU_FR500
214 /* Run-time target specifications */
216 #define TARGET_CPU_CPP_BUILTINS() \
221 builtin_define ("__frv__"); \
222 builtin_assert ("machine=frv"); \
224 issue_rate = frv_issue_rate (); \
225 if (issue_rate > 1) \
226 builtin_define_with_int_value ("__FRV_VLIW__", issue_rate); \
227 builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS); \
228 builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS); \
229 builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS); \
231 switch (frv_cpu_type) \
233 case FRV_CPU_GENERIC: \
234 builtin_define ("__CPU_GENERIC__"); \
236 case FRV_CPU_FR550: \
237 builtin_define ("__CPU_FR550__"); \
239 case FRV_CPU_FR500: \
240 case FRV_CPU_TOMCAT: \
241 builtin_define ("__CPU_FR500__"); \
243 case FRV_CPU_FR450: \
244 builtin_define ("__CPU_FR450__"); \
246 case FRV_CPU_FR405: \
247 builtin_define ("__CPU_FR405__"); \
249 case FRV_CPU_FR400: \
250 builtin_define ("__CPU_FR400__"); \
252 case FRV_CPU_FR300: \
253 case FRV_CPU_SIMPLE: \
254 builtin_define ("__CPU_FR300__"); \
258 if (TARGET_HARD_FLOAT) \
259 builtin_define ("__FRV_HARD_FLOAT__"); \
261 builtin_define ("__FRV_DWORD__"); \
263 builtin_define ("__FRV_FDPIC__"); \
264 if (flag_leading_underscore > 0) \
265 builtin_define ("__FRV_UNDERSCORE__"); \
270 #define TARGET_HAS_FPRS (TARGET_HARD_FLOAT || TARGET_MEDIA)
272 #define NUM_GPRS (TARGET_GPR_32? 32 : 64)
273 #define NUM_FPRS (!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
274 #define NUM_ACCS (!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
276 /* X is a valid accumulator number if (X & ACC_MASK) == X. */
280 : frv_cpu_type == FRV_CPU_FR450 ? 11 \
283 /* Macros to identify the blend of media instructions available. Revision 1
284 is the one found on the FR500. Revision 2 includes the changes made for
287 Treat the generic processor as a revision 1 machine for now, for
288 compatibility with earlier releases. */
290 #define TARGET_MEDIA_REV1 \
292 && (frv_cpu_type == FRV_CPU_GENERIC \
293 || frv_cpu_type == FRV_CPU_FR500))
295 #define TARGET_MEDIA_REV2 \
297 && (frv_cpu_type == FRV_CPU_FR400 \
298 || frv_cpu_type == FRV_CPU_FR405 \
299 || frv_cpu_type == FRV_CPU_FR450 \
300 || frv_cpu_type == FRV_CPU_FR550))
302 #define TARGET_MEDIA_FR450 \
303 (frv_cpu_type == FRV_CPU_FR450)
305 #define TARGET_FR500_FR550_BUILTINS \
306 (frv_cpu_type == FRV_CPU_FR500 \
307 || frv_cpu_type == FRV_CPU_FR550)
309 #define TARGET_FR405_BUILTINS \
310 (frv_cpu_type == FRV_CPU_FR405 \
311 || frv_cpu_type == FRV_CPU_FR450)
314 #define HAVE_AS_TLS 0
317 /* This macro is a C statement to print on `stderr' a string describing the
318 particular machine description choice. Every machine description should
319 define `TARGET_VERSION'. For example:
322 #define TARGET_VERSION \
323 fprintf (stderr, " (68k, Motorola syntax)");
325 #define TARGET_VERSION \
326 fprintf (stderr, " (68k, MIT syntax)");
328 #define TARGET_VERSION fprintf (stderr, _(" (frv)"))
330 /* Sometimes certain combinations of command options do not make sense on a
331 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
332 take account of this. This macro, if defined, is executed once just after
333 all the command options have been parsed.
335 Don't use this macro to turn on various extra optimizations for `-O'. That
336 is what `OPTIMIZATION_OPTIONS' is for. */
338 #define OVERRIDE_OPTIONS frv_override_options ()
340 /* Some machines may desire to change what optimizations are performed for
341 various optimization levels. This macro, if defined, is executed once just
342 after the optimization level is determined and before the remainder of the
343 command options have been parsed. Values set in this macro are used as the
344 default values for the other command line options.
346 LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
347 `-O' is specified, and 0 if neither is specified.
349 SIZE is nonzero if `-Os' is specified, 0 otherwise.
351 You should not use this macro to change options that are not
352 machine-specific. These should uniformly selected by the same optimization
353 level on all supported machines. Use this macro to enable machine-specific
356 *Do not examine `write_symbols' in this macro!* The debugging options are
357 *not supposed to alter the generated code. */
358 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) frv_optimization_options (LEVEL, SIZE)
361 /* Define this macro if debugging can be performed even without a frame
362 pointer. If this macro is defined, GCC will turn on the
363 `-fomit-frame-pointer' option whenever `-O' is specified. */
364 /* Frv needs a specific frame layout that includes the frame pointer. */
366 #define CAN_DEBUG_WITHOUT_FP
368 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
370 /* Small Data Area Support. */
371 /* Maximum size of variables that go in .sdata/.sbss.
372 The -msdata=foo switch also controls how small variables are handled. */
373 #ifndef SDATA_DEFAULT_SIZE
374 #define SDATA_DEFAULT_SIZE 8
380 /* Define this macro to have the value 1 if the most significant bit in a byte
381 has the lowest number; otherwise define it to have the value zero. This
382 means that bit-field instructions count from the most significant bit. If
383 the machine has no bit-field instructions, then this must still be defined,
384 but it doesn't matter which value it is defined to. This macro need not be
387 This macro does not affect the way structure fields are packed into bytes or
388 words; that is controlled by `BYTES_BIG_ENDIAN'. */
389 #define BITS_BIG_ENDIAN 1
391 /* Define this macro to have the value 1 if the most significant byte in a word
392 has the lowest number. This macro need not be a constant. */
393 #define BYTES_BIG_ENDIAN 1
395 /* Define this macro to have the value 1 if, in a multiword object, the most
396 significant word has the lowest number. This applies to both memory
397 locations and registers; GCC fundamentally assumes that the order of
398 words in memory is the same as the order in registers. This macro need not
400 #define WORDS_BIG_ENDIAN 1
402 /* Number of storage units in a word; normally 4. */
403 #define UNITS_PER_WORD 4
405 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
406 which has the specified mode and signedness is to be stored in a register.
407 This macro is only called when TYPE is a scalar type.
409 On most RISC machines, which only have operations that operate on a full
410 register, define this macro to set M to `word_mode' if M is an integer mode
411 narrower than `BITS_PER_WORD'. In most cases, only integer modes should be
412 widened because wider-precision floating-point operations are usually more
413 expensive than their narrower counterparts.
415 For most machines, the macro definition does not change UNSIGNEDP. However,
416 some machines, have instructions that preferentially handle either signed or
417 unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
418 loads from memory and 32-bit add instructions sign-extend the result to 64
419 bits. On such machines, set UNSIGNEDP according to which kind of extension
422 Do not define this macro if it would never modify MODE. */
423 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
426 if (GET_MODE_CLASS (MODE) == MODE_INT \
427 && GET_MODE_SIZE (MODE) < 4) \
432 /* Normal alignment required for function parameters on the stack, in bits.
433 All stack parameters receive at least this much alignment regardless of data
434 type. On most machines, this is the same as the size of an integer. */
435 #define PARM_BOUNDARY 32
437 /* Define this macro if you wish to preserve a certain alignment for the stack
438 pointer. The definition is a C expression for the desired alignment
441 If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
442 specified boundary. If `PUSH_ROUNDING' is defined and specifies a less
443 strict alignment than `STACK_BOUNDARY', the stack may be momentarily
444 unaligned while pushing arguments. */
445 #define STACK_BOUNDARY 64
447 /* Alignment required for a function entry point, in bits. */
448 #define FUNCTION_BOUNDARY 128
450 /* Biggest alignment that any data type can require on this machine,
452 #define BIGGEST_ALIGNMENT 64
454 /* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
456 #ifdef IN_TARGET_LIBS
457 #define BIGGEST_FIELD_ALIGNMENT 64
459 /* An expression for the alignment of a structure field FIELD if the
460 alignment computed in the usual way is COMPUTED. GCC uses this
461 value instead of the value in `BIGGEST_ALIGNMENT' or
462 `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
463 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
464 frv_adjust_field_align (FIELD, COMPUTED)
467 /* If defined, a C expression to compute the alignment for a static variable.
468 TYPE is the data type, and ALIGN is the alignment that the object
469 would ordinarily have. The value of this macro is used instead of that
470 alignment to align the object.
472 If this macro is not defined, then ALIGN is used.
474 One use of this macro is to increase alignment of medium-size data to make
475 it all fit in fewer cache lines. Another is to cause character arrays to be
476 word-aligned so that `strcpy' calls that copy constants to character arrays
477 can be done inline. */
478 #define DATA_ALIGNMENT(TYPE, ALIGN) \
479 (TREE_CODE (TYPE) == ARRAY_TYPE \
480 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
481 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
483 /* If defined, a C expression to compute the alignment given to a constant that
484 is being placed in memory. CONSTANT is the constant and ALIGN is the
485 alignment that the object would ordinarily have. The value of this macro is
486 used instead of that alignment to align the object.
488 If this macro is not defined, then ALIGN is used.
490 The typical use of this macro is to increase alignment for string constants
491 to be word aligned so that `strcpy' calls that copy constants can be done
493 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
494 (TREE_CODE (EXP) == STRING_CST \
495 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
497 /* Define this macro to be the value 1 if instructions will fail to work if
498 given data not on the nominal alignment. If instructions will merely go
499 slower in that case, define this macro as 0. */
500 #define STRICT_ALIGNMENT 1
502 /* Define this if you wish to imitate the way many other C compilers handle
503 alignment of bitfields and the structures that contain them.
505 The behavior is that the type written for a bit-field (`int', `short', or
506 other integer type) imposes an alignment for the entire structure, as if the
507 structure really did contain an ordinary field of that type. In addition,
508 the bit-field is placed within the structure so that it would fit within such
509 a field, not crossing a boundary for it.
511 Thus, on most machines, a bit-field whose type is written as `int' would not
512 cross a four-byte boundary, and would force four-byte alignment for the
513 whole structure. (The alignment used may not be four bytes; it is
514 controlled by the other alignment parameters.)
516 If the macro is defined, its definition should be a C expression; a nonzero
517 value for the expression enables this behavior.
519 Note that if this macro is not defined, or its value is zero, some bitfields
520 may cross more than one alignment boundary. The compiler can support such
521 references if there are `insv', `extv', and `extzv' insns that can directly
524 The other known way of making bitfields work is to define
525 `STRUCTURE_SIZE_BOUNDARY' as large as `BIGGEST_ALIGNMENT'. Then every
526 structure can be accessed with fullwords.
528 Unless the machine has bit-field instructions or you define
529 `STRUCTURE_SIZE_BOUNDARY' that way, you must define
530 `PCC_BITFIELD_TYPE_MATTERS' to have a nonzero value.
532 If your aim is to make GCC use the same conventions for laying out
533 bitfields as are used by another compiler, here is how to investigate what
534 the other compiler does. Compile and run this program:
552 printf ("Size of foo1 is %d\n",
553 sizeof (struct foo1));
554 printf ("Size of foo2 is %d\n",
555 sizeof (struct foo2));
559 If this prints 2 and 5, then the compiler's behavior is what you would get
560 from `PCC_BITFIELD_TYPE_MATTERS'.
