1 /* Chains of recurrences.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file implements operations on chains of recurrences. Chains
23 of recurrences are used for modeling evolution functions of scalar
29 #include "coretypes.h"
34 #include "diagnostic.h"
36 #include "tree-chrec.h"
37 #include "tree-pass.h"
41 /* Extended folder for chrecs. */
43 /* Determines whether CST is not a constant evolution. */
46 is_not_constant_evolution (tree cst
)
48 return (TREE_CODE (cst
) == POLYNOMIAL_CHREC
);
51 /* Fold CODE for a polynomial function and a constant. */
54 chrec_fold_poly_cst (enum tree_code code
,
61 gcc_assert (TREE_CODE (poly
) == POLYNOMIAL_CHREC
);
62 gcc_assert (!is_not_constant_evolution (cst
));
67 return build_polynomial_chrec
68 (CHREC_VARIABLE (poly
),
69 chrec_fold_plus (type
, CHREC_LEFT (poly
), cst
),
73 return build_polynomial_chrec
74 (CHREC_VARIABLE (poly
),
75 chrec_fold_minus (type
, CHREC_LEFT (poly
), cst
),
79 return build_polynomial_chrec
80 (CHREC_VARIABLE (poly
),
81 chrec_fold_multiply (type
, CHREC_LEFT (poly
), cst
),
82 chrec_fold_multiply (type
, CHREC_RIGHT (poly
), cst
));
85 return chrec_dont_know
;
89 /* Fold the addition of two polynomial functions. */
92 chrec_fold_plus_poly_poly (enum tree_code code
,
101 gcc_assert (TREE_CODE (poly0
) == POLYNOMIAL_CHREC
);
102 gcc_assert (TREE_CODE (poly1
) == POLYNOMIAL_CHREC
);
105 {a, +, b}_1 + {c, +, d}_2 -> {{a, +, b}_1 + c, +, d}_2,
106 {a, +, b}_2 + {c, +, d}_1 -> {{c, +, d}_1 + a, +, b}_2,
107 {a, +, b}_x + {c, +, d}_x -> {a+c, +, b+d}_x. */
108 if (CHREC_VARIABLE (poly0
) < CHREC_VARIABLE (poly1
))
110 if (code
== PLUS_EXPR
)
111 return build_polynomial_chrec
112 (CHREC_VARIABLE (poly1
),
113 chrec_fold_plus (type
, poly0
, CHREC_LEFT (poly1
)),
114 CHREC_RIGHT (poly1
));
116 return build_polynomial_chrec
117 (CHREC_VARIABLE (poly1
),
118 chrec_fold_minus (type
, poly0
, CHREC_LEFT (poly1
)),
119 chrec_fold_multiply (type
, CHREC_RIGHT (poly1
),
120 build_int_cst_type (type
, -1)));
123 if (CHREC_VARIABLE (poly0
) > CHREC_VARIABLE (poly1
))
125 if (code
== PLUS_EXPR
)
126 return build_polynomial_chrec
127 (CHREC_VARIABLE (poly0
),
128 chrec_fold_plus (type
, CHREC_LEFT (poly0
), poly1
),
129 CHREC_RIGHT (poly0
));
131 return build_polynomial_chrec
132 (CHREC_VARIABLE (poly0
),
133 chrec_fold_minus (type
, CHREC_LEFT (poly0
), poly1
),
134 CHREC_RIGHT (poly0
));
137 if (code
== PLUS_EXPR
)
139 left
= chrec_fold_plus
140 (type
, CHREC_LEFT (poly0
), CHREC_LEFT (poly1
));
141 right
= chrec_fold_plus
142 (type
, CHREC_RIGHT (poly0
), CHREC_RIGHT (poly1
));
146 left
= chrec_fold_minus
147 (type
, CHREC_LEFT (poly0
), CHREC_LEFT (poly1
));
148 right
= chrec_fold_minus
149 (type
, CHREC_RIGHT (poly0
), CHREC_RIGHT (poly1
));
152 if (chrec_zerop (right
))
155 return build_polynomial_chrec
156 (CHREC_VARIABLE (poly0
), left
, right
);
161 /* Fold the multiplication of two polynomial functions. */
164 chrec_fold_multiply_poly_poly (tree type
