match_asm_constraints: Use copy_rtx where needed (PR88001)
[official-gcc.git] / libsanitizer / tsan / tsan_interceptors_mac.cc
blob1df6ac27f49a04c05b6b56e51a09c6acfd7ba8d8
1 //===-- tsan_interceptors_mac.cc ------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // Mac-specific interceptors.
11 //===----------------------------------------------------------------------===//
13 #include "sanitizer_common/sanitizer_platform.h"
14 #if SANITIZER_MAC
16 #include "interception/interception.h"
17 #include "tsan_interceptors.h"
18 #include "tsan_interface.h"
19 #include "tsan_interface_ann.h"
21 #include <libkern/OSAtomic.h>
23 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
24 #include <xpc/xpc.h>
25 #endif // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
27 typedef long long_t; // NOLINT
29 namespace __tsan {
31 // The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
32 // but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
33 // actually aliases of each other, and we cannot have different interceptors for
34 // them, because they're actually the same function. Thus, we have to stay
35 // conservative and treat the non-barrier versions as mo_acq_rel.
36 static const morder kMacOrderBarrier = mo_acq_rel;
37 static const morder kMacOrderNonBarrier = mo_acq_rel;
39 #define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
40 TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) { \
41 SCOPED_TSAN_INTERCEPTOR(f, x, ptr); \
42 return tsan_atomic_f((volatile tsan_t *)ptr, x, mo); \
45 #define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
46 TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) { \
47 SCOPED_TSAN_INTERCEPTOR(f, x, ptr); \
48 return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x; \
51 #define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
52 TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) { \
53 SCOPED_TSAN_INTERCEPTOR(f, ptr); \
54 return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1; \
57 #define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
58 mo) \
59 TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) { \
60 SCOPED_TSAN_INTERCEPTOR(f, ptr); \
61 return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1; \
64 #define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m) \
65 m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f, \
66 kMacOrderNonBarrier) \
67 m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f, \
68 kMacOrderBarrier) \
69 m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f, \
70 kMacOrderNonBarrier) \
71 m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f, \
72 kMacOrderBarrier)
74 #define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig) \
75 m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f, \
76 kMacOrderNonBarrier) \
77 m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f, \
78 kMacOrderBarrier) \
79 m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
80 kMacOrderNonBarrier) \
81 m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier, \
82 __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
84 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd, fetch_add,
85 OSATOMIC_INTERCEPTOR_PLUS_X)
86 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement, fetch_add,
87 OSATOMIC_INTERCEPTOR_PLUS_1)
88 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement, fetch_sub,
89 OSATOMIC_INTERCEPTOR_MINUS_1)
90 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr, fetch_or, OSATOMIC_INTERCEPTOR_PLUS_X,
91 OSATOMIC_INTERCEPTOR)
92 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd, fetch_and,
93 OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
94 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor, fetch_xor,
95 OSATOMIC_INTERCEPTOR_PLUS_X, OSATOMIC_INTERCEPTOR)
97 #define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t) \
98 TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) { \
99 SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr); \
100 return tsan_atomic_f##_compare_exchange_strong( \
101 (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \
102 kMacOrderNonBarrier, kMacOrderNonBarrier); \
105 TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value, \
106 t volatile *ptr) { \
107 SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr); \
108 return tsan_atomic_f##_compare_exchange_strong( \
109 (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \
110 kMacOrderBarrier, kMacOrderNonBarrier); \
113 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt, __tsan_atomic32, a32, int)
114 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong, __tsan_atomic64, a64,
115 long_t)
116 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr, __tsan_atomic64, a64,
117 void *)
118 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32, __tsan_atomic32, a32,
119 int32_t)
120 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64, __tsan_atomic64, a64,
121 int64_t)
123 #define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo) \
124 TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) { \
125 SCOPED_TSAN_INTERCEPTOR(f, n, ptr); \
126 volatile char *byte_ptr = ((volatile char *)ptr) + (n >> 3); \
127 char bit = 0x80u >> (n & 7); \
128 char mask = clear ? ~bit : bit; \
129 char orig_byte = op((volatile a8 *)byte_ptr, mask, mo); \
130 return orig_byte & bit; \
133 #define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear) \
