1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
26 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "insn-flags.h"
32 #include "insn-codes.h"
37 #include "basic-block.h"
45 #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
46 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
49 /* This file contains the reload pass of the compiler, which is
50 run after register allocation has been done. It checks that
51 each insn is valid (operands required to be in registers really
52 are in registers of the proper class) and fixes up invalid ones
53 by copying values temporarily into registers for the insns
56 The results of register allocation are described by the vector
57 reg_renumber; the insns still contain pseudo regs, but reg_renumber
58 can be used to find which hard reg, if any, a pseudo reg is in.
60 The technique we always use is to free up a few hard regs that are
61 called ``reload regs'', and for each place where a pseudo reg
62 must be in a hard reg, copy it temporarily into one of the reload regs.
64 Reload regs are allocated locally for every instruction that needs
65 reloads. When there are pseudos which are allocated to a register that
66 has been chosen as a reload reg, such pseudos must be ``spilled''.
67 This means that they go to other hard regs, or to stack slots if no other
68 available hard regs can be found. Spilling can invalidate more
69 insns, requiring additional need for reloads, so we must keep checking
70 until the process stabilizes.
72 For machines with different classes of registers, we must keep track
73 of the register class needed for each reload, and make sure that
74 we allocate enough reload registers of each class.
76 The file reload.c contains the code that checks one insn for
77 validity and reports the reloads that it needs. This file
78 is in charge of scanning the entire rtl code, accumulating the
79 reload needs, spilling, assigning reload registers to use for
80 fixing up each insn, and generating the new insns to copy values
81 into the reload registers. */
83 #ifndef REGISTER_MOVE_COST
84 #define REGISTER_MOVE_COST(m, x, y) 2
88 #define LOCAL_REGNO(REGNO) 0
91 /* During reload_as_needed, element N contains a REG rtx for the hard reg
92 into which reg N has been reloaded (perhaps for a previous insn). */
93 static rtx
*reg_last_reload_reg
;
95 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
96 for an output reload that stores into reg N. */
97 static char *reg_has_output_reload
;
99 /* Indicates which hard regs are reload-registers for an output reload
100 in the current insn. */
101 static HARD_REG_SET reg_is_output_reload
;
103 /* Element N is the constant value to which pseudo reg N is equivalent,
104 or zero if pseudo reg N is not equivalent to a constant.
105 find_reloads looks at this in order to replace pseudo reg N
106 with the constant it stands for. */
107 rtx
*reg_equiv_constant
;
109 /* Element N is a memory location to which pseudo reg N is equivalent,
110 prior to any register elimination (such as frame pointer to stack
111 pointer). Depending on whether or not it is a valid address, this value
112 is transferred to either reg_equiv_address or reg_equiv_mem. */
113 rtx
*reg_equiv_memory_loc
;
115 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
116 This is used when the address is not valid as a memory address
117 (because its displacement is too big for the machine.) */
118 rtx
*reg_equiv_address
;
120 /* Element N is the memory slot to which pseudo reg N is equivalent,
121 or zero if pseudo reg N is not equivalent to a memory slot. */
124 /* Widest width in which each pseudo reg is referred to (via subreg). */
125 static unsigned int *reg_max_ref_width
;
127 /* Element N is the list of insns that initialized reg N from its equivalent
128 constant or memory slot. */
129 static rtx
*reg_equiv_init
;
131 /* Vector to remember old contents of reg_renumber before spilling. */
132 static short *reg_old_renumber
;
134 /* During reload_as_needed, element N contains the last pseudo regno reloaded
135 into hard register N. If that pseudo reg occupied more than one register,
136 reg_reloaded_contents points to that pseudo for each spill register in
137 use; all of these must remain set for an inheritance to occur. */
138 static int reg_reloaded_contents
[FIRST_PSEUDO_REGISTER
];
140 /* During reload_as_needed, element N contains the insn for which
141 hard register N was last used. Its contents are significant only
142 when reg_reloaded_valid is set for this register. */
143 static rtx reg_reloaded_insn
[FIRST_PSEUDO_REGISTER
];
145 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
146 static HARD_REG_SET reg_reloaded_valid
;
147 /* Indicate if the register was dead at the end of the reload.
148 This is only valid if reg_reloaded_contents is set and valid. */
149 static HARD_REG_SET reg_reloaded_dead
;
151 /* Number of spill-regs so far; number of valid elements of spill_regs. */
154 /* In parallel with spill_regs, contains REG rtx's for those regs.
155 Holds the last rtx used for any given reg, or 0 if it has never
156 been used for spilling yet. This rtx is reused, provided it has
158 static rtx spill_reg_rtx
[FIRST_PSEUDO_REGISTER
];
160 /* In parallel with spill_regs, contains nonzero for a spill reg
161 that was stored after the last time it was used.
162 The precise value is the insn generated to do the store. */
163 static rtx spill_reg_store
[FIRST_PSEUDO_REGISTER
];
165 /* This is the register that was stored with spill_reg_store. This is a
166 copy of reload_out / reload_out_reg when the value was stored; if
167 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
168 static rtx spill_reg_stored_to
[FIRST_PSEUDO_REGISTER
];
170 /* This table is the inverse mapping of spill_regs:
171 indexed by hard reg number,
172 it contains the position of that reg in spill_regs,
173 or -1 for something that is not in spill_regs.
175 ?!? This is no longer accurate. */
176 static short spill_reg_order
[FIRST_PSEUDO_REGISTER
];
178 /* This reg set indicates registers that can't be used as spill registers for
179 the currently processed insn. These are the hard registers which are live
180 during the insn, but not allocated to pseudos, as well as fixed
182 static HARD_REG_SET bad_spill_regs
;
184 /* These are the hard registers that can't be used as spill register for any
185 insn. This includes registers used for user variables and registers that
186 we can't eliminate. A register that appears in this set also can't be used
187 to retry register allocation. */
188 static HARD_REG_SET bad_spill_regs_global
;
190 /* Describes order of use of registers for reloading
191 of spilled pseudo-registers. `n_spills' is the number of
192 elements that are actually valid; new ones are added at the end.
194 Both spill_regs and spill_reg_order are used on two occasions:
195 once during find_reload_regs, where they keep track of the spill registers
196 for a single insn, but also during reload_as_needed where they show all
197 the registers ever used by reload. For the latter case, the information
198 is calculated during finish_spills. */
199 static short spill_regs
[FIRST_PSEUDO_REGISTER
];
201 /* This vector of reg sets indicates, for each pseudo, which hard registers
202 may not be used for retrying global allocation because the register was
203 formerly spilled from one of them. If we allowed reallocating a pseudo to
204 a register that it was already allocated to, reload might not
206 static HARD_REG_SET
*pseudo_previous_regs
;
208 /* This vector of reg sets indicates, for each pseudo, which hard
209 registers may not be used for retrying global allocation because they
210 are used as spill registers during one of the insns in which the
212 static HARD_REG_SET
*pseudo_forbidden_regs
;
214 /* All hard regs that have been used as spill registers for any insn are
215 marked in this set. */
216 static HARD_REG_SET used_spill_regs
;
218 /* Index of last register assigned as a spill register. We allocate in
219 a round-robin fashion. */
220 static int last_spill_reg
;
222 /* Nonzero if indirect addressing is supported on the machine; this means
223 that spilling (REG n) does not require reloading it into a register in
224 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
225 value indicates the level of indirect addressing supported, e.g., two
226 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
228 static char spill_indirect_levels
;
230 /* Nonzero if indirect addressing is supported when the innermost MEM is
231 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
232 which these are valid is the same as spill_indirect_levels, above. */
233 char indirect_symref_ok
;
235 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
236 char double_reg_address_ok
;
238 /* Record the stack slot for each spilled hard register. */
239 static rtx spill_stack_slot
[FIRST_PSEUDO_REGISTER
];
241 /* Width allocated so far for that stack slot. */
242 static unsigned int spill_stack_slot_width
[FIRST_PSEUDO_REGISTER
];
244 /* Record which pseudos needed to be spilled. */
245 static regset_head spilled_pseudos
;
247 /* Used for communication between order_regs_for_reload and count_pseudo.
248 Used to avoid counting one pseudo twice. */
249 static regset_head pseudos_counted
;
251 /* First uid used by insns created by reload in this function.
252 Used in find_equiv_reg. */
253 int reload_first_uid
;
255 /* Flag set by local-alloc or global-alloc if anything is live in
256 a call-clobbered reg across calls. */
257 int caller_save_needed
;
259 /* Set to 1 while reload_as_needed is operating.
260 Required by some machines to handle any generated moves differently. */
261 int reload_in_progress
= 0;
263 /* These arrays record the insn_code of insns that may be needed to
264 perform input and output reloads of special objects. They provide a
265 place to pass a scratch register. */
266 enum insn_code reload_in_optab
[NUM_MACHINE_MODES
];
267 enum insn_code reload_out_optab
[NUM_MACHINE_MODES
];
269 /* This obstack is used for allocation of rtl during register elimination.
270 The allocated storage can be freed once find_reloads has processed the
272 struct obstack reload_obstack
;
274 /* Points to the beginning of the reload_obstack. All insn_chain structures
275 are allocated first. */
276 char *reload_startobj
;
278 /* The point after all insn_chain structures. Used to quickly deallocate
279 memory allocated in copy_reloads during calculate_needs_all_insns. */
280 char *reload_firstobj
;
282 /* This points before all local rtl generated by register elimination.
283 Used to quickly free all memory after processing one insn. */
284 static char *reload_insn_firstobj
;
286 #define obstack_chunk_alloc xmalloc
287 #define obstack_chunk_free free
289 /* List of insn_chain instructions, one for every insn that reload needs to
291 struct insn_chain
*reload_insn_chain
;
294 extern tree current_function_decl
;
296 extern union tree_node
*current_function_decl
;
299 /* List of all insns needing reloads. */
300 static struct insn_chain
*insns_need_reload
;
302 /* This structure is used to record information about register eliminations.
303 Each array entry describes one possible way of eliminating a register
304 in favor of another. If there is more than one way of eliminating a
305 particular register, the most preferred should be specified first. */
309 int from
; /* Register number to be eliminated. */
310 int to
; /* Register number used as replacement. */
311 int initial_offset
; /* Initial difference between values. */
312 int can_eliminate
; /* Non-zero if this elimination can be done. */
313 int can_eliminate_previous
; /* Value of CAN_ELIMINATE in previous scan over
314 insns made by reload. */
315 int offset
; /* Current offset between the two regs. */
316 int previous_offset
; /* Offset at end of previous insn. */
317 int ref_outside_mem
; /* "to" has been referenced outside a MEM. */
318 rtx from_rtx
; /* REG rtx for the register to be eliminated.
319 We cannot simply compare the number since
320 we might then spuriously replace a hard
321 register corresponding to a pseudo
322 assigned to the reg to be eliminated. */
323 rtx to_rtx
; /* REG rtx for the replacement. */
326 static struct elim_table
*reg_eliminate
= 0;
328 /* This is an intermediate structure to initialize the table. It has
329 exactly the members provided by ELIMINABLE_REGS. */
330 static struct elim_table_1
334 } reg_eliminate_1
[] =
336 /* If a set of eliminable registers was specified, define the table from it.
337 Otherwise, default to the normal case of the frame pointer being
338 replaced by the stack pointer. */
340 #ifdef ELIMINABLE_REGS
343 {{ FRAME_POINTER_REGNUM
, STACK_POINTER_REGNUM
}};
346 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
348 /* Record the number of pending eliminations that have an offset not equal
349 to their initial offset. If non-zero, we use a new copy of each
350 replacement result in any insns encountered. */
351 int num_not_at_initial_offset
;
353 /* Count the number of registers that we may be able to eliminate. */
354 static int num_eliminable
;
355 /* And the number of registers that are equivalent to a constant that
356 can be eliminated to frame_pointer / arg_pointer + constant. */
357 static int num_eliminable_invariants
;
359 /* For each label, we record the offset of each elimination. If we reach
360 a label by more than one path and an offset differs, we cannot do the
361 elimination. This information is indexed by the number of the label.
362 The first table is an array of flags that records whether we have yet
363 encountered a label and the second table is an array of arrays, one
364 entry in the latter array for each elimination. */
366 static char *offsets_known_at
;
367 static int (*offsets_at
)[NUM_ELIMINABLE_REGS
];
369 /* Number of labels in the current function. */
371 static int num_labels
;
373 static void replace_pseudos_in_call_usage
PARAMS((rtx
*,
376 static void maybe_fix_stack_asms
PARAMS ((void));
377 static void copy_reloads
PARAMS ((struct insn_chain
*));
378 static void calculate_needs_all_insns
PARAMS ((int));
379 static int find_reg
PARAMS ((struct insn_chain
*, int));
380 static void find_reload_regs
PARAMS ((struct insn_chain
*));
381 static void select_reload_regs
PARAMS ((void));
382 static void delete_caller_save_insns
PARAMS ((void));
384 static void spill_failure
PARAMS ((rtx
, enum reg_class
));
385 static void count_spilled_pseudo
PARAMS ((int, int, int));
386 static void delete_dead_insn
PARAMS ((rtx
));
387 static void alter_reg
PARAMS ((int, int));
388 static void set_label_offsets
PARAMS ((rtx
, rtx
, int));
389 static void check_eliminable_occurrences
PARAMS ((rtx
));
390 static void elimination_effects
PARAMS ((rtx
, enum machine_mode
));
391 static int eliminate_regs_in_insn
PARAMS ((rtx
, int));
392 static void update_eliminable_offsets
PARAMS ((void));
393 static void mark_not_eliminable
PARAMS ((rtx
, rtx
, void *));
394 static void set_initial_elim_offsets
PARAMS ((void));
395 static void verify_initial_elim_offsets
PARAMS ((void));
396 static void set_initial_label_offsets
PARAMS ((void));
397 static void set_offsets_for_label
PARAMS ((rtx
));
398 static void init_elim_table
PARAMS ((void));
399 static void update_eliminables
PARAMS ((HARD_REG_SET
*));
400 static void spill_hard_reg
PARAMS ((unsigned int, int));
401 static int finish_spills
PARAMS ((int));
402 static void ior_hard_reg_set
PARAMS ((HARD_REG_SET
*, HARD_REG_SET
*));
403 static void scan_paradoxical_subregs
PARAMS ((rtx
));
404 static void count_pseudo
PARAMS ((int));
405 static void order_regs_for_reload
PARAMS ((struct insn_chain
*));
406 static void reload_as_needed
PARAMS ((int));
407 static void forget_old_reloads_1
PARAMS ((rtx
, rtx
, void *));
408 static int reload_reg_class_lower
PARAMS ((const PTR
, const PTR
));
409 static void mark_reload_reg_in_use
PARAMS ((unsigned int, int,
412 static void clear_reload_reg_in_use
PARAMS ((unsigned int, int,
415 static int reload_reg_free_p
PARAMS ((unsigned int, int,
417 static int reload_reg_free_for_value_p
PARAMS ((int, int, int,
419 rtx
, rtx
, int, int));
420 static int free_for_value_p
PARAMS ((int, enum machine_mode
, int,
421 enum reload_type
, rtx
, rtx
,
423 static int reload_reg_reaches_end_p
PARAMS ((unsigned int, int,
425 static int allocate_reload_reg
PARAMS ((struct insn_chain
*, int,
427 static int conflicts_with_override
PARAMS ((rtx
));
428 static void failed_reload
PARAMS ((rtx
, int));
429 static int set_reload_reg
PARAMS ((int, int));
430 static void choose_reload_regs_init
PARAMS ((struct insn_chain
*, rtx
*));
431 static void choose_reload_regs
PARAMS ((struct insn_chain
*));
432 static void merge_assigned_reloads
PARAMS ((rtx
));
433 static void emit_input_reload_insns
PARAMS ((struct insn_chain
*,
434 struct reload
*, rtx
, int));
435 static void emit_output_reload_insns
PARAMS ((struct insn_chain
*,
436 struct reload
*, int));
437 static void do_input_reload
PARAMS ((struct insn_chain
*,
438 struct reload
*, int));
439 static void do_output_reload
PARAMS ((struct insn_chain
*,
440 struct reload
*, int));
441 static void emit_reload_insns
PARAMS ((struct insn_chain
*));
442 static void delete_output_reload
PARAMS ((rtx
, int, int));
443 static void delete_address_reloads
PARAMS ((rtx
, rtx
));
444 static void delete_address_reloads_1
PARAMS ((rtx
, rtx
, rtx
));
445 static rtx inc_for_reload
PARAMS ((rtx
, rtx
, rtx
, int));
446 static int constraint_accepts_reg_p
PARAMS ((const char *, rtx
));
447 static void reload_cse_regs_1
PARAMS ((rtx
));
448 static int reload_cse_noop_set_p
PARAMS ((rtx
));
449 static int reload_cse_simplify_set
PARAMS ((rtx
, rtx
));
450 static int reload_cse_simplify_operands
PARAMS ((rtx
));
451 static void reload_combine
PARAMS ((void));
452 static void reload_combine_note_use
PARAMS ((rtx
*, rtx
));
453 static void reload_combine_note_store
PARAMS ((rtx
, rtx
, void *));
454 static void reload_cse_move2add
PARAMS ((rtx
));
455 static void move2add_note_store
PARAMS ((rtx
, rtx
, void *));
457 static void add_auto_inc_notes
PARAMS ((rtx
, rtx
));
459 static HOST_WIDE_INT sext_for_mode
PARAMS ((enum machine_mode
,
461 static void failed_reload
PARAMS ((rtx
, int));
462 static int set_reload_reg
PARAMS ((int, int));
463 static void reload_cse_delete_noop_set
PARAMS ((rtx
, rtx
));
464 static void reload_cse_simplify
PARAMS ((rtx
));
465 extern void dump_needs
PARAMS ((struct insn_chain
*));
467 /* Initialize the reload pass once per compilation. */
474 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
475 Set spill_indirect_levels to the number of levels such addressing is
476 permitted, zero if it is not permitted at all. */
479 = gen_rtx_MEM (Pmode
,
482 LAST_VIRTUAL_REGISTER
+ 1),
484 spill_indirect_levels
= 0;
486 while (memory_address_p (QImode
, tem
))
488 spill_indirect_levels
++;
489 tem
= gen_rtx_MEM (Pmode
, tem
);
492 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
494 tem
= gen_rtx_MEM (Pmode
, gen_rtx_SYMBOL_REF (Pmode
, "foo"));
495 indirect_symref_ok
= memory_address_p (QImode
, tem
);
497 /* See if reg+reg is a valid (and offsettable) address. */
499 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
501 tem
= gen_rtx_PLUS (Pmode
,
502 gen_rtx_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
),
503 gen_rtx_REG (Pmode
, i
));
505 /* This way, we make sure that reg+reg is an offsettable address. */
506 tem
= plus_constant (tem
, 4);
508 if (memory_address_p (QImode
, tem
))
510 double_reg_address_ok
= 1;
515 /* Initialize obstack for our rtl allocation. */
516 gcc_obstack_init (&reload_obstack
);
517 reload_startobj
= (char *) obstack_alloc (&reload_obstack
, 0);
519 INIT_REG_SET (&spilled_pseudos
);
520 INIT_REG_SET (&pseudos_counted
);
523 /* List of insn chains that are currently unused. */
524 static struct insn_chain
*unused_insn_chains
= 0;
526 /* Allocate an empty insn_chain structure. */
530 struct insn_chain
*c
;
532 if (unused_insn_chains
== 0)
534 c
= (struct insn_chain
*)
535 obstack_alloc (&reload_obstack
, sizeof (struct insn_chain
));
536 INIT_REG_SET (&c
->live_throughout
);
537 INIT_REG_SET (&c
->dead_or_set
);
541 c
= unused_insn_chains
;
542 unused_insn_chains
= c
->next
;
544 c
->is_caller_save_insn
= 0;
545 c
->need_operand_change
= 0;
551 /* Small utility function to set all regs in hard reg set TO which are
552 allocated to pseudos in regset FROM. */
555 compute_use_by_pseudos (to
, from
)
561 EXECUTE_IF_SET_IN_REG_SET
562 (from
, FIRST_PSEUDO_REGISTER
, regno
,
564 int r
= reg_renumber
[regno
];
569 /* reload_combine uses the information from
570 BASIC_BLOCK->global_live_at_start, which might still
571 contain registers that have not actually been allocated
572 since they have an equivalence. */
573 if (! reload_completed
)
578 nregs
= HARD_REGNO_NREGS (r
, PSEUDO_REGNO_MODE (regno
));
580 SET_HARD_REG_BIT (*to
, r
+ nregs
);
585 /* Replace all pseudos found in LOC with their corresponding
589 replace_pseudos_in_call_usage (loc
, mem_mode
, usage
)
591 enum machine_mode mem_mode
;
605 int regno
= REGNO (x
);
607 if (regno
< FIRST_PSEUDO_REGISTER
)
610 x
= eliminate_regs (x
, mem_mode
, usage
);
614 replace_pseudos_in_call_usage (loc
, mem_mode
, usage
);
618 if (reg_equiv_constant
[regno
])
619 *loc
= reg_equiv_constant
[regno
];
620 else if (reg_equiv_mem
[regno
])
621 *loc
= reg_equiv_mem
[regno
];
622 else if (reg_equiv_address
[regno
])
623 *loc
= gen_rtx_MEM (GET_MODE (x
), reg_equiv_address
[regno
]);
624 else if (GET_CODE (regno_reg_rtx
[regno
]) != REG
625 || REGNO (regno_reg_rtx
[regno
]) != regno
)
626 *loc
= regno_reg_rtx
[regno
];
632 else if (code
== MEM
)
634 replace_pseudos_in_call_usage (& XEXP (x
, 0), GET_MODE (x
), usage
);
638 /* Process each of our operands recursively. */
639 fmt
= GET_RTX_FORMAT (code
);
640 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
642 replace_pseudos_in_call_usage (&XEXP (x
, i
), mem_mode
, usage
);
643 else if (*fmt
== 'E')
644 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
645 replace_pseudos_in_call_usage (& XVECEXP (x
, i
, j
), mem_mode
, usage
);
649 /* Global variables used by reload and its subroutines. */
651 /* Set during calculate_needs if an insn needs register elimination. */
652 static int something_needs_elimination
;
653 /* Set during calculate_needs if an insn needs an operand changed. */
654 int something_needs_operands_changed
;
656 /* Nonzero means we couldn't get enough spill regs. */
659 /* Main entry point for the reload pass.
661 FIRST is the first insn of the function being compiled.
663 GLOBAL nonzero means we were called from global_alloc
664 and should attempt to reallocate any pseudoregs that we
665 displace from hard regs we will use for reloads.
666 If GLOBAL is zero, we do not have enough information to do that,
667 so any pseudo reg that is spilled must go to the stack.
669 Return value is nonzero if reload failed
670 and we must not do any more for this function. */
673 reload (first
, global
)
679 register struct elim_table
*ep
;
681 /* The two pointers used to track the true location of the memory used
682 for label offsets. */
683 char *real_known_ptr
= NULL_PTR
;
684 int (*real_at_ptr
)[NUM_ELIMINABLE_REGS
];
686 /* Make sure even insns with volatile mem refs are recognizable. */
691 reload_firstobj
= (char *) obstack_alloc (&reload_obstack
, 0);
693 /* Make sure that the last insn in the chain
694 is not something that needs reloading. */
695 emit_note (NULL_PTR
, NOTE_INSN_DELETED
);
697 /* Enable find_equiv_reg to distinguish insns made by reload. */
698 reload_first_uid
= get_max_uid ();
700 #ifdef SECONDARY_MEMORY_NEEDED
701 /* Initialize the secondary memory table. */
702 clear_secondary_mem ();
705 /* We don't have a stack slot for any spill reg yet. */
706 memset ((char *) spill_stack_slot
, 0, sizeof spill_stack_slot
);
707 memset ((char *) spill_stack_slot_width
, 0, sizeof spill_stack_slot_width
);
709 /* Initialize the save area information for caller-save, in case some
713 /* Compute which hard registers are now in use
714 as homes for pseudo registers.
715 This is done here rather than (eg) in global_alloc
716 because this point is reached even if not optimizing. */
717 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
720 /* A function that receives a nonlocal goto must save all call-saved
722 if (current_function_has_nonlocal_label
)
723 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
724 if (! call_used_regs
[i
] && ! fixed_regs
[i
] && ! LOCAL_REGNO (i
))
725 regs_ever_live
[i
] = 1;
727 /* Find all the pseudo registers that didn't get hard regs
728 but do have known equivalent constants or memory slots.
729 These include parameters (known equivalent to parameter slots)
730 and cse'd or loop-moved constant memory addresses.
732 Record constant equivalents in reg_equiv_constant
733 so they will be substituted by find_reloads.
734 Record memory equivalents in reg_mem_equiv so they can
735 be substituted eventually by altering the REG-rtx's. */
737 reg_equiv_constant
= (rtx
*) xcalloc (max_regno
, sizeof (rtx
));
738 reg_equiv_memory_loc
= (rtx
*) xcalloc (max_regno
, sizeof (rtx
));
739 reg_equiv_mem
= (rtx
*) xcalloc (max_regno
, sizeof (rtx
));
740 reg_equiv_init
= (rtx
*) xcalloc (max_regno
, sizeof (rtx
));
741 reg_equiv_address
= (rtx
*) xcalloc (max_regno
, sizeof (rtx
));
742 reg_max_ref_width
= (unsigned int *) xcalloc (max_regno
, sizeof (int));
743 reg_old_renumber
= (short *) xcalloc (max_regno
, sizeof (short));
744 memcpy (reg_old_renumber
, reg_renumber
, max_regno
* sizeof (short));
745 pseudo_forbidden_regs
746 = (HARD_REG_SET
*) xmalloc (max_regno
* sizeof (HARD_REG_SET
));
748 = (HARD_REG_SET
*) xcalloc (max_regno
, sizeof (HARD_REG_SET
));
750 CLEAR_HARD_REG_SET (bad_spill_regs_global
);
752 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
753 Also find all paradoxical subregs and find largest such for each pseudo.
754 On machines with small register classes, record hard registers that
755 are used for user variables. These can never be used for spills.
756 Also look for a "constant" NOTE_INSN_SETJMP. This means that all
757 caller-saved registers must be marked live. */
759 num_eliminable_invariants
= 0;
760 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
762 rtx set
= single_set (insn
);
764 if (GET_CODE (insn
) == NOTE
&& CONST_CALL_P (insn
)
765 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_SETJMP
)
766 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
767 if (! call_used_regs
[i
])
768 regs_ever_live
[i
] = 1;
770 if (set
!= 0 && GET_CODE (SET_DEST (set
)) == REG
)
772 rtx note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
);
774 #ifdef LEGITIMATE_PIC_OPERAND_P
775 && (! function_invariant_p (XEXP (note
, 0))
777 || LEGITIMATE_PIC_OPERAND_P (XEXP (note
, 0)))
781 rtx x
= XEXP (note
, 0);
782 i
= REGNO (SET_DEST (set
));
783 if (i
> LAST_VIRTUAL_REGISTER
)
785 if (GET_CODE (x
) == MEM
)
787 /* If the operand is a PLUS, the MEM may be shared,
788 so make sure we have an unshared copy here. */
789 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
792 reg_equiv_memory_loc
[i
] = x
;
794 else if (function_invariant_p (x
))
796 if (GET_CODE (x
) == PLUS
)
798 /* This is PLUS of frame pointer and a constant,
799 and might be shared. Unshare it. */
800 reg_equiv_constant
[i
] = copy_rtx (x
);
801 num_eliminable_invariants
++;
803 else if (x
== frame_pointer_rtx
804 || x
== arg_pointer_rtx
)
806 reg_equiv_constant
[i
] = x
;
807 num_eliminable_invariants
++;
809 else if (LEGITIMATE_CONSTANT_P (x
))
810 reg_equiv_constant
[i
] = x
;
812 reg_equiv_memory_loc
[i
]
813 = force_const_mem (GET_MODE (SET_DEST (set
)), x
);
818 /* If this register is being made equivalent to a MEM
819 and the MEM is not SET_SRC, the equivalencing insn
820 is one with the MEM as a SET_DEST and it occurs later.
821 So don't mark this insn now. */
822 if (GET_CODE (x
) != MEM
823 || rtx_equal_p (SET_SRC (set
), x
))
825 = gen_rtx_INSN_LIST (VOIDmode
, insn
, reg_equiv_init
[i
]);
830 /* If this insn is setting a MEM from a register equivalent to it,
831 this is the equivalencing insn. */
832 else if (set
&& GET_CODE (SET_DEST (set
)) == MEM
833 && GET_CODE (SET_SRC (set
)) == REG
834 && reg_equiv_memory_loc
[REGNO (SET_SRC (set
))]
835 && rtx_equal_p (SET_DEST (set
),
836 reg_equiv_memory_loc
[REGNO (SET_SRC (set
))]))
837 reg_equiv_init
[REGNO (SET_SRC (set
))]
838 = gen_rtx_INSN_LIST (VOIDmode
, insn
,
839 reg_equiv_init
[REGNO (SET_SRC (set
))]);
842 scan_paradoxical_subregs (PATTERN (insn
));
847 num_labels
= max_label_num () - get_first_label_num ();
849 /* Allocate the tables used to store offset information at labels. */
850 /* We used to use alloca here, but the size of what it would try to
851 allocate would occasionally cause it to exceed the stack limit and
852 cause a core dump. */
853 real_known_ptr
= xmalloc (num_labels
);
855 = (int (*)[NUM_ELIMINABLE_REGS
])
856 xmalloc (num_labels
* NUM_ELIMINABLE_REGS
* sizeof (int));
858 offsets_known_at
= real_known_ptr
- get_first_label_num ();
860 = (int (*)[NUM_ELIMINABLE_REGS
]) (real_at_ptr
- get_first_label_num ());
862 /* Alter each pseudo-reg rtx to contain its hard reg number.
863 Assign stack slots to the pseudos that lack hard regs or equivalents.
864 Do not touch virtual registers. */
866 for (i
= LAST_VIRTUAL_REGISTER
+ 1; i
< max_regno
; i
++)
869 /* If we have some registers we think can be eliminated, scan all insns to
870 see if there is an insn that sets one of these registers to something
871 other than itself plus a constant. If so, the register cannot be
872 eliminated. Doing this scan here eliminates an extra pass through the
873 main reload loop in the most common case where register elimination
875 for (insn
= first
; insn
&& num_eliminable
; insn
= NEXT_INSN (insn
))
876 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == JUMP_INSN
877 || GET_CODE (insn
) == CALL_INSN
)
878 note_stores (PATTERN (insn
), mark_not_eliminable
, NULL
);
880 maybe_fix_stack_asms ();
882 insns_need_reload
= 0;
883 something_needs_elimination
= 0;
885 /* Initialize to -1, which means take the first spill register. */
888 /* Spill any hard regs that we know we can't eliminate. */
889 CLEAR_HARD_REG_SET (used_spill_regs
);
890 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
891 if (! ep
->can_eliminate
)
892 spill_hard_reg (ep
->from
, 1);
894 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
895 if (frame_pointer_needed
)
896 spill_hard_reg (HARD_FRAME_POINTER_REGNUM
, 1);
898 finish_spills (global
);
900 /* From now on, we may need to generate moves differently. We may also
901 allow modifications of insns which cause them to not be recognized.
902 Any such modifications will be cleaned up during reload itself. */
903 reload_in_progress
= 1;
905 /* This loop scans the entire function each go-round
906 and repeats until one repetition spills no additional hard regs. */
909 int something_changed
;
912 HOST_WIDE_INT starting_frame_size
;
914 /* Round size of stack frame to stack_alignment_needed. This must be done
915 here because the stack size may be a part of the offset computation
916 for register elimination, and there might have been new stack slots
917 created in the last iteration of this loop. */
918 if (cfun
->stack_alignment_needed
)
919 assign_stack_local (BLKmode
, 0, cfun
->stack_alignment_needed
);
921 starting_frame_size
= get_frame_size ();
923 set_initial_elim_offsets ();
924 set_initial_label_offsets ();
926 /* For each pseudo register that has an equivalent location defined,
927 try to eliminate any eliminable registers (such as the frame pointer)
928 assuming initial offsets for the replacement register, which
931 If the resulting location is directly addressable, substitute
932 the MEM we just got directly for the old REG.
934 If it is not addressable but is a constant or the sum of a hard reg
935 and constant, it is probably not addressable because the constant is
936 out of range, in that case record the address; we will generate
937 hairy code to compute the address in a register each time it is
938 needed. Similarly if it is a hard register, but one that is not
939 valid as an address register.
941 If the location is not addressable, but does not have one of the
942 above forms, assign a stack slot. We have to do this to avoid the
943 potential of producing lots of reloads if, e.g., a location involves
944 a pseudo that didn't get a hard register and has an equivalent memory
945 location that also involves a pseudo that didn't get a hard register.
947 Perhaps at some point we will improve reload_when_needed handling
948 so this problem goes away. But that's very hairy. */
950 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
951 if (reg_renumber
[i
] < 0 && reg_equiv_memory_loc
[i
])
953 rtx x
= eliminate_regs (reg_equiv_memory_loc
[i
], 0, NULL_RTX
);
955 if (strict_memory_address_p (GET_MODE (regno_reg_rtx
[i
]),
957 reg_equiv_mem
[i
] = x
, reg_equiv_address
[i
] = 0;
958 else if (CONSTANT_P (XEXP (x
, 0))
959 || (GET_CODE (XEXP (x
, 0)) == REG
960 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
961 || (GET_CODE (XEXP (x
, 0)) == PLUS
962 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == REG
963 && (REGNO (XEXP (XEXP (x
, 0), 0))
964 < FIRST_PSEUDO_REGISTER
)
965 && CONSTANT_P (XEXP (XEXP (x
, 0), 1))))
966 reg_equiv_address
[i
] = XEXP (x
, 0), reg_equiv_mem
[i
] = 0;
969 /* Make a new stack slot. Then indicate that something
970 changed so we go back and recompute offsets for
971 eliminable registers because the allocation of memory
972 below might change some offset. reg_equiv_{mem,address}
973 will be set up for this pseudo on the next pass around
975 reg_equiv_memory_loc
[i
] = 0;
976 reg_equiv_init
[i
] = 0;
981 if (caller_save_needed
)
984 /* If we allocated another stack slot, redo elimination bookkeeping. */
985 if (starting_frame_size
!= get_frame_size ())
988 if (caller_save_needed
)
990 save_call_clobbered_regs ();
991 /* That might have allocated new insn_chain structures. */
992 reload_firstobj
= (char *) obstack_alloc (&reload_obstack
, 0);
995 calculate_needs_all_insns (global
);
997 CLEAR_REG_SET (&spilled_pseudos
);
1000 something_changed
= 0;
1002 /* If we allocated any new memory locations, make another pass
1003 since it might have changed elimination offsets. */
1004 if (starting_frame_size
!= get_frame_size ())
1005 something_changed
= 1;
1008 HARD_REG_SET to_spill
;
1009 CLEAR_HARD_REG_SET (to_spill
);
1010 update_eliminables (&to_spill
);
1011 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1012 if (TEST_HARD_REG_BIT (to_spill
, i
))
1014 spill_hard_reg (i
, 1);
1017 /* Regardless of the state of spills, if we previously had
1018 a register that we thought we could eliminate, but no can
1019 not eliminate, we must run another pass.
1021 Consider pseudos which have an entry in reg_equiv_* which
1022 reference an eliminable register. We must make another pass
1023 to update reg_equiv_* so that we do not substitute in the
1024 old value from when we thought the elimination could be
1026 something_changed
= 1;
1030 select_reload_regs ();
1034 if (insns_need_reload
!= 0 || did_spill
)
1035 something_changed
|= finish_spills (global
);
1037 if (! something_changed
)
1040 if (caller_save_needed
)
1041 delete_caller_save_insns ();
1043 obstack_free (&reload_obstack
, reload_firstobj
);
1046 /* If global-alloc was run, notify it of any register eliminations we have
1049 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
1050 if (ep
->can_eliminate
)
1051 mark_elimination (ep
->from
, ep
->to
);
1053 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1054 If that insn didn't set the register (i.e., it copied the register to
1055 memory), just delete that insn instead of the equivalencing insn plus
1056 anything now dead. If we call delete_dead_insn on that insn, we may
1057 delete the insn that actually sets the register if the register dies
1058 there and that is incorrect. */
1060 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
1062 if (reg_renumber
[i
] < 0 && reg_equiv_init
[i
] != 0)
1065 for (list
= reg_equiv_init
[i
]; list
; list
= XEXP (list
, 1))
1067 rtx equiv_insn
= XEXP (list
, 0);
1068 if (GET_CODE (equiv_insn
) == NOTE
)
1070 if (reg_set_p (regno_reg_rtx
[i
], PATTERN (equiv_insn
)))
1071 delete_dead_insn (equiv_insn
);
1074 PUT_CODE (equiv_insn
, NOTE
);
1075 NOTE_SOURCE_FILE (equiv_insn
) = 0;
1076 NOTE_LINE_NUMBER (equiv_insn
) = NOTE_INSN_DELETED
;
1082 /* Use the reload registers where necessary
1083 by generating move instructions to move the must-be-register
1084 values into or out of the reload registers. */
1086 if (insns_need_reload
!= 0 || something_needs_elimination
1087 || something_needs_operands_changed
)
1089 HOST_WIDE_INT old_frame_size
= get_frame_size ();
1091 reload_as_needed (global
);
1093 if (old_frame_size
!= get_frame_size ())
1097 verify_initial_elim_offsets ();
1100 /* If we were able to eliminate the frame pointer, show that it is no
1101 longer live at the start of any basic block. If it ls live by
1102 virtue of being in a pseudo, that pseudo will be marked live
1103 and hence the frame pointer will be known to be live via that
1106 if (! frame_pointer_needed
)
1107 for (i
= 0; i
< n_basic_blocks
; i
++)
1108 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i
)->global_live_at_start
,
1109 HARD_FRAME_POINTER_REGNUM
);
1111 /* Come here (with failure set nonzero) if we can't get enough spill regs
1112 and we decide not to abort about it. */
1115 CLEAR_REG_SET (&spilled_pseudos
);
1116 reload_in_progress
= 0;
1118 /* Now eliminate all pseudo regs by modifying them into
1119 their equivalent memory references.
1120 The REG-rtx's for the pseudos are modified in place,
1121 so all insns that used to refer to them now refer to memory.