562 Defined in svr4.h. */
563 #define PCC_BITFIELD_TYPE_MATTERS 1
566 /* Layout of Source Language Data Types. */
568 #define CHAR_TYPE_SIZE 8
569 #define SHORT_TYPE_SIZE 16
570 #define INT_TYPE_SIZE 32
571 #define LONG_TYPE_SIZE 32
572 #define LONG_LONG_TYPE_SIZE 64
573 #define FLOAT_TYPE_SIZE 32
574 #define DOUBLE_TYPE_SIZE 64
575 #define LONG_DOUBLE_TYPE_SIZE 64
577 /* An expression whose value is 1 or 0, according to whether the type `char'
578 should be signed or unsigned by default. The user can always override this
579 default with the options `-fsigned-char' and `-funsigned-char'. */
580 #define DEFAULT_SIGNED_CHAR 1
583 /* General purpose registers. */
584 #define GPR_FIRST 0 /* First gpr */
585 #define GPR_LAST (GPR_FIRST + 63) /* Last gpr */
586 #define GPR_R0 GPR_FIRST /* R0, constant 0 */
587 #define GPR_FP (GPR_FIRST + 2) /* Frame pointer */
588 #define GPR_SP (GPR_FIRST + 1) /* Stack pointer */
589 /* small data register */
590 #define SDA_BASE_REG ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
591 #define PIC_REGNO (GPR_FIRST + (TARGET_FDPIC?15:17)) /* PIC register. */
592 #define FDPIC_FPTR_REGNO (GPR_FIRST + 14) /* uClinux PIC function pointer register. */
593 #define FDPIC_REGNO (GPR_FIRST + 15) /* uClinux PIC register. */
595 #define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
597 #define FPR_FIRST 64 /* First FP reg */
598 #define FPR_LAST 127 /* Last FP reg */
600 #define GPR_TEMP_NUM frv_condexec_temps /* # gprs to reserve for temps */
602 /* We reserve the last CR and CCR in each category to be used as a reload
603 register to reload the CR/CCR registers. This is a kludge. */
604 #define CC_FIRST 128 /* First ICC/FCC reg */
605 #define CC_LAST 135 /* Last ICC/FCC reg */
606 #define ICC_FIRST (CC_FIRST + 4) /* First ICC reg */
607 #define ICC_LAST (CC_FIRST + 7) /* Last ICC reg */
608 #define ICC_TEMP (CC_FIRST + 7) /* Temporary ICC reg */
609 #define FCC_FIRST (CC_FIRST) /* First FCC reg */
610 #define FCC_LAST (CC_FIRST + 3) /* Last FCC reg */
612 /* Amount to shift a value to locate a ICC or FCC register in the CCR
613 register and shift it to the bottom 4 bits. */
614 #define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
616 /* Mask to isolate a single ICC/FCC value. */
619 /* Masks to isolate the various bits in an ICC field. */
620 #define ICC_MASK_N 0x8 /* negative */
621 #define ICC_MASK_Z 0x4 /* zero */
622 #define ICC_MASK_V 0x2 /* overflow */
623 #define ICC_MASK_C 0x1 /* carry */
625 /* Mask to isolate the N/Z flags in an ICC. */
626 #define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
628 /* Mask to isolate the Z/C flags in an ICC. */
629 #define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
631 /* Masks to isolate the various bits in a FCC field. */
632 #define FCC_MASK_E 0x8 /* equal */
633 #define FCC_MASK_L 0x4 /* less than */
634 #define FCC_MASK_G 0x2 /* greater than */
635 #define FCC_MASK_U 0x1 /* unordered */
637 /* For CCR registers, the machine wants CR4..CR7 to be used for integer
638 code and CR0..CR3 to be used for floating point. */
639 #define CR_FIRST 136 /* First CCR */
640 #define CR_LAST 143 /* Last CCR */
641 #define CR_NUM (CR_LAST-CR_FIRST+1) /* # of CCRs (8) */
642 #define ICR_FIRST (CR_FIRST + 4) /* First integer CCR */
643 #define ICR_LAST (CR_FIRST + 7) /* Last integer CCR */
644 #define ICR_TEMP ICR_LAST /* Temp integer CCR */
645 #define FCR_FIRST (CR_FIRST + 0) /* First float CCR */
646 #define FCR_LAST (CR_FIRST + 3) /* Last float CCR */
648 /* Amount to shift a value to locate a CR register in the CCCR special purpose
649 register and shift it to the bottom 2 bits. */
650 #define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
652 /* Mask to isolate a single CR value. */
655 #define ACC_FIRST 144 /* First acc register */
656 #define ACC_LAST 155 /* Last acc register */
658 #define ACCG_FIRST 156 /* First accg register */
659 #define ACCG_LAST 167 /* Last accg register */
661 #define AP_FIRST 168 /* fake argument pointer */
663 #define SPR_FIRST 169
665 #define LR_REGNO (SPR_FIRST)
666 #define LCR_REGNO (SPR_FIRST + 1)
667 #define IACC_FIRST (SPR_FIRST + 2)
668 #define IACC_LAST (SPR_FIRST + 3)
670 #define GPR_P(R) IN_RANGE_P (R, GPR_FIRST, GPR_LAST)
671 #define GPR_OR_AP_P(R) (GPR_P (R) || (R) == ARG_POINTER_REGNUM)
672 #define FPR_P(R) IN_RANGE_P (R, FPR_FIRST, FPR_LAST)
673 #define CC_P(R) IN_RANGE_P (R, CC_FIRST, CC_LAST)
674 #define ICC_P(R) IN_RANGE_P (R, ICC_FIRST, ICC_LAST)
675 #define FCC_P(R) IN_RANGE_P (R, FCC_FIRST, FCC_LAST)
676 #define CR_P(R) IN_RANGE_P (R, CR_FIRST, CR_LAST)
677 #define ICR_P(R) IN_RANGE_P (R, ICR_FIRST, ICR_LAST)
678 #define FCR_P(R) IN_RANGE_P (R, FCR_FIRST, FCR_LAST)
679 #define ACC_P(R) IN_RANGE_P (R, ACC_FIRST, ACC_LAST)
680 #define ACCG_P(R) IN_RANGE_P (R, ACCG_FIRST, ACCG_LAST)
681 #define SPR_P(R) IN_RANGE_P (R, SPR_FIRST, SPR_LAST)
683 #define GPR_OR_PSEUDO_P(R) (GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
684 #define FPR_OR_PSEUDO_P(R) (FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
685 #define GPR_AP_OR_PSEUDO_P(R) (GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
686 #define CC_OR_PSEUDO_P(R) (CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
687 #define ICC_OR_PSEUDO_P(R) (ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
688 #define FCC_OR_PSEUDO_P(R) (FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
689 #define CR_OR_PSEUDO_P(R) (CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
690 #define ICR_OR_PSEUDO_P(R) (ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
691 #define FCR_OR_PSEUDO_P(R) (FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
692 #define ACC_OR_PSEUDO_P(R) (ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
693 #define ACCG_OR_PSEUDO_P(R) (ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
695 #define MAX_STACK_IMMEDIATE_OFFSET 2047
698 /* Register Basics. */
700 /* Number of hardware registers known to the compiler. They receive numbers 0
701 through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
702 really is assigned the number `FIRST_PSEUDO_REGISTER'. */
703 #define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
705 /* The first/last register that can contain the arguments to a function. */
706 #define FIRST_ARG_REGNUM (GPR_FIRST + 8)
707 #define LAST_ARG_REGNUM (FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
709 /* Registers used by the exception handling functions. These should be
710 registers that are not otherwise used by the calling sequence. */
711 #define FIRST_EH_REGNUM 14
712 #define LAST_EH_REGNUM 15
714 /* Scratch registers used in the prologue, epilogue and thunks.
715 OFFSET_REGNO is for loading constant addends that are too big for a
716 single instruction. TEMP_REGNO is used for transferring SPRs to and from
717 the stack, and various other activities. */
718 #define OFFSET_REGNO 4
721 /* Registers used in the prologue. OLD_SP_REGNO is the old stack pointer,
722 which is sometimes used to set up the frame pointer. */
723 #define OLD_SP_REGNO 6
725 /* Registers used in the epilogue. STACKADJ_REGNO stores the exception
726 handler's stack adjustment. */
727 #define STACKADJ_REGNO 6
729 /* Registers used in thunks. JMP_REGNO is used for loading the target
733 #define EH_RETURN_DATA_REGNO(N) ((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
734 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
735 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, STACKADJ_REGNO)
736 #define EH_RETURN_HANDLER_RTX RETURN_ADDR_RTX (0, frame_pointer_rtx)
738 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
740 /* An initializer that says which registers are used for fixed purposes all
741 throughout the compiled code and are therefore not available for general
742 allocation. These would include the stack pointer, the frame pointer
743 (except on machines where that can be used as a general register when no
744 frame pointer is needed), the program counter on machines where that is
745 considered one of the addressable registers, and any other numbered register
748 This information is expressed as a sequence of numbers, separated by commas
749 and surrounded by braces. The Nth number is 1 if register N is fixed, 0
752 The table initialized from this macro, and the table initialized by the
753 following one, may be overridden at run time either automatically, by the
754 actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
755 command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
760 gr3 -- Hidden Parameter
761 gr16 -- Small Data reserved
767 cr3 -- reserved to reload FCC registers.
768 cr7 -- reserved to reload ICC registers. */
769 #define FIXED_REGISTERS \
770 { /* Integer Registers */ \
771 1, 1, 1, 1, 0, 0, 0, 0, /* 000-007, gr0 - gr7 */ \
772 0, 0, 0, 0, 0, 0, 0, 0, /* 008-015, gr8 - gr15 */ \
773 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
774 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
775 0, 0, 0, 0, 0, 0, 0, 0, /* 032-039, gr32 - gr39 */ \
776 0, 0, 0, 0, 0, 0, 0, 0, /* 040-040, gr48 - gr47 */ \
777 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
778 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
779 /* Float Registers */ \
780 0, 0, 0, 0, 0, 0, 0, 0, /* 064-071, fr0 - fr7 */ \
781 0, 0, 0, 0, 0, 0, 0, 0, /* 072-079, fr8 - fr15 */ \
782 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
783 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
784 0, 0, 0, 0, 0, 0, 0, 0, /* 096-103, fr32 - fr39 */ \
785 0, 0, 0, 0, 0, 0, 0, 0, /* 104-111, fr48 - fr47 */ \
786 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
787 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
788 /* Condition Code Registers */ \
789 0, 0, 0, 0, /* 128-131, fcc0 - fcc3 */ \
790 0, 0, 0, 1, /* 132-135, icc0 - icc3 */ \
791 /* Conditional execution Registers (CCR) */ \
792 0, 0, 0, 0, 0, 0, 0, 1, /* 136-143, cr0 - cr7 */ \
794 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
795 1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
796 1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
797 1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
798 /* Other registers */ \
799 1, /* 168, AP - fake arg ptr */ \
800 0, /* 169, LR - Link register*/ \
801 0, /* 170, LCR - Loop count reg*/ \
802 1, 1 /* 171-172, iacc0 */ \
805 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
806 general) by function calls as well as for fixed registers. This macro
807 therefore identifies the registers that are not available for general
808 allocation of values that must live across function calls.
810 If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
811 saves it on function entry and restores it on function exit, if the register
812 is used within the function. */
813 #define CALL_USED_REGISTERS \
814 { /* Integer Registers */ \
815 1, 1, 1, 1, 1, 1, 1, 1, /* 000-007, gr0 - gr7 */ \
816 1, 1, 1, 1, 1, 1, 1, 1, /* 008-015, gr8 - gr15 */ \
817 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
818 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
819 1, 1, 1, 1, 1, 1, 1, 1, /* 032-039, gr32 - gr39 */ \
820 1, 1, 1, 1, 1, 1, 1, 1, /* 040-040, gr48 - gr47 */ \
821 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
822 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
823 /* Float Registers */ \
824 1, 1, 1, 1, 1, 1, 1, 1, /* 064-071, fr0 - fr7 */ \
825 1, 1, 1, 1, 1, 1, 1, 1, /* 072-079, fr8 - fr15 */ \
826 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
827 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
828 1, 1, 1, 1, 1, 1, 1, 1, /* 096-103, fr32 - fr39 */ \
829 1, 1, 1, 1, 1, 1, 1, 1, /* 104-111, fr48 - fr47 */ \
830 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
831 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
832 /* Condition Code Registers */ \
833 1, 1, 1, 1, /* 128-131, fcc0 - fcc3 */ \
834 1, 1, 1, 1, /* 132-135, icc0 - icc3 */ \
835 /* Conditional execution Registers (CCR) */ \
836 1, 1, 1, 1, 1, 1, 1, 1, /* 136-143, cr0 - cr7 */ \
838 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
839 1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
840 1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
841 1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
842 /* Other registers */ \
843 1, /* 168, AP - fake arg ptr */ \
844 1, /* 169, LR - Link register*/ \
845 1, /* 170, LCR - Loop count reg */ \
846 1, 1 /* 171-172, iacc0 */ \
849 /* Zero or more C statements that may conditionally modify two variables
850 `fixed_regs' and `call_used_regs' (both of type `char []') after they have
851 been initialized from the two preceding macros.
853 This is necessary in case the fixed or call-clobbered registers depend on
856 You need not define this macro if it has no work to do.
858 If the usage of an entire class of registers depends on the target flags,
859 you may indicate this to GCC by using this macro to modify `fixed_regs' and
860 `call_used_regs' to 1 for each of the registers in the classes which should
861 not be used by GCC. Also define the macro `REG_CLASS_FROM_LETTER' to return
862 `NO_REGS' if it is called with a letter for a class that shouldn't be used.
864 (However, if this class is not included in `GENERAL_REGS' and all of the
865 insn patterns whose constraints permit this class are controlled by target
866 switches, then GCC will automatically avoid using these registers when the
867 target switches are opposed to them.) */
869 #define CONDITIONAL_REGISTER_USAGE frv_conditional_register_usage ()
872 /* Order of allocation of registers. */
874 /* If defined, an initializer for a vector of integers, containing the numbers
875 of hard registers in the order in which GCC should prefer to use them
876 (from most preferred to least).
