2013-12-06 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc.git] / gcc / dominance.c
blob5ece3f68b94eeb152ad55fd7c2b554d2e8e466d1
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This file implements the well known algorithm from Lengauer and Tarjan
22 to compute the dominators in a control flow graph. A basic block D is said
23 to dominate another block X, when all paths from the entry node of the CFG
24 to X go also over D. The dominance relation is a transitive reflexive
25 relation and its minimal transitive reduction is a tree, called the
26 dominator tree. So for each block X besides the entry block exists a
27 block I(X), called the immediate dominator of X, which is the parent of X
28 in the dominator tree.
30 The algorithm computes this dominator tree implicitly by computing for
31 each block its immediate dominator. We use tree balancing and path
32 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
33 slowly growing functional inverse of the Ackerman function. */
35 #include "config.h"
36 #include "system.h"
37 #include "coretypes.h"
38 #include "tm.h"
39 #include "rtl.h"
40 #include "hard-reg-set.h"
41 #include "obstack.h"
42 #include "basic-block.h"
43 #include "diagnostic-core.h"
44 #include "et-forest.h"
45 #include "timevar.h"
46 #include "pointer-set.h"
47 #include "graphds.h"
48 #include "bitmap.h"
50 /* We name our nodes with integers, beginning with 1. Zero is reserved for
51 'undefined' or 'end of list'. The name of each node is given by the dfs
52 number of the corresponding basic block. Please note, that we include the
53 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
54 support multiple entry points. Its dfs number is of course 1. */
56 /* Type of Basic Block aka. TBB */
57 typedef unsigned int TBB;
59 /* We work in a poor-mans object oriented fashion, and carry an instance of
60 this structure through all our 'methods'. It holds various arrays
61 reflecting the (sub)structure of the flowgraph. Most of them are of type
62 TBB and are also indexed by TBB. */
64 struct dom_info
66 /* The parent of a node in the DFS tree. */
67 TBB *dfs_parent;
68 /* For a node x key[x] is roughly the node nearest to the root from which
69 exists a way to x only over nodes behind x. Such a node is also called
70 semidominator. */
71 TBB *key;
72 /* The value in path_min[x] is the node y on the path from x to the root of
73 the tree x is in with the smallest key[y]. */
74 TBB *path_min;
75 /* bucket[x] points to the first node of the set of nodes having x as key. */
76 TBB *bucket;
77 /* And next_bucket[x] points to the next node. */
78 TBB *next_bucket;
79 /* After the algorithm is done, dom[x] contains the immediate dominator
80 of x. */
81 TBB *dom;
83 /* The following few fields implement the structures needed for disjoint
84 sets. */
85 /* set_chain[x] is the next node on the path from x to the representative
86 of the set containing x. If set_chain[x]==0 then x is a root. */
87 TBB *set_chain;
88 /* set_size[x] is the number of elements in the set named by x. */
89 unsigned int *set_size;
90 /* set_child[x] is used for balancing the tree representing a set. It can
91 be understood as the next sibling of x. */
92 TBB *set_child;
94 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
95 number of that node in DFS order counted from 1. This is an index
96 into most of the other arrays in this structure. */
97 TBB *dfs_order;
98 /* If x is the DFS-index of a node which corresponds with a basic block,
99 dfs_to_bb[x] is that basic block. Note, that in our structure there are
100 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
101 is true for every basic block bb, but not the opposite. */
102 basic_block *dfs_to_bb;
104 /* This is the next free DFS number when creating the DFS tree. */
105 unsigned int dfsnum;
106 /* The number of nodes in the DFS tree (==dfsnum-1). */
107 unsigned int nodes;
109 /* Blocks with bits set here have a fake edge to EXIT. These are used
110 to turn a DFS forest into a proper tree. */
111 bitmap fake_exit_edge;
114 static void init_dom_info (struct dom_info *, enum cdi_direction);
115 static void free_dom_info (struct dom_info *);
116 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block, bool);
117 static void calc_dfs_tree (struct dom_info *, bool);
118 static void compress (struct dom_info *, TBB);
119 static TBB eval (struct dom_info *, TBB);
120 static void link_roots (struct dom_info *, TBB, TBB);
121 static void calc_idoms (struct dom_info *, bool);
122 void debug_dominance_info (enum cdi_direction);
123 void debug_dominance_tree (enum cdi_direction, basic_block);
125 /* Helper macro for allocating and initializing an array,
126 for aesthetic reasons. */
127 #define init_ar(var, type, num, content) \
128 do \
130 unsigned int i = 1; /* Catch content == i. */ \
131 if (! (content)) \
132 (var) = XCNEWVEC (type, num); \
133 else \
135 (var) = XNEWVEC (type, (num)); \
136 for (i = 0; i < num; i++) \
137 (var)[i] = (content); \
140 while (0)
142 /* Allocate all needed memory in a pessimistic fashion (so we round up).
