2018-06-19 Tony Reix <tony.reix@atos.com>
[official-gcc.git] / gcc / rtlanal.c
blob8e8ee6eb34940d4a73dd35dd81f0c10b92e8bcb4
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
39 /* Forward declarations */
40 static void set_of_1 (rtx, const_rtx, void *);
41 static bool covers_regno_p (const_rtx, unsigned int);
42 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
43 static int computed_jump_p_1 (const_rtx);
44 static void parms_set (rtx, const_rtx, void *);
46 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
47 const_rtx, machine_mode,
48 unsigned HOST_WIDE_INT);
49 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
50 const_rtx, machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
53 const_rtx, machine_mode,
54 unsigned int);
55 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
56 const_rtx, machine_mode,
57 unsigned int);
59 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
60 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
62 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
63 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
64 SIGN_EXTEND then while narrowing we also have to enforce the
65 representation and sign-extend the value to mode DESTINATION_REP.
67 If the value is already sign-extended to DESTINATION_REP mode we
68 can just switch to DESTINATION mode on it. For each pair of
69 integral modes SOURCE and DESTINATION, when truncating from SOURCE
70 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
71 contains the number of high-order bits in SOURCE that have to be
72 copies of the sign-bit so that we can do this mode-switch to
73 DESTINATION. */
75 static unsigned int
76 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
78 /* Store X into index I of ARRAY. ARRAY is known to have at least I
79 elements. Return the new base of ARRAY. */
81 template <typename T>
82 typename T::value_type *
83 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
84 value_type *base,
85 size_t i, value_type x)
87 if (base == array.stack)
89 if (i < LOCAL_ELEMS)
91 base[i] = x;
92 return base;
94 gcc_checking_assert (i == LOCAL_ELEMS);
95 /* A previous iteration might also have moved from the stack to the
96 heap, in which case the heap array will already be big enough. */
97 if (vec_safe_length (array.heap) <= i)
98 vec_safe_grow (array.heap, i + 1);
99 base = array.heap->address ();
100 memcpy (base, array.stack, sizeof (array.stack));
101 base[LOCAL_ELEMS] = x;
102 return base;
104 unsigned int length = array.heap->length ();
105 if (length > i)
107 gcc_checking_assert (base == array.heap->address ());
108 base[i] = x;
109 return base;
111 else
113 gcc_checking_assert (i == length);
114 vec_safe_push (array.heap, x);
115 return array.heap->address ();
119 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
120 number of elements added to the worklist. */
122 template <typename T>
123 size_t
124 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
125 value_type *base,
126 size_t end, rtx_type x)
128 enum rtx_code code = GET_CODE (x);
129 const char *format = GET_RTX_FORMAT (code);
130 size_t orig_end = end;
131 if (__builtin_expect (INSN_P (x), false))
133 /* Put the pattern at the top of the queue, since that's what
134 we're likely to want most. It also allows for the SEQUENCE
135 code below. */
136 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
137 if (format[i] == 'e')
139 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
140 if (__builtin_expect (end < LOCAL_ELEMS, true))
141 base[end++] = subx;
142 else
143 base = add_single_to_queue (array, base, end++, subx);
146 else
147 for (int i = 0; format[i]; ++i)
148 if (format[i] == 'e')
150 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
151 if (__builtin_expect (end < LOCAL_ELEMS, true))
152 base[end++] = subx;
153 else
154 base = add_single_to_queue (array, base, end++, subx);
156 else if (format[i] == 'E')
158 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
159 rtx *vec = x->u.fld[i].rt_rtvec->elem;
160 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
161 for (unsigned int j = 0; j < length; j++)
162 base[end++] = T::get_value (vec[j]);
163 else
164 for (unsigned int j = 0; j < length; j++)
165 base = add_single_to_queue (array, base, end++,
166 T::get_value (vec[j]));
167 if (code == SEQUENCE && end == length)
168 /* If the subrtxes of the sequence fill the entire array then
169 we know that no other parts of a containing insn are queued.
170 The caller is therefore iterating over the sequence as a
171 PATTERN (...), so we also want the patterns of the
172 subinstructions. */
173 for (unsigned int j = 0; j < length; j++)
175 typename T::rtx_type x = T::get_rtx (base[j]);
176 if (INSN_P (x))
177 base[j] = T::get_value (PATTERN (x));
180 return end - orig_end;
183 template <typename T>
184 void
185 generic_subrtx_iterator <T>::free_array (array_type &array)
187 vec_free (array.heap);
190 template <typename T>
191 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
193 template class generic_subrtx_iterator <const_rtx_accessor>;
194 template class generic_subrtx_iterator <rtx_var_accessor>;
195 template class generic_subrtx_iterator <rtx_ptr_accessor>;
197 /* Return 1 if the value of X is unstable
198 (would be different at a different point in the program).
199 The frame pointer, arg pointer, etc. are considered stable
200 (within one function) and so is anything marked `unchanging'. */
203 rtx_unstable_p (const_rtx x)
205 const RTX_CODE code = GET_CODE (x);
206 int i;
207 const char *fmt;
209 switch (code)
211 case MEM:
212 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
214 case CONST:
215 CASE_CONST_ANY:
216 case SYMBOL_REF:
217 case LABEL_REF:
218 return 0;
220 case REG:
221 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
222 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
223 /* The arg pointer varies if it is not a fixed register. */
224 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
225 return 0;
226 /* ??? When call-clobbered, the value is stable modulo the restore
227 that must happen after a call. This currently screws up local-alloc
228 into believing that the restore is not needed. */
229 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
230 return 0;
231 return 1;
233 case ASM_OPERANDS:
234 if (MEM_VOLATILE_P (x))
235 return 1;
237 /* Fall through. */
239 default:
240 break;
243 fmt = GET_RTX_FORMAT (code);
244 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
245 if (fmt[i] == 'e')
247 if (rtx_unstable_p (XEXP (x, i)))
248 return 1;
250 else if (fmt[i] == 'E')
252 int j;
253 for (j = 0; j < XVECLEN (x, i); j++)
254 if (rtx_unstable_p (XVECEXP (x, i, j)))
255 return 1;
258 return 0;
261 /* Return 1 if X has a value that can vary even between two
262 executions of the program. 0 means X can be compared reliably
263 against certain constants or near-constants.
264 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
265 zero, we are slightly more conservative.
266 The frame pointer and the arg pointer are considered constant. */
268 bool
269 rtx_varies_p (const_rtx x, bool for_alias)
271 RTX_CODE code;
272 int i;
273 const char *fmt;
275 if (!x)
276 return 0;
278 code = GET_CODE (x);
279 switch (code)
281 case MEM:
282 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
284 case CONST:
285 CASE_CONST_ANY:
286 case SYMBOL_REF:
287 case LABEL_REF:
288 return 0;
290 case REG:
291 /* Note that we have to test for the actual rtx used for the frame
292 and arg pointers and not just the register number in case we have
293 eliminated the frame and/or arg pointer and are using it
294 for pseudos. */
295 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
296 /* The arg pointer varies if it is not a fixed register. */
297 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
298 return 0;
299 if (x == pic_offset_table_rtx
300 /* ??? When call-clobbered, the value is stable modulo the restore
301 that must happen after a call. This currently screws up
302 local-alloc into believing that the restore is not needed, so we
303 must return 0 only if we are called from alias analysis. */
304 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
305 return 0;
306 return 1;
308 case LO_SUM:
309 /* The operand 0 of a LO_SUM is considered constant
310 (in fact it is related specifically to operand 1)
311 during alias analysis. */
312 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
313 || rtx_varies_p (XEXP (x, 1), for_alias);
315 case ASM_OPERANDS:
316 if (MEM_VOLATILE_P (x))
317 return 1;
319 /* Fall through. */
321 default:
322 break;
325 fmt = GET_RTX_FORMAT (code);
326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
327 if (fmt[i] == 'e')
329 if (rtx_varies_p (XEXP (x, i), for_alias))
330 return 1;
332 else if (fmt[i] == 'E')
334 int j;
335 for (j = 0; j < XVECLEN (x, i); j++)
336 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
337 return 1;
340 return 0;
343 /* Compute an approximation for the offset between the register
344 FROM and TO for the current function, as it was at the start
345 of the routine. */
347 static poly_int64
348 get_initial_register_offset (int from, int to)
350 static const struct elim_table_t
352 const int from;
353 const int to;
354 } table[] = ELIMINABLE_REGS;
355 poly_int64 offset1, offset2;
356 unsigned int i, j;
358 if (to == from)
359 return 0;
361 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
362 before the reload pass. We need to give at least
363 an estimation for the resulting frame size. */
364 if (! reload_completed)
366 offset1 = crtl->outgoing_args_size + get_frame_size ();
367 #if !STACK_GROWS_DOWNWARD
368 offset1 = - offset1;
369 #endif
370 if (to == STACK_POINTER_REGNUM)
371 return offset1;
372 else if (from == STACK_POINTER_REGNUM)
373 return - offset1;
374 else
375 return 0;
378 for (i = 0; i < ARRAY_SIZE (table); i++)
379 if (table[i].from == from)
381 if (table[i].to == to)
383 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
384 offset1);
385 return offset1;
387 for (j = 0; j < ARRAY_SIZE (table); j++)
389 if (table[j].to == to
390 && table[j].from == table[i].to)
392 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
393 offset1);
394 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
395 offset2);
396 return offset1 + offset2;
398 if (table[j].from == to
399 && table[j].to == table[i].to)
401 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
402 offset1);
403 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
404 offset2);
405 return offset1 - offset2;
409 else if (table[i].to == from)
411 if (table[i].from == to)
413 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
414 offset1);
415 return - offset1;
417 for (j = 0; j < ARRAY_SIZE (table); j++)
419 if (table[j].to == to
420 && table[j].from == table[i].from)
422 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
423 offset1);
424 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
425 offset2);
426 return - offset1 + offset2;
428 if (table[j].from == to
429 && table[j].to == table[i].from)
431 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
432 offset1);
433 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
434 offset2);
435 return - offset1 - offset2;
440 /* If the requested register combination was not found,
441 try a different more simple combination. */
442 if (from == ARG_POINTER_REGNUM)
443 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
444 else if (to == ARG_POINTER_REGNUM)
445 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
446 else if (from == HARD_FRAME_POINTER_REGNUM)
447 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
448 else if (to == HARD_FRAME_POINTER_REGNUM)
449 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
450 else
451 return 0;
454 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
455 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
456 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
457 references on strict alignment machines. */
459 static int
460 rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
461 machine_mode mode, bool unaligned_mems)
463 enum rtx_code code = GET_CODE (x);
464 gcc_checking_assert (mode == BLKmode || known_size_p (size));
465 poly_int64 const_x1;
467 /* The offset must be a multiple of the mode size if we are considering
468 unaligned memory references on strict alignment machines. */
469 if (STRICT_ALIGNMENT && unaligned_mems && mode != BLKmode)
471 poly_int64 actual_offset = offset;
473 #ifdef SPARC_STACK_BOUNDARY_HACK
474 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
475 the real alignment of %sp. However, when it does this, the
476 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
477 if (SPARC_STACK_BOUNDARY_HACK
478 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
479 actual_offset -= STACK_POINTER_OFFSET;
480 #endif
482 if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
483 return 1;
486 switch (code)
488 case SYMBOL_REF:
489 if (SYMBOL_REF_WEAK (x))
490 return 1;
491 if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
493 tree decl;
494 poly_int64 decl_size;
496 if (maybe_lt (offset, 0))
497 return 1;
498 if (!known_size_p (size))
499 return maybe_ne (offset, 0);
501 /* If the size of the access or of the symbol is unknown,
502 assume the worst. */
503 decl = SYMBOL_REF_DECL (x);
505 /* Else check that the access is in bounds. TODO: restructure
506 expr_size/tree_expr_size/int_expr_size and just use the latter. */
507 if (!decl)
508 decl_size = -1;
509 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
511 if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
512 decl_size = -1;
514 else if (TREE_CODE (decl) == STRING_CST)
515 decl_size = TREE_STRING_LENGTH (decl);
516 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
517 decl_size = int_size_in_bytes (TREE_TYPE (decl));
518 else
519 decl_size = -1;
521 return (!known_size_p (decl_size) || known_eq (decl_size, 0)
522 ? maybe_ne (offset, 0)
523 : maybe_gt (offset + size, decl_size));
526 return 0;
528 case LABEL_REF:
529 return 0;
531 case REG:
532 /* Stack references are assumed not to trap, but we need to deal with
533 nonsensical offsets. */
534 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
535 || x == stack_pointer_rtx
536 /* The arg pointer varies if it is not a fixed register. */
537 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
539 #ifdef RED_ZONE_SIZE
540 poly_int64 red_zone_size = RED_ZONE_SIZE;
541 #else
542 poly_int64 red_zone_size = 0;
543 #endif
544 poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
545 poly_int64 low_bound, high_bound;
547 if (!known_size_p (size))
548 return 1;
550 if (x == frame_pointer_rtx)
552 if (FRAME_GROWS_DOWNWARD)
554 high_bound = targetm.starting_frame_offset ();
555 low_bound = high_bound - get_frame_size ();
557 else
559 low_bound = targetm.starting_frame_offset ();
560 high_bound = low_bound + get_frame_size ();
563 else if (x == hard_frame_pointer_rtx)
565 poly_int64 sp_offset
566 = get_initial_register_offset (STACK_POINTER_REGNUM,
567 HARD_FRAME_POINTER_REGNUM);
568 poly_int64 ap_offset
569 = get_initial_register_offset (ARG_POINTER_REGNUM,
570 HARD_FRAME_POINTER_REGNUM);
572 #if STACK_GROWS_DOWNWARD
573 low_bound = sp_offset - red_zone_size - stack_boundary;
574 high_bound = ap_offset
575 + FIRST_PARM_OFFSET (current_function_decl)
576 #if !ARGS_GROW_DOWNWARD
577 + crtl->args.size
578 #endif
579 + stack_boundary;
580 #else
581 high_bound = sp_offset + red_zone_size + stack_boundary;
582 low_bound = ap_offset
583 + FIRST_PARM_OFFSET (current_function_decl)
584 #if ARGS_GROW_DOWNWARD
585 - crtl->args.size
586 #endif
587 - stack_boundary;
588 #endif
590 else if (x == stack_pointer_rtx)
592 poly_int64 ap_offset
593 = get_initial_register_offset (ARG_POINTER_REGNUM,
594 STACK_POINTER_REGNUM);
596 #if STACK_GROWS_DOWNWARD
597 low_bound = - red_zone_size - stack_boundary;
598 high_bound = ap_offset
599 + FIRST_PARM_OFFSET (current_function_decl)
600 #if !ARGS_GROW_DOWNWARD
601 + crtl->args.size
602 #endif
603 + stack_boundary;
604 #else
605 high_bound = red_zone_size + stack_boundary;
606 low_bound = ap_offset
607 + FIRST_PARM_OFFSET (current_function_decl)
608 #if ARGS_GROW_DOWNWARD
609 - crtl->args.size
610 #endif
611 - stack_boundary;
612 #endif
614 else
616 /* We assume that accesses are safe to at least the
617 next stack boundary.
618 Examples are varargs and __builtin_return_address. */
619 #if ARGS_GROW_DOWNWARD
620 high_bound = FIRST_PARM_OFFSET (current_function_decl)
621 + stack_boundary;
622 low_bound = FIRST_PARM_OFFSET (current_function_decl)
623 - crtl->args.size - stack_boundary;
624 #else
625 low_bound = FIRST_PARM_OFFSET (current_function_decl)
626 - stack_boundary;
627 high_bound = FIRST_PARM_OFFSET (current_function_decl)
628 + crtl->args.size + stack_boundary;
629 #endif
632 if (known_ge (offset, low_bound)
633 && known_le (offset, high_bound - size))
634 return 0;
635 return 1;
637 /* All of the virtual frame registers are stack references. */
638 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
639 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
640 return 0;
641 return 1;
643 case CONST:
644 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
645 mode, unaligned_mems);
647 case PLUS:
648 /* An address is assumed not to trap if:
649 - it is the pic register plus a const unspec without offset. */
650 if (XEXP (x, 0) == pic_offset_table_rtx
651 && GET_CODE (XEXP (x, 1)) == CONST
652 && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
653 && known_eq (offset, 0))
654 return 0;
656 /* - or it is an address that can't trap plus a constant integer. */
657 if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
658 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
659 size, mode, unaligned_mems))
660 return 0;
662 return 1;
664 case LO_SUM:
665 case PRE_MODIFY:
666 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
667 mode, unaligned_mems);
669 case PRE_DEC:
670 case PRE_INC:
671 case POST_DEC:
672 case POST_INC:
673 case POST_MODIFY:
674 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
675 mode, unaligned_mems);
677 default:
678 break;
681 /* If it isn't one of the case above, it can cause a trap. */
682 return 1;
685 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
688 rtx_addr_can_trap_p (const_rtx x)
690 return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
693 /* Return true if X contains a MEM subrtx. */
695 bool
696 contains_mem_rtx_p (rtx x)
698 subrtx_iterator::array_type array;
699 FOR_EACH_SUBRTX (iter, array, x, ALL)
700 if (MEM_P (*iter))
701 return true;
703 return false;
706 /* Return true if X is an address that is known to not be zero. */
708 bool
709 nonzero_address_p (const_rtx x)
711 const enum rtx_code code = GET_CODE (x);
713 switch (code)
715 case SYMBOL_REF:
716 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
718 case LABEL_REF:
719 return true;
721 case REG:
722 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
723 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
724 || x == stack_pointer_rtx
725 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
726 return true;
727 /* All of the virtual frame registers are stack references. */
728 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
729 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
730 return true;
731 return false;
733 case CONST:
734 return nonzero_address_p (XEXP (x, 0));
736 case PLUS:
737 /* Handle PIC references. */
738 if (XEXP (x, 0) == pic_offset_table_rtx
739 && CONSTANT_P (XEXP (x, 1)))
740 return true;
741 return false;
743 case PRE_MODIFY:
744 /* Similar to the above; allow positive offsets. Further, since
745 auto-inc is only allowed in memories, the register must be a
746 pointer. */
747 if (CONST_INT_P (XEXP (x, 1))
748 && INTVAL (XEXP (x, 1)) > 0)
749 return true;
750 return nonzero_address_p (XEXP (x, 0));
752 case PRE_INC:
753 /* Similarly. Further, the offset is always positive. */
754 return true;
756 case PRE_DEC:
757 case POST_DEC:
758 case POST_INC:
759 case POST_MODIFY:
760 return nonzero_address_p (XEXP (x, 0));
762 case LO_SUM:
763 return nonzero_address_p (XEXP (x, 1));
765 default:
766 break;
769 /* If it isn't one of the case above, might be zero. */
770 return false;
773 /* Return 1 if X refers to a memory location whose address
774 cannot be compared reliably with constant addresses,
775 or if X refers to a BLKmode memory object.
776 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
777 zero, we are slightly more conservative. */
779 bool
780 rtx_addr_varies_p (const_rtx x, bool for_alias)
782 enum rtx_code code;
783 int i;
784 const char *fmt;
786 if (x == 0)
787 return 0;
789 code = GET_CODE (x);
790 if (code == MEM)
791 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
793 fmt = GET_RTX_FORMAT (code);
794 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
795 if (fmt[i] == 'e')
797 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
798 return 1;
800 else if (fmt[i] == 'E')
802 int j;
803 for (j = 0; j < XVECLEN (x, i); j++)
804 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
805 return 1;
807 return 0;
810 /* Return the CALL in X if there is one. */
813 get_call_rtx_from (rtx x)
815 if (INSN_P (x))
816 x = PATTERN (x);
817 if (GET_CODE (x) == PARALLEL)
818 x = XVECEXP (x, 0, 0);
819 if (GET_CODE (x) == SET)
820 x = SET_SRC (x);
821 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
822 return x;
823 return NULL_RTX;
826 /* Return the value of the integer term in X, if one is apparent;
827 otherwise return 0.
828 Only obvious integer terms are detected.
829 This is used in cse.c with the `related_value' field. */
831 HOST_WIDE_INT
832 get_integer_term (const_rtx x)
834 if (GET_CODE (x) == CONST)
835 x = XEXP (x, 0);
837 if (GET_CODE (x) == MINUS
838 && CONST_INT_P (XEXP (x, 1)))
839 return - INTVAL (XEXP (x, 1));
840 if (GET_CODE (x) == PLUS
841 && CONST_INT_P (XEXP (x, 1)))
842 return INTVAL (XEXP (x, 1));
843 return 0;
846 /* If X is a constant, return the value sans apparent integer term;
847 otherwise return 0.