1123 For a reg that has a reg_equiv_address, all those insns
1124 were changed by reloading so that no insns refer to it any longer;
1125 but the DECL_RTL of a variable decl may refer to it,
1126 and if so this causes the debugging info to mention the variable. */
1128 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
1133 int is_readonly
= 0;
1135 if (reg_equiv_memory_loc
[i
])
1137 in_struct
= MEM_IN_STRUCT_P (reg_equiv_memory_loc
[i
]);
1138 is_scalar
= MEM_SCALAR_P (reg_equiv_memory_loc
[i
]);
1139 is_readonly
= RTX_UNCHANGING_P (reg_equiv_memory_loc
[i
]);
1142 if (reg_equiv_mem
[i
])
1143 addr
= XEXP (reg_equiv_mem
[i
], 0);
1145 if (reg_equiv_address
[i
])
1146 addr
= reg_equiv_address
[i
];
1150 if (reg_renumber
[i
] < 0)
1152 rtx reg
= regno_reg_rtx
[i
];
1153 PUT_CODE (reg
, MEM
);
1154 XEXP (reg
, 0) = addr
;
1155 REG_USERVAR_P (reg
) = 0;
1156 RTX_UNCHANGING_P (reg
) = is_readonly
;
1157 MEM_IN_STRUCT_P (reg
) = in_struct
;
1158 MEM_SCALAR_P (reg
) = is_scalar
;
1159 /* We have no alias information about this newly created
1161 MEM_ALIAS_SET (reg
) = 0;
1163 else if (reg_equiv_mem
[i
])
1164 XEXP (reg_equiv_mem
[i
], 0) = addr
;
1168 /* We must set reload_completed now since the cleanup_subreg_operands call
1169 below will re-recognize each insn and reload may have generated insns
1170 which are only valid during and after reload. */
1171 reload_completed
= 1;
1173 /* Make a pass over all the insns and delete all USEs which we inserted
1174 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1175 notes. Delete all CLOBBER insns that don't refer to the return value
1176 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1177 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1178 and regenerate REG_INC notes that may have been moved around. */
1180 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1185 if (GET_CODE (insn
) == CALL_INSN
)
1186 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn
),
1188 CALL_INSN_FUNCTION_USAGE (insn
));
1190 if ((GET_CODE (PATTERN (insn
)) == USE
1191 && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1192 || (GET_CODE (PATTERN (insn
)) == CLOBBER
1193 && (GET_CODE (XEXP (PATTERN (insn
), 0)) != REG
1194 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn
), 0)))))
1196 PUT_CODE (insn
, NOTE
);
1197 NOTE_SOURCE_FILE (insn
) = 0;
1198 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
1202 pnote
= ®_NOTES (insn
);
1205 if (REG_NOTE_KIND (*pnote
) == REG_DEAD
1206 || REG_NOTE_KIND (*pnote
) == REG_UNUSED
1207 || REG_NOTE_KIND (*pnote
) == REG_INC
1208 || REG_NOTE_KIND (*pnote
) == REG_RETVAL
1209 || REG_NOTE_KIND (*pnote
) == REG_LIBCALL
)
1210 *pnote
= XEXP (*pnote
, 1);
1212 pnote
= &XEXP (*pnote
, 1);
1216 add_auto_inc_notes (insn
, PATTERN (insn
));
1219 /* And simplify (subreg (reg)) if it appears as an operand. */
1220 cleanup_subreg_operands (insn
);
1223 /* If we are doing stack checking, give a warning if this function's
1224 frame size is larger than we expect. */
1225 if (flag_stack_check
&& ! STACK_CHECK_BUILTIN
)
1227 HOST_WIDE_INT size
= get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE
;
1228 static int verbose_warned
= 0;
1230 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1231 if (regs_ever_live
[i
] && ! fixed_regs
[i
] && call_used_regs
[i
])
1232 size
+= UNITS_PER_WORD
;
1234 if (size
> STACK_CHECK_MAX_FRAME_SIZE
)
1236 warning ("frame size too large for reliable stack checking");
1237 if (! verbose_warned
)
1239 warning ("try reducing the number of local variables");
1245 /* Indicate that we no longer have known memory locations or constants. */
1246 if (reg_equiv_constant
)
1247 free (reg_equiv_constant
);
1248 reg_equiv_constant
= 0;
1249 if (reg_equiv_memory_loc
)
1250 free (reg_equiv_memory_loc
);
1251 reg_equiv_memory_loc
= 0;
1254 free (real_known_ptr
);
1258 free (reg_equiv_mem
);
1259 free (reg_equiv_init
);
1260 free (reg_equiv_address
);
1261 free (reg_max_ref_width
);
1262 free (reg_old_renumber
);
1263 free (pseudo_previous_regs
);
1264 free (pseudo_forbidden_regs
);
1266 CLEAR_HARD_REG_SET (used_spill_regs
);
1267 for (i
= 0; i
< n_spills
; i
++)
1268 SET_HARD_REG_BIT (used_spill_regs
, spill_regs
[i
]);
1270 /* Free all the insn_chain structures at once. */
1271 obstack_free (&reload_obstack
, reload_startobj
);
1272 unused_insn_chains
= 0;
1277 /* Yet another special case. Unfortunately, reg-stack forces people to
1278 write incorrect clobbers in asm statements. These clobbers must not
1279 cause the register to appear in bad_spill_regs, otherwise we'll call
1280 fatal_insn later. We clear the corresponding regnos in the live
1281 register sets to avoid this.
1282 The whole thing is rather sick, I'm afraid. */
1285 maybe_fix_stack_asms ()
1288 const char *constraints
[MAX_RECOG_OPERANDS
];
1289 enum machine_mode operand_mode
[MAX_RECOG_OPERANDS
];
1290 struct insn_chain
*chain
;
1292 for (chain
= reload_insn_chain
; chain
!= 0; chain
= chain
->next
)
1295 HARD_REG_SET clobbered
, allowed
;
1298 if (! INSN_P (chain
->insn
)
1299 || (noperands
= asm_noperands (PATTERN (chain
->insn
))) < 0)
1301 pat
= PATTERN (chain
->insn
);
1302 if (GET_CODE (pat
) != PARALLEL
)
1305 CLEAR_HARD_REG_SET (clobbered
);
1306 CLEAR_HARD_REG_SET (allowed
);
1308 /* First, make a mask of all stack regs that are clobbered. */
1309 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1311 rtx t
= XVECEXP (pat
, 0, i
);
1312 if (GET_CODE (t
) == CLOBBER
&& STACK_REG_P (XEXP (t
, 0)))
1313 SET_HARD_REG_BIT (clobbered
, REGNO (XEXP (t
, 0)));
1316 /* Get the operand values and constraints out of the insn. */
1317 decode_asm_operands (pat
, recog_data
.operand
, recog_data
.operand_loc
,
1318 constraints
, operand_mode
);
1320 /* For every operand, see what registers are allowed. */
1321 for (i
= 0; i
< noperands
; i
++)
1323 const char *p
= constraints
[i
];
1324 /* For every alternative, we compute the class of registers allowed
1325 for reloading in CLS, and merge its contents into the reg set
1327 int cls
= (int) NO_REGS
;
1333 if (c
== '\0' || c
== ',' || c
== '#')
1335 /* End of one alternative - mark the regs in the current
1336 class, and reset the class. */
1337 IOR_HARD_REG_SET (allowed
, reg_class_contents
[cls
]);
1342 } while (c
!= '\0' && c
!= ',');
1350 case '=': case '+': case '*': case '%': case '?': case '!':
1351 case '0': case '1': case '2': case '3': case '4': case 'm':
1352 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1353 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1354 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1359 cls
= (int) reg_class_subunion
[cls
][(int) BASE_REG_CLASS
];
1364 cls
= (int) reg_class_subunion
[cls
][(int) GENERAL_REGS
];
1368 cls
= (int) reg_class_subunion
[cls
][(int) REG_CLASS_FROM_LETTER (c
)];
1373 /* Those of the registers which are clobbered, but allowed by the
1374 constraints, must be usable as reload registers. So clear them
1375 out of the life information. */
1376 AND_HARD_REG_SET (allowed
, clobbered
);
1377 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1378 if (TEST_HARD_REG_BIT (allowed
, i
))
1380 CLEAR_REGNO_REG_SET (&chain
->live_throughout
, i
);
1381 CLEAR_REGNO_REG_SET (&chain
->dead_or_set
, i
);
1388 /* Copy the global variables n_reloads and rld into the corresponding elts
1391 copy_reloads (chain
)
1392 struct insn_chain
*chain
;
1394 chain
->n_reloads
= n_reloads
;
1396 = (struct reload
*) obstack_alloc (&reload_obstack
,
1397 n_reloads
* sizeof (struct reload
));
1398 memcpy (chain
->rld
, rld
, n_reloads
* sizeof (struct reload
));
1399 reload_insn_firstobj
= (char *) obstack_alloc (&reload_obstack
, 0);
1402 /* Walk the chain of insns, and determine for each whether it needs reloads
1403 and/or eliminations. Build the corresponding insns_need_reload list, and
1404 set something_needs_elimination as appropriate. */
1406 calculate_needs_all_insns (global
)
1409 struct insn_chain
**pprev_reload
= &insns_need_reload
;
1410 struct insn_chain
*chain
, *next
= 0;
1412 something_needs_elimination
= 0;
1414 reload_insn_firstobj
= (char *) obstack_alloc (&reload_obstack
, 0);
1415 for (chain
= reload_insn_chain
; chain
!= 0; chain
= next
)
1417 rtx insn
= chain
->insn
;
1421 /* Clear out the shortcuts. */
1422 chain
->n_reloads
= 0;
1423 chain
->need_elim
= 0;
1424 chain
->need_reload
= 0;
1425 chain
->need_operand_change
= 0;
1427 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1428 include REG_LABEL), we need to see what effects this has on the
1429 known offsets at labels. */
1431 if (GET_CODE (insn
) == CODE_LABEL
|| GET_CODE (insn
) == JUMP_INSN
1432 || (INSN_P (insn
) && REG_NOTES (insn
) != 0))
1433 set_label_offsets (insn
, insn
, 0);
1437 rtx old_body
= PATTERN (insn
);
1438 int old_code
= INSN_CODE (insn
);
1439 rtx old_notes
= REG_NOTES (insn
);
1440 int did_elimination
= 0;
1441 int operands_changed
= 0;
1442 rtx set
= single_set (insn
);
1444 /* Skip insns that only set an equivalence. */
1445 if (set
&& GET_CODE (SET_DEST (set
)) == REG
1446 && reg_renumber
[REGNO (SET_DEST (set
))] < 0
1447 && reg_equiv_constant
[REGNO (SET_DEST (set
))])
1450 /* If needed, eliminate any eliminable registers. */
1451 if (num_eliminable
|| num_eliminable_invariants
)
1452 did_elimination
= eliminate_regs_in_insn (insn
, 0);
1454 /* Analyze the instruction. */
1455 operands_changed
= find_reloads (insn
, 0, spill_indirect_levels
,
1456 global
, spill_reg_order
);
1458 /* If a no-op set needs more than one reload, this is likely
1459 to be something that needs input address reloads. We
1460 can't get rid of this cleanly later, and it is of no use
1461 anyway, so discard it now.
1462 We only do this when expensive_optimizations is enabled,
1463 since this complements reload inheritance / output
1464 reload deletion, and it can make debugging harder. */
1465 if (flag_expensive_optimizations
&& n_reloads
> 1)
1467 rtx set
= single_set (insn
);
1469 && SET_SRC (set
) == SET_DEST (set
)
1470 && GET_CODE (SET_SRC (set
)) == REG
1471 && REGNO (SET_SRC (set
)) >= FIRST_PSEUDO_REGISTER
)
1473 PUT_CODE (insn
, NOTE
);
1474 NOTE_SOURCE_FILE (insn
) = 0;
1475 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
1476 /* Delete it from the reload chain */
1478 chain
->prev
->next
= next
;
1480 reload_insn_chain
= next
;
1482 next
->prev
= chain
->prev
;
1483 chain
->next
= unused_insn_chains
;
1484 unused_insn_chains
= chain
;
1489 update_eliminable_offsets ();
1491 /* Remember for later shortcuts which insns had any reloads or
1492 register eliminations. */
1493 chain
->need_elim
= did_elimination
;
1494 chain
->need_reload
= n_reloads
> 0;
1495 chain
->need_operand_change
= operands_changed
;
1497 /* Discard any register replacements done. */
1498 if (did_elimination
)
1500 obstack_free (&reload_obstack
, reload_insn_firstobj
);
1501 PATTERN (insn
) = old_body
;
1502 INSN_CODE (insn
) = old_code
;
1503 REG_NOTES (insn
) = old_notes
;
1504 something_needs_elimination
= 1;
1507 something_needs_operands_changed
|= operands_changed
;
1511 copy_reloads (chain
);
1512 *pprev_reload
= chain
;
1513 pprev_reload
= &chain
->next_need_reload
;
1520 /* Comparison function for qsort to decide which of two reloads
1521 should be handled first. *P1 and *P2 are the reload numbers. */
1524 reload_reg_class_lower (r1p
, r2p
)
1528 register int r1
= *(const short *) r1p
, r2
= *(const short *) r2p
;
1531 /* Consider required reloads before optional ones. */
1532 t
= rld
[r1
].optional
- rld
[r2
].optional
;
1536 /* Count all solitary classes before non-solitary ones. */
1537 t
= ((reg_class_size
[(int) rld
[r2
].class] == 1)
1538 - (reg_class_size
[(int) rld
[r1
].class] == 1));
1542 /* Aside from solitaires, consider all multi-reg groups first. */
1543 t
= rld
[r2
].nregs
- rld
[r1
].nregs
;
1547 /* Consider reloads in order of increasing reg-class number. */
1548 t
= (int) rld
[r1
].class - (int) rld
[r2
].class;
1552 /* If reloads are equally urgent, sort by reload number,
1553 so that the results of qsort leave nothing to chance. */
1557 /* The cost of spilling each hard reg. */
1558 static int spill_cost
[FIRST_PSEUDO_REGISTER
];
1560 /* When spilling multiple hard registers, we use SPILL_COST for the first
1561 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1562 only the first hard reg for a multi-reg pseudo. */
1563 static int spill_add_cost
[FIRST_PSEUDO_REGISTER
];
1565 /* Update the spill cost arrays, considering that pseudo REG is live. */
1571 int n_refs
= REG_N_REFS (reg
);
1572 int r
= reg_renumber
[reg
];
1575 if (REGNO_REG_SET_P (&pseudos_counted
, reg
)
1576 || REGNO_REG_SET_P (&spilled_pseudos
, reg
))
1579 SET_REGNO_REG_SET (&pseudos_counted
, reg
);
1584 spill_add_cost
[r
] += n_refs
;
1586 nregs
= HARD_REGNO_NREGS (r
, PSEUDO_REGNO_MODE (reg
));
1588 spill_cost
[r
+ nregs
] += n_refs
;
1591 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1592 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1595 order_regs_for_reload (chain
)
1596 struct insn_chain
*chain
;
1599 HARD_REG_SET used_by_pseudos
;
1600 HARD_REG_SET used_by_pseudos2
;
1602 COPY_HARD_REG_SET (bad_spill_regs
, fixed_reg_set
);
1604 memset (spill_cost
, 0, sizeof spill_cost
);
1605 memset (spill_add_cost
, 0, sizeof spill_add_cost
);
1607 /* Count number of uses of each hard reg by pseudo regs allocated to it
1608 and then order them by decreasing use. First exclude hard registers
1609 that are live in or across this insn. */
1611 REG_SET_TO_HARD_REG_SET (used_by_pseudos
, &chain
->live_throughout
);
1612 REG_SET_TO_HARD_REG_SET (used_by_pseudos2
, &chain
->dead_or_set
);
1613 IOR_HARD_REG_SET (bad_spill_regs
, used_by_pseudos
);
1614 IOR_HARD_REG_SET (bad_spill_regs
, used_by_pseudos2
);
1616 /* Now find out which pseudos are allocated to it, and update
1618 CLEAR_REG_SET (&pseudos_counted
);
1620 EXECUTE_IF_SET_IN_REG_SET
1621 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, i
,
1625 EXECUTE_IF_SET_IN_REG_SET
1626 (&chain
->dead_or_set
, FIRST_PSEUDO_REGISTER
, i
,
1630 CLEAR_REG_SET (&pseudos_counted
);
1633 /* Vector of reload-numbers showing the order in which the reloads should
1635 static short reload_order
[MAX_RELOADS
];
1637 /* This is used to keep track of the spill regs used in one insn. */
1638 static HARD_REG_SET used_spill_regs_local
;
1640 /* We decided to spill hard register SPILLED, which has a size of
1641 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1642 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1643 update SPILL_COST/SPILL_ADD_COST. */
1646 count_spilled_pseudo (spilled
, spilled_nregs
, reg
)
1647 int spilled
, spilled_nregs
, reg
;
1649 int r
= reg_renumber
[reg
];
1650 int nregs
= HARD_REGNO_NREGS (r
, PSEUDO_REGNO_MODE (reg
));
1652 if (REGNO_REG_SET_P (&spilled_pseudos
, reg
)
1653 || spilled
+ spilled_nregs
<= r
|| r
+ nregs
<= spilled
)
1656 SET_REGNO_REG_SET (&spilled_pseudos
, reg
);
1658 spill_add_cost
[r
] -= REG_N_REFS (reg
);
1660 spill_cost
[r
+ nregs
] -= REG_N_REFS (reg
);
1663 /* Find reload register to use for reload number ORDER. */
1666 find_reg (chain
, order
)
1667 struct insn_chain
*chain
;
1670 int rnum
= reload_order
[order
];
1671 struct reload
*rl
= rld
+ rnum
;
1672 int best_cost
= INT_MAX
;
1676 HARD_REG_SET not_usable
;
1677 HARD_REG_SET used_by_other_reload
;
1679 COPY_HARD_REG_SET (not_usable
, bad_spill_regs
);
1680 IOR_HARD_REG_SET (not_usable
, bad_spill_regs_global
);
1681 IOR_COMPL_HARD_REG_SET (not_usable
, reg_class_contents
[rl
->class]);
1683 CLEAR_HARD_REG_SET (used_by_other_reload
);
1684 for (k
= 0; k
< order
; k
++)
1686 int other
= reload_order
[k
];
1688 if (rld
[other
].regno
>= 0 && reloads_conflict (other
, rnum
))
1689 for (j
= 0; j
< rld
[other
].nregs
; j
++)
1690 SET_HARD_REG_BIT (used_by_other_reload
, rld
[other
].regno
+ j
);
1693 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1695 unsigned int regno
= i
;
1697 if (! TEST_HARD_REG_BIT (not_usable
, regno
)
1698 && ! TEST_HARD_REG_BIT (used_by_other_reload
, regno
)
1699 && HARD_REGNO_MODE_OK (regno
, rl
->mode
))
1701 int this_cost
= spill_cost
[regno
];
1703 unsigned int this_nregs
= HARD_REGNO_NREGS (regno
, rl
->mode
);
1705 for (j
= 1; j
< this_nregs
; j
++)
1707 this_cost
+= spill_add_cost
[regno
+ j
];
1708 if ((TEST_HARD_REG_BIT (not_usable
, regno
+ j
))
1709 || TEST_HARD_REG_BIT (used_by_other_reload
, regno
+ j
))
1714 if (rl
->in
&& GET_CODE (rl
->in
) == REG
&& REGNO (rl
->in
) == regno
)
1716 if (rl
->out
&& GET_CODE (rl
->out
) == REG
&& REGNO (rl
->out
) == regno
)
1718 if (this_cost
< best_cost
1719 /* Among registers with equal cost, prefer caller-saved ones, or
1720 use REG_ALLOC_ORDER if it is defined. */
1721 || (this_cost
== best_cost
1722 #ifdef REG_ALLOC_ORDER
1723 && (inv_reg_alloc_order
[regno
]
1724 < inv_reg_alloc_order
[best_reg
])
1726 && call_used_regs
[regno
]
1727 && ! call_used_regs
[best_reg
]
1732 best_cost
= this_cost
;
1740 fprintf (rtl_dump_file
, "Using reg %d for reload %d\n", best_reg
, rnum
);
1742 rl
->nregs
= HARD_REGNO_NREGS (best_reg
, rl
->mode
);
1743 rl
->regno
= best_reg
;
1745 EXECUTE_IF_SET_IN_REG_SET
1746 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, j
,
1748 count_spilled_pseudo (best_reg
, rl
->nregs
, j
);
1751 EXECUTE_IF_SET_IN_REG_SET
1752 (&chain
->dead_or_set
, FIRST_PSEUDO_REGISTER
, j
,
1754 count_spilled_pseudo (best_reg
, rl
->nregs
, j
);
1757 for (i
= 0; i
< rl
->nregs
; i
++)
1759 if (spill_cost
[best_reg
+ i
] != 0
1760 || spill_add_cost
[best_reg
+ i
] != 0)
1762 SET_HARD_REG_BIT (used_spill_regs_local
, best_reg
+ i
);
1767 /* Find more reload regs to satisfy the remaining need of an insn, which
1769 Do it by ascending class number, since otherwise a reg
1770 might be spilled for a big class and might fail to count
1771 for a smaller class even though it belongs to that class. */
1774 find_reload_regs (chain
)
1775 struct insn_chain
*chain
;
1779 /* In order to be certain of getting the registers we need,
1780 we must sort the reloads into order of increasing register class.
1781 Then our grabbing of reload registers will parallel the process
1782 that provided the reload registers. */
1783 for (i
= 0; i
< chain
->n_reloads
; i
++)
1785 /* Show whether this reload already has a hard reg. */
1786 if (chain
->rld
[i
].reg_rtx
)
1788 int regno
= REGNO (chain
->rld
[i
].reg_rtx
);
1789 chain
->rld
[i
].regno
= regno
;
1791 = HARD_REGNO_NREGS (regno
, GET_MODE (chain
->rld
[i
].reg_rtx
));
1794 chain
->rld
[i
].regno
= -1;
1795 reload_order
[i
] = i
;
1798 n_reloads
= chain
->n_reloads
;
1799 memcpy (rld
, chain
->rld
, n_reloads
* sizeof (struct reload
));
1801 CLEAR_HARD_REG_SET (used_spill_regs_local
);
1804 fprintf (rtl_dump_file
, "Spilling for insn %d.\n", INSN_UID (chain
->insn
));
1806 qsort (reload_order
, n_reloads
, sizeof (short), reload_reg_class_lower
);
1808 /* Compute the order of preference for hard registers to spill. */
1810 order_regs_for_reload (chain
);
1812 for (i
= 0; i
< n_reloads
; i
++)
1814 int r
= reload_order
[i
];
1816 /* Ignore reloads that got marked inoperative. */
1817 if ((rld
[r
].out
!= 0 || rld
[r
].in
!= 0 || rld
[r
].secondary_p
)
1818 && ! rld
[r
].optional
1819 && rld
[r
].regno
== -1)
1820 if (! find_reg (chain
, i
))
1822 spill_failure (chain
->insn
, rld
[r
].class);
1828 COPY_HARD_REG_SET (chain
->used_spill_regs
, used_spill_regs_local
);
1829 IOR_HARD_REG_SET (used_spill_regs
, used_spill_regs_local
);
1831 memcpy (chain
->rld
, rld
, n_reloads
* sizeof (struct reload
));
1835 select_reload_regs ()
1837 struct insn_chain
*chain
;
1839 /* Try to satisfy the needs for each insn. */
1840 for (chain
= insns_need_reload
; chain
!= 0;
1841 chain
= chain
->next_need_reload
)
1842 find_reload_regs (chain
);
1845 /* Delete all insns that were inserted by emit_caller_save_insns during
1848 delete_caller_save_insns ()
1850 struct insn_chain
*c
= reload_insn_chain
;
1854 while (c
!= 0 && c
->is_caller_save_insn
)
1856 struct insn_chain
*next
= c
->next
;
1859 if (insn
== BLOCK_HEAD (c
->block
))
1860 BLOCK_HEAD (c
->block
) = NEXT_INSN (insn
);
1861 if (insn
== BLOCK_END (c
->block
))
1862 BLOCK_END (c
->block
) = PREV_INSN (insn
);
1863 if (c
== reload_insn_chain
)
1864 reload_insn_chain
= next
;
1866 if (NEXT_INSN (insn
) != 0)
1867 PREV_INSN (NEXT_INSN (insn
)) = PREV_INSN (insn
);
1868 if (PREV_INSN (insn
) != 0)
1869 NEXT_INSN (PREV_INSN (insn
)) = NEXT_INSN (insn
);
1872 next
->prev
= c
->prev
;
1874 c
->prev
->next
= next
;
1875 c
->next
= unused_insn_chains
;
1876 unused_insn_chains
= c
;
1884 /* Handle the failure to find a register to spill.
1885 INSN should be one of the insns which needed this particular spill reg. */
1888 spill_failure (insn
, class)
1890 enum reg_class
class;
1892 static const char *const reg_class_names
[] = REG_CLASS_NAMES
;
1893 if (asm_noperands (PATTERN (insn
)) >= 0)
1894 error_for_asm (insn
, "Can't find a register in class `%s' while reloading `asm'.",
1895 reg_class_names
[class]);
1898 error ("Unable to find a register to spill in class `%s'.",
1899 reg_class_names
[class]);
1900 fatal_insn ("This is the insn:", insn
);
1904 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1905 data that is dead in INSN. */
1908 delete_dead_insn (insn
)
1911 rtx prev
= prev_real_insn (insn
);
1914 /* If the previous insn sets a register that dies in our insn, delete it
1916 if (prev
&& GET_CODE (PATTERN (prev
)) == SET
1917 && (prev_dest
= SET_DEST (PATTERN (prev
)), GET_CODE (prev_dest
) == REG
)
1918 && reg_mentioned_p (prev_dest
, PATTERN (insn
))
1919 && find_regno_note (insn
, REG_DEAD
, REGNO (prev_dest
))
1920 && ! side_effects_p (SET_SRC (PATTERN (prev
))))
1921 delete_dead_insn (prev
);
1923 PUT_CODE (insn
, NOTE
);
1924 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
1925 NOTE_SOURCE_FILE (insn
) = 0;
1928 /* Modify the home of pseudo-reg I.
1929 The new home is present in reg_renumber[I].
1931 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1932 or it may be -1, meaning there is none or it is not relevant.
1933 This is used so that all pseudos spilled from a given hard reg
1934 can share one stack slot. */
1937 alter_reg (i
, from_reg
)
1941 /* When outputting an inline function, this can happen
1942 for a reg that isn't actually used. */
1943 if (regno_reg_rtx
[i
] == 0)
1946 /* If the reg got changed to a MEM at rtl-generation time,
1948 if (GET_CODE (regno_reg_rtx
[i
]) != REG
)
1951 /* Modify the reg-rtx to contain the new hard reg
1952 number or else to contain its pseudo reg number. */
1953 REGNO (regno_reg_rtx
[i
])
1954 = reg_renumber
[i
] >= 0 ? reg_renumber
[i
] : i
;
1956 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1957 allocate a stack slot for it. */
1959 if (reg_renumber
[i
] < 0
1960 && REG_N_REFS (i
) > 0
1961 && reg_equiv_constant
[i
] == 0
1962 && reg_equiv_memory_loc
[i
] == 0)
1965 unsigned int inherent_size
= PSEUDO_REGNO_BYTES (i
);
1966 unsigned int total_size
= MAX (inherent_size
, reg_max_ref_width
[i
]);
1969 /* Each pseudo reg has an inherent size which comes from its own mode,
1970 and a total size which provides room for paradoxical subregs
1971 which refer to the pseudo reg in wider modes.
1973 We can use a slot already allocated if it provides both
1974 enough inherent space and enough total space.
1975 Otherwise, we allocate a new slot, making sure that it has no less
1976 inherent space, and no less total space, then the previous slot. */
1979 /* No known place to spill from => no slot to reuse. */
1980 x
= assign_stack_local (GET_MODE (regno_reg_rtx
[i
]), total_size
,
1981 inherent_size
== total_size
? 0 : -1);
1982 if (BYTES_BIG_ENDIAN
)
1983 /* Cancel the big-endian correction done in assign_stack_local.
1984 Get the address of the beginning of the slot.
1985 This is so we can do a big-endian correction unconditionally
1987 adjust
= inherent_size
- total_size
;
1989 RTX_UNCHANGING_P (x
) = RTX_UNCHANGING_P (regno_reg_rtx
[i
]);
1991 /* Nothing can alias this slot except this pseudo. */
1992 MEM_ALIAS_SET (x
) = new_alias_set ();
1995 /* Reuse a stack slot if possible. */
1996 else if (spill_stack_slot
[from_reg
] != 0
1997 && spill_stack_slot_width
[from_reg
] >= total_size
1998 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot
[from_reg
]))
2000 x
= spill_stack_slot
[from_reg
];
2002 /* Allocate a bigger slot. */
2005 /* Compute maximum size needed, both for inherent size
2006 and for total size. */
2007 enum machine_mode mode
= GET_MODE (regno_reg_rtx
[i
]);
2010 if (spill_stack_slot
[from_reg
])
2012 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot
[from_reg
]))
2014 mode
= GET_MODE (spill_stack_slot
[from_reg
]);
2015 if (spill_stack_slot_width
[from_reg
] > total_size
)
2016 total_size
= spill_stack_slot_width
[from_reg
];
2019 /* Make a slot with that size. */
2020 x
= assign_stack_local (mode
, total_size
,
2021 inherent_size
== total_size
? 0 : -1);
2024 /* All pseudos mapped to this slot can alias each other. */
2025 if (spill_stack_slot
[from_reg
])
2026 MEM_ALIAS_SET (x
) = MEM_ALIAS_SET (spill_stack_slot
[from_reg
]);
2028 MEM_ALIAS_SET (x
) = new_alias_set ();
2030 if (BYTES_BIG_ENDIAN
)
2032 /* Cancel the big-endian correction done in assign_stack_local.
2033 Get the address of the beginning of the slot.
2034 This is so we can do a big-endian correction unconditionally
2036 adjust
= GET_MODE_SIZE (mode
) - total_size
;
2038 stack_slot
= gen_rtx_MEM (mode_for_size (total_size
2041 plus_constant (XEXP (x
, 0), adjust
));
2044 spill_stack_slot
[from_reg
] = stack_slot
;
2045 spill_stack_slot_width
[from_reg
] = total_size
;
2048 /* On a big endian machine, the "address" of the slot
2049 is the address of the low part that fits its inherent mode. */
2050 if (BYTES_BIG_ENDIAN
&& inherent_size
< total_size
)
2051 adjust
+= (total_size
- inherent_size
);
2053 /* If we have any adjustment to make, or if the stack slot is the
2054 wrong mode, make a new stack slot. */
2055 if (adjust
!= 0 || GET_MODE (x
) != GET_MODE (regno_reg_rtx
[i
]))
2057 rtx
new = gen_rtx_MEM (GET_MODE (regno_reg_rtx
[i
]),
2058 plus_constant (XEXP (x
, 0), adjust
));
2060 MEM_COPY_ATTRIBUTES (new, x
);
2064 /* Save the stack slot for later. */
2065 reg_equiv_memory_loc
[i
] = x
;
2069 /* Mark the slots in regs_ever_live for the hard regs
2070 used by pseudo-reg number REGNO. */
2073 mark_home_live (regno
)
2076 register int i
, lim
;
2078 i
= reg_renumber
[regno
];
2081 lim
= i
+ HARD_REGNO_NREGS (i
, PSEUDO_REGNO_MODE (regno
));
2083 regs_ever_live
[i
++] = 1;
2086 /* This function handles the tracking of elimination offsets around branches.
2088 X is a piece of RTL being scanned.
2090 INSN is the insn that it came from, if any.
2092 INITIAL_P is non-zero if we are to set the offset to be the initial
2093 offset and zero if we are setting the offset of the label to be the
2097 set_label_offsets (x
, insn
, initial_p
)
2102 enum rtx_code code
= GET_CODE (x
);
2105 struct elim_table
*p
;
2110 if (LABEL_REF_NONLOCAL_P (x
))
2115 /* ... fall through ... */
2118 /* If we know nothing about this label, set the desired offsets. Note
2119 that this sets the offset at a label to be the offset before a label
2120 if we don't know anything about the label. This is not correct for
2121 the label after a BARRIER, but is the best guess we can make. If
2122 we guessed wrong, we will suppress an elimination that might have
2123 been possible had we been able to guess correctly. */
2125 if (! offsets_known_at
[CODE_LABEL_NUMBER (x
)])
2127 for (i
= 0; i
< NUM_ELIMINABLE_REGS
; i
++)
2128 offsets_at
[CODE_LABEL_NUMBER (x
)][i
]
2129 = (initial_p
? reg_eliminate
[i
].initial_offset
2130 : reg_eliminate
[i
].offset
);
2131 offsets_known_at
[CODE_LABEL_NUMBER (x
)] = 1;
2134 /* Otherwise, if this is the definition of a label and it is
2135 preceded by a BARRIER, set our offsets to the known offset of
2139 && (tem
= prev_nonnote_insn (insn
)) != 0
2140 && GET_CODE (tem
) == BARRIER
)
2141 set_offsets_for_label (insn
);
2143 /* If neither of the above cases is true, compare each offset
2144 with those previously recorded and suppress any eliminations
2145 where the offsets disagree. */
2147 for (i
= 0; i
< NUM_ELIMINABLE_REGS
; i
++)
2148 if (offsets_at
[CODE_LABEL_NUMBER (x
)][i
]
2149 != (initial_p
? reg_eliminate
[i
].initial_offset
2150 : reg_eliminate
[i
].offset
))
2151 reg_eliminate
[i
].can_eliminate
= 0;
2156 set_label_offsets (PATTERN (insn
), insn
, initial_p
);
2158 /* ... fall through ... */
2162 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2163 and hence must have all eliminations at their initial offsets. */
2164 for (tem
= REG_NOTES (x
); tem
; tem
= XEXP (tem
, 1))
2165 if (REG_NOTE_KIND (tem
) == REG_LABEL
)
2166 set_label_offsets (XEXP (tem
, 0), insn
, 1);
2172 /* Each of the labels in the parallel or address vector must be
2173 at their initial offsets. We want the first field for PARALLEL
2174 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2176 for (i
= 0; i
< (unsigned) XVECLEN (x
, code
== ADDR_DIFF_VEC
); i
++)
2177 set_label_offsets (XVECEXP (x
, code
== ADDR_DIFF_VEC
, i
),
2182 /* We only care about setting PC. If the source is not RETURN,
2183 IF_THEN_ELSE, or a label, disable any eliminations not at
2184 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2185 isn't one of those possibilities. For branches to a label,
2186 call ourselves recursively.
2188 Note that this can disable elimination unnecessarily when we have
2189 a non-local goto since it will look like a non-constant jump to
2190 someplace in the current function. This isn't a significant
2191 problem since such jumps will normally be when all elimination
2192 pairs are back to their initial offsets. */
2194 if (SET_DEST (x
) != pc_rtx
)
2197 switch (GET_CODE (SET_SRC (x
)))
2204 set_label_offsets (XEXP (SET_SRC (x
), 0), insn
, initial_p
);
2208 tem
= XEXP (SET_SRC (x
), 1);
2209 if (GET_CODE (tem
) == LABEL_REF
)
2210 set_label_offsets (XEXP (tem
, 0), insn
, initial_p
);
2211 else if (GET_CODE (tem
) != PC
&& GET_CODE (tem
) != RETURN
)
2214 tem
= XEXP (SET_SRC (x
), 2);
2215 if (GET_CODE (tem
) == LABEL_REF
)
2216 set_label_offsets (XEXP (tem
, 0), insn
, initial_p
);
2217 else if (GET_CODE (tem
) != PC
&& GET_CODE (tem
) != RETURN
)
2225 /* If we reach here, all eliminations must be at their initial
2226 offset because we are doing a jump to a variable address. */
2227 for (p
= reg_eliminate
; p
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; p
++)
2228 if (p
->offset
!= p
->initial_offset
)
2229 p
->can_eliminate
= 0;
2237 /* Scan X and replace any eliminable registers (such as fp) with a
2238 replacement (such as sp), plus an offset.
2240 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2241 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2242 MEM, we are allowed to replace a sum of a register and the constant zero
2243 with the register, which we cannot do outside a MEM. In addition, we need
2244 to record the fact that a register is referenced outside a MEM.
2246 If INSN is an insn, it is the insn containing X. If we replace a REG
2247 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2248 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2249 the REG is being modified.
2251 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2252 That's used when we eliminate in expressions stored in notes.
2253 This means, do not set ref_outside_mem even if the reference
2256 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2257 replacements done assuming all offsets are at their initial values. If
2258 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2259 encounter, return the actual location so that find_reloads will do
2260 the proper thing. */
2263 eliminate_regs (x
, mem_mode
, insn
)
2265 enum machine_mode mem_mode
;
2268 enum rtx_code code
= GET_CODE (x
);
2269 struct elim_table
*ep
;
2276 if (! current_function_decl
)
2295 /* This is only for the benefit of the debugging backends, which call
2296 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2297 removed after CSE. */
2298 new = eliminate_regs (XEXP (x
, 0), 0, insn
);
2299 if (GET_CODE (new) == MEM
)
2300 return XEXP (new, 0);
2306 /* First handle the case where we encounter a bare register that
2307 is eliminable. Replace it with a PLUS. */
2308 if (regno
< FIRST_PSEUDO_REGISTER
)
2310 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
2312 if (ep
->from_rtx
== x
&& ep
->can_eliminate
)
2313 return plus_constant (ep
->to_rtx
, ep
->previous_offset
);
2316 else if (reg_renumber
[regno
] < 0 && reg_equiv_constant
2317 && reg_equiv_constant
[regno
]
2318 && ! CONSTANT_P (reg_equiv_constant
[regno
]))
2319 return eliminate_regs (copy_rtx (reg_equiv_constant
[regno
]),
2323 /* You might think handling MINUS in a manner similar to PLUS is a
2324 good idea. It is not. It has been tried multiple times and every
2325 time the change has had to have been reverted.
2327 Other parts of reload know a PLUS is special (gen_reload for example)
2328 and require special code to handle code a reloaded PLUS operand.
2330 Also consider backends where the flags register is clobbered by a
2331 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2332 lea instruction comes to mind). If we try to reload a MINUS, we
2333 may kill the flags register that was holding a useful value.
2335 So, please before trying to handle MINUS, consider reload as a
2336 whole instead of this little section as well as the backend issues. */
2338 /* If this is the sum of an eliminable register and a constant, rework
2340 if (GET_CODE (XEXP (x
, 0)) == REG
2341 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2342 && CONSTANT_P (XEXP (x
, 1)))
2344 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
2346 if (ep
->from_rtx
== XEXP (x
, 0) && ep
->can_eliminate
)
2348 /* The only time we want to replace a PLUS with a REG (this
2349 occurs when the constant operand of the PLUS is the negative
2350 of the offset) is when we are inside a MEM. We won't want
2351 to do so at other times because that would change the
2352 structure of the insn in a way that reload can't handle.
2353 We special-case the commonest situation in
2354 eliminate_regs_in_insn, so just replace a PLUS with a
2355 PLUS here, unless inside a MEM. */
2356 if (mem_mode
!= 0 && GET_CODE (XEXP (x
, 1)) == CONST_INT
2357 && INTVAL (XEXP (x
, 1)) == - ep
->previous_offset
)
2360 return gen_rtx_PLUS (Pmode
, ep
->to_rtx
,
2361 plus_constant (XEXP (x
, 1),
2362 ep
->previous_offset
));
2365 /* If the register is not eliminable, we are done since the other
2366 operand is a constant. */
2370 /* If this is part of an address, we want to bring any constant to the
2371 outermost PLUS. We will do this by doing register replacement in
2372 our operands and seeing if a constant shows up in one of them.
2374 Note that there is no risk of modifying the structure of the insn,
2375 since we only get called for its operands, thus we are either
2376 modifying the address inside a MEM, or something like an address
2377 operand of a load-address insn. */
2380 rtx new0
= eliminate_regs (XEXP (x
, 0), mem_mode
, insn
);
2381 rtx new1
= eliminate_regs (XEXP (x
, 1), mem_mode
, insn
);
2383 if (new0
!= XEXP (x
, 0) || new1
!= XEXP (x
, 1))
2385 /* If one side is a PLUS and the other side is a pseudo that
2386 didn't get a hard register but has a reg_equiv_constant,
2387 we must replace the constant here since it may no longer
2388 be in the position of any operand. */
2389 if (GET_CODE (new0
) == PLUS
&& GET_CODE (new1
) == REG
2390 && REGNO (new1
) >= FIRST_PSEUDO_REGISTER
2391 && reg_renumber
[REGNO (new1
)] < 0
2392 && reg_equiv_constant
!= 0
2393 && reg_equiv_constant
[REGNO (new1
)] != 0)
2394 new1
= reg_equiv_constant
[REGNO (new1
)];
2395 else if (GET_CODE (new1
) == PLUS
&& GET_CODE (new0
) == REG
2396 && REGNO (new0
) >= FIRST_PSEUDO_REGISTER
2397 && reg_renumber
[REGNO (new0
)] < 0
2398 && reg_equiv_constant
[REGNO (new0
)] != 0)
2399 new0
= reg_equiv_constant
[REGNO (new0
)];
2401 new = form_sum (new0
, new1
);
2403 /* As above, if we are not inside a MEM we do not want to
2404 turn a PLUS into something else. We might try to do so here
2405 for an addition of 0 if we aren't optimizing. */
2406 if (! mem_mode
&& GET_CODE (new) != PLUS
)
2407 return gen_rtx_PLUS (GET_MODE (x
), new, const0_rtx
);
2415 /* If this is the product of an eliminable register and a
2416 constant, apply the distribute law and move the constant out
2417 so that we have (plus (mult ..) ..). This is needed in order
2418 to keep load-address insns valid. This case is pathological.