143 This initializes the contents of DI, which already must be allocated. */
145 static void
146 init_dom_info (struct dom_info *di, enum cdi_direction dir)
148 /* We need memory for n_basic_blocks nodes. */
149 unsigned int num = n_basic_blocks_for_fn (cfun);
150 init_ar (di->dfs_parent, TBB, num, 0);
151 init_ar (di->path_min, TBB, num, i);
152 init_ar (di->key, TBB, num, i);
153 init_ar (di->dom, TBB, num, 0);
155 init_ar (di->bucket, TBB, num, 0);
156 init_ar (di->next_bucket, TBB, num, 0);
158 init_ar (di->set_chain, TBB, num, 0);
159 init_ar (di->set_size, unsigned int, num, 1);
160 init_ar (di->set_child, TBB, num, 0);
162 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
163 init_ar (di->dfs_to_bb, basic_block, num, 0);
165 di->dfsnum = 1;
166 di->nodes = 0;
168 switch (dir)
170 case CDI_DOMINATORS:
171 di->fake_exit_edge = NULL;
172 break;
173 case CDI_POST_DOMINATORS:
174 di->fake_exit_edge = BITMAP_ALLOC (NULL);
175 break;
176 default:
177 gcc_unreachable ();
178 break;
182 #undef init_ar
184 /* Map dominance calculation type to array index used for various
185 dominance information arrays. This version is simple -- it will need
186 to be modified, obviously, if additional values are added to
187 cdi_direction. */
189 static unsigned int
190 dom_convert_dir_to_idx (enum cdi_direction dir)
192 gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
193 return dir - 1;
196 /* Free all allocated memory in DI, but not DI itself. */
198 static void
199 free_dom_info (struct dom_info *di)
201 free (di->dfs_parent);
202 free (di->path_min);
203 free (di->key);
204 free (di->dom);
205 free (di->bucket);
206 free (di->next_bucket);
207 free (di->set_chain);
208 free (di->set_size);
209 free (di->set_child);
210 free (di->dfs_order);
211 free (di->dfs_to_bb);
212 BITMAP_FREE (di->fake_exit_edge);
215 /* The nonrecursive variant of creating a DFS tree. DI is our working
216 structure, BB the starting basic block for this tree and REVERSE
217 is true, if predecessors should be visited instead of successors of a
218 node. After this is done all nodes reachable from BB were visited, have
219 assigned their dfs number and are linked together to form a tree. */
221 static void
222 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb, bool reverse)
224 /* We call this _only_ if bb is not already visited. */
225 edge e;
226 TBB child_i, my_i = 0;
227 edge_iterator *stack;
228 edge_iterator ei, einext;
229 int sp;
230 /* Start block (the entry block for forward problem, exit block for backward
231 problem). */
232 basic_block en_block;
233 /* Ending block. */
234 basic_block ex_block;
236 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
237 sp = 0;
239 /* Initialize our border blocks, and the first edge. */
240 if (reverse)
242 ei = ei_start (bb->preds);
243 en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
244 ex_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
246 else
248 ei = ei_start (bb->succs);
249 en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
250 ex_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
253 /* When the stack is empty we break out of this loop. */
254 while (1)
256 basic_block bn;
258 /* This loop traverses edges e in depth first manner, and fills the
259 stack. */
260 while (!ei_end_p (ei))
262 e = ei_edge (ei);
264 /* Deduce from E the current and the next block (BB and BN), and the
265 next edge. */
266 if (reverse)
268 bn = e->src;
270 /* If the next node BN is either already visited or a border
271 block the current edge is useless, and simply overwritten
272 with the next edge out of the current node. */
273 if (bn == ex_block || di->dfs_order[bn->index])
275 ei_next (&ei);
276 continue;
278 bb = e->dest;
279 einext = ei_start (bn->preds);
281 else
283 bn = e->dest;
284 if (bn == ex_block || di->dfs_order[bn->index])
286 ei_next (&ei);
287 continue;
289 bb = e->src;
290 einext = ei_start (bn->succs);
293 gcc_assert (bn != en_block);
295 /* Fill the DFS tree info calculatable _before_ recursing. */
296 if (bb != en_block)
297 my_i = di->dfs_order[bb->index];
298 else
299 my_i = di->dfs_order[last_basic_block];
300 child_i = di->dfs_order[bn->index] = di->dfsnum++;
301 di->dfs_to_bb[child_i] = bn;
302 di->dfs_parent[child_i] = my_i;
304 /* Save the current point in the CFG on the stack, and recurse. */
305 stack[sp++] = ei;
306 ei = einext;
309 if (!sp)
310 break;
311 ei = stack[--sp];
313 /* OK. The edge-list was exhausted, meaning normally we would
314 end the recursion. After returning from the recursive call,
315 there were (may be) other statements which were run after a
316 child node was completely considered by DFS. Here is the
317 point to do it in the non-recursive variant.
318 E.g. The block just completed is in e->dest for forward DFS,
319 the block not yet completed (the parent of the one above)
320 in e->src. This could be used e.g. for computing the number of
321 descendants or the tree depth. */
322 ei_next (&ei);
324 free (stack);
327 /* The main entry for calculating the DFS tree or forest. DI is our working
328 structure and REVERSE is true, if we are interested in the reverse flow
329 graph. In that case the result is not necessarily a tree but a forest,
330 because there may be nodes from which the EXIT_BLOCK is unreachable. */
332 static void
333 calc_dfs_tree (struct dom_info *di, bool reverse)
335 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
336 basic_block begin = (reverse
337 ? EXIT_BLOCK_PTR_FOR_FN (cfun) : ENTRY_BLOCK_PTR_FOR_FN (cfun));
338 di->dfs_order[last_basic_block] = di->dfsnum;
339 di->dfs_to_bb[di->dfsnum] = begin;
340 di->dfsnum++;
342 calc_dfs_tree_nonrec (di, begin, reverse);
344 if (reverse)
346 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
347 They are reverse-unreachable. In the dom-case we disallow such
348 nodes, but in post-dom we have to deal with them.
