match_asm_constraints: Use copy_rtx where needed (PR88001)
[official-gcc.git] / gcc / bitmap.h
blob7499ebebb00f7db89652097c54473c6fece67bea
1 /* Functions to support general ended bitmaps.
2 Copyright (C) 1997-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_BITMAP_H
21 #define GCC_BITMAP_H
23 /* Implementation of sparse integer sets as a linked list or tree.
25 This sparse set representation is suitable for sparse sets with an
26 unknown (a priori) universe.
28 Sets are represented as double-linked lists of container nodes of
29 type "struct bitmap_element" or as a binary trees of the same
30 container nodes. Each container node consists of an index for the
31 first member that could be held in the container, a small array of
32 integers that represent the members in the container, and pointers
33 to the next and previous element in the linked list, or left and
34 right children in the tree. In linked-list form, the container
35 nodes in the list are sorted in ascending order, i.e. the head of
36 the list holds the element with the smallest member of the set.
37 In tree form, nodes to the left have a smaller container index.
39 For a given member I in the set:
40 - the element for I will have index is I / (bits per element)
41 - the position for I within element is I % (bits per element)
43 This representation is very space-efficient for large sparse sets, and
44 the size of the set can be changed dynamically without much overhead.
45 An important parameter is the number of bits per element. In this
46 implementation, there are 128 bits per element. This results in a
47 high storage overhead *per element*, but a small overall overhead if
48 the set is very sparse.
50 The storage requirements for linked-list sparse sets are O(E), with E->N
51 in the worst case (a sparse set with large distances between the values
52 of the set members).
54 This representation also works well for data flow problems where the size
55 of the set may grow dynamically, but care must be taken that the member_p,
56 add_member, and remove_member operations occur with a suitable access
57 pattern.
59 The linked-list set representation works well for problems involving very
60 sparse sets. The canonical example in GCC is, of course, the "set of
61 sets" for some CFG-based data flow problems (liveness analysis, dominance
62 frontiers, etc.).
64 For random-access sparse sets of unknown universe, the binary tree
65 representation is likely to be a more suitable choice. Theoretical
66 access times for the binary tree representation are better than those
67 for the linked-list, but in practice this is only true for truely
68 random access.
70 Often the most suitable representation during construction of the set
71 is not the best choice for the usage of the set. For such cases, the
72 "view" of the set can be changed from one representation to the other.
73 This is an O(E) operation:
75 * from list to tree view : bitmap_tree_view
76 * from tree to list view : bitmap_list_view
78 Traversing linked lists or trees can be cache-unfriendly. Performance
79 can be improved by keeping container nodes in the set grouped together
80 in memory, using a dedicated obstack for a set (or group of related
81 sets). Elements allocated on obstacks are released to a free-list and
82 taken off the free list. If multiple sets are allocated on the same
83 obstack, elements freed from one set may be re-used for one of the other
84 sets. This usually helps avoid cache misses.
86 A single free-list is used for all sets allocated in GGC space. This is
87 bad for persistent sets, so persistent sets should be allocated on an
88 obstack whenever possible.
90 For random-access sets with a known, relatively small universe size, the
91 SparseSet or simple bitmap representations may be more efficient than a
92 linked-list set.
95 LINKED LIST FORM
96 ================
98 In linked-list form, in-order iterations of the set can be executed
99 efficiently. The downside is that many random-access operations are
100 relatively slow, because the linked list has to be traversed to test
101 membership (i.e. member_p/ add_member/remove_member).
103 To improve the performance of this set representation, the last
104 accessed element and its index are cached. For membership tests on
105 members close to recently accessed members, the cached last element
106 improves membership test to a constant-time operation.
108 The following operations can always be performed in O(1) time in
109 list view:
111 * clear : bitmap_clear
112 * smallest_member : bitmap_first_set_bit
113 * choose_one : (not implemented, but could be
114 in constant time)
116 The following operations can be performed in O(E) time worst-case in
117 list view (with E the number of elements in the linked list), but in
118 O(1) time with a suitable access patterns:
120 * member_p : bitmap_bit_p
121 * add_member : bitmap_set_bit / bitmap_set_range
122 * remove_member : bitmap_clear_bit / bitmap_clear_range
124 The following operations can be performed in O(E) time in list view:
126 * cardinality : bitmap_count_bits
127 * largest_member : bitmap_last_set_bit (but this could
128 in constant time with a pointer to
129 the last element in the chain)
130 * set_size : bitmap_last_set_bit
132 In tree view the following operations can all be performed in O(log E)
133 amortized time with O(E) worst-case behavior.