2419 We ignore the possibility of overflow here. */
2420 if (GET_CODE (XEXP (x
, 0)) == REG
2421 && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
2422 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
2423 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
2425 if (ep
->from_rtx
== XEXP (x
, 0) && ep
->can_eliminate
)
2428 /* Refs inside notes don't count for this purpose. */
2429 && ! (insn
!= 0 && (GET_CODE (insn
) == EXPR_LIST
2430 || GET_CODE (insn
) == INSN_LIST
)))
2431 ep
->ref_outside_mem
= 1;
2434 plus_constant (gen_rtx_MULT (Pmode
, ep
->to_rtx
, XEXP (x
, 1)),
2435 ep
->previous_offset
* INTVAL (XEXP (x
, 1)));
2438 /* ... fall through ... */
2442 /* See comments before PLUS about handling MINUS. */
2444 case DIV
: case UDIV
:
2445 case MOD
: case UMOD
:
2446 case AND
: case IOR
: case XOR
:
2447 case ROTATERT
: case ROTATE
:
2448 case ASHIFTRT
: case LSHIFTRT
: case ASHIFT
:
2450 case GE
: case GT
: case GEU
: case GTU
:
2451 case LE
: case LT
: case LEU
: case LTU
:
2453 rtx new0
= eliminate_regs (XEXP (x
, 0), mem_mode
, insn
);
2455 = XEXP (x
, 1) ? eliminate_regs (XEXP (x
, 1), mem_mode
, insn
) : 0;
2457 if (new0
!= XEXP (x
, 0) || new1
!= XEXP (x
, 1))
2458 return gen_rtx_fmt_ee (code
, GET_MODE (x
), new0
, new1
);
2463 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2466 new = eliminate_regs (XEXP (x
, 0), mem_mode
, insn
);
2467 if (new != XEXP (x
, 0))
2469 /* If this is a REG_DEAD note, it is not valid anymore.
2470 Using the eliminated version could result in creating a
2471 REG_DEAD note for the stack or frame pointer. */
2472 if (GET_MODE (x
) == REG_DEAD
)
2474 ? eliminate_regs (XEXP (x
, 1), mem_mode
, insn
)
2477 x
= gen_rtx_EXPR_LIST (REG_NOTE_KIND (x
), new, XEXP (x
, 1));
2481 /* ... fall through ... */
2484 /* Now do eliminations in the rest of the chain. If this was
2485 an EXPR_LIST, this might result in allocating more memory than is
2486 strictly needed, but it simplifies the code. */
2489 new = eliminate_regs (XEXP (x
, 1), mem_mode
, insn
);
2490 if (new != XEXP (x
, 1))
2491 return gen_rtx_fmt_ee (GET_CODE (x
), GET_MODE (x
), XEXP (x
, 0), new);
2499 case STRICT_LOW_PART
:
2501 case SIGN_EXTEND
: case ZERO_EXTEND
:
2502 case TRUNCATE
: case FLOAT_EXTEND
: case FLOAT_TRUNCATE
:
2503 case FLOAT
: case FIX
:
2504 case UNSIGNED_FIX
: case UNSIGNED_FLOAT
:
2508 new = eliminate_regs (XEXP (x
, 0), mem_mode
, insn
);
2509 if (new != XEXP (x
, 0))
2510 return gen_rtx_fmt_e (code
, GET_MODE (x
), new);
2514 /* Similar to above processing, but preserve SUBREG_WORD.
2515 Convert (subreg (mem)) to (mem) if not paradoxical.
2516 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2517 pseudo didn't get a hard reg, we must replace this with the
2518 eliminated version of the memory location because push_reloads
2519 may do the replacement in certain circumstances. */
2520 if (GET_CODE (SUBREG_REG (x
)) == REG
2521 && (GET_MODE_SIZE (GET_MODE (x
))
2522 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
2523 && reg_equiv_memory_loc
!= 0
2524 && reg_equiv_memory_loc
[REGNO (SUBREG_REG (x
))] != 0)
2526 new = SUBREG_REG (x
);
2529 new = eliminate_regs (SUBREG_REG (x
), mem_mode
, insn
);
2531 if (new != XEXP (x
, 0))
2533 int x_size
= GET_MODE_SIZE (GET_MODE (x
));
2534 int new_size
= GET_MODE_SIZE (GET_MODE (new));
2536 if (GET_CODE (new) == MEM
2537 && ((x_size
< new_size
2538 #ifdef WORD_REGISTER_OPERATIONS
2539 /* On these machines, combine can create rtl of the form
2540 (set (subreg:m1 (reg:m2 R) 0) ...)
2541 where m1 < m2, and expects something interesting to
2542 happen to the entire word. Moreover, it will use the
2543 (reg:m2 R) later, expecting all bits to be preserved.
2544 So if the number of words is the same, preserve the
2545 subreg so that push_reloads can see it. */
2546 && ! ((x_size
-1)/UNITS_PER_WORD
== (new_size
-1)/UNITS_PER_WORD
)
2549 || (x_size
== new_size
))
2552 int offset
= SUBREG_WORD (x
) * UNITS_PER_WORD
;
2553 enum machine_mode mode
= GET_MODE (x
);
2555 if (BYTES_BIG_ENDIAN
)
2556 offset
+= (MIN (UNITS_PER_WORD
,
2557 GET_MODE_SIZE (GET_MODE (new)))
2558 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
)));
2560 PUT_MODE (new, mode
);
2561 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset
);
2565 return gen_rtx_SUBREG (GET_MODE (x
), new, SUBREG_WORD (x
));
2571 /* This is only for the benefit of the debugging backends, which call
2572 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2573 removed after CSE. */
2574 if (GET_CODE (XEXP (x
, 0)) == ADDRESSOF
)
2575 return eliminate_regs (XEXP (XEXP (x
, 0), 0), 0, insn
);
2577 /* Our only special processing is to pass the mode of the MEM to our
2578 recursive call and copy the flags. While we are here, handle this
2579 case more efficiently. */
2580 new = eliminate_regs (XEXP (x
, 0), GET_MODE (x
), insn
);
2581 if (new != XEXP (x
, 0))
2583 new = gen_rtx_MEM (GET_MODE (x
), new);
2584 MEM_COPY_ATTRIBUTES (new, x
);
2591 /* Handle insn_list USE that a call to a pure function may generate. */
2592 new = eliminate_regs (XEXP (x
, 0), 0, insn
);
2593 if (new != XEXP (x
, 0))
2594 return gen_rtx_USE (GET_MODE (x
), new);
2606 /* Process each of our operands recursively. If any have changed, make a
2608 fmt
= GET_RTX_FORMAT (code
);
2609 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
2613 new = eliminate_regs (XEXP (x
, i
), mem_mode
, insn
);
2614 if (new != XEXP (x
, i
) && ! copied
)
2616 rtx new_x
= rtx_alloc (code
);
2618 (sizeof (*new_x
) - sizeof (new_x
->fld
)
2619 + sizeof (new_x
->fld
[0]) * GET_RTX_LENGTH (code
)));
2625 else if (*fmt
== 'E')
2628 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2630 new = eliminate_regs (XVECEXP (x
, i
, j
), mem_mode
, insn
);
2631 if (new != XVECEXP (x
, i
, j
) && ! copied_vec
)
2633 rtvec new_v
= gen_rtvec_v (XVECLEN (x
, i
),
2637 rtx new_x
= rtx_alloc (code
);
2639 (sizeof (*new_x
) - sizeof (new_x
->fld
)
2640 + (sizeof (new_x
->fld
[0])
2641 * GET_RTX_LENGTH (code
))));
2645 XVEC (x
, i
) = new_v
;
2648 XVECEXP (x
, i
, j
) = new;
2656 /* Scan rtx X for modifications of elimination target registers. Update
2657 the table of eliminables to reflect the changed state. MEM_MODE is
2658 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2661 elimination_effects (x
, mem_mode
)
2663 enum machine_mode mem_mode
;
2666 enum rtx_code code
= GET_CODE (x
);
2667 struct elim_table
*ep
;
2693 /* First handle the case where we encounter a bare register that
2694 is eliminable. Replace it with a PLUS. */
2695 if (regno
< FIRST_PSEUDO_REGISTER
)
2697 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
2699 if (ep
->from_rtx
== x
&& ep
->can_eliminate
)
2702 ep
->ref_outside_mem
= 1;
2707 else if (reg_renumber
[regno
] < 0 && reg_equiv_constant
2708 && reg_equiv_constant
[regno
]
2709 && ! CONSTANT_P (reg_equiv_constant
[regno
]))
2710 elimination_effects (reg_equiv_constant
[regno
], mem_mode
);
2719 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
2720 if (ep
->to_rtx
== XEXP (x
, 0))
2722 int size
= GET_MODE_SIZE (mem_mode
);
2724 /* If more bytes than MEM_MODE are pushed, account for them. */
2725 #ifdef PUSH_ROUNDING
2726 if (ep
->to_rtx
== stack_pointer_rtx
)
2727 size
= PUSH_ROUNDING (size
);
2729 if (code
== PRE_DEC
|| code
== POST_DEC
)
2731 else if (code
== PRE_INC
|| code
== POST_INC
)
2733 else if ((code
== PRE_MODIFY
|| code
== POST_MODIFY
)
2734 && GET_CODE (XEXP (x
, 1)) == PLUS
2735 && XEXP (x
, 0) == XEXP (XEXP (x
, 1), 0)
2736 && CONSTANT_P (XEXP (XEXP (x
, 1), 1)))
2737 ep
->offset
-= INTVAL (XEXP (XEXP (x
, 1), 1));
2740 /* These two aren't unary operators. */
2741 if (code
== POST_MODIFY
|| code
== PRE_MODIFY
)
2744 /* Fall through to generic unary operation case. */
2745 case STRICT_LOW_PART
:
2747 case SIGN_EXTEND
: case ZERO_EXTEND
:
2748 case TRUNCATE
: case FLOAT_EXTEND
: case FLOAT_TRUNCATE
:
2749 case FLOAT
: case FIX
:
2750 case UNSIGNED_FIX
: case UNSIGNED_FLOAT
:
2754 elimination_effects (XEXP (x
, 0), mem_mode
);
2758 if (GET_CODE (SUBREG_REG (x
)) == REG
2759 && (GET_MODE_SIZE (GET_MODE (x
))
2760 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
2761 && reg_equiv_memory_loc
!= 0
2762 && reg_equiv_memory_loc
[REGNO (SUBREG_REG (x
))] != 0)
2765 elimination_effects (SUBREG_REG (x
), mem_mode
);
2769 /* If using a register that is the source of an eliminate we still
2770 think can be performed, note it cannot be performed since we don't
2771 know how this register is used. */
2772 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
2773 if (ep
->from_rtx
== XEXP (x
, 0))
2774 ep
->can_eliminate
= 0;
2776 elimination_effects (XEXP (x
, 0), mem_mode
);
2780 /* If clobbering a register that is the replacement register for an
2781 elimination we still think can be performed, note that it cannot
2782 be performed. Otherwise, we need not be concerned about it. */
2783 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
2784 if (ep
->to_rtx
== XEXP (x
, 0))
2785 ep
->can_eliminate
= 0;
2787 elimination_effects (XEXP (x
, 0), mem_mode
);
2791 /* Check for setting a register that we know about. */
2792 if (GET_CODE (SET_DEST (x
)) == REG
)
2794 /* See if this is setting the replacement register for an
2797 If DEST is the hard frame pointer, we do nothing because we
2798 assume that all assignments to the frame pointer are for
2799 non-local gotos and are being done at a time when they are valid
2800 and do not disturb anything else. Some machines want to
2801 eliminate a fake argument pointer (or even a fake frame pointer)
2802 with either the real frame or the stack pointer. Assignments to
2803 the hard frame pointer must not prevent this elimination. */
2805 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
2807 if (ep
->to_rtx
== SET_DEST (x
)
2808 && SET_DEST (x
) != hard_frame_pointer_rtx
)
2810 /* If it is being incremented, adjust the offset. Otherwise,
2811 this elimination can't be done. */
2812 rtx src
= SET_SRC (x
);
2814 if (GET_CODE (src
) == PLUS
2815 && XEXP (src
, 0) == SET_DEST (x
)
2816 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
2817 ep
->offset
-= INTVAL (XEXP (src
, 1));
2819 ep
->can_eliminate
= 0;
2823 elimination_effects (SET_DEST (x
), 0);
2824 elimination_effects (SET_SRC (x
), 0);
2828 if (GET_CODE (XEXP (x
, 0)) == ADDRESSOF
)
2831 /* Our only special processing is to pass the mode of the MEM to our
2833 elimination_effects (XEXP (x
, 0), GET_MODE (x
));
2840 fmt
= GET_RTX_FORMAT (code
);
2841 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
2844 elimination_effects (XEXP (x
, i
), mem_mode
);
2845 else if (*fmt
== 'E')
2846 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2847 elimination_effects (XVECEXP (x
, i
, j
), mem_mode
);
2851 /* Descend through rtx X and verify that no references to eliminable registers
2852 remain. If any do remain, mark the involved register as not
2856 check_eliminable_occurrences (x
)
2866 code
= GET_CODE (x
);
2868 if (code
== REG
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
)
2870 struct elim_table
*ep
;
2872 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
2873 if (ep
->from_rtx
== x
&& ep
->can_eliminate
)
2874 ep
->can_eliminate
= 0;
2878 fmt
= GET_RTX_FORMAT (code
);
2879 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
2882 check_eliminable_occurrences (XEXP (x
, i
));
2883 else if (*fmt
== 'E')
2886 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2887 check_eliminable_occurrences (XVECEXP (x
, i
, j
));
2892 /* Scan INSN and eliminate all eliminable registers in it.
2894 If REPLACE is nonzero, do the replacement destructively. Also
2895 delete the insn as dead it if it is setting an eliminable register.
2897 If REPLACE is zero, do all our allocations in reload_obstack.
2899 If no eliminations were done and this insn doesn't require any elimination
2900 processing (these are not identical conditions: it might be updating sp,
2901 but not referencing fp; this needs to be seen during reload_as_needed so
2902 that the offset between fp and sp can be taken into consideration), zero
2903 is returned. Otherwise, 1 is returned. */
2906 eliminate_regs_in_insn (insn
, replace
)
2910 int icode
= recog_memoized (insn
);
2911 rtx old_body
= PATTERN (insn
);
2912 int insn_is_asm
= asm_noperands (old_body
) >= 0;
2913 rtx old_set
= single_set (insn
);
2917 rtx substed_operand
[MAX_RECOG_OPERANDS
];
2918 rtx orig_operand
[MAX_RECOG_OPERANDS
];
2919 struct elim_table
*ep
;
2921 if (! insn_is_asm
&& icode
< 0)
2923 if (GET_CODE (PATTERN (insn
)) == USE
2924 || GET_CODE (PATTERN (insn
)) == CLOBBER
2925 || GET_CODE (PATTERN (insn
)) == ADDR_VEC
2926 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
2927 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
)
2932 if (old_set
!= 0 && GET_CODE (SET_DEST (old_set
)) == REG
2933 && REGNO (SET_DEST (old_set
)) < FIRST_PSEUDO_REGISTER
)
2935 /* Check for setting an eliminable register. */
2936 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
2937 if (ep
->from_rtx
== SET_DEST (old_set
) && ep
->can_eliminate
)
2939 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2940 /* If this is setting the frame pointer register to the
2941 hardware frame pointer register and this is an elimination
2942 that will be done (tested above), this insn is really
2943 adjusting the frame pointer downward to compensate for
2944 the adjustment done before a nonlocal goto. */
2945 if (ep
->from
== FRAME_POINTER_REGNUM
2946 && ep
->to
== HARD_FRAME_POINTER_REGNUM
)
2948 rtx src
= SET_SRC (old_set
);
2949 int offset
= 0, ok
= 0;
2950 rtx prev_insn
, prev_set
;
2952 if (src
== ep
->to_rtx
)
2954 else if (GET_CODE (src
) == PLUS
2955 && GET_CODE (XEXP (src
, 0)) == CONST_INT
2956 && XEXP (src
, 1) == ep
->to_rtx
)
2957 offset
= INTVAL (XEXP (src
, 0)), ok
= 1;
2958 else if (GET_CODE (src
) == PLUS
2959 && GET_CODE (XEXP (src
, 1)) == CONST_INT
2960 && XEXP (src
, 0) == ep
->to_rtx
)
2961 offset
= INTVAL (XEXP (src
, 1)), ok
= 1;
2962 else if ((prev_insn
= prev_nonnote_insn (insn
)) != 0
2963 && (prev_set
= single_set (prev_insn
)) != 0
2964 && rtx_equal_p (SET_DEST (prev_set
), src
))
2966 src
= SET_SRC (prev_set
);
2967 if (src
== ep
->to_rtx
)
2969 else if (GET_CODE (src
) == PLUS
2970 && GET_CODE (XEXP (src
, 0)) == CONST_INT
2971 && XEXP (src
, 1) == ep
->to_rtx
)
2972 offset
= INTVAL (XEXP (src
, 0)), ok
= 1;
2973 else if (GET_CODE (src
) == PLUS
2974 && GET_CODE (XEXP (src
, 1)) == CONST_INT
2975 && XEXP (src
, 0) == ep
->to_rtx
)
2976 offset
= INTVAL (XEXP (src
, 1)), ok
= 1;
2984 = plus_constant (ep
->to_rtx
, offset
- ep
->offset
);
2986 /* First see if this insn remains valid when we
2987 make the change. If not, keep the INSN_CODE
2988 the same and let reload fit it up. */
2989 validate_change (insn
, &SET_SRC (old_set
), src
, 1);
2990 validate_change (insn
, &SET_DEST (old_set
),
2992 if (! apply_change_group ())
2994 SET_SRC (old_set
) = src
;
2995 SET_DEST (old_set
) = ep
->to_rtx
;
3005 /* In this case this insn isn't serving a useful purpose. We
3006 will delete it in reload_as_needed once we know that this
3007 elimination is, in fact, being done.
3009 If REPLACE isn't set, we can't delete this insn, but needn't
3010 process it since it won't be used unless something changes. */
3013 delete_dead_insn (insn
);
3021 /* We allow one special case which happens to work on all machines we
3022 currently support: a single set with the source being a PLUS of an
3023 eliminable register and a constant. */
3025 && GET_CODE (SET_DEST (old_set
)) == REG
3026 && GET_CODE (SET_SRC (old_set
)) == PLUS
3027 && GET_CODE (XEXP (SET_SRC (old_set
), 0)) == REG
3028 && GET_CODE (XEXP (SET_SRC (old_set
), 1)) == CONST_INT
3029 && REGNO (XEXP (SET_SRC (old_set
), 0)) < FIRST_PSEUDO_REGISTER
)
3031 rtx reg
= XEXP (SET_SRC (old_set
), 0);
3032 int offset
= INTVAL (XEXP (SET_SRC (old_set
), 1));
3034 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3035 if (ep
->from_rtx
== reg
&& ep
->can_eliminate
)
3037 offset
+= ep
->offset
;
3042 /* We assume here that if we need a PARALLEL with
3043 CLOBBERs for this assignment, we can do with the
3044 MATCH_SCRATCHes that add_clobbers allocates.
3045 There's not much we can do if that doesn't work. */
3046 PATTERN (insn
) = gen_rtx_SET (VOIDmode
,
3050 INSN_CODE (insn
) = recog (PATTERN (insn
), insn
, &num_clobbers
);
3053 rtvec vec
= rtvec_alloc (num_clobbers
+ 1);
3055 vec
->elem
[0] = PATTERN (insn
);
3056 PATTERN (insn
) = gen_rtx_PARALLEL (VOIDmode
, vec
);
3057 add_clobbers (PATTERN (insn
), INSN_CODE (insn
));
3059 if (INSN_CODE (insn
) < 0)
3064 new_body
= old_body
;
3067 new_body
= copy_insn (old_body
);
3068 if (REG_NOTES (insn
))
3069 REG_NOTES (insn
) = copy_insn_1 (REG_NOTES (insn
));
3071 PATTERN (insn
) = new_body
;
3072 old_set
= single_set (insn
);
3074 XEXP (SET_SRC (old_set
), 0) = ep
->to_rtx
;
3075 XEXP (SET_SRC (old_set
), 1) = GEN_INT (offset
);
3078 /* This can't have an effect on elimination offsets, so skip right
3084 /* Determine the effects of this insn on elimination offsets. */
3085 elimination_effects (old_body
, 0);
3087 /* Eliminate all eliminable registers occurring in operands that
3088 can be handled by reload. */
3089 extract_insn (insn
);
3091 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3093 orig_operand
[i
] = recog_data
.operand
[i
];
3094 substed_operand
[i
] = recog_data
.operand
[i
];
3096 /* For an asm statement, every operand is eliminable. */
3097 if (insn_is_asm
|| insn_data
[icode
].operand
[i
].eliminable
)
3099 /* Check for setting a register that we know about. */
3100 if (recog_data
.operand_type
[i
] != OP_IN
3101 && GET_CODE (orig_operand
[i
]) == REG
)
3103 /* If we are assigning to a register that can be eliminated, it
3104 must be as part of a PARALLEL, since the code above handles
3105 single SETs. We must indicate that we can no longer
3106 eliminate this reg. */
3107 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
3109 if (ep
->from_rtx
== orig_operand
[i
] && ep
->can_eliminate
)
3110 ep
->can_eliminate
= 0;
3113 substed_operand
[i
] = eliminate_regs (recog_data
.operand
[i
], 0,
3114 replace
? insn
: NULL_RTX
);
3115 if (substed_operand
[i
] != orig_operand
[i
])
3116 val
= any_changes
= 1;
3117 /* Terminate the search in check_eliminable_occurrences at
3119 *recog_data
.operand_loc
[i
] = 0;
3121 /* If an output operand changed from a REG to a MEM and INSN is an
3122 insn, write a CLOBBER insn. */
3123 if (recog_data
.operand_type
[i
] != OP_IN
3124 && GET_CODE (orig_operand
[i
]) == REG
3125 && GET_CODE (substed_operand
[i
]) == MEM
3127 emit_insn_after (gen_rtx_CLOBBER (VOIDmode
, orig_operand
[i
]),
3132 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3133 *recog_data
.dup_loc
[i
]
3134 = *recog_data
.operand_loc
[(int) recog_data
.dup_num
[i
]];
3136 /* If any eliminable remain, they aren't eliminable anymore. */
3137 check_eliminable_occurrences (old_body
);
3139 /* Substitute the operands; the new values are in the substed_operand
3141 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3142 *recog_data
.operand_loc
[i
] = substed_operand
[i
];
3143 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3144 *recog_data
.dup_loc
[i
] = substed_operand
[(int) recog_data
.dup_num
[i
]];
3146 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3147 re-recognize the insn. We do this in case we had a simple addition
3148 but now can do this as a load-address. This saves an insn in this
3150 If re-recognition fails, the old insn code number will still be used,
3151 and some register operands may have changed into PLUS expressions.
3152 These will be handled by find_reloads by loading them into a register
3157 /* If we aren't replacing things permanently and we changed something,
3158 make another copy to ensure that all the RTL is new. Otherwise
3159 things can go wrong if find_reload swaps commutative operands
3160 and one is inside RTL that has been copied while the other is not. */
3161 new_body
= old_body
;
3164 new_body
= copy_insn (old_body
);
3165 if (REG_NOTES (insn
))
3166 REG_NOTES (insn
) = copy_insn_1 (REG_NOTES (insn
));
3168 PATTERN (insn
) = new_body
;
3170 /* If we had a move insn but now we don't, rerecognize it. This will
3171 cause spurious re-recognition if the old move had a PARALLEL since
3172 the new one still will, but we can't call single_set without
3173 having put NEW_BODY into the insn and the re-recognition won't
3174 hurt in this rare case. */
3175 /* ??? Why this huge if statement - why don't we just rerecognize the
3179 && ((GET_CODE (SET_SRC (old_set
)) == REG
3180 && (GET_CODE (new_body
) != SET
3181 || GET_CODE (SET_SRC (new_body
)) != REG
))
3182 /* If this was a load from or store to memory, compare
3183 the MEM in recog_data.operand to the one in the insn.
3184 If they are not equal, then rerecognize the insn. */
3186 && ((GET_CODE (SET_SRC (old_set
)) == MEM
3187 && SET_SRC (old_set
) != recog_data
.operand
[1])
3188 || (GET_CODE (SET_DEST (old_set
)) == MEM
3189 && SET_DEST (old_set
) != recog_data
.operand
[0])))
3190 /* If this was an add insn before, rerecognize. */
3191 || GET_CODE (SET_SRC (old_set
)) == PLUS
))
3193 int new_icode
= recog (PATTERN (insn
), insn
, 0);
3195 INSN_CODE (insn
) = icode
;
3199 /* Restore the old body. If there were any changes to it, we made a copy
3200 of it while the changes were still in place, so we'll correctly return
3201 a modified insn below. */
3204 /* Restore the old body. */
3205 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3206 *recog_data
.operand_loc
[i
] = orig_operand
[i
];
3207 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3208 *recog_data
.dup_loc
[i
] = orig_operand
[(int) recog_data
.dup_num
[i
]];
3211 /* Update all elimination pairs to reflect the status after the current
3212 insn. The changes we make were determined by the earlier call to
3213 elimination_effects.
3215 We also detect a cases where register elimination cannot be done,
3216 namely, if a register would be both changed and referenced outside a MEM
3217 in the resulting insn since such an insn is often undefined and, even if
3218 not, we cannot know what meaning will be given to it. Note that it is
3219 valid to have a register used in an address in an insn that changes it
3220 (presumably with a pre- or post-increment or decrement).
3222 If anything changes, return nonzero. */
3224 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3226 if (ep
->previous_offset
!= ep
->offset
&& ep
->ref_outside_mem
)
3227 ep
->can_eliminate
= 0;
3229 ep
->ref_outside_mem
= 0;
3231 if (ep
->previous_offset
!= ep
->offset
)
3236 /* If we changed something, perform elimination in REG_NOTES. This is
3237 needed even when REPLACE is zero because a REG_DEAD note might refer
3238 to a register that we eliminate and could cause a different number
3239 of spill registers to be needed in the final reload pass than in
3241 if (val
&& REG_NOTES (insn
) != 0)
3242 REG_NOTES (insn
) = eliminate_regs (REG_NOTES (insn
), 0, REG_NOTES (insn
));
3247 /* Loop through all elimination pairs.
3248 Recalculate the number not at initial offset.
3250 Compute the maximum offset (minimum offset if the stack does not
3251 grow downward) for each elimination pair. */
3254 update_eliminable_offsets ()
3256 struct elim_table
*ep
;
3258 num_not_at_initial_offset
= 0;
3259 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3261 ep
->previous_offset
= ep
->offset
;
3262 if (ep
->can_eliminate
&& ep
->offset
!= ep
->initial_offset
)
3263 num_not_at_initial_offset
++;
3267 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3268 replacement we currently believe is valid, mark it as not eliminable if X
3269 modifies DEST in any way other than by adding a constant integer to it.
3271 If DEST is the frame pointer, we do nothing because we assume that
3272 all assignments to the hard frame pointer are nonlocal gotos and are being
3273 done at a time when they are valid and do not disturb anything else.
3274 Some machines want to eliminate a fake argument pointer with either the
3275 frame or stack pointer. Assignments to the hard frame pointer must not
3276 prevent this elimination.
3278 Called via note_stores from reload before starting its passes to scan
3279 the insns of the function. */
3282 mark_not_eliminable (dest
, x
, data
)
3285 void *data ATTRIBUTE_UNUSED
;
3287 register unsigned int i
;
3289 /* A SUBREG of a hard register here is just changing its mode. We should
3290 not see a SUBREG of an eliminable hard register, but check just in
3292 if (GET_CODE (dest
) == SUBREG
)
3293 dest
= SUBREG_REG (dest
);
3295 if (dest
== hard_frame_pointer_rtx
)
3298 for (i
= 0; i
< NUM_ELIMINABLE_REGS
; i
++)
3299 if (reg_eliminate
[i
].can_eliminate
&& dest
== reg_eliminate
[i
].to_rtx
3300 && (GET_CODE (x
) != SET
3301 || GET_CODE (SET_SRC (x
)) != PLUS
3302 || XEXP (SET_SRC (x
), 0) != dest
3303 || GET_CODE (XEXP (SET_SRC (x
), 1)) != CONST_INT
))
3305 reg_eliminate
[i
].can_eliminate_previous
3306 = reg_eliminate
[i
].can_eliminate
= 0;
3311 /* Verify that the initial elimination offsets did not change since the
3312 last call to set_initial_elim_offsets. This is used to catch cases
3313 where something illegal happened during reload_as_needed that could
3314 cause incorrect code to be generated if we did not check for it. */
3317 verify_initial_elim_offsets ()
3321 #ifdef ELIMINABLE_REGS
3322 struct elim_table
*ep
;
3324 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3326 INITIAL_ELIMINATION_OFFSET (ep
->from
, ep
->to
, t
);
3327 if (t
!= ep
->initial_offset
)
3331 INITIAL_FRAME_POINTER_OFFSET (t
);
3332 if (t
!= reg_eliminate
[0].initial_offset
)
3337 /* Reset all offsets on eliminable registers to their initial values. */
3340 set_initial_elim_offsets ()
3342 struct elim_table
*ep
= reg_eliminate
;
3344 #ifdef ELIMINABLE_REGS
3345 for (; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3347 INITIAL_ELIMINATION_OFFSET (ep
->from
, ep
->to
, ep
->initial_offset
);
3348 ep
->previous_offset
= ep
->offset
= ep
->initial_offset
;
3351 INITIAL_FRAME_POINTER_OFFSET (ep
->initial_offset
);
3352 ep
->previous_offset
= ep
->offset
= ep
->initial_offset
;
3355 num_not_at_initial_offset
= 0;
3358 /* Initialize the known label offsets.
3359 Set a known offset for each forced label to be at the initial offset
3360 of each elimination. We do this because we assume that all
3361 computed jumps occur from a location where each elimination is
3362 at its initial offset.
3363 For all other labels, show that we don't know the offsets. */
3366 set_initial_label_offsets ()
3369 memset ((char *) &offsets_known_at
[get_first_label_num ()], 0, num_labels
);
3371 for (x
= forced_labels
; x
; x
= XEXP (x
, 1))
3373 set_label_offsets (XEXP (x
, 0), NULL_RTX
, 1);
3376 /* Set all elimination offsets to the known values for the code label given
3380 set_offsets_for_label (insn
)
3384 int label_nr
= CODE_LABEL_NUMBER (insn
);
3385 struct elim_table
*ep
;
3387 num_not_at_initial_offset
= 0;
3388 for (i
= 0, ep
= reg_eliminate
; i
< NUM_ELIMINABLE_REGS
; ep
++, i
++)
3390 ep
->offset
= ep
->previous_offset
= offsets_at
[label_nr
][i
];
3391 if (ep
->can_eliminate
&& ep
->offset
!= ep
->initial_offset
)
3392 num_not_at_initial_offset
++;
3396 /* See if anything that happened changes which eliminations are valid.
3397 For example, on the Sparc, whether or not the frame pointer can
3398 be eliminated can depend on what registers have been used. We need
3399 not check some conditions again (such as flag_omit_frame_pointer)
3400 since they can't have changed. */
3403 update_eliminables (pset
)
3406 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3407 int previous_frame_pointer_needed
= frame_pointer_needed
;
3409 struct elim_table
*ep
;
3411 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3412 if ((ep
->from
== HARD_FRAME_POINTER_REGNUM
&& FRAME_POINTER_REQUIRED
)
3413 #ifdef ELIMINABLE_REGS
3414 || ! CAN_ELIMINATE (ep
->from
, ep
->to
)
3417 ep
->can_eliminate
= 0;
3419 /* Look for the case where we have discovered that we can't replace
3420 register A with register B and that means that we will now be
3421 trying to replace register A with register C. This means we can
3422 no longer replace register C with register B and we need to disable
3423 such an elimination, if it exists. This occurs often with A == ap,
3424 B == sp, and C == fp. */
3426 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3428 struct elim_table
*op
;
3429 register int new_to
= -1;
3431 if (! ep
->can_eliminate
&& ep
->can_eliminate_previous
)
3433 /* Find the current elimination for ep->from, if there is a
3435 for (op
= reg_eliminate
;
3436 op
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; op
++)
3437 if (op
->from
== ep
->from
&& op
->can_eliminate
)
3443 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3445 for (op
= reg_eliminate
;
3446 op
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; op
++)
3447 if (op
->from
== new_to
&& op
->to
== ep
->to
)
3448 op
->can_eliminate
= 0;
3452 /* See if any registers that we thought we could eliminate the previous
3453 time are no longer eliminable. If so, something has changed and we
3454 must spill the register. Also, recompute the number of eliminable
3455 registers and see if the frame pointer is needed; it is if there is
3456 no elimination of the frame pointer that we can perform. */
3458 frame_pointer_needed
= 1;
3459 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3461 if (ep
->can_eliminate
&& ep
->from
== FRAME_POINTER_REGNUM
3462 && ep
->to
!= HARD_FRAME_POINTER_REGNUM
)
3463 frame_pointer_needed
= 0;
3465 if (! ep
->can_eliminate
&& ep
->can_eliminate_previous
)
3467 ep
->can_eliminate_previous
= 0;
3468 SET_HARD_REG_BIT (*pset
, ep
->from
);
3473 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3474 /* If we didn't need a frame pointer last time, but we do now, spill
3475 the hard frame pointer. */
3476 if (frame_pointer_needed
&& ! previous_frame_pointer_needed
)
3477 SET_HARD_REG_BIT (*pset
, HARD_FRAME_POINTER_REGNUM
);
3481 /* Initialize the table of registers to eliminate. */
3486 struct elim_table
*ep
;
3487 #ifdef ELIMINABLE_REGS
3488 struct elim_table_1
*ep1
;
3492 reg_eliminate
= (struct elim_table
*)
3493 xcalloc (sizeof (struct elim_table
), NUM_ELIMINABLE_REGS
);
3495 /* Does this function require a frame pointer? */
3497 frame_pointer_needed
= (! flag_omit_frame_pointer
3498 #ifdef EXIT_IGNORE_STACK
3499 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3500 and restore sp for alloca. So we can't eliminate
3501 the frame pointer in that case. At some point,
3502 we should improve this by emitting the
3503 sp-adjusting insns for this case. */
3504 || (current_function_calls_alloca
3505 && EXIT_IGNORE_STACK
)
3507 || FRAME_POINTER_REQUIRED
);
3511 #ifdef ELIMINABLE_REGS
3512 for (ep
= reg_eliminate
, ep1
= reg_eliminate_1
;
3513 ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++, ep1
++)
3515 ep
->from
= ep1
->from
;
3517 ep
->can_eliminate
= ep
->can_eliminate_previous
3518 = (CAN_ELIMINATE (ep
->from
, ep
->to
)
3519 && ! (ep
->to
== STACK_POINTER_REGNUM
&& frame_pointer_needed
));
3522 reg_eliminate
[0].from
= reg_eliminate_1
[0].from
;
3523 reg_eliminate
[0].to
= reg_eliminate_1
[0].to
;
3524 reg_eliminate
[0].can_eliminate
= reg_eliminate
[0].can_eliminate_previous
3525 = ! frame_pointer_needed
;
3528 /* Count the number of eliminable registers and build the FROM and TO
3529 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3530 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3531 We depend on this. */
3532 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
3534 num_eliminable
+= ep
->can_eliminate
;
3535 ep
->from_rtx
= gen_rtx_REG (Pmode
, ep
->from
);
3536 ep
->to_rtx
= gen_rtx_REG (Pmode
, ep
->to
);
3540 /* Kick all pseudos out of hard register REGNO.
3542 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3543 because we found we can't eliminate some register. In the case, no pseudos
3544 are allowed to be in the register, even if they are only in a block that
3545 doesn't require spill registers, unlike the case when we are spilling this
3546 hard reg to produce another spill register.
3548 Return nonzero if any pseudos needed to be kicked out. */
3551 spill_hard_reg (regno
, cant_eliminate
)
3559 SET_HARD_REG_BIT (bad_spill_regs_global
, regno
);
3560 regs_ever_live
[regno
] = 1;
3563 /* Spill every pseudo reg that was allocated to this reg
3564 or to something that overlaps this reg. */
3566 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
3567 if (reg_renumber
[i
] >= 0
3568 && (unsigned int) reg_renumber
[i
] <= regno
3569 && ((unsigned int) reg_renumber
[i
]
3570 + HARD_REGNO_NREGS ((unsigned int) reg_renumber
[i
],
3571 PSEUDO_REGNO_MODE (i
))
3573 SET_REGNO_REG_SET (&spilled_pseudos
, i
);
3576 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3577 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3580 ior_hard_reg_set (set1
, set2
)
3581 HARD_REG_SET
*set1
, *set2
;
3583 IOR_HARD_REG_SET (*set1
, *set2
);
3586 /* After find_reload_regs has been run for all insn that need reloads,
3587 and/or spill_hard_regs was called, this function is used to actually
3588 spill pseudo registers and try to reallocate them. It also sets up the
3589 spill_regs array for use by choose_reload_regs. */
3592 finish_spills (global
)
3595 struct insn_chain
*chain
;
3596 int something_changed
= 0;
3599 /* Build the spill_regs array for the function. */
3600 /* If there are some registers still to eliminate and one of the spill regs
3601 wasn't ever used before, additional stack space may have to be
3602 allocated to store this register. Thus, we may have changed the offset
3603 between the stack and frame pointers, so mark that something has changed.
3605 One might think that we need only set VAL to 1 if this is a call-used
3606 register. However, the set of registers that must be saved by the
3607 prologue is not identical to the call-used set. For example, the
3608 register used by the call insn for the return PC is a call-used register,
3609 but must be saved by the prologue. */
3612 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3613 if (TEST_HARD_REG_BIT (used_spill_regs
, i
))
3615 spill_reg_order
[i
] = n_spills
;
3616 spill_regs
[n_spills
++] = i
;
3617 if (num_eliminable
&& ! regs_ever_live
[i
])
3618 something_changed
= 1;
3619 regs_ever_live
[i
] = 1;
3622 spill_reg_order
[i
] = -1;
3624 EXECUTE_IF_SET_IN_REG_SET
3625 (&spilled_pseudos
, FIRST_PSEUDO_REGISTER
, i
,
3627 /* Record the current hard register the pseudo is allocated to in
3628 pseudo_previous_regs so we avoid reallocating it to the same
3629 hard reg in a later pass. */
3630 if (reg_renumber
[i
] < 0)
3633 SET_HARD_REG_BIT (pseudo_previous_regs
[i
], reg_renumber
[i
]);
3634 /* Mark it as no longer having a hard register home. */
3635 reg_renumber
[i
] = -1;
3636 /* We will need to scan everything again. */
3637 something_changed
= 1;
3640 /* Retry global register allocation if possible. */
3643 memset ((char *) pseudo_forbidden_regs
, 0, max_regno
* sizeof (HARD_REG_SET
));
3644 /* For every insn that needs reloads, set the registers used as spill
3645 regs in pseudo_forbidden_regs for every pseudo live across the
3647 for (chain
= insns_need_reload
; chain
; chain
= chain
->next_need_reload
)
3649 EXECUTE_IF_SET_IN_REG_SET
3650 (&chain
->live_throughout
, FIRST_PSEUDO_REGISTER
, i
,
3652 ior_hard_reg_set (pseudo_forbidden_regs
+ i
,
3653 &chain
->used_spill_regs
);
3655 EXECUTE_IF_SET_IN_REG_SET
3656 (&chain
->dead_or_set
, FIRST_PSEUDO_REGISTER
, i
,
3658 ior_hard_reg_set (pseudo_forbidden_regs
+ i
,
3659 &chain
->used_spill_regs
);
3663 /* Retry allocating the spilled pseudos. For each reg, merge the
3664 various reg sets that indicate which hard regs can't be used,
3665 and call retry_global_alloc.