,
170 gcc_assert (TREE_CODE (poly0
) == POLYNOMIAL_CHREC
);
171 gcc_assert (TREE_CODE (poly1
) == POLYNOMIAL_CHREC
);
173 /* {a, +, b}_1 * {c, +, d}_2 -> {c*{a, +, b}_1, +, d}_2,
174 {a, +, b}_2 * {c, +, d}_1 -> {a*{c, +, d}_1, +, b}_2,
175 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
176 if (CHREC_VARIABLE (poly0
) < CHREC_VARIABLE (poly1
))
177 /* poly0 is a constant wrt. poly1. */
178 return build_polynomial_chrec
179 (CHREC_VARIABLE (poly1
),
180 chrec_fold_multiply (type
, CHREC_LEFT (poly1
), poly0
),
181 CHREC_RIGHT (poly1
));
183 if (CHREC_VARIABLE (poly1
) < CHREC_VARIABLE (poly0
))
184 /* poly1 is a constant wrt. poly0. */
185 return build_polynomial_chrec
186 (CHREC_VARIABLE (poly0
),
187 chrec_fold_multiply (type
, CHREC_LEFT (poly0
), poly1
),
188 CHREC_RIGHT (poly0
));
190 /* poly0 and poly1 are two polynomials in the same variable,
191 {a, +, b}_x * {c, +, d}_x -> {a*c, +, a*d + b*c + b*d, +, 2*b*d}_x. */
193 build_polynomial_chrec
194 (CHREC_VARIABLE (poly0
),
195 build_polynomial_chrec
196 (CHREC_VARIABLE (poly0
),
199 chrec_fold_multiply (type
, CHREC_LEFT (poly0
), CHREC_LEFT (poly1
)),
201 /* "a*d + b*c + b*d". */
203 (type
, chrec_fold_multiply (type
, CHREC_LEFT (poly0
), CHREC_RIGHT (poly1
)),
207 chrec_fold_multiply (type
, CHREC_RIGHT (poly0
), CHREC_LEFT (poly1
)),
208 chrec_fold_multiply (type
, CHREC_RIGHT (poly0
), CHREC_RIGHT (poly1
))))),
212 (type
, build_int_cst (NULL_TREE
, 2),
213 chrec_fold_multiply (type
, CHREC_RIGHT (poly0
), CHREC_RIGHT (poly1
))));
216 /* When the operands are automatically_generated_chrec_p, the fold has
217 to respect the semantics of the operands. */
220 chrec_fold_automatically_generated_operands (tree op0
,
223 if (op0
== chrec_dont_know
224 || op1
== chrec_dont_know
)
225 return chrec_dont_know
;
227 if (op0
== chrec_known
228 || op1
== chrec_known
)
231 if (op0
== chrec_not_analyzed_yet
232 || op1
== chrec_not_analyzed_yet
)
233 return chrec_not_analyzed_yet
;
235 /* The default case produces a safe result. */
236 return chrec_dont_know
;
239 /* Fold the addition of two chrecs. */
242 chrec_fold_plus_1 (enum tree_code code
,
247 if (automatically_generated_chrec_p (op0
)
248 || automatically_generated_chrec_p (op1
))
249 return chrec_fold_automatically_generated_operands (op0
, op1
);
251 switch (TREE_CODE (op0
))
253 case POLYNOMIAL_CHREC
:
254 switch (TREE_CODE (op1
))
256 case POLYNOMIAL_CHREC
:
257 return chrec_fold_plus_poly_poly (code
, type
, op0
, op1
);
260 if (code
== PLUS_EXPR
)
261 return build_polynomial_chrec
262 (CHREC_VARIABLE (op0
),
263 chrec_fold_plus (type
, CHREC_LEFT (op0
), op1
),
266 return build_polynomial_chrec
267 (CHREC_VARIABLE (op0
),
268 chrec_fold_minus (type
, CHREC_LEFT (op0
), op1
),
273 switch (TREE_CODE (op1
))
275 case POLYNOMIAL_CHREC
:
276 if (code
== PLUS_EXPR
)
277 return build_polynomial_chrec
278 (CHREC_VARIABLE (op1
),
279 chrec_fold_plus (type
, op0
, CHREC_LEFT (op1