350 There are two situations in which this occurs. First, noreturn
351 functions. Second, infinite loops. In the first case we need to
352 pretend that there is an edge to the exit block. In the second
353 case, we wind up with a forest. We need to process all noreturn
354 blocks before we know if we've got any infinite loops. */
356 basic_block b;
357 bool saw_unconnected = false;
359 FOR_EACH_BB_REVERSE (b)
361 if (EDGE_COUNT (b->succs) > 0)
363 if (di->dfs_order[b->index] == 0)
364 saw_unconnected = true;
365 continue;
367 bitmap_set_bit (di->fake_exit_edge, b->index);
368 di->dfs_order[b->index] = di->dfsnum;
369 di->dfs_to_bb[di->dfsnum] = b;
370 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
371 di->dfsnum++;
372 calc_dfs_tree_nonrec (di, b, reverse);
375 if (saw_unconnected)
377 FOR_EACH_BB_REVERSE (b)
379 basic_block b2;
380 if (di->dfs_order[b->index])
381 continue;
382 b2 = dfs_find_deadend (b);
383 gcc_checking_assert (di->dfs_order[b2->index] == 0);
384 bitmap_set_bit (di->fake_exit_edge, b2->index);
385 di->dfs_order[b2->index] = di->dfsnum;
386 di->dfs_to_bb[di->dfsnum] = b2;
387 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
388 di->dfsnum++;
389 calc_dfs_tree_nonrec (di, b2, reverse);
390 gcc_checking_assert (di->dfs_order[b->index]);
395 di->nodes = di->dfsnum - 1;
397 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
398 gcc_assert (di->nodes == (unsigned int) n_basic_blocks_for_fn (cfun) - 1);
401 /* Compress the path from V to the root of its set and update path_min at the
402 same time. After compress(di, V) set_chain[V] is the root of the set V is
403 in and path_min[V] is the node with the smallest key[] value on the path
404 from V to that root. */
406 static void
407 compress (struct dom_info *di, TBB v)
409 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
410 greater than 5 even for huge graphs (I've not seen call depth > 4).
411 Also performance wise compress() ranges _far_ behind eval(). */
412 TBB parent = di->set_chain[v];
413 if (di->set_chain[parent])
415 compress (di, parent);
416 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
417 di->path_min[v] = di->path_min[parent];
418 di->set_chain[v] = di->set_chain[parent];
422 /* Compress the path from V to the set root of V if needed (when the root has
423 changed since the last call). Returns the node with the smallest key[]
424 value on the path from V to the root. */
426 static inline TBB
427 eval (struct dom_info *di, TBB v)
429 /* The representative of the set V is in, also called root (as the set
430 representation is a tree). */
431 TBB rep = di->set_chain[v];
433 /* V itself is the root. */
434 if (!rep)
435 return di->path_min[v];
437 /* Compress only if necessary. */
438 if (di->set_chain[rep])
440 compress (di, v);
441 rep = di->set_chain[v];
444 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
445 return di->path_min[v];
446 else
447 return di->path_min[rep];
450 /* This essentially merges the two sets of V and W, giving a single set with
451 the new root V. The internal representation of these disjoint sets is a
452 balanced tree. Currently link(V,W) is only used with V being the parent
453 of W. */
455 static void
456 link_roots (struct dom_info *di, TBB v, TBB w)
458 TBB s = w;
460 /* Rebalance the tree. */
461 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
463 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
464 >= 2 * di->set_size[di->set_child[s]])
466 di->set_chain[di->set_child[s]] = s;
467 di->set_child[s] = di->set_child[di->set_child[s]];
469 else
471 di->set_size[di->set_child[s]] = di->set_size[s];
472 s = di->set_chain[s] = di->set_child[s];
476 di->path_min[s] = di->path_min[w];
477 di->set_size[v] += di->set_size[w];
478 if (di->set_size[v] < 2 * di->set_size[w])
480 TBB tmp = s;
481 s = di->set_child[v];
482 di->set_child[v] = tmp;
485 /* Merge all subtrees. */
486 while (s)
488 di->set_chain[s] = v;
489 s = di->set_child[s];
493 /* This calculates the immediate dominators (or post-dominators if REVERSE is
494 true). DI is our working structure and should hold the DFS forest.