878 If this macro is not defined, registers are used lowest numbered first (all
881 One use of this macro is on machines where the highest numbered registers
882 must always be saved and the save-multiple-registers instruction supports
883 only sequences of consecutive registers. On such machines, define
884 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
885 allocatable register first. */
887 /* On the FRV, allocate GR16 and GR17 after other saved registers so that we
888 have a better chance of allocating 2 registers at a time and can use the
889 double word load/store instructions in the prologue. */
890 #define REG_ALLOC_ORDER \
892 /* volatile registers */ \
893 GPR_FIRST + 4, GPR_FIRST + 5, GPR_FIRST + 6, GPR_FIRST + 7, \
894 GPR_FIRST + 8, GPR_FIRST + 9, GPR_FIRST + 10, GPR_FIRST + 11, \
895 GPR_FIRST + 12, GPR_FIRST + 13, GPR_FIRST + 14, GPR_FIRST + 15, \
896 GPR_FIRST + 32, GPR_FIRST + 33, GPR_FIRST + 34, GPR_FIRST + 35, \
897 GPR_FIRST + 36, GPR_FIRST + 37, GPR_FIRST + 38, GPR_FIRST + 39, \
898 GPR_FIRST + 40, GPR_FIRST + 41, GPR_FIRST + 42, GPR_FIRST + 43, \
899 GPR_FIRST + 44, GPR_FIRST + 45, GPR_FIRST + 46, GPR_FIRST + 47, \
901 FPR_FIRST + 0, FPR_FIRST + 1, FPR_FIRST + 2, FPR_FIRST + 3, \
902 FPR_FIRST + 4, FPR_FIRST + 5, FPR_FIRST + 6, FPR_FIRST + 7, \
903 FPR_FIRST + 8, FPR_FIRST + 9, FPR_FIRST + 10, FPR_FIRST + 11, \
904 FPR_FIRST + 12, FPR_FIRST + 13, FPR_FIRST + 14, FPR_FIRST + 15, \
905 FPR_FIRST + 32, FPR_FIRST + 33, FPR_FIRST + 34, FPR_FIRST + 35, \
906 FPR_FIRST + 36, FPR_FIRST + 37, FPR_FIRST + 38, FPR_FIRST + 39, \
907 FPR_FIRST + 40, FPR_FIRST + 41, FPR_FIRST + 42, FPR_FIRST + 43, \
908 FPR_FIRST + 44, FPR_FIRST + 45, FPR_FIRST + 46, FPR_FIRST + 47, \
910 ICC_FIRST + 0, ICC_FIRST + 1, ICC_FIRST + 2, ICC_FIRST + 3, \
911 FCC_FIRST + 0, FCC_FIRST + 1, FCC_FIRST + 2, FCC_FIRST + 3, \
912 CR_FIRST + 0, CR_FIRST + 1, CR_FIRST + 2, CR_FIRST + 3, \
913 CR_FIRST + 4, CR_FIRST + 5, CR_FIRST + 6, CR_FIRST + 7, \
915 /* saved registers */ \
916 GPR_FIRST + 18, GPR_FIRST + 19, \
917 GPR_FIRST + 20, GPR_FIRST + 21, GPR_FIRST + 22, GPR_FIRST + 23, \
918 GPR_FIRST + 24, GPR_FIRST + 25, GPR_FIRST + 26, GPR_FIRST + 27, \
919 GPR_FIRST + 48, GPR_FIRST + 49, GPR_FIRST + 50, GPR_FIRST + 51, \
920 GPR_FIRST + 52, GPR_FIRST + 53, GPR_FIRST + 54, GPR_FIRST + 55, \
921 GPR_FIRST + 56, GPR_FIRST + 57, GPR_FIRST + 58, GPR_FIRST + 59, \
922 GPR_FIRST + 60, GPR_FIRST + 61, GPR_FIRST + 62, GPR_FIRST + 63, \
923 GPR_FIRST + 16, GPR_FIRST + 17, \
925 FPR_FIRST + 16, FPR_FIRST + 17, FPR_FIRST + 18, FPR_FIRST + 19, \
926 FPR_FIRST + 20, FPR_FIRST + 21, FPR_FIRST + 22, FPR_FIRST + 23, \
927 FPR_FIRST + 24, FPR_FIRST + 25, FPR_FIRST + 26, FPR_FIRST + 27, \
928 FPR_FIRST + 28, FPR_FIRST + 29, FPR_FIRST + 30, FPR_FIRST + 31, \
929 FPR_FIRST + 48, FPR_FIRST + 49, FPR_FIRST + 50, FPR_FIRST + 51, \
930 FPR_FIRST + 52, FPR_FIRST + 53, FPR_FIRST + 54, FPR_FIRST + 55, \
931 FPR_FIRST + 56, FPR_FIRST + 57, FPR_FIRST + 58, FPR_FIRST + 59, \
932 FPR_FIRST + 60, FPR_FIRST + 61, FPR_FIRST + 62, FPR_FIRST + 63, \
934 /* special or fixed registers */ \
935 GPR_FIRST + 0, GPR_FIRST + 1, GPR_FIRST + 2, GPR_FIRST + 3, \
936 GPR_FIRST + 28, GPR_FIRST + 29, GPR_FIRST + 30, GPR_FIRST + 31, \
937 ACC_FIRST + 0, ACC_FIRST + 1, ACC_FIRST + 2, ACC_FIRST + 3, \
938 ACC_FIRST + 4, ACC_FIRST + 5, ACC_FIRST + 6, ACC_FIRST + 7, \
939 ACC_FIRST + 8, ACC_FIRST + 9, ACC_FIRST + 10, ACC_FIRST + 11, \
940 ACCG_FIRST + 0, ACCG_FIRST + 1, ACCG_FIRST + 2, ACCG_FIRST + 3, \
941 ACCG_FIRST + 4, ACCG_FIRST + 5, ACCG_FIRST + 6, ACCG_FIRST + 7, \
942 ACCG_FIRST + 8, ACCG_FIRST + 9, ACCG_FIRST + 10, ACCG_FIRST + 11, \
943 AP_FIRST, LR_REGNO, LCR_REGNO, \
944 IACC_FIRST + 0, IACC_FIRST + 1 \
948 /* How Values Fit in Registers. */
950 /* A C expression for the number of consecutive hard registers, starting at
951 register number REGNO, required to hold a value of mode MODE.
953 On a machine where all registers are exactly one word, a suitable definition
956 #define HARD_REGNO_NREGS(REGNO, MODE) \
957 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
958 / UNITS_PER_WORD)) */
960 /* On the FRV, make the CC modes take 3 words in the integer registers, so that
961 we can build the appropriate instructions to properly reload the values. */
962 #define HARD_REGNO_NREGS(REGNO, MODE) frv_hard_regno_nregs (REGNO, MODE)
964 /* A C expression that is nonzero if it is permissible to store a value of mode
965 MODE in hard register number REGNO (or in several registers starting with
966 that one). For a machine where all registers are equivalent, a suitable
969 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
971 It is not necessary for this macro to check for the numbers of fixed
972 registers, because the allocation mechanism considers them to be always
975 On some machines, double-precision values must be kept in even/odd register
976 pairs. The way to implement that is to define this macro to reject odd
977 register numbers for such modes.
979 The minimum requirement for a mode to be OK in a register is that the
980 `movMODE' instruction pattern support moves between the register and any
981 other hard register for which the mode is OK; and that moving a value into
982 the register and back out not alter it.
984 Since the same instruction used to move `SImode' will work for all narrower
985 integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
986 to distinguish between these modes, provided you define patterns `movhi',
987 etc., to take advantage of this. This is useful because of the interaction
988 between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
989 all integer modes to be tieable.
991 Many machines have special registers for floating point arithmetic. Often
992 people assume that floating point machine modes are allowed only in floating
993 point registers. This is not true. Any registers that can hold integers
994 can safely *hold* a floating point machine mode, whether or not floating
995 arithmetic can be done on it in those registers. Integer move instructions
996 can be used to move the values.
998 On some machines, though, the converse is true: fixed-point machine modes
999 may not go in floating registers. This is true if the floating registers
1000 normalize any value stored in them, because storing a non-floating value
1001 there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
1002 fixed-point machine modes in floating registers. But if the floating
1003 registers do not automatically normalize, if you can store any bit pattern
1004 in one and retrieve it unchanged without a trap, then any machine mode may
1005 go in a floating register, so you can define this macro to say so.
1007 The primary significance of special floating registers is rather that they
1008 are the registers acceptable in floating point arithmetic instructions.
1009 However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
1010 writing the proper constraints for those instructions.
1012 On some machines, the floating registers are especially slow to access, so
1013 that it is better to store a value in a stack frame than in such a register
1014 if floating point arithmetic is not being done. As long as the floating
1015 registers are not in class `GENERAL_REGS', they will not be used unless some
1016 pattern's constraint asks for one. */
1017 #define HARD_REGNO_MODE_OK(REGNO, MODE) frv_hard_regno_mode_ok (REGNO, MODE)
1019 /* A C expression that is nonzero if it is desirable to choose register
1020 allocation so as to avoid move instructions between a value of mode MODE1
1021 and a value of mode MODE2.
1023 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
1024 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
1026 #define MODES_TIEABLE_P(MODE1, MODE2) (MODE1 == MODE2)
1028 /* Define this macro if the compiler should avoid copies to/from CCmode
1029 registers. You should only define this macro if support fo copying to/from
1030 CCmode is incomplete. */
1031 #define AVOID_CCMODE_COPIES
1034 /* Register Classes. */
1036 /* An enumeral type that must be defined with all the register class names as
1037 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
1038 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
1039 which is not a register class but rather tells how many classes there are.
1041 Each register class has a number, which is the value of casting the class
1042 name to type `int'. The number serves as an index in many of the tables
1076 #define GENERAL_REGS GPR_REGS
1078 /* The number of distinct register classes, defined as follows:
1080 #define N_REG_CLASSES (int) LIM_REG_CLASSES */
1081 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1083 /* An initializer containing the names of the register classes as C string
1084 constants. These names are used in writing some of the debugging dumps. */
1085 #define REG_CLASS_NAMES { \
1099 "FDPIC_FPTR_REGS", \
1100 "FDPIC_CALL_REGS", \
1115 /* An initializer containing the contents of the register classes, as integers
1116 which are bit masks. The Nth integer specifies the contents of class N.
1117 The way the integer MASK is interpreted is that register R is in the class
1118 if `MASK & (1 << R)' is 1.
1120 When the machine has more than 32 registers, an integer does not suffice.
1121 Then the integers are replaced by sub-initializers, braced groupings
1122 containing several integers. Each sub-initializer must be suitable as an
1123 initializer for the type `HARD_REG_SET' which is defined in
1124 `hard-reg-set.h'. */
1125 #define REG_CLASS_CONTENTS \
1126 { /* gr0-gr31 gr32-gr63 fr0-fr31 fr32-fr-63 cc/ccr/acc ap/spr */ \
1127 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS */\
1128 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
1129 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
1130 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS */\
1131 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
1132 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
1133 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS */\
1134 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
1135 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS */\
1136 { 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
1137 { 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
1138 { 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
1139 { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
1140 { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
1141 { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
1142 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
1143 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
1144 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* EVEN_ACC */\
1145 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* ACC_REGS */\
1146 { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
1147 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
1148 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FEVEN_REG*/\
1149 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FPR_REGS */\
1150 { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
1151 { 0xfffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* EVEN_REGS*/\
1152 { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
1153 { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
1156 /* A C expression whose value is a register class containing hard register
1157 REGNO. In general there is more than one such class; choose a class which
1158 is "minimal", meaning that no smaller class also contains the register. */
1160 extern enum reg_class regno_reg_class
[];
1161 #define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
1163 /* A macro whose definition is the name of the class to which a valid base
1164 register must belong. A base register is one used in an address which is
1165 the register value plus a displacement. */
1166 #define BASE_REG_CLASS GPR_REGS
1168 /* A macro whose definition is the name of the class to which a valid index
1169 register must belong. An index register is one used in an address where its
1170 value is either multiplied by a scale factor or added to another register
1171 (as well as added to a displacement). */
1172 #define INDEX_REG_CLASS GPR_REGS
1174 /* A C expression which defines the machine-dependent operand constraint
1175 letters for register classes. If CHAR is such a letter, the value should be
1176 the register class corresponding to it. Otherwise, the value should be
1177 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
1178 will not be passed to this macro; you do not need to handle it.