)),
282 return build_polynomial_chrec
283 (CHREC_VARIABLE (op1
),
284 chrec_fold_minus (type
, op0
, CHREC_LEFT (op1
)),
285 chrec_fold_multiply (type
, CHREC_RIGHT (op1
),
286 build_int_cst_type (type
, -1)));
289 if (tree_contains_chrecs (op0
)
290 || tree_contains_chrecs (op1
))
291 return build (code
, type
, op0
, op1
);
293 return fold (build (code
, type
, op0
, op1
));
298 /* Fold the addition of two chrecs. */
301 chrec_fold_plus (tree type
,
305 if (integer_zerop (op0
))
307 if (integer_zerop (op1
))
310 return chrec_fold_plus_1 (PLUS_EXPR
, type
, op0
, op1
);
313 /* Fold the subtraction of two chrecs. */
316 chrec_fold_minus (tree type
,
320 if (integer_zerop (op1
))
323 return chrec_fold_plus_1 (MINUS_EXPR
, type
, op0
, op1
);
326 /* Fold the multiplication of two chrecs. */
329 chrec_fold_multiply (tree type
,
333 if (automatically_generated_chrec_p (op0
)
334 || automatically_generated_chrec_p (op1
))
335 return chrec_fold_automatically_generated_operands (op0
, op1
);
337 switch (TREE_CODE (op0
))
339 case POLYNOMIAL_CHREC
:
340 switch (TREE_CODE (op1
))
342 case POLYNOMIAL_CHREC
:
343 return chrec_fold_multiply_poly_poly (type
, op0
, op1
);
346 if (integer_onep (op1
))
348 if (integer_zerop (op1
))
349 return build_int_cst_type (type
, 0);
351 return build_polynomial_chrec
352 (CHREC_VARIABLE (op0
),
353 chrec_fold_multiply (type
, CHREC_LEFT (op0
), op1
),
354 chrec_fold_multiply (type
, CHREC_RIGHT (op0
), op1
));
358 if (integer_onep (op0
))
361 if (integer_zerop (op0
))
362 return build_int_cst_type (type
, 0);
364 switch (TREE_CODE (op1
))
366 case POLYNOMIAL_CHREC
:
367 return build_polynomial_chrec
368 (CHREC_VARIABLE (op1
),
369 chrec_fold_multiply (type
, CHREC_LEFT (op1
), op0
),
370 chrec_fold_multiply (type
, CHREC_RIGHT (op1
), op0
));
373 if (integer_onep (op1
))
375 if (integer_zerop (op1
))
376 return build_int_cst_type (type
, 0);
377 return fold (build (MULT_EXPR
, type
, op0
, op1
));
386 /* Evaluate the binomial coefficient. Return NULL_TREE if the intermediate
387 calculation overflows, otherwise return C(n,k) with type TYPE. */
390 tree_fold_binomial (tree type
, tree n
, unsigned int k
)
392 unsigned HOST_WIDE_INT lidx
, lnum
, ldenom
, lres
, ldum
;
393 HOST_WIDE_INT hidx
, hnum
, hdenom
, hres
, hdum
;
397 /* Handle the most frequent cases. */
399 return build_int_cst (type
, 1);
401 return fold_convert (type
, n
);
403 /* Check that k <= n. */
404 if (TREE_INT_CST_HIGH (n
) == 0
405 && TREE_INT_CST_LOW (n
) < k
)
409 lnum
= TREE_INT_CST_LOW (n
);
410 hnum
= TREE_INT_CST_HIGH (n
);
412 /* Denominator = 2. */
416 /* Index = Numerator-1. */
420 lidx
= ~ (unsigned HOST_WIDE_INT
) 0;
428 /* Numerator = Numerator*Index = n*(n-1). */
429 if (mul_double (lnum
, hnum
, lidx
, hidx
, &lnum
, &hnum
))
432 for (i
= 3; i
<= k
; i
++)
438 lidx
= ~ (unsigned HOST_WIDE_INT
) 0;
443 /* Numerator *= Index. */
444 if (mul_double (lnum
, hnum
, lidx
, hidx
, &lnum
, &hnum
))