3666 We change spill_pseudos here to only contain pseudos that did not
3667 get a new hard register. */
3668 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
3669 if (reg_old_renumber
[i
] != reg_renumber
[i
])
3671 HARD_REG_SET forbidden
;
3672 COPY_HARD_REG_SET (forbidden
, bad_spill_regs_global
);
3673 IOR_HARD_REG_SET (forbidden
, pseudo_forbidden_regs
[i
]);
3674 IOR_HARD_REG_SET (forbidden
, pseudo_previous_regs
[i
]);
3675 retry_global_alloc (i
, forbidden
);
3676 if (reg_renumber
[i
] >= 0)
3677 CLEAR_REGNO_REG_SET (&spilled_pseudos
, i
);
3681 /* Fix up the register information in the insn chain.
3682 This involves deleting those of the spilled pseudos which did not get
3683 a new hard register home from the live_{before,after} sets. */
3684 for (chain
= reload_insn_chain
; chain
; chain
= chain
->next
)
3686 HARD_REG_SET used_by_pseudos
;
3687 HARD_REG_SET used_by_pseudos2
;
3689 AND_COMPL_REG_SET (&chain
->live_throughout
, &spilled_pseudos
);
3690 AND_COMPL_REG_SET (&chain
->dead_or_set
, &spilled_pseudos
);
3692 /* Mark any unallocated hard regs as available for spills. That
3693 makes inheritance work somewhat better. */
3694 if (chain
->need_reload
)
3696 REG_SET_TO_HARD_REG_SET (used_by_pseudos
, &chain
->live_throughout
);
3697 REG_SET_TO_HARD_REG_SET (used_by_pseudos2
, &chain
->dead_or_set
);
3698 IOR_HARD_REG_SET (used_by_pseudos
, used_by_pseudos2
);
3700 /* Save the old value for the sanity test below. */
3701 COPY_HARD_REG_SET (used_by_pseudos2
, chain
->used_spill_regs
);
3703 compute_use_by_pseudos (&used_by_pseudos
, &chain
->live_throughout
);
3704 compute_use_by_pseudos (&used_by_pseudos
, &chain
->dead_or_set
);
3705 COMPL_HARD_REG_SET (chain
->used_spill_regs
, used_by_pseudos
);
3706 AND_HARD_REG_SET (chain
->used_spill_regs
, used_spill_regs
);
3708 /* Make sure we only enlarge the set. */
3709 GO_IF_HARD_REG_SUBSET (used_by_pseudos2
, chain
->used_spill_regs
, ok
);
3715 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3716 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
3718 int regno
= reg_renumber
[i
];
3719 if (reg_old_renumber
[i
] == regno
)
3722 alter_reg (i
, reg_old_renumber
[i
]);
3723 reg_old_renumber
[i
] = regno
;
3727 fprintf (rtl_dump_file
, " Register %d now on stack.\n\n", i
);
3729 fprintf (rtl_dump_file
, " Register %d now in %d.\n\n",
3730 i
, reg_renumber
[i
]);
3734 return something_changed
;
3737 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3738 Also mark any hard registers used to store user variables as
3739 forbidden from being used for spill registers. */
3742 scan_paradoxical_subregs (x
)
3746 register const char *fmt
;
3747 register enum rtx_code code
= GET_CODE (x
);
3753 if (SMALL_REGISTER_CLASSES
&& REGNO (x
) < FIRST_PSEUDO_REGISTER
3754 && REG_USERVAR_P (x
))
3755 SET_HARD_REG_BIT (bad_spill_regs_global
, REGNO (x
));
3771 if (GET_CODE (SUBREG_REG (x
)) == REG
3772 && GET_MODE_SIZE (GET_MODE (x
)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
3773 reg_max_ref_width
[REGNO (SUBREG_REG (x
))]
3774 = GET_MODE_SIZE (GET_MODE (x
));
3781 fmt
= GET_RTX_FORMAT (code
);
3782 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3785 scan_paradoxical_subregs (XEXP (x
, i
));
3786 else if (fmt
[i
] == 'E')
3789 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3790 scan_paradoxical_subregs (XVECEXP (x
, i
, j
));
3795 /* Reload pseudo-registers into hard regs around each insn as needed.
3796 Additional register load insns are output before the insn that needs it
3797 and perhaps store insns after insns that modify the reloaded pseudo reg.
3799 reg_last_reload_reg and reg_reloaded_contents keep track of
3800 which registers are already available in reload registers.
3801 We update these for the reloads that we perform,
3802 as the insns are scanned. */
3805 reload_as_needed (live_known
)
3808 struct insn_chain
*chain
;
3809 #if defined (AUTO_INC_DEC)
3814 memset ((char *) spill_reg_rtx
, 0, sizeof spill_reg_rtx
);
3815 memset ((char *) spill_reg_store
, 0, sizeof spill_reg_store
);
3816 reg_last_reload_reg
= (rtx
*) xcalloc (max_regno
, sizeof (rtx
));
3817 reg_has_output_reload
= (char *) xmalloc (max_regno
);
3818 CLEAR_HARD_REG_SET (reg_reloaded_valid
);
3820 set_initial_elim_offsets ();
3822 for (chain
= reload_insn_chain
; chain
; chain
= chain
->next
)
3825 rtx insn
= chain
->insn
;
3826 rtx old_next
= NEXT_INSN (insn
);
3828 /* If we pass a label, copy the offsets from the label information
3829 into the current offsets of each elimination. */
3830 if (GET_CODE (insn
) == CODE_LABEL
)
3831 set_offsets_for_label (insn
);
3833 else if (INSN_P (insn
))
3835 rtx oldpat
= PATTERN (insn
);
3837 /* If this is a USE and CLOBBER of a MEM, ensure that any
3838 references to eliminable registers have been removed. */
3840 if ((GET_CODE (PATTERN (insn
)) == USE
3841 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
3842 && GET_CODE (XEXP (PATTERN (insn
), 0)) == MEM
)
3843 XEXP (XEXP (PATTERN (insn
), 0), 0)
3844 = eliminate_regs (XEXP (XEXP (PATTERN (insn
), 0), 0),
3845 GET_MODE (XEXP (PATTERN (insn
), 0)),
3848 /* If we need to do register elimination processing, do so.
3849 This might delete the insn, in which case we are done. */
3850 if ((num_eliminable
|| num_eliminable_invariants
) && chain
->need_elim
)
3852 eliminate_regs_in_insn (insn
, 1);
3853 if (GET_CODE (insn
) == NOTE
)
3855 update_eliminable_offsets ();
3860 /* If need_elim is nonzero but need_reload is zero, one might think
3861 that we could simply set n_reloads to 0. However, find_reloads
3862 could have done some manipulation of the insn (such as swapping
3863 commutative operands), and these manipulations are lost during
3864 the first pass for every insn that needs register elimination.
3865 So the actions of find_reloads must be redone here. */
3867 if (! chain
->need_elim
&& ! chain
->need_reload
3868 && ! chain
->need_operand_change
)
3870 /* First find the pseudo regs that must be reloaded for this insn.
3871 This info is returned in the tables reload_... (see reload.h).
3872 Also modify the body of INSN by substituting RELOAD
3873 rtx's for those pseudo regs. */
3876 memset (reg_has_output_reload
, 0, max_regno
);
3877 CLEAR_HARD_REG_SET (reg_is_output_reload
);
3879 find_reloads (insn
, 1, spill_indirect_levels
, live_known
,
3883 if (num_eliminable
&& chain
->need_elim
)
3884 update_eliminable_offsets ();
3888 rtx next
= NEXT_INSN (insn
);
3891 prev
= PREV_INSN (insn
);
3893 /* Now compute which reload regs to reload them into. Perhaps
3894 reusing reload regs from previous insns, or else output
3895 load insns to reload them. Maybe output store insns too.
3896 Record the choices of reload reg in reload_reg_rtx. */
3897 choose_reload_regs (chain
);
3899 /* Merge any reloads that we didn't combine for fear of
3900 increasing the number of spill registers needed but now
3901 discover can be safely merged. */
3902 if (SMALL_REGISTER_CLASSES
)
3903 merge_assigned_reloads (insn
);
3905 /* Generate the insns to reload operands into or out of
3906 their reload regs. */
3907 emit_reload_insns (chain
);
3909 /* Substitute the chosen reload regs from reload_reg_rtx
3910 into the insn's body (or perhaps into the bodies of other
3911 load and store insn that we just made for reloading
3912 and that we moved the structure into). */
3913 subst_reloads (insn
);
3915 /* If this was an ASM, make sure that all the reload insns
3916 we have generated are valid. If not, give an error
3919 if (asm_noperands (PATTERN (insn
)) >= 0)
3920 for (p
= NEXT_INSN (prev
); p
!= next
; p
= NEXT_INSN (p
))
3921 if (p
!= insn
&& INSN_P (p
)
3922 && (recog_memoized (p
) < 0
3923 || (extract_insn (p
), ! constrain_operands (1))))
3925 error_for_asm (insn
,
3926 "`asm' operand requires impossible reload");
3928 NOTE_SOURCE_FILE (p
) = 0;
3929 NOTE_LINE_NUMBER (p
) = NOTE_INSN_DELETED
;
3932 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3933 is no longer validly lying around to save a future reload.
3934 Note that this does not detect pseudos that were reloaded
3935 for this insn in order to be stored in
3936 (obeying register constraints). That is correct; such reload
3937 registers ARE still valid. */
3938 note_stores (oldpat
, forget_old_reloads_1
, NULL
);
3940 /* There may have been CLOBBER insns placed after INSN. So scan
3941 between INSN and NEXT and use them to forget old reloads. */
3942 for (x
= NEXT_INSN (insn
); x
!= old_next
; x
= NEXT_INSN (x
))
3943 if (GET_CODE (x
) == INSN
&& GET_CODE (PATTERN (x
)) == CLOBBER
)
3944 note_stores (PATTERN (x
), forget_old_reloads_1
, NULL
);
3947 /* Likewise for regs altered by auto-increment in this insn.
3948 REG_INC notes have been changed by reloading:
3949 find_reloads_address_1 records substitutions for them,
3950 which have been performed by subst_reloads above. */
3951 for (i
= n_reloads
- 1; i
>= 0; i
--)
3953 rtx in_reg
= rld
[i
].in_reg
;
3956 enum rtx_code code
= GET_CODE (in_reg
);
3957 /* PRE_INC / PRE_DEC will have the reload register ending up
3958 with the same value as the stack slot, but that doesn't
3959 hold true for POST_INC / POST_DEC. Either we have to
3960 convert the memory access to a true POST_INC / POST_DEC,
3961 or we can't use the reload register for inheritance. */
3962 if ((code
== POST_INC
|| code
== POST_DEC
)
3963 && TEST_HARD_REG_BIT (reg_reloaded_valid
,
3964 REGNO (rld
[i
].reg_rtx
))
3965 /* Make sure it is the inc/dec pseudo, and not
3966 some other (e.g. output operand) pseudo. */
3967 && (reg_reloaded_contents
[REGNO (rld
[i
].reg_rtx
)]
3968 == REGNO (XEXP (in_reg
, 0))))
3971 rtx reload_reg
= rld
[i
].reg_rtx
;
3972 enum machine_mode mode
= GET_MODE (reload_reg
);
3976 for (p
= PREV_INSN (old_next
); p
!= prev
; p
= PREV_INSN (p
))
3978 /* We really want to ignore REG_INC notes here, so
3979 use PATTERN (p) as argument to reg_set_p . */
3980 if (reg_set_p (reload_reg
, PATTERN (p
)))
3982 n
= count_occurrences (PATTERN (p
), reload_reg
, 0);
3987 n
= validate_replace_rtx (reload_reg
,
3988 gen_rtx (code
, mode
,
3992 /* We must also verify that the constraints
3993 are met after the replacement. */
3996 n
= constrain_operands (1);
4000 /* If the constraints were not met, then
4001 undo the replacement. */
4004 validate_replace_rtx (gen_rtx (code
, mode
,
4016 = gen_rtx_EXPR_LIST (REG_INC
, reload_reg
,
4018 /* Mark this as having an output reload so that the
4019 REG_INC processing code below won't invalidate
4020 the reload for inheritance. */
4021 SET_HARD_REG_BIT (reg_is_output_reload
,
4022 REGNO (reload_reg
));
4023 reg_has_output_reload
[REGNO (XEXP (in_reg
, 0))] = 1;
4026 forget_old_reloads_1 (XEXP (in_reg
, 0), NULL_RTX
,
4029 else if ((code
== PRE_INC
|| code
== PRE_DEC
)
4030 && TEST_HARD_REG_BIT (reg_reloaded_valid
,
4031 REGNO (rld
[i
].reg_rtx
))
4032 /* Make sure it is the inc/dec pseudo, and not
4033 some other (e.g. output operand) pseudo. */
4034 && (reg_reloaded_contents
[REGNO (rld
[i
].reg_rtx
)]
4035 == REGNO (XEXP (in_reg
, 0))))
4037 SET_HARD_REG_BIT (reg_is_output_reload
,
4038 REGNO (rld
[i
].reg_rtx
));
4039 reg_has_output_reload
[REGNO (XEXP (in_reg
, 0))] = 1;
4043 /* If a pseudo that got a hard register is auto-incremented,
4044 we must purge records of copying it into pseudos without
4046 for (x
= REG_NOTES (insn
); x
; x
= XEXP (x
, 1))
4047 if (REG_NOTE_KIND (x
) == REG_INC
)
4049 /* See if this pseudo reg was reloaded in this insn.
4050 If so, its last-reload info is still valid
4051 because it is based on this insn's reload. */
4052 for (i
= 0; i
< n_reloads
; i
++)
4053 if (rld
[i
].out
== XEXP (x
, 0))
4057 forget_old_reloads_1 (XEXP (x
, 0), NULL_RTX
, NULL
);
4061 /* A reload reg's contents are unknown after a label. */
4062 if (GET_CODE (insn
) == CODE_LABEL
)
4063 CLEAR_HARD_REG_SET (reg_reloaded_valid
);
4065 /* Don't assume a reload reg is still good after a call insn
4066 if it is a call-used reg. */
4067 else if (GET_CODE (insn
) == CALL_INSN
)
4068 AND_COMPL_HARD_REG_SET(reg_reloaded_valid
, call_used_reg_set
);
4072 free (reg_last_reload_reg
);
4073 free (reg_has_output_reload
);
4076 /* Discard all record of any value reloaded from X,
4077 or reloaded in X from someplace else;
4078 unless X is an output reload reg of the current insn.
4080 X may be a hard reg (the reload reg)
4081 or it may be a pseudo reg that was reloaded from. */
4084 forget_old_reloads_1 (x
, ignored
, data
)
4086 rtx ignored ATTRIBUTE_UNUSED
;
4087 void *data ATTRIBUTE_UNUSED
;
4093 /* note_stores does give us subregs of hard regs. */
4094 while (GET_CODE (x
) == SUBREG
)
4096 offset
+= SUBREG_WORD (x
);
4100 if (GET_CODE (x
) != REG
)
4103 regno
= REGNO (x
) + offset
;
4105 if (regno
>= FIRST_PSEUDO_REGISTER
)
4111 nr
= HARD_REGNO_NREGS (regno
, GET_MODE (x
));
4112 /* Storing into a spilled-reg invalidates its contents.
4113 This can happen if a block-local pseudo is allocated to that reg
4114 and it wasn't spilled because this block's total need is 0.
4115 Then some insn might have an optional reload and use this reg. */
4116 for (i
= 0; i
< nr
; i
++)
4117 /* But don't do this if the reg actually serves as an output
4118 reload reg in the current instruction. */
4120 || ! TEST_HARD_REG_BIT (reg_is_output_reload
, regno
+ i
))
4122 CLEAR_HARD_REG_BIT (reg_reloaded_valid
, regno
+ i
);
4123 spill_reg_store
[regno
+ i
] = 0;
4127 /* Since value of X has changed,
4128 forget any value previously copied from it. */
4131 /* But don't forget a copy if this is the output reload
4132 that establishes the copy's validity. */
4133 if (n_reloads
== 0 || reg_has_output_reload
[regno
+ nr
] == 0)
4134 reg_last_reload_reg
[regno
+ nr
] = 0;
4137 /* The following HARD_REG_SETs indicate when each hard register is
4138 used for a reload of various parts of the current insn. */
4140 /* If reg is unavailable for all reloads. */
4141 static HARD_REG_SET reload_reg_unavailable
;
4142 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4143 static HARD_REG_SET reload_reg_used
;
4144 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4145 static HARD_REG_SET reload_reg_used_in_input_addr
[MAX_RECOG_OPERANDS
];
4146 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4147 static HARD_REG_SET reload_reg_used_in_inpaddr_addr
[MAX_RECOG_OPERANDS
];
4148 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4149 static HARD_REG_SET reload_reg_used_in_output_addr
[MAX_RECOG_OPERANDS
];
4150 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4151 static HARD_REG_SET reload_reg_used_in_outaddr_addr
[MAX_RECOG_OPERANDS
];
4152 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4153 static HARD_REG_SET reload_reg_used_in_input
[MAX_RECOG_OPERANDS
];
4154 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4155 static HARD_REG_SET reload_reg_used_in_output
[MAX_RECOG_OPERANDS
];
4156 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4157 static HARD_REG_SET reload_reg_used_in_op_addr
;
4158 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4159 static HARD_REG_SET reload_reg_used_in_op_addr_reload
;
4160 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4161 static HARD_REG_SET reload_reg_used_in_insn
;
4162 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4163 static HARD_REG_SET reload_reg_used_in_other_addr
;
4165 /* If reg is in use as a reload reg for any sort of reload. */
4166 static HARD_REG_SET reload_reg_used_at_all
;
4168 /* If reg is use as an inherited reload. We just mark the first register
4170 static HARD_REG_SET reload_reg_used_for_inherit
;
4172 /* Records which hard regs are used in any way, either as explicit use or
4173 by being allocated to a pseudo during any point of the current insn. */
4174 static HARD_REG_SET reg_used_in_insn
;
4176 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4177 TYPE. MODE is used to indicate how many consecutive regs are
4181 mark_reload_reg_in_use (regno
, opnum
, type
, mode
)
4184 enum reload_type type
;
4185 enum machine_mode mode
;
4187 unsigned int nregs
= HARD_REGNO_NREGS (regno
, mode
);
4190 for (i
= regno
; i
< nregs
+ regno
; i
++)
4195 SET_HARD_REG_BIT (reload_reg_used
, i
);
4198 case RELOAD_FOR_INPUT_ADDRESS
:
4199 SET_HARD_REG_BIT (reload_reg_used_in_input_addr
[opnum
], i
);
4202 case RELOAD_FOR_INPADDR_ADDRESS
:
4203 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[opnum
], i
);
4206 case RELOAD_FOR_OUTPUT_ADDRESS
:
4207 SET_HARD_REG_BIT (reload_reg_used_in_output_addr
[opnum
], i
);
4210 case RELOAD_FOR_OUTADDR_ADDRESS
:
4211 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[opnum
], i
);
4214 case RELOAD_FOR_OPERAND_ADDRESS
:
4215 SET_HARD_REG_BIT (reload_reg_used_in_op_addr
, i
);
4218 case RELOAD_FOR_OPADDR_ADDR
:
4219 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload
, i
);
4222 case RELOAD_FOR_OTHER_ADDRESS
:
4223 SET_HARD_REG_BIT (reload_reg_used_in_other_addr
, i
);
4226 case RELOAD_FOR_INPUT
:
4227 SET_HARD_REG_BIT (reload_reg_used_in_input
[opnum
], i
);
4230 case RELOAD_FOR_OUTPUT
:
4231 SET_HARD_REG_BIT (reload_reg_used_in_output
[opnum
], i
);
4234 case RELOAD_FOR_INSN
:
4235 SET_HARD_REG_BIT (reload_reg_used_in_insn
, i
);
4239 SET_HARD_REG_BIT (reload_reg_used_at_all
, i
);
4243 /* Similarly, but show REGNO is no longer in use for a reload. */
4246 clear_reload_reg_in_use (regno
, opnum
, type
, mode
)
4249 enum reload_type type
;
4250 enum machine_mode mode
;
4252 unsigned int nregs
= HARD_REGNO_NREGS (regno
, mode
);
4253 unsigned int start_regno
, end_regno
, r
;
4255 /* A complication is that for some reload types, inheritance might
4256 allow multiple reloads of the same types to share a reload register.
4257 We set check_opnum if we have to check only reloads with the same
4258 operand number, and check_any if we have to check all reloads. */
4259 int check_opnum
= 0;
4261 HARD_REG_SET
*used_in_set
;
4266 used_in_set
= &reload_reg_used
;
4269 case RELOAD_FOR_INPUT_ADDRESS
:
4270 used_in_set
= &reload_reg_used_in_input_addr
[opnum
];
4273 case RELOAD_FOR_INPADDR_ADDRESS
:
4275 used_in_set
= &reload_reg_used_in_inpaddr_addr
[opnum
];
4278 case RELOAD_FOR_OUTPUT_ADDRESS
:
4279 used_in_set
= &reload_reg_used_in_output_addr
[opnum
];
4282 case RELOAD_FOR_OUTADDR_ADDRESS
:
4284 used_in_set
= &reload_reg_used_in_outaddr_addr
[opnum
];
4287 case RELOAD_FOR_OPERAND_ADDRESS
:
4288 used_in_set
= &reload_reg_used_in_op_addr
;
4291 case RELOAD_FOR_OPADDR_ADDR
:
4293 used_in_set
= &reload_reg_used_in_op_addr_reload
;
4296 case RELOAD_FOR_OTHER_ADDRESS
:
4297 used_in_set
= &reload_reg_used_in_other_addr
;
4301 case RELOAD_FOR_INPUT
:
4302 used_in_set
= &reload_reg_used_in_input
[opnum
];
4305 case RELOAD_FOR_OUTPUT
:
4306 used_in_set
= &reload_reg_used_in_output
[opnum
];
4309 case RELOAD_FOR_INSN
:
4310 used_in_set
= &reload_reg_used_in_insn
;
4315 /* We resolve conflicts with remaining reloads of the same type by
4316 excluding the intervals of of reload registers by them from the
4317 interval of freed reload registers. Since we only keep track of
4318 one set of interval bounds, we might have to exclude somewhat
4319 more then what would be necessary if we used a HARD_REG_SET here.
4320 But this should only happen very infrequently, so there should
4321 be no reason to worry about it. */
4323 start_regno
= regno
;
4324 end_regno
= regno
+ nregs
;
4325 if (check_opnum
|| check_any
)
4327 for (i
= n_reloads
- 1; i
>= 0; i
--)
4329 if (rld
[i
].when_needed
== type
4330 && (check_any
|| rld
[i
].opnum
== opnum
)
4333 unsigned int conflict_start
= true_regnum (rld
[i
].reg_rtx
);
4334 unsigned int conflict_end
4336 + HARD_REGNO_NREGS (conflict_start
, rld
[i
].mode
));
4338 /* If there is an overlap with the first to-be-freed register,
4339 adjust the interval start. */
4340 if (conflict_start
<= start_regno
&& conflict_end
> start_regno
)
4341 start_regno
= conflict_end
;
4342 /* Otherwise, if there is a conflict with one of the other
4343 to-be-freed registers, adjust the interval end. */
4344 if (conflict_start
> start_regno
&& conflict_start
< end_regno
)
4345 end_regno
= conflict_start
;
4350 for (r
= start_regno
; r
< end_regno
; r
++)
4351 CLEAR_HARD_REG_BIT (*used_in_set
, r
);
4354 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4355 specified by OPNUM and TYPE. */
4358 reload_reg_free_p (regno
, opnum
, type
)
4361 enum reload_type type
;
4365 /* In use for a RELOAD_OTHER means it's not available for anything. */
4366 if (TEST_HARD_REG_BIT (reload_reg_used
, regno
)
4367 || TEST_HARD_REG_BIT (reload_reg_unavailable
, regno
))
4373 /* In use for anything means we can't use it for RELOAD_OTHER. */
4374 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr
, regno
)
4375 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
)
4376 || TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
))
4379 for (i
= 0; i
< reload_n_operands
; i
++)
4380 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
[i
], regno
)
4381 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[i
], regno
)
4382 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[i
], regno
)
4383 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[i
], regno
)
4384 || TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
)
4385 || TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
4390 case RELOAD_FOR_INPUT
:
4391 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
)
4392 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
))
4395 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload
, regno
))
4398 /* If it is used for some other input, can't use it. */
4399 for (i
= 0; i
< reload_n_operands
; i
++)
4400 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
4403 /* If it is used in a later operand's address, can't use it. */
4404 for (i
= opnum
+ 1; i
< reload_n_operands
; i
++)
4405 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
[i
], regno
)
4406 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[i
], regno
))
4411 case RELOAD_FOR_INPUT_ADDRESS
:
4412 /* Can't use a register if it is used for an input address for this
4413 operand or used as an input in an earlier one. */
4414 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
[opnum
], regno
)
4415 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[opnum
], regno
))
4418 for (i
= 0; i
< opnum
; i
++)
4419 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
4424 case RELOAD_FOR_INPADDR_ADDRESS
:
4425 /* Can't use a register if it is used for an input address
4426 for this operand or used as an input in an earlier
4428 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[opnum
], regno
))
4431 for (i
= 0; i
< opnum
; i
++)
4432 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
4437 case RELOAD_FOR_OUTPUT_ADDRESS
:
4438 /* Can't use a register if it is used for an output address for this
4439 operand or used as an output in this or a later operand. */
4440 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[opnum
], regno
))
4443 for (i
= opnum
; i
< reload_n_operands
; i
++)
4444 if (TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
4449 case RELOAD_FOR_OUTADDR_ADDRESS
:
4450 /* Can't use a register if it is used for an output address
4451 for this operand or used as an output in this or a
4453 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[opnum
], regno
))
4456 for (i
= opnum
; i
< reload_n_operands
; i
++)
4457 if (TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
4462 case RELOAD_FOR_OPERAND_ADDRESS
:
4463 for (i
= 0; i
< reload_n_operands
; i
++)
4464 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
4467 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
)
4468 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
));
4470 case RELOAD_FOR_OPADDR_ADDR
:
4471 for (i
= 0; i
< reload_n_operands
; i
++)
4472 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
4475 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload
, regno
));
4477 case RELOAD_FOR_OUTPUT
:
4478 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4479 outputs, or an operand address for this or an earlier output. */
4480 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
))
4483 for (i
= 0; i
< reload_n_operands
; i
++)
4484 if (TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
4487 for (i
= 0; i
<= opnum
; i
++)
4488 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[i
], regno
)
4489 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[i
], regno
))
4494 case RELOAD_FOR_INSN
:
4495 for (i
= 0; i
< reload_n_operands
; i
++)
4496 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
)
4497 || TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
4500 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
)
4501 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
));
4503 case RELOAD_FOR_OTHER_ADDRESS
:
4504 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr
, regno
);
4509 /* Return 1 if the value in reload reg REGNO, as used by a reload
4510 needed for the part of the insn specified by OPNUM and TYPE,
4511 is still available in REGNO at the end of the insn.
4513 We can assume that the reload reg was already tested for availability
4514 at the time it is needed, and we should not check this again,
4515 in case the reg has already been marked in use. */
4518 reload_reg_reaches_end_p (regno
, opnum
, type
)
4521 enum reload_type type
;
4528 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4529 its value must reach the end. */
4532 /* If this use is for part of the insn,
4533 its value reaches if no subsequent part uses the same register.
4534 Just like the above function, don't try to do this with lots
4537 case RELOAD_FOR_OTHER_ADDRESS
:
4538 /* Here we check for everything else, since these don't conflict
4539 with anything else and everything comes later. */
4541 for (i
= 0; i
< reload_n_operands
; i
++)
4542 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[i
], regno
)
4543 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[i
], regno
)
4544 || TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
)
4545 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
[i
], regno
)
4546 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[i
], regno
)
4547 || TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
4550 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
)
4551 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
)
4552 && ! TEST_HARD_REG_BIT (reload_reg_used
, regno
));
4554 case RELOAD_FOR_INPUT_ADDRESS
:
4555 case RELOAD_FOR_INPADDR_ADDRESS
:
4556 /* Similar, except that we check only for this and subsequent inputs
4557 and the address of only subsequent inputs and we do not need
4558 to check for RELOAD_OTHER objects since they are known not to
4561 for (i
= opnum
; i
< reload_n_operands
; i
++)
4562 if (TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
4565 for (i
= opnum
+ 1; i
< reload_n_operands
; i
++)
4566 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
[i
], regno
)
4567 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[i
], regno
))
4570 for (i
= 0; i
< reload_n_operands
; i
++)
4571 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[i
], regno
)
4572 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[i
], regno
)
4573 || TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
4576 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload
, regno
))
4579 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
)
4580 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
)
4581 && !TEST_HARD_REG_BIT (reload_reg_used
, regno
));
4583 case RELOAD_FOR_INPUT
:
4584 /* Similar to input address, except we start at the next operand for
4585 both input and input address and we do not check for
4586 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4589 for (i
= opnum
+ 1; i
< reload_n_operands
; i
++)
4590 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr
[i
], regno
)
4591 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr
[i
], regno
)
4592 || TEST_HARD_REG_BIT (reload_reg_used_in_input
[i
], regno
))
4595 /* ... fall through ... */
4597 case RELOAD_FOR_OPERAND_ADDRESS
:
4598 /* Check outputs and their addresses. */
4600 for (i
= 0; i
< reload_n_operands
; i
++)
4601 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[i
], regno
)
4602 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[i
], regno
)
4603 || TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
4606 return (!TEST_HARD_REG_BIT (reload_reg_used
, regno
));
4608 case RELOAD_FOR_OPADDR_ADDR
:
4609 for (i
= 0; i
< reload_n_operands
; i
++)
4610 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[i
], regno
)
4611 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[i
], regno
)
4612 || TEST_HARD_REG_BIT (reload_reg_used_in_output
[i
], regno
))
4615 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr
, regno
)
4616 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn
, regno
)
4617 && !TEST_HARD_REG_BIT (reload_reg_used
, regno
));
4619 case RELOAD_FOR_INSN
:
4620 /* These conflict with other outputs with RELOAD_OTHER. So
4621 we need only check for output addresses. */
4625 /* ... fall through ... */
4627 case RELOAD_FOR_OUTPUT
:
4628 case RELOAD_FOR_OUTPUT_ADDRESS
:
4629 case RELOAD_FOR_OUTADDR_ADDRESS
:
4630 /* We already know these can't conflict with a later output. So the
4631 only thing to check are later output addresses. */
4632 for (i
= opnum
+ 1; i
< reload_n_operands
; i
++)
4633 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr
[i
], regno
)
4634 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr
[i
], regno
))
4643 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4646 This function uses the same algorithm as reload_reg_free_p above. */
4649 reloads_conflict (r1
, r2
)
4652 enum reload_type r1_type
= rld
[r1
].when_needed
;
4653 enum reload_type r2_type
= rld
[r2
].when_needed
;
4654 int r1_opnum
= rld
[r1
].opnum
;
4655 int r2_opnum
= rld
[r2
].opnum
;
4657 /* RELOAD_OTHER conflicts with everything. */
4658 if (r2_type
== RELOAD_OTHER
)
4661 /* Otherwise, check conflicts differently for each type. */
4665 case RELOAD_FOR_INPUT
:
4666 return (r2_type
== RELOAD_FOR_INSN
4667 || r2_type
== RELOAD_FOR_OPERAND_ADDRESS
4668 || r2_type
== RELOAD_FOR_OPADDR_ADDR
4669 || r2_type
== RELOAD_FOR_INPUT
4670 || ((r2_type
== RELOAD_FOR_INPUT_ADDRESS
4671 || r2_type
== RELOAD_FOR_INPADDR_ADDRESS
)
4672 && r2_opnum
> r1_opnum
));
4674 case RELOAD_FOR_INPUT_ADDRESS
:
4675 return ((r2_type
== RELOAD_FOR_INPUT_ADDRESS
&& r1_opnum
== r2_opnum
)
4676 || (r2_type
== RELOAD_FOR_INPUT
&& r2_opnum
< r1_opnum
));
4678 case RELOAD_FOR_INPADDR_ADDRESS
:
4679 return ((r2_type
== RELOAD_FOR_INPADDR_ADDRESS
&& r1_opnum
== r2_opnum
)
4680 || (r2_type
== RELOAD_FOR_INPUT
&& r2_opnum
< r1_opnum
));
4682 case RELOAD_FOR_OUTPUT_ADDRESS
:
4683 return ((r2_type
== RELOAD_FOR_OUTPUT_ADDRESS
&& r2_opnum
== r1_opnum
)
4684 || (r2_type
== RELOAD_FOR_OUTPUT
&& r2_opnum
>= r1_opnum
));
4686 case RELOAD_FOR_OUTADDR_ADDRESS
:
4687 return ((r2_type
== RELOAD_FOR_OUTADDR_ADDRESS
&& r2_opnum
== r1_opnum
)
4688 || (r2_type
== RELOAD_FOR_OUTPUT
&& r2_opnum
>= r1_opnum
));
4690 case RELOAD_FOR_OPERAND_ADDRESS
:
4691 return (r2_type
== RELOAD_FOR_INPUT
|| r2_type
== RELOAD_FOR_INSN
4692 || r2_type
== RELOAD_FOR_OPERAND_ADDRESS
);
4694 case RELOAD_FOR_OPADDR_ADDR
:
4695 return (r2_type
== RELOAD_FOR_INPUT
4696 || r2_type
== RELOAD_FOR_OPADDR_ADDR
);
4698 case RELOAD_FOR_OUTPUT
:
4699 return (r2_type
== RELOAD_FOR_INSN
|| r2_type
== RELOAD_FOR_OUTPUT
4700 || ((r2_type
== RELOAD_FOR_OUTPUT_ADDRESS
4701 || r2_type
== RELOAD_FOR_OUTADDR_ADDRESS
)
4702 && r2_opnum
<= r1_opnum
));
4704 case RELOAD_FOR_INSN
:
4705 return (r2_type
== RELOAD_FOR_INPUT
|| r2_type
== RELOAD_FOR_OUTPUT
4706 || r2_type
== RELOAD_FOR_INSN
4707 || r2_type
== RELOAD_FOR_OPERAND_ADDRESS
);
4709 case RELOAD_FOR_OTHER_ADDRESS
:
4710 return r2_type
== RELOAD_FOR_OTHER_ADDRESS
;
4720 /* Indexed by reload number, 1 if incoming value
4721 inherited from previous insns. */
4722 char reload_inherited
[MAX_RELOADS
];
4724 /* For an inherited reload, this is the insn the reload was inherited from,
4725 if we know it. Otherwise, this is 0. */
4726 rtx reload_inheritance_insn
[MAX_RELOADS
];
4728 /* If non-zero, this is a place to get the value of the reload,
4729 rather than using reload_in. */
4730 rtx reload_override_in
[MAX_RELOADS
];
4732 /* For each reload, the hard register number of the register used,
4733 or -1 if we did not need a register for this reload. */
4734 int reload_spill_index
[MAX_RELOADS
];
4736 /* Subroutine of free_for_value_p, used to check a single register.
4737 START_REGNO is the starting regno of the full reload register
4738 (possibly comprising multiple hard registers) that we are considering. */
4741 reload_reg_free_for_value_p (start_regno
, regno
, opnum
, type
, value
, out
,
4742 reloadnum
, ignore_address_reloads
)
4743 int start_regno
, regno
;
4745 enum reload_type type
;
4748 int ignore_address_reloads
;
4751 /* Set if we see an input reload that must not share its reload register
4752 with any new earlyclobber, but might otherwise share the reload
4753 register with an output or input-output reload. */
4754 int check_earlyclobber
= 0;
4758 if (TEST_HARD_REG_BIT (reload_reg_unavailable
, regno
))
4761 if (out
== const0_rtx
)
4767 /* We use some pseudo 'time' value to check if the lifetimes of the
4768 new register use would overlap with the one of a previous reload
4769 that is not read-only or uses a different value.