1180 The following letters are unavailable, due to being used as
1185 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
1186 'Q', 'R', 'S', 'T', 'U'
1188 'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
1190 extern enum reg_class reg_class_from_letter
[];
1191 #define REG_CLASS_FROM_LETTER(CHAR) reg_class_from_letter [(unsigned char)(CHAR)]
1193 /* A C expression which is nonzero if register number NUM is suitable for use
1194 as a base register in operand addresses. It may be either a suitable hard
1195 register or a pseudo register that has been allocated such a hard register. */
1196 #define REGNO_OK_FOR_BASE_P(NUM) \
1197 ((NUM) < FIRST_PSEUDO_REGISTER \
1199 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1201 /* A C expression which is nonzero if register number NUM is suitable for use
1202 as an index register in operand addresses. It may be either a suitable hard
1203 register or a pseudo register that has been allocated such a hard register.
1205 The difference between an index register and a base register is that the
1206 index register may be scaled. If an address involves the sum of two
1207 registers, neither one of them scaled, then either one may be labeled the
1208 "base" and the other the "index"; but whichever labeling is used must fit
1209 the machine's constraints of which registers may serve in each capacity.
1210 The compiler will try both labelings, looking for one that is valid, and
1211 will reload one or both registers only if neither labeling works. */
1212 #define REGNO_OK_FOR_INDEX_P(NUM) \
1213 ((NUM) < FIRST_PSEUDO_REGISTER \
1215 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1217 /* A C expression that places additional restrictions on the register class to
1218 use when it is necessary to copy value X into a register in class CLASS.
1219 The value is a register class; perhaps CLASS, or perhaps another, smaller
1220 class. On many machines, the following definition is safe:
1222 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
1224 Sometimes returning a more restrictive class makes better code. For
1225 example, on the 68000, when X is an integer constant that is in range for a
1226 `moveq' instruction, the value of this macro is always `DATA_REGS' as long
1227 as CLASS includes the data registers. Requiring a data register guarantees
1228 that a `moveq' will be used.
1230 If X is a `const_double', by returning `NO_REGS' you can force X into a
1231 memory constant. This is useful on certain machines where immediate
1232 floating values cannot be loaded into certain kinds of registers.
1234 This declaration must be present. */
1235 #define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
1237 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1238 frv_secondary_reload_class (CLASS, MODE, X, TRUE)
1240 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1241 frv_secondary_reload_class (CLASS, MODE, X, FALSE)
1243 /* A C expression whose value is nonzero if pseudos that have been assigned to
1244 registers of class CLASS would likely be spilled because registers of CLASS
1245 are needed for spill registers.
1247 The default value of this macro returns 1 if CLASS has exactly one register
1248 and zero otherwise. On most machines, this default should be used. Only
1249 define this macro to some other expression if pseudo allocated by
1250 `local-alloc.c' end up in memory because their hard registers were needed
1251 for spill registers. If this macro returns nonzero for those classes, those
1252 pseudos will only be allocated by `global.c', which knows how to reallocate
1253 the pseudo to another register. If there would not be another register
1254 available for reallocation, you should not change the definition of this
1255 macro since the only effect of such a definition would be to slow down
1256 register allocation. */
1257 #define CLASS_LIKELY_SPILLED_P(CLASS) frv_class_likely_spilled_p (CLASS)
1259 /* A C expression for the maximum number of consecutive registers of
1260 class CLASS needed to hold a value of mode MODE.
1262 This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
1263 of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
1264 `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
1266 This macro helps control the handling of multiple-word values in
1269 This declaration is required. */
1270 #define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
1272 #define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
1274 /* 6-bit signed immediate. */
1275 #define CONST_OK_FOR_I(VALUE) IN_RANGE_P(VALUE, -32, 31)
1276 /* 10-bit signed immediate. */
1277 #define CONST_OK_FOR_J(VALUE) IN_RANGE_P(VALUE, -512, 511)
1279 #define CONST_OK_FOR_K(VALUE) 0
1280 /* 16-bit signed immediate. */
1281 #define CONST_OK_FOR_L(VALUE) IN_RANGE_P(VALUE, -32768, 32767)
1282 /* 16-bit unsigned immediate. */
1283 #define CONST_OK_FOR_M(VALUE) IN_RANGE_P (VALUE, 0, 65535)
1284 /* 12-bit signed immediate that is negative. */
1285 #define CONST_OK_FOR_N(VALUE) IN_RANGE_P(VALUE, -2048, -1)
1287 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1288 /* 12-bit signed immediate that is negative. */
1289 #define CONST_OK_FOR_P(VALUE) IN_RANGE_P(VALUE, 1, 2047)
1291 /* A C expression that defines the machine-dependent operand constraint letters
1292 (`I', `J', `K', .. 'P') that specify particular ranges of integer values.
1293 If C is one of those letters, the expression should check that VALUE, an
1294 integer, is in the appropriate range and return 1 if so, 0 otherwise. If C
1295 is not one of those letters, the value should be 0 regardless of VALUE. */
1296 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1297 ( (C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1298 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1299 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1300 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1301 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1302 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1303 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1304 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1308 /* A C expression that defines the machine-dependent operand constraint letters
1309 (`G', `H') that specify particular ranges of `const_double' values.
1311 If C is one of those letters, the expression should check that VALUE, an RTX
1312 of code `const_double', is in the appropriate range and return 1 if so, 0
1313 otherwise. If C is not one of those letters, the value should be 0
1314 regardless of VALUE.
1316 `const_double' is used for all floating-point constants and for `DImode'
1317 fixed-point constants. A given letter can accept either or both kinds of
1318 values. It can use `GET_MODE' to distinguish between these kinds. */
1320 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
1321 ((GET_MODE (VALUE) == VOIDmode \
1322 && CONST_DOUBLE_LOW (VALUE) == 0 \
1323 && CONST_DOUBLE_HIGH (VALUE) == 0) \
1324 || ((GET_MODE (VALUE) == SFmode \
1325 || GET_MODE (VALUE) == DFmode) \
1326 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))))
1328 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
1330 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1331 ( (C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
1332 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
1335 /* A C expression that defines the optional machine-dependent constraint
1336 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1337 types of operands, usually memory references, for the target machine.
1338 Normally this macro will not be defined. If it is required for a particular
1339 target machine, it should return 1 if VALUE corresponds to the operand type
1340 represented by the constraint letter C. If C is not defined as an extra
1341 constraint, the value returned should be 0 regardless of VALUE.
1343 For example, on the ROMP, load instructions cannot have their output in r0
1344 if the memory reference contains a symbolic address. Constraint letter `Q'
1345 is defined as representing a memory address that does *not* contain a
1346 symbolic address. An alternative is specified with a `Q' constraint on the
1347 input and `r' on the output. The next alternative specifies `m' on the
1348 input and a register class that does not include r0 on the output. */
1350 /* 12-bit relocations. */
1351 #define EXTRA_CONSTRAINT_FOR_Q(VALUE) \
1352 (got12_operand (VALUE, GET_MODE (VALUE)))
1354 /* Double word memory ops that take one instruction. */
1355 #define EXTRA_CONSTRAINT_FOR_R(VALUE) \
1356 (dbl_memory_one_insn_operand (VALUE, GET_MODE (VALUE)))
1359 #define EXTRA_CONSTRAINT_FOR_S(VALUE) \
1360 (CONSTANT_P (VALUE) && call_operand (VALUE, VOIDmode))
1362 /* Double word memory ops that take two instructions. */
1363 #define EXTRA_CONSTRAINT_FOR_T(VALUE) \
1364 (dbl_memory_two_insn_operand (VALUE, GET_MODE (VALUE)))
1366 /* Memory operand for conditional execution. */
1367 #define EXTRA_CONSTRAINT_FOR_U(VALUE) \
1368 (condexec_memory_operand (VALUE, GET_MODE (VALUE)))
1370 #define EXTRA_CONSTRAINT(VALUE, C) \
1371 ( (C) == 'Q' ? EXTRA_CONSTRAINT_FOR_Q (VALUE) \
1372 : (C) == 'R' ? EXTRA_CONSTRAINT_FOR_R (VALUE) \
1373 : (C) == 'S' ? EXTRA_CONSTRAINT_FOR_S (VALUE) \
1374 : (C) == 'T' ? EXTRA_CONSTRAINT_FOR_T (VALUE) \
1375 : (C) == 'U' ? EXTRA_CONSTRAINT_FOR_U (VALUE) \
1378 #define EXTRA_MEMORY_CONSTRAINT(C,STR) \
1379 ((C) == 'U' || (C) == 'R' || (C) == 'T')
1381 #define CONSTRAINT_LEN(C, STR) \
1382 ((C) == 'D' ? 3 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
1384 #define REG_CLASS_FROM_CONSTRAINT(C, STR) \
1385 (((C) == 'D' && (STR)[1] == '8' && (STR)[2] == '9') ? GR89_REGS : \
1386 ((C) == 'D' && (STR)[1] == '0' && (STR)[2] == '9') ? GR9_REGS : \
1387 ((C) == 'D' && (STR)[1] == '0' && (STR)[2] == '8') ? GR8_REGS : \
1388 ((C) == 'D' && (STR)[1] == '1' && (STR)[2] == '4') ? FDPIC_FPTR_REGS : \
1389 ((C) == 'D' && (STR)[1] == '1' && (STR)[2] == '5') ? FDPIC_REGS : \
1390 REG_CLASS_FROM_LETTER ((C)))
1393 /* Basic Stack Layout. */
1395 /* Structure to describe information about a saved range of registers */
1397 typedef struct frv_stack_regs
{
1398 const char * name
; /* name of the register ranges */
1399 int first
; /* first register in the range */
1400 int last
; /* last register in the range */
1401 int size_1word
; /* # of bytes to be stored via 1 word stores */
1402 int size_2words
; /* # of bytes to be stored via 2 word stores */
1403 unsigned char field_p
; /* true if the registers are a single SPR */
1404 unsigned char dword_p
; /* true if we can do dword stores */
1405 unsigned char special_p
; /* true if the regs have a fixed save loc. */
1408 /* Register ranges to look into saving. */
1409 #define STACK_REGS_GPR 0 /* Gprs (normally gr16..gr31, gr48..gr63) */
1410 #define STACK_REGS_FPR 1 /* Fprs (normally fr16..fr31, fr48..fr63) */
1411 #define STACK_REGS_LR 2 /* LR register */
1412 #define STACK_REGS_CC 3 /* CCrs (normally not saved) */
1413 #define STACK_REGS_LCR 5 /* lcr register */
1414 #define STACK_REGS_STDARG 6 /* stdarg registers */
1415 #define STACK_REGS_STRUCT 7 /* structure return (gr3) */
1416 #define STACK_REGS_FP 8 /* FP register */
1417 #define STACK_REGS_MAX 9 /* # of register ranges */
1419 /* Values for save_p field. */
1420 #define REG_SAVE_NO_SAVE 0 /* register not saved */
1421 #define REG_SAVE_1WORD 1 /* save the register */
1422 #define REG_SAVE_2WORDS 2 /* save register and register+1 */
1424 /* Structure used to define the frv stack. */
1426 typedef struct frv_stack
{
1427 int total_size
; /* total bytes allocated for stack */
1428 int vars_size
; /* variable save area size */
1429 int parameter_size
; /* outgoing parameter size */
1430 int stdarg_size
; /* size of regs needed to be saved for stdarg */
1431 int regs_size
; /* size of the saved registers */
1432 int regs_size_1word
; /* # of bytes to be stored via 1 word stores */
1433 int regs_size_2words
; /* # of bytes to be stored via 2 word stores */
1434 int header_size
; /* size of the old FP, struct ret., LR save */
1435 int pretend_size
; /* size of pretend args */
1436 int vars_offset
; /* offset to save local variables from new SP*/
1437 int regs_offset
; /* offset to save registers from new SP */
1438 /* register range information */
1439 frv_stack_regs_t regs
[STACK_REGS_MAX
];
1440 /* offset to store each register */
1441 int reg_offset
[FIRST_PSEUDO_REGISTER
];
1442 /* whether to save register (& reg+1) */
1443 unsigned char save_p
[FIRST_PSEUDO_REGISTER
];
1446 /* Define this macro if pushing a word onto the stack moves the stack pointer
1447 to a smaller address. */
1448 #define STACK_GROWS_DOWNWARD 1
1450 /* Define this macro to nonzero if the addresses of local variable slots
1451 are at negative offsets from the frame pointer. */
1452 #define FRAME_GROWS_DOWNWARD 1
1454 /* Offset from the frame pointer to the first local variable slot to be
1457 If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
1458 first slot's length from `STARTING_FRAME_OFFSET'. Otherwise, it is found by
1459 adding the length of the first slot to the value `STARTING_FRAME_OFFSET'. */
1460 #define STARTING_FRAME_OFFSET 0
1462 /* Offset from the stack pointer register to the first location at which
1463 outgoing arguments are placed. If not specified, the default value of zero
1464 is used. This is the proper value for most machines.
1466 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1467 location at which outgoing arguments are placed. */
1468 #define STACK_POINTER_OFFSET 0
1470 /* Offset from the argument pointer register to the first argument's address.