134 OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
135 OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
137 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet, __tsan_atomic8_fetch_or, false)
138 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear, __tsan_atomic8_fetch_and,
139 true)
141 TSAN_INTERCEPTOR(void, OSAtomicEnqueue, OSQueueHead *list, void *item,
142 size_t offset) {
143 SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue, list, item, offset);
144 __tsan_release(item);
145 REAL(OSAtomicEnqueue)(list, item, offset);
148 TSAN_INTERCEPTOR(void *, OSAtomicDequeue, OSQueueHead *list, size_t offset) {
149 SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue, list, offset);
150 void *item = REAL(OSAtomicDequeue)(list, offset);
151 if (item) __tsan_acquire(item);
152 return item;
155 // OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
156 #if !SANITIZER_IOS
158 TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue, OSFifoQueueHead *list, void *item,
159 size_t offset) {
160 SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue, list, item, offset);
161 __tsan_release(item);
162 REAL(OSAtomicFifoEnqueue)(list, item, offset);
165 TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue, OSFifoQueueHead *list,
166 size_t offset) {
167 SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue, list, offset);
168 void *item = REAL(OSAtomicFifoDequeue)(list, offset);
169 if (item) __tsan_acquire(item);
170 return item;
173 #endif
175 TSAN_INTERCEPTOR(void, OSSpinLockLock, volatile OSSpinLock *lock) {
176 CHECK(!cur_thread()->is_dead);
177 if (!cur_thread()->is_inited) {
178 return REAL(OSSpinLockLock)(lock);
180 SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock, lock);
181 REAL(OSSpinLockLock)(lock);
182 Acquire(thr, pc, (uptr)lock);
185 TSAN_INTERCEPTOR(bool, OSSpinLockTry, volatile OSSpinLock *lock) {
186 CHECK(!cur_thread()->is_dead);
187 if (!cur_thread()->is_inited) {
188 return REAL(OSSpinLockTry)(lock);
190 SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry, lock);
191 bool result = REAL(OSSpinLockTry)(lock);
192 if (result)
193 Acquire(thr, pc, (uptr)lock);
194 return result;
197 TSAN_INTERCEPTOR(void, OSSpinLockUnlock, volatile OSSpinLock *lock) {
198 CHECK(!cur_thread()->is_dead);
199 if (!cur_thread()->is_inited) {
200 return REAL(OSSpinLockUnlock)(lock);
202 SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock, lock);
203 Release(thr, pc, (uptr)lock);
204 REAL(OSSpinLockUnlock)(lock);
207 TSAN_INTERCEPTOR(void, os_lock_lock, void *lock) {
208 CHECK(!cur_thread()->is_dead);
209 if (!cur_thread()->is_inited) {
210 return REAL(os_lock_lock)(lock);
212 SCOPED_TSAN_INTERCEPTOR(os_lock_lock, lock);
213 REAL(os_lock_lock)(lock);
214 Acquire(thr, pc, (uptr)lock);
217 TSAN_INTERCEPTOR(bool, os_lock_trylock, void *lock) {
218 CHECK(!cur_thread()->is_dead);
219 if (!cur_thread()->is_inited) {
220 return REAL(os_lock_trylock)(lock);
222 SCOPED_TSAN_INTERCEPTOR(os_lock_trylock, lock);
223 bool result = REAL(os_lock_trylock)(lock);
224 if (result)
225 Acquire(thr, pc, (uptr)lock);
226 return result;
229 TSAN_INTERCEPTOR(void, os_lock_unlock, void *lock) {
230 CHECK(!cur_thread()->is_dead);
231 if (!cur_thread()->is_inited) {
232 return REAL(os_lock_unlock)(lock);
234 SCOPED_TSAN_INTERCEPTOR(os_lock_unlock, lock);
235 Release(thr, pc, (uptr)lock);
236 REAL(os_lock_unlock)(lock);
239 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
241 TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler,
242 xpc_connection_t connection, xpc_handler_t handler) {
243 SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler, connection,
244 handler);
245 Release(thr, pc, (uptr)connection);
246 xpc_handler_t new_handler = ^(xpc_object_t object) {
248 SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler);
249 Acquire(thr, pc, (uptr)connection);
251 handler(object);
253 REAL(xpc_connection_set_event_handler)(connection, new_handler);
256 TSAN_INTERCEPTOR(void, xpc_connection_send_barrier, xpc_connection_t connection,
257 dispatch_block_t barrier) {
258 SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier, connection, barrier);
259 Release(thr, pc, (uptr)connection);
260 dispatch_block_t new_barrier = ^() {
262 SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier);
263 Acquire(thr, pc, (uptr)connection);
265 barrier();
267 REAL(xpc_connection_send_barrier)(connection, new_barrier);
270 TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply,
271 xpc_connection_t connection, xpc_object_t message,
272 dispatch_queue_t replyq, xpc_handler_t handler) {
273 SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply, connection,
274 message, replyq, handler);
275 Release(thr, pc, (uptr)connection);
276 xpc_handler_t new_handler = ^(xpc_object_t object) {
278 SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply);
279 Acquire(thr, pc, (uptr)connection);
281 handler(object);
283 REAL(xpc_connection_send_message_with_reply)
284 (connection, message, replyq, new_handler);
287 TSAN_INTERCEPTOR(void, xpc_connection_cancel, xpc_connection_t connection) {
288 SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel, connection);
289 Release(thr, pc, (uptr)connection);
290 REAL(xpc_connection_cancel)(connection);
293 #endif // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
295 // Is the Obj-C object a tagged pointer (i.e. isn't really a valid pointer and
296 // contains data in the pointers bits instead)?