4770 The 'time' used doesn't have to be linear in any shape or form, just
4772 Some reload types use different 'buckets' for each operand.
4773 So there are MAX_RECOG_OPERANDS different time values for each
4775 We compute TIME1 as the time when the register for the prospective
4776 new reload ceases to be live, and TIME2 for each existing
4777 reload as the time when that the reload register of that reload
4779 Where there is little to be gained by exact lifetime calculations,
4780 we just make conservative assumptions, i.e. a longer lifetime;
4781 this is done in the 'default:' cases. */
4784 case RELOAD_FOR_OTHER_ADDRESS
:
4785 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4786 time1
= copy
? 0 : 1;
4789 time1
= copy
? 1 : MAX_RECOG_OPERANDS
* 5 + 5;
4791 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4792 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4793 respectively, to the time values for these, we get distinct time
4794 values. To get distinct time values for each operand, we have to
4795 multiply opnum by at least three. We round that up to four because
4796 multiply by four is often cheaper. */
4797 case RELOAD_FOR_INPADDR_ADDRESS
:
4798 time1
= opnum
* 4 + 2;
4800 case RELOAD_FOR_INPUT_ADDRESS
:
4801 time1
= opnum
* 4 + 3;
4803 case RELOAD_FOR_INPUT
:
4804 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4805 executes (inclusive). */
4806 time1
= copy
? opnum
* 4 + 4 : MAX_RECOG_OPERANDS
* 4 + 3;
4808 case RELOAD_FOR_OPADDR_ADDR
:
4810 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4811 time1
= MAX_RECOG_OPERANDS
* 4 + 1;
4813 case RELOAD_FOR_OPERAND_ADDRESS
:
4814 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4816 time1
= copy
? MAX_RECOG_OPERANDS
* 4 + 2 : MAX_RECOG_OPERANDS
* 4 + 3;
4818 case RELOAD_FOR_OUTADDR_ADDRESS
:
4819 time1
= MAX_RECOG_OPERANDS
* 4 + 4 + opnum
;
4821 case RELOAD_FOR_OUTPUT_ADDRESS
:
4822 time1
= MAX_RECOG_OPERANDS
* 4 + 5 + opnum
;
4825 time1
= MAX_RECOG_OPERANDS
* 5 + 5;
4828 for (i
= 0; i
< n_reloads
; i
++)
4830 rtx reg
= rld
[i
].reg_rtx
;
4831 if (reg
&& GET_CODE (reg
) == REG
4832 && ((unsigned) regno
- true_regnum (reg
)
4833 <= HARD_REGNO_NREGS (REGNO (reg
), GET_MODE (reg
)) - (unsigned)1)
4836 rtx other_input
= rld
[i
].in
;
4838 /* If the other reload loads the same input value, that
4839 will not cause a conflict only if it's loading it into
4840 the same register. */
4841 if (true_regnum (reg
) != start_regno
)
4842 other_input
= NULL_RTX
;
4843 if (! other_input
|| ! rtx_equal_p (other_input
, value
)
4844 || rld
[i
].out
|| out
)
4847 switch (rld
[i
].when_needed
)
4849 case RELOAD_FOR_OTHER_ADDRESS
:
4852 case RELOAD_FOR_INPADDR_ADDRESS
:
4853 /* find_reloads makes sure that a
4854 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4855 by at most one - the first -
4856 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4857 address reload is inherited, the address address reload
4858 goes away, so we can ignore this conflict. */
4859 if (type
== RELOAD_FOR_INPUT_ADDRESS
&& reloadnum
== i
+ 1
4860 && ignore_address_reloads
4861 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4862 Then the address address is still needed to store
4863 back the new address. */
4864 && ! rld
[reloadnum
].out
)
4866 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4867 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4869 if (type
== RELOAD_FOR_INPUT
&& opnum
== rld
[i
].opnum
4870 && ignore_address_reloads
4871 /* Unless we are reloading an auto_inc expression. */
4872 && ! rld
[reloadnum
].out
)
4874 time2
= rld
[i
].opnum
* 4 + 2;
4876 case RELOAD_FOR_INPUT_ADDRESS
:
4877 if (type
== RELOAD_FOR_INPUT
&& opnum
== rld
[i
].opnum
4878 && ignore_address_reloads
4879 && ! rld
[reloadnum
].out
)
4881 time2
= rld
[i
].opnum
* 4 + 3;
4883 case RELOAD_FOR_INPUT
:
4884 time2
= rld
[i
].opnum
* 4 + 4;
4885 check_earlyclobber
= 1;
4887 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4888 == MAX_RECOG_OPERAND * 4 */
4889 case RELOAD_FOR_OPADDR_ADDR
:
4890 if (type
== RELOAD_FOR_OPERAND_ADDRESS
&& reloadnum
== i
+ 1
4891 && ignore_address_reloads
4892 && ! rld
[reloadnum
].out
)
4894 time2
= MAX_RECOG_OPERANDS
* 4 + 1;
4896 case RELOAD_FOR_OPERAND_ADDRESS
:
4897 time2
= MAX_RECOG_OPERANDS
* 4 + 2;
4898 check_earlyclobber
= 1;
4900 case RELOAD_FOR_INSN
:
4901 time2
= MAX_RECOG_OPERANDS
* 4 + 3;
4903 case RELOAD_FOR_OUTPUT
:
4904 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4905 instruction is executed. */
4906 time2
= MAX_RECOG_OPERANDS
* 4 + 4;
4908 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4909 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4911 case RELOAD_FOR_OUTADDR_ADDRESS
:
4912 if (type
== RELOAD_FOR_OUTPUT_ADDRESS
&& reloadnum
== i
+ 1
4913 && ignore_address_reloads
4914 && ! rld
[reloadnum
].out
)
4916 time2
= MAX_RECOG_OPERANDS
* 4 + 4 + rld
[i
].opnum
;
4918 case RELOAD_FOR_OUTPUT_ADDRESS
:
4919 time2
= MAX_RECOG_OPERANDS
* 4 + 5 + rld
[i
].opnum
;
4922 /* If there is no conflict in the input part, handle this
4923 like an output reload. */
4924 if (! rld
[i
].in
|| rtx_equal_p (other_input
, value
))
4926 time2
= MAX_RECOG_OPERANDS
* 4 + 4;
4927 /* Earlyclobbered outputs must conflict with inputs. */
4928 if (earlyclobber_operand_p (rld
[i
].out
))
4929 time2
= MAX_RECOG_OPERANDS
* 4 + 3;
4934 /* RELOAD_OTHER might be live beyond instruction execution,
4935 but this is not obvious when we set time2 = 1. So check
4936 here if there might be a problem with the new reload
4937 clobbering the register used by the RELOAD_OTHER. */
4945 && (! rld
[i
].in
|| rld
[i
].out
4946 || ! rtx_equal_p (other_input
, value
)))
4947 || (out
&& rld
[reloadnum
].out_reg
4948 && time2
>= MAX_RECOG_OPERANDS
* 4 + 3))
4954 /* Earlyclobbered outputs must conflict with inputs. */
4955 if (check_earlyclobber
&& out
&& earlyclobber_operand_p (out
))
4961 /* Return 1 if the value in reload reg REGNO, as used by a reload
4962 needed for the part of the insn specified by OPNUM and TYPE,
4963 may be used to load VALUE into it.
4965 MODE is the mode in which the register is used, this is needed to
4966 determine how many hard regs to test.
4968 Other read-only reloads with the same value do not conflict
4969 unless OUT is non-zero and these other reloads have to live while
4970 output reloads live.
4971 If OUT is CONST0_RTX, this is a special case: it means that the
4972 test should not be for using register REGNO as reload register, but
4973 for copying from register REGNO into the reload register.
4975 RELOADNUM is the number of the reload we want to load this value for;
4976 a reload does not conflict with itself.
4978 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4979 reloads that load an address for the very reload we are considering.
4981 The caller has to make sure that there is no conflict with the return
4985 free_for_value_p (regno
, mode
, opnum
, type
, value
, out
, reloadnum
,
4986 ignore_address_reloads
)
4988 enum machine_mode mode
;
4990 enum reload_type type
;
4993 int ignore_address_reloads
;
4995 int nregs
= HARD_REGNO_NREGS (regno
, mode
);
4997 if (! reload_reg_free_for_value_p (regno
, regno
+ nregs
, opnum
, type
,
4998 value
, out
, reloadnum
,
4999 ignore_address_reloads
))
5004 /* Determine whether the reload reg X overlaps any rtx'es used for
5005 overriding inheritance. Return nonzero if so. */
5008 conflicts_with_override (x
)
5012 for (i
= 0; i
< n_reloads
; i
++)
5013 if (reload_override_in
[i
]
5014 && reg_overlap_mentioned_p (x
, reload_override_in
[i
]))
5019 /* Give an error message saying we failed to find a reload for INSN,
5020 and clear out reload R. */
5022 failed_reload (insn
, r
)
5026 if (asm_noperands (PATTERN (insn
)) < 0)
5027 /* It's the compiler's fault. */
5028 fatal_insn ("Could not find a spill register", insn
);
5030 /* It's the user's fault; the operand's mode and constraint
5031 don't match. Disable this reload so we don't crash in final. */
5032 error_for_asm (insn
,
5033 "`asm' operand constraint incompatible with operand size");
5037 rld
[r
].optional
= 1;
5038 rld
[r
].secondary_p
= 1;
5041 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5042 for reload R. If it's valid, get an rtx for it. Return nonzero if
5045 set_reload_reg (i
, r
)
5049 rtx reg
= spill_reg_rtx
[i
];
5051 if (reg
== 0 || GET_MODE (reg
) != rld
[r
].mode
)
5052 spill_reg_rtx
[i
] = reg
5053 = gen_rtx_REG (rld
[r
].mode
, spill_regs
[i
]);
5055 regno
= true_regnum (reg
);
5057 /* Detect when the reload reg can't hold the reload mode.
5058 This used to be one `if', but Sequent compiler can't handle that. */
5059 if (HARD_REGNO_MODE_OK (regno
, rld
[r
].mode
))
5061 enum machine_mode test_mode
= VOIDmode
;
5063 test_mode
= GET_MODE (rld
[r
].in
);
5064 /* If rld[r].in has VOIDmode, it means we will load it
5065 in whatever mode the reload reg has: to wit, rld[r].mode.
5066 We have already tested that for validity. */
5067 /* Aside from that, we need to test that the expressions
5068 to reload from or into have modes which are valid for this
5069 reload register. Otherwise the reload insns would be invalid. */
5070 if (! (rld
[r
].in
!= 0 && test_mode
!= VOIDmode
5071 && ! HARD_REGNO_MODE_OK (regno
, test_mode
)))
5072 if (! (rld
[r
].out
!= 0
5073 && ! HARD_REGNO_MODE_OK (regno
, GET_MODE (rld
[r
].out
))))
5075 /* The reg is OK. */
5078 /* Mark as in use for this insn the reload regs we use
5080 mark_reload_reg_in_use (spill_regs
[i
], rld
[r
].opnum
,
5081 rld
[r
].when_needed
, rld
[r
].mode
);
5083 rld
[r
].reg_rtx
= reg
;
5084 reload_spill_index
[r
] = spill_regs
[i
];
5091 /* Find a spill register to use as a reload register for reload R.
5092 LAST_RELOAD is non-zero if this is the last reload for the insn being
5095 Set rld[R].reg_rtx to the register allocated.
5097 We return 1 if successful, or 0 if we couldn't find a spill reg and
5098 we didn't change anything. */
5101 allocate_reload_reg (chain
, r
, last_reload
)
5102 struct insn_chain
*chain ATTRIBUTE_UNUSED
;
5108 /* If we put this reload ahead, thinking it is a group,
5109 then insist on finding a group. Otherwise we can grab a
5110 reg that some other reload needs.
5111 (That can happen when we have a 68000 DATA_OR_FP_REG
5112 which is a group of data regs or one fp reg.)
5113 We need not be so restrictive if there are no more reloads
5116 ??? Really it would be nicer to have smarter handling
5117 for that kind of reg class, where a problem like this is normal.
5118 Perhaps those classes should be avoided for reloading
5119 by use of more alternatives. */
5121 int force_group
= rld
[r
].nregs
> 1 && ! last_reload
;
5123 /* If we want a single register and haven't yet found one,
5124 take any reg in the right class and not in use.
5125 If we want a consecutive group, here is where we look for it.
5127 We use two passes so we can first look for reload regs to
5128 reuse, which are already in use for other reloads in this insn,
5129 and only then use additional registers.
5130 I think that maximizing reuse is needed to make sure we don't
5131 run out of reload regs. Suppose we have three reloads, and
5132 reloads A and B can share regs. These need two regs.
5133 Suppose A and B are given different regs.
5134 That leaves none for C. */
5135 for (pass
= 0; pass
< 2; pass
++)
5137 /* I is the index in spill_regs.
5138 We advance it round-robin between insns to use all spill regs
5139 equally, so that inherited reloads have a chance
5140 of leapfrogging each other. */
5144 for (count
= 0; count
< n_spills
; count
++)
5146 int class = (int) rld
[r
].class;
5152 regnum
= spill_regs
[i
];
5154 if ((reload_reg_free_p (regnum
, rld
[r
].opnum
,
5157 /* We check reload_reg_used to make sure we
5158 don't clobber the return register. */
5159 && ! TEST_HARD_REG_BIT (reload_reg_used
, regnum
)
5160 && free_for_value_p (regnum
, rld
[r
].mode
, rld
[r
].opnum
,
5161 rld
[r
].when_needed
, rld
[r
].in
,
5163 && TEST_HARD_REG_BIT (reg_class_contents
[class], regnum
)
5164 && HARD_REGNO_MODE_OK (regnum
, rld
[r
].mode
)
5165 /* Look first for regs to share, then for unshared. But
5166 don't share regs used for inherited reloads; they are
5167 the ones we want to preserve. */
5169 || (TEST_HARD_REG_BIT (reload_reg_used_at_all
,
5171 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit
,
5174 int nr
= HARD_REGNO_NREGS (regnum
, rld
[r
].mode
);
5175 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5176 (on 68000) got us two FP regs. If NR is 1,
5177 we would reject both of them. */
5180 /* If we need only one reg, we have already won. */
5183 /* But reject a single reg if we demand a group. */
5188 /* Otherwise check that as many consecutive regs as we need
5189 are available here. */
5192 int regno
= regnum
+ nr
- 1;
5193 if (!(TEST_HARD_REG_BIT (reg_class_contents
[class], regno
)
5194 && spill_reg_order
[regno
] >= 0
5195 && reload_reg_free_p (regno
, rld
[r
].opnum
,
5196 rld
[r
].when_needed
)))
5205 /* If we found something on pass 1, omit pass 2. */
5206 if (count
< n_spills
)
5210 /* We should have found a spill register by now. */
5211 if (count
>= n_spills
)
5214 /* I is the index in SPILL_REG_RTX of the reload register we are to
5215 allocate. Get an rtx for it and find its register number. */
5217 return set_reload_reg (i
, r
);
5220 /* Initialize all the tables needed to allocate reload registers.
5221 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5222 is the array we use to restore the reg_rtx field for every reload. */
5225 choose_reload_regs_init (chain
, save_reload_reg_rtx
)
5226 struct insn_chain
*chain
;
5227 rtx
*save_reload_reg_rtx
;
5231 for (i
= 0; i
< n_reloads
; i
++)
5232 rld
[i
].reg_rtx
= save_reload_reg_rtx
[i
];
5234 memset (reload_inherited
, 0, MAX_RELOADS
);
5235 memset ((char *) reload_inheritance_insn
, 0, MAX_RELOADS
* sizeof (rtx
));
5236 memset ((char *) reload_override_in
, 0, MAX_RELOADS
* sizeof (rtx
));
5238 CLEAR_HARD_REG_SET (reload_reg_used
);
5239 CLEAR_HARD_REG_SET (reload_reg_used_at_all
);
5240 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr
);
5241 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload
);
5242 CLEAR_HARD_REG_SET (reload_reg_used_in_insn
);
5243 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr
);
5245 CLEAR_HARD_REG_SET (reg_used_in_insn
);
5248 REG_SET_TO_HARD_REG_SET (tmp
, &chain
->live_throughout
);
5249 IOR_HARD_REG_SET (reg_used_in_insn
, tmp
);
5250 REG_SET_TO_HARD_REG_SET (tmp
, &chain
->dead_or_set
);
5251 IOR_HARD_REG_SET (reg_used_in_insn
, tmp
);
5252 compute_use_by_pseudos (®_used_in_insn
, &chain
->live_throughout
);
5253 compute_use_by_pseudos (®_used_in_insn
, &chain
->dead_or_set
);
5256 for (i
= 0; i
< reload_n_operands
; i
++)
5258 CLEAR_HARD_REG_SET (reload_reg_used_in_output
[i
]);
5259 CLEAR_HARD_REG_SET (reload_reg_used_in_input
[i
]);
5260 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr
[i
]);
5261 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr
[i
]);
5262 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr
[i
]);
5263 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr
[i
]);
5266 COMPL_HARD_REG_SET (reload_reg_unavailable
, chain
->used_spill_regs
);
5268 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit
);
5270 for (i
= 0; i
< n_reloads
; i
++)
5271 /* If we have already decided to use a certain register,
5272 don't use it in another way. */
5274 mark_reload_reg_in_use (REGNO (rld
[i
].reg_rtx
), rld
[i
].opnum
,
5275 rld
[i
].when_needed
, rld
[i
].mode
);
5278 /* Assign hard reg targets for the pseudo-registers we must reload
5279 into hard regs for this insn.
5280 Also output the instructions to copy them in and out of the hard regs.
5282 For machines with register classes, we are responsible for
5283 finding a reload reg in the proper class. */
5286 choose_reload_regs (chain
)
5287 struct insn_chain
*chain
;
5289 rtx insn
= chain
->insn
;
5291 unsigned int max_group_size
= 1;
5292 enum reg_class group_class
= NO_REGS
;
5293 int pass
, win
, inheritance
;
5295 rtx save_reload_reg_rtx
[MAX_RELOADS
];
5297 /* In order to be certain of getting the registers we need,
5298 we must sort the reloads into order of increasing register class.
5299 Then our grabbing of reload registers will parallel the process
5300 that provided the reload registers.
5302 Also note whether any of the reloads wants a consecutive group of regs.
5303 If so, record the maximum size of the group desired and what
5304 register class contains all the groups needed by this insn. */
5306 for (j
= 0; j
< n_reloads
; j
++)
5308 reload_order
[j
] = j
;
5309 reload_spill_index
[j
] = -1;
5311 if (rld
[j
].nregs
> 1)
5313 max_group_size
= MAX (rld
[j
].nregs
, max_group_size
);
5315 = reg_class_superunion
[(int) rld
[j
].class][(int)group_class
];
5318 save_reload_reg_rtx
[j
] = rld
[j
].reg_rtx
;
5322 qsort (reload_order
, n_reloads
, sizeof (short), reload_reg_class_lower
);
5324 /* If -O, try first with inheritance, then turning it off.
5325 If not -O, don't do inheritance.
5326 Using inheritance when not optimizing leads to paradoxes
5327 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5328 because one side of the comparison might be inherited. */
5330 for (inheritance
= optimize
> 0; inheritance
>= 0; inheritance
--)
5332 choose_reload_regs_init (chain
, save_reload_reg_rtx
);
5334 /* Process the reloads in order of preference just found.
5335 Beyond this point, subregs can be found in reload_reg_rtx.
5337 This used to look for an existing reloaded home for all of the
5338 reloads, and only then perform any new reloads. But that could lose
5339 if the reloads were done out of reg-class order because a later
5340 reload with a looser constraint might have an old home in a register
5341 needed by an earlier reload with a tighter constraint.
5343 To solve this, we make two passes over the reloads, in the order
5344 described above. In the first pass we try to inherit a reload
5345 from a previous insn. If there is a later reload that needs a
5346 class that is a proper subset of the class being processed, we must
5347 also allocate a spill register during the first pass.
5349 Then make a second pass over the reloads to allocate any reloads
5350 that haven't been given registers yet. */
5352 for (j
= 0; j
< n_reloads
; j
++)
5354 register int r
= reload_order
[j
];
5355 rtx search_equiv
= NULL_RTX
;
5357 /* Ignore reloads that got marked inoperative. */
5358 if (rld
[r
].out
== 0 && rld
[r
].in
== 0
5359 && ! rld
[r
].secondary_p
)
5362 /* If find_reloads chose to use reload_in or reload_out as a reload
5363 register, we don't need to chose one. Otherwise, try even if it
5364 found one since we might save an insn if we find the value lying
5366 Try also when reload_in is a pseudo without a hard reg. */
5367 if (rld
[r
].in
!= 0 && rld
[r
].reg_rtx
!= 0
5368 && (rtx_equal_p (rld
[r
].in
, rld
[r
].reg_rtx
)
5369 || (rtx_equal_p (rld
[r
].out
, rld
[r
].reg_rtx
)
5370 && GET_CODE (rld
[r
].in
) != MEM
5371 && true_regnum (rld
[r
].in
) < FIRST_PSEUDO_REGISTER
)))
5374 #if 0 /* No longer needed for correct operation.
5375 It might give better code, or might not; worth an experiment? */
5376 /* If this is an optional reload, we can't inherit from earlier insns
5377 until we are sure that any non-optional reloads have been allocated.
5378 The following code takes advantage of the fact that optional reloads
5379 are at the end of reload_order. */
5380 if (rld
[r
].optional
!= 0)
5381 for (i
= 0; i
< j
; i
++)
5382 if ((rld
[reload_order
[i
]].out
!= 0
5383 || rld
[reload_order
[i
]].in
!= 0
5384 || rld
[reload_order
[i
]].secondary_p
)
5385 && ! rld
[reload_order
[i
]].optional
5386 && rld
[reload_order
[i
]].reg_rtx
== 0)
5387 allocate_reload_reg (chain
, reload_order
[i
], 0);
5390 /* First see if this pseudo is already available as reloaded
5391 for a previous insn. We cannot try to inherit for reloads
5392 that are smaller than the maximum number of registers needed
5393 for groups unless the register we would allocate cannot be used
5396 We could check here to see if this is a secondary reload for
5397 an object that is already in a register of the desired class.
5398 This would avoid the need for the secondary reload register.
5399 But this is complex because we can't easily determine what
5400 objects might want to be loaded via this reload. So let a
5401 register be allocated here. In `emit_reload_insns' we suppress
5402 one of the loads in the case described above. */
5407 register int regno
= -1;
5408 enum machine_mode mode
= VOIDmode
;
5412 else if (GET_CODE (rld
[r
].in
) == REG
)
5414 regno
= REGNO (rld
[r
].in
);
5415 mode
= GET_MODE (rld
[r
].in
);
5417 else if (GET_CODE (rld
[r
].in_reg
) == REG
)
5419 regno
= REGNO (rld
[r
].in_reg
);
5420 mode
= GET_MODE (rld
[r
].in_reg
);
5422 else if (GET_CODE (rld
[r
].in_reg
) == SUBREG
5423 && GET_CODE (SUBREG_REG (rld
[r
].in_reg
)) == REG
)
5425 word
= SUBREG_WORD (rld
[r
].in_reg
);
5426 regno
= REGNO (SUBREG_REG (rld
[r
].in_reg
));
5427 if (regno
< FIRST_PSEUDO_REGISTER
)
5429 mode
= GET_MODE (rld
[r
].in_reg
);
5432 else if ((GET_CODE (rld
[r
].in_reg
) == PRE_INC
5433 || GET_CODE (rld
[r
].in_reg
) == PRE_DEC
5434 || GET_CODE (rld
[r
].in_reg
) == POST_INC
5435 || GET_CODE (rld
[r
].in_reg
) == POST_DEC
)
5436 && GET_CODE (XEXP (rld
[r
].in_reg
, 0)) == REG
)
5438 regno
= REGNO (XEXP (rld
[r
].in_reg
, 0));
5439 mode
= GET_MODE (XEXP (rld
[r
].in_reg
, 0));
5440 rld
[r
].out
= rld
[r
].in
;
5444 /* This won't work, since REGNO can be a pseudo reg number.
5445 Also, it takes much more hair to keep track of all the things
5446 that can invalidate an inherited reload of part of a pseudoreg. */
5447 else if (GET_CODE (rld
[r
].in
) == SUBREG
5448 && GET_CODE (SUBREG_REG (rld
[r
].in
)) == REG
)
5449 regno
= REGNO (SUBREG_REG (rld
[r
].in
)) + SUBREG_WORD (rld
[r
].in
);
5452 if (regno
>= 0 && reg_last_reload_reg
[regno
] != 0)
5454 enum reg_class
class = rld
[r
].class, last_class
;
5455 rtx last_reg
= reg_last_reload_reg
[regno
];
5456 enum machine_mode need_mode
;
5458 i
= REGNO (last_reg
) + word
;
5459 last_class
= REGNO_REG_CLASS (i
);
5465 = smallest_mode_for_size (GET_MODE_SIZE (mode
)
5466 + word
* UNITS_PER_WORD
,
5467 GET_MODE_CLASS (mode
));
5470 #ifdef CLASS_CANNOT_CHANGE_MODE
5472 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_MODE
], i
)
5473 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg
),
5475 : (GET_MODE_SIZE (GET_MODE (last_reg
))
5476 >= GET_MODE_SIZE (need_mode
)))
5478 (GET_MODE_SIZE (GET_MODE (last_reg
))
5479 >= GET_MODE_SIZE (need_mode
))
5481 && reg_reloaded_contents
[i
] == regno
5482 && TEST_HARD_REG_BIT (reg_reloaded_valid
, i
)
5483 && HARD_REGNO_MODE_OK (i
, rld
[r
].mode
)
5484 && (TEST_HARD_REG_BIT (reg_class_contents
[(int) class], i
)
5485 /* Even if we can't use this register as a reload
5486 register, we might use it for reload_override_in,
5487 if copying it to the desired class is cheap
5489 || ((REGISTER_MOVE_COST (mode
, last_class
, class)
5490 < MEMORY_MOVE_COST (mode
, class, 1))
5491 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5492 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode
,
5496 #ifdef SECONDARY_MEMORY_NEEDED
5497 && ! SECONDARY_MEMORY_NEEDED (last_class
, class,
5502 && (rld
[r
].nregs
== max_group_size
5503 || ! TEST_HARD_REG_BIT (reg_class_contents
[(int) group_class
],
5505 && free_for_value_p (i
, rld
[r
].mode
, rld
[r
].opnum
,
5506 rld
[r
].when_needed
, rld
[r
].in
,
5509 /* If a group is needed, verify that all the subsequent
5510 registers still have their values intact. */
5511 int nr
= HARD_REGNO_NREGS (i
, rld
[r
].mode
);
5514 for (k
= 1; k
< nr
; k
++)
5515 if (reg_reloaded_contents
[i
+ k
] != regno
5516 || ! TEST_HARD_REG_BIT (reg_reloaded_valid
, i
+ k
))
5523 last_reg
= (GET_MODE (last_reg
) == mode
5524 ? last_reg
: gen_rtx_REG (mode
, i
));
5526 /* We found a register that contains the
5527 value we need. If this register is the
5528 same as an `earlyclobber' operand of the
5529 current insn, just mark it as a place to
5530 reload from since we can't use it as the
5531 reload register itself. */
5533 for (i1
= 0; i1
< n_earlyclobbers
; i1
++)
5534 if (reg_overlap_mentioned_for_reload_p
5535 (reg_last_reload_reg
[regno
],
5536 reload_earlyclobbers
[i1
]))
5539 if (i1
!= n_earlyclobbers
5540 || ! (free_for_value_p (i
, rld
[r
].mode
,
5542 rld
[r
].when_needed
, rld
[r
].in
,
5544 /* Don't use it if we'd clobber a pseudo reg. */
5545 || (TEST_HARD_REG_BIT (reg_used_in_insn
, i
)
5547 && ! TEST_HARD_REG_BIT (reg_reloaded_dead
, i
))
5548 /* Don't clobber the frame pointer. */
5549 || (i
== HARD_FRAME_POINTER_REGNUM
5551 /* Don't really use the inherited spill reg
5552 if we need it wider than we've got it. */
5553 || (GET_MODE_SIZE (rld
[r
].mode
)
5554 > GET_MODE_SIZE (mode
))
5555 || ! TEST_HARD_REG_BIT (reg_class_contents
[(int) rld
[r
].class],
5558 /* If find_reloads chose reload_out as reload
5559 register, stay with it - that leaves the
5560 inherited register for subsequent reloads. */
5561 || (rld
[r
].out
&& rld
[r
].reg_rtx
5562 && rtx_equal_p (rld
[r
].out
, rld
[r
].reg_rtx
)))
5564 if (! rld
[r
].optional
)
5566 reload_override_in
[r
] = last_reg
;
5567 reload_inheritance_insn
[r
]
5568 = reg_reloaded_insn
[i
];
5574 /* We can use this as a reload reg. */
5575 /* Mark the register as in use for this part of
5577 mark_reload_reg_in_use (i
,
5581 rld
[r
].reg_rtx
= last_reg
;
5582 reload_inherited
[r
] = 1;
5583 reload_inheritance_insn
[r
]
5584 = reg_reloaded_insn
[i
];
5585 reload_spill_index
[r
] = i
;
5586 for (k
= 0; k
< nr
; k
++)
5587 SET_HARD_REG_BIT (reload_reg_used_for_inherit
,
5595 /* Here's another way to see if the value is already lying around. */
5598 && ! reload_inherited
[r
]
5600 && (CONSTANT_P (rld
[r
].in
)
5601 || GET_CODE (rld
[r
].in
) == PLUS
5602 || GET_CODE (rld
[r
].in
) == REG
5603 || GET_CODE (rld
[r
].in
) == MEM
)
5604 && (rld
[r
].nregs
== max_group_size
5605 || ! reg_classes_intersect_p (rld
[r
].class, group_class
)))
5606 search_equiv
= rld
[r
].in
;
5607 /* If this is an output reload from a simple move insn, look
5608 if an equivalence for the input is available. */
5609 else if (inheritance
&& rld
[r
].in
== 0 && rld
[r
].out
!= 0)
5611 rtx set
= single_set (insn
);
5614 && rtx_equal_p (rld
[r
].out
, SET_DEST (set
))
5615 && CONSTANT_P (SET_SRC (set
)))
5616 search_equiv
= SET_SRC (set
);
5622 = find_equiv_reg (search_equiv
, insn
, rld
[r
].class,
5623 -1, NULL_PTR
, 0, rld
[r
].mode
);
5628 if (GET_CODE (equiv
) == REG
)
5629 regno
= REGNO (equiv
);
5630 else if (GET_CODE (equiv
) == SUBREG
)
5632 /* This must be a SUBREG of a hard register.
5633 Make a new REG since this might be used in an
5634 address and not all machines support SUBREGs
5636 regno
= REGNO (SUBREG_REG (equiv
)) + SUBREG_WORD (equiv
);
5637 equiv
= gen_rtx_REG (rld
[r
].mode
, regno
);
5643 /* If we found a spill reg, reject it unless it is free
5644 and of the desired class. */
5646 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all
, regno
)
5647 && ! free_for_value_p (regno
, rld
[r
].mode
,
5648 rld
[r
].opnum
, rld
[r
].when_needed
,
5649 rld
[r
].in
, rld
[r
].out
, r
, 1))
5650 || ! TEST_HARD_REG_BIT (reg_class_contents
[(int) rld
[r
].class],
5654 if (equiv
!= 0 && ! HARD_REGNO_MODE_OK (regno
, rld
[r
].mode
))
5657 /* We found a register that contains the value we need.
5658 If this register is the same as an `earlyclobber' operand
5659 of the current insn, just mark it as a place to reload from
5660 since we can't use it as the reload register itself. */
5663 for (i
= 0; i
< n_earlyclobbers
; i
++)
5664 if (reg_overlap_mentioned_for_reload_p (equiv
,
5665 reload_earlyclobbers
[i
]))
5667 if (! rld
[r
].optional
)
5668 reload_override_in
[r
] = equiv
;
5673 /* If the equiv register we have found is explicitly clobbered
5674 in the current insn, it depends on the reload type if we
5675 can use it, use it for reload_override_in, or not at all.
5676 In particular, we then can't use EQUIV for a
5677 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5681 if (regno_clobbered_p (regno
, insn
, rld
[r
].mode
, 0))
5682 switch (rld
[r
].when_needed
)
5684 case RELOAD_FOR_OTHER_ADDRESS
:
5685 case RELOAD_FOR_INPADDR_ADDRESS
:
5686 case RELOAD_FOR_INPUT_ADDRESS
:
5687 case RELOAD_FOR_OPADDR_ADDR
:
5690 case RELOAD_FOR_INPUT
:
5691 case RELOAD_FOR_OPERAND_ADDRESS
:
5692 if (! rld
[r
].optional
)
5693 reload_override_in
[r
] = equiv
;
5699 else if (regno_clobbered_p (regno
, insn
, rld
[r
].mode
, 1))
5700 switch (rld
[r
].when_needed
)
5702 case RELOAD_FOR_OTHER_ADDRESS
:
5703 case RELOAD_FOR_INPADDR_ADDRESS
:
5704 case RELOAD_FOR_INPUT_ADDRESS
:
5705 case RELOAD_FOR_OPADDR_ADDR
:
5706 case RELOAD_FOR_OPERAND_ADDRESS
:
5707 case RELOAD_FOR_INPUT
:
5710 if (! rld
[r
].optional
)
5711 reload_override_in
[r
] = equiv
;
5719 /* If we found an equivalent reg, say no code need be generated
5720 to load it, and use it as our reload reg. */
5721 if (equiv
!= 0 && regno
!= HARD_FRAME_POINTER_REGNUM
)
5723 int nr
= HARD_REGNO_NREGS (regno
, rld
[r
].mode
);
5725 rld
[r
].reg_rtx
= equiv
;
5726 reload_inherited
[r
] = 1;
5728 /* If reg_reloaded_valid is not set for this register,
5729 there might be a stale spill_reg_store lying around.
5730 We must clear it, since otherwise emit_reload_insns
5731 might delete the store. */
5732 if (! TEST_HARD_REG_BIT (reg_reloaded_valid
, regno
))
5733 spill_reg_store
[regno
] = NULL_RTX
;
5734 /* If any of the hard registers in EQUIV are spill
5735 registers, mark them as in use for this insn. */
5736 for (k
= 0; k
< nr
; k
++)
5738 i
= spill_reg_order
[regno
+ k
];
5741 mark_reload_reg_in_use (regno
, rld
[r
].opnum
,
5744 SET_HARD_REG_BIT (reload_reg_used_for_inherit
,
5751 /* If we found a register to use already, or if this is an optional
5752 reload, we are done. */
5753 if (rld
[r
].reg_rtx
!= 0 || rld
[r
].optional
!= 0)
5757 /* No longer needed for correct operation. Might or might
5758 not give better code on the average. Want to experiment? */
5760 /* See if there is a later reload that has a class different from our
5761 class that intersects our class or that requires less register
5762 than our reload. If so, we must allocate a register to this
5763 reload now, since that reload might inherit a previous reload
5764 and take the only available register in our class. Don't do this
5765 for optional reloads since they will force all previous reloads
5766 to be allocated. Also don't do this for reloads that have been
5769 for (i
= j
+ 1; i
< n_reloads
; i
++)
5771 int s
= reload_order
[i
];
5773 if ((rld
[s
].in
== 0 && rld
[s
].out
== 0
5774 && ! rld
[s
].secondary_p
)
5778 if ((rld
[s
].class != rld
[r
].class
5779 && reg_classes_intersect_p (rld
[r
].class,
5781 || rld
[s
].nregs
< rld
[r
].nregs
)
5788 allocate_reload_reg (chain
, r
, j
== n_reloads
- 1);
5792 /* Now allocate reload registers for anything non-optional that
5793 didn't get one yet. */
5794 for (j
= 0; j
< n_reloads
; j
++)
5796 register int r
= reload_order
[j
];
5798 /* Ignore reloads that got marked inoperative. */
5799 if (rld
[r
].out
== 0 && rld
[r
].in
== 0 && ! rld
[r
].secondary_p
)
5802 /* Skip reloads that already have a register allocated or are
5804 if (rld
[r
].reg_rtx
!= 0 || rld
[r
].optional
)
5807 if (! allocate_reload_reg (chain
, r
, j
== n_reloads
- 1))
5811 /* If that loop got all the way, we have won. */
5818 /* Loop around and try without any inheritance. */
5823 /* First undo everything done by the failed attempt
5824 to allocate with inheritance. */
5825 choose_reload_regs_init (chain
, save_reload_reg_rtx
);
5827 /* Some sanity tests to verify that the reloads found in the first
5828 pass are identical to the ones we have now. */
5829 if (chain
->n_reloads
!= n_reloads
)
5832 for (i
= 0; i
< n_reloads
; i
++)
5834 if (chain
->rld
[i
].regno
< 0 || chain
->rld
[i
].reg_rtx
!= 0)
5836 if (chain
->rld
[i
].when_needed
!= rld
[i
].when_needed
)
5838 for (j
= 0; j
< n_spills
; j
++)
5839 if (spill_regs
[j
] == chain
->rld
[i
].regno
)
5840 if (! set_reload_reg (j
, i
))
5841 failed_reload (chain
->insn
, i
);
5845 /* If we thought we could inherit a reload, because it seemed that
5846 nothing else wanted the same reload register earlier in the insn,
5847 verify that assumption, now that all reloads have been assigned.
5848 Likewise for reloads where reload_override_in has been set. */
5850 /* If doing expensive optimizations, do one preliminary pass that doesn't
5851 cancel any inheritance, but removes reloads that have been needed only
5852 for reloads that we know can be inherited. */
5853 for (pass
= flag_expensive_optimizations
; pass
>= 0; pass
--)
5855 for (j
= 0; j
< n_reloads
; j
++)
5857 register int r
= reload_order
[j
];
5859 if (reload_inherited
[r
] && rld
[r
].reg_rtx
)
5860 check_reg
= rld
[r
].reg_rtx
;
5861 else if (reload_override_in
[r
]
5862 && (GET_CODE (reload_override_in
[r
]) == REG
5863 || GET_CODE (reload_override_in
[r
]) == SUBREG
))
5864 check_reg
= reload_override_in
[r
];
5867 if (! free_for_value_p (true_regnum (check_reg
), rld
[r
].mode
,
5868 rld
[r
].opnum
, rld
[r
].when_needed
, rld
[r
].in
,
5869 (reload_inherited
[r
]
5870 ? rld
[r
].out
: const0_rtx
),
5875 reload_inherited
[r
] = 0;
5876 reload_override_in
[r
] = 0;
5878 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5879 reload_override_in, then we do not need its related
5880 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5881 likewise for other reload types.
5882 We handle this by removing a reload when its only replacement
5883 is mentioned in reload_in of the reload we are going to inherit.
5884 A special case are auto_inc expressions; even if the input is
5885 inherited, we still need the address for the output. We can
5886 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5887 If we suceeded removing some reload and we are doing a preliminary
5888 pass just to remove such reloads, make another pass, since the
5889 removal of one reload might allow us to inherit another one. */
5891 && rld
[r
].out
!= rld
[r
].in
5892 && remove_address_replacements (rld
[r
].in
) && pass
)
5897 /* Now that reload_override_in is known valid,
5898 actually override reload_in. */
5899 for (j
= 0; j
< n_reloads
; j
++)
5900 if (reload_override_in
[j
])
5901 rld
[j
].in
= reload_override_in
[j
];
5903 /* If this reload won't be done because it has been cancelled or is
5904 optional and not inherited, clear reload_reg_rtx so other
5905 routines (such as subst_reloads) don't get confused. */
5906 for (j
= 0; j
< n_reloads
; j
++)
5907 if (rld
[j
].reg_rtx
!= 0
5908 && ((rld
[j
].optional
&& ! reload_inherited
[j
])
5909 || (rld
[j
].in
== 0 && rld
[j
].out
== 0
5910 && ! rld
[j
].secondary_p
)))
5912 int regno
= true_regnum (rld
[j
].reg_rtx
);
5914 if (spill_reg_order
[regno
] >= 0)
5915 clear_reload_reg_in_use (regno
, rld
[j
].opnum
,
5916 rld
[j
].when_needed
, rld
[j
].mode
);
5918 reload_spill_index
[j
] = -1;
5921 /* Record which pseudos and which spill regs have output reloads. */
5922 for (j
= 0; j
< n_reloads
; j
++)
5924 register int r
= reload_order
[j
];
5926 i
= reload_spill_index
[r
];
5928 /* I is nonneg if this reload uses a register.
5929 If rld[r].reg_rtx is 0, this is an optional reload
5930 that we opted to ignore. */
5931 if (rld
[r
].out_reg
!= 0 && GET_CODE (rld
[r
].out_reg
) == REG
5932 && rld
[r
].reg_rtx
!= 0)
5934 register int nregno
= REGNO (rld
[r
].out_reg
);
5937 if (nregno
< FIRST_PSEUDO_REGISTER
)
5938 nr
= HARD_REGNO_NREGS (nregno
, rld
[r
].mode
);
5941 reg_has_output_reload
[nregno
+ nr
] = 1;
5945 nr
= HARD_REGNO_NREGS (i
, rld
[r
].mode
);
5947 SET_HARD_REG_BIT (reg_is_output_reload
, i
+ nr
);
5950 if (rld
[r
].when_needed
!= RELOAD_OTHER
5951 && rld
[r
].when_needed
!= RELOAD_FOR_OUTPUT
5952 && rld
[r
].when_needed
!= RELOAD_FOR_INSN
)
5958 /* Deallocate the reload register for reload R. This is called from
5959 remove_address_replacements. */
5962 deallocate_reload_reg (r
)
5967 if (! rld
[r
].reg_rtx
)
5969 regno
= true_regnum (rld
[r
].reg_rtx
);
5971 if (spill_reg_order
[regno
] >= 0)
5972 clear_reload_reg_in_use (regno
, rld
[r
].opnum
, rld
[r
].when_needed
,
5974 reload_spill_index
[r
] = -1;
5977 /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
5978 reloads of the same item for fear that we might not have enough reload
5979 registers. However, normally they will get the same reload register
5980 and hence actually need not be loaded twice.