848 Only obvious integer terms are detected. */
851 get_related_value (const_rtx x)
853 if (GET_CODE (x) != CONST)
854 return 0;
855 x = XEXP (x, 0);
856 if (GET_CODE (x) == PLUS
857 && CONST_INT_P (XEXP (x, 1)))
858 return XEXP (x, 0);
859 else if (GET_CODE (x) == MINUS
860 && CONST_INT_P (XEXP (x, 1)))
861 return XEXP (x, 0);
862 return 0;
865 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
866 to somewhere in the same object or object_block as SYMBOL. */
868 bool
869 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
871 tree decl;
873 if (GET_CODE (symbol) != SYMBOL_REF)
874 return false;
876 if (offset == 0)
877 return true;
879 if (offset > 0)
881 if (CONSTANT_POOL_ADDRESS_P (symbol)
882 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
883 return true;
885 decl = SYMBOL_REF_DECL (symbol);
886 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
887 return true;
890 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
891 && SYMBOL_REF_BLOCK (symbol)
892 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
893 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
894 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
895 return true;
897 return false;
900 /* Split X into a base and a constant offset, storing them in *BASE_OUT
901 and *OFFSET_OUT respectively. */
903 void
904 split_const (rtx x, rtx *base_out, rtx *offset_out)
906 if (GET_CODE (x) == CONST)
908 x = XEXP (x, 0);
909 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
911 *base_out = XEXP (x, 0);
912 *offset_out = XEXP (x, 1);
913 return;
916 *base_out = x;
917 *offset_out = const0_rtx;
920 /* Express integer value X as some value Y plus a polynomial offset,
921 where Y is either const0_rtx, X or something within X (as opposed
922 to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
925 strip_offset (rtx x, poly_int64_pod *offset_out)
927 rtx base = const0_rtx;
928 rtx test = x;
929 if (GET_CODE (test) == CONST)
930 test = XEXP (test, 0);
931 if (GET_CODE (test) == PLUS)
933 base = XEXP (test, 0);
934 test = XEXP (test, 1);
936 if (poly_int_rtx_p (test, offset_out))
937 return base;
938 *offset_out = 0;
939 return x;
942 /* Return the argument size in REG_ARGS_SIZE note X. */
944 poly_int64
945 get_args_size (const_rtx x)
947 gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
948 return rtx_to_poly_int64 (XEXP (x, 0));
951 /* Return the number of places FIND appears within X. If COUNT_DEST is
952 zero, we do not count occurrences inside the destination of a SET. */
955 count_occurrences (const_rtx x, const_rtx find, int count_dest)
957 int i, j;
958 enum rtx_code code;
959 const char *format_ptr;
960 int count;
962 if (x == find)
963 return 1;
965 code = GET_CODE (x);
967 switch (code)
969 case REG:
970 CASE_CONST_ANY:
971 case SYMBOL_REF:
972 case CODE_LABEL:
973 case PC:
974 case CC0:
975 return 0;
977 case EXPR_LIST:
978 count = count_occurrences (XEXP (x, 0), find, count_dest);
979 if (XEXP (x, 1))
980 count += count_occurrences (XEXP (x, 1), find, count_dest);
981 return count;
983 case MEM:
984 if (MEM_P (find) && rtx_equal_p (x, find))
985 return 1;
986 break;
988 case SET:
989 if (SET_DEST (x) == find && ! count_dest)
990 return count_occurrences (SET_SRC (x), find, count_dest);
991 break;
993 default:
994 break;
997 format_ptr = GET_RTX_FORMAT (code);
998 count = 0;
1000 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1002 switch (*format_ptr++)
1004 case 'e':
1005 count += count_occurrences (XEXP (x, i), find, count_dest);
1006 break;
1008 case 'E':
1009 for (j = 0; j < XVECLEN (x, i); j++)
1010 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
1011 break;
1014 return count;
1018 /* Return TRUE if OP is a register or subreg of a register that
1019 holds an unsigned quantity. Otherwise, return FALSE. */
1021 bool
1022 unsigned_reg_p (rtx op)
1024 if (REG_P (op)
1025 && REG_EXPR (op)
1026 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1027 return true;
1029 if (GET_CODE (op) == SUBREG
1030 && SUBREG_PROMOTED_SIGN (op))
1031 return true;
1033 return false;
1037 /* Nonzero if register REG appears somewhere within IN.
1038 Also works if REG is not a register; in this case it checks
1039 for a subexpression of IN that is Lisp "equal" to REG. */
1042 reg_mentioned_p (const_rtx reg, const_rtx in)
1044 const char *fmt;
1045 int i;
1046 enum rtx_code code;
1048 if (in == 0)
1049 return 0;
1051 if (reg == in)
1052 return 1;
1054 if (GET_CODE (in) == LABEL_REF)
1055 return reg == label_ref_label (in);
1057 code = GET_CODE (in);
1059 switch (code)
1061 /* Compare registers by number. */
1062 case REG:
1063 return REG_P (reg) && REGNO (in) == REGNO (reg);
1065 /* These codes have no constituent expressions
1066 and are unique. */
1067 case SCRATCH:
1068 case CC0:
1069 case PC:
1070 return 0;
1072 CASE_CONST_ANY:
1073 /* These are kept unique for a given value. */
1074 return 0;
1076 default:
1077 break;
1080 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1081 return 1;
1083 fmt = GET_RTX_FORMAT (code);
1085 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1087 if (fmt[i] == 'E')
1089 int j;
1090 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1091 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1092 return 1;
1094 else if (fmt[i] == 'e'
1095 && reg_mentioned_p (reg, XEXP (in, i)))
1096 return 1;
1098 return 0;
1101 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1102 no CODE_LABEL insn. */
1105 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1107 rtx_insn *p;
1108 if (beg == end)
1109 return 0;
1110 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1111 if (LABEL_P (p))
1112 return 0;
1113 return 1;
1116 /* Nonzero if register REG is used in an insn between
1117 FROM_INSN and TO_INSN (exclusive of those two). */
1120 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1121 const rtx_insn *to_insn)
1123 rtx_insn *insn;
1125 if (from_insn == to_insn)
1126 return 0;
1128 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1129 if (NONDEBUG_INSN_P (insn)
1130 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1131 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1132 return 1;
1133 return 0;
1136 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1137 is entirely replaced by a new value and the only use is as a SET_DEST,
1138 we do not consider it a reference. */
1141 reg_referenced_p (const_rtx x, const_rtx body)
1143 int i;
1145 switch (GET_CODE (body))
1147 case SET:
1148 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1149 return 1;
1151 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1152 of a REG that occupies all of the REG, the insn references X if
1153 it is mentioned in the destination. */
1154 if (GET_CODE (SET_DEST (body)) != CC0
1155 && GET_CODE (SET_DEST (body)) != PC
1156 && !REG_P (SET_DEST (body))
1157 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1158 && REG_P (SUBREG_REG (SET_DEST (body)))
1159 && !read_modify_subreg_p (SET_DEST (body)))
1160 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1161 return 1;
1162 return 0;
1164 case ASM_OPERANDS:
1165 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1166 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1167 return 1;
1168 return 0;
1170 case CALL:
1171 case USE:
1172 case IF_THEN_ELSE:
1173 return reg_overlap_mentioned_p (x, body);
1175 case TRAP_IF:
1176 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1178 case PREFETCH:
1179 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1181 case UNSPEC:
1182 case UNSPEC_VOLATILE:
1183 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1184 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1185 return 1;
1186 return 0;
1188 case PARALLEL:
1189 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1190 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1191 return 1;
1192 return 0;
1194 case CLOBBER:
1195 if (MEM_P (XEXP (body, 0)))
1196 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1197 return 1;
1198 return 0;
1200 case COND_EXEC:
1201 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1202 return 1;
1203 return reg_referenced_p (x, COND_EXEC_CODE (body));
1205 default:
1206 return 0;
1210 /* Nonzero if register REG is set or clobbered in an insn between
1211 FROM_INSN and TO_INSN (exclusive of those two). */
1214 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1215 const rtx_insn *to_insn)
1217 const rtx_insn *insn;
1219 if (from_insn == to_insn)
1220 return 0;
1222 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1223 if (INSN_P (insn) && reg_set_p (reg, insn))
1224 return 1;
1225 return 0;
1228 /* Return true if REG is set or clobbered inside INSN. */
1231 reg_set_p (const_rtx reg, const_rtx insn)
1233 /* After delay slot handling, call and branch insns might be in a
1234 sequence. Check all the elements there. */
1235 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1237 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1238 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1239 return true;
1241 return false;
1244 /* We can be passed an insn or part of one. If we are passed an insn,
1245 check if a side-effect of the insn clobbers REG. */
1246 if (INSN_P (insn)
1247 && (FIND_REG_INC_NOTE (insn, reg)
1248 || (CALL_P (insn)
1249 && ((REG_P (reg)
1250 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1251 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1252 GET_MODE (reg), REGNO (reg)))
1253 || MEM_P (reg)
1254 || find_reg_fusage (insn, CLOBBER, reg)))))
1255 return true;
1257 /* There are no REG_INC notes for SP autoinc. */
1258 if (reg == stack_pointer_rtx && INSN_P (insn))
1260 subrtx_var_iterator::array_type array;
1261 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1263 rtx mem = *iter;
1264 if (mem
1265 && MEM_P (mem)
1266 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1268 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1269 return true;
1270 iter.skip_subrtxes ();
1275 return set_of (reg, insn) != NULL_RTX;
1278 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1279 only if none of them are modified between START and END. Return 1 if
1280 X contains a MEM; this routine does use memory aliasing. */
1283 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1285 const enum rtx_code code = GET_CODE (x);
1286 const char *fmt;
1287 int i, j;
1288 rtx_insn *insn;
1290 if (start == end)
1291 return 0;
1293 switch (code)
1295 CASE_CONST_ANY:
1296 case CONST:
1297 case SYMBOL_REF:
1298 case LABEL_REF:
1299 return 0;
1301 case PC:
1302 case CC0:
1303 return 1;
1305 case MEM:
1306 if (modified_between_p (XEXP (x, 0), start, end))
1307 return 1;
1308 if (MEM_READONLY_P (x))
1309 return 0;
1310 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1311 if (memory_modified_in_insn_p (x, insn))
1312 return 1;
1313 return 0;
1315 case REG:
1316 return reg_set_between_p (x, start, end);
1318 default:
1319 break;
1322 fmt = GET_RTX_FORMAT (code);
1323 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1325 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1326 return 1;
1328 else if (fmt[i] == 'E')
1329 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1330 if (modified_between_p (XVECEXP (x, i, j), start, end))
1331 return 1;
1334 return 0;
1337 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1338 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1339 does use memory aliasing. */
1342 modified_in_p (const_rtx x, const_rtx insn)
1344 const enum rtx_code code = GET_CODE (x);
1345 const char *fmt;
1346 int i, j;
1348 switch (code)
1350 CASE_CONST_ANY:
1351 case CONST:
1352 case SYMBOL_REF:
1353 case LABEL_REF:
1354 return 0;
1356 case PC:
1357 case CC0:
1358 return 1;
1360 case MEM:
1361 if (modified_in_p (XEXP (x, 0), insn))
1362 return 1;
1363 if (MEM_READONLY_P (x))
1364 return 0;
1365 if (memory_modified_in_insn_p (x, insn))
1366 return 1;
1367 return 0;
1369 case REG:
1370 return reg_set_p (x, insn);
1372 default:
1373 break;
1376 fmt = GET_RTX_FORMAT (code);
1377 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1379 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1380 return 1;
1382 else if (fmt[i] == 'E')
1383 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1384 if (modified_in_p (XVECEXP (x, i, j), insn))
1385 return 1;
1388 return 0;
1391 /* Return true if X is a SUBREG and if storing a value to X would
1392 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1393 target, using a SUBREG to store to one half of a DImode REG would
1394 preserve the other half. */
1396 bool
1397 read_modify_subreg_p (const_rtx x)
1399 if (GET_CODE (x) != SUBREG)
1400 return false;
1401 poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1402 poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
1403 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1404 /* The inner and outer modes of a subreg must be ordered, so that we
1405 can tell whether they're paradoxical or partial. */
1406 gcc_checking_assert (ordered_p (isize, osize));
1407 return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
1410 /* Helper function for set_of. */
1411 struct set_of_data
1413 const_rtx found;
1414 const_rtx pat;
1417 static void
1418 set_of_1 (rtx x, const_rtx pat, void *data1)
1420 struct set_of_data *const data = (struct set_of_data *) (data1);
1421 if (rtx_equal_p (x, data->pat)
1422 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1423 data->found = pat;
1426 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1427 (either directly or via STRICT_LOW_PART and similar modifiers). */
1428 const_rtx
1429 set_of (const_rtx pat, const_rtx insn)
1431 struct set_of_data data;
1432 data.found = NULL_RTX;
1433 data.pat = pat;
1434 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1435 return data.found;
1438 /* Add all hard register in X to *PSET. */
1439 void
1440 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1442 subrtx_iterator::array_type array;
1443 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1445 const_rtx x = *iter;
1446 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1447 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1451 /* This function, called through note_stores, collects sets and
1452 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1453 by DATA. */
1454 void
1455 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1457 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1458 if (REG_P (x) && HARD_REGISTER_P (x))
1459 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1462 /* Examine INSN, and compute the set of hard registers written by it.
1463 Store it in *PSET. Should only be called after reload. */
1464 void
1465 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1467 rtx link;
1469 CLEAR_HARD_REG_SET (*pset);
1470 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1471 if (CALL_P (insn))
1473 if (implicit)
1474 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1476 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1477 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1479 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1480 if (REG_NOTE_KIND (link) == REG_INC)
1481 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1484 /* Like record_hard_reg_sets, but called through note_uses. */
1485 void
1486 record_hard_reg_uses (rtx *px, void *data)
1488 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1491 /* Given an INSN, return a SET expression if this insn has only a single SET.
1492 It may also have CLOBBERs, USEs, or SET whose output
1493 will not be used, which we ignore. */
1496 single_set_2 (const rtx_insn *insn, const_rtx pat)
1498 rtx set = NULL;
1499 int set_verified = 1;
1500 int i;
1502 if (GET_CODE (pat) == PARALLEL)
1504 for (i = 0; i < XVECLEN (pat, 0); i++)
1506 rtx sub = XVECEXP (pat, 0, i);
1507 switch (GET_CODE (sub))
1509 case USE:
1510 case CLOBBER:
1511 break;
1513 case SET:
1514 /* We can consider insns having multiple sets, where all
1515 but one are dead as single set insns. In common case
1516 only single set is present in the pattern so we want
1517 to avoid checking for REG_UNUSED notes unless necessary.
1519 When we reach set first time, we just expect this is
1520 the single set we are looking for and only when more
1521 sets are found in the insn, we check them. */
1522 if (!set_verified)
1524 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1525 && !side_effects_p (set))
1526 set = NULL;
1527 else
1528 set_verified = 1;
1530 if (!set)
1531 set = sub, set_verified = 0;
1532 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1533 || side_effects_p (sub))
1534 return NULL_RTX;
1535 break;
1537 default:
1538 return NULL_RTX;
1542 return set;
1545 /* Given an INSN, return nonzero if it has more than one SET, else return
1546 zero. */
1549 multiple_sets (const_rtx insn)
1551 int found;
1552 int i;
1554 /* INSN must be an insn. */
1555 if (! INSN_P (insn))
1556 return 0;
1558 /* Only a PARALLEL can have multiple SETs. */
1559 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1561 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1562 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1564 /* If we have already found a SET, then return now. */
1565 if (found)
1566 return 1;
1567 else
1568 found = 1;
1572 /* Either zero or one SET. */
1573 return 0;
1576 /* Return nonzero if the destination of SET equals the source
1577 and there are no side effects. */
1580 set_noop_p (const_rtx set)
1582 rtx src = SET_SRC (set);
1583 rtx dst = SET_DEST (set);
1585 if (dst == pc_rtx && src == pc_rtx)
1586 return 1;
1588 if (MEM_P (dst) && MEM_P (src))
1589 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1591 if (GET_CODE (dst) == ZERO_EXTRACT)
1592 return rtx_equal_p (XEXP (dst, 0), src)
1593 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1594 && !side_effects_p (src);
1596 if (GET_CODE (dst) == STRICT_LOW_PART)
1597 dst = XEXP (dst, 0);
1599 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1601 if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
1602 return 0;
1603 src = SUBREG_REG (src);
1604 dst = SUBREG_REG (dst);
1607 /* It is a NOOP if destination overlaps with selected src vector
1608 elements. */
1609 if (GET_CODE (src) == VEC_SELECT
1610 && REG_P (XEXP (src, 0)) && REG_P (dst)
1611 && HARD_REGISTER_P (XEXP (src, 0))
1612 && HARD_REGISTER_P (dst))
1614 int i;
1615 rtx par = XEXP (src, 1);
1616 rtx src0 = XEXP (src, 0);
1617 poly_int64 c0 = rtx_to_poly_int64 (XVECEXP (par, 0, 0));
1618 poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1620 for (i = 1; i < XVECLEN (par, 0); i++)
1621 if (maybe_ne (rtx_to_poly_int64 (XVECEXP (par, 0, i)), c0 + i))
1622 return 0;
1623 return
1624 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1625 offset, GET_MODE (dst)) == (int) REGNO (dst);
1628 return (REG_P (src) && REG_P (dst)
1629 && REGNO (src) == REGNO (dst));
1632 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1633 value to itself. */
1636 noop_move_p (const rtx_insn *insn)
1638 rtx pat = PATTERN (insn);
1640 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1641 return 1;
1643 /* Insns carrying these notes are useful later on. */
1644 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1645 return 0;
1647 /* Check the code to be executed for COND_EXEC. */
1648 if (GET_CODE (pat) == COND_EXEC)
1649 pat = COND_EXEC_CODE (pat);
1651 if (GET_CODE (pat) == SET && set_noop_p (pat))
1652 return 1;
1654 if (GET_CODE (pat) == PARALLEL)
1656 int i;
1657 /* If nothing but SETs of registers to themselves,
1658 this insn can also be deleted. */
1659 for (i = 0; i < XVECLEN (pat, 0); i++)
1661 rtx tem = XVECEXP (pat, 0, i);
1663 if (GET_CODE (tem) == USE
1664 || GET_CODE (tem) == CLOBBER)
1665 continue;
1667 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1668 return 0;
1671 return 1;
1673 return 0;
1677 /* Return nonzero if register in range [REGNO, ENDREGNO)
1678 appears either explicitly or implicitly in X
1679 other than being stored into.
1681 References contained within the substructure at LOC do not count.
1682 LOC may be zero, meaning don't ignore anything. */
1684 bool
1685 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1686 rtx *loc)
1688 int i;
1689 unsigned int x_regno;
1690 RTX_CODE code;
1691 const char *fmt;
1693 repeat:
1694 /* The contents of a REG_NONNEG note is always zero, so we must come here
1695 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1696 if (x == 0)
1697 return false;
1699 code = GET_CODE (x);
1701 switch (code)
1703 case REG:
1704 x_regno = REGNO (x);
1706 /* If we modifying the stack, frame, or argument pointer, it will
1707 clobber a virtual register. In fact, we could be more precise,
1708 but it isn't worth it. */
1709 if ((x_regno == STACK_POINTER_REGNUM
1710 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1711 && x_regno == ARG_POINTER_REGNUM)
1712 || x_regno == FRAME_POINTER_REGNUM)
1713 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1714 return true;
1716 return endregno > x_regno && regno < END_REGNO (x);
1718 case SUBREG:
1719 /* If this is a SUBREG of a hard reg, we can see exactly which
1720 registers are being modified. Otherwise, handle normally. */
1721 if (REG_P (SUBREG_REG (x))
1722 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1724 unsigned int inner_regno = subreg_regno (x);
1725 unsigned int inner_endregno
1726 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1727 ? subreg_nregs (x) : 1);
1729 return endregno > inner_regno && regno < inner_endregno;
1731 break;
1733 case CLOBBER:
1734 case SET:
1735 if (&SET_DEST (x) != loc
1736 /* Note setting a SUBREG counts as referring to the REG it is in for
1737 a pseudo but not for hard registers since we can
1738 treat each word individually. */
1739 && ((GET_CODE (SET_DEST (x)) == SUBREG
1740 && loc != &SUBREG_REG (SET_DEST (x))
1741 && REG_P (SUBREG_REG (SET_DEST (x)))
1742 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1743 && refers_to_regno_p (regno, endregno,
1744 SUBREG_REG (SET_DEST (x)), loc))
1745 || (!REG_P (SET_DEST (x))
1746 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1747 return true;
1749 if (code == CLOBBER || loc == &SET_SRC (x))
1750 return false;
1751 x = SET_SRC (x);
1752 goto repeat;
1754 default:
1755 break;
1758 /* X does not match, so try its subexpressions. */
1760 fmt = GET_RTX_FORMAT (code);
1761 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1763 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1765 if (i == 0)
1767 x = XEXP (x, 0);
1768 goto repeat;
1770 else
1771 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1772 return true;
1774 else if (fmt[i] == 'E')
1776 int j;
1777 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1778 if (loc != &XVECEXP (x, i, j)
1779 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1780 return true;
1783 return false;
1786 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1787 we check if any register number in X conflicts with the relevant register
1788 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1789 contains a MEM (we don't bother checking for memory addresses that can't
1790 conflict because we expect this to be a rare case. */
1793 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1795 unsigned int regno, endregno;
1797 /* If either argument is a constant, then modifying X can not
1798 affect IN. Here we look at IN, we can profitably combine
1799 CONSTANT_P (x) with the switch statement below. */
1800 if (CONSTANT_P (in))
1801 return 0;
1803 recurse:
1804 switch (GET_CODE (x))
1806 case STRICT_LOW_PART:
1807 case ZERO_EXTRACT:
1808 case SIGN_EXTRACT:
1809 /* Overly conservative. */
1810 x = XEXP (x, 0);
1811 goto recurse;
1813 case SUBREG:
1814 regno = REGNO (SUBREG_REG (x));
1815 if (regno < FIRST_PSEUDO_REGISTER)
1816 regno = subreg_regno (x);
1817 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1818 ? subreg_nregs (x) : 1);
1819 goto do_reg;
1821 case REG:
1822 regno = REGNO (x);
1823 endregno = END_REGNO (x);
1824 do_reg:
1825 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1827 case MEM:
1829 const char *fmt;
1830 int i;
1832 if (MEM_P (in))
1833 return 1;
1835 fmt = GET_RTX_FORMAT (GET_CODE (in));
1836 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1837 if (fmt[i] == 'e')
1839 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1840 return 1;
1842 else if (fmt[i] == 'E')
1844 int j;
1845 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1846 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1847 return 1;
1850 return 0;
1853 case SCRATCH:
1854 case PC:
1855 case CC0:
1856 return reg_mentioned_p (x, in);
1858 case PARALLEL:
1860 int i;
1862 /* If any register in here refers to it we return true. */
1863 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1864 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1865 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1866 return 1;
1867 return 0;
1870 default:
1871 gcc_assert (CONSTANT_P (x));
1872 return 0;
1876 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1877 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1878 ignored by note_stores, but passed to FUN.