297 static bool IsTaggedObjCPointer(void *obj) {
298 const uptr kPossibleTaggedBits = 0x8000000000000001ull;
299 return ((uptr)obj & kPossibleTaggedBits) != 0;
302 // Return an address on which we can synchronize (Acquire and Release) for a
303 // Obj-C tagged pointer (which is not a valid pointer). Ideally should be a
304 // derived address from 'obj', but for now just return the same global address.
305 // TODO(kubamracek): Return different address for different pointers.
306 static uptr SyncAddressForTaggedPointer(void *obj) {
307 (void)obj;
308 static u64 addr;
309 return (uptr)&addr;
312 // Address on which we can synchronize for an Objective-C object. Supports
313 // tagged pointers.
314 static uptr SyncAddressForObjCObject(void *obj) {
315 if (IsTaggedObjCPointer(obj)) return SyncAddressForTaggedPointer(obj);
316 return (uptr)obj;
319 TSAN_INTERCEPTOR(int, objc_sync_enter, void *obj) {
320 SCOPED_TSAN_INTERCEPTOR(objc_sync_enter, obj);
321 int result = REAL(objc_sync_enter)(obj);
322 if (obj) Acquire(thr, pc, SyncAddressForObjCObject(obj));
323 return result;
326 TSAN_INTERCEPTOR(int, objc_sync_exit, void *obj) {
327 SCOPED_TSAN_INTERCEPTOR(objc_sync_enter, obj);
328 if (obj) Release(thr, pc, SyncAddressForObjCObject(obj));
329 return REAL(objc_sync_exit)(obj);
332 // On macOS, libc++ is always linked dynamically, so intercepting works the
333 // usual way.
334 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
336 namespace {
337 struct fake_shared_weak_count {
338 volatile a64 shared_owners;
339 volatile a64 shared_weak_owners;
340 virtual void _unused_0x0() = 0;
341 virtual void _unused_0x8() = 0;
342 virtual void on_zero_shared() = 0;
343 virtual void _unused_0x18() = 0;
344 virtual void on_zero_shared_weak() = 0;
346 } // namespace
348 // The following code adds libc++ interceptors for:
349 // void __shared_weak_count::__release_shared() _NOEXCEPT;
350 // bool __shared_count::__release_shared() _NOEXCEPT;
351 // Shared and weak pointers in C++ maintain reference counts via atomics in
352 // libc++.dylib, which are TSan-invisible, and this leads to false positives in
353 // destructor code. These interceptors re-implements the whole functions so that
354 // the mo_acq_rel semantics of the atomic decrement are visible.
356 // Unfortunately, the interceptors cannot simply Acquire/Release some sync
357 // object and call the original function, because it would have a race between
358 // the sync and the destruction of the object. Calling both under a lock will
359 // not work because the destructor can invoke this interceptor again (and even
360 // in a different thread, so recursive locks don't help).
362 STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv,
363 fake_shared_weak_count *o) {
364 if (!flags()->shared_ptr_interceptor)
365 return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv)(o);
367 SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv,
369 if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
370 Acquire(thr, pc, (uptr)&o->shared_owners);
371 o->on_zero_shared();
372 if (__tsan_atomic64_fetch_add(&o->shared_weak_owners, -1, mo_release) ==
373 0) {
374 Acquire(thr, pc, (uptr)&o->shared_weak_owners);
375 o->on_zero_shared_weak();
380 STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv,
381 fake_shared_weak_count *o) {
382 if (!flags()->shared_ptr_interceptor)
383 return REAL(_ZNSt3__114__shared_count16__release_sharedEv)(o);
385 SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv, o);
386 if (__tsan_atomic64_fetch_add(&o->shared_owners, -1, mo_release) == 0) {
387 Acquire(thr, pc, (uptr)&o->shared_owners);
388 o->on_zero_shared();
389 return true;
391 return false;
394 namespace {
395 struct call_once_callback_args {
396 void (*orig_func)(void *arg);
397 void *orig_arg;
398 void *flag;
401 void call_once_callback_wrapper(void *arg) {
402 call_once_callback_args *new_args = (call_once_callback_args *)arg;
403 new_args->orig_func(new_args->orig_arg);
404 __tsan_release(new_args->flag);
406 } // namespace
408 // This adds a libc++ interceptor for:
409 // void __call_once(volatile unsigned long&, void*, void(*)(void*));
410 // C++11 call_once is implemented via an internal function __call_once which is
411 // inside libc++.dylib, and the atomic release store inside it is thus
412 // TSan-invisible. To avoid false positives, this interceptor wraps the callback
413 // function and performs an explicit Release after the user code has run.
414 STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E, void *flag,
415 void *arg, void (*func)(void *arg)) {
416 call_once_callback_args new_args = {func, arg, flag};
417 REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E)(flag, &new_args,
418 call_once_callback_wrapper);
421 } // namespace __tsan
423 #endif // SANITIZER_MAC