5982 Here we check for the most common case of this phenomenon: when we have
5983 a number of reloads for the same object, each of which were allocated
5984 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5985 reload, and is not modified in the insn itself. If we find such,
5986 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5987 This will not increase the number of spill registers needed and will
5988 prevent redundant code. */
5991 merge_assigned_reloads (insn
)
5996 /* Scan all the reloads looking for ones that only load values and
5997 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5998 assigned and not modified by INSN. */
6000 for (i
= 0; i
< n_reloads
; i
++)
6002 int conflicting_input
= 0;
6003 int max_input_address_opnum
= -1;
6004 int min_conflicting_input_opnum
= MAX_RECOG_OPERANDS
;
6006 if (rld
[i
].in
== 0 || rld
[i
].when_needed
== RELOAD_OTHER
6007 || rld
[i
].out
!= 0 || rld
[i
].reg_rtx
== 0
6008 || reg_set_p (rld
[i
].reg_rtx
, insn
))
6011 /* Look at all other reloads. Ensure that the only use of this
6012 reload_reg_rtx is in a reload that just loads the same value
6013 as we do. Note that any secondary reloads must be of the identical
6014 class since the values, modes, and result registers are the
6015 same, so we need not do anything with any secondary reloads. */
6017 for (j
= 0; j
< n_reloads
; j
++)
6019 if (i
== j
|| rld
[j
].reg_rtx
== 0
6020 || ! reg_overlap_mentioned_p (rld
[j
].reg_rtx
,
6024 if (rld
[j
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
6025 && rld
[j
].opnum
> max_input_address_opnum
)
6026 max_input_address_opnum
= rld
[j
].opnum
;
6028 /* If the reload regs aren't exactly the same (e.g, different modes)
6029 or if the values are different, we can't merge this reload.
6030 But if it is an input reload, we might still merge
6031 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6033 if (! rtx_equal_p (rld
[i
].reg_rtx
, rld
[j
].reg_rtx
)
6034 || rld
[j
].out
!= 0 || rld
[j
].in
== 0
6035 || ! rtx_equal_p (rld
[i
].in
, rld
[j
].in
))
6037 if (rld
[j
].when_needed
!= RELOAD_FOR_INPUT
6038 || ((rld
[i
].when_needed
!= RELOAD_FOR_INPUT_ADDRESS
6039 || rld
[i
].opnum
> rld
[j
].opnum
)
6040 && rld
[i
].when_needed
!= RELOAD_FOR_OTHER_ADDRESS
))
6042 conflicting_input
= 1;
6043 if (min_conflicting_input_opnum
> rld
[j
].opnum
)
6044 min_conflicting_input_opnum
= rld
[j
].opnum
;
6048 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6049 we, in fact, found any matching reloads. */
6052 && max_input_address_opnum
<= min_conflicting_input_opnum
)
6054 for (j
= 0; j
< n_reloads
; j
++)
6055 if (i
!= j
&& rld
[j
].reg_rtx
!= 0
6056 && rtx_equal_p (rld
[i
].reg_rtx
, rld
[j
].reg_rtx
)
6057 && (! conflicting_input
6058 || rld
[j
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
6059 || rld
[j
].when_needed
== RELOAD_FOR_OTHER_ADDRESS
))
6061 rld
[i
].when_needed
= RELOAD_OTHER
;
6063 reload_spill_index
[j
] = -1;
6064 transfer_replacements (i
, j
);
6067 /* If this is now RELOAD_OTHER, look for any reloads that load
6068 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6069 if they were for inputs, RELOAD_OTHER for outputs. Note that
6070 this test is equivalent to looking for reloads for this operand
6073 if (rld
[i
].when_needed
== RELOAD_OTHER
)
6074 for (j
= 0; j
< n_reloads
; j
++)
6076 && rld
[i
].when_needed
!= RELOAD_OTHER
6077 && reg_overlap_mentioned_for_reload_p (rld
[j
].in
,
6080 = ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
6081 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
)
6082 ? RELOAD_FOR_OTHER_ADDRESS
: RELOAD_OTHER
);
6087 /* These arrays are filled by emit_reload_insns and its subroutines. */
6088 static rtx input_reload_insns
[MAX_RECOG_OPERANDS
];
6089 static rtx other_input_address_reload_insns
= 0;
6090 static rtx other_input_reload_insns
= 0;
6091 static rtx input_address_reload_insns
[MAX_RECOG_OPERANDS
];
6092 static rtx inpaddr_address_reload_insns
[MAX_RECOG_OPERANDS
];
6093 static rtx output_reload_insns
[MAX_RECOG_OPERANDS
];
6094 static rtx output_address_reload_insns
[MAX_RECOG_OPERANDS
];
6095 static rtx outaddr_address_reload_insns
[MAX_RECOG_OPERANDS
];
6096 static rtx operand_reload_insns
= 0;
6097 static rtx other_operand_reload_insns
= 0;
6098 static rtx other_output_reload_insns
[MAX_RECOG_OPERANDS
];
6100 /* Values to be put in spill_reg_store are put here first. */
6101 static rtx new_spill_reg_store
[FIRST_PSEUDO_REGISTER
];
6102 static HARD_REG_SET reg_reloaded_died
;
6104 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6105 has the number J. OLD contains the value to be used as input. */
6108 emit_input_reload_insns (chain
, rl
, old
, j
)
6109 struct insn_chain
*chain
;
6114 rtx insn
= chain
->insn
;
6115 register rtx reloadreg
= rl
->reg_rtx
;
6116 rtx oldequiv_reg
= 0;
6119 enum machine_mode mode
;
6122 /* Determine the mode to reload in.
6123 This is very tricky because we have three to choose from.
6124 There is the mode the insn operand wants (rl->inmode).
6125 There is the mode of the reload register RELOADREG.
6126 There is the intrinsic mode of the operand, which we could find
6127 by stripping some SUBREGs.
6128 It turns out that RELOADREG's mode is irrelevant:
6129 we can change that arbitrarily.
6131 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6132 then the reload reg may not support QImode moves, so use SImode.
6133 If foo is in memory due to spilling a pseudo reg, this is safe,
6134 because the QImode value is in the least significant part of a
6135 slot big enough for a SImode. If foo is some other sort of
6136 memory reference, then it is impossible to reload this case,
6137 so previous passes had better make sure this never happens.
6139 Then consider a one-word union which has SImode and one of its
6140 members is a float, being fetched as (SUBREG:SF union:SI).
6141 We must fetch that as SFmode because we could be loading into
6142 a float-only register. In this case OLD's mode is correct.
6144 Consider an immediate integer: it has VOIDmode. Here we need
6145 to get a mode from something else.
6147 In some cases, there is a fourth mode, the operand's
6148 containing mode. If the insn specifies a containing mode for
6149 this operand, it overrides all others.
6151 I am not sure whether the algorithm here is always right,
6152 but it does the right things in those cases. */
6154 mode
= GET_MODE (old
);
6155 if (mode
== VOIDmode
)
6158 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6159 /* If we need a secondary register for this operation, see if
6160 the value is already in a register in that class. Don't
6161 do this if the secondary register will be used as a scratch
6164 if (rl
->secondary_in_reload
>= 0
6165 && rl
->secondary_in_icode
== CODE_FOR_nothing
6168 = find_equiv_reg (old
, insn
,
6169 rld
[rl
->secondary_in_reload
].class,
6170 -1, NULL_PTR
, 0, mode
);
6173 /* If reloading from memory, see if there is a register
6174 that already holds the same value. If so, reload from there.
6175 We can pass 0 as the reload_reg_p argument because
6176 any other reload has either already been emitted,
6177 in which case find_equiv_reg will see the reload-insn,
6178 or has yet to be emitted, in which case it doesn't matter
6179 because we will use this equiv reg right away. */
6181 if (oldequiv
== 0 && optimize
6182 && (GET_CODE (old
) == MEM
6183 || (GET_CODE (old
) == REG
6184 && REGNO (old
) >= FIRST_PSEUDO_REGISTER
6185 && reg_renumber
[REGNO (old
)] < 0)))
6186 oldequiv
= find_equiv_reg (old
, insn
, ALL_REGS
,
6187 -1, NULL_PTR
, 0, mode
);
6191 unsigned int regno
= true_regnum (oldequiv
);
6193 /* Don't use OLDEQUIV if any other reload changes it at an
6194 earlier stage of this insn or at this stage. */
6195 if (! free_for_value_p (regno
, rl
->mode
, rl
->opnum
, rl
->when_needed
,
6196 rl
->in
, const0_rtx
, j
, 0))
6199 /* If it is no cheaper to copy from OLDEQUIV into the
6200 reload register than it would be to move from memory,
6201 don't use it. Likewise, if we need a secondary register
6205 && ((REGNO_REG_CLASS (regno
) != rl
->class
6206 && (REGISTER_MOVE_COST (mode
, REGNO_REG_CLASS (regno
),
6208 >= MEMORY_MOVE_COST (mode
, rl
->class, 1)))
6209 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6210 || (SECONDARY_INPUT_RELOAD_CLASS (rl
->class,
6214 #ifdef SECONDARY_MEMORY_NEEDED
6215 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno
),
6223 /* delete_output_reload is only invoked properly if old contains
6224 the original pseudo register. Since this is replaced with a
6225 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6226 find the pseudo in RELOAD_IN_REG. */
6228 && reload_override_in
[j
]
6229 && GET_CODE (rl
->in_reg
) == REG
)
6236 else if (GET_CODE (oldequiv
) == REG
)
6237 oldequiv_reg
= oldequiv
;
6238 else if (GET_CODE (oldequiv
) == SUBREG
)
6239 oldequiv_reg
= SUBREG_REG (oldequiv
);
6241 /* If we are reloading from a register that was recently stored in
6242 with an output-reload, see if we can prove there was
6243 actually no need to store the old value in it. */
6245 if (optimize
&& GET_CODE (oldequiv
) == REG
6246 && REGNO (oldequiv
) < FIRST_PSEUDO_REGISTER
6247 && spill_reg_store
[REGNO (oldequiv
)]
6248 && GET_CODE (old
) == REG
6249 && (dead_or_set_p (insn
, spill_reg_stored_to
[REGNO (oldequiv
)])
6250 || rtx_equal_p (spill_reg_stored_to
[REGNO (oldequiv
)],
6252 delete_output_reload (insn
, j
, REGNO (oldequiv
));
6254 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6255 then load RELOADREG from OLDEQUIV. Note that we cannot use
6256 gen_lowpart_common since it can do the wrong thing when
6257 RELOADREG has a multi-word mode. Note that RELOADREG
6258 must always be a REG here. */
6260 if (GET_MODE (reloadreg
) != mode
)
6261 reloadreg
= gen_rtx_REG (mode
, REGNO (reloadreg
));
6262 while (GET_CODE (oldequiv
) == SUBREG
&& GET_MODE (oldequiv
) != mode
)
6263 oldequiv
= SUBREG_REG (oldequiv
);
6264 if (GET_MODE (oldequiv
) != VOIDmode
6265 && mode
!= GET_MODE (oldequiv
))
6266 oldequiv
= gen_rtx_SUBREG (mode
, oldequiv
, 0);
6268 /* Switch to the right place to emit the reload insns. */
6269 switch (rl
->when_needed
)
6272 where
= &other_input_reload_insns
;
6274 case RELOAD_FOR_INPUT
:
6275 where
= &input_reload_insns
[rl
->opnum
];
6277 case RELOAD_FOR_INPUT_ADDRESS
:
6278 where
= &input_address_reload_insns
[rl
->opnum
];
6280 case RELOAD_FOR_INPADDR_ADDRESS
:
6281 where
= &inpaddr_address_reload_insns
[rl
->opnum
];
6283 case RELOAD_FOR_OUTPUT_ADDRESS
:
6284 where
= &output_address_reload_insns
[rl
->opnum
];
6286 case RELOAD_FOR_OUTADDR_ADDRESS
:
6287 where
= &outaddr_address_reload_insns
[rl
->opnum
];
6289 case RELOAD_FOR_OPERAND_ADDRESS
:
6290 where
= &operand_reload_insns
;
6292 case RELOAD_FOR_OPADDR_ADDR
:
6293 where
= &other_operand_reload_insns
;
6295 case RELOAD_FOR_OTHER_ADDRESS
:
6296 where
= &other_input_address_reload_insns
;
6302 push_to_sequence (*where
);
6304 /* Auto-increment addresses must be reloaded in a special way. */
6305 if (rl
->out
&& ! rl
->out_reg
)
6307 /* We are not going to bother supporting the case where a
6308 incremented register can't be copied directly from
6309 OLDEQUIV since this seems highly unlikely. */
6310 if (rl
->secondary_in_reload
>= 0)
6313 if (reload_inherited
[j
])
6314 oldequiv
= reloadreg
;
6316 old
= XEXP (rl
->in_reg
, 0);
6318 if (optimize
&& GET_CODE (oldequiv
) == REG
6319 && REGNO (oldequiv
) < FIRST_PSEUDO_REGISTER
6320 && spill_reg_store
[REGNO (oldequiv
)]
6321 && GET_CODE (old
) == REG
6322 && (dead_or_set_p (insn
,
6323 spill_reg_stored_to
[REGNO (oldequiv
)])
6324 || rtx_equal_p (spill_reg_stored_to
[REGNO (oldequiv
)],
6326 delete_output_reload (insn
, j
, REGNO (oldequiv
));
6328 /* Prevent normal processing of this reload. */
6330 /* Output a special code sequence for this case. */
6331 new_spill_reg_store
[REGNO (reloadreg
)]
6332 = inc_for_reload (reloadreg
, oldequiv
, rl
->out
,
6336 /* If we are reloading a pseudo-register that was set by the previous
6337 insn, see if we can get rid of that pseudo-register entirely
6338 by redirecting the previous insn into our reload register. */
6340 else if (optimize
&& GET_CODE (old
) == REG
6341 && REGNO (old
) >= FIRST_PSEUDO_REGISTER
6342 && dead_or_set_p (insn
, old
)
6343 /* This is unsafe if some other reload
6344 uses the same reg first. */
6345 && ! conflicts_with_override (reloadreg
)
6346 && free_for_value_p (REGNO (reloadreg
), rl
->mode
, rl
->opnum
,
6347 rl
->when_needed
, old
, rl
->out
, j
, 0))
6349 rtx temp
= PREV_INSN (insn
);
6350 while (temp
&& GET_CODE (temp
) == NOTE
)
6351 temp
= PREV_INSN (temp
);
6353 && GET_CODE (temp
) == INSN
6354 && GET_CODE (PATTERN (temp
)) == SET
6355 && SET_DEST (PATTERN (temp
)) == old
6356 /* Make sure we can access insn_operand_constraint. */
6357 && asm_noperands (PATTERN (temp
)) < 0
6358 /* This is unsafe if prev insn rejects our reload reg. */
6359 && constraint_accepts_reg_p (insn_data
[recog_memoized (temp
)].operand
[0].constraint
,
6361 /* This is unsafe if operand occurs more than once in current
6362 insn. Perhaps some occurrences aren't reloaded. */
6363 && count_occurrences (PATTERN (insn
), old
, 0) == 1
6364 /* Don't risk splitting a matching pair of operands. */
6365 && ! reg_mentioned_p (old
, SET_SRC (PATTERN (temp
))))
6367 /* Store into the reload register instead of the pseudo. */
6368 SET_DEST (PATTERN (temp
)) = reloadreg
;
6370 /* If the previous insn is an output reload, the source is
6371 a reload register, and its spill_reg_store entry will
6372 contain the previous destination. This is now
6374 if (GET_CODE (SET_SRC (PATTERN (temp
))) == REG
6375 && REGNO (SET_SRC (PATTERN (temp
))) < FIRST_PSEUDO_REGISTER
)
6377 spill_reg_store
[REGNO (SET_SRC (PATTERN (temp
)))] = 0;
6378 spill_reg_stored_to
[REGNO (SET_SRC (PATTERN (temp
)))] = 0;
6381 /* If these are the only uses of the pseudo reg,
6382 pretend for GDB it lives in the reload reg we used. */
6383 if (REG_N_DEATHS (REGNO (old
)) == 1
6384 && REG_N_SETS (REGNO (old
)) == 1)
6386 reg_renumber
[REGNO (old
)] = REGNO (rl
->reg_rtx
);
6387 alter_reg (REGNO (old
), -1);
6393 /* We can't do that, so output an insn to load RELOADREG. */
6395 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6396 /* If we have a secondary reload, pick up the secondary register
6397 and icode, if any. If OLDEQUIV and OLD are different or
6398 if this is an in-out reload, recompute whether or not we
6399 still need a secondary register and what the icode should
6400 be. If we still need a secondary register and the class or
6401 icode is different, go back to reloading from OLD if using
6402 OLDEQUIV means that we got the wrong type of register. We
6403 cannot have different class or icode due to an in-out reload
6404 because we don't make such reloads when both the input and
6405 output need secondary reload registers. */
6407 if (! special
&& rl
->secondary_in_reload
>= 0)
6409 rtx second_reload_reg
= 0;
6410 int secondary_reload
= rl
->secondary_in_reload
;
6411 rtx real_oldequiv
= oldequiv
;
6414 enum insn_code icode
;
6416 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6417 and similarly for OLD.
6418 See comments in get_secondary_reload in reload.c. */
6419 /* If it is a pseudo that cannot be replaced with its
6420 equivalent MEM, we must fall back to reload_in, which
6421 will have all the necessary substitutions registered.
6422 Likewise for a pseudo that can't be replaced with its
6423 equivalent constant.
6425 Take extra care for subregs of such pseudos. Note that
6426 we cannot use reg_equiv_mem in this case because it is
6427 not in the right mode. */
6430 if (GET_CODE (tmp
) == SUBREG
)
6431 tmp
= SUBREG_REG (tmp
);
6432 if (GET_CODE (tmp
) == REG
6433 && REGNO (tmp
) >= FIRST_PSEUDO_REGISTER
6434 && (reg_equiv_memory_loc
[REGNO (tmp
)] != 0
6435 || reg_equiv_constant
[REGNO (tmp
)] != 0))
6437 if (! reg_equiv_mem
[REGNO (tmp
)]
6438 || num_not_at_initial_offset
6439 || GET_CODE (oldequiv
) == SUBREG
)
6440 real_oldequiv
= rl
->in
;
6442 real_oldequiv
= reg_equiv_mem
[REGNO (tmp
)];
6446 if (GET_CODE (tmp
) == SUBREG
)
6447 tmp
= SUBREG_REG (tmp
);
6448 if (GET_CODE (tmp
) == REG
6449 && REGNO (tmp
) >= FIRST_PSEUDO_REGISTER
6450 && (reg_equiv_memory_loc
[REGNO (tmp
)] != 0
6451 || reg_equiv_constant
[REGNO (tmp
)] != 0))
6453 if (! reg_equiv_mem
[REGNO (tmp
)]
6454 || num_not_at_initial_offset
6455 || GET_CODE (old
) == SUBREG
)
6458 real_old
= reg_equiv_mem
[REGNO (tmp
)];
6461 second_reload_reg
= rld
[secondary_reload
].reg_rtx
;
6462 icode
= rl
->secondary_in_icode
;
6464 if ((old
!= oldequiv
&& ! rtx_equal_p (old
, oldequiv
))
6465 || (rl
->in
!= 0 && rl
->out
!= 0))
6467 enum reg_class new_class
6468 = SECONDARY_INPUT_RELOAD_CLASS (rl
->class,
6469 mode
, real_oldequiv
);
6471 if (new_class
== NO_REGS
)
6472 second_reload_reg
= 0;
6475 enum insn_code new_icode
;
6476 enum machine_mode new_mode
;
6478 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) new_class
],
6479 REGNO (second_reload_reg
)))
6480 oldequiv
= old
, real_oldequiv
= real_old
;
6483 new_icode
= reload_in_optab
[(int) mode
];
6484 if (new_icode
!= CODE_FOR_nothing
6485 && ((insn_data
[(int) new_icode
].operand
[0].predicate
6486 && ! ((*insn_data
[(int) new_icode
].operand
[0].predicate
)
6488 || (insn_data
[(int) new_icode
].operand
[1].predicate
6489 && ! ((*insn_data
[(int) new_icode
].operand
[1].predicate
)
6490 (real_oldequiv
, mode
)))))
6491 new_icode
= CODE_FOR_nothing
;
6493 if (new_icode
== CODE_FOR_nothing
)
6496 new_mode
= insn_data
[(int) new_icode
].operand
[2].mode
;
6498 if (GET_MODE (second_reload_reg
) != new_mode
)
6500 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg
),
6502 oldequiv
= old
, real_oldequiv
= real_old
;
6505 = gen_rtx_REG (new_mode
,
6506 REGNO (second_reload_reg
));
6512 /* If we still need a secondary reload register, check
6513 to see if it is being used as a scratch or intermediate
6514 register and generate code appropriately. If we need
6515 a scratch register, use REAL_OLDEQUIV since the form of
6516 the insn may depend on the actual address if it is
6519 if (second_reload_reg
)
6521 if (icode
!= CODE_FOR_nothing
)
6523 emit_insn (GEN_FCN (icode
) (reloadreg
, real_oldequiv
,
6524 second_reload_reg
));
6529 /* See if we need a scratch register to load the
6530 intermediate register (a tertiary reload). */
6531 enum insn_code tertiary_icode
6532 = rld
[secondary_reload
].secondary_in_icode
;
6534 if (tertiary_icode
!= CODE_FOR_nothing
)
6536 rtx third_reload_reg
6537 = rld
[rld
[secondary_reload
].secondary_in_reload
].reg_rtx
;
6539 emit_insn ((GEN_FCN (tertiary_icode
)
6540 (second_reload_reg
, real_oldequiv
,
6541 third_reload_reg
)));
6544 gen_reload (second_reload_reg
, real_oldequiv
,
6548 oldequiv
= second_reload_reg
;
6554 if (! special
&& ! rtx_equal_p (reloadreg
, oldequiv
))
6556 rtx real_oldequiv
= oldequiv
;
6558 if ((GET_CODE (oldequiv
) == REG
6559 && REGNO (oldequiv
) >= FIRST_PSEUDO_REGISTER
6560 && (reg_equiv_memory_loc
[REGNO (oldequiv
)] != 0
6561 || reg_equiv_constant
[REGNO (oldequiv
)] != 0))
6562 || (GET_CODE (oldequiv
) == SUBREG
6563 && GET_CODE (SUBREG_REG (oldequiv
)) == REG
6564 && (REGNO (SUBREG_REG (oldequiv
))
6565 >= FIRST_PSEUDO_REGISTER
)
6566 && ((reg_equiv_memory_loc
6567 [REGNO (SUBREG_REG (oldequiv
))] != 0)
6568 || (reg_equiv_constant
6569 [REGNO (SUBREG_REG (oldequiv
))] != 0)))
6570 || (CONSTANT_P (oldequiv
)
6571 && PREFERRED_RELOAD_CLASS (oldequiv
,
6572 REGNO_REG_CLASS (REGNO (reloadreg
))) == NO_REGS
))
6573 real_oldequiv
= rl
->in
;
6574 gen_reload (reloadreg
, real_oldequiv
, rl
->opnum
,
6578 /* End this sequence. */
6579 *where
= get_insns ();
6582 /* Update reload_override_in so that delete_address_reloads_1
6583 can see the actual register usage. */
6585 reload_override_in
[j
] = oldequiv
;
6588 /* Generate insns to for the output reload RL, which is for the insn described
6589 by CHAIN and has the number J. */
6591 emit_output_reload_insns (chain
, rl
, j
)
6592 struct insn_chain
*chain
;
6596 rtx reloadreg
= rl
->reg_rtx
;
6597 rtx insn
= chain
->insn
;
6600 enum machine_mode mode
= GET_MODE (old
);
6603 if (rl
->when_needed
== RELOAD_OTHER
)
6606 push_to_sequence (output_reload_insns
[rl
->opnum
]);
6608 /* Determine the mode to reload in.
6609 See comments above (for input reloading). */
6611 if (mode
== VOIDmode
)
6613 /* VOIDmode should never happen for an output. */
6614 if (asm_noperands (PATTERN (insn
)) < 0)
6615 /* It's the compiler's fault. */
6616 fatal_insn ("VOIDmode on an output", insn
);
6617 error_for_asm (insn
, "output operand is constant in `asm'");
6618 /* Prevent crash--use something we know is valid. */
6620 old
= gen_rtx_REG (mode
, REGNO (reloadreg
));
6623 if (GET_MODE (reloadreg
) != mode
)
6624 reloadreg
= gen_rtx_REG (mode
, REGNO (reloadreg
));
6626 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6628 /* If we need two reload regs, set RELOADREG to the intermediate
6629 one, since it will be stored into OLD. We might need a secondary
6630 register only for an input reload, so check again here. */
6632 if (rl
->secondary_out_reload
>= 0)
6636 if (GET_CODE (old
) == REG
&& REGNO (old
) >= FIRST_PSEUDO_REGISTER
6637 && reg_equiv_mem
[REGNO (old
)] != 0)
6638 real_old
= reg_equiv_mem
[REGNO (old
)];
6640 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl
->class,
6644 rtx second_reloadreg
= reloadreg
;
6645 reloadreg
= rld
[rl
->secondary_out_reload
].reg_rtx
;
6647 /* See if RELOADREG is to be used as a scratch register
6648 or as an intermediate register. */
6649 if (rl
->secondary_out_icode
!= CODE_FOR_nothing
)
6651 emit_insn ((GEN_FCN (rl
->secondary_out_icode
)
6652 (real_old
, second_reloadreg
, reloadreg
)));
6657 /* See if we need both a scratch and intermediate reload
6660 int secondary_reload
= rl
->secondary_out_reload
;
6661 enum insn_code tertiary_icode
6662 = rld
[secondary_reload
].secondary_out_icode
;
6664 if (GET_MODE (reloadreg
) != mode
)
6665 reloadreg
= gen_rtx_REG (mode
, REGNO (reloadreg
));
6667 if (tertiary_icode
!= CODE_FOR_nothing
)
6670 = rld
[rld
[secondary_reload
].secondary_out_reload
].reg_rtx
;
6673 /* Copy primary reload reg to secondary reload reg.
6674 (Note that these have been swapped above, then
6675 secondary reload reg to OLD using our insn.) */
6677 /* If REAL_OLD is a paradoxical SUBREG, remove it
6678 and try to put the opposite SUBREG on
6680 if (GET_CODE (real_old
) == SUBREG
6681 && (GET_MODE_SIZE (GET_MODE (real_old
))
6682 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old
))))
6683 && 0 != (tem
= gen_lowpart_common
6684 (GET_MODE (SUBREG_REG (real_old
)),
6686 real_old
= SUBREG_REG (real_old
), reloadreg
= tem
;
6688 gen_reload (reloadreg
, second_reloadreg
,
6689 rl
->opnum
, rl
->when_needed
);
6690 emit_insn ((GEN_FCN (tertiary_icode
)
6691 (real_old
, reloadreg
, third_reloadreg
)));
6696 /* Copy between the reload regs here and then to
6699 gen_reload (reloadreg
, second_reloadreg
,
6700 rl
->opnum
, rl
->when_needed
);
6706 /* Output the last reload insn. */
6711 /* Don't output the last reload if OLD is not the dest of
6712 INSN and is in the src and is clobbered by INSN. */
6713 if (! flag_expensive_optimizations
6714 || GET_CODE (old
) != REG
6715 || !(set
= single_set (insn
))
6716 || rtx_equal_p (old
, SET_DEST (set
))
6717 || !reg_mentioned_p (old
, SET_SRC (set
))
6718 || !regno_clobbered_p (REGNO (old
), insn
, rl
->mode
, 0))
6719 gen_reload (old
, reloadreg
, rl
->opnum
,
6723 /* Look at all insns we emitted, just to be safe. */
6724 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
6727 rtx pat
= PATTERN (p
);
6729 /* If this output reload doesn't come from a spill reg,
6730 clear any memory of reloaded copies of the pseudo reg.
6731 If this output reload comes from a spill reg,
6732 reg_has_output_reload will make this do nothing. */
6733 note_stores (pat
, forget_old_reloads_1
, NULL
);
6735 if (reg_mentioned_p (rl
->reg_rtx
, pat
))
6737 rtx set
= single_set (insn
);
6738 if (reload_spill_index
[j
] < 0
6740 && SET_SRC (set
) == rl
->reg_rtx
)
6742 int src
= REGNO (SET_SRC (set
));
6744 reload_spill_index
[j
] = src
;
6745 SET_HARD_REG_BIT (reg_is_output_reload
, src
);
6746 if (find_regno_note (insn
, REG_DEAD
, src
))
6747 SET_HARD_REG_BIT (reg_reloaded_died
, src
);
6749 if (REGNO (rl
->reg_rtx
) < FIRST_PSEUDO_REGISTER
)
6751 int s
= rl
->secondary_out_reload
;
6752 set
= single_set (p
);
6753 /* If this reload copies only to the secondary reload
6754 register, the secondary reload does the actual
6756 if (s
>= 0 && set
== NULL_RTX
)
6757 /* We can't tell what function the secondary reload
6758 has and where the actual store to the pseudo is
6759 made; leave new_spill_reg_store alone. */
6762 && SET_SRC (set
) == rl
->reg_rtx
6763 && SET_DEST (set
) == rld
[s
].reg_rtx
)
6765 /* Usually the next instruction will be the
6766 secondary reload insn; if we can confirm
6767 that it is, setting new_spill_reg_store to
6768 that insn will allow an extra optimization. */
6769 rtx s_reg
= rld
[s
].reg_rtx
;
6770 rtx next
= NEXT_INSN (p
);
6771 rld
[s
].out
= rl
->out
;
6772 rld
[s
].out_reg
= rl
->out_reg
;
6773 set
= single_set (next
);
6774 if (set
&& SET_SRC (set
) == s_reg
6775 && ! new_spill_reg_store
[REGNO (s_reg
)])
6777 SET_HARD_REG_BIT (reg_is_output_reload
,
6779 new_spill_reg_store
[REGNO (s_reg
)] = next
;
6783 new_spill_reg_store
[REGNO (rl
->reg_rtx
)] = p
;
6788 if (rl
->when_needed
== RELOAD_OTHER
)
6790 emit_insns (other_output_reload_insns
[rl
->opnum
]);
6791 other_output_reload_insns
[rl
->opnum
] = get_insns ();
6794 output_reload_insns
[rl
->opnum
] = get_insns ();
6799 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6800 and has the number J. */
6802 do_input_reload (chain
, rl
, j
)
6803 struct insn_chain
*chain
;
6807 int expect_occurrences
= 1;
6808 rtx insn
= chain
->insn
;
6809 rtx old
= (rl
->in
&& GET_CODE (rl
->in
) == MEM
6810 ? rl
->in_reg
: rl
->in
);
6813 /* AUTO_INC reloads need to be handled even if inherited. We got an
6814 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6815 && (! reload_inherited
[j
] || (rl
->out
&& ! rl
->out_reg
))
6816 && ! rtx_equal_p (rl
->reg_rtx
, old
)
6817 && rl
->reg_rtx
!= 0)
6818 emit_input_reload_insns (chain
, rld
+ j
, old
, j
);
6820 /* When inheriting a wider reload, we have a MEM in rl->in,
6821 e.g. inheriting a SImode output reload for
6822 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6823 if (optimize
&& reload_inherited
[j
] && rl
->in
6824 && GET_CODE (rl
->in
) == MEM
6825 && GET_CODE (rl
->in_reg
) == MEM
6826 && reload_spill_index
[j
] >= 0
6827 && TEST_HARD_REG_BIT (reg_reloaded_valid
, reload_spill_index
[j
]))
6830 = count_occurrences (PATTERN (insn
), rl
->in
, 0) == 1 ? 0 : -1;
6831 rl
->in
= regno_reg_rtx
[reg_reloaded_contents
[reload_spill_index
[j
]]];
6834 /* If we are reloading a register that was recently stored in with an
6835 output-reload, see if we can prove there was
6836 actually no need to store the old value in it. */
6839 && (reload_inherited
[j
] || reload_override_in
[j
])
6841 && GET_CODE (rl
->reg_rtx
) == REG
6842 && spill_reg_store
[REGNO (rl
->reg_rtx
)] != 0
6844 /* There doesn't seem to be any reason to restrict this to pseudos
6845 and doing so loses in the case where we are copying from a
6846 register of the wrong class. */
6847 && (REGNO (spill_reg_stored_to
[REGNO (rl
->reg_rtx
)])
6848 >= FIRST_PSEUDO_REGISTER
)
6850 /* The insn might have already some references to stackslots
6851 replaced by MEMs, while reload_out_reg still names the
6853 && (dead_or_set_p (insn
,
6854 spill_reg_stored_to
[REGNO (rl
->reg_rtx
)])
6855 || rtx_equal_p (spill_reg_stored_to
[REGNO (rl
->reg_rtx
)],
6857 delete_output_reload (insn
, j
, REGNO (rl
->reg_rtx
));
6860 /* Do output reloading for reload RL, which is for the insn described by
6861 CHAIN and has the number J.
6862 ??? At some point we need to support handling output reloads of
6863 JUMP_INSNs or insns that set cc0. */
6865 do_output_reload (chain
, rl
, j
)
6866 struct insn_chain
*chain
;
6871 rtx insn
= chain
->insn
;
6872 /* If this is an output reload that stores something that is
6873 not loaded in this same reload, see if we can eliminate a previous
6875 rtx pseudo
= rl
->out_reg
;
6878 && GET_CODE (pseudo
) == REG
6879 && ! rtx_equal_p (rl
->in_reg
, pseudo
)
6880 && REGNO (pseudo
) >= FIRST_PSEUDO_REGISTER
6881 && reg_last_reload_reg
[REGNO (pseudo
)])
6883 int pseudo_no
= REGNO (pseudo
);
6884 int last_regno
= REGNO (reg_last_reload_reg
[pseudo_no
]);
6886 /* We don't need to test full validity of last_regno for
6887 inherit here; we only want to know if the store actually
6888 matches the pseudo. */
6889 if (TEST_HARD_REG_BIT (reg_reloaded_valid
, last_regno
)
6890 && reg_reloaded_contents
[last_regno
] == pseudo_no
6891 && spill_reg_store
[last_regno
]
6892 && rtx_equal_p (pseudo
, spill_reg_stored_to
[last_regno
]))
6893 delete_output_reload (insn
, j
, last_regno
);
6898 || rl
->reg_rtx
== old
6899 || rl
->reg_rtx
== 0)
6902 /* An output operand that dies right away does need a reload,
6903 but need not be copied from it. Show the new location in the
6905 if ((GET_CODE (old
) == REG
|| GET_CODE (old
) == SCRATCH
)
6906 && (note
= find_reg_note (insn
, REG_UNUSED
, old
)) != 0)
6908 XEXP (note
, 0) = rl
->reg_rtx
;
6911 /* Likewise for a SUBREG of an operand that dies. */
6912 else if (GET_CODE (old
) == SUBREG
6913 && GET_CODE (SUBREG_REG (old
)) == REG
6914 && 0 != (note
= find_reg_note (insn
, REG_UNUSED
,
6917 XEXP (note
, 0) = gen_lowpart_common (GET_MODE (old
),
6921 else if (GET_CODE (old
) == SCRATCH
)
6922 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6923 but we don't want to make an output reload. */
6926 /* If is a JUMP_INSN, we can't support output reloads yet. */
6927 if (GET_CODE (insn
) == JUMP_INSN
)
6930 emit_output_reload_insns (chain
, rld
+ j
, j
);
6933 /* Output insns to reload values in and out of the chosen reload regs. */
6936 emit_reload_insns (chain
)
6937 struct insn_chain
*chain
;
6939 rtx insn
= chain
->insn
;
6942 rtx following_insn
= NEXT_INSN (insn
);
6943 rtx before_insn
= PREV_INSN (insn
);
6945 CLEAR_HARD_REG_SET (reg_reloaded_died
);
6947 for (j
= 0; j
< reload_n_operands
; j
++)
6948 input_reload_insns
[j
] = input_address_reload_insns
[j
]
6949 = inpaddr_address_reload_insns
[j
]
6950 = output_reload_insns
[j
] = output_address_reload_insns
[j
]
6951 = outaddr_address_reload_insns
[j
]
6952 = other_output_reload_insns
[j
] = 0;
6953 other_input_address_reload_insns
= 0;
6954 other_input_reload_insns
= 0;
6955 operand_reload_insns
= 0;
6956 other_operand_reload_insns
= 0;
6958 /* Dump reloads into the dump file. */
6961 fprintf (rtl_dump_file
, "\nReloads for insn # %d\n", INSN_UID (insn
));
6962 debug_reload_to_stream (rtl_dump_file
);
6965 /* Now output the instructions to copy the data into and out of the
6966 reload registers. Do these in the order that the reloads were reported,
6967 since reloads of base and index registers precede reloads of operands
6968 and the operands may need the base and index registers reloaded. */
6970 for (j
= 0; j
< n_reloads
; j
++)
6973 && REGNO (rld
[j
].reg_rtx
) < FIRST_PSEUDO_REGISTER
)
6974 new_spill_reg_store
[REGNO (rld
[j
].reg_rtx
)] = 0;
6976 do_input_reload (chain
, rld
+ j
, j
);
6977 do_output_reload (chain
, rld
+ j
, j
);
6980 /* Now write all the insns we made for reloads in the order expected by
6981 the allocation functions. Prior to the insn being reloaded, we write
6982 the following reloads:
6984 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6986 RELOAD_OTHER reloads.
6988 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6989 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6990 RELOAD_FOR_INPUT reload for the operand.
6992 RELOAD_FOR_OPADDR_ADDRS reloads.
6994 RELOAD_FOR_OPERAND_ADDRESS reloads.
6996 After the insn being reloaded, we write the following:
6998 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
6999 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7000 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7001 reloads for the operand. The RELOAD_OTHER output reloads are
7002 output in descending order by reload number. */
7004 emit_insns_before (other_input_address_reload_insns
, insn
);
7005 emit_insns_before (other_input_reload_insns
, insn
);
7007 for (j
= 0; j
< reload_n_operands
; j
++)
7009 emit_insns_before (inpaddr_address_reload_insns
[j
], insn
);
7010 emit_insns_before (input_address_reload_insns
[j
], insn
);
7011 emit_insns_before (input_reload_insns
[j
], insn
);
7014 emit_insns_before (other_operand_reload_insns
, insn
);
7015 emit_insns_before (operand_reload_insns
, insn
);
7017 for (j
= 0; j
< reload_n_operands
; j
++)
7019 emit_insns_before (outaddr_address_reload_insns
[j
], following_insn
);
7020 emit_insns_before (output_address_reload_insns
[j
], following_insn
);
7021 emit_insns_before (output_reload_insns
[j
], following_insn
);
7022 emit_insns_before (other_output_reload_insns
[j
], following_insn
);
7025 /* Keep basic block info up to date. */
7028 if (BLOCK_HEAD (chain
->block
) == insn
)
7029 BLOCK_HEAD (chain
->block
) = NEXT_INSN (before_insn
);
7030 if (BLOCK_END (chain
->block
) == insn
)
7031 BLOCK_END (chain
->block
) = PREV_INSN (following_insn
);
7034 /* For all the spill regs newly reloaded in this instruction,
7035 record what they were reloaded from, so subsequent instructions
7036 can inherit the reloads.
7038 Update spill_reg_store for the reloads of this insn.
7039 Copy the elements that were updated in the loop above. */
7041 for (j
= 0; j
< n_reloads
; j
++)
7043 register int r
= reload_order
[j
];
7044 register int i
= reload_spill_index
[r
];
7046 /* If this is a non-inherited input reload from a pseudo, we must
7047 clear any memory of a previous store to the same pseudo. Only do
7048 something if there will not be an output reload for the pseudo
7050 if (rld
[r
].in_reg
!= 0
7051 && ! (reload_inherited
[r
] || reload_override_in
[r
]))
7053 rtx reg
= rld
[r
].in_reg
;
7055 if (GET_CODE (reg
) == SUBREG
)
7056 reg
= SUBREG_REG (reg
);
7058 if (GET_CODE (reg
) == REG
7059 && REGNO (reg
) >= FIRST_PSEUDO_REGISTER
7060 && ! reg_has_output_reload
[REGNO (reg
)])
7062 int nregno
= REGNO (reg
);
7064 if (reg_last_reload_reg
[nregno
])
7066 int last_regno
= REGNO (reg_last_reload_reg
[nregno
]);
7068 if (reg_reloaded_contents
[last_regno
] == nregno
)
7069 spill_reg_store
[last_regno
] = 0;
7074 /* I is nonneg if this reload used a register.