1880 FUN receives three arguments:
1881 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1882 2. the SET or CLOBBER rtx that does the store,
1883 3. the pointer DATA provided to note_stores.
1885 If the item being stored in or clobbered is a SUBREG of a hard register,
1886 the SUBREG will be passed. */
1888 void
1889 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1891 int i;
1893 if (GET_CODE (x) == COND_EXEC)
1894 x = COND_EXEC_CODE (x);
1896 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1898 rtx dest = SET_DEST (x);
1900 while ((GET_CODE (dest) == SUBREG
1901 && (!REG_P (SUBREG_REG (dest))
1902 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1903 || GET_CODE (dest) == ZERO_EXTRACT
1904 || GET_CODE (dest) == STRICT_LOW_PART)
1905 dest = XEXP (dest, 0);
1907 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1908 each of whose first operand is a register. */
1909 if (GET_CODE (dest) == PARALLEL)
1911 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1912 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1913 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1915 else
1916 (*fun) (dest, x, data);
1919 else if (GET_CODE (x) == PARALLEL)
1920 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1921 note_stores (XVECEXP (x, 0, i), fun, data);
1924 /* Like notes_stores, but call FUN for each expression that is being
1925 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1926 FUN for each expression, not any interior subexpressions. FUN receives a
1927 pointer to the expression and the DATA passed to this function.
1929 Note that this is not quite the same test as that done in reg_referenced_p
1930 since that considers something as being referenced if it is being
1931 partially set, while we do not. */
1933 void
1934 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1936 rtx body = *pbody;
1937 int i;
1939 switch (GET_CODE (body))
1941 case COND_EXEC:
1942 (*fun) (&COND_EXEC_TEST (body), data);
1943 note_uses (&COND_EXEC_CODE (body), fun, data);
1944 return;
1946 case PARALLEL:
1947 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1948 note_uses (&XVECEXP (body, 0, i), fun, data);
1949 return;
1951 case SEQUENCE:
1952 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1953 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1954 return;
1956 case USE:
1957 (*fun) (&XEXP (body, 0), data);
1958 return;
1960 case ASM_OPERANDS:
1961 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1962 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1963 return;
1965 case TRAP_IF:
1966 (*fun) (&TRAP_CONDITION (body), data);
1967 return;
1969 case PREFETCH:
1970 (*fun) (&XEXP (body, 0), data);
1971 return;
1973 case UNSPEC:
1974 case UNSPEC_VOLATILE:
1975 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1976 (*fun) (&XVECEXP (body, 0, i), data);
1977 return;
1979 case CLOBBER:
1980 if (MEM_P (XEXP (body, 0)))
1981 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1982 return;
1984 case SET:
1986 rtx dest = SET_DEST (body);
1988 /* For sets we replace everything in source plus registers in memory
1989 expression in store and operands of a ZERO_EXTRACT. */
1990 (*fun) (&SET_SRC (body), data);
1992 if (GET_CODE (dest) == ZERO_EXTRACT)
1994 (*fun) (&XEXP (dest, 1), data);
1995 (*fun) (&XEXP (dest, 2), data);
1998 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1999 dest = XEXP (dest, 0);
2001 if (MEM_P (dest))
2002 (*fun) (&XEXP (dest, 0), data);
2004 return;
2006 default:
2007 /* All the other possibilities never store. */
2008 (*fun) (pbody, data);
2009 return;
2013 /* Return nonzero if X's old contents don't survive after INSN.
2014 This will be true if X is (cc0) or if X is a register and
2015 X dies in INSN or because INSN entirely sets X.
2017 "Entirely set" means set directly and not through a SUBREG, or
2018 ZERO_EXTRACT, so no trace of the old contents remains.
2019 Likewise, REG_INC does not count.
2021 REG may be a hard or pseudo reg. Renumbering is not taken into account,
2022 but for this use that makes no difference, since regs don't overlap
2023 during their lifetimes. Therefore, this function may be used
2024 at any time after deaths have been computed.
2026 If REG is a hard reg that occupies multiple machine registers, this
2027 function will only return 1 if each of those registers will be replaced
2028 by INSN. */
2031 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2033 unsigned int regno, end_regno;
2034 unsigned int i;
2036 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
2037 if (GET_CODE (x) == CC0)
2038 return 1;
2040 gcc_assert (REG_P (x));
2042 regno = REGNO (x);
2043 end_regno = END_REGNO (x);
2044 for (i = regno; i < end_regno; i++)
2045 if (! dead_or_set_regno_p (insn, i))
2046 return 0;
2048 return 1;
2051 /* Return TRUE iff DEST is a register or subreg of a register, is a
2052 complete rather than read-modify-write destination, and contains
2053 register TEST_REGNO. */
2055 static bool
2056 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2058 unsigned int regno, endregno;
2060 if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2061 dest = SUBREG_REG (dest);
2063 if (!REG_P (dest))
2064 return false;
2066 regno = REGNO (dest);
2067 endregno = END_REGNO (dest);
2068 return (test_regno >= regno && test_regno < endregno);
2071 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2072 any member matches the covers_regno_no_parallel_p criteria. */
2074 static bool
2075 covers_regno_p (const_rtx dest, unsigned int test_regno)
2077 if (GET_CODE (dest) == PARALLEL)
2079 /* Some targets place small structures in registers for return
2080 values of functions, and those registers are wrapped in
2081 PARALLELs that we may see as the destination of a SET. */
2082 int i;
2084 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2086 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2087 if (inner != NULL_RTX
2088 && covers_regno_no_parallel_p (inner, test_regno))
2089 return true;
2092 return false;
2094 else
2095 return covers_regno_no_parallel_p (dest, test_regno);
2098 /* Utility function for dead_or_set_p to check an individual register. */
2101 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2103 const_rtx pattern;
2105 /* See if there is a death note for something that includes TEST_REGNO. */
2106 if (find_regno_note (insn, REG_DEAD, test_regno))
2107 return 1;
2109 if (CALL_P (insn)
2110 && find_regno_fusage (insn, CLOBBER, test_regno))
2111 return 1;
2113 pattern = PATTERN (insn);
2115 /* If a COND_EXEC is not executed, the value survives. */
2116 if (GET_CODE (pattern) == COND_EXEC)
2117 return 0;
2119 if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
2120 return covers_regno_p (SET_DEST (pattern), test_regno);
2121 else if (GET_CODE (pattern) == PARALLEL)
2123 int i;
2125 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2127 rtx body = XVECEXP (pattern, 0, i);
2129 if (GET_CODE (body) == COND_EXEC)
2130 body = COND_EXEC_CODE (body);
2132 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2133 && covers_regno_p (SET_DEST (body), test_regno))
2134 return 1;
2138 return 0;
2141 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2142 If DATUM is nonzero, look for one whose datum is DATUM. */
2145 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2147 rtx link;
2149 gcc_checking_assert (insn);
2151 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2152 if (! INSN_P (insn))
2153 return 0;
2154 if (datum == 0)
2156 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2157 if (REG_NOTE_KIND (link) == kind)
2158 return link;
2159 return 0;
2162 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2163 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2164 return link;
2165 return 0;
2168 /* Return the reg-note of kind KIND in insn INSN which applies to register
2169 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2170 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2171 it might be the case that the note overlaps REGNO. */
2174 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2176 rtx link;
2178 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2179 if (! INSN_P (insn))
2180 return 0;
2182 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2183 if (REG_NOTE_KIND (link) == kind
2184 /* Verify that it is a register, so that scratch and MEM won't cause a
2185 problem here. */
2186 && REG_P (XEXP (link, 0))
2187 && REGNO (XEXP (link, 0)) <= regno
2188 && END_REGNO (XEXP (link, 0)) > regno)
2189 return link;
2190 return 0;
2193 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2194 has such a note. */
2197 find_reg_equal_equiv_note (const_rtx insn)
2199 rtx link;
2201 if (!INSN_P (insn))
2202 return 0;
2204 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2205 if (REG_NOTE_KIND (link) == REG_EQUAL
2206 || REG_NOTE_KIND (link) == REG_EQUIV)
2208 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2209 insns that have multiple sets. Checking single_set to
2210 make sure of this is not the proper check, as explained
2211 in the comment in set_unique_reg_note.
2213 This should be changed into an assert. */
2214 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2215 return 0;
2216 return link;
2218 return NULL;
2221 /* Check whether INSN is a single_set whose source is known to be
2222 equivalent to a constant. Return that constant if so, otherwise
2223 return null. */
2226 find_constant_src (const rtx_insn *insn)
2228 rtx note, set, x;
2230 set = single_set (insn);
2231 if (set)
2233 x = avoid_constant_pool_reference (SET_SRC (set));
2234 if (CONSTANT_P (x))
2235 return x;
2238 note = find_reg_equal_equiv_note (insn);
2239 if (note && CONSTANT_P (XEXP (note, 0)))
2240 return XEXP (note, 0);
2242 return NULL_RTX;
2245 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2246 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2249 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2251 /* If it's not a CALL_INSN, it can't possibly have a
2252 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2253 if (!CALL_P (insn))
2254 return 0;
2256 gcc_assert (datum);
2258 if (!REG_P (datum))
2260 rtx link;
2262 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2263 link;
2264 link = XEXP (link, 1))
2265 if (GET_CODE (XEXP (link, 0)) == code
2266 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2267 return 1;
2269 else
2271 unsigned int regno = REGNO (datum);
2273 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2274 to pseudo registers, so don't bother checking. */
2276 if (regno < FIRST_PSEUDO_REGISTER)
2278 unsigned int end_regno = END_REGNO (datum);
2279 unsigned int i;
2281 for (i = regno; i < end_regno; i++)
2282 if (find_regno_fusage (insn, code, i))
2283 return 1;
2287 return 0;
2290 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2291 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2294 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2296 rtx link;
2298 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2299 to pseudo registers, so don't bother checking. */
2301 if (regno >= FIRST_PSEUDO_REGISTER
2302 || !CALL_P (insn) )
2303 return 0;
2305 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2307 rtx op, reg;
2309 if (GET_CODE (op = XEXP (link, 0)) == code
2310 && REG_P (reg = XEXP (op, 0))
2311 && REGNO (reg) <= regno
2312 && END_REGNO (reg) > regno)
2313 return 1;
2316 return 0;
2320 /* Return true if KIND is an integer REG_NOTE. */
2322 static bool
2323 int_reg_note_p (enum reg_note kind)
2325 return kind == REG_BR_PROB;
2328 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2329 stored as the pointer to the next register note. */
2332 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2334 rtx note;
2336 gcc_checking_assert (!int_reg_note_p (kind));
2337 switch (kind)
2339 case REG_CC_SETTER:
2340 case REG_CC_USER:
2341 case REG_LABEL_TARGET:
2342 case REG_LABEL_OPERAND:
2343 case REG_TM:
2344 /* These types of register notes use an INSN_LIST rather than an
2345 EXPR_LIST, so that copying is done right and dumps look
2346 better. */
2347 note = alloc_INSN_LIST (datum, list);
2348 PUT_REG_NOTE_KIND (note, kind);
2349 break;
2351 default:
2352 note = alloc_EXPR_LIST (kind, datum, list);
2353 break;
2356 return note;
2359 /* Add register note with kind KIND and datum DATUM to INSN. */
2361 void
2362 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2364 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2367 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2369 void
2370 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2372 gcc_checking_assert (int_reg_note_p (kind));
2373 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2374 datum, REG_NOTES (insn));
2377 /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
2379 void
2380 add_args_size_note (rtx_insn *insn, poly_int64 value)
2382 gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
2383 add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
2386 /* Add a register note like NOTE to INSN. */
2388 void
2389 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2391 if (GET_CODE (note) == INT_LIST)
2392 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2393 else
2394 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2397 /* Duplicate NOTE and return the copy. */
2399 duplicate_reg_note (rtx note)
2401 reg_note kind = REG_NOTE_KIND (note);
2403 if (GET_CODE (note) == INT_LIST)
2404 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2405 else if (GET_CODE (note) == EXPR_LIST)
2406 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2407 else
2408 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2411 /* Remove register note NOTE from the REG_NOTES of INSN. */
2413 void
2414 remove_note (rtx_insn *insn, const_rtx note)
2416 rtx link;
2418 if (note == NULL_RTX)
2419 return;
2421 if (REG_NOTES (insn) == note)
2422 REG_NOTES (insn) = XEXP (note, 1);
2423 else
2424 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2425 if (XEXP (link, 1) == note)
2427 XEXP (link, 1) = XEXP (note, 1);
2428 break;
2431 switch (REG_NOTE_KIND (note))
2433 case REG_EQUAL:
2434 case REG_EQUIV:
2435 df_notes_rescan (insn);
2436 break;
2437 default:
2438 break;
2442 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2443 Return true if any note has been removed. */
2445 bool
2446 remove_reg_equal_equiv_notes (rtx_insn *insn)
2448 rtx *loc;
2449 bool ret = false;
2451 loc = &REG_NOTES (insn);
2452 while (*loc)
2454 enum reg_note kind = REG_NOTE_KIND (*loc);
2455 if (kind == REG_EQUAL || kind == REG_EQUIV)
2457 *loc = XEXP (*loc, 1);
2458 ret = true;
2460 else
2461 loc = &XEXP (*loc, 1);
2463 return ret;
2466 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2468 void
2469 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2471 df_ref eq_use;
2473 if (!df)
2474 return;
2476 /* This loop is a little tricky. We cannot just go down the chain because
2477 it is being modified by some actions in the loop. So we just iterate
2478 over the head. We plan to drain the list anyway. */
2479 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2481 rtx_insn *insn = DF_REF_INSN (eq_use);
2482 rtx note = find_reg_equal_equiv_note (insn);
2484 /* This assert is generally triggered when someone deletes a REG_EQUAL
2485 or REG_EQUIV note by hacking the list manually rather than calling
2486 remove_note. */
2487 gcc_assert (note);
2489 remove_note (insn, note);
2493 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2494 return 1 if it is found. A simple equality test is used to determine if
2495 NODE matches. */
2497 bool
2498 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2500 const_rtx x;
2502 for (x = listp; x; x = XEXP (x, 1))
2503 if (node == XEXP (x, 0))
2504 return true;
2506 return false;
2509 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2510 remove that entry from the list if it is found.
2512 A simple equality test is used to determine if NODE matches. */
2514 void
2515 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2517 rtx_expr_list *temp = *listp;
2518 rtx_expr_list *prev = NULL;
2520 while (temp)
2522 if (node == temp->element ())
2524 /* Splice the node out of the list. */
2525 if (prev)
2526 XEXP (prev, 1) = temp->next ();
2527 else
2528 *listp = temp->next ();
2530 return;
2533 prev = temp;
2534 temp = temp->next ();
2538 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2539 remove that entry from the list if it is found.
2541 A simple equality test is used to determine if NODE matches. */
2543 void
2544 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2546 rtx_insn_list *temp = *listp;
2547 rtx_insn_list *prev = NULL;
2549 while (temp)
2551 if (node == temp->insn ())
2553 /* Splice the node out of the list. */
2554 if (prev)
2555 XEXP (prev, 1) = temp->next ();
2556 else
2557 *listp = temp->next ();
2559 return;
2562 prev = temp;
2563 temp = temp->next ();
2567 /* Nonzero if X contains any volatile instructions. These are instructions
2568 which may cause unpredictable machine state instructions, and thus no
2569 instructions or register uses should be moved or combined across them.
2570 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2573 volatile_insn_p (const_rtx x)
2575 const RTX_CODE code = GET_CODE (x);
2576 switch (code)
2578 case LABEL_REF:
2579 case SYMBOL_REF:
2580 case CONST:
2581 CASE_CONST_ANY:
2582 case CC0:
2583 case PC:
2584 case REG:
2585 case SCRATCH:
2586 case CLOBBER:
2587 case ADDR_VEC:
2588 case ADDR_DIFF_VEC:
2589 case CALL:
2590 case MEM:
2591 return 0;
2593 case UNSPEC_VOLATILE:
2594 return 1;
2596 case ASM_INPUT:
2597 case ASM_OPERANDS:
2598 if (MEM_VOLATILE_P (x))
2599 return 1;
2601 default:
2602 break;
2605 /* Recursively scan the operands of this expression. */
2608 const char *const fmt = GET_RTX_FORMAT (code);
2609 int i;
2611 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2613 if (fmt[i] == 'e')
2615 if (volatile_insn_p (XEXP (x, i)))
2616 return 1;
2618 else if (fmt[i] == 'E')
2620 int j;
2621 for (j = 0; j < XVECLEN (x, i); j++)
2622 if (volatile_insn_p (XVECEXP (x, i, j)))
2623 return 1;
2627 return 0;
2630 /* Nonzero if X contains any volatile memory references
2631 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2634 volatile_refs_p (const_rtx x)
2636 const RTX_CODE code = GET_CODE (x);
2637 switch (code)
2639 case LABEL_REF:
2640 case SYMBOL_REF:
2641 case CONST:
2642 CASE_CONST_ANY:
2643 case CC0:
2644 case PC:
2645 case REG:
2646 case SCRATCH:
2647 case CLOBBER:
2648 case ADDR_VEC:
2649 case ADDR_DIFF_VEC:
2650 return 0;
2652 case UNSPEC_VOLATILE:
2653 return 1;
2655 case MEM:
2656 case ASM_INPUT:
2657 case ASM_OPERANDS:
2658 if (MEM_VOLATILE_P (x))
2659 return 1;
2661 default:
2662 break;
2665 /* Recursively scan the operands of this expression. */
2668 const char *const fmt = GET_RTX_FORMAT (code);
2669 int i;
2671 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2673 if (fmt[i] == 'e')
2675 if (volatile_refs_p (XEXP (x, i)))
2676 return 1;
2678 else if (fmt[i] == 'E')
2680 int j;
2681 for (j = 0; j < XVECLEN (x, i); j++)
2682 if (volatile_refs_p (XVECEXP (x, i, j)))
2683 return 1;
2687 return 0;
2690 /* Similar to above, except that it also rejects register pre- and post-
2691 incrementing. */
2694 side_effects_p (const_rtx x)
2696 const RTX_CODE code = GET_CODE (x);
2697 switch (code)
2699 case LABEL_REF:
2700 case SYMBOL_REF:
2701 case CONST:
2702 CASE_CONST_ANY:
2703 case CC0:
2704 case PC:
2705 case REG:
2706 case SCRATCH:
2707 case ADDR_VEC:
2708 case ADDR_DIFF_VEC:
2709 case VAR_LOCATION:
2710 return 0;
2712 case CLOBBER:
2713 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2714 when some combination can't be done. If we see one, don't think
2715 that we can simplify the expression. */
2716 return (GET_MODE (x) != VOIDmode);
2718 case PRE_INC:
2719 case PRE_DEC:
2720 case POST_INC:
2721 case POST_DEC:
2722 case PRE_MODIFY:
2723 case POST_MODIFY:
2724 case CALL:
2725 case UNSPEC_VOLATILE:
2726 return 1;
2728 case MEM:
2729 case ASM_INPUT:
2730 case ASM_OPERANDS:
2731 if (MEM_VOLATILE_P (x))
2732 return 1;
2734 default:
2735 break;
2738 /* Recursively scan the operands of this expression. */
2741 const char *fmt = GET_RTX_FORMAT (code);
2742 int i;
2744 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2746 if (fmt[i] == 'e')
2748 if (side_effects_p (XEXP (x, i)))
2749 return 1;
2751 else if (fmt[i] == 'E')
2753 int j;
2754 for (j = 0; j < XVECLEN (x, i); j++)
2755 if (side_effects_p (XVECEXP (x, i, j)))
2756 return 1;
2760 return 0;
2763 /* Return nonzero if evaluating rtx X might cause a trap.