495 On return the immediate dominator to node V is in di->dom[V]. */
497 static void
498 calc_idoms (struct dom_info *di, bool reverse)
500 TBB v, w, k, par;
501 basic_block en_block;
502 edge_iterator ei, einext;
504 if (reverse)
505 en_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
506 else
507 en_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
509 /* Go backwards in DFS order, to first look at the leafs. */
510 v = di->nodes;
511 while (v > 1)
513 basic_block bb = di->dfs_to_bb[v];
514 edge e;
516 par = di->dfs_parent[v];
517 k = v;
519 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
521 if (reverse)
523 /* If this block has a fake edge to exit, process that first. */
524 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
526 einext = ei;
527 einext.index = 0;
528 goto do_fake_exit_edge;
532 /* Search all direct predecessors for the smallest node with a path
533 to them. That way we have the smallest node with also a path to
534 us only over nodes behind us. In effect we search for our
535 semidominator. */
536 while (!ei_end_p (ei))
538 TBB k1;
539 basic_block b;
541 e = ei_edge (ei);
542 b = (reverse) ? e->dest : e->src;
543 einext = ei;
544 ei_next (&einext);
546 if (b == en_block)
548 do_fake_exit_edge:
549 k1 = di->dfs_order[last_basic_block];
551 else
552 k1 = di->dfs_order[b->index];
554 /* Call eval() only if really needed. If k1 is above V in DFS tree,
555 then we know, that eval(k1) == k1 and key[k1] == k1. */
556 if (k1 > v)
557 k1 = di->key[eval (di, k1)];
558 if (k1 < k)
559 k = k1;
561 ei = einext;
564 di->key[v] = k;
565 link_roots (di, par, v);
566 di->next_bucket[v] = di->bucket[k];
567 di->bucket[k] = v;
569 /* Transform semidominators into dominators. */
570 for (w = di->bucket[par]; w; w = di->next_bucket[w])
572 k = eval (di, w);
573 if (di->key[k] < di->key[w])
574 di->dom[w] = k;
575 else
576 di->dom[w] = par;
578 /* We don't need to cleanup next_bucket[]. */
579 di->bucket[par] = 0;
580 v--;
583 /* Explicitly define the dominators. */
584 di->dom[1] = 0;
585 for (v = 2; v <= di->nodes; v++)
586 if (di->dom[v] != di->key[v])
587 di->dom[v] = di->dom[di->dom[v]];
590 /* Assign dfs numbers starting from NUM to NODE and its sons. */
592 static void
593 assign_dfs_numbers (struct et_node *node, int *num)
595 struct et_node *son;
597 node->dfs_num_in = (*num)++;
599 if (node->son)
601 assign_dfs_numbers (node->son, num);
602 for (son = node->son->right; son != node->son; son = son->right)
603 assign_dfs_numbers (son, num);
606 node->dfs_num_out = (*num)++;
609 /* Compute the data necessary for fast resolving of dominator queries in a
610 static dominator tree. */
612 static void
613 compute_dom_fast_query (enum cdi_direction dir)
615 int num = 0;
616 basic_block bb;
617 unsigned int dir_index = dom_convert_dir_to_idx (dir);
619 gcc_checking_assert (dom_info_available_p (dir));
621 if (dom_computed[dir_index] == DOM_OK)
622 return;
624 FOR_ALL_BB (bb)
626 if (!bb->dom[dir_index]->father)
627 assign_dfs_numbers (bb->dom[dir_index], &num);
630 dom_computed[dir_index] = DOM_OK;
633 /* The main entry point into this module. DIR is set depending on whether
634 we want to compute dominators or postdominators. */
636 void
637 calculate_dominance_info (enum cdi_direction dir)
639 struct dom_info di;
640 basic_block b;
641 unsigned int dir_index = dom_convert_dir_to_idx (dir);
642 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
644 if (dom_computed[dir_index] == DOM_OK)
645 return;
647 timevar_push (TV_DOMINANCE);
648 if (!dom_info_available_p (dir))
650 gcc_assert (!n_bbs_in_dom_tree[dir_index]);
652 FOR_ALL_BB (b)
654 b->dom[dir_index] = et_new_tree (b);
656 n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);
658 init_dom_info (&di, dir);
659 calc_dfs_tree (&di, reverse);
660 calc_idoms (&di, reverse);
662 FOR_EACH_BB (b)
664 TBB d = di.dom[di.dfs_order[b->index]];
666 if (di.dfs_to_bb[d])
667 et_set_father (b->dom[dir_index], di.dfs_to_bb[d]->dom[dir_index]);
670 free_dom_info (&di);
671 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
674 compute_dom_fast_query (dir);
676 timevar_pop (TV_DOMINANCE);
679 /* Free dominance information for direction DIR. */
680 void
681 free_dominance_info (enum cdi_direction dir)
683 basic_block bb;
684 unsigned int dir_index = dom_convert_dir_to_idx (dir);
686 if (!dom_info_available_p (dir))
687 return;
689 FOR_ALL_BB (bb)
691 et_free_tree_force (bb->dom[dir_index]);
692 bb->dom[dir_index] = NULL;
694 et_free_pools ();
696 n_bbs_in_dom_tree[dir_index] = 0;
698 dom_computed[dir_index] = DOM_NONE;
701 /* Return the immediate dominator of basic block BB. */
702 basic_block
703 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
705 unsigned int dir_index = dom_convert_dir_to_idx (dir);
706 struct et_node *node = bb->dom[dir_index];
708 gcc_checking_assert (dom_computed[dir_index]);
710 if (!node->father)
711 return NULL;
713 return (basic_block) node->father->data;
716 /* Set the immediate dominator of the block possibly removing
717 existing edge. NULL can be used to remove any edge. */
718 void
719 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
720 basic_block dominated_by)
722 unsigned int dir_index = dom_convert_dir_to_idx (dir);
723 struct et_node *node = bb->dom[dir_index];
725 gcc_checking_assert (dom_computed[dir_index]);
727 if (node->father)
729 if (node->father->data == dominated_by)
730 return;
731 et_split (node);
734 if (dominated_by)
735 et_set_father (node, dominated_by->dom[dir_index]);
737 if (dom_computed[dir_index] == DOM_OK)
738 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
741 /* Returns the list of basic blocks immediately dominated by BB, in the