1471 On some machines it may depend on the data type of the function.
1473 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1474 argument's address. */
1475 #define FIRST_PARM_OFFSET(FUNDECL) 0
1477 /* A C expression whose value is RTL representing the address in a stack frame
1478 where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
1479 an RTL expression for the address of the stack frame itself.
1481 If you don't define this macro, the default is to return the value of
1482 FRAMEADDR--that is, the stack frame address is also the address of the stack
1483 word that points to the previous frame. */
1484 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
1486 /* A C expression whose value is RTL representing the value of the return
1487 address for the frame COUNT steps up from the current frame, after the
1488 prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
1489 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
1492 The value of the expression must always be the correct address when COUNT is
1493 zero, but may be `NULL_RTX' if there is not way to determine the return
1494 address of other frames. */
1495 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1497 #define RETURN_POINTER_REGNUM LR_REGNO
1499 /* A C expression whose value is RTL representing the location of the incoming
1500 return address at the beginning of any function, before the prologue. This
1501 RTL is either a `REG', indicating that the return value is saved in `REG',
1502 or a `MEM' representing a location in the stack.
1504 You only need to define this macro if you want to support call frame
1505 debugging information like that provided by DWARF 2. */
1506 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1509 /* Register That Address the Stack Frame. */
1511 /* The register number of the stack pointer register, which must also be a
1512 fixed register according to `FIXED_REGISTERS'. On most machines, the
1513 hardware determines which register this is. */
1514 #define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1516 /* The register number of the frame pointer register, which is used to access
1517 automatic variables in the stack frame. On some machines, the hardware
1518 determines which register this is. On other machines, you can choose any
1519 register you wish for this purpose. */
1520 #define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1522 /* The register number of the arg pointer register, which is used to access the
1523 function's argument list. On some machines, this is the same as the frame
1524 pointer register. On some machines, the hardware determines which register
1525 this is. On other machines, you can choose any register you wish for this
1526 purpose. If this is not the same register as the frame pointer register,
1527 then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1528 arrange to be able to eliminate it. */
1530 /* On frv this is a fake register that is eliminated in
1531 terms of either the frame pointer or stack pointer. */
1532 #define ARG_POINTER_REGNUM AP_FIRST
1534 /* Register numbers used for passing a function's static chain pointer. If
1535 register windows are used, the register number as seen by the called
1536 function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1537 seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
1538 are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1540 The static chain register need not be a fixed register.
1542 If the static chain is passed in memory, these macros should not be defined;
1543 instead, the next two macros should be defined. */
1544 #define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1545 #define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1548 /* Eliminating the Frame Pointer and the Arg Pointer. */
1550 /* A C expression which is nonzero if a function must have and use a frame
1551 pointer. This expression is evaluated in the reload pass. If its value is
1552 nonzero the function will have a frame pointer.
1554 The expression can in principle examine the current function and decide
1555 according to the facts, but on most machines the constant 0 or the constant
1556 1 suffices. Use 0 when the machine allows code to be generated with no
1557 frame pointer, and doing so saves some time or space. Use 1 when there is
1558 no possible advantage to avoiding a frame pointer.
1560 In certain cases, the compiler does not know how to produce valid code
1561 without a frame pointer. The compiler recognizes those cases and
1562 automatically gives the function a frame pointer regardless of what
1563 `FRAME_POINTER_REQUIRED' says. You don't need to worry about them.
1565 In a function that does not require a frame pointer, the frame pointer
1566 register can be allocated for ordinary usage, unless you mark it as a fixed
1567 register. See `FIXED_REGISTERS' for more information. */
1568 #define FRAME_POINTER_REQUIRED frv_frame_pointer_required ()
1570 /* If defined, this macro specifies a table of register pairs used to eliminate
1571 unneeded registers that point into the stack frame. If it is not defined,
1572 the only elimination attempted by the compiler is to replace references to
1573 the frame pointer with references to the stack pointer.
1575 The definition of this macro is a list of structure initializations, each of
1576 which specifies an original and replacement register.
1578 On some machines, the position of the argument pointer is not known until
1579 the compilation is completed. In such a case, a separate hard register must
1580 be used for the argument pointer. This register can be eliminated by
1581 replacing it with either the frame pointer or the argument pointer,
1582 depending on whether or not the frame pointer has been eliminated.
1584 In this case, you might specify:
1585 #define ELIMINABLE_REGS \
1586 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1587 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1588 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1590 Note that the elimination of the argument pointer with the stack pointer is
1591 specified first since that is the preferred elimination. */
1593 #define ELIMINABLE_REGS \
1595 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1596 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1597 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
1600 /* A C expression that returns nonzero if the compiler is allowed to try to
1601 replace register number FROM with register number TO. This macro need only
1602 be defined if `ELIMINABLE_REGS' is defined, and will usually be the constant
1603 1, since most of the cases preventing register elimination are things that
1604 the compiler already knows about. */
1606 #define CAN_ELIMINATE(FROM, TO) \
1607 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1608 ? ! frame_pointer_needed \
1611 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
1612 initial difference between the specified pair of registers. This macro must
1613 be defined if `ELIMINABLE_REGS' is defined. */
1615 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1616 (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1619 /* Passing Function Arguments on the Stack. */
1621 /* If defined, the maximum amount of space required for outgoing arguments will
1622 be computed and placed into the variable
1623 `crtl->outgoing_args_size'. No space will be pushed onto the
1624 stack for each call; instead, the function prologue should increase the
1625 stack frame size by this amount.
1627 Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1629 #define ACCUMULATE_OUTGOING_ARGS 1
1631 /* A C expression that should indicate the number of bytes of its own arguments
1632 that a function pops on returning, or 0 if the function pops no arguments
1633 and the caller must therefore pop them all after the function returns.
1635 FUNDECL is a C variable whose value is a tree node that describes the
1636 function in question. Normally it is a node of type `FUNCTION_DECL' that
1637 describes the declaration of the function. From this it is possible to
1638 obtain the DECL_ATTRIBUTES of the function.
1640 FUNTYPE is a C variable whose value is a tree node that describes the
1641 function in question. Normally it is a node of type `FUNCTION_TYPE' that
1642 describes the data type of the function. From this it is possible to obtain
1643 the data types of the value and arguments (if known).
1645 When a call to a library function is being considered, FUNTYPE will contain
1646 an identifier node for the library function. Thus, if you need to
1647 distinguish among various library functions, you can do so by their names.
1648 Note that "library function" in this context means a function used to
1649 perform arithmetic, whose name is known specially in the compiler and was
1650 not mentioned in the C code being compiled.
1652 STACK-SIZE is the number of bytes of arguments passed on the stack. If a
1653 variable number of bytes is passed, it is zero, and argument popping will
1654 always be the responsibility of the calling function.
1656 On the VAX, all functions always pop their arguments, so the definition of
1657 this macro is STACK-SIZE. On the 68000, using the standard calling
1658 convention, no functions pop their arguments, so the value of the macro is
1659 always 0 in this case. But an alternative calling convention is available
1660 in which functions that take a fixed number of arguments pop them but other
1661 functions (such as `printf') pop nothing (the caller pops all). When this
1662 convention is in use, FUNTYPE is examined to determine whether a function
1663 takes a fixed number of arguments. */
1664 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1667 /* The number of register assigned to holding function arguments. */
1669 #define FRV_NUM_ARG_REGS 6
1671 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1672 frv_function_arg (&CUM, MODE, TYPE, NAMED, FALSE)
1674 /* Define this macro if the target machine has "register windows", so that the
1675 register in which a function sees an arguments is not necessarily the same
1676 as the one in which the caller passed the argument.
1678 For such machines, `FUNCTION_ARG' computes the register in which the caller
1679 passes the value, and `FUNCTION_INCOMING_ARG' should be defined in a similar
1680 fashion to tell the function being called where the arguments will arrive.
1682 If `FUNCTION_INCOMING_ARG' is not defined, `FUNCTION_ARG' serves both
1685 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1686 frv_function_arg (&CUM, MODE, TYPE, NAMED, TRUE)
1688 /* A C type for declaring a variable that is used as the first argument of
1689 `FUNCTION_ARG' and other related values. For some target machines, the type
1690 `int' suffices and can hold the number of bytes of argument so far.
1692 There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1693 that have been passed on the stack. The compiler has other variables to
1694 keep track of that. For target machines on which all arguments are passed
1695 on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1696 however, the data structure must exist and should not be empty, so use
1698 #define CUMULATIVE_ARGS int
1700 /* A C statement (sans semicolon) for initializing the variable CUM for the
1701 state at the beginning of the argument list. The variable has type
1702 `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
1703 of the function which will receive the args, or 0 if the args are to a
1704 compiler support library function. The value of INDIRECT is nonzero when
1705 processing an indirect call, for example a call through a function pointer.
1706 The value of INDIRECT is zero for a call to an explicitly named function, a
1707 library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1708 arguments for the function being compiled.
1710 When processing a call to a compiler support library function, LIBNAME
1711 identifies which one. It is a `symbol_ref' rtx which contains the name of
1712 the function, as a string. LIBNAME is 0 when an ordinary C function call is
1713 being processed. Thus, each time this macro is called, either LIBNAME or
1714 FNTYPE is nonzero, but never both of them at once. */
1716 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1717 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
1719 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1720 arguments for the function being compiled. If this macro is undefined,
1721 `INIT_CUMULATIVE_ARGS' is used instead.
1723 The value passed for LIBNAME is always 0, since library routines with
1724 special calling conventions are never compiled with GCC. The argument
1725 LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'. */
1727 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1728 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
1730 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1731 advance past an argument in the argument list. The values MODE, TYPE and
1732 NAMED describe that argument. Once this is done, the variable CUM is
1733 suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
1735 This macro need not do anything if the argument in question was passed on
1736 the stack. The compiler knows how to track the amount of stack space used
1737 for arguments without any special help. */
1738 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1739 frv_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1741 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1742 argument with the specified mode and type. If it is not defined,
1743 `PARM_BOUNDARY' is used for all arguments. */
1745 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1746 frv_function_arg_boundary (MODE, TYPE)
1748 /* A C expression that is nonzero if REGNO is the number of a hard register in
1749 which function arguments are sometimes passed. This does *not* include
1750 implicit arguments such as the static chain and the structure-value address.
1751 On many machines, no registers can be used for this purpose since all
1752 function arguments are pushed on the stack. */
1753 #define FUNCTION_ARG_REGNO_P(REGNO) \
1754 ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1757 /* How Scalar Function Values are Returned. */
1759 /* The number of the hard register that is used to return a scalar value from a
1761 #define RETURN_VALUE_REGNUM (GPR_FIRST + 8)
1763 /* A C expression to create an RTX representing the place where a function
1764 returns a value of data type VALTYPE. VALTYPE is a tree node representing a
1765 data type. Write `TYPE_MODE (VALTYPE)' to get the machine mode used to
1766 represent that type. On many machines, only the mode is relevant.
1767 (Actually, on most machines, scalar values are returned in the same place
1768 regardless of mode).
1770 If `TARGET_PROMOTE_FUNCTION_RETURN' is defined to return true, you
1771 must apply the same promotion rules specified in `PROMOTE_MODE' if
1772 VALTYPE is a scalar type.
1774 If the precise function being called is known, FUNC is a tree node
1775 (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This makes it
1776 possible to use a different value-returning convention for specific
1777 functions when all their calls are known.
1779 `FUNCTION_VALUE' is not used for return vales with aggregate data types,
1780 because these are returned in another way. See
1781 `TARGET_STRUCT_VALUE_RTX' and related macros, below. */
1782 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1783 gen_rtx_REG (TYPE_MODE (VALTYPE), RETURN_VALUE_REGNUM)
1785 /* A C expression to create an RTX representing the place where a library
1786 function returns a value of mode MODE.
1788 Note that "library function" in this context means a compiler support
1789 routine, used to perform arithmetic, whose name is known specially by the
1790 compiler and was not mentioned in the C code being compiled.
1792 The definition of `LIBRARY_VALUE' need not be concerned aggregate data
1793 types, because none of the library functions returns such types. */
1794 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, RETURN_VALUE_REGNUM)
1796 /* A C expression that is nonzero if REGNO is the number of a hard register in
1797 which the values of called function may come back.
1799 A register whose use for returning values is limited to serving as the
1800 second of a pair (for a value of type `double', say) need not be recognized
1801 by this macro. So for most machines, this definition suffices:
1803 #define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN)
1805 If the machine has register windows, so that the caller and the called
1806 function use different registers for the return value, this macro should
1807 recognize only the caller's register numbers. */
1808 #define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RETURN_VALUE_REGNUM)
1811 /* How Large Values are Returned. */
1813 /* The number of the register that is used to pass the structure
1815 #define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
1818 /* Function Entry and Exit. */
1820 /* Define this macro as a C expression that is nonzero if the return
1821 instruction or the function epilogue ignores the value of the stack pointer;
1822 in other words, if it is safe to delete an instruction to adjust the stack
1823 pointer before a return from the function.