2764 FLAGS controls how to consider MEMs. A nonzero means the context
2765 of the access may have changed from the original, such that the
2766 address may have become invalid. */
2769 may_trap_p_1 (const_rtx x, unsigned flags)
2771 int i;
2772 enum rtx_code code;
2773 const char *fmt;
2775 /* We make no distinction currently, but this function is part of
2776 the internal target-hooks ABI so we keep the parameter as
2777 "unsigned flags". */
2778 bool code_changed = flags != 0;
2780 if (x == 0)
2781 return 0;
2782 code = GET_CODE (x);
2783 switch (code)
2785 /* Handle these cases quickly. */
2786 CASE_CONST_ANY:
2787 case SYMBOL_REF:
2788 case LABEL_REF:
2789 case CONST:
2790 case PC:
2791 case CC0:
2792 case REG:
2793 case SCRATCH:
2794 return 0;
2796 case UNSPEC:
2797 return targetm.unspec_may_trap_p (x, flags);
2799 case UNSPEC_VOLATILE:
2800 case ASM_INPUT:
2801 case TRAP_IF:
2802 return 1;
2804 case ASM_OPERANDS:
2805 return MEM_VOLATILE_P (x);
2807 /* Memory ref can trap unless it's a static var or a stack slot. */
2808 case MEM:
2809 /* Recognize specific pattern of stack checking probes. */
2810 if (flag_stack_check
2811 && MEM_VOLATILE_P (x)
2812 && XEXP (x, 0) == stack_pointer_rtx)
2813 return 1;
2814 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2815 reference; moving it out of context such as when moving code
2816 when optimizing, might cause its address to become invalid. */
2817 code_changed
2818 || !MEM_NOTRAP_P (x))
2820 poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
2821 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2822 GET_MODE (x), code_changed);
2825 return 0;
2827 /* Division by a non-constant might trap. */
2828 case DIV:
2829 case MOD:
2830 case UDIV:
2831 case UMOD:
2832 if (HONOR_SNANS (x))
2833 return 1;
2834 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2835 return flag_trapping_math;
2836 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2837 return 1;
2838 break;
2840 case EXPR_LIST:
2841 /* An EXPR_LIST is used to represent a function call. This
2842 certainly may trap. */
2843 return 1;
2845 case GE:
2846 case GT:
2847 case LE:
2848 case LT:
2849 case LTGT:
2850 case COMPARE:
2851 /* Some floating point comparisons may trap. */
2852 if (!flag_trapping_math)
2853 break;
2854 /* ??? There is no machine independent way to check for tests that trap
2855 when COMPARE is used, though many targets do make this distinction.
2856 For instance, sparc uses CCFPE for compares which generate exceptions
2857 and CCFP for compares which do not generate exceptions. */
2858 if (HONOR_NANS (x))
2859 return 1;
2860 /* But often the compare has some CC mode, so check operand
2861 modes as well. */
2862 if (HONOR_NANS (XEXP (x, 0))
2863 || HONOR_NANS (XEXP (x, 1)))
2864 return 1;
2865 break;
2867 case EQ:
2868 case NE:
2869 if (HONOR_SNANS (x))
2870 return 1;
2871 /* Often comparison is CC mode, so check operand modes. */
2872 if (HONOR_SNANS (XEXP (x, 0))
2873 || HONOR_SNANS (XEXP (x, 1)))
2874 return 1;
2875 break;
2877 case FIX:
2878 /* Conversion of floating point might trap. */
2879 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2880 return 1;
2881 break;
2883 case NEG:
2884 case ABS:
2885 case SUBREG:
2886 /* These operations don't trap even with floating point. */
2887 break;
2889 default:
2890 /* Any floating arithmetic may trap. */
2891 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2892 return 1;
2895 fmt = GET_RTX_FORMAT (code);
2896 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2898 if (fmt[i] == 'e')
2900 if (may_trap_p_1 (XEXP (x, i), flags))
2901 return 1;
2903 else if (fmt[i] == 'E')
2905 int j;
2906 for (j = 0; j < XVECLEN (x, i); j++)
2907 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2908 return 1;
2911 return 0;
2914 /* Return nonzero if evaluating rtx X might cause a trap. */
2917 may_trap_p (const_rtx x)
2919 return may_trap_p_1 (x, 0);
2922 /* Same as above, but additionally return nonzero if evaluating rtx X might
2923 cause a fault. We define a fault for the purpose of this function as a
2924 erroneous execution condition that cannot be encountered during the normal
2925 execution of a valid program; the typical example is an unaligned memory
2926 access on a strict alignment machine. The compiler guarantees that it
2927 doesn't generate code that will fault from a valid program, but this
2928 guarantee doesn't mean anything for individual instructions. Consider
2929 the following example:
2931 struct S { int d; union { char *cp; int *ip; }; };
2933 int foo(struct S *s)
2935 if (s->d == 1)
2936 return *s->ip;
2937 else
2938 return *s->cp;
2941 on a strict alignment machine. In a valid program, foo will never be
2942 invoked on a structure for which d is equal to 1 and the underlying
2943 unique field of the union not aligned on a 4-byte boundary, but the
2944 expression *s->ip might cause a fault if considered individually.
2946 At the RTL level, potentially problematic expressions will almost always
2947 verify may_trap_p; for example, the above dereference can be emitted as
2948 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2949 However, suppose that foo is inlined in a caller that causes s->cp to
2950 point to a local character variable and guarantees that s->d is not set
2951 to 1; foo may have been effectively translated into pseudo-RTL as:
2953 if ((reg:SI) == 1)
2954 (set (reg:SI) (mem:SI (%fp - 7)))
2955 else
2956 (set (reg:QI) (mem:QI (%fp - 7)))
2958 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2959 memory reference to a stack slot, but it will certainly cause a fault
2960 on a strict alignment machine. */
2963 may_trap_or_fault_p (const_rtx x)
2965 return may_trap_p_1 (x, 1);
2968 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2969 i.e., an inequality. */
2972 inequality_comparisons_p (const_rtx x)
2974 const char *fmt;
2975 int len, i;
2976 const enum rtx_code code = GET_CODE (x);
2978 switch (code)
2980 case REG:
2981 case SCRATCH:
2982 case PC:
2983 case CC0:
2984 CASE_CONST_ANY:
2985 case CONST:
2986 case LABEL_REF:
2987 case SYMBOL_REF:
2988 return 0;
2990 case LT:
2991 case LTU:
2992 case GT:
2993 case GTU:
2994 case LE:
2995 case LEU:
2996 case GE:
2997 case GEU:
2998 return 1;
3000 default:
3001 break;
3004 len = GET_RTX_LENGTH (code);
3005 fmt = GET_RTX_FORMAT (code);
3007 for (i = 0; i < len; i++)
3009 if (fmt[i] == 'e')
3011 if (inequality_comparisons_p (XEXP (x, i)))
3012 return 1;
3014 else if (fmt[i] == 'E')
3016 int j;
3017 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3018 if (inequality_comparisons_p (XVECEXP (x, i, j)))
3019 return 1;
3023 return 0;
3026 /* Replace any occurrence of FROM in X with TO. The function does
3027 not enter into CONST_DOUBLE for the replace.
3029 Note that copying is not done so X must not be shared unless all copies
3030 are to be modified.
3032 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3033 those pointer-equal ones. */
3036 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3038 int i, j;
3039 const char *fmt;
3041 if (x == from)
3042 return to;
3044 /* Allow this function to make replacements in EXPR_LISTs. */
3045 if (x == 0)
3046 return 0;
3048 if (all_regs
3049 && REG_P (x)
3050 && REG_P (from)
3051 && REGNO (x) == REGNO (from))
3053 gcc_assert (GET_MODE (x) == GET_MODE (from));
3054 return to;
3056 else if (GET_CODE (x) == SUBREG)
3058 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3060 if (CONST_INT_P (new_rtx))
3062 x = simplify_subreg (GET_MODE (x), new_rtx,
3063 GET_MODE (SUBREG_REG (x)),
3064 SUBREG_BYTE (x));
3065 gcc_assert (x);
3067 else
3068 SUBREG_REG (x) = new_rtx;
3070 return x;
3072 else if (GET_CODE (x) == ZERO_EXTEND)
3074 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3076 if (CONST_INT_P (new_rtx))
3078 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3079 new_rtx, GET_MODE (XEXP (x, 0)));
3080 gcc_assert (x);
3082 else
3083 XEXP (x, 0) = new_rtx;
3085 return x;
3088 fmt = GET_RTX_FORMAT (GET_CODE (x));
3089 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3091 if (fmt[i] == 'e')
3092 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3093 else if (fmt[i] == 'E')
3094 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3095 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3096 from, to, all_regs);
3099 return x;
3102 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3103 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3105 void
3106 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3108 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3109 rtx x = *loc;
3110 if (JUMP_TABLE_DATA_P (x))
3112 x = PATTERN (x);
3113 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3114 int len = GET_NUM_ELEM (vec);
3115 for (int i = 0; i < len; ++i)
3117 rtx ref = RTVEC_ELT (vec, i);
3118 if (XEXP (ref, 0) == old_label)
3120 XEXP (ref, 0) = new_label;
3121 if (update_label_nuses)
3123 ++LABEL_NUSES (new_label);
3124 --LABEL_NUSES (old_label);
3128 return;
3131 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3132 field. This is not handled by the iterator because it doesn't
3133 handle unprinted ('0') fields. */
3134 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3135 JUMP_LABEL (x) = new_label;
3137 subrtx_ptr_iterator::array_type array;
3138 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3140 rtx *loc = *iter;
3141 if (rtx x = *loc)
3143 if (GET_CODE (x) == SYMBOL_REF
3144 && CONSTANT_POOL_ADDRESS_P (x))
3146 rtx c = get_pool_constant (x);
3147 if (rtx_referenced_p (old_label, c))
3149 /* Create a copy of constant C; replace the label inside
3150 but do not update LABEL_NUSES because uses in constant pool
3151 are not counted. */
3152 rtx new_c = copy_rtx (c);
3153 replace_label (&new_c, old_label, new_label, false);
3155 /* Add the new constant NEW_C to constant pool and replace
3156 the old reference to constant by new reference. */
3157 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3158 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3162 if ((GET_CODE (x) == LABEL_REF
3163 || GET_CODE (x) == INSN_LIST)
3164 && XEXP (x, 0) == old_label)
3166 XEXP (x, 0) = new_label;
3167 if (update_label_nuses)
3169 ++LABEL_NUSES (new_label);
3170 --LABEL_NUSES (old_label);
3177 void
3178 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3179 rtx_insn *new_label, bool update_label_nuses)
3181 rtx insn_as_rtx = insn;
3182 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3183 gcc_checking_assert (insn_as_rtx == insn);
3186 /* Return true if X is referenced in BODY. */
3188 bool
3189 rtx_referenced_p (const_rtx x, const_rtx body)
3191 subrtx_iterator::array_type array;
3192 FOR_EACH_SUBRTX (iter, array, body, ALL)
3193 if (const_rtx y = *iter)
3195 /* Check if a label_ref Y refers to label X. */
3196 if (GET_CODE (y) == LABEL_REF
3197 && LABEL_P (x)
3198 && label_ref_label (y) == x)
3199 return true;
3201 if (rtx_equal_p (x, y))
3202 return true;
3204 /* If Y is a reference to pool constant traverse the constant. */
3205 if (GET_CODE (y) == SYMBOL_REF
3206 && CONSTANT_POOL_ADDRESS_P (y))
3207 iter.substitute (get_pool_constant (y));
3209 return false;
3212 /* If INSN is a tablejump return true and store the label (before jump table) to
3213 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3215 bool
3216 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3217 rtx_jump_table_data **tablep)
3219 if (!JUMP_P (insn))
3220 return false;
3222 rtx target = JUMP_LABEL (insn);
3223 if (target == NULL_RTX || ANY_RETURN_P (target))
3224 return false;
3226 rtx_insn *label = as_a<rtx_insn *> (target);
3227 rtx_insn *table = next_insn (label);
3228 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3229 return false;
3231 if (labelp)
3232 *labelp = label;
3233 if (tablep)
3234 *tablep = as_a <rtx_jump_table_data *> (table);
3235 return true;
3238 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3239 constant that is not in the constant pool and not in the condition
3240 of an IF_THEN_ELSE. */
3242 static int
3243 computed_jump_p_1 (const_rtx x)
3245 const enum rtx_code code = GET_CODE (x);
3246 int i, j;
3247 const char *fmt;
3249 switch (code)
3251 case LABEL_REF:
3252 case PC:
3253 return 0;
3255 case CONST:
3256 CASE_CONST_ANY:
3257 case SYMBOL_REF:
3258 case REG:
3259 return 1;
3261 case MEM:
3262 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3263 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3265 case IF_THEN_ELSE:
3266 return (computed_jump_p_1 (XEXP (x, 1))
3267 || computed_jump_p_1 (XEXP (x, 2)));
3269 default:
3270 break;
3273 fmt = GET_RTX_FORMAT (code);
3274 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3276 if (fmt[i] == 'e'
3277 && computed_jump_p_1 (XEXP (x, i)))
3278 return 1;
3280 else if (fmt[i] == 'E')
3281 for (j = 0; j < XVECLEN (x, i); j++)
3282 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3283 return 1;
3286 return 0;
3289 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3291 Tablejumps and casesi insns are not considered indirect jumps;
3292 we can recognize them by a (use (label_ref)). */
3295 computed_jump_p (const rtx_insn *insn)
3297 int i;
3298 if (JUMP_P (insn))
3300 rtx pat = PATTERN (insn);
3302 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3303 if (JUMP_LABEL (insn) != NULL)
3304 return 0;
3306 if (GET_CODE (pat) == PARALLEL)
3308 int len = XVECLEN (pat, 0);
3309 int has_use_labelref = 0;
3311 for (i = len - 1; i >= 0; i--)
3312 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3313 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3314 == LABEL_REF))
3316 has_use_labelref = 1;
3317 break;
3320 if (! has_use_labelref)
3321 for (i = len - 1; i >= 0; i--)
3322 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3323 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3324 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3325 return 1;
3327 else if (GET_CODE (pat) == SET
3328 && SET_DEST (pat) == pc_rtx
3329 && computed_jump_p_1 (SET_SRC (pat)))
3330 return 1;
3332 return 0;
3337 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3338 the equivalent add insn and pass the result to FN, using DATA as the
3339 final argument. */
3341 static int
3342 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3344 rtx x = XEXP (mem, 0);
3345 switch (GET_CODE (x))
3347 case PRE_INC:
3348 case POST_INC:
3350 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3351 rtx r1 = XEXP (x, 0);
3352 rtx c = gen_int_mode (size, GET_MODE (r1));
3353 return fn (mem, x, r1, r1, c, data);
3356 case PRE_DEC:
3357 case POST_DEC:
3359 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3360 rtx r1 = XEXP (x, 0);
3361 rtx c = gen_int_mode (-size, GET_MODE (r1));
3362 return fn (mem, x, r1, r1, c, data);
3365 case PRE_MODIFY:
3366 case POST_MODIFY:
3368 rtx r1 = XEXP (x, 0);
3369 rtx add = XEXP (x, 1);
3370 return fn (mem, x, r1, add, NULL, data);
3373 default:
3374 gcc_unreachable ();
3378 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3379 For each such autoinc operation found, call FN, passing it
3380 the innermost enclosing MEM, the operation itself, the RTX modified
3381 by the operation, two RTXs (the second may be NULL) that, once
3382 added, represent the value to be held by the modified RTX
3383 afterwards, and DATA. FN is to return 0 to continue the
3384 traversal or any other value to have it returned to the caller of
3385 for_each_inc_dec. */
3388 for_each_inc_dec (rtx x,
3389 for_each_inc_dec_fn fn,
3390 void *data)
3392 subrtx_var_iterator::array_type array;
3393 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3395 rtx mem = *iter;
3396 if (mem
3397 && MEM_P (mem)
3398 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3400 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3401 if (res != 0)
3402 return res;
3403 iter.skip_subrtxes ();
3406 return 0;
3410 /* Searches X for any reference to REGNO, returning the rtx of the
3411 reference found if any. Otherwise, returns NULL_RTX. */
3414 regno_use_in (unsigned int regno, rtx x)
3416 const char *fmt;
3417 int i, j;
3418 rtx tem;
3420 if (REG_P (x) && REGNO (x) == regno)
3421 return x;
3423 fmt = GET_RTX_FORMAT (GET_CODE (x));
3424 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3426 if (fmt[i] == 'e')
3428 if ((tem = regno_use_in (regno, XEXP (x, i))))
3429 return tem;
3431 else if (fmt[i] == 'E')
3432 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3433 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3434 return tem;
3437 return NULL_RTX;
3440 /* Return a value indicating whether OP, an operand of a commutative
3441 operation, is preferred as the first or second operand. The more
3442 positive the value, the stronger the preference for being the first
3443 operand. */
3446 commutative_operand_precedence (rtx op)
3448 enum rtx_code code = GET_CODE (op);
3450 /* Constants always become the second operand. Prefer "nice" constants. */
3451 if (code == CONST_INT)
3452 return -10;
3453 if (code == CONST_WIDE_INT)
3454 return -9;
3455 if (code == CONST_POLY_INT)
3456 return -8;
3457 if (code == CONST_DOUBLE)
3458 return -8;
3459 if (code == CONST_FIXED)
3460 return -8;
3461 op = avoid_constant_pool_reference (op);
3462 code = GET_CODE (op);
3464 switch (GET_RTX_CLASS (code))
3466 case RTX_CONST_OBJ:
3467 if (code == CONST_INT)
3468 return -7;
3469 if (code == CONST_WIDE_INT)
3470 return -6;
3471 if (code == CONST_POLY_INT)
3472 return -5;
3473 if (code == CONST_DOUBLE)
3474 return -5;
3475 if (code == CONST_FIXED)
3476 return -5;
3477 return -4;
3479 case RTX_EXTRA:
3480 /* SUBREGs of objects should come second. */
3481 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3482 return -3;
3483 return 0;
3485 case RTX_OBJ:
3486 /* Complex expressions should be the first, so decrease priority
3487 of objects. Prefer pointer objects over non pointer objects. */
3488 if ((REG_P (op) && REG_POINTER (op))
3489 || (MEM_P (op) && MEM_POINTER (op)))
3490 return -1;
3491 return -2;
3493 case RTX_COMM_ARITH:
3494 /* Prefer operands that are themselves commutative to be first.