7075 If rld[r].reg_rtx is 0, this is an optional reload
7076 that we opted to ignore. */
7078 if (i
>= 0 && rld
[r
].reg_rtx
!= 0)
7080 int nr
= HARD_REGNO_NREGS (i
, GET_MODE (rld
[r
].reg_rtx
));
7082 int part_reaches_end
= 0;
7083 int all_reaches_end
= 1;
7085 /* For a multi register reload, we need to check if all or part
7086 of the value lives to the end. */
7087 for (k
= 0; k
< nr
; k
++)
7089 if (reload_reg_reaches_end_p (i
+ k
, rld
[r
].opnum
,
7090 rld
[r
].when_needed
))
7091 part_reaches_end
= 1;
7093 all_reaches_end
= 0;
7096 /* Ignore reloads that don't reach the end of the insn in
7098 if (all_reaches_end
)
7100 /* First, clear out memory of what used to be in this spill reg.
7101 If consecutive registers are used, clear them all. */
7103 for (k
= 0; k
< nr
; k
++)
7104 CLEAR_HARD_REG_BIT (reg_reloaded_valid
, i
+ k
);
7106 /* Maybe the spill reg contains a copy of reload_out. */
7108 && (GET_CODE (rld
[r
].out
) == REG
7112 || GET_CODE (rld
[r
].out_reg
) == REG
))
7114 rtx out
= (GET_CODE (rld
[r
].out
) == REG
7118 /* AUTO_INC */ : XEXP (rld
[r
].in_reg
, 0));
7119 register int nregno
= REGNO (out
);
7120 int nnr
= (nregno
>= FIRST_PSEUDO_REGISTER
? 1
7121 : HARD_REGNO_NREGS (nregno
,
7122 GET_MODE (rld
[r
].reg_rtx
)));
7124 spill_reg_store
[i
] = new_spill_reg_store
[i
];
7125 spill_reg_stored_to
[i
] = out
;
7126 reg_last_reload_reg
[nregno
] = rld
[r
].reg_rtx
;
7128 /* If NREGNO is a hard register, it may occupy more than
7129 one register. If it does, say what is in the
7130 rest of the registers assuming that both registers
7131 agree on how many words the object takes. If not,
7132 invalidate the subsequent registers. */
7134 if (nregno
< FIRST_PSEUDO_REGISTER
)
7135 for (k
= 1; k
< nnr
; k
++)
7136 reg_last_reload_reg
[nregno
+ k
]
7138 ? gen_rtx_REG (reg_raw_mode
[REGNO (rld
[r
].reg_rtx
) + k
],
7139 REGNO (rld
[r
].reg_rtx
) + k
)
7142 /* Now do the inverse operation. */
7143 for (k
= 0; k
< nr
; k
++)
7145 CLEAR_HARD_REG_BIT (reg_reloaded_dead
, i
+ k
);
7146 reg_reloaded_contents
[i
+ k
]
7147 = (nregno
>= FIRST_PSEUDO_REGISTER
|| nr
!= nnr
7150 reg_reloaded_insn
[i
+ k
] = insn
;
7151 SET_HARD_REG_BIT (reg_reloaded_valid
, i
+ k
);
7155 /* Maybe the spill reg contains a copy of reload_in. Only do
7156 something if there will not be an output reload for
7157 the register being reloaded. */
7158 else if (rld
[r
].out_reg
== 0
7160 && ((GET_CODE (rld
[r
].in
) == REG
7161 && REGNO (rld
[r
].in
) >= FIRST_PSEUDO_REGISTER
7162 && ! reg_has_output_reload
[REGNO (rld
[r
].in
)])
7163 || (GET_CODE (rld
[r
].in_reg
) == REG
7164 && ! reg_has_output_reload
[REGNO (rld
[r
].in_reg
)]))
7165 && ! reg_set_p (rld
[r
].reg_rtx
, PATTERN (insn
)))
7167 register int nregno
;
7170 if (GET_CODE (rld
[r
].in
) == REG
7171 && REGNO (rld
[r
].in
) >= FIRST_PSEUDO_REGISTER
)
7172 nregno
= REGNO (rld
[r
].in
);
7173 else if (GET_CODE (rld
[r
].in_reg
) == REG
)
7174 nregno
= REGNO (rld
[r
].in_reg
);
7176 nregno
= REGNO (XEXP (rld
[r
].in_reg
, 0));
7178 nnr
= (nregno
>= FIRST_PSEUDO_REGISTER
? 1
7179 : HARD_REGNO_NREGS (nregno
,
7180 GET_MODE (rld
[r
].reg_rtx
)));
7182 reg_last_reload_reg
[nregno
] = rld
[r
].reg_rtx
;
7184 if (nregno
< FIRST_PSEUDO_REGISTER
)
7185 for (k
= 1; k
< nnr
; k
++)
7186 reg_last_reload_reg
[nregno
+ k
]
7188 ? gen_rtx_REG (reg_raw_mode
[REGNO (rld
[r
].reg_rtx
) + k
],
7189 REGNO (rld
[r
].reg_rtx
) + k
)
7192 /* Unless we inherited this reload, show we haven't
7193 recently done a store.
7194 Previous stores of inherited auto_inc expressions
7195 also have to be discarded. */
7196 if (! reload_inherited
[r
]
7197 || (rld
[r
].out
&& ! rld
[r
].out_reg
))
7198 spill_reg_store
[i
] = 0;
7200 for (k
= 0; k
< nr
; k
++)
7202 CLEAR_HARD_REG_BIT (reg_reloaded_dead
, i
+ k
);
7203 reg_reloaded_contents
[i
+ k
]
7204 = (nregno
>= FIRST_PSEUDO_REGISTER
|| nr
!= nnr
7207 reg_reloaded_insn
[i
+ k
] = insn
;
7208 SET_HARD_REG_BIT (reg_reloaded_valid
, i
+ k
);
7213 /* However, if part of the reload reaches the end, then we must
7214 invalidate the old info for the part that survives to the end. */
7215 else if (part_reaches_end
)
7217 for (k
= 0; k
< nr
; k
++)
7218 if (reload_reg_reaches_end_p (i
+ k
,
7220 rld
[r
].when_needed
))
7221 CLEAR_HARD_REG_BIT (reg_reloaded_valid
, i
+ k
);
7225 /* The following if-statement was #if 0'd in 1.34 (or before...).
7226 It's reenabled in 1.35 because supposedly nothing else
7227 deals with this problem. */
7229 /* If a register gets output-reloaded from a non-spill register,
7230 that invalidates any previous reloaded copy of it.
7231 But forget_old_reloads_1 won't get to see it, because
7232 it thinks only about the original insn. So invalidate it here. */
7233 if (i
< 0 && rld
[r
].out
!= 0
7234 && (GET_CODE (rld
[r
].out
) == REG
7235 || (GET_CODE (rld
[r
].out
) == MEM
7236 && GET_CODE (rld
[r
].out_reg
) == REG
)))
7238 rtx out
= (GET_CODE (rld
[r
].out
) == REG
7239 ? rld
[r
].out
: rld
[r
].out_reg
);
7240 register int nregno
= REGNO (out
);
7241 if (nregno
>= FIRST_PSEUDO_REGISTER
)
7243 rtx src_reg
, store_insn
= NULL_RTX
;
7245 reg_last_reload_reg
[nregno
] = 0;
7247 /* If we can find a hard register that is stored, record
7248 the storing insn so that we may delete this insn with
7249 delete_output_reload. */
7250 src_reg
= rld
[r
].reg_rtx
;
7252 /* If this is an optional reload, try to find the source reg
7253 from an input reload. */
7256 rtx set
= single_set (insn
);
7257 if (set
&& SET_DEST (set
) == rld
[r
].out
)
7261 src_reg
= SET_SRC (set
);
7263 for (k
= 0; k
< n_reloads
; k
++)
7265 if (rld
[k
].in
== src_reg
)
7267 src_reg
= rld
[k
].reg_rtx
;
7274 store_insn
= new_spill_reg_store
[REGNO (src_reg
)];
7275 if (src_reg
&& GET_CODE (src_reg
) == REG
7276 && REGNO (src_reg
) < FIRST_PSEUDO_REGISTER
)
7278 int src_regno
= REGNO (src_reg
);
7279 int nr
= HARD_REGNO_NREGS (src_regno
, rld
[r
].mode
);
7280 /* The place where to find a death note varies with
7281 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7282 necessarily checked exactly in the code that moves
7283 notes, so just check both locations. */
7284 rtx note
= find_regno_note (insn
, REG_DEAD
, src_regno
);
7286 note
= find_regno_note (store_insn
, REG_DEAD
, src_regno
);
7289 spill_reg_store
[src_regno
+ nr
] = store_insn
;
7290 spill_reg_stored_to
[src_regno
+ nr
] = out
;
7291 reg_reloaded_contents
[src_regno
+ nr
] = nregno
;
7292 reg_reloaded_insn
[src_regno
+ nr
] = store_insn
;
7293 CLEAR_HARD_REG_BIT (reg_reloaded_dead
, src_regno
+ nr
);
7294 SET_HARD_REG_BIT (reg_reloaded_valid
, src_regno
+ nr
);
7295 SET_HARD_REG_BIT (reg_is_output_reload
, src_regno
+ nr
);
7297 SET_HARD_REG_BIT (reg_reloaded_died
, src_regno
);
7299 CLEAR_HARD_REG_BIT (reg_reloaded_died
, src_regno
);
7301 reg_last_reload_reg
[nregno
] = src_reg
;
7306 int num_regs
= HARD_REGNO_NREGS (nregno
, GET_MODE (rld
[r
].out
));
7308 while (num_regs
-- > 0)
7309 reg_last_reload_reg
[nregno
+ num_regs
] = 0;
7313 IOR_HARD_REG_SET (reg_reloaded_dead
, reg_reloaded_died
);
7316 /* Emit code to perform a reload from IN (which may be a reload register) to
7317 OUT (which may also be a reload register). IN or OUT is from operand
7318 OPNUM with reload type TYPE.
7320 Returns first insn emitted. */
7323 gen_reload (out
, in
, opnum
, type
)
7327 enum reload_type type
;
7329 rtx last
= get_last_insn ();
7332 /* If IN is a paradoxical SUBREG, remove it and try to put the
7333 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7334 if (GET_CODE (in
) == SUBREG
7335 && (GET_MODE_SIZE (GET_MODE (in
))
7336 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))))
7337 && (tem
= gen_lowpart_common (GET_MODE (SUBREG_REG (in
)), out
)) != 0)
7338 in
= SUBREG_REG (in
), out
= tem
;
7339 else if (GET_CODE (out
) == SUBREG
7340 && (GET_MODE_SIZE (GET_MODE (out
))
7341 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
))))
7342 && (tem
= gen_lowpart_common (GET_MODE (SUBREG_REG (out
)), in
)) != 0)
7343 out
= SUBREG_REG (out
), in
= tem
;
7345 /* How to do this reload can get quite tricky. Normally, we are being
7346 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7347 register that didn't get a hard register. In that case we can just
7348 call emit_move_insn.
7350 We can also be asked to reload a PLUS that adds a register or a MEM to
7351 another register, constant or MEM. This can occur during frame pointer
7352 elimination and while reloading addresses. This case is handled by
7353 trying to emit a single insn to perform the add. If it is not valid,
7354 we use a two insn sequence.
7356 Finally, we could be called to handle an 'o' constraint by putting
7357 an address into a register. In that case, we first try to do this
7358 with a named pattern of "reload_load_address". If no such pattern
7359 exists, we just emit a SET insn and hope for the best (it will normally
7360 be valid on machines that use 'o').
7362 This entire process is made complex because reload will never
7363 process the insns we generate here and so we must ensure that
7364 they will fit their constraints and also by the fact that parts of
7365 IN might be being reloaded separately and replaced with spill registers.
7366 Because of this, we are, in some sense, just guessing the right approach
7367 here. The one listed above seems to work.
7369 ??? At some point, this whole thing needs to be rethought. */
7371 if (GET_CODE (in
) == PLUS
7372 && (GET_CODE (XEXP (in
, 0)) == REG
7373 || GET_CODE (XEXP (in
, 0)) == SUBREG
7374 || GET_CODE (XEXP (in
, 0)) == MEM
)
7375 && (GET_CODE (XEXP (in
, 1)) == REG
7376 || GET_CODE (XEXP (in
, 1)) == SUBREG
7377 || CONSTANT_P (XEXP (in
, 1))
7378 || GET_CODE (XEXP (in
, 1)) == MEM
))
7380 /* We need to compute the sum of a register or a MEM and another
7381 register, constant, or MEM, and put it into the reload
7382 register. The best possible way of doing this is if the machine
7383 has a three-operand ADD insn that accepts the required operands.
7385 The simplest approach is to try to generate such an insn and see if it
7386 is recognized and matches its constraints. If so, it can be used.
7388 It might be better not to actually emit the insn unless it is valid,
7389 but we need to pass the insn as an operand to `recog' and
7390 `extract_insn' and it is simpler to emit and then delete the insn if
7391 not valid than to dummy things up. */
7393 rtx op0
, op1
, tem
, insn
;
7396 op0
= find_replacement (&XEXP (in
, 0));
7397 op1
= find_replacement (&XEXP (in
, 1));
7399 /* Since constraint checking is strict, commutativity won't be
7400 checked, so we need to do that here to avoid spurious failure
7401 if the add instruction is two-address and the second operand
7402 of the add is the same as the reload reg, which is frequently
7403 the case. If the insn would be A = B + A, rearrange it so
7404 it will be A = A + B as constrain_operands expects. */
7406 if (GET_CODE (XEXP (in
, 1)) == REG
7407 && REGNO (out
) == REGNO (XEXP (in
, 1)))
7408 tem
= op0
, op0
= op1
, op1
= tem
;
7410 if (op0
!= XEXP (in
, 0) || op1
!= XEXP (in
, 1))
7411 in
= gen_rtx_PLUS (GET_MODE (in
), op0
, op1
);
7413 insn
= emit_insn (gen_rtx_SET (VOIDmode
, out
, in
));
7414 code
= recog_memoized (insn
);
7418 extract_insn (insn
);
7419 /* We want constrain operands to treat this insn strictly in
7420 its validity determination, i.e., the way it would after reload
7422 if (constrain_operands (1))
7426 delete_insns_since (last
);
7428 /* If that failed, we must use a conservative two-insn sequence.
7430 Use a move to copy one operand into the reload register. Prefer
7431 to reload a constant, MEM or pseudo since the move patterns can
7432 handle an arbitrary operand. If OP1 is not a constant, MEM or
7433 pseudo and OP1 is not a valid operand for an add instruction, then
7436 After reloading one of the operands into the reload register, add
7437 the reload register to the output register.
7439 If there is another way to do this for a specific machine, a
7440 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7443 code
= (int) add_optab
->handlers
[(int) GET_MODE (out
)].insn_code
;
7445 if (CONSTANT_P (op1
) || GET_CODE (op1
) == MEM
|| GET_CODE (op1
) == SUBREG
7446 || (GET_CODE (op1
) == REG
7447 && REGNO (op1
) >= FIRST_PSEUDO_REGISTER
)
7448 || (code
!= CODE_FOR_nothing
7449 && ! ((*insn_data
[code
].operand
[2].predicate
)
7450 (op1
, insn_data
[code
].operand
[2].mode
))))
7451 tem
= op0
, op0
= op1
, op1
= tem
;
7453 gen_reload (out
, op0
, opnum
, type
);
7455 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7456 This fixes a problem on the 32K where the stack pointer cannot
7457 be used as an operand of an add insn. */
7459 if (rtx_equal_p (op0
, op1
))
7462 insn
= emit_insn (gen_add2_insn (out
, op1
));
7464 /* If that failed, copy the address register to the reload register.
7465 Then add the constant to the reload register. */
7467 code
= recog_memoized (insn
);
7471 extract_insn (insn
);
7472 /* We want constrain operands to treat this insn strictly in
7473 its validity determination, i.e., the way it would after reload
7475 if (constrain_operands (1))
7477 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7479 = gen_rtx_EXPR_LIST (REG_EQUIV
, in
, REG_NOTES (insn
));
7484 delete_insns_since (last
);
7486 gen_reload (out
, op1
, opnum
, type
);
7487 insn
= emit_insn (gen_add2_insn (out
, op0
));
7488 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_EQUIV
, in
, REG_NOTES (insn
));
7491 #ifdef SECONDARY_MEMORY_NEEDED
7492 /* If we need a memory location to do the move, do it that way. */
7493 else if (GET_CODE (in
) == REG
&& REGNO (in
) < FIRST_PSEUDO_REGISTER
7494 && GET_CODE (out
) == REG
&& REGNO (out
) < FIRST_PSEUDO_REGISTER
7495 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in
)),
7496 REGNO_REG_CLASS (REGNO (out
)),
7499 /* Get the memory to use and rewrite both registers to its mode. */
7500 rtx loc
= get_secondary_mem (in
, GET_MODE (out
), opnum
, type
);
7502 if (GET_MODE (loc
) != GET_MODE (out
))
7503 out
= gen_rtx_REG (GET_MODE (loc
), REGNO (out
));
7505 if (GET_MODE (loc
) != GET_MODE (in
))
7506 in
= gen_rtx_REG (GET_MODE (loc
), REGNO (in
));
7508 gen_reload (loc
, in
, opnum
, type
);
7509 gen_reload (out
, loc
, opnum
, type
);
7513 /* If IN is a simple operand, use gen_move_insn. */
7514 else if (GET_RTX_CLASS (GET_CODE (in
)) == 'o' || GET_CODE (in
) == SUBREG
)
7515 emit_insn (gen_move_insn (out
, in
));
7517 #ifdef HAVE_reload_load_address
7518 else if (HAVE_reload_load_address
)
7519 emit_insn (gen_reload_load_address (out
, in
));
7522 /* Otherwise, just write (set OUT IN) and hope for the best. */
7524 emit_insn (gen_rtx_SET (VOIDmode
, out
, in
));
7526 /* Return the first insn emitted.
7527 We can not just return get_last_insn, because there may have
7528 been multiple instructions emitted. Also note that gen_move_insn may
7529 emit more than one insn itself, so we can not assume that there is one
7530 insn emitted per emit_insn_before call. */
7532 return last
? NEXT_INSN (last
) : get_insns ();
7535 /* Delete a previously made output-reload
7536 whose result we now believe is not needed.
7537 First we double-check.
7539 INSN is the insn now being processed.
7540 LAST_RELOAD_REG is the hard register number for which we want to delete
7541 the last output reload.
7542 J is the reload-number that originally used REG. The caller has made
7543 certain that reload J doesn't use REG any longer for input. */
7546 delete_output_reload (insn
, j
, last_reload_reg
)
7549 int last_reload_reg
;
7551 rtx output_reload_insn
= spill_reg_store
[last_reload_reg
];
7552 rtx reg
= spill_reg_stored_to
[last_reload_reg
];
7555 int n_inherited
= 0;
7559 /* Get the raw pseudo-register referred to. */
7561 while (GET_CODE (reg
) == SUBREG
)
7562 reg
= SUBREG_REG (reg
);
7563 substed
= reg_equiv_memory_loc
[REGNO (reg
)];
7565 /* This is unsafe if the operand occurs more often in the current
7566 insn than it is inherited. */
7567 for (k
= n_reloads
- 1; k
>= 0; k
--)
7569 rtx reg2
= rld
[k
].in
;
7572 if (GET_CODE (reg2
) == MEM
|| reload_override_in
[k
])
7573 reg2
= rld
[k
].in_reg
;
7575 if (rld
[k
].out
&& ! rld
[k
].out_reg
)
7576 reg2
= XEXP (rld
[k
].in_reg
, 0);
7578 while (GET_CODE (reg2
) == SUBREG
)
7579 reg2
= SUBREG_REG (reg2
);
7580 if (rtx_equal_p (reg2
, reg
))
7582 if (reload_inherited
[k
] || reload_override_in
[k
] || k
== j
)
7585 reg2
= rld
[k
].out_reg
;
7588 while (GET_CODE (reg2
) == SUBREG
)
7589 reg2
= XEXP (reg2
, 0);
7590 if (rtx_equal_p (reg2
, reg
))
7597 n_occurrences
= count_occurrences (PATTERN (insn
), reg
, 0);
7599 n_occurrences
+= count_occurrences (PATTERN (insn
), substed
, 0);
7600 if (n_occurrences
> n_inherited
)
7603 /* If the pseudo-reg we are reloading is no longer referenced
7604 anywhere between the store into it and here,
7605 and no jumps or labels intervene, then the value can get
7606 here through the reload reg alone.
7607 Otherwise, give up--return. */
7608 for (i1
= NEXT_INSN (output_reload_insn
);
7609 i1
!= insn
; i1
= NEXT_INSN (i1
))
7611 if (GET_CODE (i1
) == CODE_LABEL
|| GET_CODE (i1
) == JUMP_INSN
)
7613 if ((GET_CODE (i1
) == INSN
|| GET_CODE (i1
) == CALL_INSN
)
7614 && reg_mentioned_p (reg
, PATTERN (i1
)))
7616 /* If this is USE in front of INSN, we only have to check that
7617 there are no more references than accounted for by inheritance. */
7618 while (GET_CODE (i1
) == INSN
&& GET_CODE (PATTERN (i1
)) == USE
)
7620 n_occurrences
+= rtx_equal_p (reg
, XEXP (PATTERN (i1
), 0)) != 0;
7621 i1
= NEXT_INSN (i1
);
7623 if (n_occurrences
<= n_inherited
&& i1
== insn
)
7629 /* The caller has already checked that REG dies or is set in INSN.
7630 It has also checked that we are optimizing, and thus some inaccurancies
7631 in the debugging information are acceptable.
7632 So we could just delete output_reload_insn.
7633 But in some cases we can improve the debugging information without
7634 sacrificing optimization - maybe even improving the code:
7635 See if the pseudo reg has been completely replaced
7636 with reload regs. If so, delete the store insn
7637 and forget we had a stack slot for the pseudo. */
7638 if (rld
[j
].out
!= rld
[j
].in
7639 && REG_N_DEATHS (REGNO (reg
)) == 1
7640 && REG_N_SETS (REGNO (reg
)) == 1
7641 && REG_BASIC_BLOCK (REGNO (reg
)) >= 0
7642 && find_regno_note (insn
, REG_DEAD
, REGNO (reg
)))
7646 /* We know that it was used only between here
7647 and the beginning of the current basic block.
7648 (We also know that the last use before INSN was
7649 the output reload we are thinking of deleting, but never mind that.)
7650 Search that range; see if any ref remains. */
7651 for (i2
= PREV_INSN (insn
); i2
; i2
= PREV_INSN (i2
))
7653 rtx set
= single_set (i2
);
7655 /* Uses which just store in the pseudo don't count,
7656 since if they are the only uses, they are dead. */
7657 if (set
!= 0 && SET_DEST (set
) == reg
)
7659 if (GET_CODE (i2
) == CODE_LABEL
7660 || GET_CODE (i2
) == JUMP_INSN
)
7662 if ((GET_CODE (i2
) == INSN
|| GET_CODE (i2
) == CALL_INSN
)
7663 && reg_mentioned_p (reg
, PATTERN (i2
)))
7665 /* Some other ref remains; just delete the output reload we
7667 delete_address_reloads (output_reload_insn
, insn
);
7668 PUT_CODE (output_reload_insn
, NOTE
);
7669 NOTE_SOURCE_FILE (output_reload_insn
) = 0;
7670 NOTE_LINE_NUMBER (output_reload_insn
) = NOTE_INSN_DELETED
;
7675 /* Delete the now-dead stores into this pseudo. */
7676 for (i2
= PREV_INSN (insn
); i2
; i2
= PREV_INSN (i2
))
7678 rtx set
= single_set (i2
);
7680 if (set
!= 0 && SET_DEST (set
) == reg
)
7682 delete_address_reloads (i2
, insn
);
7683 /* This might be a basic block head,
7684 thus don't use delete_insn. */
7685 PUT_CODE (i2
, NOTE
);
7686 NOTE_SOURCE_FILE (i2
) = 0;
7687 NOTE_LINE_NUMBER (i2
) = NOTE_INSN_DELETED
;
7689 if (GET_CODE (i2
) == CODE_LABEL
7690 || GET_CODE (i2
) == JUMP_INSN
)
7694 /* For the debugging info,
7695 say the pseudo lives in this reload reg. */
7696 reg_renumber
[REGNO (reg
)] = REGNO (rld
[j
].reg_rtx
);
7697 alter_reg (REGNO (reg
), -1);
7699 delete_address_reloads (output_reload_insn
, insn
);
7700 PUT_CODE (output_reload_insn
, NOTE
);
7701 NOTE_SOURCE_FILE (output_reload_insn
) = 0;
7702 NOTE_LINE_NUMBER (output_reload_insn
) = NOTE_INSN_DELETED
;
7706 /* We are going to delete DEAD_INSN. Recursively delete loads of
7707 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7708 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7710 delete_address_reloads (dead_insn
, current_insn
)
7711 rtx dead_insn
, current_insn
;
7713 rtx set
= single_set (dead_insn
);
7714 rtx set2
, dst
, prev
, next
;
7717 rtx dst
= SET_DEST (set
);
7718 if (GET_CODE (dst
) == MEM
)
7719 delete_address_reloads_1 (dead_insn
, XEXP (dst
, 0), current_insn
);
7721 /* If we deleted the store from a reloaded post_{in,de}c expression,
7722 we can delete the matching adds. */
7723 prev
= PREV_INSN (dead_insn
);
7724 next
= NEXT_INSN (dead_insn
);
7725 if (! prev
|| ! next
)
7727 set
= single_set (next
);
7728 set2
= single_set (prev
);
7730 || GET_CODE (SET_SRC (set
)) != PLUS
|| GET_CODE (SET_SRC (set2
)) != PLUS
7731 || GET_CODE (XEXP (SET_SRC (set
), 1)) != CONST_INT
7732 || GET_CODE (XEXP (SET_SRC (set2
), 1)) != CONST_INT
)
7734 dst
= SET_DEST (set
);
7735 if (! rtx_equal_p (dst
, SET_DEST (set2
))
7736 || ! rtx_equal_p (dst
, XEXP (SET_SRC (set
), 0))
7737 || ! rtx_equal_p (dst
, XEXP (SET_SRC (set2
), 0))
7738 || (INTVAL (XEXP (SET_SRC (set
), 1))
7739 != -INTVAL (XEXP (SET_SRC (set2
), 1))))
7745 /* Subfunction of delete_address_reloads: process registers found in X. */
7747 delete_address_reloads_1 (dead_insn
, x
, current_insn
)
7748 rtx dead_insn
, x
, current_insn
;
7750 rtx prev
, set
, dst
, i2
;
7752 enum rtx_code code
= GET_CODE (x
);
7756 const char *fmt
= GET_RTX_FORMAT (code
);
7757 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7760 delete_address_reloads_1 (dead_insn
, XEXP (x
, i
), current_insn
);
7761 else if (fmt
[i
] == 'E')
7763 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7764 delete_address_reloads_1 (dead_insn
, XVECEXP (x
, i
, j
),
7771 if (spill_reg_order
[REGNO (x
)] < 0)
7774 /* Scan backwards for the insn that sets x. This might be a way back due
7776 for (prev
= PREV_INSN (dead_insn
); prev
; prev
= PREV_INSN (prev
))
7778 code
= GET_CODE (prev
);
7779 if (code
== CODE_LABEL
|| code
== JUMP_INSN
)
7781 if (GET_RTX_CLASS (code
) != 'i')
7783 if (reg_set_p (x
, PATTERN (prev
)))
7785 if (reg_referenced_p (x
, PATTERN (prev
)))
7788 if (! prev
|| INSN_UID (prev
) < reload_first_uid
)
7790 /* Check that PREV only sets the reload register. */
7791 set
= single_set (prev
);
7794 dst
= SET_DEST (set
);
7795 if (GET_CODE (dst
) != REG
7796 || ! rtx_equal_p (dst
, x
))
7798 if (! reg_set_p (dst
, PATTERN (dead_insn
)))
7800 /* Check if DST was used in a later insn -
7801 it might have been inherited. */
7802 for (i2
= NEXT_INSN (dead_insn
); i2
; i2
= NEXT_INSN (i2
))
7804 if (GET_CODE (i2
) == CODE_LABEL
)
7808 if (reg_referenced_p (dst
, PATTERN (i2
)))
7810 /* If there is a reference to the register in the current insn,
7811 it might be loaded in a non-inherited reload. If no other
7812 reload uses it, that means the register is set before
7814 if (i2
== current_insn
)
7816 for (j
= n_reloads
- 1; j
>= 0; j
--)
7817 if ((rld
[j
].reg_rtx
== dst
&& reload_inherited
[j
])
7818 || reload_override_in
[j
] == dst
)
7820 for (j
= n_reloads
- 1; j
>= 0; j
--)
7821 if (rld
[j
].in
&& rld
[j
].reg_rtx
== dst
)
7828 if (GET_CODE (i2
) == JUMP_INSN
)
7830 /* If DST is still live at CURRENT_INSN, check if it is used for
7831 any reload. Note that even if CURRENT_INSN sets DST, we still
7832 have to check the reloads. */
7833 if (i2
== current_insn
)
7835 for (j
= n_reloads
- 1; j
>= 0; j
--)
7836 if ((rld
[j
].reg_rtx
== dst
&& reload_inherited
[j
])
7837 || reload_override_in
[j
] == dst
)
7839 /* ??? We can't finish the loop here, because dst might be
7840 allocated to a pseudo in this block if no reload in this
7841 block needs any of the clsses containing DST - see
7842 spill_hard_reg. There is no easy way to tell this, so we
7843 have to scan till the end of the basic block. */
7845 if (reg_set_p (dst
, PATTERN (i2
)))
7849 delete_address_reloads_1 (prev
, SET_SRC (set
), current_insn
);
7850 reg_reloaded_contents
[REGNO (dst
)] = -1;
7851 /* Can't use delete_insn here because PREV might be a basic block head. */
7852 PUT_CODE (prev
, NOTE
);
7853 NOTE_LINE_NUMBER (prev
) = NOTE_INSN_DELETED
;
7854 NOTE_SOURCE_FILE (prev
) = 0;
7857 /* Output reload-insns to reload VALUE into RELOADREG.
7858 VALUE is an autoincrement or autodecrement RTX whose operand
7859 is a register or memory location;
7860 so reloading involves incrementing that location.
7861 IN is either identical to VALUE, or some cheaper place to reload from.
7863 INC_AMOUNT is the number to increment or decrement by (always positive).
7864 This cannot be deduced from VALUE.
7866 Return the instruction that stores into RELOADREG. */
7869 inc_for_reload (reloadreg
, in
, value
, inc_amount
)
7874 /* REG or MEM to be copied and incremented. */
7875 rtx incloc
= XEXP (value
, 0);
7876 /* Nonzero if increment after copying. */
7877 int post
= (GET_CODE (value
) == POST_DEC
|| GET_CODE (value
) == POST_INC
);
7883 rtx real_in
= in
== value
? XEXP (in
, 0) : in
;
7885 /* No hard register is equivalent to this register after
7886 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7887 we could inc/dec that register as well (maybe even using it for
7888 the source), but I'm not sure it's worth worrying about. */
7889 if (GET_CODE (incloc
) == REG
)
7890 reg_last_reload_reg
[REGNO (incloc
)] = 0;
7892 if (GET_CODE (value
) == PRE_DEC
|| GET_CODE (value
) == POST_DEC
)
7893 inc_amount
= -inc_amount
;
7895 inc
= GEN_INT (inc_amount
);
7897 /* If this is post-increment, first copy the location to the reload reg. */
7898 if (post
&& real_in
!= reloadreg
)
7899 emit_insn (gen_move_insn (reloadreg
, real_in
));
7903 /* See if we can directly increment INCLOC. Use a method similar to
7904 that in gen_reload. */
7906 last
= get_last_insn ();
7907 add_insn
= emit_insn (gen_rtx_SET (VOIDmode
, incloc
,
7908 gen_rtx_PLUS (GET_MODE (incloc
),
7911 code
= recog_memoized (add_insn
);
7914 extract_insn (add_insn
);
7915 if (constrain_operands (1))
7917 /* If this is a pre-increment and we have incremented the value
7918 where it lives, copy the incremented value to RELOADREG to
7919 be used as an address. */
7922 emit_insn (gen_move_insn (reloadreg
, incloc
));
7927 delete_insns_since (last
);
7930 /* If couldn't do the increment directly, must increment in RELOADREG.
7931 The way we do this depends on whether this is pre- or post-increment.
7932 For pre-increment, copy INCLOC to the reload register, increment it
7933 there, then save back. */
7937 if (in
!= reloadreg
)
7938 emit_insn (gen_move_insn (reloadreg
, real_in
));
7939 emit_insn (gen_add2_insn (reloadreg
, inc
));
7940 store
= emit_insn (gen_move_insn (incloc
, reloadreg
));
7945 Because this might be a jump insn or a compare, and because RELOADREG
7946 may not be available after the insn in an input reload, we must do
7947 the incrementation before the insn being reloaded for.
7949 We have already copied IN to RELOADREG. Increment the copy in
7950 RELOADREG, save that back, then decrement RELOADREG so it has
7951 the original value. */
7953 emit_insn (gen_add2_insn (reloadreg
, inc
));
7954 store
= emit_insn (gen_move_insn (incloc
, reloadreg
));
7955 emit_insn (gen_add2_insn (reloadreg
, GEN_INT (-inc_amount
)));
7961 /* Return 1 if we are certain that the constraint-string STRING allows
7962 the hard register REG. Return 0 if we can't be sure of this. */
7965 constraint_accepts_reg_p (string
, reg
)
7970 int regno
= true_regnum (reg
);
7973 /* Initialize for first alternative. */
7975 /* Check that each alternative contains `g' or `r'. */
7977 switch (c
= *string
++)
7980 /* If an alternative lacks `g' or `r', we lose. */
7983 /* If an alternative lacks `g' or `r', we lose. */
7986 /* Initialize for next alternative. */
7991 /* Any general reg wins for this alternative. */
7992 if (TEST_HARD_REG_BIT (reg_class_contents
[(int) GENERAL_REGS
], regno
))
7996 /* Any reg in specified class wins for this alternative. */
7998 enum reg_class
class = REG_CLASS_FROM_LETTER (c
);
8000 if (TEST_HARD_REG_BIT (reg_class_contents
[(int) class], regno
))
8006 /* INSN is a no-op; delete it.
8007 If this sets the return value of the function, we must keep a USE around,
8008 in case this is in a different basic block than the final USE. Otherwise,
8009 we could loose important register lifeness information on
8010 SMALL_REGISTER_CLASSES machines, where return registers might be used as
8011 spills: subsequent passes assume that spill registers are dead at the end
8013 VALUE must be the return value in such a case, NULL otherwise. */
8015 reload_cse_delete_noop_set (insn
, value
)
8020 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, value
);
8021 INSN_CODE (insn
) = -1;
8022 REG_NOTES (insn
) = NULL_RTX
;
8026 PUT_CODE (insn
, NOTE
);
8027 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
8028 NOTE_SOURCE_FILE (insn
) = 0;
8032 /* See whether a single set SET is a noop. */
8034 reload_cse_noop_set_p (set
)
8037 return rtx_equal_for_cselib_p (SET_DEST (set
), SET_SRC (set
));
8040 /* Try to simplify INSN. */
8042 reload_cse_simplify (insn
)
8045 rtx body
= PATTERN (insn
);
8047 if (GET_CODE (body
) == SET
)
8051 /* Simplify even if we may think it is a no-op.
8052 We may think a memory load of a value smaller than WORD_SIZE
8053 is redundant because we haven't taken into account possible
8054 implicit extension. reload_cse_simplify_set() will bring
8055 this out, so it's safer to simplify before we delete. */
8056 count
+= reload_cse_simplify_set (body
, insn
);
8058 if (!count
&& reload_cse_noop_set_p (body
))
8060 rtx value
= SET_DEST (body
);
8061 if (! REG_FUNCTION_VALUE_P (SET_DEST (body
)))
8063 reload_cse_delete_noop_set (insn
, value
);
8068 apply_change_group ();
8070 reload_cse_simplify_operands (insn
);
8072 else if (GET_CODE (body
) == PARALLEL
)
8076 rtx value
= NULL_RTX
;
8078 /* If every action in a PARALLEL is a noop, we can delete
8079 the entire PARALLEL. */
8080 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
8082 rtx part
= XVECEXP (body
, 0, i
);
8083 if (GET_CODE (part
) == SET
)
8085 if (! reload_cse_noop_set_p (part
))
8087 if (REG_FUNCTION_VALUE_P (SET_DEST (part
)))
8091 value
= SET_DEST (part
);
8094 else if (GET_CODE (part
) != CLOBBER
)
8100 reload_cse_delete_noop_set (insn
, value
);
8101 /* We're done with this insn. */
8105 /* It's not a no-op, but we can try to simplify it. */
8106 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; --i
)
8107 if (GET_CODE (XVECEXP (body
, 0, i
)) == SET
)
8108 count
+= reload_cse_simplify_set (XVECEXP (body
, 0, i
), insn
);
8111 apply_change_group ();
8113 reload_cse_simplify_operands (insn
);
8117 /* Do a very simple CSE pass over the hard registers.
8119 This function detects no-op moves where we happened to assign two
8120 different pseudo-registers to the same hard register, and then
8121 copied one to the other. Reload will generate a useless
8122 instruction copying a register to itself.
8124 This function also detects cases where we load a value from memory
8125 into two different registers, and (if memory is more expensive than
8126 registers) changes it to simply copy the first register into the
8129 Another optimization is performed that scans the operands of each
8130 instruction to see whether the value is already available in a
8131 hard register. It then replaces the operand with the hard register
8132 if possible, much like an optional reload would. */
8135 reload_cse_regs_1 (first
)
8141 init_alias_analysis ();
8143 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
8146 reload_cse_simplify (insn
);
8148 cselib_process_insn (insn
);
8152 end_alias_analysis ();
8156 /* Call cse / combine like post-reload optimization phases.
8157 FIRST is the first instruction. */
8159 reload_cse_regs (first
)
8162 reload_cse_regs_1 (first
);
8164 reload_cse_move2add (first
);
8165 if (flag_expensive_optimizations
)
8166 reload_cse_regs_1 (first
);
8169 /* Try to simplify a single SET instruction. SET is the set pattern.