135 * smallest_member
136 * largest_member
137 * set_size
138 * member_p
139 * add_member
140 * remove_member
142 Additionally, the linked-list sparse set representation supports
143 enumeration of the members in O(E) time:
145 * forall : EXECUTE_IF_SET_IN_BITMAP
146 * set_copy : bitmap_copy
147 * set_intersection : bitmap_intersect_p /
148 bitmap_and / bitmap_and_into /
149 EXECUTE_IF_AND_IN_BITMAP
150 * set_union : bitmap_ior / bitmap_ior_into
151 * set_difference : bitmap_intersect_compl_p /
152 bitmap_and_comp / bitmap_and_comp_into /
153 EXECUTE_IF_AND_COMPL_IN_BITMAP
154 * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
155 * set_compare : bitmap_equal_p
157 Some operations on 3 sets that occur frequently in data flow problems
158 are also implemented:
160 * A | (B & C) : bitmap_ior_and_into
161 * A | (B & ~C) : bitmap_ior_and_compl /
162 bitmap_ior_and_compl_into
165 BINARY TREE FORM
166 ================
167 An alternate "view" of a bitmap is its binary tree representation.
168 For this representation, splay trees are used because they can be
169 implemented using the same data structures as the linked list, with
170 no overhead for meta-data (like color, or rank) on the tree nodes.
172 In binary tree form, random-access to the set is much more efficient
173 than for the linked-list representation. Downsides are the high cost
174 of clearing the set, and the relatively large number of operations
175 necessary to balance the tree. Also, iterating the set members is
176 not supported.
178 As for the linked-list representation, the last accessed element and
179 its index are cached, so that membership tests on the latest accessed
180 members is a constant-time operation. Other lookups take O(logE)
181 time amortized (but O(E) time worst-case).
183 The following operations can always be performed in O(1) time:
185 * choose_one : (not implemented, but could be
186 implemented in constant time)
188 The following operations can be performed in O(logE) time amortized
189 but O(E) time worst-case, but in O(1) time if the same element is
190 accessed.
192 * member_p : bitmap_bit_p
193 * add_member : bitmap_set_bit
194 * remove_member : bitmap_clear_bit
196 The following operations can be performed in O(logE) time amortized
197 but O(E) time worst-case:
199 * smallest_member : bitmap_first_set_bit
200 * largest_member : bitmap_last_set_bit
201 * set_size : bitmap_last_set_bit
203 The following operations can be performed in O(E) time:
205 * clear : bitmap_clear
207 The binary tree sparse set representation does *not* support any form
208 of enumeration, and does also *not* support logical operations on sets.