3495 This helps to make things linear. In particular,
3496 (and (and (reg) (reg)) (not (reg))) is canonical. */
3497 return 4;
3499 case RTX_BIN_ARITH:
3500 /* If only one operand is a binary expression, it will be the first
3501 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3502 is canonical, although it will usually be further simplified. */
3503 return 2;
3505 case RTX_UNARY:
3506 /* Then prefer NEG and NOT. */
3507 if (code == NEG || code == NOT)
3508 return 1;
3509 /* FALLTHRU */
3511 default:
3512 return 0;
3516 /* Return 1 iff it is necessary to swap operands of commutative operation
3517 in order to canonicalize expression. */
3519 bool
3520 swap_commutative_operands_p (rtx x, rtx y)
3522 return (commutative_operand_precedence (x)
3523 < commutative_operand_precedence (y));
3526 /* Return 1 if X is an autoincrement side effect and the register is
3527 not the stack pointer. */
3529 auto_inc_p (const_rtx x)
3531 switch (GET_CODE (x))
3533 case PRE_INC:
3534 case POST_INC:
3535 case PRE_DEC:
3536 case POST_DEC:
3537 case PRE_MODIFY:
3538 case POST_MODIFY:
3539 /* There are no REG_INC notes for SP. */
3540 if (XEXP (x, 0) != stack_pointer_rtx)
3541 return 1;
3542 default:
3543 break;
3545 return 0;
3548 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3550 loc_mentioned_in_p (rtx *loc, const_rtx in)
3552 enum rtx_code code;
3553 const char *fmt;
3554 int i, j;
3556 if (!in)
3557 return 0;
3559 code = GET_CODE (in);
3560 fmt = GET_RTX_FORMAT (code);
3561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3563 if (fmt[i] == 'e')
3565 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3566 return 1;
3568 else if (fmt[i] == 'E')
3569 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3570 if (loc == &XVECEXP (in, i, j)
3571 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3572 return 1;
3574 return 0;
3577 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3578 and SUBREG_BYTE, return the bit offset where the subreg begins
3579 (counting from the least significant bit of the operand). */
3581 poly_uint64
3582 subreg_lsb_1 (machine_mode outer_mode,
3583 machine_mode inner_mode,
3584 poly_uint64 subreg_byte)
3586 poly_uint64 subreg_end, trailing_bytes, byte_pos;
3588 /* A paradoxical subreg begins at bit position 0. */
3589 if (paradoxical_subreg_p (outer_mode, inner_mode))
3590 return 0;
3592 subreg_end = subreg_byte + GET_MODE_SIZE (outer_mode);
3593 trailing_bytes = GET_MODE_SIZE (inner_mode) - subreg_end;
3594 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3595 byte_pos = trailing_bytes;
3596 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3597 byte_pos = subreg_byte;
3598 else
3600 /* When bytes and words have opposite endianness, we must be able
3601 to split offsets into words and bytes at compile time. */
3602 poly_uint64 leading_word_part
3603 = force_align_down (subreg_byte, UNITS_PER_WORD);
3604 poly_uint64 trailing_word_part
3605 = force_align_down (trailing_bytes, UNITS_PER_WORD);
3606 /* If the subreg crosses a word boundary ensure that
3607 it also begins and ends on a word boundary. */
3608 gcc_assert (known_le (subreg_end - leading_word_part,
3609 (unsigned int) UNITS_PER_WORD)
3610 || (known_eq (leading_word_part, subreg_byte)
3611 && known_eq (trailing_word_part, trailing_bytes)));
3612 if (WORDS_BIG_ENDIAN)
3613 byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
3614 else
3615 byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
3618 return byte_pos * BITS_PER_UNIT;
3621 /* Given a subreg X, return the bit offset where the subreg begins
3622 (counting from the least significant bit of the reg). */
3624 poly_uint64
3625 subreg_lsb (const_rtx x)
3627 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3628 SUBREG_BYTE (x));
3631 /* Return the subreg byte offset for a subreg whose outer value has
3632 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3633 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3634 lsb of the inner value. This is the inverse of the calculation
3635 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3637 poly_uint64
3638 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
3639 poly_uint64 lsb_shift)
3641 /* A paradoxical subreg begins at bit position 0. */
3642 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3643 if (maybe_gt (outer_bytes, inner_bytes))
3645 gcc_checking_assert (known_eq (lsb_shift, 0U));
3646 return 0;
3649 poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
3650 poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3651 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3652 return upper_bytes;
3653 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3654 return lower_bytes;
3655 else
3657 /* When bytes and words have opposite endianness, we must be able
3658 to split offsets into words and bytes at compile time. */
3659 poly_uint64 lower_word_part = force_align_down (lower_bytes,
3660 UNITS_PER_WORD);
3661 poly_uint64 upper_word_part = force_align_down (upper_bytes,
3662 UNITS_PER_WORD);
3663 if (WORDS_BIG_ENDIAN)
3664 return upper_word_part + (lower_bytes - lower_word_part);
3665 else
3666 return lower_word_part + (upper_bytes - upper_word_part);
3670 /* Fill in information about a subreg of a hard register.
3671 xregno - A regno of an inner hard subreg_reg (or what will become one).
3672 xmode - The mode of xregno.
3673 offset - The byte offset.
3674 ymode - The mode of a top level SUBREG (or what may become one).
3675 info - Pointer to structure to fill in.
3677 Rather than considering one particular inner register (and thus one
3678 particular "outer" register) in isolation, this function really uses
3679 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3680 function does not check whether adding INFO->offset to XREGNO gives
3681 a valid hard register; even if INFO->offset + XREGNO is out of range,
3682 there might be another register of the same type that is in range.
3683 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3684 the new register, since that can depend on things like whether the final
3685 register number is even or odd. Callers that want to check whether
3686 this particular subreg can be replaced by a simple (reg ...) should
3687 use simplify_subreg_regno. */
3689 void
3690 subreg_get_info (unsigned int xregno, machine_mode xmode,
3691 poly_uint64 offset, machine_mode ymode,
3692 struct subreg_info *info)
3694 unsigned int nregs_xmode, nregs_ymode;
3696 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3698 poly_uint64 xsize = GET_MODE_SIZE (xmode);
3699 poly_uint64 ysize = GET_MODE_SIZE (ymode);
3701 bool rknown = false;
3703 /* If the register representation of a non-scalar mode has holes in it,
3704 we expect the scalar units to be concatenated together, with the holes
3705 distributed evenly among the scalar units. Each scalar unit must occupy
3706 at least one register. */
3707 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3709 /* As a consequence, we must be dealing with a constant number of
3710 scalars, and thus a constant offset and number of units. */
3711 HOST_WIDE_INT coffset = offset.to_constant ();
3712 HOST_WIDE_INT cysize = ysize.to_constant ();
3713 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3714 unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
3715 scalar_mode xmode_unit = GET_MODE_INNER (xmode);
3716 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3717 gcc_assert (nregs_xmode
3718 == (nunits
3719 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3720 gcc_assert (hard_regno_nregs (xregno, xmode)
3721 == hard_regno_nregs (xregno, xmode_unit) * nunits);
3723 /* You can only ask for a SUBREG of a value with holes in the middle
3724 if you don't cross the holes. (Such a SUBREG should be done by
3725 picking a different register class, or doing it in memory if
3726 necessary.) An example of a value with holes is XCmode on 32-bit
3727 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3728 3 for each part, but in memory it's two 128-bit parts.
3729 Padding is assumed to be at the end (not necessarily the 'high part')
3730 of each unit. */
3731 if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3732 && (coffset / GET_MODE_SIZE (xmode_unit)
3733 != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
3735 info->representable_p = false;
3736 rknown = true;
3739 else
3740 nregs_xmode = hard_regno_nregs (xregno, xmode);
3742 nregs_ymode = hard_regno_nregs (xregno, ymode);
3744 /* Subreg sizes must be ordered, so that we can tell whether they are
3745 partial, paradoxical or complete. */
3746 gcc_checking_assert (ordered_p (xsize, ysize));
3748 /* Paradoxical subregs are otherwise valid. */
3749 if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
3751 info->representable_p = true;
3752 /* If this is a big endian paradoxical subreg, which uses more
3753 actual hard registers than the original register, we must
3754 return a negative offset so that we find the proper highpart
3755 of the register.
3757 We assume that the ordering of registers within a multi-register
3758 value has a consistent endianness: if bytes and register words
3759 have different endianness, the hard registers that make up a
3760 multi-register value must be at least word-sized. */
3761 if (REG_WORDS_BIG_ENDIAN)
3762 info->offset = (int) nregs_xmode - (int) nregs_ymode;
3763 else
3764 info->offset = 0;
3765 info->nregs = nregs_ymode;
3766 return;
3769 /* If registers store different numbers of bits in the different
3770 modes, we cannot generally form this subreg. */
3771 poly_uint64 regsize_xmode, regsize_ymode;
3772 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3773 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3774 && multiple_p (xsize, nregs_xmode, &regsize_xmode)
3775 && multiple_p (ysize, nregs_ymode, &regsize_ymode))
3777 if (!rknown
3778 && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
3779 || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
3781 info->representable_p = false;
3782 if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
3783 || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
3784 /* Checked by validate_subreg. We must know at compile time
3785 which inner registers are being accessed. */
3786 gcc_unreachable ();
3787 return;
3789 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3790 would go outside of XMODE. */
3791 if (!rknown && maybe_gt (ysize + offset, xsize))
3793 info->representable_p = false;
3794 info->nregs = nregs_ymode;
3795 if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
3796 /* Checked by validate_subreg. We must know at compile time
3797 which inner registers are being accessed. */
3798 gcc_unreachable ();
3799 return;
3801 /* Quick exit for the simple and common case of extracting whole
3802 subregisters from a multiregister value. */
3803 /* ??? It would be better to integrate this into the code below,
3804 if we can generalize the concept enough and figure out how
3805 odd-sized modes can coexist with the other weird cases we support. */
3806 HOST_WIDE_INT count;
3807 if (!rknown
3808 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3809 && known_eq (regsize_xmode, regsize_ymode)
3810 && constant_multiple_p (offset, regsize_ymode, &count))
3812 info->representable_p = true;
3813 info->nregs = nregs_ymode;
3814 info->offset = count;
3815 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3816 return;
3820 /* Lowpart subregs are otherwise valid. */
3821 if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
3823 info->representable_p = true;
3824 rknown = true;
3826 if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
3828 info->offset = 0;
3829 info->nregs = nregs_ymode;
3830 return;
3834 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3835 values there are in (reg:XMODE XREGNO). We can view the register
3836 as consisting of this number of independent "blocks", where each
3837 block occupies NREGS_YMODE registers and contains exactly one
3838 representable YMODE value. */
3839 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3840 unsigned int num_blocks = nregs_xmode / nregs_ymode;
3842 /* Calculate the number of bytes in each block. This must always
3843 be exact, otherwise we don't know how to verify the constraint.
3844 These conditions may be relaxed but subreg_regno_offset would
3845 need to be redesigned. */
3846 poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
3848 /* Get the number of the first block that contains the subreg and the byte
3849 offset of the subreg from the start of that block. */
3850 unsigned int block_number;
3851 poly_uint64 subblock_offset;
3852 if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
3853 &subblock_offset))
3854 /* Checked by validate_subreg. We must know at compile time which
3855 inner registers are being accessed. */
3856 gcc_unreachable ();
3858 if (!rknown)
3860 /* Only the lowpart of each block is representable. */
3861 info->representable_p
3862 = known_eq (subblock_offset,
3863 subreg_size_lowpart_offset (ysize, bytes_per_block));
3864 rknown = true;
3867 /* We assume that the ordering of registers within a multi-register
3868 value has a consistent endianness: if bytes and register words
3869 have different endianness, the hard registers that make up a
3870 multi-register value must be at least word-sized. */
3871 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3872 /* The block number we calculated above followed memory endianness.
3873 Convert it to register endianness by counting back from the end.
3874 (Note that, because of the assumption above, each block must be
3875 at least word-sized.) */
3876 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3877 else
3878 info->offset = block_number * nregs_ymode;
3879 info->nregs = nregs_ymode;
3882 /* This function returns the regno offset of a subreg expression.
3883 xregno - A regno of an inner hard subreg_reg (or what will become one).
3884 xmode - The mode of xregno.
3885 offset - The byte offset.
3886 ymode - The mode of a top level SUBREG (or what may become one).
3887 RETURN - The regno offset which would be used. */
3888 unsigned int
3889 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3890 poly_uint64 offset, machine_mode ymode)
3892 struct subreg_info info;
3893 subreg_get_info (xregno, xmode, offset, ymode, &info);
3894 return info.offset;
3897 /* This function returns true when the offset is representable via
3898 subreg_offset in the given regno.
3899 xregno - A regno of an inner hard subreg_reg (or what will become one).
3900 xmode - The mode of xregno.
3901 offset - The byte offset.
3902 ymode - The mode of a top level SUBREG (or what may become one).
3903 RETURN - Whether the offset is representable. */
3904 bool
3905 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3906 poly_uint64 offset, machine_mode ymode)
3908 struct subreg_info info;
3909 subreg_get_info (xregno, xmode, offset, ymode, &info);
3910 return info.representable_p;
3913 /* Return the number of a YMODE register to which
3915 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3917 can be simplified. Return -1 if the subreg can't be simplified.
3919 XREGNO is a hard register number. */
3922 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3923 poly_uint64 offset, machine_mode ymode)
3925 struct subreg_info info;
3926 unsigned int yregno;
3928 /* Give the backend a chance to disallow the mode change. */
3929 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3930 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3931 && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode)
3932 /* We can use mode change in LRA for some transformations. */
3933 && ! lra_in_progress)
3934 return -1;
3936 /* We shouldn't simplify stack-related registers. */
3937 if ((!reload_completed || frame_pointer_needed)
3938 && xregno == FRAME_POINTER_REGNUM)
3939 return -1;
3941 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3942 && xregno == ARG_POINTER_REGNUM)
3943 return -1;
3945 if (xregno == STACK_POINTER_REGNUM
3946 /* We should convert hard stack register in LRA if it is
3947 possible. */
3948 && ! lra_in_progress)
3949 return -1;
3951 /* Try to get the register offset. */
3952 subreg_get_info (xregno, xmode, offset, ymode, &info);
3953 if (!info.representable_p)
3954 return -1;
3956 /* Make sure that the offsetted register value is in range. */
3957 yregno = xregno + info.offset;
3958 if (!HARD_REGISTER_NUM_P (yregno))
3959 return -1;
3961 /* See whether (reg:YMODE YREGNO) is valid.
3963 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3964 This is a kludge to work around how complex FP arguments are passed
3965 on IA-64 and should be fixed. See PR target/49226. */
3966 if (!targetm.hard_regno_mode_ok (yregno, ymode)
3967 && targetm.hard_regno_mode_ok (xregno, xmode))
3968 return -1;
3970 return (int) yregno;
3973 /* Return the final regno that a subreg expression refers to. */
3974 unsigned int
3975 subreg_regno (const_rtx x)
3977 unsigned int ret;
3978 rtx subreg = SUBREG_REG (x);
3979 int regno = REGNO (subreg);
3981 ret = regno + subreg_regno_offset (regno,
3982 GET_MODE (subreg),
3983 SUBREG_BYTE (x),
3984 GET_MODE (x));
3985 return ret;
3989 /* Return the number of registers that a subreg expression refers
3990 to. */
3991 unsigned int
3992 subreg_nregs (const_rtx x)
3994 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3997 /* Return the number of registers that a subreg REG with REGNO
3998 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3999 changed so that the regno can be passed in. */
4001 unsigned int
4002 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
4004 struct subreg_info info;
4005 rtx subreg = SUBREG_REG (x);
4007 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
4008 &info);
4009 return info.nregs;
4012 struct parms_set_data
4014 int nregs;
4015 HARD_REG_SET regs;
4018 /* Helper function for noticing stores to parameter registers. */
4019 static void
4020 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
4022 struct parms_set_data *const d = (struct parms_set_data *) data;
4023 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4024 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
4026 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
4027 d->nregs--;
4031 /* Look backward for first parameter to be loaded.
4032 Note that loads of all parameters will not necessarily be
4033 found if CSE has eliminated some of them (e.g., an argument
4034 to the outer function is passed down as a parameter).
4035 Do not skip BOUNDARY. */
4036 rtx_insn *
4037 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
4039 struct parms_set_data parm;
4040 rtx p;
4041 rtx_insn *before, *first_set;
4043 /* Since different machines initialize their parameter registers
4044 in different orders, assume nothing. Collect the set of all
4045 parameter registers. */
4046 CLEAR_HARD_REG_SET (parm.regs);
4047 parm.nregs = 0;
4048 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
4049 if (GET_CODE (XEXP (p, 0)) == USE
4050 && REG_P (XEXP (XEXP (p, 0), 0))
4051 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
4053 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
4055 /* We only care about registers which can hold function
4056 arguments. */
4057 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4058 continue;
4060 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
4061 parm.nregs++;
4063 before = call_insn;
4064 first_set = call_insn;
4066 /* Search backward for the first set of a register in this set. */
4067 while (parm.nregs && before != boundary)
4069 before = PREV_INSN (before);
4071 /* It is possible that some loads got CSEed from one call to
4072 another. Stop in that case. */
4073 if (CALL_P (before))
4074 break;
4076 /* Our caller needs either ensure that we will find all sets
4077 (in case code has not been optimized yet), or take care
4078 for possible labels in a way by setting boundary to preceding
4079 CODE_LABEL. */
4080 if (LABEL_P (before))
4082 gcc_assert (before == boundary);
4083 break;
4086 if (INSN_P (before))
4088 int nregs_old = parm.nregs;
4089 note_stores (PATTERN (before), parms_set, &parm);
4090 /* If we found something that did not set a parameter reg,
4091 we're done. Do not keep going, as that might result
4092 in hoisting an insn before the setting of a pseudo
4093 that is used by the hoisted insn. */
4094 if (nregs_old != parm.nregs)
4095 first_set = before;
4096 else
4097 break;
4100 return first_set;
4103 /* Return true if we should avoid inserting code between INSN and preceding
4104 call instruction. */
4106 bool
4107 keep_with_call_p (const rtx_insn *insn)
4109 rtx set;
4111 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4113 if (REG_P (SET_DEST (set))
4114 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4115 && fixed_regs[REGNO (SET_DEST (set))]
4116 && general_operand (SET_SRC (set), VOIDmode))
4117 return true;
4118 if (REG_P (SET_SRC (set))
4119 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4120 && REG_P (SET_DEST (set))
4121 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4122 return true;
4123 /* There may be a stack pop just after the call and before the store
4124 of the return register. Search for the actual store when deciding
4125 if we can break or not. */
4126 if (SET_DEST (set) == stack_pointer_rtx)
4128 /* This CONST_CAST is okay because next_nonnote_insn just
4129 returns its argument and we assign it to a const_rtx
4130 variable. */
4131 const rtx_insn *i2
4132 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4133 if (i2 && keep_with_call_p (i2))
4134 return true;
4137 return false;
4140 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4141 to non-complex jumps. That is, direct unconditional, conditional,
4142 and tablejumps, but not computed jumps or returns. It also does
4143 not apply to the fallthru case of a conditional jump. */
4145 bool
4146 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4148 rtx tmp = JUMP_LABEL (jump_insn);
4149 rtx_jump_table_data *table;
4151 if (label == tmp)
4152 return true;
4154 if (tablejump_p (jump_insn, NULL, &table))
4156 rtvec vec = table->get_labels ();
4157 int i, veclen = GET_NUM_ELEM (vec);
4159 for (i = 0; i < veclen; ++i)
4160 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4161 return true;
4164 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4165 return true;
4167 return false;
4171 /* Return an estimate of the cost of computing rtx X.
4172 One use is in cse, to decide which expression to keep in the hash table.
4173 Another is in rtl generation, to pick the cheapest way to multiply.
4174 Other uses like the latter are expected in the future.
4176 X appears as operand OPNO in an expression with code OUTER_CODE.
4177 SPEED specifies whether costs optimized for speed or size should
4178 be returned. */
4181 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4182 int opno, bool speed)
4184 int i, j;
4185 enum rtx_code code;
4186 const char *fmt;
4187 int total;
4188 int factor;
4190 if (x == 0)
4191 return 0;
4193 if (GET_MODE (x) != VOIDmode)
4194 mode = GET_MODE (x);
4196 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4197 many insns, taking N times as long. */
4198 factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4199 if (factor == 0)
4200 factor = 1;
4202 /* Compute the default costs of certain things.
4203 Note that targetm.rtx_costs can override the defaults. */
4205 code = GET_CODE (x);
4206 switch (code)
4208 case MULT:
4209 /* Multiplication has time-complexity O(N*N), where N is the
4210 number of units (translated from digits) when using
4211 schoolbook long multiplication. */
4212 total = factor * factor * COSTS_N_INSNS (5);
4213 break;
4214 case DIV:
4215 case UDIV:
4216 case MOD:
4217 case UMOD:
4218 /* Similarly, complexity for schoolbook long division. */
4219 total = factor * factor * COSTS_N_INSNS (7);
4220 break;
4221 case USE:
4222 /* Used in combine.c as a marker. */
4223 total = 0;
4224 break;
4225 case SET:
4226 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4227 the mode for the factor. */
4228 mode = GET_MODE (SET_DEST (x));
4229 factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4230 if (factor == 0)
4231 factor = 1;
4232 /* FALLTHRU */
4233 default:
4234 total = factor * COSTS_N_INSNS (1);
4237 switch (code)
4239 case REG:
4240 return 0;
4242 case SUBREG:
4243 total = 0;
4244 /* If we can't tie these modes, make this expensive. The larger
4245 the mode, the more expensive it is. */
4246 if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4247 return COSTS_N_INSNS (2 + factor);
4248 break;
4250 case TRUNCATE:
4251 if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4253 total = 0;
4254 break;
4256 /* FALLTHRU */
4257 default:
4258 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4259 return total;
4260 break;
4263 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4264 which is already in total. */
4266 fmt = GET_RTX_FORMAT (code);
4267 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4268 if (fmt[i] == 'e')
4269 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4270 else if (fmt[i] == 'E')
4271 for (j = 0; j < XVECLEN (x, i); j++)
4272 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4274 return total;
4277 /* Fill in the structure C with information about both speed and size rtx
4278 costs for X, which is operand OPNO in an expression with code OUTER. */
4280 void
4281 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4282 struct full_rtx_costs *c)
4284 c->speed = rtx_cost (x, mode, outer, opno, true);
4285 c->size = rtx_cost (x, mode, outer, opno, false);
4289 /* Return cost of address expression X.