1825 Note that this macro's value is relevant only for functions for which frame
1826 pointers are maintained. It is never safe to delete a final stack
1827 adjustment in a function that has no frame pointer, and the compiler knows
1828 this regardless of `EXIT_IGNORE_STACK'. */
1829 #define EXIT_IGNORE_STACK 1
1831 /* Generating Code for Profiling. */
1833 /* A C statement or compound statement to output to FILE some assembler code to
1834 call the profiling subroutine `mcount'. Before calling, the assembler code
1835 must load the address of a counter variable into a register where `mcount'
1836 expects to find the address. The name of this variable is `LP' followed by
1837 the number LABELNO, so you would generate the name using `LP%d' in a
1840 The details of how the address should be passed to `mcount' are determined
1841 by your operating system environment, not by GCC. To figure them out,
1842 compile a small program for profiling using the system's installed C
1843 compiler and look at the assembler code that results.
1845 This declaration must be present, but it can be an abort if profiling is
1848 #define FUNCTION_PROFILER(FILE, LABELNO)
1850 /* Trampolines for Nested Functions. */
1852 /* A C expression for the size in bytes of the trampoline, as an integer. */
1853 #define TRAMPOLINE_SIZE frv_trampoline_size ()
1855 /* Alignment required for trampolines, in bits.
1857 If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
1858 aligning trampolines. */
1859 #define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
1861 /* A C statement to initialize the variable parts of a trampoline. ADDR is an
1862 RTX for the address of the trampoline; FNADDR is an RTX for the address of
1863 the nested function; STATIC_CHAIN is an RTX for the static chain value that
1864 should be passed to the function when it is called. */
1865 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
1866 frv_initialize_trampoline (ADDR, FNADDR, STATIC_CHAIN)
1868 /* Define this macro if trampolines need a special subroutine to do their work.
1869 The macro should expand to a series of `asm' statements which will be
1870 compiled with GCC. They go in a library function named
1871 `__transfer_from_trampoline'.
1873 If you need to avoid executing the ordinary prologue code of a compiled C
1874 function when you jump to the subroutine, you can do so by placing a special
1875 label of your own in the assembler code. Use one `asm' statement to
1876 generate an assembler label, and another to make the label global. Then
1877 trampolines can use that label to jump directly to your special assembler
1880 #ifdef __FRV_UNDERSCORE__
1881 #define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
1883 #define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
1886 #define Twrite _write
1889 #define TRANSFER_FROM_TRAMPOLINE \
1890 extern int Twrite (int, const void *, unsigned); \
1893 __trampoline_setup (short * addr, int size, int fnaddr, int sc) \
1895 extern short __trampoline_template[]; \
1896 short * to = addr; \
1897 short * from = &__trampoline_template[0]; \
1902 Twrite (2, "__trampoline_setup bad size\n", \
1903 sizeof ("__trampoline_setup bad size\n") - 1); \
1908 to[1] = (short)(fnaddr); \
1910 to[3] = (short)(sc); \
1912 to[5] = (short)(fnaddr >> 16); \
1914 to[7] = (short)(sc >> 16); \
1918 for (i = 0; i < 20; i++) \
1919 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1923 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
1925 TRAMPOLINE_TEMPLATE_NAME ":\n" \
1926 "\tsetlos #0, gr6\n" /* jump register */ \
1927 "\tsetlos #0, gr7\n" /* static chain */ \
1928 "\tsethi #0, gr6\n" \
1929 "\tsethi #0, gr7\n" \
1930 "\tjmpl @(gr0,gr6)\n");
1932 #define TRANSFER_FROM_TRAMPOLINE \
1933 extern int Twrite (int, const void *, unsigned); \
1936 __trampoline_setup (addr, size, fnaddr, sc) \
1942 extern short __trampoline_template[]; \
1943 short * from = &__trampoline_template[0]; \
1945 short **desc = (short **)addr; \
1946 short * to = addr + 4; \
1950 Twrite (2, "__trampoline_setup bad size\n", \
1951 sizeof ("__trampoline_setup bad size\n") - 1); \
1955 /* Create a function descriptor with the address of the code below
1956 and NULL as the FDPIC value. We don't need the real GOT value
1957 here, since we don't use it, so we use NULL, that is just as
1964 to[1] = (short)(fnaddr); \
1966 to[3] = (short)(sc); \
1968 to[5] = (short)(fnaddr >> 16); \
1970 to[7] = (short)(sc >> 16); \
1973 to[10] = from[10]; \
1974 to[11] = from[11]; \
1976 for (i = 0; i < size; i++) \
1977 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1981 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
1983 TRAMPOLINE_TEMPLATE_NAME ":\n" \
1984 "\tsetlos #0, gr6\n" /* Jump register. */ \
1985 "\tsetlos #0, gr7\n" /* Static chain. */ \
1986 "\tsethi #0, gr6\n" \
1987 "\tsethi #0, gr7\n" \
1988 "\tldd @(gr6,gr0),gr14\n" \
1989 "\tjmpl @(gr14,gr0)\n" \
1994 /* Addressing Modes. */
1996 /* A C expression that is 1 if the RTX X is a constant which is a valid
1997 address. On most machines, this can be defined as `CONSTANT_P (X)', but a
1998 few machines are more restrictive in which constant addresses are supported.
2000 `CONSTANT_P' accepts integer-values expressions whose values are not
2001 explicitly known, such as `symbol_ref', `label_ref', and `high' expressions
2002 and `const' arithmetic expressions, in addition to `const_int' and
2003 `const_double' expressions. */
2004 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
2006 /* A number, the maximum number of registers that can appear in a valid memory
2007 address. Note that it is up to you to specify a value equal to the maximum
2008 number that `GO_IF_LEGITIMATE_ADDRESS' would ever accept. */
2009 #define MAX_REGS_PER_ADDRESS 2
2011 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
2012 RTX) is a legitimate memory address on the target machine for a memory
2013 operand of mode MODE.
2015 It usually pays to define several simpler macros to serve as subroutines for
2016 this one. Otherwise it may be too complicated to understand.
2018 This macro must exist in two variants: a strict variant and a non-strict
2019 one. The strict variant is used in the reload pass. It must be defined so
2020 that any pseudo-register that has not been allocated a hard register is
2021 considered a memory reference. In contexts where some kind of register is
2022 required, a pseudo-register with no hard register must be rejected.
2024 The non-strict variant is used in other passes. It must be defined to
2025 accept all pseudo-registers in every context where some kind of register is
2028 Compiler source files that want to use the strict variant of this macro
2029 define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
2030 conditional to define the strict variant in that case and the non-strict
2033 Subroutines to check for acceptable registers for various purposes (one for
2034 base registers, one for index registers, and so on) are typically among the
2035 subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
2036 subroutine macros need have two variants; the higher levels of macros may be
2037 the same whether strict or not.
2039 Normally, constant addresses which are the sum of a `symbol_ref' and an
2040 integer are stored inside a `const' RTX to mark them as constant.
2041 Therefore, there is no need to recognize such sums specifically as
2042 legitimate addresses. Normally you would simply recognize any `const' as
2045 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
2046 are not marked with `const'. It assumes that a naked `plus' indicates
2047 indexing. If so, then you *must* reject such naked constant sums as
2048 illegitimate addresses, so that none of them will be given to
2049 `PRINT_OPERAND_ADDRESS'.
2051 On some machines, whether a symbolic address is legitimate depends on the
2052 section that the address refers to. On these machines, define the macro
2053 `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
2054 then check for it here. When you see a `const', you will have to look
2055 inside it to find the `symbol_ref' in order to determine the section.
2057 The best way to modify the name string is by adding text to the beginning,
2058 with suitable punctuation to prevent any ambiguity. Allocate the new name
2059 in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
2060 remove and decode the added text and output the name accordingly, and define
2061 `(* targetm.strip_name_encoding)' to access the original name string.
2063 You can check the information stored here into the `symbol_ref' in the
2064 definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
2065 `PRINT_OPERAND_ADDRESS'. */
2067 #ifdef REG_OK_STRICT
2068 #define REG_OK_STRICT_P 1
2070 #define REG_OK_STRICT_P 0
2073 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
2076 if (frv_legitimate_address_p (MODE, X, REG_OK_STRICT_P, \
2082 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
2083 use as a base register. For hard registers, it should always accept those
2084 which the hardware permits and reject the others. Whether the macro accepts
2085 or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
2086 described above. This usually requires two variant definitions, of which
2087 `REG_OK_STRICT' controls the one actually used. */
2088 #ifdef REG_OK_STRICT
2089 #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
2091 #define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
2094 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
2095 use as an index register.
2097 The difference between an index register and a base register is that the
2098 index register may be scaled. If an address involves the sum of two
2099 registers, neither one of them scaled, then either one may be labeled the
2100 "base" and the other the "index"; but whichever labeling is used must fit
2101 the machine's constraints of which registers may serve in each capacity.
2102 The compiler will try both labelings, looking for one that is valid, and
2103 will reload one or both registers only if neither labeling works. */
2104 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
2106 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2108 rtx new_x = frv_legitimize_address (X, OLDX, MODE); \
2116 #define FIND_BASE_TERM frv_find_base_term
2118 /* A C statement or compound statement with a conditional `goto LABEL;'
2119 executed if memory address X (an RTX) can have different meanings depending
2120 on the machine mode of the memory reference it is used for or if the address
2121 is valid for some modes but not others.
2123 Autoincrement and autodecrement addresses typically have mode-dependent
2124 effects because the amount of the increment or decrement is the size of the
2125 operand being addressed. Some machines have other mode-dependent addresses.
2126 Many RISC machines have no mode-dependent addresses.
2128 You may assume that ADDR is a valid address for the machine. */
2129 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
2131 /* A C expression that is nonzero if X is a legitimate constant for an
2132 immediate operand on the target machine. You can assume that X satisfies
2133 `CONSTANT_P', so you need not check this. In fact, `1' is a suitable
2134 definition for this macro on machines where anything `CONSTANT_P' is valid. */
2135 #define LEGITIMATE_CONSTANT_P(X) frv_legitimate_constant_p (X)
2137 /* The load-and-update commands allow pre-modification in addresses.
2138 The index has to be in a register. */
2139 #define HAVE_PRE_MODIFY_REG 1
2142 /* We define extra CC modes in frv-modes.def so we need a selector. */
2144 #define SELECT_CC_MODE frv_select_cc_mode
2146 /* A C expression whose value is one if it is always safe to reverse a
2147 comparison whose mode is MODE. If `SELECT_CC_MODE' can ever return MODE for
2148 a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
2151 You need not define this macro if it would always returns zero or if the
2152 floating-point format is anything other than `IEEE_FLOAT_FORMAT'. For
2153 example, here is the definition used on the SPARC, where floating-point
2154 inequality comparisons are always given `CCFPEmode':
2156 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) */
2158 /* On frv, don't consider floating point comparisons to be reversible. In
2159 theory, fp equality comparisons can be reversible. */
2160 #define REVERSIBLE_CC_MODE(MODE) \
2161 ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
2163 /* Frv CCR_MODE's are not reversible. */
2164 #define REVERSE_CONDEXEC_PREDICATES_P(x,y) 0
2167 /* Describing Relative Costs of Operations. */
2169 /* A C expression for the cost of moving data from a register in class FROM to
2170 one in class TO. The classes are expressed using the enumeration values
2171 such as `GENERAL_REGS'. A value of 4 is the default; other values are
2172 interpreted relative to that.
2174 It is not required that the cost always equal 2 when FROM is the same as TO;
2175 on some machines it is expensive to move between registers if they are not
2178 If reload sees an insn consisting of a single `set' between two hard
2179 registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
2180 value of 2, reload does not check to ensure that the constraints of the insn
2181 are met. Setting a cost of other than 2 will allow reload to verify that
2182 the constraints are met. You should do this if the `movM' pattern's
2183 constraints do not allow such copying. */
2184 #define REGISTER_MOVE_COST(MODE, FROM, TO) frv_register_move_cost (FROM, TO)
2186 /* A C expression for the cost of moving data of mode M between a register and
2187 memory. A value of 2 is the default; this cost is relative to those in
2188 `REGISTER_MOVE_COST'.
2190 If moving between registers and memory is more expensive than between two
2191 registers, you should define this macro to express the relative cost. */
2192 #define MEMORY_MOVE_COST(M,C,I) 4
2194 /* A C expression for the cost of a branch instruction. A value of 1 is the
2195 default; other values are interpreted relative to that. */
2196 #define BRANCH_COST frv_branch_cost_int
2198 /* Define this macro as a C expression which is nonzero if accessing less than
2199 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
2200 word of memory, i.e., if such access require more than one instruction or if
2201 there is no difference in cost between byte and (aligned) word loads.