209 The binary tree representation is only supposed to be used for sets
210 on which many random-access membership tests will happen. */
212 #include "obstack.h"
214 /* Bitmap memory usage. */
215 struct bitmap_usage: public mem_usage
217 /* Default contructor. */
218 bitmap_usage (): m_nsearches (0), m_search_iter (0) {}
219 /* Constructor. */
220 bitmap_usage (size_t allocated, size_t times, size_t peak,
221 uint64_t nsearches, uint64_t search_iter)
222 : mem_usage (allocated, times, peak),
223 m_nsearches (nsearches), m_search_iter (search_iter) {}
225 /* Sum the usage with SECOND usage. */
226 bitmap_usage
227 operator+ (const bitmap_usage &second)
229 return bitmap_usage (m_allocated + second.m_allocated,
230 m_times + second.m_times,
231 m_peak + second.m_peak,
232 m_nsearches + second.m_nsearches,
233 m_search_iter + second.m_search_iter);
236 /* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */
237 inline void
238 dump (mem_location *loc, mem_usage &total) const
240 char *location_string = loc->to_string ();
242 fprintf (stderr, "%-48s " PRsa (9) ":%5.1f%%"
243 PRsa (9) PRsa (9) ":%5.1f%%"
244 PRsa (11) PRsa (11) "%10s\n",
245 location_string, SIZE_AMOUNT (m_allocated),
246 get_percent (m_allocated, total.m_allocated),
247 SIZE_AMOUNT (m_peak), SIZE_AMOUNT (m_times),
248 get_percent (m_times, total.m_times),
249 SIZE_AMOUNT (m_nsearches), SIZE_AMOUNT (m_search_iter),
250 loc->m_ggc ? "ggc" : "heap");
252 free (location_string);
255 /* Dump header with NAME. */
256 static inline void
257 dump_header (const char *name)
259 fprintf (stderr, "%-48s %11s%16s%17s%12s%12s%10s\n", name, "Leak", "Peak",
260 "Times", "N searches", "Search iter", "Type");
261 print_dash_line ();
264 /* Number search operations. */
265 uint64_t m_nsearches;
266 /* Number of search iterations. */
267 uint64_t m_search_iter;
270 /* Bitmap memory description. */
271 extern mem_alloc_description<bitmap_usage> bitmap_mem_desc;
273 /* Fundamental storage type for bitmap. */
275 typedef unsigned long BITMAP_WORD;
276 /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
277 it is used in preprocessor directives -- hence the 1u. */
278 #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
280 /* Number of words to use for each element in the linked list. */
282 #ifndef BITMAP_ELEMENT_WORDS
283 #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
284 #endif
286 /* Number of bits in each actual element of a bitmap. */
288 #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
290 /* Obstack for allocating bitmaps and elements from. */
291 struct GTY (()) bitmap_obstack {
292 struct bitmap_element *elements;
293 struct bitmap_head *heads;
294 struct obstack GTY ((skip)) obstack;
297 /* Bitmap set element. We use a linked list to hold only the bits that
298 are set. This allows for use to grow the bitset dynamically without
299 having to realloc and copy a giant bit array.
301 The free list is implemented as a list of lists. There is one
302 outer list connected together by prev fields. Each element of that
303 outer is an inner list (that may consist only of the outer list
304 element) that are connected by the next fields. The prev pointer
305 is undefined for interior elements. This allows
306 bitmap_elt_clear_from to be implemented in unit time rather than
307 linear in the number of elements to be freed. */
309 struct GTY((chain_next ("%h.next"), chain_prev ("%h.prev"))) bitmap_element {
310 /* In list form, the next element in the linked list;
311 in tree form, the left child node in the tree. */
312 struct bitmap_element *next;
313 /* In list form, the previous element in the linked list;
314 in tree form, the right child node in the tree. */
315 struct bitmap_element *prev;
316 /* regno/BITMAP_ELEMENT_ALL_BITS. */
317 unsigned int indx;
318 /* Bits that are set, counting from INDX, inclusive */
319 BITMAP_WORD bits[BITMAP_ELEMENT_WORDS];
322 /* Head of bitmap linked list. The 'current' member points to something
323 already pointed to by the chain started by first, so GTY((skip)) it. */
325 struct GTY(()) bitmap_head {
326 static bitmap_obstack crashme;
327 /* Poison obstack to not make it not a valid initialized GC bitmap. */
328 CONSTEXPR bitmap_head()
329 : indx(0), tree_form(false), first(NULL), current(NULL),
330 obstack (&crashme)
332 /* Index of last element looked at. */
333 unsigned int indx;
334 /* False if the bitmap is in list form; true if the bitmap is in tree form.