4290 Expect that X is properly formed address reference.
4292 SPEED parameter specify whether costs optimized for speed or size should
4293 be returned. */
4296 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4298 /* We may be asked for cost of various unusual addresses, such as operands
4299 of push instruction. It is not worthwhile to complicate writing
4300 of the target hook by such cases. */
4302 if (!memory_address_addr_space_p (mode, x, as))
4303 return 1000;
4305 return targetm.address_cost (x, mode, as, speed);
4308 /* If the target doesn't override, compute the cost as with arithmetic. */
4311 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4313 return rtx_cost (x, Pmode, MEM, 0, speed);
4317 unsigned HOST_WIDE_INT
4318 nonzero_bits (const_rtx x, machine_mode mode)
4320 if (mode == VOIDmode)
4321 mode = GET_MODE (x);
4322 scalar_int_mode int_mode;
4323 if (!is_a <scalar_int_mode> (mode, &int_mode))
4324 return GET_MODE_MASK (mode);
4325 return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4328 unsigned int
4329 num_sign_bit_copies (const_rtx x, machine_mode mode)
4331 if (mode == VOIDmode)
4332 mode = GET_MODE (x);
4333 scalar_int_mode int_mode;
4334 if (!is_a <scalar_int_mode> (mode, &int_mode))
4335 return 1;
4336 return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4339 /* Return true if nonzero_bits1 might recurse into both operands
4340 of X. */
4342 static inline bool
4343 nonzero_bits_binary_arith_p (const_rtx x)
4345 if (!ARITHMETIC_P (x))
4346 return false;
4347 switch (GET_CODE (x))
4349 case AND:
4350 case XOR:
4351 case IOR:
4352 case UMIN:
4353 case UMAX:
4354 case SMIN:
4355 case SMAX:
4356 case PLUS:
4357 case MINUS:
4358 case MULT:
4359 case DIV:
4360 case UDIV:
4361 case MOD:
4362 case UMOD:
4363 return true;
4364 default:
4365 return false;
4369 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4370 It avoids exponential behavior in nonzero_bits1 when X has
4371 identical subexpressions on the first or the second level. */
4373 static unsigned HOST_WIDE_INT
4374 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4375 machine_mode known_mode,
4376 unsigned HOST_WIDE_INT known_ret)
4378 if (x == known_x && mode == known_mode)
4379 return known_ret;
4381 /* Try to find identical subexpressions. If found call
4382 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4383 precomputed value for the subexpression as KNOWN_RET. */
4385 if (nonzero_bits_binary_arith_p (x))
4387 rtx x0 = XEXP (x, 0);
4388 rtx x1 = XEXP (x, 1);
4390 /* Check the first level. */
4391 if (x0 == x1)
4392 return nonzero_bits1 (x, mode, x0, mode,
4393 cached_nonzero_bits (x0, mode, known_x,
4394 known_mode, known_ret));
4396 /* Check the second level. */
4397 if (nonzero_bits_binary_arith_p (x0)
4398 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4399 return nonzero_bits1 (x, mode, x1, mode,
4400 cached_nonzero_bits (x1, mode, known_x,
4401 known_mode, known_ret));
4403 if (nonzero_bits_binary_arith_p (x1)
4404 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4405 return nonzero_bits1 (x, mode, x0, mode,
4406 cached_nonzero_bits (x0, mode, known_x,
4407 known_mode, known_ret));
4410 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4413 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4414 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4415 is less useful. We can't allow both, because that results in exponential
4416 run time recursion. There is a nullstone testcase that triggered
4417 this. This macro avoids accidental uses of num_sign_bit_copies. */
4418 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4420 /* Given an expression, X, compute which bits in X can be nonzero.
4421 We don't care about bits outside of those defined in MODE.
4423 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4424 an arithmetic operation, we can do better. */
4426 static unsigned HOST_WIDE_INT
4427 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4428 machine_mode known_mode,
4429 unsigned HOST_WIDE_INT known_ret)
4431 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4432 unsigned HOST_WIDE_INT inner_nz;
4433 enum rtx_code code = GET_CODE (x);
4434 machine_mode inner_mode;
4435 unsigned int inner_width;
4436 scalar_int_mode xmode;
4438 unsigned int mode_width = GET_MODE_PRECISION (mode);
4440 if (CONST_INT_P (x))
4442 if (SHORT_IMMEDIATES_SIGN_EXTEND
4443 && INTVAL (x) > 0
4444 && mode_width < BITS_PER_WORD
4445 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4446 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4448 return UINTVAL (x);
4451 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4452 return nonzero;
4453 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4455 /* If X is wider than MODE, use its mode instead. */
4456 if (xmode_width > mode_width)
4458 mode = xmode;
4459 nonzero = GET_MODE_MASK (mode);
4460 mode_width = xmode_width;
4463 if (mode_width > HOST_BITS_PER_WIDE_INT)
4464 /* Our only callers in this case look for single bit values. So
4465 just return the mode mask. Those tests will then be false. */
4466 return nonzero;
4468 /* If MODE is wider than X, but both are a single word for both the host
4469 and target machines, we can compute this from which bits of the object
4470 might be nonzero in its own mode, taking into account the fact that, on
4471 CISC machines, accessing an object in a wider mode generally causes the
4472 high-order bits to become undefined, so they are not known to be zero.
4473 We extend this reasoning to RISC machines for rotate operations since the
4474 semantics of the operations in the larger mode is not well defined. */
4475 if (mode_width > xmode_width
4476 && xmode_width <= BITS_PER_WORD
4477 && xmode_width <= HOST_BITS_PER_WIDE_INT
4478 && (!WORD_REGISTER_OPERATIONS || code == ROTATE || code == ROTATERT))
4480 nonzero &= cached_nonzero_bits (x, xmode,
4481 known_x, known_mode, known_ret);
4482 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4483 return nonzero;
4486 /* Please keep nonzero_bits_binary_arith_p above in sync with
4487 the code in the switch below. */
4488 switch (code)
4490 case REG:
4491 #if defined(POINTERS_EXTEND_UNSIGNED)
4492 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4493 all the bits above ptr_mode are known to be zero. */
4494 /* As we do not know which address space the pointer is referring to,
4495 we can do this only if the target does not support different pointer
4496 or address modes depending on the address space. */
4497 if (target_default_pointer_address_modes_p ()
4498 && POINTERS_EXTEND_UNSIGNED
4499 && xmode == Pmode
4500 && REG_POINTER (x)
4501 && !targetm.have_ptr_extend ())
4502 nonzero &= GET_MODE_MASK (ptr_mode);
4503 #endif
4505 /* Include declared information about alignment of pointers. */
4506 /* ??? We don't properly preserve REG_POINTER changes across
4507 pointer-to-integer casts, so we can't trust it except for
4508 things that we know must be pointers. See execute/960116-1.c. */
4509 if ((x == stack_pointer_rtx
4510 || x == frame_pointer_rtx
4511 || x == arg_pointer_rtx)
4512 && REGNO_POINTER_ALIGN (REGNO (x)))
4514 unsigned HOST_WIDE_INT alignment
4515 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4517 #ifdef PUSH_ROUNDING
4518 /* If PUSH_ROUNDING is defined, it is possible for the
4519 stack to be momentarily aligned only to that amount,
4520 so we pick the least alignment. */
4521 if (x == stack_pointer_rtx && PUSH_ARGS)
4523 poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
4524 alignment = MIN (known_alignment (rounded_1), alignment);
4526 #endif
4528 nonzero &= ~(alignment - 1);
4532 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4533 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4534 &nonzero_for_hook);
4536 if (new_rtx)
4537 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4538 known_mode, known_ret);
4540 return nonzero_for_hook;
4543 case MEM:
4544 /* In many, if not most, RISC machines, reading a byte from memory
4545 zeros the rest of the register. Noticing that fact saves a lot
4546 of extra zero-extends. */
4547 if (load_extend_op (xmode) == ZERO_EXTEND)
4548 nonzero &= GET_MODE_MASK (xmode);
4549 break;
4551 case EQ: case NE:
4552 case UNEQ: case LTGT:
4553 case GT: case GTU: case UNGT:
4554 case LT: case LTU: case UNLT:
4555 case GE: case GEU: case UNGE:
4556 case LE: case LEU: case UNLE:
4557 case UNORDERED: case ORDERED:
4558 /* If this produces an integer result, we know which bits are set.
4559 Code here used to clear bits outside the mode of X, but that is
4560 now done above. */
4561 /* Mind that MODE is the mode the caller wants to look at this
4562 operation in, and not the actual operation mode. We can wind
4563 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4564 that describes the results of a vector compare. */
4565 if (GET_MODE_CLASS (xmode) == MODE_INT
4566 && mode_width <= HOST_BITS_PER_WIDE_INT)
4567 nonzero = STORE_FLAG_VALUE;
4568 break;
4570 case NEG:
4571 #if 0
4572 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4573 and num_sign_bit_copies. */
4574 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4575 nonzero = 1;
4576 #endif
4578 if (xmode_width < mode_width)
4579 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4580 break;
4582 case ABS:
4583 #if 0
4584 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4585 and num_sign_bit_copies. */
4586 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4587 nonzero = 1;
4588 #endif
4589 break;
4591 case TRUNCATE:
4592 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4593 known_x, known_mode, known_ret)
4594 & GET_MODE_MASK (mode));
4595 break;
4597 case ZERO_EXTEND:
4598 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4599 known_x, known_mode, known_ret);
4600 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4601 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4602 break;
4604 case SIGN_EXTEND:
4605 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4606 Otherwise, show all the bits in the outer mode but not the inner
4607 may be nonzero. */
4608 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4609 known_x, known_mode, known_ret);
4610 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4612 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4613 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4614 inner_nz |= (GET_MODE_MASK (mode)
4615 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4618 nonzero &= inner_nz;
4619 break;
4621 case AND:
4622 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4623 known_x, known_mode, known_ret)
4624 & cached_nonzero_bits (XEXP (x, 1), mode,
4625 known_x, known_mode, known_ret);
4626 break;
4628 case XOR: case IOR:
4629 case UMIN: case UMAX: case SMIN: case SMAX:
4631 unsigned HOST_WIDE_INT nonzero0
4632 = cached_nonzero_bits (XEXP (x, 0), mode,
4633 known_x, known_mode, known_ret);
4635 /* Don't call nonzero_bits for the second time if it cannot change
4636 anything. */
4637 if ((nonzero & nonzero0) != nonzero)
4638 nonzero &= nonzero0
4639 | cached_nonzero_bits (XEXP (x, 1), mode,
4640 known_x, known_mode, known_ret);
4642 break;
4644 case PLUS: case MINUS:
4645 case MULT:
4646 case DIV: case UDIV:
4647 case MOD: case UMOD:
4648 /* We can apply the rules of arithmetic to compute the number of
4649 high- and low-order zero bits of these operations. We start by
4650 computing the width (position of the highest-order nonzero bit)
4651 and the number of low-order zero bits for each value. */
4653 unsigned HOST_WIDE_INT nz0
4654 = cached_nonzero_bits (XEXP (x, 0), mode,
4655 known_x, known_mode, known_ret);
4656 unsigned HOST_WIDE_INT nz1
4657 = cached_nonzero_bits (XEXP (x, 1), mode,
4658 known_x, known_mode, known_ret);
4659 int sign_index = xmode_width - 1;
4660 int width0 = floor_log2 (nz0) + 1;
4661 int width1 = floor_log2 (nz1) + 1;
4662 int low0 = ctz_or_zero (nz0);
4663 int low1 = ctz_or_zero (nz1);
4664 unsigned HOST_WIDE_INT op0_maybe_minusp
4665 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4666 unsigned HOST_WIDE_INT op1_maybe_minusp
4667 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4668 unsigned int result_width = mode_width;
4669 int result_low = 0;
4671 switch (code)
4673 case PLUS:
4674 result_width = MAX (width0, width1) + 1;
4675 result_low = MIN (low0, low1);
4676 break;
4677 case MINUS:
4678 result_low = MIN (low0, low1);
4679 break;
4680 case MULT:
4681 result_width = width0 + width1;
4682 result_low = low0 + low1;
4683 break;
4684 case DIV:
4685 if (width1 == 0)
4686 break;
4687 if (!op0_maybe_minusp && !op1_maybe_minusp)
4688 result_width = width0;
4689 break;
4690 case UDIV:
4691 if (width1 == 0)
4692 break;
4693 result_width = width0;
4694 break;
4695 case MOD:
4696 if (width1 == 0)
4697 break;
4698 if (!op0_maybe_minusp && !op1_maybe_minusp)
4699 result_width = MIN (width0, width1);
4700 result_low = MIN (low0, low1);
4701 break;
4702 case UMOD:
4703 if (width1 == 0)
4704 break;
4705 result_width = MIN (width0, width1);
4706 result_low = MIN (low0, low1);
4707 break;
4708 default:
4709 gcc_unreachable ();
4712 if (result_width < mode_width)
4713 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4715 if (result_low > 0)
4716 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4718 break;
4720 case ZERO_EXTRACT:
4721 if (CONST_INT_P (XEXP (x, 1))
4722 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4723 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4724 break;
4726 case SUBREG:
4727 /* If this is a SUBREG formed for a promoted variable that has
4728 been zero-extended, we know that at least the high-order bits
4729 are zero, though others might be too. */
4730 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4731 nonzero = GET_MODE_MASK (xmode)
4732 & cached_nonzero_bits (SUBREG_REG (x), xmode,
4733 known_x, known_mode, known_ret);
4735 /* If the inner mode is a single word for both the host and target
4736 machines, we can compute this from which bits of the inner
4737 object might be nonzero. */
4738 inner_mode = GET_MODE (SUBREG_REG (x));
4739 if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
4740 && inner_width <= BITS_PER_WORD
4741 && inner_width <= HOST_BITS_PER_WIDE_INT)
4743 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4744 known_x, known_mode, known_ret);
4746 /* On many CISC machines, accessing an object in a wider mode
4747 causes the high-order bits to become undefined. So they are
4748 not known to be zero. */
4749 rtx_code extend_op;
4750 if ((!WORD_REGISTER_OPERATIONS
4751 /* If this is a typical RISC machine, we only have to worry
4752 about the way loads are extended. */
4753 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4754 ? val_signbit_known_set_p (inner_mode, nonzero)
4755 : extend_op != ZERO_EXTEND)
4756 || (!MEM_P (SUBREG_REG (x)) && !REG_P (SUBREG_REG (x))))
4757 && xmode_width > inner_width)
4758 nonzero
4759 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
4761 break;
4763 case ASHIFT:
4764 case ASHIFTRT:
4765 case LSHIFTRT:
4766 case ROTATE:
4767 case ROTATERT:
4768 /* The nonzero bits are in two classes: any bits within MODE
4769 that aren't in xmode are always significant. The rest of the
4770 nonzero bits are those that are significant in the operand of
4771 the shift when shifted the appropriate number of bits. This
4772 shows that high-order bits are cleared by the right shift and
4773 low-order bits by left shifts. */
4774 if (CONST_INT_P (XEXP (x, 1))
4775 && INTVAL (XEXP (x, 1)) >= 0
4776 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4777 && INTVAL (XEXP (x, 1)) < xmode_width)
4779 int count = INTVAL (XEXP (x, 1));
4780 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
4781 unsigned HOST_WIDE_INT op_nonzero
4782 = cached_nonzero_bits (XEXP (x, 0), mode,
4783 known_x, known_mode, known_ret);
4784 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4785 unsigned HOST_WIDE_INT outer = 0;
4787 if (mode_width > xmode_width)
4788 outer = (op_nonzero & nonzero & ~mode_mask);
4790 switch (code)
4792 case ASHIFT:
4793 inner <<= count;
4794 break;
4796 case LSHIFTRT:
4797 inner >>= count;
4798 break;
4800 case ASHIFTRT:
4801 inner >>= count;
4803 /* If the sign bit may have been nonzero before the shift, we
4804 need to mark all the places it could have been copied to
4805 by the shift as possibly nonzero. */
4806 if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
4807 inner |= (((HOST_WIDE_INT_1U << count) - 1)
4808 << (xmode_width - count));
4809 break;
4811 case ROTATE:
4812 inner = (inner << (count % xmode_width)
4813 | (inner >> (xmode_width - (count % xmode_width))))
4814 & mode_mask;
4815 break;
4817 case ROTATERT:
4818 inner = (inner >> (count % xmode_width)
4819 | (inner << (xmode_width - (count % xmode_width))))
4820 & mode_mask;
4821 break;
4823 default:
4824 gcc_unreachable ();
4827 nonzero &= (outer | inner);
4829 break;
4831 case FFS:
4832 case POPCOUNT:
4833 /* This is at most the number of bits in the mode. */
4834 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4835 break;
4837 case CLZ:
4838 /* If CLZ has a known value at zero, then the nonzero bits are
4839 that value, plus the number of bits in the mode minus one. */
4840 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4841 nonzero
4842 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4843 else
4844 nonzero = -1;
4845 break;
4847 case CTZ:
4848 /* If CTZ has a known value at zero, then the nonzero bits are
4849 that value, plus the number of bits in the mode minus one. */
4850 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4851 nonzero
4852 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4853 else
4854 nonzero = -1;
4855 break;
4857 case CLRSB:
4858 /* This is at most the number of bits in the mode minus 1. */
4859 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4860 break;
4862 case PARITY:
4863 nonzero = 1;
4864 break;
4866 case IF_THEN_ELSE:
4868 unsigned HOST_WIDE_INT nonzero_true
4869 = cached_nonzero_bits (XEXP (x, 1), mode,
4870 known_x, known_mode, known_ret);
4872 /* Don't call nonzero_bits for the second time if it cannot change
4873 anything. */
4874 if ((nonzero & nonzero_true) != nonzero)
4875 nonzero &= nonzero_true
4876 | cached_nonzero_bits (XEXP (x, 2), mode,
4877 known_x, known_mode, known_ret);
4879 break;
4881 default:
4882 break;
4885 return nonzero;
4888 /* See the macro definition above. */
4889 #undef cached_num_sign_bit_copies
4892 /* Return true if num_sign_bit_copies1 might recurse into both operands
4893 of X. */
4895 static inline bool
4896 num_sign_bit_copies_binary_arith_p (const_rtx x)
4898 if (!ARITHMETIC_P (x))
4899 return false;
4900 switch (GET_CODE (x))
4902 case IOR:
4903 case AND:
4904 case XOR:
4905 case SMIN:
4906 case SMAX:
4907 case UMIN:
4908 case UMAX:
4909 case PLUS:
4910 case MINUS:
4911 case MULT:
4912 return true;
4913 default:
4914 return false;
4918 /* The function cached_num_sign_bit_copies is a wrapper around
4919 num_sign_bit_copies1. It avoids exponential behavior in
4920 num_sign_bit_copies1 when X has identical subexpressions on the
4921 first or the second level. */
4923 static unsigned int
4924 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
4925 const_rtx known_x, machine_mode known_mode,
4926 unsigned int known_ret)
4928 if (x == known_x && mode == known_mode)
4929 return known_ret;
4931 /* Try to find identical subexpressions. If found call
4932 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4933 the precomputed value for the subexpression as KNOWN_RET. */
4935 if (num_sign_bit_copies_binary_arith_p (x))
4937 rtx x0 = XEXP (x, 0);
4938 rtx x1 = XEXP (x, 1);
4940 /* Check the first level. */
4941 if (x0 == x1)
4942 return
4943 num_sign_bit_copies1 (x, mode, x0, mode,
4944 cached_num_sign_bit_copies (x0, mode, known_x,
4945 known_mode,
4946 known_ret));
4948 /* Check the second level. */
4949 if (num_sign_bit_copies_binary_arith_p (x0)
4950 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4951 return
4952 num_sign_bit_copies1 (x, mode, x1, mode,
4953 cached_num_sign_bit_copies (x1, mode, known_x,
4954 known_mode,
4955 known_ret));
4957 if (num_sign_bit_copies_binary_arith_p (x1)
4958 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4959 return
4960 num_sign_bit_copies1 (x, mode, x0, mode,
4961 cached_num_sign_bit_copies (x0, mode, known_x,
4962 known_mode,
4963 known_ret));
4966 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4969 /* Return the number of bits at the high-order end of X that are known to
4970 be equal to the sign bit. X will be used in mode MODE. The returned
4971 value will always be between 1 and the number of bits in MODE. */
4973 static unsigned int
4974 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4975 machine_mode known_mode,
4976 unsigned int known_ret)
4978 enum rtx_code code = GET_CODE (x);
4979 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4980 int num0, num1, result;
4981 unsigned HOST_WIDE_INT nonzero;
4983 if (CONST_INT_P (x))
4985 /* If the constant is negative, take its 1's complement and remask.