742 direction DIR. */
743 vec<basic_block>
744 get_dominated_by (enum cdi_direction dir, basic_block bb)
746 unsigned int dir_index = dom_convert_dir_to_idx (dir);
747 struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
748 vec<basic_block> bbs = vNULL;
750 gcc_checking_assert (dom_computed[dir_index]);
752 if (!son)
753 return vNULL;
755 bbs.safe_push ((basic_block) son->data);
756 for (ason = son->right; ason != son; ason = ason->right)
757 bbs.safe_push ((basic_block) ason->data);
759 return bbs;
762 /* Returns the list of basic blocks that are immediately dominated (in
763 direction DIR) by some block between N_REGION ones stored in REGION,
764 except for blocks in the REGION itself. */
766 vec<basic_block>
767 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
768 unsigned n_region)
770 unsigned i;
771 basic_block dom;
772 vec<basic_block> doms = vNULL;
774 for (i = 0; i < n_region; i++)
775 region[i]->flags |= BB_DUPLICATED;
776 for (i = 0; i < n_region; i++)
777 for (dom = first_dom_son (dir, region[i]);
778 dom;
779 dom = next_dom_son (dir, dom))
780 if (!(dom->flags & BB_DUPLICATED))
781 doms.safe_push (dom);
782 for (i = 0; i < n_region; i++)
783 region[i]->flags &= ~BB_DUPLICATED;
785 return doms;
788 /* Returns the list of basic blocks including BB dominated by BB, in the
789 direction DIR up to DEPTH in the dominator tree. The DEPTH of zero will
790 produce a vector containing all dominated blocks. The vector will be sorted
791 in preorder. */
793 vec<basic_block>
794 get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
796 vec<basic_block> bbs = vNULL;
797 unsigned i;
798 unsigned next_level_start;
800 i = 0;
801 bbs.safe_push (bb);
802 next_level_start = 1; /* = bbs.length (); */
806 basic_block son;
808 bb = bbs[i++];
809 for (son = first_dom_son (dir, bb);
810 son;
811 son = next_dom_son (dir, son))
812 bbs.safe_push (son);
814 if (i == next_level_start && --depth)
815 next_level_start = bbs.length ();
817 while (i < next_level_start);
819 return bbs;
822 /* Returns the list of basic blocks including BB dominated by BB, in the
823 direction DIR. The vector will be sorted in preorder. */
825 vec<basic_block>
826 get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
828 return get_dominated_to_depth (dir, bb, 0);
831 /* Redirect all edges pointing to BB to TO. */
832 void
833 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
834 basic_block to)
836 unsigned int dir_index = dom_convert_dir_to_idx (dir);
837 struct et_node *bb_node, *to_node, *son;
839 bb_node = bb->dom[dir_index];
840 to_node = to->dom[dir_index];
842 gcc_checking_assert (dom_computed[dir_index]);
844 if (!bb_node->son)
845 return;
847 while (bb_node->son)
849 son = bb_node->son;
851 et_split (son);
852 et_set_father (son, to_node);
855 if (dom_computed[dir_index] == DOM_OK)
856 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
859 /* Find first basic block in the tree dominating both BB1 and BB2. */
860 basic_block
861 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
863 unsigned int dir_index = dom_convert_dir_to_idx (dir);
865 gcc_checking_assert (dom_computed[dir_index]);
867 if (!bb1)
868 return bb2;
869 if (!bb2)
870 return bb1;
872 return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
876 /* Find the nearest common dominator for the basic blocks in BLOCKS,
877 using dominance direction DIR. */
879 basic_block
880 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
882 unsigned i, first;
883 bitmap_iterator bi;
884 basic_block dom;
886 first = bitmap_first_set_bit (blocks);
887 dom = BASIC_BLOCK (first);
888 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
889 if (dom != BASIC_BLOCK (i))
890 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
892 return dom;
895 /* Given a dominator tree, we can determine whether one thing
896 dominates another in constant time by using two DFS numbers:
898 1. The number for when we visit a node on the way down the tree
899 2. The number for when we visit a node on the way back up the tree
901 You can view these as bounds for the range of dfs numbers the
902 nodes in the subtree of the dominator tree rooted at that node
903 will contain.
905 The dominator tree is always a simple acyclic tree, so there are
906 only three possible relations two nodes in the dominator tree have
907 to each other:
909 1. Node A is above Node B (and thus, Node A dominates node B)
918 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
919 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
920 because we must hit A in the dominator tree *before* B on the walk
921 down, and we will hit A *after* B on the walk back up
923 2. Node A is below node B (and thus, node B dominates node A)
932 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
933 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
935 This is because we must hit A in the dominator tree *after* B on
936 the walk down, and we will hit A *before* B on the walk back up
938 3. Node A and B are siblings (and thus, neither dominates the other)
946 In the above case, DFS_Number_In of A will *always* be <=
947 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
948 DFS_Number_Out of B. This is because we will always finish the dfs
949 walk of one of the subtrees before the other, and thus, the dfs
950 numbers for one subtree can't intersect with the range of dfs
951 numbers for the other subtree. If you swap A and B's position in
952 the dominator tree, the comparison changes direction, but the point
953 is that both comparisons will always go the same way if there is no
954 dominance relationship.