447 /* Denominator *= i. */
448 mul_double (ldenom
, hdenom
, i
, 0, &ldenom
, &hdenom
);
451 /* Result = Numerator / Denominator. */
452 div_and_round_double (EXACT_DIV_EXPR
, 1, lnum
, hnum
, ldenom
, hdenom
,
453 &lres
, &hres
, &ldum
, &hdum
);
455 res
= build_int_cst_wide (type
, lres
, hres
);
456 return int_fits_type_p (res
, type
) ? res
: NULL_TREE
;
459 /* Helper function. Use the Newton's interpolating formula for
460 evaluating the value of the evolution function. */
463 chrec_evaluate (unsigned var
, tree chrec
, tree n
, unsigned int k
)
465 tree arg0
, arg1
, binomial_n_k
;
466 tree type
= TREE_TYPE (chrec
);
468 while (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
469 && CHREC_VARIABLE (chrec
) > var
)
470 chrec
= CHREC_LEFT (chrec
);
472 if (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
473 && CHREC_VARIABLE (chrec
) == var
)
475 arg0
= chrec_evaluate (var
, CHREC_RIGHT (chrec
), n
, k
+ 1);
476 if (arg0
== chrec_dont_know
)
477 return chrec_dont_know
;
478 binomial_n_k
= tree_fold_binomial (type
, n
, k
);
480 return chrec_dont_know
;
481 arg1
= fold (build2 (MULT_EXPR
, type
,
482 CHREC_LEFT (chrec
), binomial_n_k
));
483 return chrec_fold_plus (type
, arg0
, arg1
);
486 binomial_n_k
= tree_fold_binomial (type
, n
, k
);
488 return chrec_dont_know
;
490 return fold (build2 (MULT_EXPR
, type
, chrec
, binomial_n_k
));
493 /* Evaluates "CHREC (X)" when the varying variable is VAR.
494 Example: Given the following parameters,
500 The result is given by the Newton's interpolating formula:
501 3 * \binom{10}{0} + 4 * \binom{10}{1}.
505 chrec_apply (unsigned var
,
509 tree type
= chrec_type (chrec
);
510 tree res
= chrec_dont_know
;
512 if (automatically_generated_chrec_p (chrec
)
513 || automatically_generated_chrec_p (x
)
515 /* When the symbols are defined in an outer loop, it is possible
516 to symbolically compute the apply, since the symbols are
517 constants with respect to the varying loop. */
518 || chrec_contains_symbols_defined_in_loop (chrec
, var
)
519 || chrec_contains_symbols (x
))
520 return chrec_dont_know
;
522 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
523 fprintf (dump_file
, "(chrec_apply \n");
525 if (evolution_function_is_affine_p (chrec
))
527 /* "{a, +, b} (x)" -> "a + b*x". */
528 if (TREE_CODE (CHREC_LEFT (chrec
)) == INTEGER_CST
529 && integer_zerop (CHREC_LEFT (chrec
)))
530 res
= chrec_fold_multiply (type
, CHREC_RIGHT (chrec
), x
);
533 res
= chrec_fold_plus (type
, CHREC_LEFT (chrec
),
534 chrec_fold_multiply (type
,
535 CHREC_RIGHT (chrec
), x
));
538 else if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
541 else if (TREE_CODE (x
) == INTEGER_CST
542 && tree_int_cst_sgn (x
) == 1)
543 /* testsuite/.../ssa-chrec-38.c. */
544 res
= chrec_evaluate (var
, chrec
, x
, 0);
547 res
= chrec_dont_know
;
549 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
551 fprintf (dump_file
, " (varying_loop = %d\n", var
);
552 fprintf (dump_file