335 Bitmap iterators only work on bitmaps in list form. */
336 bool tree_form;
337 /* In list form, the first element in the linked list;
338 in tree form, the root of the tree. */
339 bitmap_element *first;
340 /* Last element looked at. */
341 bitmap_element * GTY((skip(""))) current;
342 /* Obstack to allocate elements from. If NULL, then use GGC allocation. */
343 bitmap_obstack *obstack;
344 void dump ();
347 /* Global data */
348 extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
349 extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
351 /* Change the view of the bitmap to list, or tree. */
352 void bitmap_list_view (bitmap);
353 void bitmap_tree_view (bitmap);
355 /* Clear a bitmap by freeing up the linked list. */
356 extern void bitmap_clear (bitmap);
358 /* Copy a bitmap to another bitmap. */
359 extern void bitmap_copy (bitmap, const_bitmap);
361 /* Move a bitmap to another bitmap. */
362 extern void bitmap_move (bitmap, bitmap);
364 /* True if two bitmaps are identical. */
365 extern bool bitmap_equal_p (const_bitmap, const_bitmap);
367 /* True if the bitmaps intersect (their AND is non-empty). */
368 extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
370 /* True if the complement of the second intersects the first (their
371 AND_COMPL is non-empty). */
372 extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
374 /* True if MAP is an empty bitmap. */
375 inline bool bitmap_empty_p (const_bitmap map)
377 return !map->first;
380 /* True if the bitmap has only a single bit set. */
381 extern bool bitmap_single_bit_set_p (const_bitmap);
383 /* Count the number of bits set in the bitmap. */
384 extern unsigned long bitmap_count_bits (const_bitmap);
386 /* Count the number of unique bits set across the two bitmaps. */
387 extern unsigned long bitmap_count_unique_bits (const_bitmap, const_bitmap);
389 /* Boolean operations on bitmaps. The _into variants are two operand
390 versions that modify the first source operand. The other variants
391 are three operand versions that to not destroy the source bitmaps.
392 The operations supported are &, & ~, |, ^. */
393 extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
394 extern bool bitmap_and_into (bitmap, const_bitmap);
395 extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
396 extern bool bitmap_and_compl_into (bitmap, const_bitmap);
397 #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
398 extern void bitmap_compl_and_into (bitmap, const_bitmap);
399 extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
400 extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
401 extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
402 extern bool bitmap_ior_into (bitmap, const_bitmap);
403 extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
404 extern void bitmap_xor_into (bitmap, const_bitmap);
406 /* DST = A | (B & C). Return true if DST changes. */
407 extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
408 /* DST = A | (B & ~C). Return true if DST changes. */
409 extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
410 const_bitmap B, const_bitmap C);
411 /* A |= (B & ~C). Return true if A changes. */
412 extern bool bitmap_ior_and_compl_into (bitmap A,
413 const_bitmap B, const_bitmap C);
415 /* Clear a single bit in a bitmap. Return true if the bit changed. */
416 extern bool bitmap_clear_bit (bitmap, int);
418 /* Set a single bit in a bitmap. Return true if the bit changed. */
419 extern bool bitmap_set_bit (bitmap, int);
421 /* Return true if a bit is set in a bitmap. */
422 extern int bitmap_bit_p (bitmap, int);
424 /* Debug functions to print a bitmap. */
425 extern void debug_bitmap (const_bitmap);
426 extern void debug_bitmap_file (FILE *, const_bitmap);
428 /* Print a bitmap. */
429 extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
431 /* Initialize and release a bitmap obstack. */
432 extern void bitmap_obstack_initialize (bitmap_obstack *);
433 extern void bitmap_obstack_release (bitmap_obstack *);
434 extern void bitmap_register (bitmap MEM_STAT_DECL);
435 extern void dump_bitmap_statistics (void);
437 /* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
438 to allocate from, NULL for GC'd bitmap. */
440 static inline void
441 bitmap_initialize (bitmap head, bitmap_obstack *obstack CXX_MEM_STAT_INFO)
443 head->first = head->current = NULL;
444 head->indx = head->tree_form = 0;
445 head->obstack = obstack;
446 if (GATHER_STATISTICS)
447 bitmap_register (head PASS_MEM_STAT);
450 /* Release a bitmap (but not its head). This is suitable for pairing with
451 bitmap_initialize. */
453 static inline void
454 bitmap_release (bitmap head)
456 bitmap_clear (head);
457 /* Poison the obstack pointer so the obstack can be safely released.