4986 Then see how many zero bits we have. */
4987 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4988 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4989 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
4990 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4992 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4995 scalar_int_mode xmode, inner_mode;
4996 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4997 return 1;
4999 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
5001 /* For a smaller mode, just ignore the high bits. */
5002 if (bitwidth < xmode_width)
5004 num0 = cached_num_sign_bit_copies (x, xmode,
5005 known_x, known_mode, known_ret);
5006 return MAX (1, num0 - (int) (xmode_width - bitwidth));
5009 if (bitwidth > xmode_width)
5011 /* If this machine does not do all register operations on the entire
5012 register and MODE is wider than the mode of X, we can say nothing
5013 at all about the high-order bits. We extend this reasoning to every
5014 machine for rotate operations since the semantics of the operations
5015 in the larger mode is not well defined. */
5016 if (!WORD_REGISTER_OPERATIONS || code == ROTATE || code == ROTATERT)
5017 return 1;
5019 /* Likewise on machines that do, if the mode of the object is smaller
5020 than a word and loads of that size don't sign extend, we can say
5021 nothing about the high order bits. */
5022 if (xmode_width < BITS_PER_WORD
5023 && load_extend_op (xmode) != SIGN_EXTEND)
5024 return 1;
5027 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5028 the code in the switch below. */
5029 switch (code)
5031 case REG:
5033 #if defined(POINTERS_EXTEND_UNSIGNED)
5034 /* If pointers extend signed and this is a pointer in Pmode, say that
5035 all the bits above ptr_mode are known to be sign bit copies. */
5036 /* As we do not know which address space the pointer is referring to,
5037 we can do this only if the target does not support different pointer
5038 or address modes depending on the address space. */
5039 if (target_default_pointer_address_modes_p ()
5040 && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
5041 && mode == Pmode && REG_POINTER (x)
5042 && !targetm.have_ptr_extend ())
5043 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
5044 #endif
5047 unsigned int copies_for_hook = 1, copies = 1;
5048 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
5049 &copies_for_hook);
5051 if (new_rtx)
5052 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
5053 known_mode, known_ret);
5055 if (copies > 1 || copies_for_hook > 1)
5056 return MAX (copies, copies_for_hook);
5058 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
5060 break;
5062 case MEM:
5063 /* Some RISC machines sign-extend all loads of smaller than a word. */
5064 if (load_extend_op (xmode) == SIGN_EXTEND)
5065 return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
5066 break;
5068 case SUBREG:
5069 /* If this is a SUBREG for a promoted object that is sign-extended
5070 and we are looking at it in a wider mode, we know that at least the
5071 high-order bits are known to be sign bit copies. */
5073 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
5075 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5076 known_x, known_mode, known_ret);
5077 return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
5080 if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
5082 /* For a smaller object, just ignore the high bits. */
5083 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
5085 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
5086 known_x, known_mode,
5087 known_ret);
5088 return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5089 - bitwidth));
5092 /* For paradoxical SUBREGs on machines where all register operations
5093 affect the entire register, just look inside. Note that we are
5094 passing MODE to the recursive call, so the number of sign bit
5095 copies will remain relative to that mode, not the inner mode. */
5097 /* This works only if loads sign extend. Otherwise, if we get a
5098 reload for the inner part, it may be loaded from the stack, and
5099 then we lose all sign bit copies that existed before the store
5100 to the stack. */
5102 if (WORD_REGISTER_OPERATIONS
5103 && load_extend_op (inner_mode) == SIGN_EXTEND
5104 && paradoxical_subreg_p (x)
5105 && MEM_P (SUBREG_REG (x)))
5106 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5107 known_x, known_mode, known_ret);
5109 break;
5111 case SIGN_EXTRACT:
5112 if (CONST_INT_P (XEXP (x, 1)))
5113 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5114 break;
5116 case SIGN_EXTEND:
5117 if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5118 return (bitwidth - GET_MODE_PRECISION (inner_mode)
5119 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5120 known_x, known_mode, known_ret));
5121 break;
5123 case TRUNCATE:
5124 /* For a smaller object, just ignore the high bits. */
5125 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5126 num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5127 known_x, known_mode, known_ret);
5128 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5129 - bitwidth)));
5131 case NOT:
5132 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5133 known_x, known_mode, known_ret);
5135 case ROTATE: case ROTATERT:
5136 /* If we are rotating left by a number of bits less than the number
5137 of sign bit copies, we can just subtract that amount from the
5138 number. */
5139 if (CONST_INT_P (XEXP (x, 1))
5140 && INTVAL (XEXP (x, 1)) >= 0
5141 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5143 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5144 known_x, known_mode, known_ret);
5145 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5146 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5148 break;
5150 case NEG:
5151 /* In general, this subtracts one sign bit copy. But if the value
5152 is known to be positive, the number of sign bit copies is the
5153 same as that of the input. Finally, if the input has just one bit
5154 that might be nonzero, all the bits are copies of the sign bit. */
5155 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5156 known_x, known_mode, known_ret);
5157 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5158 return num0 > 1 ? num0 - 1 : 1;
5160 nonzero = nonzero_bits (XEXP (x, 0), mode);
5161 if (nonzero == 1)
5162 return bitwidth;
5164 if (num0 > 1
5165 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5166 num0--;
5168 return num0;
5170 case IOR: case AND: case XOR:
5171 case SMIN: case SMAX: case UMIN: case UMAX:
5172 /* Logical operations will preserve the number of sign-bit copies.
5173 MIN and MAX operations always return one of the operands. */
5174 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5175 known_x, known_mode, known_ret);
5176 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5177 known_x, known_mode, known_ret);
5179 /* If num1 is clearing some of the top bits then regardless of
5180 the other term, we are guaranteed to have at least that many
5181 high-order zero bits. */
5182 if (code == AND
5183 && num1 > 1
5184 && bitwidth <= HOST_BITS_PER_WIDE_INT
5185 && CONST_INT_P (XEXP (x, 1))
5186 && (UINTVAL (XEXP (x, 1))
5187 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5188 return num1;
5190 /* Similarly for IOR when setting high-order bits. */
5191 if (code == IOR
5192 && num1 > 1
5193 && bitwidth <= HOST_BITS_PER_WIDE_INT
5194 && CONST_INT_P (XEXP (x, 1))
5195 && (UINTVAL (XEXP (x, 1))
5196 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5197 return num1;
5199 return MIN (num0, num1);
5201 case PLUS: case MINUS:
5202 /* For addition and subtraction, we can have a 1-bit carry. However,
5203 if we are subtracting 1 from a positive number, there will not
5204 be such a carry. Furthermore, if the positive number is known to
5205 be 0 or 1, we know the result is either -1 or 0. */
5207 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5208 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5210 nonzero = nonzero_bits (XEXP (x, 0), mode);
5211 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5212 return (nonzero == 1 || nonzero == 0 ? bitwidth
5213 : bitwidth - floor_log2 (nonzero) - 1);
5216 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5217 known_x, known_mode, known_ret);
5218 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5219 known_x, known_mode, known_ret);
5220 result = MAX (1, MIN (num0, num1) - 1);
5222 return result;
5224 case MULT:
5225 /* The number of bits of the product is the sum of the number of
5226 bits of both terms. However, unless one of the terms if known
5227 to be positive, we must allow for an additional bit since negating
5228 a negative number can remove one sign bit copy. */
5230 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5231 known_x, known_mode, known_ret);
5232 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5233 known_x, known_mode, known_ret);
5235 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5236 if (result > 0
5237 && (bitwidth > HOST_BITS_PER_WIDE_INT
5238 || (((nonzero_bits (XEXP (x, 0), mode)
5239 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5240 && ((nonzero_bits (XEXP (x, 1), mode)
5241 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5242 != 0))))
5243 result--;
5245 return MAX (1, result);
5247 case UDIV:
5248 /* The result must be <= the first operand. If the first operand
5249 has the high bit set, we know nothing about the number of sign
5250 bit copies. */
5251 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5252 return 1;
5253 else if ((nonzero_bits (XEXP (x, 0), mode)
5254 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5255 return 1;
5256 else
5257 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5258 known_x, known_mode, known_ret);
5260 case UMOD:
5261 /* The result must be <= the second operand. If the second operand
5262 has (or just might have) the high bit set, we know nothing about
5263 the number of sign bit copies. */
5264 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5265 return 1;
5266 else if ((nonzero_bits (XEXP (x, 1), mode)
5267 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5268 return 1;
5269 else
5270 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5271 known_x, known_mode, known_ret);
5273 case DIV:
5274 /* Similar to unsigned division, except that we have to worry about
5275 the case where the divisor is negative, in which case we have
5276 to add 1. */
5277 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5278 known_x, known_mode, known_ret);
5279 if (result > 1
5280 && (bitwidth > HOST_BITS_PER_WIDE_INT
5281 || (nonzero_bits (XEXP (x, 1), mode)
5282 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5283 result--;
5285 return result;
5287 case MOD:
5288 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5289 known_x, known_mode, known_ret);
5290 if (result > 1
5291 && (bitwidth > HOST_BITS_PER_WIDE_INT
5292 || (nonzero_bits (XEXP (x, 1), mode)
5293 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5294 result--;
5296 return result;
5298 case ASHIFTRT:
5299 /* Shifts by a constant add to the number of bits equal to the
5300 sign bit. */
5301 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5302 known_x, known_mode, known_ret);
5303 if (CONST_INT_P (XEXP (x, 1))
5304 && INTVAL (XEXP (x, 1)) > 0
5305 && INTVAL (XEXP (x, 1)) < xmode_width)
5306 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5308 return num0;
5310 case ASHIFT:
5311 /* Left shifts destroy copies. */
5312 if (!CONST_INT_P (XEXP (x, 1))
5313 || INTVAL (XEXP (x, 1)) < 0
5314 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5315 || INTVAL (XEXP (x, 1)) >= xmode_width)
5316 return 1;
5318 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5319 known_x, known_mode, known_ret);
5320 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5322 case IF_THEN_ELSE:
5323 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5324 known_x, known_mode, known_ret);
5325 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5326 known_x, known_mode, known_ret);
5327 return MIN (num0, num1);
5329 case EQ: case NE: case GE: case GT: case LE: case LT:
5330 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5331 case GEU: case GTU: case LEU: case LTU:
5332 case UNORDERED: case ORDERED:
5333 /* If the constant is negative, take its 1's complement and remask.
5334 Then see how many zero bits we have. */
5335 nonzero = STORE_FLAG_VALUE;
5336 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5337 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5338 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5340 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5342 default:
5343 break;
5346 /* If we haven't been able to figure it out by one of the above rules,
5347 see if some of the high-order bits are known to be zero. If so,
5348 count those bits and return one less than that amount. If we can't
5349 safely compute the mask for this mode, always return BITWIDTH. */
5351 bitwidth = GET_MODE_PRECISION (mode);
5352 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5353 return 1;
5355 nonzero = nonzero_bits (x, mode);
5356 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5357 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5360 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5361 zero indicates an instruction pattern without a known cost. */
5364 pattern_cost (rtx pat, bool speed)
5366 int i, cost;
5367 rtx set;
5369 /* Extract the single set rtx from the instruction pattern. We
5370 can't use single_set since we only have the pattern. We also
5371 consider PARALLELs of a normal set and a single comparison. In
5372 that case we use the cost of the non-comparison SET operation,
5373 which is most-likely to be the real cost of this operation. */
5374 if (GET_CODE (pat) == SET)
5375 set = pat;
5376 else if (GET_CODE (pat) == PARALLEL)
5378 set = NULL_RTX;
5379 rtx comparison = NULL_RTX;
5381 for (i = 0; i < XVECLEN (pat, 0); i++)
5383 rtx x = XVECEXP (pat, 0, i);
5384 if (GET_CODE (x) == SET)
5386 if (GET_CODE (SET_SRC (x)) == COMPARE)
5388 if (comparison)
5389 return 0;
5390 comparison = x;
5392 else
5394 if (set)
5395 return 0;
5396 set = x;
5401 if (!set && comparison)
5402 set = comparison;
5404 if (!set)
5405 return 0;
5407 else
5408 return 0;
5410 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5411 return cost > 0 ? cost : COSTS_N_INSNS (1);
5414 /* Calculate the cost of a single instruction. A return value of zero
5415 indicates an instruction pattern without a known cost. */
5418 insn_cost (rtx_insn *insn, bool speed)
5420 if (targetm.insn_cost)
5421 return targetm.insn_cost (insn, speed);
5423 return pattern_cost (PATTERN (insn), speed);
5426 /* Returns estimate on cost of computing SEQ. */
5428 unsigned
5429 seq_cost (const rtx_insn *seq, bool speed)
5431 unsigned cost = 0;
5432 rtx set;
5434 for (; seq; seq = NEXT_INSN (seq))
5436 set = single_set (seq);
5437 if (set)
5438 cost += set_rtx_cost (set, speed);
5439 else if (NONDEBUG_INSN_P (seq))
5441 int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
5442 if (this_cost > 0)
5443 cost += this_cost;
5444 else
5445 cost++;
5449 return cost;
5452 /* Given an insn INSN and condition COND, return the condition in a
5453 canonical form to simplify testing by callers. Specifically:
5455 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5456 (2) Both operands will be machine operands; (cc0) will have been replaced.
5457 (3) If an operand is a constant, it will be the second operand.
5458 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5459 for GE, GEU, and LEU.
5461 If the condition cannot be understood, or is an inequality floating-point
5462 comparison which needs to be reversed, 0 will be returned.
5464 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5466 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5467 insn used in locating the condition was found. If a replacement test
5468 of the condition is desired, it should be placed in front of that
5469 insn and we will be sure that the inputs are still valid.
5471 If WANT_REG is nonzero, we wish the condition to be relative to that
5472 register, if possible. Therefore, do not canonicalize the condition
5473 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5474 to be a compare to a CC mode register.
5476 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5477 and at INSN. */
5480 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5481 rtx_insn **earliest,
5482 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5484 enum rtx_code code;
5485 rtx_insn *prev = insn;
5486 const_rtx set;
5487 rtx tem;
5488 rtx op0, op1;
5489 int reverse_code = 0;
5490 machine_mode mode;
5491 basic_block bb = BLOCK_FOR_INSN (insn);
5493 code = GET_CODE (cond);
5494 mode = GET_MODE (cond);
5495 op0 = XEXP (cond, 0);
5496 op1 = XEXP (cond, 1);
5498 if (reverse)
5499 code = reversed_comparison_code (cond, insn);
5500 if (code == UNKNOWN)
5501 return 0;
5503 if (earliest)
5504 *earliest = insn;
5506 /* If we are comparing a register with zero, see if the register is set
5507 in the previous insn to a COMPARE or a comparison operation. Perform
5508 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5509 in cse.c */
5511 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5512 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5513 && op1 == CONST0_RTX (GET_MODE (op0))
5514 && op0 != want_reg)
5516 /* Set nonzero when we find something of interest. */
5517 rtx x = 0;
5519 /* If comparison with cc0, import actual comparison from compare
5520 insn. */
5521 if (op0 == cc0_rtx)
5523 if ((prev = prev_nonnote_insn (prev)) == 0
5524 || !NONJUMP_INSN_P (prev)
5525 || (set = single_set (prev)) == 0
5526 || SET_DEST (set) != cc0_rtx)
5527 return 0;
5529 op0 = SET_SRC (set);
5530 op1 = CONST0_RTX (GET_MODE (op0));
5531 if (earliest)
5532 *earliest = prev;
5535 /* If this is a COMPARE, pick up the two things being compared. */
5536 if (GET_CODE (op0) == COMPARE)
5538 op1 = XEXP (op0, 1);
5539 op0 = XEXP (op0, 0);
5540 continue;
5542 else if (!REG_P (op0))
5543 break;
5545 /* Go back to the previous insn. Stop if it is not an INSN. We also
5546 stop if it isn't a single set or if it has a REG_INC note because
5547 we don't want to bother dealing with it. */
5549 prev = prev_nonnote_nondebug_insn (prev);
5551 if (prev == 0
5552 || !NONJUMP_INSN_P (prev)
5553 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5554 /* In cfglayout mode, there do not have to be labels at the
5555 beginning of a block, or jumps at the end, so the previous
5556 conditions would not stop us when we reach bb boundary. */
5557 || BLOCK_FOR_INSN (prev) != bb)
5558 break;
5560 set = set_of (op0, prev);
5562 if (set
5563 && (GET_CODE (set) != SET
5564 || !rtx_equal_p (SET_DEST (set), op0)))
5565 break;
5567 /* If this is setting OP0, get what it sets it to if it looks
5568 relevant. */
5569 if (set)
5571 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5572 #ifdef FLOAT_STORE_FLAG_VALUE
5573 REAL_VALUE_TYPE fsfv;
5574 #endif
5576 /* ??? We may not combine comparisons done in a CCmode with
5577 comparisons not done in a CCmode. This is to aid targets
5578 like Alpha that have an IEEE compliant EQ instruction, and
5579 a non-IEEE compliant BEQ instruction. The use of CCmode is
5580 actually artificial, simply to prevent the combination, but
5581 should not affect other platforms.
5583 However, we must allow VOIDmode comparisons to match either
5584 CCmode or non-CCmode comparison, because some ports have
5585 modeless comparisons inside branch patterns.
5587 ??? This mode check should perhaps look more like the mode check
5588 in simplify_comparison in combine. */
5589 if (((GET_MODE_CLASS (mode) == MODE_CC)
5590 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5591 && mode != VOIDmode
5592 && inner_mode != VOIDmode)
5593 break;
5594 if (GET_CODE (SET_SRC (set)) == COMPARE
5595 || (((code == NE
5596 || (code == LT
5597 && val_signbit_known_set_p (inner_mode,
5598 STORE_FLAG_VALUE))
5599 #ifdef FLOAT_STORE_FLAG_VALUE
5600 || (code == LT
5601 && SCALAR_FLOAT_MODE_P (inner_mode)
5602 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5603 REAL_VALUE_NEGATIVE (fsfv)))
5604 #endif
5606 && COMPARISON_P (SET_SRC (set))))
5607 x = SET_SRC (set);
5608 else if (((code == EQ
5609 || (code == GE
5610 && val_signbit_known_set_p (inner_mode,
5611 STORE_FLAG_VALUE))
5612 #ifdef FLOAT_STORE_FLAG_VALUE
5613 || (code == GE
5614 && SCALAR_FLOAT_MODE_P (inner_mode)
5615 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5616 REAL_VALUE_NEGATIVE (fsfv)))
5617 #endif
5619 && COMPARISON_P (SET_SRC (set)))
5621 reverse_code = 1;
5622 x = SET_SRC (set);
5624 else if ((code == EQ || code == NE)
5625 && GET_CODE (SET_SRC (set)) == XOR)
5626 /* Handle sequences like:
5628 (set op0 (xor X Y))
5629 ...(eq|ne op0 (const_int 0))...
5631 in which case:
5633 (eq op0 (const_int 0)) reduces to (eq X Y)
5634 (ne op0 (const_int 0)) reduces to (ne X Y)
5636 This is the form used by MIPS16, for example. */
5637 x = SET_SRC (set);
5638 else
5639 break;
5642 else if (reg_set_p (op0, prev))
5643 /* If this sets OP0, but not directly, we have to give up. */
5644 break;
5646 if (x)
5648 /* If the caller is expecting the condition to be valid at INSN,
5649 make sure X doesn't change before INSN. */
5650 if (valid_at_insn_p)
5651 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5652 break;
5653 if (COMPARISON_P (x))
5654 code = GET_CODE (x);
5655 if (reverse_code)
5657 code = reversed_comparison_code (x, prev);
5658 if (code == UNKNOWN)
5659 return 0;
5660 reverse_code = 0;
5663 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5664 if (earliest)
5665 *earliest = prev;
5669 /* If constant is first, put it last. */
5670 if (CONSTANT_P (op0))
5671 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5673 /* If OP0 is the result of a comparison, we weren't able to find what
5674 was really being compared, so fail. */
5675 if (!allow_cc_mode
5676 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5677 return 0;
5679 /* Canonicalize any ordered comparison with integers involving equality
5680 if we can do computations in the relevant mode and we do not
5681 overflow. */
5683 scalar_int_mode op0_mode;
5684 if (CONST_INT_P (op1)
5685 && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
5686 && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
5688 HOST_WIDE_INT const_val = INTVAL (op1);
5689 unsigned HOST_WIDE_INT uconst_val = const_val;
5690 unsigned HOST_WIDE_INT max_val
5691 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
5693 switch (code)
5695 case LE:
5696 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5697 code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
5698 break;
5700 /* When cross-compiling, const_val might be sign-extended from
5701 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5702 case GE:
5703 if ((const_val & max_val)
5704 != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
5705 code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
5706 break;
5708 case LEU:
5709 if (uconst_val < max_val)
5710 code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
5711 break;
5713 case GEU:
5714 if (uconst_val != 0)
5715 code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
5716 break;
5718 default:
5719 break;
5723 /* Never return CC0; return zero instead. */
5724 if (CC0_P (op0))
5725 return 0;
5727 /* We promised to return a comparison. */
5728 rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5729 if (COMPARISON_P (ret))
5730 return ret;
5731 return 0;
5734 /* Given a jump insn JUMP, return the condition that will cause it to branch
5735 to its JUMP_LABEL. If the condition cannot be understood, or is an
5736 inequality floating-point comparison which needs to be reversed, 0 will
5737 be returned.
5739 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5740 insn used in locating the condition was found. If a replacement test
5741 of the condition is desired, it should be placed in front of that
5742 insn and we will be sure that the inputs are still valid. If EARLIEST
5743 is null, the returned condition will be valid at INSN.