, ")\n (chrec = ");
553 print_generic_expr (dump_file
, chrec
, 0);
554 fprintf (dump_file
, ")\n (x = ");
555 print_generic_expr (dump_file
, x
, 0);
556 fprintf (dump_file
, ")\n (res = ");
557 print_generic_expr (dump_file
, res
, 0);
558 fprintf (dump_file
, "))\n");
564 /* Replaces the initial condition in CHREC with INIT_COND. */
567 chrec_replace_initial_condition (tree chrec
,
570 if (automatically_generated_chrec_p (chrec
))
573 switch (TREE_CODE (chrec
))
575 case POLYNOMIAL_CHREC
:
576 return build_polynomial_chrec
577 (CHREC_VARIABLE (chrec
),
578 chrec_replace_initial_condition (CHREC_LEFT (chrec
), init_cond
),
579 CHREC_RIGHT (chrec
));
586 /* Returns the initial condition of a given CHREC. */
589 initial_condition (tree chrec
)
591 if (automatically_generated_chrec_p (chrec
))
594 if (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
)
595 return initial_condition (CHREC_LEFT (chrec
));
600 /* Returns a univariate function that represents the evolution in
601 LOOP_NUM. Mask the evolution of any other loop. */
604 hide_evolution_in_other_loops_than_loop (tree chrec
,
607 if (automatically_generated_chrec_p (chrec
))
610 switch (TREE_CODE (chrec
))
612 case POLYNOMIAL_CHREC
:
613 if (CHREC_VARIABLE (chrec
) == loop_num
)
614 return build_polynomial_chrec
616 hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec
),
618 CHREC_RIGHT (chrec
));
620 else if (CHREC_VARIABLE (chrec
) < loop_num
)
621 /* There is no evolution in this loop. */
622 return initial_condition (chrec
);
625 return hide_evolution_in_other_loops_than_loop (CHREC_LEFT (chrec
),
633 /* Returns the evolution part of CHREC in LOOP_NUM when RIGHT is
634 true, otherwise returns the initial condition in LOOP_NUM. */
637 chrec_component_in_loop_num (tree chrec
,
643 if (automatically_generated_chrec_p (chrec
))
646 switch (TREE_CODE (chrec
))
648 case POLYNOMIAL_CHREC
:
649 if (CHREC_VARIABLE (chrec
) == loop_num
)
652 component
= CHREC_RIGHT (chrec
);
654 component
= CHREC_LEFT (chrec
);
656 if (TREE_CODE (CHREC_LEFT (chrec
)) != POLYNOMIAL_CHREC
657 || CHREC_VARIABLE (CHREC_LEFT (chrec
)) != CHREC_VARIABLE (chrec
))
661 return build_polynomial_chrec
663 chrec_component_in_loop_num (CHREC_LEFT (chrec
),
669 else if (CHREC_VARIABLE (chrec
) < loop_num
)
670 /* There is no evolution part in this loop. */
674 return chrec_component_in_loop_num (CHREC_LEFT (chrec
),
686 /* Returns the evolution part in LOOP_NUM. Example: the call
687 evolution_part_in_loop_num ({{0, +, 1}_1, +, 2}_1, 1) returns
691 evolution_part_in_loop_num (tree chrec
,
694 return chrec_component_in_loop_num (chrec
, loop_num
, true);
697 /* Returns the initial condition in LOOP_NUM. Example: the call
698 initial_condition_in_loop_num ({{0, +, 1}_1, +, 2}_2, 2) returns
702 initial_condition_in_loop_num (tree chrec
,
705 return chrec_component_in_loop_num (chrec
, loop_num
, false);
708 /* Set or reset the evolution of CHREC to NEW_EVOL in loop LOOP_NUM.