956 Thus, it is sufficient to write
958 A_Dominates_B (node A, node B)
960 return DFS_Number_In(A) <= DFS_Number_In(B)
961 && DFS_Number_Out (A) >= DFS_Number_Out(B);
964 A_Dominated_by_B (node A, node B)
966 return DFS_Number_In(A) >= DFS_Number_In(A)
967 && DFS_Number_Out (A) <= DFS_Number_Out(B);
968 } */
970 /* Return TRUE in case BB1 is dominated by BB2. */
971 bool
972 dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
974 unsigned int dir_index = dom_convert_dir_to_idx (dir);
975 struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];
977 gcc_checking_assert (dom_computed[dir_index]);
979 if (dom_computed[dir_index] == DOM_OK)
980 return (n1->dfs_num_in >= n2->dfs_num_in
981 && n1->dfs_num_out <= n2->dfs_num_out);
983 return et_below (n1, n2);
986 /* Returns the entry dfs number for basic block BB, in the direction DIR. */
988 unsigned
989 bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
991 unsigned int dir_index = dom_convert_dir_to_idx (dir);
992 struct et_node *n = bb->dom[dir_index];
994 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
995 return n->dfs_num_in;
998 /* Returns the exit dfs number for basic block BB, in the direction DIR. */
1000 unsigned
1001 bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
1003 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1004 struct et_node *n = bb->dom[dir_index];
1006 gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
1007 return n->dfs_num_out;
1010 /* Verify invariants of dominator structure. */
1011 DEBUG_FUNCTION void
1012 verify_dominators (enum cdi_direction dir)
1014 int err = 0;
1015 basic_block bb, imm_bb, imm_bb_correct;
1016 struct dom_info di;
1017 bool reverse = (dir == CDI_POST_DOMINATORS) ? true : false;
1019 gcc_assert (dom_info_available_p (dir));
1021 init_dom_info (&di, dir);
1022 calc_dfs_tree (&di, reverse);
1023 calc_idoms (&di, reverse);
1025 FOR_EACH_BB (bb)
1027 imm_bb = get_immediate_dominator (dir, bb);
1028 if (!imm_bb)
1030 error ("dominator of %d status unknown", bb->index);
1031 err = 1;
1034 imm_bb_correct = di.dfs_to_bb[di.dom[di.dfs_order[bb->index]]];
1035 if (imm_bb != imm_bb_correct)
1037 error ("dominator of %d should be %d, not %d",
1038 bb->index, imm_bb_correct->index, imm_bb->index);
1039 err = 1;
1043 free_dom_info (&di);
1044 gcc_assert (!err);
1047 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
1048 assuming that dominators of other blocks are correct. We also use it to
1049 recompute the dominators in a restricted area, by iterating it until it
1050 reaches a fixed point. */
1052 basic_block
1053 recompute_dominator (enum cdi_direction dir, basic_block bb)
1055 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1056 basic_block dom_bb = NULL;
1057 edge e;
1058 edge_iterator ei;
1060 gcc_checking_assert (dom_computed[dir_index]);
1062 if (dir == CDI_DOMINATORS)
1064 FOR_EACH_EDGE (e, ei, bb->preds)
1066 if (!dominated_by_p (dir, e->src, bb))
1067 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
1070 else
1072 FOR_EACH_EDGE (e, ei, bb->succs)
1074 if (!dominated_by_p (dir, e->dest, bb))
1075 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
1079 return dom_bb;
1082 /* Use simple heuristics (see iterate_fix_dominators) to determine dominators
1083 of BBS. We assume that all the immediate dominators except for those of the
1084 blocks in BBS are correct. If CONSERVATIVE is true, we also assume that the
1085 currently recorded immediate dominators of blocks in BBS really dominate the
1086 blocks. The basic blocks for that we determine the dominator are removed
1087 from BBS. */
1089 static void
1090 prune_bbs_to_update_dominators (vec<basic_block> bbs,
1091 bool conservative)
1093 unsigned i;
1094 bool single;
1095 basic_block bb, dom = NULL;
1096 edge_iterator ei;
1097 edge e;
1099 for (i = 0; bbs.iterate (i, &bb);)
1101 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1102 goto succeed;
1104 if (single_pred_p (bb))
1106 set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
1107 goto succeed;
1110 if (!conservative)
1111 goto fail;
1113 single = true;
1114 dom = NULL;
1115 FOR_EACH_EDGE (e, ei, bb->preds)
1117 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1118 continue;
1120 if (!dom)
1121 dom = e->src;
1122 else
1124 single = false;
1125 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1129 gcc_assert (dom != NULL);
1130 if (single
1131 || find_edge (dom, bb))
1133 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1134 goto succeed;
1137 fail:
1138 i++;
1139 continue;
1141 succeed:
1142 bbs.unordered_remove (i);
1146 /* Returns root of the dominance tree in the direction DIR that contains
1147 BB. */
1149 static basic_block
1150 root_of_dom_tree (enum cdi_direction dir, basic_block bb)
1152 return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
1155 /* See the comment in iterate_fix_dominators. Finds the immediate dominators
1156 for the sons of Y, found using the SON and BROTHER arrays representing
1157 the dominance tree of graph G. BBS maps the vertices of G to the basic
1158 blocks. */
1160 static void
1161 determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs,
1162 int y, int *son, int *brother)
1164 bitmap gprime;
1165 int i, a, nc;
1166 vec<int> *sccs;
1167 basic_block bb, dom, ybb;
1168 unsigned si;
1169 edge e;
1170 edge_iterator ei;
1172 if (son[y] == -1)