5745 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5746 compare CC mode register.
5748 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5751 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5752 int valid_at_insn_p)
5754 rtx cond;
5755 int reverse;
5756 rtx set;
5758 /* If this is not a standard conditional jump, we can't parse it. */
5759 if (!JUMP_P (jump)
5760 || ! any_condjump_p (jump))
5761 return 0;
5762 set = pc_set (jump);
5764 cond = XEXP (SET_SRC (set), 0);
5766 /* If this branches to JUMP_LABEL when the condition is false, reverse
5767 the condition. */
5768 reverse
5769 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5770 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5772 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5773 allow_cc_mode, valid_at_insn_p);
5776 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5777 TARGET_MODE_REP_EXTENDED.
5779 Note that we assume that the property of
5780 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5781 narrower than mode B. I.e., if A is a mode narrower than B then in
5782 order to be able to operate on it in mode B, mode A needs to
5783 satisfy the requirements set by the representation of mode B. */
5785 static void
5786 init_num_sign_bit_copies_in_rep (void)
5788 opt_scalar_int_mode in_mode_iter;
5789 scalar_int_mode mode;
5791 FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
5792 FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
5794 scalar_int_mode in_mode = in_mode_iter.require ();
5795 scalar_int_mode i;
5797 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5798 extends to the next widest mode. */
5799 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5800 || GET_MODE_WIDER_MODE (mode).require () == in_mode);
5802 /* We are in in_mode. Count how many bits outside of mode
5803 have to be copies of the sign-bit. */
5804 FOR_EACH_MODE (i, mode, in_mode)
5806 /* This must always exist (for the last iteration it will be
5807 IN_MODE). */
5808 scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
5810 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5811 /* We can only check sign-bit copies starting from the
5812 top-bit. In order to be able to check the bits we
5813 have already seen we pretend that subsequent bits
5814 have to be sign-bit copies too. */
5815 || num_sign_bit_copies_in_rep [in_mode][mode])
5816 num_sign_bit_copies_in_rep [in_mode][mode]
5817 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5822 /* Suppose that truncation from the machine mode of X to MODE is not a
5823 no-op. See if there is anything special about X so that we can
5824 assume it already contains a truncated value of MODE. */
5826 bool
5827 truncated_to_mode (machine_mode mode, const_rtx x)
5829 /* This register has already been used in MODE without explicit
5830 truncation. */
5831 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5832 return true;
5834 /* See if we already satisfy the requirements of MODE. If yes we
5835 can just switch to MODE. */
5836 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5837 && (num_sign_bit_copies (x, GET_MODE (x))
5838 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5839 return true;
5841 return false;
5844 /* Return true if RTX code CODE has a single sequence of zero or more
5845 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5846 entry in that case. */
5848 static bool
5849 setup_reg_subrtx_bounds (unsigned int code)
5851 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5852 unsigned int i = 0;
5853 for (; format[i] != 'e'; ++i)
5855 if (!format[i])
5856 /* No subrtxes. Leave start and count as 0. */
5857 return true;
5858 if (format[i] == 'E' || format[i] == 'V')
5859 return false;
5862 /* Record the sequence of 'e's. */
5863 rtx_all_subrtx_bounds[code].start = i;
5865 ++i;
5866 while (format[i] == 'e');
5867 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5868 /* rtl-iter.h relies on this. */
5869 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5871 for (; format[i]; ++i)
5872 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5873 return false;
5875 return true;
5878 /* Initialize rtx_all_subrtx_bounds. */
5879 void
5880 init_rtlanal (void)
5882 int i;
5883 for (i = 0; i < NUM_RTX_CODE; i++)
5885 if (!setup_reg_subrtx_bounds (i))
5886 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5887 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5888 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5891 init_num_sign_bit_copies_in_rep ();
5894 /* Check whether this is a constant pool constant. */
5895 bool
5896 constant_pool_constant_p (rtx x)
5898 x = avoid_constant_pool_reference (x);
5899 return CONST_DOUBLE_P (x);
5902 /* If M is a bitmask that selects a field of low-order bits within an item but
5903 not the entire word, return the length of the field. Return -1 otherwise.
5904 M is used in machine mode MODE. */
5907 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5909 if (mode != VOIDmode)
5911 if (!HWI_COMPUTABLE_MODE_P (mode))
5912 return -1;
5913 m &= GET_MODE_MASK (mode);
5916 return exact_log2 (m + 1);
5919 /* Return the mode of MEM's address. */
5921 scalar_int_mode
5922 get_address_mode (rtx mem)
5924 machine_mode mode;
5926 gcc_assert (MEM_P (mem));
5927 mode = GET_MODE (XEXP (mem, 0));
5928 if (mode != VOIDmode)
5929 return as_a <scalar_int_mode> (mode);
5930 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5933 /* Split up a CONST_DOUBLE or integer constant rtx
5934 into two rtx's for single words,
5935 storing in *FIRST the word that comes first in memory in the target
5936 and in *SECOND the other.
5938 TODO: This function needs to be rewritten to work on any size
5939 integer. */
5941 void
5942 split_double (rtx value, rtx *first, rtx *second)
5944 if (CONST_INT_P (value))
5946 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5948 /* In this case the CONST_INT holds both target words.
5949 Extract the bits from it into two word-sized pieces.
5950 Sign extend each half to HOST_WIDE_INT. */
5951 unsigned HOST_WIDE_INT low, high;
5952 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5953 unsigned bits_per_word = BITS_PER_WORD;
5955 /* Set sign_bit to the most significant bit of a word. */
5956 sign_bit = 1;
5957 sign_bit <<= bits_per_word - 1;
5959 /* Set mask so that all bits of the word are set. We could
5960 have used 1 << BITS_PER_WORD instead of basing the
5961 calculation on sign_bit. However, on machines where
5962 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5963 compiler warning, even though the code would never be
5964 executed. */
5965 mask = sign_bit << 1;
5966 mask--;
5968 /* Set sign_extend as any remaining bits. */
5969 sign_extend = ~mask;
5971 /* Pick the lower word and sign-extend it. */
5972 low = INTVAL (value);
5973 low &= mask;
5974 if (low & sign_bit)
5975 low |= sign_extend;
5977 /* Pick the higher word, shifted to the least significant
5978 bits, and sign-extend it. */
5979 high = INTVAL (value);
5980 high >>= bits_per_word - 1;
5981 high >>= 1;
5982 high &= mask;
5983 if (high & sign_bit)
5984 high |= sign_extend;
5986 /* Store the words in the target machine order. */
5987 if (WORDS_BIG_ENDIAN)
5989 *first = GEN_INT (high);
5990 *second = GEN_INT (low);
5992 else
5994 *first = GEN_INT (low);
5995 *second = GEN_INT (high);
5998 else
6000 /* The rule for using CONST_INT for a wider mode
6001 is that we regard the value as signed.
6002 So sign-extend it. */
6003 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
6004 if (WORDS_BIG_ENDIAN)
6006 *first = high;
6007 *second = value;
6009 else
6011 *first = value;
6012 *second = high;
6016 else if (GET_CODE (value) == CONST_WIDE_INT)
6018 /* All of this is scary code and needs to be converted to
6019 properly work with any size integer. */
6020 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
6021 if (WORDS_BIG_ENDIAN)
6023 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6024 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6026 else
6028 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6029 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6032 else if (!CONST_DOUBLE_P (value))
6034 if (WORDS_BIG_ENDIAN)
6036 *first = const0_rtx;
6037 *second = value;
6039 else
6041 *first = value;
6042 *second = const0_rtx;
6045 else if (GET_MODE (value) == VOIDmode
6046 /* This is the old way we did CONST_DOUBLE integers. */
6047 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
6049 /* In an integer, the words are defined as most and least significant.
6050 So order them by the target's convention. */
6051 if (WORDS_BIG_ENDIAN)
6053 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
6054 *second = GEN_INT (CONST_DOUBLE_LOW (value));
6056 else
6058 *first = GEN_INT (CONST_DOUBLE_LOW (value));
6059 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
6062 else
6064 long l[2];
6066 /* Note, this converts the REAL_VALUE_TYPE to the target's
6067 format, splits up the floating point double and outputs
6068 exactly 32 bits of it into each of l[0] and l[1] --
6069 not necessarily BITS_PER_WORD bits. */
6070 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
6072 /* If 32 bits is an entire word for the target, but not for the host,
6073 then sign-extend on the host so that the number will look the same
6074 way on the host that it would on the target. See for instance
6075 simplify_unary_operation. The #if is needed to avoid compiler
6076 warnings. */
6078 #if HOST_BITS_PER_LONG > 32
6079 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
6081 if (l[0] & ((long) 1 << 31))
6082 l[0] |= ((unsigned long) (-1) << 32);
6083 if (l[1] & ((long) 1 << 31))
6084 l[1] |= ((unsigned long) (-1) << 32);
6086 #endif
6088 *first = GEN_INT (l[0]);
6089 *second = GEN_INT (l[1]);
6093 /* Return true if X is a sign_extract or zero_extract from the least
6094 significant bit. */
6096 static bool
6097 lsb_bitfield_op_p (rtx x)
6099 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6101 machine_mode mode = GET_MODE (XEXP (x, 0));
6102 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6103 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6104 poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
6106 return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
6108 return false;
6111 /* Strip outer address "mutations" from LOC and return a pointer to the
6112 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6113 stripped expression there.
6115 "Mutations" either convert between modes or apply some kind of
6116 extension, truncation or alignment. */
6118 rtx *
6119 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6121 for (;;)
6123 enum rtx_code code = GET_CODE (*loc);
6124 if (GET_RTX_CLASS (code) == RTX_UNARY)
6125 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6126 used to convert between pointer sizes. */
6127 loc = &XEXP (*loc, 0);
6128 else if (lsb_bitfield_op_p (*loc))
6129 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6130 acts as a combined truncation and extension. */
6131 loc = &XEXP (*loc, 0);
6132 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6133 /* (and ... (const_int -X)) is used to align to X bytes. */
6134 loc = &XEXP (*loc, 0);
6135 else if (code == SUBREG
6136 && !OBJECT_P (SUBREG_REG (*loc))
6137 && subreg_lowpart_p (*loc))
6138 /* (subreg (operator ...) ...) inside and is used for mode
6139 conversion too. */
6140 loc = &SUBREG_REG (*loc);
6141 else
6142 return loc;
6143 if (outer_code)
6144 *outer_code = code;
6148 /* Return true if CODE applies some kind of scale. The scaled value is
6149 is the first operand and the scale is the second. */
6151 static bool
6152 binary_scale_code_p (enum rtx_code code)
6154 return (code == MULT
6155 || code == ASHIFT
6156 /* Needed by ARM targets. */
6157 || code == ASHIFTRT
6158 || code == LSHIFTRT
6159 || code == ROTATE
6160 || code == ROTATERT);
6163 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6164 (see address_info). Return null otherwise. */
6166 static rtx *
6167 get_base_term (rtx *inner)
6169 if (GET_CODE (*inner) == LO_SUM)
6170 inner = strip_address_mutations (&XEXP (*inner, 0));
6171 if (REG_P (*inner)
6172 || MEM_P (*inner)
6173 || GET_CODE (*inner) == SUBREG
6174 || GET_CODE (*inner) == SCRATCH)
6175 return inner;
6176 return 0;
6179 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6180 (see address_info). Return null otherwise. */
6182 static rtx *
6183 get_index_term (rtx *inner)
6185 /* At present, only constant scales are allowed. */
6186 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6187 inner = strip_address_mutations (&XEXP (*inner, 0));
6188 if (REG_P (*inner)
6189 || MEM_P (*inner)
6190 || GET_CODE (*inner) == SUBREG
6191 || GET_CODE (*inner) == SCRATCH)
6192 return inner;
6193 return 0;
6196 /* Set the segment part of address INFO to LOC, given that INNER is the
6197 unmutated value. */
6199 static void
6200 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6202 gcc_assert (!info->segment);
6203 info->segment = loc;
6204 info->segment_term = inner;
6207 /* Set the base part of address INFO to LOC, given that INNER is the
6208 unmutated value. */
6210 static void
6211 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6213 gcc_assert (!info->base);
6214 info->base = loc;
6215 info->base_term = inner;
6218 /* Set the index part of address INFO to LOC, given that INNER is the
6219 unmutated value. */
6221 static void
6222 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6224 gcc_assert (!info->index);
6225 info->index = loc;
6226 info->index_term = inner;
6229 /* Set the displacement part of address INFO to LOC, given that INNER
6230 is the constant term. */
6232 static void
6233 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6235 gcc_assert (!info->disp);
6236 info->disp = loc;
6237 info->disp_term = inner;
6240 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6241 rest of INFO accordingly. */
6243 static void
6244 decompose_incdec_address (struct address_info *info)
6246 info->autoinc_p = true;
6248 rtx *base = &XEXP (*info->inner, 0);
6249 set_address_base (info, base, base);
6250 gcc_checking_assert (info->base == info->base_term);
6252 /* These addresses are only valid when the size of the addressed
6253 value is known. */
6254 gcc_checking_assert (info->mode != VOIDmode);
6257 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6258 of INFO accordingly. */
6260 static void
6261 decompose_automod_address (struct address_info *info)
6263 info->autoinc_p = true;
6265 rtx *base = &XEXP (*info->inner, 0);
6266 set_address_base (info, base, base);
6267 gcc_checking_assert (info->base == info->base_term);
6269 rtx plus = XEXP (*info->inner, 1);
6270 gcc_assert (GET_CODE (plus) == PLUS);
6272 info->base_term2 = &XEXP (plus, 0);
6273 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6275 rtx *step = &XEXP (plus, 1);
6276 rtx *inner_step = strip_address_mutations (step);
6277 if (CONSTANT_P (*inner_step))
6278 set_address_disp (info, step, inner_step);
6279 else
6280 set_address_index (info, step, inner_step);
6283 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6284 values in [PTR, END). Return a pointer to the end of the used array. */
6286 static rtx **
6287 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6289 rtx x = *loc;
6290 if (GET_CODE (x) == PLUS)
6292 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6293 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6295 else
6297 gcc_assert (ptr != end);
6298 *ptr++ = loc;
6300 return ptr;
6303 /* Evaluate the likelihood of X being a base or index value, returning
6304 positive if it is likely to be a base, negative if it is likely to be
6305 an index, and 0 if we can't tell. Make the magnitude of the return
6306 value reflect the amount of confidence we have in the answer.
6308 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6310 static int
6311 baseness (rtx x, machine_mode mode, addr_space_t as,
6312 enum rtx_code outer_code, enum rtx_code index_code)
6314 /* Believe *_POINTER unless the address shape requires otherwise. */
6315 if (REG_P (x) && REG_POINTER (x))
6316 return 2;
6317 if (MEM_P (x) && MEM_POINTER (x))
6318 return 2;
6320 if (REG_P (x) && HARD_REGISTER_P (x))
6322 /* X is a hard register. If it only fits one of the base
6323 or index classes, choose that interpretation. */
6324 int regno = REGNO (x);
6325 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6326 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6327 if (base_p != index_p)
6328 return base_p ? 1 : -1;
6330 return 0;
6333 /* INFO->INNER describes a normal, non-automodified address.
6334 Fill in the rest of INFO accordingly. */
6336 static void
6337 decompose_normal_address (struct address_info *info)
6339 /* Treat the address as the sum of up to four values. */
6340 rtx *ops[4];
6341 size_t n_ops = extract_plus_operands (info->inner, ops,
6342 ops + ARRAY_SIZE (ops)) - ops;
6344 /* If there is more than one component, any base component is in a PLUS. */
6345 if (n_ops > 1)
6346 info->base_outer_code = PLUS;
6348 /* Try to classify each sum operand now. Leave those that could be
6349 either a base or an index in OPS. */
6350 rtx *inner_ops[4];
6351 size_t out = 0;
6352 for (size_t in = 0; in < n_ops; ++in)
6354 rtx *loc = ops[in];
6355 rtx *inner = strip_address_mutations (loc);
6356 if (CONSTANT_P (*inner))
6357 set_address_disp (info, loc, inner);
6358 else if (GET_CODE (*inner) == UNSPEC)
6359 set_address_segment (info, loc, inner);
6360 else
6362 /* The only other possibilities are a base or an index. */
6363 rtx *base_term = get_base_term (inner);
6364 rtx *index_term = get_index_term (inner);
6365 gcc_assert (base_term || index_term);
6366 if (!base_term)
6367 set_address_index (info, loc, index_term);
6368 else if (!index_term)
6369 set_address_base (info, loc, base_term);
6370 else
6372 gcc_assert (base_term == index_term);
6373 ops[out] = loc;
6374 inner_ops[out] = base_term;
6375 ++out;
6380 /* Classify the remaining OPS members as bases and indexes. */
6381 if (out == 1)
6383 /* If we haven't seen a base or an index yet, assume that this is
6384 the base. If we were confident that another term was the base
6385 or index, treat the remaining operand as the other kind. */
6386 if (!info->base)
6387 set_address_base (info, ops[0], inner_ops[0]);
6388 else
6389 set_address_index (info, ops[0], inner_ops[0]);
6391 else if (out == 2)
6393 /* In the event of a tie, assume the base comes first. */
6394 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6395 GET_CODE (*ops[1]))
6396 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6397 GET_CODE (*ops[0])))
6399 set_address_base (info, ops[0], inner_ops[0]);
6400 set_address_index (info, ops[1], inner_ops[1]);
6402 else
6404 set_address_base (info, ops[1], inner_ops[1]);
6405 set_address_index (info, ops[0], inner_ops[0]);
6408 else
6409 gcc_assert (out == 0);
6412 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6413 or VOIDmode if not known. AS is the address space associated with LOC.
6414 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6416 void
6417 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6418 addr_space_t as, enum rtx_code outer_code)
6420 memset (info, 0, sizeof (*info));
6421 info->mode = mode;
6422 info->as = as;
6423 info->addr_outer_code = outer_code;
6424 info->outer = loc;
6425 info->inner = strip_address_mutations (loc, &outer_code);
6426 info->base_outer_code = outer_code;
6427 switch (GET_CODE (*info->inner))
6429 case PRE_DEC:
6430 case PRE_INC:
6431 case POST_DEC:
6432 case POST_INC:
6433 decompose_incdec_address (info);
6434 break;
6436 case PRE_MODIFY:
6437 case POST_MODIFY:
6438 decompose_automod_address (info);
6439 break;
6441 default:
6442 decompose_normal_address (info);
6443 break;
6447 /* Describe address operand LOC in INFO. */
6449 void
6450 decompose_lea_address (struct address_info *info, rtx *loc)
6452 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6455 /* Describe the address of MEM X in INFO. */
6457 void
6458 decompose_mem_address (struct address_info *info, rtx x)
6460 gcc_assert (MEM_P (x));
6461 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6462 MEM_ADDR_SPACE (x), MEM);
6465 /* Update INFO after a change to the address it describes. */
6467 void
6468 update_address (struct address_info *info)
6470 decompose_address (info, info->outer, info->mode, info->as,
6471 info->addr_outer_code);
6474 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6475 more complicated than that. */
6477 HOST_WIDE_INT
6478 get_index_scale (const struct address_info *info)
6480 rtx index = *info->index;
6481 if (GET_CODE (index) == MULT
6482 && CONST_INT_P (XEXP (index, 1))
6483 && info->index_term == &XEXP (index, 0))
6484 return INTVAL (XEXP (index, 1));
6486 if (GET_CODE (index) == ASHIFT
6487 && CONST_INT_P (XEXP (index, 1))
6488 && info->index_term == &XEXP (index, 0))
6489 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6491 if (info->index == info->index_term)
6492 return 1;
6494 return 0;
6497 /* Return the "index code" of INFO, in the form required by
6498 ok_for_base_p_1. */
6500 enum rtx_code
6501 get_index_code (const struct address_info *info)
6503 if (info->index)
6504 return GET_CODE (*info->index);
6506 if (info->disp)
6507 return GET_CODE (*info->disp);
6509 return SCRATCH;
6512 /* Return true if RTL X contains a SYMBOL_REF. */
6514 bool
6515 contains_symbol_ref_p (const_rtx x)
6517 subrtx_iterator::array_type array;
6518 FOR_EACH_SUBRTX (iter, array, x, ALL)
6519 if (SYMBOL_REF_P (*iter))
6520 return true;
6522 return false;
6525 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6527 bool
6528 contains_symbolic_reference_p (const_rtx x)
6530 subrtx_iterator::array_type array;
6531 FOR_EACH_SUBRTX (iter, array, x, ALL)
6532 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6533 return true;
6535 return false;
6538 /* Return true if X contains a thread-local symbol. */
6540 bool
6541 tls_referenced_p (const_rtx x)
6543 if (!targetm.have_tls)
6544 return false;
6546 subrtx_iterator::array_type array;
6547 FOR_EACH_SUBRTX (iter, array, x, ALL)
6548 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6549 return true;
6550 return false;