709 This function is essentially used for setting the evolution to
710 chrec_dont_know, for example after having determined that it is
711 impossible to say how many times a loop will execute. */
714 reset_evolution_in_loop (unsigned loop_num
,
718 if (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
719 && CHREC_VARIABLE (chrec
) > loop_num
)
722 build_int_cst (NULL_TREE
, CHREC_VARIABLE (chrec
)),
723 reset_evolution_in_loop (loop_num
, CHREC_LEFT (chrec
), new_evol
),
724 reset_evolution_in_loop (loop_num
, CHREC_RIGHT (chrec
), new_evol
));
726 while (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
727 && CHREC_VARIABLE (chrec
) == loop_num
)
728 chrec
= CHREC_LEFT (chrec
);
730 return build_polynomial_chrec (loop_num
, chrec
, new_evol
);
733 /* Merges two evolution functions that were found by following two
734 alternate paths of a conditional expression. */
737 chrec_merge (tree chrec1
,
740 if (chrec1
== chrec_dont_know
741 || chrec2
== chrec_dont_know
)
742 return chrec_dont_know
;
744 if (chrec1
== chrec_known
745 || chrec2
== chrec_known
)
748 if (chrec1
== chrec_not_analyzed_yet
)
750 if (chrec2
== chrec_not_analyzed_yet
)
753 if (operand_equal_p (chrec1
, chrec2
, 0))
756 return chrec_dont_know
;
763 /* Helper function for is_multivariate_chrec. */
766 is_multivariate_chrec_rec (tree chrec
, unsigned int rec_var
)
768 if (chrec
== NULL_TREE
)
771 if (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
)
773 if (CHREC_VARIABLE (chrec
) != rec_var
)
776 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec
), rec_var
)
777 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec
), rec_var
));
783 /* Determine whether the given chrec is multivariate or not. */
786 is_multivariate_chrec (tree chrec
)
788 if (chrec
== NULL_TREE
)
791 if (TREE_CODE (chrec
) == POLYNOMIAL_CHREC
)
792 return (is_multivariate_chrec_rec (CHREC_LEFT (chrec
),
793 CHREC_VARIABLE (chrec
))
794 || is_multivariate_chrec_rec (CHREC_RIGHT (chrec
),
795 CHREC_VARIABLE (chrec
)));
800 /* Determines whether the chrec contains symbolic names or not. */
803 chrec_contains_symbols (tree chrec
)
805 if (chrec
== NULL_TREE
)
808 if (TREE_CODE (chrec
) == SSA_NAME
809 || TREE_CODE (chrec
) == VAR_DECL
810 || TREE_CODE (chrec
) == PARM_DECL
811 || TREE_CODE (chrec
) == FUNCTION_DECL
812 || TREE_CODE (chrec
) == LABEL_DECL
813 || TREE_CODE (chrec
) == RESULT_DECL
814 || TREE_CODE (chrec
) == FIELD_DECL
)
817 switch (TREE_CODE_LENGTH (TREE_CODE (chrec
)))
820 if (chrec_contains_symbols (TREE_OPERAND (chrec
, 2)))
824 if (chrec_contains_symbols (TREE_OPERAND (chrec
, 1)))
828 if (chrec_contains_symbols (TREE_OPERAND (chrec
, 0)))
836 /* Determines whether the chrec contains undetermined coefficients. */
839 chrec_contains_undetermined (tree chrec
)
841 if (chrec
== chrec_dont_know
842 || chrec
== chrec_not_analyzed_yet
843 || chrec
== NULL_TREE
)
846 switch (TREE_CODE_LENGTH (TREE_CODE (chrec
)))
849 if (chrec_contains_undetermined (TREE_OPERAND (chrec
, 2)))
853 if (chrec_contains_undetermined (TREE_OPERAND (chrec
, 1)))
857 if (chrec_contains_undetermined (TREE_OPERAND (chrec