2203 When this macro is not defined, the compiler will access a field by finding
2204 the smallest containing object; when it is defined, a fullword load will be
2205 used if alignment permits. Unless bytes accesses are faster than word
2206 accesses, using word accesses is preferable since it may eliminate
2207 subsequent memory access if subsequent accesses occur to other fields in the
2208 same word of the structure, but to different bytes. */
2209 #define SLOW_BYTE_ACCESS 1
2211 /* Define this macro if it is as good or better to call a constant function
2212 address than to call an address kept in a register. */
2213 #define NO_FUNCTION_CSE
2216 /* Dividing the output into sections. */
2218 /* A C expression whose value is a string containing the assembler operation
2219 that should precede instructions and read-only data. Normally `".text"' is
2221 #define TEXT_SECTION_ASM_OP "\t.text"
2223 /* A C expression whose value is a string containing the assembler operation to
2224 identify the following data as writable initialized data. Normally
2225 `".data"' is right. */
2226 #define DATA_SECTION_ASM_OP "\t.data"
2228 /* If defined, a C expression whose value is a string containing the
2229 assembler operation to identify the following data as
2230 uninitialized global data. If not defined, and neither
2231 `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2232 uninitialized global data will be output in the data section if
2233 `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2235 #define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
2237 /* Short Data Support */
2238 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
2240 /* On svr4, we *do* have support for the .init and .fini sections, and we
2241 can put stuff in there to be executed before and after `main'. We let
2242 crtstuff.c and other files know this by defining the following symbols.
2243 The definitions say how to change sections to the .init and .fini
2244 sections. This is the same for all known svr4 assemblers.
2246 The standard System V.4 macros will work, but they look ugly in the
2247 assembly output, so redefine them. */
2249 #undef INIT_SECTION_ASM_OP
2250 #undef FINI_SECTION_ASM_OP
2251 #define INIT_SECTION_ASM_OP "\t.section .init,\"ax\""
2252 #define FINI_SECTION_ASM_OP "\t.section .fini,\"ax\""
2254 #undef CTORS_SECTION_ASM_OP
2255 #undef DTORS_SECTION_ASM_OP
2256 #define CTORS_SECTION_ASM_OP "\t.section\t.ctors,\"a\""
2257 #define DTORS_SECTION_ASM_OP "\t.section\t.dtors,\"a\""
2259 /* A C expression whose value is a string containing the assembler operation to
2260 switch to the fixup section that records all initialized pointers in a -fpic
2261 program so they can be changed program startup time if the program is loaded
2262 at a different address than linked for. */
2263 #define FIXUP_SECTION_ASM_OP "\t.section .rofixup,\"a\""
2265 /* Position Independent Code. */
2267 /* A C expression that is nonzero if X is a legitimate immediate operand on the
2268 target machine when generating position independent code. You can assume
2269 that X satisfies `CONSTANT_P', so you need not check this. You can also
2270 assume FLAG_PIC is true, so you need not check it either. You need not
2271 define this macro if all constants (including `SYMBOL_REF') can be immediate
2272 operands when generating position independent code. */
2273 #define LEGITIMATE_PIC_OPERAND_P(X) \
2274 ( GET_CODE (X) == CONST_INT \
2275 || GET_CODE (X) == CONST_DOUBLE \
2276 || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT) \
2277 || got12_operand (X, VOIDmode)) \
2280 /* The Overall Framework of an Assembler File. */
2282 /* A C string constant describing how to begin a comment in the target
2283 assembler language. The compiler assumes that the comment will end at the
2285 #define ASM_COMMENT_START ";"
2287 /* A C string constant for text to be output before each `asm' statement or
2288 group of consecutive ones. Normally this is `"#APP"', which is a comment
2289 that has no effect on most assemblers but tells the GNU assembler that it
2290 must check the lines that follow for all valid assembler constructs. */
2291 #define ASM_APP_ON "#APP\n"
2293 /* A C string constant for text to be output after each `asm' statement or
2294 group of consecutive ones. Normally this is `"#NO_APP"', which tells the
2295 GNU assembler to resume making the time-saving assumptions that are valid
2296 for ordinary compiler output. */
2297 #define ASM_APP_OFF "#NO_APP\n"
2300 /* Output of Data. */
2302 /* This is how to output a label to dwarf/dwarf2. */
2303 #define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL) \
2305 fprintf (STREAM, "\t.picptr\t"); \
2306 assemble_name (STREAM, LABEL); \
2309 /* Whether to emit the gas specific dwarf2 line number support. */
2310 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
2312 /* Output of Uninitialized Variables. */
2314 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2315 assembler definition of a local-common-label named NAME whose size is SIZE
2316 bytes. The variable ROUNDED is the size rounded up to whatever alignment
2319 Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
2320 before and after that, output the additional assembler syntax for defining
2321 the name, and a newline.
2323 This macro controls how the assembler definitions of uninitialized static
2324 variables are output. */
2325 #undef ASM_OUTPUT_LOCAL
2327 /* Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate,
2328 explicit argument. If you define this macro, it is used in place of
2329 `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required
2330 alignment of the variable. The alignment is specified as the number of
2333 Defined in svr4.h. */
2334 #undef ASM_OUTPUT_ALIGNED_LOCAL
2336 /* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME. */
2337 extern int size_directive_output
;
2339 /* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
2340 parameter - the DECL of variable to be output, if there is one.
2341 This macro can be called with DECL == NULL_TREE. If you define
2342 this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
2343 `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
2344 handling the destination of the variable. */
2345 #undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
2346 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN) \
2348 if ((SIZE) > 0 && (SIZE) <= g_switch_value) \
2349 switch_to_section (get_named_section (NULL, ".sbss", 0)); \
2351 switch_to_section (bss_section); \
2352 ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT)); \
2353 ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL); \
2354 ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1); \
2358 /* Output and Generation of Labels. */
2360 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2361 assembler definition of a label named NAME. Use the expression
2362 `assemble_name (STREAM, NAME)' to output the name itself; before and after
2363 that, output the additional assembler syntax for defining the name, and a
2365 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
2367 assemble_name (STREAM, NAME); \
2368 fputs (":\n", STREAM); \
2371 /* Globalizing directive for a label. */
2372 #define GLOBAL_ASM_OP "\t.globl "
2374 /* A C statement to store into the string STRING a label whose name is made
2375 from the string PREFIX and the number NUM.
2377 This string, when output subsequently by `assemble_name', should produce the
2378 output that `(*targetm.asm_out.internal_label)' would produce with the same PREFIX
2381 If the string begins with `*', then `assemble_name' will output the rest of
2382 the string unchanged. It is often convenient for
2383 `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the string doesn't
2384 start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and
2385 may change it. (Of course, `ASM_OUTPUT_LABELREF' is also part of your
2386 machine description, so you should know what it does on your machine.)
2388 Defined in svr4.h. */
2389 #undef ASM_GENERATE_INTERNAL_LABEL
2390 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
2392 sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM); \
2396 /* Macros Controlling Initialization Routines. */
2398 /* If defined, a C string constant for the assembler operation to identify the
2399 following data as initialization code. If not defined, GCC will assume
2400 such a section does not exist. When you are using special sections for
2401 initialization and termination functions, this macro also controls how
2402 `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions.
2404 Defined in svr4.h. */
2405 #undef INIT_SECTION_ASM_OP
2407 /* If defined, `main' will call `__main' despite the presence of
2408 `INIT_SECTION_ASM_OP'. This macro should be defined for systems where the
2409 init section is not actually run automatically, but is still useful for
2410 collecting the lists of constructors and destructors. */
2411 #define INVOKE__main
2413 /* Output of Assembler Instructions. */
2415 /* A C initializer containing the assembler's names for the machine registers,
2416 each one as a C string constant. This is what translates register numbers
2417 in the compiler into assembler language. */
2418 #define REGISTER_NAMES \
2420 "gr0", "sp", "fp", "gr3", "gr4", "gr5", "gr6", "gr7", \
2421 "gr8", "gr9", "gr10", "gr11", "gr12", "gr13", "gr14", "gr15", \
2422 "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23", \
2423 "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31", \
2424 "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39", \
2425 "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47", \
2426 "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55", \
2427 "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63", \
2429 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
2430 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
2431 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
2432 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
2433 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
2434 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
2435 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
2436 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
2438 "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3", \
2439 "cc0", "cc1", "cc2", "cc3", "cc4", "cc5", "cc6", "cc7", \
2440 "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7", \
2441 "acc8", "acc9", "acc10", "acc11", \
2442 "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7", \
2443 "accg8", "accg9", "accg10", "accg11", \
2444 "ap", "lr", "lcr", "iacc0h", "iacc0l" \
2447 /* Define this macro if you are using an unusual assembler that
2448 requires different names for the machine instructions.
2450 The definition is a C statement or statements which output an
2451 assembler instruction opcode to the stdio stream STREAM. The
2452 macro-operand PTR is a variable of type `char *' which points to
2453 the opcode name in its "internal" form--the form that is written
2454 in the machine description. The definition should output the
2455 opcode name to STREAM, performing any translation you desire, and
2456 increment the variable PTR to point at the end of the opcode so
2457 that it will not be output twice.
2459 In fact, your macro definition may process less than the entire
2460 opcode name, or more than the opcode name; but if you want to
2461 process text that includes `%'-sequences to substitute operands,
2462 you must take care of the substitution yourself. Just be sure to
2463 increment PTR over whatever text should not be output normally.
2465 If you need to look at the operand values, they can be found as the
2466 elements of `recog_operand'.
2468 If the macro definition does nothing, the instruction is output in
2471 #define ASM_OUTPUT_OPCODE(STREAM, PTR)\
2472 (PTR) = frv_asm_output_opcode (STREAM, PTR)
2474 /* If defined, a C statement to be executed just prior to the output
2475 of assembler code for INSN, to modify the extracted operands so
2476 they will be output differently.
2478 Here the argument OPVEC is the vector containing the operands
2479 extracted from INSN, and NOPERANDS is the number of elements of
2480 the vector which contain meaningful data for this insn. The
2481 contents of this vector are what will be used to convert the insn
2482 template into assembler code, so you can change the assembler
2483 output by changing the contents of the vector.
2485 This macro is useful when various assembler syntaxes share a single
2486 file of instruction patterns; by defining this macro differently,
2487 you can cause a large class of instructions to be output
2488 differently (such as with rearranged operands). Naturally,
2489 variations in assembler syntax affecting individual insn patterns
2490 ought to be handled by writing conditional output routines in
2493 If this macro is not defined, it is equivalent to a null statement. */
2495 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
2496 frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2499 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2500 for an instruction operand X. X is an RTL expression.
2502 CODE is a value that can be used to specify one of several ways of printing
2503 the operand. It is used when identical operands must be printed differently
2504 depending on the context. CODE comes from the `%' specification that was
2505 used to request printing of the operand. If the specification was just
2506 `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is
2507 the ASCII code for LTR.
2509 If X is a register, this macro should print the register's name. The names
2510 can be found in an array `reg_names' whose type is `char *[]'. `reg_names'
2511 is initialized from `REGISTER_NAMES'.
2513 When the machine description has a specification `%PUNCT' (a `%' followed by
2514 a punctuation character), this macro is called with a null pointer for X and
2515 the punctuation character for CODE. */
2516 #define PRINT_OPERAND(STREAM, X, CODE) frv_print_operand (STREAM, X, CODE)
2518 /* A C expression which evaluates to true if CODE is a valid punctuation
2519 character for use in the `PRINT_OPERAND' macro. If
2520 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation
2521 characters (except for the standard one, `%') are used in this way. */
2523 # == hint operand -- always zero for now
2524 @ == small data base register (gr16)
2525 ~ == pic register (gr17)
2526 * == temporary integer CCR register (cr3)
2527 & == temporary integer ICC register (icc3) */
2528 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2529 ((CODE) == '.' || (CODE) == '#' || (CODE) == '@' || (CODE) == '~' \
2530 || (CODE) == '*' || (CODE) == '&')
2532 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2533 for an instruction operand that is a memory reference whose address is X. X
2534 is an RTL expression.
2536 On some machines, the syntax for a symbolic address depends on the section
2537 that the address refers to. On these machines, define the macro
2538 `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
2539 then check for it here.
2541 This declaration must be present. */
2542 #define PRINT_OPERAND_ADDRESS(STREAM, X) frv_print_operand_address (STREAM, X)
2544 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2545 `%I' options of `asm_fprintf' (see `final.c'). These are useful when a
2546 single `md' file must support multiple assembler formats. In that case, the
2547 various `tm.h' files can define these macros differently.
2549 USER_LABEL_PREFIX is defined in svr4.h. */
2550 #undef USER_LABEL_PREFIX
2551 #define USER_LABEL_PREFIX ""
2552 #define REGISTER_PREFIX ""
2553 #define LOCAL_LABEL_PREFIX "."
2554 #define IMMEDIATE_PREFIX "#"
2557 /* Output of dispatch tables. */
2559 /* This macro should be provided on machines where the addresses in a dispatch
2560 table are relative to the table's own address.