1173 return;
1174 if (y == (int) bbs.length ())
1175 ybb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1176 else
1177 ybb = bbs[y];
1179 if (brother[son[y]] == -1)
1181 /* Handle the common case Y has just one son specially. */
1182 bb = bbs[son[y]];
1183 set_immediate_dominator (CDI_DOMINATORS, bb,
1184 recompute_dominator (CDI_DOMINATORS, bb));
1185 identify_vertices (g, y, son[y]);
1186 return;
1189 gprime = BITMAP_ALLOC (NULL);
1190 for (a = son[y]; a != -1; a = brother[a])
1191 bitmap_set_bit (gprime, a);
1193 nc = graphds_scc (g, gprime);
1194 BITMAP_FREE (gprime);
1196 /* ??? Needed to work around the pre-processor confusion with
1197 using a multi-argument template type as macro argument. */
1198 typedef vec<int> vec_int_heap;
1199 sccs = XCNEWVEC (vec_int_heap, nc);
1200 for (a = son[y]; a != -1; a = brother[a])
1201 sccs[g->vertices[a].component].safe_push (a);
1203 for (i = nc - 1; i >= 0; i--)
1205 dom = NULL;
1206 FOR_EACH_VEC_ELT (sccs[i], si, a)
1208 bb = bbs[a];
1209 FOR_EACH_EDGE (e, ei, bb->preds)
1211 if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
1212 continue;
1214 dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
1218 gcc_assert (dom != NULL);
1219 FOR_EACH_VEC_ELT (sccs[i], si, a)
1221 bb = bbs[a];
1222 set_immediate_dominator (CDI_DOMINATORS, bb, dom);
1226 for (i = 0; i < nc; i++)
1227 sccs[i].release ();
1228 free (sccs);
1230 for (a = son[y]; a != -1; a = brother[a])
1231 identify_vertices (g, y, a);
1234 /* Recompute dominance information for basic blocks in the set BBS. The
1235 function assumes that the immediate dominators of all the other blocks
1236 in CFG are correct, and that there are no unreachable blocks.
1238 If CONSERVATIVE is true, we additionally assume that all the ancestors of
1239 a block of BBS in the current dominance tree dominate it. */
1241 void
1242 iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> bbs,
1243 bool conservative)
1245 unsigned i;
1246 basic_block bb, dom;
1247 struct graph *g;
1248 int n, y;
1249 size_t dom_i;
1250 edge e;
1251 edge_iterator ei;
1252 pointer_map<int> *map;
1253 int *parent, *son, *brother;
1254 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1256 /* We only support updating dominators. There are some problems with
1257 updating postdominators (need to add fake edges from infinite loops
1258 and noreturn functions), and since we do not currently use
1259 iterate_fix_dominators for postdominators, any attempt to handle these
1260 problems would be unused, untested, and almost surely buggy. We keep
1261 the DIR argument for consistency with the rest of the dominator analysis
1262 interface. */
1263 gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]);
1265 /* The algorithm we use takes inspiration from the following papers, although
1266 the details are quite different from any of them:
1268 [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
1269 Dominator Tree of a Reducible Flowgraph
1270 [2] V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
1271 dominator trees
1272 [3] K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
1273 Algorithm
1275 First, we use the following heuristics to decrease the size of the BBS
1276 set:
1277 a) if BB has a single predecessor, then its immediate dominator is this
1278 predecessor
1279 additionally, if CONSERVATIVE is true:
1280 b) if all the predecessors of BB except for one (X) are dominated by BB,
1281 then X is the immediate dominator of BB
1282 c) if the nearest common ancestor of the predecessors of BB is X and
1283 X -> BB is an edge in CFG, then X is the immediate dominator of BB
1285 Then, we need to establish the dominance relation among the basic blocks
1286 in BBS. We split the dominance tree by removing the immediate dominator
1287 edges from BBS, creating a forest F. We form a graph G whose vertices
1288 are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
1289 X' -> Y in CFG such that X' belongs to the tree of the dominance forest
1290 whose root is X. We then determine dominance tree of G. Note that
1291 for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
1292 In this step, we can use arbitrary algorithm to determine dominators.
1293 We decided to prefer the algorithm [3] to the algorithm of
1294 Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
1295 10 during gcc bootstrap), and [3] should perform better in this case.
1297 Finally, we need to determine the immediate dominators for the basic
1298 blocks of BBS. If the immediate dominator of X in G is Y, then
1299 the immediate dominator of X in CFG belongs to the tree of F rooted in
1300 Y. We process the dominator tree T of G recursively, starting from leaves.
1301 Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
1302 subtrees of the dominance tree of CFG rooted in X_i are already correct.
1303 Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}. We make
1304 the following observations:
1305 (i) the immediate dominator of all blocks in a strongly connected
1306 component of G' is the same
1307 (ii) if X has no predecessors in G', then the immediate dominator of X
1308 is the nearest common ancestor of the predecessors of X in the
1309 subtree of F rooted in Y
1310 Therefore, it suffices to find the topological ordering of G', and
1311 process the nodes X_i in this order using the rules (i) and (ii).