8170 INSN is the instruction it came from.
8171 This function only handles one case: if we set a register to a value
8172 which is not a register, we try to find that value in some other register
8173 and change the set into a register copy. */
8176 reload_cse_simplify_set (set
, insn
)
8183 enum reg_class dclass
;
8186 struct elt_loc_list
*l
;
8187 #ifdef LOAD_EXTEND_OP
8188 enum rtx_code extend_op
= NIL
;
8191 dreg
= true_regnum (SET_DEST (set
));
8195 src
= SET_SRC (set
);
8196 if (side_effects_p (src
) || true_regnum (src
) >= 0)
8199 dclass
= REGNO_REG_CLASS (dreg
);
8201 #ifdef LOAD_EXTEND_OP
8202 /* When replacing a memory with a register, we need to honor assumptions
8203 that combine made wrt the contents of sign bits. We'll do this by
8204 generating an extend instruction instead of a reg->reg copy. Thus
8205 the destination must be a register that we can widen. */
8206 if (GET_CODE (src
) == MEM
8207 && GET_MODE_BITSIZE (GET_MODE (src
)) < BITS_PER_WORD
8208 && (extend_op
= LOAD_EXTEND_OP (GET_MODE (src
))) != NIL
8209 && GET_CODE (SET_DEST (set
)) != REG
)
8213 /* If memory loads are cheaper than register copies, don't change them. */
8214 if (GET_CODE (src
) == MEM
)
8215 old_cost
= MEMORY_MOVE_COST (GET_MODE (src
), dclass
, 1);
8216 else if (CONSTANT_P (src
))
8217 old_cost
= rtx_cost (src
, SET
);
8218 else if (GET_CODE (src
) == REG
)
8219 old_cost
= REGISTER_MOVE_COST (GET_MODE (src
),
8220 REGNO_REG_CLASS (REGNO (src
)), dclass
);
8223 old_cost
= rtx_cost (src
, SET
);
8225 val
= cselib_lookup (src
, GET_MODE (SET_DEST (set
)), 0);
8228 for (l
= val
->locs
; l
; l
= l
->next
)
8230 rtx this_rtx
= l
->loc
;
8233 if (CONSTANT_P (this_rtx
) && ! references_value_p (this_rtx
, 0))
8235 #ifdef LOAD_EXTEND_OP
8236 if (extend_op
!= NIL
)
8238 HOST_WIDE_INT this_val
;
8240 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8241 constants, such as SYMBOL_REF, cannot be extended. */
8242 if (GET_CODE (this_rtx
) != CONST_INT
)
8245 this_val
= INTVAL (this_rtx
);
8249 this_val
&= GET_MODE_MASK (GET_MODE (src
));
8252 /* ??? In theory we're already extended. */
8253 if (this_val
== trunc_int_for_mode (this_val
, GET_MODE (src
)))
8258 this_rtx
= GEN_INT (this_val
);
8261 this_cost
= rtx_cost (this_rtx
, SET
);
8263 else if (GET_CODE (this_rtx
) == REG
)
8265 #ifdef LOAD_EXTEND_OP
8266 if (extend_op
!= NIL
)
8268 this_rtx
= gen_rtx_fmt_e (extend_op
, word_mode
, this_rtx
);
8269 this_cost
= rtx_cost (this_rtx
, SET
);
8273 this_cost
= REGISTER_MOVE_COST (GET_MODE (this_rtx
),
8274 REGNO_REG_CLASS (REGNO (this_rtx
)),
8280 /* If equal costs, prefer registers over anything else. That
8281 tends to lead to smaller instructions on some machines. */
8282 if (this_cost
< old_cost
8283 || (this_cost
== old_cost
8284 && GET_CODE (this_rtx
) == REG
8285 && GET_CODE (SET_SRC (set
)) != REG
))
8287 #ifdef LOAD_EXTEND_OP
8288 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set
))) < BITS_PER_WORD
8289 && extend_op
!= NIL
)
8291 rtx wide_dest
= gen_rtx_REG (word_mode
, REGNO (SET_DEST (set
)));
8292 ORIGINAL_REGNO (wide_dest
) = ORIGINAL_REGNO (SET_DEST (set
));
8293 validate_change (insn
, &SET_DEST (set
), wide_dest
, 1);
8297 validate_change (insn
, &SET_SRC (set
), copy_rtx (this_rtx
), 1);
8298 old_cost
= this_cost
, did_change
= 1;
8305 /* Try to replace operands in INSN with equivalent values that are already
8306 in registers. This can be viewed as optional reloading.
8308 For each non-register operand in the insn, see if any hard regs are
8309 known to be equivalent to that operand. Record the alternatives which
8310 can accept these hard registers. Among all alternatives, select the
8311 ones which are better or equal to the one currently matching, where
8312 "better" is in terms of '?' and '!' constraints. Among the remaining
8313 alternatives, select the one which replaces most operands with
8317 reload_cse_simplify_operands (insn
)
8322 /* For each operand, all registers that are equivalent to it. */
8323 HARD_REG_SET equiv_regs
[MAX_RECOG_OPERANDS
];
8325 const char *constraints
[MAX_RECOG_OPERANDS
];
8327 /* Vector recording how bad an alternative is. */
8328 int *alternative_reject
;
8329 /* Vector recording how many registers can be introduced by choosing
8330 this alternative. */
8331 int *alternative_nregs
;
8332 /* Array of vectors recording, for each operand and each alternative,
8333 which hard register to substitute, or -1 if the operand should be
8335 int *op_alt_regno
[MAX_RECOG_OPERANDS
];
8336 /* Array of alternatives, sorted in order of decreasing desirability. */
8337 int *alternative_order
;
8338 rtx reg
= gen_rtx_REG (VOIDmode
, -1);
8340 extract_insn (insn
);
8342 if (recog_data
.n_alternatives
== 0 || recog_data
.n_operands
== 0)
8345 /* Figure out which alternative currently matches. */
8346 if (! constrain_operands (1))
8347 fatal_insn_not_found (insn
);
8349 alternative_reject
= (int *) alloca (recog_data
.n_alternatives
* sizeof (int));
8350 alternative_nregs
= (int *) alloca (recog_data
.n_alternatives
* sizeof (int));
8351 alternative_order
= (int *) alloca (recog_data
.n_alternatives
* sizeof (int));
8352 memset ((char *)alternative_reject
, 0, recog_data
.n_alternatives
* sizeof (int));
8353 memset ((char *)alternative_nregs
, 0, recog_data
.n_alternatives
* sizeof (int));
8355 /* For each operand, find out which regs are equivalent. */
8356 for (i
= 0; i
< recog_data
.n_operands
; i
++)
8359 struct elt_loc_list
*l
;
8361 CLEAR_HARD_REG_SET (equiv_regs
[i
]);
8363 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8364 right, so avoid the problem here. Likewise if we have a constant
8365 and the insn pattern doesn't tell us the mode we need. */
8366 if (GET_CODE (recog_data
.operand
[i
]) == CODE_LABEL
8367 || (CONSTANT_P (recog_data
.operand
[i
])
8368 && recog_data
.operand_mode
[i
] == VOIDmode
))
8371 v
= cselib_lookup (recog_data
.operand
[i
], recog_data
.operand_mode
[i
], 0);
8375 for (l
= v
->locs
; l
; l
= l
->next
)
8376 if (GET_CODE (l
->loc
) == REG
)
8377 SET_HARD_REG_BIT (equiv_regs
[i
], REGNO (l
->loc
));
8380 for (i
= 0; i
< recog_data
.n_operands
; i
++)
8382 enum machine_mode mode
;
8386 op_alt_regno
[i
] = (int *) alloca (recog_data
.n_alternatives
* sizeof (int));
8387 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
8388 op_alt_regno
[i
][j
] = -1;
8390 p
= constraints
[i
] = recog_data
.constraints
[i
];
8391 mode
= recog_data
.operand_mode
[i
];
8393 /* Add the reject values for each alternative given by the constraints
8394 for this operand. */
8402 alternative_reject
[j
] += 3;
8404 alternative_reject
[j
] += 300;
8407 /* We won't change operands which are already registers. We
8408 also don't want to modify output operands. */
8409 regno
= true_regnum (recog_data
.operand
[i
]);
8411 || constraints
[i
][0] == '='
8412 || constraints
[i
][0] == '+')
8415 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
8417 int class = (int) NO_REGS
;
8419 if (! TEST_HARD_REG_BIT (equiv_regs
[i
], regno
))
8422 REGNO (reg
) = regno
;
8423 PUT_MODE (reg
, mode
);
8425 /* We found a register equal to this operand. Now look for all
8426 alternatives that can accept this register and have not been
8427 assigned a register they can use yet. */
8436 case '=': case '+': case '?':
8437 case '#': case '&': case '!':
8439 case '0': case '1': case '2': case '3': case '4':
8440 case '5': case '6': case '7': case '8': case '9':
8441 case 'm': case '<': case '>': case 'V': case 'o':
8442 case 'E': case 'F': case 'G': case 'H':
8443 case 's': case 'i': case 'n':
8444 case 'I': case 'J': case 'K': case 'L':
8445 case 'M': case 'N': case 'O': case 'P':
8447 /* These don't say anything we care about. */
8451 class = reg_class_subunion
[(int) class][(int) GENERAL_REGS
];
8456 = reg_class_subunion
[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c
)];
8459 case ',': case '\0':
8460 /* See if REGNO fits this alternative, and set it up as the
8461 replacement register if we don't have one for this
8462 alternative yet and the operand being replaced is not
8463 a cheap CONST_INT. */
8464 if (op_alt_regno
[i
][j
] == -1
8465 && reg_fits_class_p (reg
, class, 0, mode
)
8466 && (GET_CODE (recog_data
.operand
[i
]) != CONST_INT
8467 || (rtx_cost (recog_data
.operand
[i
], SET
)
8468 > rtx_cost (reg
, SET
))))
8470 alternative_nregs
[j
]++;
8471 op_alt_regno
[i
][j
] = regno
;
8483 /* Record all alternatives which are better or equal to the currently
8484 matching one in the alternative_order array. */
8485 for (i
= j
= 0; i
< recog_data
.n_alternatives
; i
++)
8486 if (alternative_reject
[i
] <= alternative_reject
[which_alternative
])
8487 alternative_order
[j
++] = i
;
8488 recog_data
.n_alternatives
= j
;
8490 /* Sort it. Given a small number of alternatives, a dumb algorithm
8491 won't hurt too much. */
8492 for (i
= 0; i
< recog_data
.n_alternatives
- 1; i
++)
8495 int best_reject
= alternative_reject
[alternative_order
[i
]];
8496 int best_nregs
= alternative_nregs
[alternative_order
[i
]];
8499 for (j
= i
+ 1; j
< recog_data
.n_alternatives
; j
++)
8501 int this_reject
= alternative_reject
[alternative_order
[j
]];
8502 int this_nregs
= alternative_nregs
[alternative_order
[j
]];
8504 if (this_reject
< best_reject
8505 || (this_reject
== best_reject
&& this_nregs
< best_nregs
))
8508 best_reject
= this_reject
;
8509 best_nregs
= this_nregs
;
8513 tmp
= alternative_order
[best
];
8514 alternative_order
[best
] = alternative_order
[i
];
8515 alternative_order
[i
] = tmp
;
8518 /* Substitute the operands as determined by op_alt_regno for the best
8520 j
= alternative_order
[0];
8522 for (i
= 0; i
< recog_data
.n_operands
; i
++)
8524 enum machine_mode mode
= recog_data
.operand_mode
[i
];
8525 if (op_alt_regno
[i
][j
] == -1)
8528 validate_change (insn
, recog_data
.operand_loc
[i
],
8529 gen_rtx_REG (mode
, op_alt_regno
[i
][j
]), 1);
8532 for (i
= recog_data
.n_dups
- 1; i
>= 0; i
--)
8534 int op
= recog_data
.dup_num
[i
];
8535 enum machine_mode mode
= recog_data
.operand_mode
[op
];
8537 if (op_alt_regno
[op
][j
] == -1)
8540 validate_change (insn
, recog_data
.dup_loc
[i
],
8541 gen_rtx_REG (mode
, op_alt_regno
[op
][j
]), 1);
8544 return apply_change_group ();
8547 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8549 This code might also be useful when reload gave up on reg+reg addresssing
8550 because of clashes between the return register and INDEX_REG_CLASS. */
8552 /* The maximum number of uses of a register we can keep track of to
8553 replace them with reg+reg addressing. */
8554 #define RELOAD_COMBINE_MAX_USES 6
8556 /* INSN is the insn where a register has ben used, and USEP points to the
8557 location of the register within the rtl. */
8558 struct reg_use
{ rtx insn
, *usep
; };
8560 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8561 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8562 indicates where it becomes live again.
8563 Otherwise, USE_INDEX is the index of the last encountered use of the
8564 register (which is first among these we have seen since we scan backwards),
8565 OFFSET contains the constant offset that is added to the register in
8566 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8567 last, of these uses.
8568 STORE_RUID is always meaningful if we only want to use a value in a
8569 register in a different place: it denotes the next insn in the insn
8570 stream (i.e. the last ecountered) that sets or clobbers the register. */
8573 struct reg_use reg_use
[RELOAD_COMBINE_MAX_USES
];
8578 } reg_state
[FIRST_PSEUDO_REGISTER
];
8580 /* Reverse linear uid. This is increased in reload_combine while scanning
8581 the instructions from last to first. It is used to set last_label_ruid
8582 and the store_ruid / use_ruid fields in reg_state. */
8583 static int reload_combine_ruid
;
8585 #define LABEL_LIVE(LABEL) \
8586 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8592 int first_index_reg
= -1, last_index_reg
;
8595 int last_label_ruid
;
8596 int min_labelno
, n_labels
;
8597 HARD_REG_SET ever_live_at_start
, *label_live
;
8599 /* If reg+reg can be used in offsetable memory adresses, the main chunk of
8600 reload has already used it where appropriate, so there is no use in
8601 trying to generate it now. */
8602 if (double_reg_address_ok
&& INDEX_REG_CLASS
!= NO_REGS
)
8605 /* To avoid wasting too much time later searching for an index register,
8606 determine the minimum and maximum index register numbers. */
8607 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
8608 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
], r
))
8610 if (first_index_reg
== -1)
8611 first_index_reg
= r
;
8616 /* If no index register is available, we can quit now. */
8617 if (first_index_reg
== -1)
8620 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8621 information is a bit fuzzy immediately after reload, but it's
8622 still good enough to determine which registers are live at a jump
8624 min_labelno
= get_first_label_num ();
8625 n_labels
= max_label_num () - min_labelno
;
8626 label_live
= (HARD_REG_SET
*) xmalloc (n_labels
* sizeof (HARD_REG_SET
));
8627 CLEAR_HARD_REG_SET (ever_live_at_start
);
8629 for (i
= n_basic_blocks
- 1; i
>= 0; i
--)
8631 insn
= BLOCK_HEAD (i
);
8632 if (GET_CODE (insn
) == CODE_LABEL
)
8636 REG_SET_TO_HARD_REG_SET (live
,
8637 BASIC_BLOCK (i
)->global_live_at_start
);
8638 compute_use_by_pseudos (&live
,
8639 BASIC_BLOCK (i
)->global_live_at_start
);
8640 COPY_HARD_REG_SET (LABEL_LIVE (insn
), live
);
8641 IOR_HARD_REG_SET (ever_live_at_start
, live
);
8645 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8646 last_label_ruid
= reload_combine_ruid
= 0;
8647 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
8649 reg_state
[r
].store_ruid
= reload_combine_ruid
;
8651 reg_state
[r
].use_index
= -1;
8653 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
8656 for (insn
= get_last_insn (); insn
; insn
= PREV_INSN (insn
))
8660 /* We cannot do our optimization across labels. Invalidating all the use
8661 information we have would be costly, so we just note where the label
8662 is and then later disable any optimization that would cross it. */
8663 if (GET_CODE (insn
) == CODE_LABEL
)
8664 last_label_ruid
= reload_combine_ruid
;
8665 else if (GET_CODE (insn
) == BARRIER
)
8666 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
8667 if (! fixed_regs
[r
])
8668 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
8670 if (! INSN_P (insn
))
8673 reload_combine_ruid
++;
8675 /* Look for (set (REGX) (CONST_INT))
8676 (set (REGX) (PLUS (REGX) (REGY)))
8678 ... (MEM (REGX)) ...
8680 (set (REGZ) (CONST_INT))
8682 ... (MEM (PLUS (REGZ) (REGY)))... .
8684 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8685 and that we know all uses of REGX before it dies. */
8686 set
= single_set (insn
);
8688 && GET_CODE (SET_DEST (set
)) == REG
8689 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set
)),
8690 GET_MODE (SET_DEST (set
)))
8692 && GET_CODE (SET_SRC (set
)) == PLUS
8693 && GET_CODE (XEXP (SET_SRC (set
), 1)) == REG
8694 && rtx_equal_p (XEXP (SET_SRC (set
), 0), SET_DEST (set
))
8695 && last_label_ruid
< reg_state
[REGNO (SET_DEST (set
))].use_ruid
)
8697 rtx reg
= SET_DEST (set
);
8698 rtx plus
= SET_SRC (set
);
8699 rtx base
= XEXP (plus
, 1);
8700 rtx prev
= prev_nonnote_insn (insn
);
8701 rtx prev_set
= prev
? single_set (prev
) : NULL_RTX
;
8702 unsigned int regno
= REGNO (reg
);
8703 rtx const_reg
= NULL_RTX
;
8704 rtx reg_sum
= NULL_RTX
;
8706 /* Now, we need an index register.
8707 We'll set index_reg to this index register, const_reg to the
8708 register that is to be loaded with the constant
8709 (denoted as REGZ in the substitution illustration above),
8710 and reg_sum to the register-register that we want to use to
8711 substitute uses of REG (typically in MEMs) with.
8712 First check REG and BASE for being index registers;
8713 we can use them even if they are not dead. */
8714 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
], regno
)
8715 || TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
],
8723 /* Otherwise, look for a free index register. Since we have
8724 checked above that neiter REG nor BASE are index registers,
8725 if we find anything at all, it will be different from these
8727 for (i
= first_index_reg
; i
<= last_index_reg
; i
++)
8729 if (TEST_HARD_REG_BIT (reg_class_contents
[INDEX_REG_CLASS
],
8731 && reg_state
[i
].use_index
== RELOAD_COMBINE_MAX_USES
8732 && reg_state
[i
].store_ruid
<= reg_state
[regno
].use_ruid
8733 && HARD_REGNO_NREGS (i
, GET_MODE (reg
)) == 1)
8735 rtx index_reg
= gen_rtx_REG (GET_MODE (reg
), i
);
8737 const_reg
= index_reg
;
8738 reg_sum
= gen_rtx_PLUS (GET_MODE (reg
), index_reg
, base
);
8744 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8745 (REGY), i.e. BASE, is not clobbered before the last use we'll
8748 && GET_CODE (SET_SRC (prev_set
)) == CONST_INT
8749 && rtx_equal_p (SET_DEST (prev_set
), reg
)
8750 && reg_state
[regno
].use_index
>= 0
8751 && (reg_state
[REGNO (base
)].store_ruid
8752 <= reg_state
[regno
].use_ruid
)
8757 /* Change destination register and, if necessary, the
8758 constant value in PREV, the constant loading instruction. */
8759 validate_change (prev
, &SET_DEST (prev_set
), const_reg
, 1);
8760 if (reg_state
[regno
].offset
!= const0_rtx
)
8761 validate_change (prev
,
8762 &SET_SRC (prev_set
),
8763 GEN_INT (INTVAL (SET_SRC (prev_set
))
8764 + INTVAL (reg_state
[regno
].offset
)),
8767 /* Now for every use of REG that we have recorded, replace REG
8769 for (i
= reg_state
[regno
].use_index
;
8770 i
< RELOAD_COMBINE_MAX_USES
; i
++)
8771 validate_change (reg_state
[regno
].reg_use
[i
].insn
,
8772 reg_state
[regno
].reg_use
[i
].usep
,
8775 if (apply_change_group ())
8779 /* Delete the reg-reg addition. */
8780 PUT_CODE (insn
, NOTE
);
8781 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
8782 NOTE_SOURCE_FILE (insn
) = 0;
8784 if (reg_state
[regno
].offset
!= const0_rtx
)
8785 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8787 for (np
= ®_NOTES (prev
); *np
;)
8789 if (REG_NOTE_KIND (*np
) == REG_EQUAL
8790 || REG_NOTE_KIND (*np
) == REG_EQUIV
)
8791 *np
= XEXP (*np
, 1);
8793 np
= &XEXP (*np
, 1);
8796 reg_state
[regno
].use_index
= RELOAD_COMBINE_MAX_USES
;
8797 reg_state
[REGNO (const_reg
)].store_ruid
8798 = reload_combine_ruid
;
8804 note_stores (PATTERN (insn
), reload_combine_note_store
, NULL
);
8806 if (GET_CODE (insn
) == CALL_INSN
)
8810 for (r
= 0; r
< FIRST_PSEUDO_REGISTER
; r
++)
8811 if (call_used_regs
[r
])
8813 reg_state
[r
].use_index
= RELOAD_COMBINE_MAX_USES
;
8814 reg_state
[r
].store_ruid
= reload_combine_ruid
;
8817 for (link
= CALL_INSN_FUNCTION_USAGE (insn
); link
;
8818 link
= XEXP (link
, 1))
8820 rtx usage_rtx
= XEXP (XEXP (link
, 0), 0);
8821 if (GET_CODE (usage_rtx
) == REG
)
8824 unsigned int start_reg
= REGNO (usage_rtx
);
8825 unsigned int num_regs
=
8826 HARD_REGNO_NREGS (start_reg
, GET_MODE (usage_rtx
));
8827 unsigned int end_reg
= start_reg
+ num_regs
- 1;
8828 for (i
= start_reg
; i
<= end_reg
; i
++)
8829 if (GET_CODE (XEXP (link
, 0)) == CLOBBER
)
8831 reg_state
[i
].use_index
= RELOAD_COMBINE_MAX_USES
;
8832 reg_state
[i
].store_ruid
= reload_combine_ruid
;
8835 reg_state
[i
].use_index
= -1;
8840 else if (GET_CODE (insn
) == JUMP_INSN
8841 && GET_CODE (PATTERN (insn
)) != RETURN
)
8843 /* Non-spill registers might be used at the call destination in
8844 some unknown fashion, so we have to mark the unknown use. */
8847 if ((condjump_p (insn
) || condjump_in_parallel_p (insn
))
8848 && JUMP_LABEL (insn
))
8849 live
= &LABEL_LIVE (JUMP_LABEL (insn
));
8851 live
= &ever_live_at_start
;
8853 for (i
= FIRST_PSEUDO_REGISTER
- 1; i
>= 0; --i
)
8854 if (TEST_HARD_REG_BIT (*live
, i
))
8855 reg_state
[i
].use_index
= -1;
8858 reload_combine_note_use (&PATTERN (insn
), insn
);
8859 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
8861 if (REG_NOTE_KIND (note
) == REG_INC
8862 && GET_CODE (XEXP (note
, 0)) == REG
)
8864 int regno
= REGNO (XEXP (note
, 0));
8866 reg_state
[regno
].store_ruid
= reload_combine_ruid
;
8867 reg_state
[regno
].use_index
= -1;
8875 /* Check if DST is a register or a subreg of a register; if it is,
8876 update reg_state[regno].store_ruid and reg_state[regno].use_index
8877 accordingly. Called via note_stores from reload_combine. */
8880 reload_combine_note_store (dst
, set
, data
)
8882 void *data ATTRIBUTE_UNUSED
;
8886 enum machine_mode mode
= GET_MODE (dst
);
8888 if (GET_CODE (dst
) == SUBREG
)
8890 regno
= SUBREG_WORD (dst
);
8891 dst
= SUBREG_REG (dst
);
8893 if (GET_CODE (dst
) != REG
)
8895 regno
+= REGNO (dst
);
8897 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8898 careful with registers / register parts that are not full words.
8900 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8901 if (GET_CODE (set
) != SET
8902 || GET_CODE (SET_DEST (set
)) == ZERO_EXTRACT
8903 || GET_CODE (SET_DEST (set
)) == SIGN_EXTRACT
8904 || GET_CODE (SET_DEST (set
)) == STRICT_LOW_PART
)
8906 for (i
= HARD_REGNO_NREGS (regno
, mode
) - 1 + regno
; i
>= regno
; i
--)
8908 reg_state
[i
].use_index
= -1;
8909 reg_state
[i
].store_ruid
= reload_combine_ruid
;
8914 for (i
= HARD_REGNO_NREGS (regno
, mode
) - 1 + regno
; i
>= regno
; i
--)
8916 reg_state
[i
].store_ruid
= reload_combine_ruid
;
8917 reg_state
[i
].use_index
= RELOAD_COMBINE_MAX_USES
;
8922 /* XP points to a piece of rtl that has to be checked for any uses of
8924 *XP is the pattern of INSN, or a part of it.
8925 Called from reload_combine, and recursively by itself. */
8927 reload_combine_note_use (xp
, insn
)
8931 enum rtx_code code
= x
->code
;
8934 rtx offset
= const0_rtx
; /* For the REG case below. */
8939 if (GET_CODE (SET_DEST (x
)) == REG
)
8941 reload_combine_note_use (&SET_SRC (x
), insn
);
8947 /* If this is the USE of a return value, we can't change it. */
8948 if (GET_CODE (XEXP (x
, 0)) == REG
&& REG_FUNCTION_VALUE_P (XEXP (x
, 0)))
8950 /* Mark the return register as used in an unknown fashion. */
8951 rtx reg
= XEXP (x
, 0);
8952 int regno
= REGNO (reg
);
8953 int nregs
= HARD_REGNO_NREGS (regno
, GET_MODE (reg
));
8955 while (--nregs
>= 0)
8956 reg_state
[regno
+ nregs
].use_index
= -1;
8962 if (GET_CODE (SET_DEST (x
)) == REG
)
8967 /* We are interested in (plus (reg) (const_int)) . */
8968 if (GET_CODE (XEXP (x
, 0)) != REG
8969 || GET_CODE (XEXP (x
, 1)) != CONST_INT
)
8971 offset
= XEXP (x
, 1);
8976 int regno
= REGNO (x
);
8980 /* Some spurious USEs of pseudo registers might remain.
8981 Just ignore them. */
8982 if (regno
>= FIRST_PSEUDO_REGISTER
)
8985 nregs
= HARD_REGNO_NREGS (regno
, GET_MODE (x
));
8987 /* We can't substitute into multi-hard-reg uses. */
8990 while (--nregs
>= 0)
8991 reg_state
[regno
+ nregs
].use_index
= -1;
8995 /* If this register is already used in some unknown fashion, we
8997 If we decrement the index from zero to -1, we can't store more
8998 uses, so this register becomes used in an unknown fashion. */
8999 use_index
= --reg_state
[regno
].use_index
;
9003 if (use_index
!= RELOAD_COMBINE_MAX_USES
- 1)
9005 /* We have found another use for a register that is already
9006 used later. Check if the offsets match; if not, mark the
9007 register as used in an unknown fashion. */
9008 if (! rtx_equal_p (offset
, reg_state
[regno
].offset
))
9010 reg_state
[regno
].use_index
= -1;
9016 /* This is the first use of this register we have seen since we
9017 marked it as dead. */
9018 reg_state
[regno
].offset
= offset
;
9019 reg_state
[regno
].use_ruid
= reload_combine_ruid
;
9021 reg_state
[regno
].reg_use
[use_index
].insn
= insn
;
9022 reg_state
[regno
].reg_use
[use_index
].usep
= xp
;
9030 /* Recursively process the components of X. */
9031 fmt
= GET_RTX_FORMAT (code
);
9032 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
9035 reload_combine_note_use (&XEXP (x
, i
), insn
);
9036 else if (fmt
[i
] == 'E')
9038 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
9039 reload_combine_note_use (&XVECEXP (x
, i
, j
), insn
);
9044 /* See if we can reduce the cost of a constant by replacing a move
9045 with an add. We track situations in which a register is set to a
9046 constant or to a register plus a constant. */
9047 /* We cannot do our optimization across labels. Invalidating all the
9048 information about register contents we have would be costly, so we
9049 use move2add_last_label_luid to note where the label is and then
9050 later disable any optimization that would cross it.
9051 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9052 reg_set_luid[n] is greater than last_label_luid[n] . */
9053 static int reg_set_luid
[FIRST_PSEUDO_REGISTER
];
9055 /* If reg_base_reg[n] is negative, register n has been set to
9056 reg_offset[n] in mode reg_mode[n] .
9057 If reg_base_reg[n] is non-negative, register n has been set to the
9058 sum of reg_offset[n] and the value of register reg_base_reg[n]
9059 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9060 static HOST_WIDE_INT reg_offset
[FIRST_PSEUDO_REGISTER
];
9061 static int reg_base_reg
[FIRST_PSEUDO_REGISTER
];
9062 static enum machine_mode reg_mode
[FIRST_PSEUDO_REGISTER
];
9064 /* move2add_luid is linearily increased while scanning the instructions
9065 from first to last. It is used to set reg_set_luid in
9066 reload_cse_move2add and move2add_note_store. */
9067 static int move2add_luid
;
9069 /* move2add_last_label_luid is set whenever a label is found. Labels
9070 invalidate all previously collected reg_offset data. */
9071 static int move2add_last_label_luid
;
9073 /* Generate a CONST_INT and force it in the range of MODE. */
9075 static HOST_WIDE_INT
9076 sext_for_mode (mode
, value
)
9077 enum machine_mode mode
;
9078 HOST_WIDE_INT value
;
9080 HOST_WIDE_INT cval
= value
& GET_MODE_MASK (mode
);
9081 int width
= GET_MODE_BITSIZE (mode
);
9083 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9085 if (width
> 0 && width
< HOST_BITS_PER_WIDE_INT
9086 && (cval
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
9087 cval
|= (HOST_WIDE_INT
) -1 << width
;
9092 /* ??? We don't know how zero / sign extension is handled, hence we
9093 can't go from a narrower to a wider mode. */
9094 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9095 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9096 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9097 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9098 GET_MODE_BITSIZE (INMODE))))
9101 reload_cse_move2add (first
)
9107 for (i
= FIRST_PSEUDO_REGISTER
- 1; i
>= 0; i
--)
9108 reg_set_luid
[i
] = 0;
9110 move2add_last_label_luid
= 0;
9112 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
), move2add_luid
++)
9116 if (GET_CODE (insn
) == CODE_LABEL
)
9118 move2add_last_label_luid
= move2add_luid
;
9119 /* We're going to increment move2add_luid twice after a
9120 label, so that we can use move2add_last_label_luid + 1 as
9121 the luid for constants. */
9125 if (! INSN_P (insn
))
9127 pat
= PATTERN (insn
);
9128 /* For simplicity, we only perform this optimization on
9129 straightforward SETs. */
9130 if (GET_CODE (pat
) == SET
9131 && GET_CODE (SET_DEST (pat
)) == REG
)
9133 rtx reg
= SET_DEST (pat
);
9134 int regno
= REGNO (reg
);
9135 rtx src
= SET_SRC (pat
);
9137 /* Check if we have valid information on the contents of this
9138 register in the mode of REG. */
9139 if (reg_set_luid
[regno
] > move2add_last_label_luid
9140 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg
), reg_mode
[regno
]))
9142 /* Try to transform (set (REGX) (CONST_INT A))
9144 (set (REGX) (CONST_INT B))
9146 (set (REGX) (CONST_INT A))
9148 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9150 if (GET_CODE (src
) == CONST_INT
&& reg_base_reg
[regno
] < 0)
9153 rtx new_src
= GEN_INT (sext_for_mode (GET_MODE (reg
),
9155 - reg_offset
[regno
]));
9156 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9157 use (set (reg) (reg)) instead.
9158 We don't delete this insn, nor do we convert it into a
9159 note, to avoid losing register notes or the return
9160 value flag. jump2 already knowns how to get rid of
9162 if (new_src
== const0_rtx
)
9163 success
= validate_change (insn
, &SET_SRC (pat
), reg
, 0);
9164 else if (rtx_cost (new_src
, PLUS
) < rtx_cost (src
, SET
)
9165 && have_add2_insn (GET_MODE (reg
)))
9166 success
= validate_change (insn
, &PATTERN (insn
),
9167 gen_add2_insn (reg
, new_src
), 0);
9168 reg_set_luid
[regno
] = move2add_luid
;
9169 reg_mode
[regno
] = GET_MODE (reg
);
9170 reg_offset
[regno
] = INTVAL (src
);
9174 /* Try to transform (set (REGX) (REGY))
9175 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9178 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9181 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9183 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9184 else if (GET_CODE (src
) == REG
9185 && reg_set_luid
[regno
] == reg_set_luid
[REGNO (src
)]
9186 && reg_base_reg
[regno
] == reg_base_reg
[REGNO (src
)]
9187 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg
),
9188 reg_mode
[REGNO (src
)]))
9190 rtx next
= next_nonnote_insn (insn
);
9193 set
= single_set (next
);
9195 && SET_DEST (set
) == reg
9196 && GET_CODE (SET_SRC (set
)) == PLUS
9197 && XEXP (SET_SRC (set
), 0) == reg
9198 && GET_CODE (XEXP (SET_SRC (set
), 1)) == CONST_INT
)
9200 rtx src3
= XEXP (SET_SRC (set
), 1);
9201 HOST_WIDE_INT added_offset
= INTVAL (src3
);
9202 HOST_WIDE_INT base_offset
= reg_offset
[REGNO (src
)];
9203 HOST_WIDE_INT regno_offset
= reg_offset
[regno
];
9204 rtx new_src
= GEN_INT (sext_for_mode (GET_MODE (reg
),
9210 if (new_src
== const0_rtx
)
9211 /* See above why we create (set (reg) (reg)) here. */
9213 = validate_change (next
, &SET_SRC (set
), reg
, 0);
9214 else if ((rtx_cost (new_src
, PLUS
)
9215 < COSTS_N_INSNS (1) + rtx_cost (src3
, SET
))
9216 && have_add2_insn (GET_MODE (reg
)))
9218 = validate_change (next
, &PATTERN (next
),
9219 gen_add2_insn (reg
, new_src
), 0);
9222 /* INSN might be the first insn in a basic block
9223 if the preceding insn is a conditional jump
9224 or a possible-throwing call. */
9225 PUT_CODE (insn
, NOTE
);
9226 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
9227 NOTE_SOURCE_FILE (insn
) = 0;
9230 reg_mode
[regno
] = GET_MODE (reg
);
9231 reg_offset
[regno
] = sext_for_mode (GET_MODE (reg
),
9240 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
9242 if (REG_NOTE_KIND (note
) == REG_INC
9243 && GET_CODE (XEXP (note
, 0)) == REG
)
9245 /* Reset the information about this register. */
9246 int regno
= REGNO (XEXP (note
, 0));
9247 if (regno
< FIRST_PSEUDO_REGISTER
)
9248 reg_set_luid
[regno
] = 0;
9251 note_stores (PATTERN (insn
), move2add_note_store
, NULL
);
9252 /* If this is a CALL_INSN, all call used registers are stored with
9254 if (GET_CODE (insn
) == CALL_INSN
)
9256 for (i
= FIRST_PSEUDO_REGISTER
- 1; i
>= 0; i
--)
9258 if (call_used_regs
[i
])
9259 /* Reset the information about this register. */
9260 reg_set_luid
[i
] = 0;
9266 /* SET is a SET or CLOBBER that sets DST.
9267 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9268 Called from reload_cse_move2add via note_stores. */
9271 move2add_note_store (dst
, set
, data
)
9273 void *data ATTRIBUTE_UNUSED
;
9275 unsigned int regno
= 0;
9277 enum machine_mode mode
= GET_MODE (dst
);
9279 if (GET_CODE (dst
) == SUBREG
)
9281 regno
= SUBREG_WORD (dst
);
9282 dst
= SUBREG_REG (dst
);
9285 /* Some targets do argument pushes without adding REG_INC notes. */
9287 if (GET_CODE (dst
) == MEM
)
9289 dst
= XEXP (dst
, 0);
9290 if (GET_CODE (dst
) == PRE_INC
|| GET_CODE (dst
) == POST_DEC
9291 || GET_CODE (dst
) == PRE_DEC
|| GET_CODE (dst
) == POST_DEC
)
9292 reg_set_luid
[REGNO (XEXP (dst
, 0))] = 0;
9295 if (GET_CODE (dst
) != REG
)
9298 regno
+= REGNO (dst
);
9300 if (HARD_REGNO_NREGS (regno
, mode
) == 1 && GET_CODE (set
) == SET
9301 && GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
9302 && GET_CODE (SET_DEST (set
)) != SIGN_EXTRACT
9303 && GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
)
9305 rtx src
= SET_SRC (set
);
9307 HOST_WIDE_INT offset
;
9309 /* This may be different from mode, if SET_DEST (set) is a
9311 enum machine_mode dst_mode
= GET_MODE (dst
);
9313 switch (GET_CODE (src
))
9316 if (GET_CODE (XEXP (src
, 0)) == REG
)
9318 base_reg
= XEXP (src
, 0);
9320 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
)
9321 offset
= INTVAL (XEXP (src
, 1));
9322 else if (GET_CODE (XEXP (src
, 1)) == REG
9323 && (reg_set_luid
[REGNO (XEXP (src
, 1))]
9324 > move2add_last_label_luid
)
9325 && (MODES_OK_FOR_MOVE2ADD
9326 (dst_mode
, reg_mode
[REGNO (XEXP (src
, 1))])))
9328 if (reg_base_reg
[REGNO (XEXP (src
, 1))] < 0)
9329 offset
= reg_offset
[REGNO (XEXP (src
, 1))];
9330 /* Maybe the first register is known to be a
9332 else if (reg_set_luid
[REGNO (base_reg
)]
9333 > move2add_last_label_luid
9334 && (MODES_OK_FOR_MOVE2ADD
9335 (dst_mode
, reg_mode
[REGNO (XEXP (src
, 1))]))
9336 && reg_base_reg
[REGNO (base_reg
)] < 0)
9338 offset
= reg_offset
[REGNO (base_reg
)];
9339 base_reg
= XEXP (src
, 1);
9358 /* Start tracking the register as a constant. */
9359 reg_base_reg
[regno
] = -1;
9360 reg_offset
[regno
] = INTVAL (SET_SRC (set
));
9361 /* We assign the same luid to all registers set to constants. */
9362 reg_set_luid
[regno
] = move2add_last_label_luid
+ 1;
9363 reg_mode
[regno
] = mode
;
9368 /* Invalidate the contents of the register. */
9369 reg_set_luid
[regno
] = 0;
9373 base_regno
= REGNO (base_reg
);
9374 /* If information about the base register is not valid, set it
9375 up as a new base register, pretending its value is known
9376 starting from the current insn. */
9377 if (reg_set_luid
[base_regno
] <= move2add_last_label_luid
)
9379 reg_base_reg
[base_regno
] = base_regno
;
9380 reg_offset
[base_regno
] = 0;
9381 reg_set_luid
[base_regno
] = move2add_luid
;
9382 reg_mode
[base_regno
] = mode
;
9384 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode
,
9385 reg_mode
[base_regno
]))
9388 reg_mode
[regno
] = mode
;
9390 /* Copy base information from our base register. */
9391 reg_set_luid
[regno
] = reg_set_luid
[base_regno
];
9392 reg_base_reg
[regno
] = reg_base_reg
[base_regno
];
9394 /* Compute the sum of the offsets or constants. */
9395 reg_offset
[regno
] = sext_for_mode (dst_mode
,
9397 + reg_offset
[base_regno
]);
9401 unsigned int endregno
= regno
+ HARD_REGNO_NREGS (regno
, mode
);
9403 for (i
= regno
; i
< endregno
; i
++)
9404 /* Reset the information about this register. */
9405 reg_set_luid
[i
] = 0;
9411 add_auto_inc_notes (insn
, x
)
9415 enum rtx_code code
= GET_CODE (x
);
9419 if (code
== MEM
&& auto_inc_p (XEXP (x
, 0)))
9422 = gen_rtx_EXPR_LIST (REG_INC
, XEXP (XEXP (x
, 0), 0), REG_NOTES (insn
));
9426 /* Scan all the operand sub-expressions. */
9427 fmt
= GET_RTX_FORMAT (code
);
9428 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
9431 add_auto_inc_notes (insn
, XEXP (x
, i
));
9432 else if (fmt
[i
] == 'E')
9433 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
9434 add_auto_inc_notes (insn
, XVECEXP (x
, i
, j
));