, 0)))
865 /* Determines whether the tree EXPR contains chrecs. */
868 tree_contains_chrecs (tree expr
)
870 if (expr
== NULL_TREE
)
873 if (tree_is_chrec (expr
))
876 switch (TREE_CODE_LENGTH (TREE_CODE (expr
)))
879 if (tree_contains_chrecs (TREE_OPERAND (expr
, 2)))
883 if (tree_contains_chrecs (TREE_OPERAND (expr
, 1)))
887 if (tree_contains_chrecs (TREE_OPERAND (expr
, 0)))
895 /* Determine whether the given tree is an affine multivariate
899 evolution_function_is_affine_multivariate_p (tree chrec
)
901 if (chrec
== NULL_TREE
)
904 switch (TREE_CODE (chrec
))
906 case POLYNOMIAL_CHREC
:
907 if (evolution_function_is_constant_p (CHREC_LEFT (chrec
)))
909 if (evolution_function_is_constant_p (CHREC_RIGHT (chrec
)))
913 if (TREE_CODE (CHREC_RIGHT (chrec
)) == POLYNOMIAL_CHREC
914 && CHREC_VARIABLE (CHREC_RIGHT (chrec
))
915 != CHREC_VARIABLE (chrec
)
916 && evolution_function_is_affine_multivariate_p
917 (CHREC_RIGHT (chrec
)))
925 if (evolution_function_is_constant_p (CHREC_RIGHT (chrec
))
926 && TREE_CODE (CHREC_LEFT (chrec
)) == POLYNOMIAL_CHREC
927 && CHREC_VARIABLE (CHREC_LEFT (chrec
)) != CHREC_VARIABLE (chrec
)
928 && evolution_function_is_affine_multivariate_p
929 (CHREC_LEFT (chrec
)))
940 /* Determine whether the given tree is a function in zero or one
944 evolution_function_is_univariate_p (tree chrec
)
946 if (chrec
== NULL_TREE
)
949 switch (TREE_CODE (chrec
))
951 case POLYNOMIAL_CHREC
:
952 switch (TREE_CODE (CHREC_LEFT (chrec
)))
954 case POLYNOMIAL_CHREC
:
955 if (CHREC_VARIABLE (chrec
) != CHREC_VARIABLE (CHREC_LEFT (chrec
)))
957 if (!evolution_function_is_univariate_p (CHREC_LEFT (chrec
)))
965 switch (TREE_CODE (CHREC_RIGHT (chrec
)))
967 case POLYNOMIAL_CHREC
:
968 if (CHREC_VARIABLE (chrec
) != CHREC_VARIABLE (CHREC_RIGHT (chrec
)))
970 if (!evolution_function_is_univariate_p (CHREC_RIGHT (chrec
)))
983 /* Returns the number of variables of CHREC. Example: the call
984 nb_vars_in_chrec ({{0, +, 1}_5, +, 2}_6) returns 2. */
987 nb_vars_in_chrec (tree chrec
)
989 if (chrec
== NULL_TREE
)
992 switch (TREE_CODE (chrec
))
994 case POLYNOMIAL_CHREC
:
995 return 1 + nb_vars_in_chrec
996 (initial_condition_in_loop_num (chrec
, CHREC_VARIABLE (chrec
)));
1005 /* Convert the initial condition of chrec to type. */
1008 chrec_convert (tree type
,
1013 if (automatically_generated_chrec_p (chrec
))
1016 ct
= chrec_type (chrec
);
1020 if (TYPE_PRECISION (ct
) < TYPE_PRECISION (type
))
1021 return count_ev_in_wider_type (type
, chrec
);
1023 switch (TREE_CODE (chrec
))
1025 case POLYNOMIAL_CHREC
:
1026 return build_polynomial_chrec (CHREC_VARIABLE (chrec
),
1027 chrec_convert (type
,
1028 CHREC_LEFT (chrec
)),
1029 chrec_convert (type
,
1030 CHREC_RIGHT (chrec
)));
1034 tree res
= fold_convert (type
, chrec
);
1036 /* Don't propagate overflows. */
1037 TREE_OVERFLOW (res
) = 0;
1038 if (CONSTANT_CLASS_P (res
))
1039 TREE_CONSTANT_OVERFLOW (res
) = 0;
1045 /* Returns the type of the chrec. */
1048 chrec_type (tree chrec
)
1050 if (automatically_generated_chrec_p (chrec
))
1053 return TREE_TYPE (chrec
);