1312 Then, we contract all the nodes X_i with Y in G, so that the further
1313 steps work correctly. */
1315 if (!conservative)
1317 /* Split the tree now. If the idoms of blocks in BBS are not
1318 conservatively correct, setting the dominators using the
1319 heuristics in prune_bbs_to_update_dominators could
1320 create cycles in the dominance "tree", and cause ICE. */
1321 FOR_EACH_VEC_ELT (bbs, i, bb)
1322 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1325 prune_bbs_to_update_dominators (bbs, conservative);
1326 n = bbs.length ();
1328 if (n == 0)
1329 return;
1331 if (n == 1)
1333 bb = bbs[0];
1334 set_immediate_dominator (CDI_DOMINATORS, bb,
1335 recompute_dominator (CDI_DOMINATORS, bb));
1336 return;
1339 /* Construct the graph G. */
1340 map = new pointer_map<int>;
1341 FOR_EACH_VEC_ELT (bbs, i, bb)
1343 /* If the dominance tree is conservatively correct, split it now. */
1344 if (conservative)
1345 set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
1346 *map->insert (bb) = i;
1348 *map->insert (ENTRY_BLOCK_PTR_FOR_FN (cfun)) = n;
1350 g = new_graph (n + 1);
1351 for (y = 0; y < g->n_vertices; y++)
1352 g->vertices[y].data = BITMAP_ALLOC (NULL);
1353 FOR_EACH_VEC_ELT (bbs, i, bb)
1355 FOR_EACH_EDGE (e, ei, bb->preds)
1357 dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
1358 if (dom == bb)
1359 continue;
1361 dom_i = *map->contains (dom);
1363 /* Do not include parallel edges to G. */
1364 if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
1365 continue;
1367 add_edge (g, dom_i, i);
1370 for (y = 0; y < g->n_vertices; y++)
1371 BITMAP_FREE (g->vertices[y].data);
1372 delete map;
1374 /* Find the dominator tree of G. */
1375 son = XNEWVEC (int, n + 1);
1376 brother = XNEWVEC (int, n + 1);
1377 parent = XNEWVEC (int, n + 1);
1378 graphds_domtree (g, n, parent, son, brother);
1380 /* Finally, traverse the tree and find the immediate dominators. */
1381 for (y = n; son[y] != -1; y = son[y])
1382 continue;
1383 while (y != -1)
1385 determine_dominators_for_sons (g, bbs, y, son, brother);
1387 if (brother[y] != -1)
1389 y = brother[y];
1390 while (son[y] != -1)
1391 y = son[y];
1393 else
1394 y = parent[y];
1397 free (son);
1398 free (brother);
1399 free (parent);
1401 free_graph (g);
1404 void
1405 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1407 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1409 gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]);
1411 n_bbs_in_dom_tree[dir_index]++;
1413 bb->dom[dir_index] = et_new_tree (bb);
1415 if (dom_computed[dir_index] == DOM_OK)
1416 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1419 void
1420 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1422 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1424 gcc_checking_assert (dom_computed[dir_index]);
1426 et_free_tree (bb->dom[dir_index]);
1427 bb->dom[dir_index] = NULL;
1428 n_bbs_in_dom_tree[dir_index]--;
1430 if (dom_computed[dir_index] == DOM_OK)
1431 dom_computed[dir_index] = DOM_NO_FAST_QUERY;
1434 /* Returns the first son of BB in the dominator or postdominator tree
1435 as determined by DIR. */
1437 basic_block
1438 first_dom_son (enum cdi_direction dir, basic_block bb)
1440 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1441 struct et_node *son = bb->dom[dir_index]->son;
1443 return (basic_block) (son ? son->data : NULL);
1446 /* Returns the next dominance son after BB in the dominator or postdominator
1447 tree as determined by DIR, or NULL if it was the last one. */
1449 basic_block
1450 next_dom_son (enum cdi_direction dir, basic_block bb)
1452 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1453 struct et_node *next = bb->dom[dir_index]->right;
1455 return (basic_block) (next->father->son == next ? NULL : next->data);
1458 /* Return dominance availability for dominance info DIR. */
1460 enum dom_state
1461 dom_info_state (enum cdi_direction dir)
1463 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1465 return dom_computed[dir_index];
1468 /* Set the dominance availability for dominance info DIR to NEW_STATE. */
1470 void
1471 set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
1473 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1475 dom_computed[dir_index] = new_state;
1478 /* Returns true if dominance information for direction DIR is available. */
1480 bool
1481 dom_info_available_p (enum cdi_direction dir)
1483 unsigned int dir_index = dom_convert_dir_to_idx (dir);
1485 return dom_computed[dir_index] != DOM_NONE;
1488 DEBUG_FUNCTION void
1489 debug_dominance_info (enum cdi_direction dir)
1491 basic_block bb, bb2;
1492 FOR_EACH_BB (bb)
1493 if ((bb2 = get_immediate_dominator (dir, bb)))
1494 fprintf (stderr, "%i %i\n", bb->index, bb2->index);
1497 /* Prints to stderr representation of the dominance tree (for direction DIR)
1498 rooted in ROOT, indented by INDENT tabulators. If INDENT_FIRST is false,
1499 the first line of the output is not indented. */
1501 static void
1502 debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
1503 unsigned indent, bool indent_first)
1505 basic_block son;
1506 unsigned i;
1507 bool first = true;
1509 if (indent_first)
1510 for (i = 0; i < indent; i++)
1511 fprintf (stderr, "\t");
1512 fprintf (stderr, "%d\t", root->index);
1514 for (son = first_dom_son (dir, root);
1515 son;
1516 son = next_dom_son (dir, son))
1518 debug_dominance_tree_1 (dir, son, indent + 1, !first);
1519 first = false;
1522 if (first)
1523 fprintf (stderr, "\n");
1526 /* Prints to stderr representation of the dominance tree (for direction DIR)
1527 rooted in ROOT. */
1529 DEBUG_FUNCTION void
1530 debug_dominance_tree (enum cdi_direction dir, basic_block root)
1532 debug_dominance_tree_1 (dir, root, 0, false);