2562 The definition should be a C statement to output to the stdio stream STREAM
2563 an assembler pseudo-instruction to generate a difference between two labels.
2564 VALUE and REL are the numbers of two internal labels. The definitions of
2565 these labels are output using `(*targetm.asm_out.internal_label)', and they must be
2566 printed in the same way here. For example,
2568 fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
2569 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2570 fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
2572 /* This macro should be provided on machines where the addresses in a dispatch
2575 The definition should be a C statement to output to the stdio stream STREAM
2576 an assembler pseudo-instruction to generate a reference to a label. VALUE
2577 is the number of an internal label whose definition is output using
2578 `(*targetm.asm_out.internal_label)'. For example,
2580 fprintf (STREAM, "\t.word L%d\n", VALUE) */
2581 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2582 fprintf (STREAM, "\t.word .L%d\n", VALUE)
2584 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
2586 /* Assembler Commands for Exception Regions. */
2588 /* Define this macro to 0 if your target supports DWARF 2 frame unwind
2589 information, but it does not yet work with exception handling. Otherwise,
2590 if your target supports this information (if it defines
2591 `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
2592 `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
2594 If this macro is defined to 1, the DWARF 2 unwinder will be the default
2595 exception handling mechanism; otherwise, setjmp/longjmp will be used by
2598 If this macro is defined to anything, the DWARF 2 unwinder will be used
2599 instead of inline unwinders and __unwind_function in the non-setjmp case. */
2600 #define DWARF2_UNWIND_INFO 1
2602 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2604 /* Assembler Commands for Alignment. */
2606 /* A C statement to output to the stdio stream STREAM an assembler instruction
2607 to advance the location counter by NBYTES bytes. Those bytes should be zero
2608 when loaded. NBYTES will be a C expression of type `int'.
2610 Defined in svr4.h. */
2611 #undef ASM_OUTPUT_SKIP
2612 #define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
2613 fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
2615 /* A C statement to output to the stdio stream STREAM an assembler command to
2616 advance the location counter to a multiple of 2 to the POWER bytes. POWER
2617 will be a C expression of type `int'. */
2618 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2619 fprintf ((STREAM), "\t.p2align %d\n", (POWER))
2621 /* Inside the text section, align with unpacked nops rather than zeros. */
2622 #define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
2623 fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
2625 /* Macros Affecting all Debug Formats. */
2627 /* A C expression that returns the DBX register number for the compiler
2628 register number REGNO. In simple cases, the value of this expression may be
2629 REGNO itself. But sometimes there are some registers that the compiler
2630 knows about and DBX does not, or vice versa. In such cases, some register
2631 may need to have one number in the compiler and another for DBX.
2633 If two registers have consecutive numbers inside GCC, and they can be
2634 used as a pair to hold a multiword value, then they *must* have consecutive
2635 numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
2636 will be unable to access such a pair, because they expect register pairs to
2637 be consecutive in their own numbering scheme.
2639 If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
2640 preserve register pairs, then what you must do instead is redefine the
2641 actual register numbering scheme.
2643 This declaration is required. */
2644 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2646 /* A C expression that returns the type of debugging output GCC produces
2647 when the user specifies `-g' or `-ggdb'. Define this if you have arranged
2648 for GCC to support more than one format of debugging output. Currently,
2649 the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
2650 `DWARF2_DEBUG', and `XCOFF_DEBUG'.
2652 The value of this macro only affects the default debugging output; the user
2653 can always get a specific type of output by using `-gstabs', `-gcoff',
2654 `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
2656 Defined in svr4.h. */
2657 #undef PREFERRED_DEBUGGING_TYPE
2658 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
2660 /* Miscellaneous Parameters. */
2662 /* An alias for a machine mode name. This is the machine mode that elements of
2663 a jump-table should have. */
2664 #define CASE_VECTOR_MODE SImode
2666 /* Define this macro if operations between registers with integral mode smaller
2667 than a word are always performed on the entire register. Most RISC machines
2668 have this property and most CISC machines do not. */
2669 #define WORD_REGISTER_OPERATIONS
2671 /* Define this macro to be a C expression indicating when insns that read
2672 memory in MODE, an integral mode narrower than a word, set the bits outside
2673 of MODE to be either the sign-extension or the zero-extension of the data
2674 read. Return `SIGN_EXTEND' for values of MODE for which the insn
2675 sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
2678 This macro is not called with MODE non-integral or with a width greater than
2679 or equal to `BITS_PER_WORD', so you may return any value in this case. Do
2680 not define this macro if it would always return `UNKNOWN'. On machines where
2681 this macro is defined, you will normally define it as the constant
2682 `SIGN_EXTEND' or `ZERO_EXTEND'. */
2683 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
2685 /* Define if loading short immediate values into registers sign extends. */
2686 #define SHORT_IMMEDIATES_SIGN_EXTEND
2688 /* The maximum number of bytes that a single instruction can move quickly from
2689 memory to memory. */
2692 /* A C expression which is nonzero if on this machine it is safe to "convert"
2693 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2694 than INPREC) by merely operating on it as if it had only OUTPREC bits.
2696 On many machines, this expression can be 1.
2698 When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
2699 which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the
2700 case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
2702 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2704 /* An alias for the machine mode for pointers. On most machines, define this
2705 to be the integer mode corresponding to the width of a hardware pointer;
2706 `SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines
2707 you must define this to be one of the partial integer modes, such as
2710 The width of `Pmode' must be at least as large as the value of
2711 `POINTER_SIZE'. If it is not equal, you must define the macro
2712 `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'. */
2713 #define Pmode SImode
2715 /* An alias for the machine mode used for memory references to functions being
2716 called, in `call' RTL expressions. On most machines this should be
2718 #define FUNCTION_MODE QImode
2720 /* Define this macro to handle System V style pragmas: #pragma pack and
2721 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
2724 Defined in svr4.h. */
2725 #define HANDLE_SYSV_PRAGMA 1
2727 /* A C expression for the maximum number of instructions to execute via
2728 conditional execution instructions instead of a branch. A value of
2729 BRANCH_COST+1 is the default if the machine does not use
2730 cc0, and 1 if it does use cc0. */
2731 #define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
2733 /* A C expression to modify the code described by the conditional if
2734 information CE_INFO, possibly updating the tests in TRUE_EXPR, and
2735 FALSE_EXPR for converting if-then and if-then-else code to conditional
2736 instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
2737 tests cannot be converted. */
2738 #define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR) \
2739 frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
2741 /* A C expression to modify the code described by the conditional if
2742 information CE_INFO, for the basic block BB, possibly updating the tests in
2743 TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
2744 if-then-else code to conditional instructions. OLD_TRUE and OLD_FALSE are
2745 the previous tests. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
2746 the tests cannot be converted. */
2747 #define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
2748 frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
2750 /* A C expression to modify the code described by the conditional if
2751 information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
2752 pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
2753 insn cannot be converted to be executed conditionally. */
2754 #define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
2755 (PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
2757 /* A C expression to perform any final machine dependent modifications in
2758 converting code to conditional execution in the code described by the
2759 conditional if information CE_INFO. */
2760 #define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
2762 /* A C expression to cancel any machine dependent modifications in converting
2763 code to conditional execution in the code described by the conditional if
2764 information CE_INFO. */
2765 #define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
2767 /* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS. */
2768 #define IFCVT_INIT_EXTRA_FIELDS(CE_INFO) frv_ifcvt_init_extra_fields (CE_INFO)
2770 /* The definition of the following macro results in that the 2nd jump
2771 optimization (after the 2nd insn scheduling) is minimal. It is
2772 necessary to define when start cycle marks of insns (TImode is used
2773 for this) is used for VLIW insn packing. Some jump optimizations
2774 make such marks invalid. These marks are corrected for some
2775 (minimal) optimizations. ??? Probably the macro is temporary.
2776 Final solution could making the 2nd jump optimizations before the
2777 2nd instruction scheduling or corrections of the marks for all jump
2778 optimizations. Although some jump optimizations are actually
2779 deoptimizations for VLIW (super-scalar) processors. */
2781 #define MINIMAL_SECOND_JUMP_OPTIMIZATION
2784 /* If the following macro is defined and nonzero and deterministic
2785 finite state automata are used for pipeline hazard recognition, the
2786 code making resource-constrained software pipelining is on. */
2787 #define RCSP_SOFTWARE_PIPELINING 1
2789 /* If the following macro is defined and nonzero and deterministic
2790 finite state automata are used for pipeline hazard recognition, we
2791 will try to exchange insns in queue ready to improve the schedule.
2792 The more macro value, the more tries will be made. */
2793 #define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
2795 /* The following macro is used only when value of
2796 FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero. The more macro value,
2797 the more tries will be made to choose better schedule. If the
2798 macro value is zero or negative there will be no multi-pass
2800 #define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
2811 FRV_BUILTIN_MADDHSS
,
2812 FRV_BUILTIN_MADDHUS
,
2813 FRV_BUILTIN_MSUBHSS
,
2814 FRV_BUILTIN_MSUBHUS
,
2816 FRV_BUILTIN_MQADDHSS
,
2817 FRV_BUILTIN_MQADDHUS
,
2818 FRV_BUILTIN_MQSUBHSS
,
2819 FRV_BUILTIN_MQSUBHUS
,
2820 FRV_BUILTIN_MUNPACKH
,
2821 FRV_BUILTIN_MDPACKH
,
2832 FRV_BUILTIN_MEXPDHW
,
2833 FRV_BUILTIN_MEXPDHD
,
2836 FRV_BUILTIN_MMULXHS
,
2837 FRV_BUILTIN_MMULXHU
,
2842 FRV_BUILTIN_MQMULHS
,
2843 FRV_BUILTIN_MQMULHU
,
2844 FRV_BUILTIN_MQMULXHU
,
2845 FRV_BUILTIN_MQMULXHS
,
2846 FRV_BUILTIN_MQMACHS
,
2847 FRV_BUILTIN_MQMACHU
,
2852 FRV_BUILTIN_MQCPXRS
,
2853 FRV_BUILTIN_MQCPXRU
,
2854 FRV_BUILTIN_MQCPXIS
,
2855 FRV_BUILTIN_MQCPXIU
,
2859 FRV_BUILTIN_MWTACCG
,
2861 FRV_BUILTIN_MRDACCG
,
2863 FRV_BUILTIN_MCLRACC
,
2864 FRV_BUILTIN_MCLRACCA
,
2865 FRV_BUILTIN_MDUNPACKH
,
2867 FRV_BUILTIN_MQXMACHS
,
2868 FRV_BUILTIN_MQXMACXHS
,
2869 FRV_BUILTIN_MQMACXHS
,
2870 FRV_BUILTIN_MADDACCS
,
2871 FRV_BUILTIN_MSUBACCS
,
2872 FRV_BUILTIN_MASACCS
,
2873 FRV_BUILTIN_MDADDACCS
,
2874 FRV_BUILTIN_MDSUBACCS
,
2875 FRV_BUILTIN_MDASACCS
,
2877 FRV_BUILTIN_MDROTLI
,
2880 FRV_BUILTIN_MDCUTSSI
,
2881 FRV_BUILTIN_MQSATHS
,
2882 FRV_BUILTIN_MQLCLRHS
,
2883 FRV_BUILTIN_MQLMTHS
,
2884 FRV_BUILTIN_MQSLLHI
,
2885 FRV_BUILTIN_MQSRAHI
,
2886 FRV_BUILTIN_MHSETLOS
,
2887 FRV_BUILTIN_MHSETLOH
,
2888 FRV_BUILTIN_MHSETHIS
,
2889 FRV_BUILTIN_MHSETHIH
,
2890 FRV_BUILTIN_MHDSETS
,
2891 FRV_BUILTIN_MHDSETH
,
2894 FRV_BUILTIN_PREFETCH0
,
2895 FRV_BUILTIN_PREFETCH
,
2903 FRV_BUILTIN_IACCreadll
,
2904 FRV_BUILTIN_IACCreadl
,
2905 FRV_BUILTIN_IACCsetll
,
2906 FRV_BUILTIN_IACCsetl
,
2913 FRV_BUILTIN_WRITE16
,
2914 FRV_BUILTIN_WRITE32
,
2917 #define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
2919 /* Enable prototypes on the call rtl functions. */
2920 #define MD_CALL_PROTOTYPES 1
2922 extern GTY(()) rtx frv_compare_op0
; /* operand save for */
2923 extern GTY(()) rtx frv_compare_op1
; /* comparison generation */
2925 #define CPU_UNITS_QUERY 1
2927 #ifdef __FRV_FDPIC__
2928 #define CRT_GET_RFIB_DATA(dbase) \
2929 ({ extern void *_GLOBAL_OFFSET_TABLE_; (dbase) = &_GLOBAL_OFFSET_TABLE_; })
2932 #endif /* __FRV_H__ */