458 Do not zero it as the bitmap then becomes initialized GC. */
459 head->obstack = &bitmap_head::crashme;
462 /* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
463 extern bitmap bitmap_alloc (bitmap_obstack *obstack CXX_MEM_STAT_INFO);
464 #define BITMAP_ALLOC bitmap_alloc
465 extern bitmap bitmap_gc_alloc (ALONE_CXX_MEM_STAT_INFO);
466 #define BITMAP_GGC_ALLOC bitmap_gc_alloc
467 extern void bitmap_obstack_free (bitmap);
469 /* A few compatibility/functions macros for compatibility with sbitmaps */
470 inline void dump_bitmap (FILE *file, const_bitmap map)
472 bitmap_print (file, map, "", "\n");
474 extern void debug (const bitmap_head &ref);
475 extern void debug (const bitmap_head *ptr);
477 extern unsigned bitmap_first_set_bit (const_bitmap);
478 extern unsigned bitmap_last_set_bit (const_bitmap);
480 /* Compute bitmap hash (for purposes of hashing etc.) */
481 extern hashval_t bitmap_hash (const_bitmap);
483 /* Do any cleanup needed on a bitmap when it is no longer used. */
484 #define BITMAP_FREE(BITMAP) \
485 ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
487 /* Iterator for bitmaps. */
489 struct bitmap_iterator
491 /* Pointer to the current bitmap element. */
492 bitmap_element *elt1;
494 /* Pointer to 2nd bitmap element when two are involved. */
495 bitmap_element *elt2;
497 /* Word within the current element. */
498 unsigned word_no;
500 /* Contents of the actually processed word. When finding next bit
501 it is shifted right, so that the actual bit is always the least
502 significant bit of ACTUAL. */
503 BITMAP_WORD bits;
506 /* Initialize a single bitmap iterator. START_BIT is the first bit to
507 iterate from. */
509 static inline void
510 bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
511 unsigned start_bit, unsigned *bit_no)
513 bi->elt1 = map->first;
514 bi->elt2 = NULL;
516 gcc_checking_assert (!map->tree_form);
518 /* Advance elt1 until it is not before the block containing start_bit. */
519 while (1)
521 if (!bi->elt1)
523 bi->elt1 = &bitmap_zero_bits;
524 break;
527 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
528 break;
529 bi->elt1 = bi->elt1->next;
532 /* We might have gone past the start bit, so reinitialize it. */
533 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
534 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
536 /* Initialize for what is now start_bit. */
537 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
538 bi->bits = bi->elt1->bits[bi->word_no];
539 bi->bits >>= start_bit % BITMAP_WORD_BITS;
541 /* If this word is zero, we must make sure we're not pointing at the
542 first bit, otherwise our incrementing to the next word boundary
543 will fail. It won't matter if this increment moves us into the
544 next word. */
545 start_bit += !bi->bits;
547 *bit_no = start_bit;
550 /* Initialize an iterator to iterate over the intersection of two
551 bitmaps. START_BIT is the bit to commence from. */
553 static inline void
554 bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
555 unsigned start_bit, unsigned *bit_no)
557 bi->elt1 = map1->first;
558 bi->elt2 = map2->first;
560 gcc_checking_assert (!map1->tree_form && !map2->tree_form);
562 /* Advance elt1 until it is not before the block containing
563 start_bit. */
564 while (1)
566 if (!bi->elt1)
568 bi->elt2 = NULL;
569 break;
572 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
573 break;
574 bi->elt1 = bi->elt1->next;
577 /* Advance elt2 until it is not before elt1. */
578 while (1)
580 if (!bi->elt2)
582 bi->elt1 = bi->elt2 = &bitmap_zero_bits;
583 break;
586 if (bi->elt2->indx >= bi->elt1->indx)
587 break;
588 bi->elt2 = bi->elt2->next;
591 /* If we're at the same index, then we have some intersecting bits. */
592 if (bi->elt1->indx == bi->elt2->indx)
594 /* We might have advanced beyond the start_bit, so reinitialize
595 for that. */
596 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
597 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
599 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
600 bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
601 bi->bits >>= start_bit % BITMAP_WORD_BITS;
603 else
605 /* Otherwise we must immediately advance elt1, so initialize for
606 that. */
607 bi->word_no = BITMAP_ELEMENT_WORDS - 1;
608 bi->bits = 0;
611 /* If this word is zero, we must make sure we're not pointing at the
612 first bit, otherwise our incrementing to the next word boundary
613 will fail. It won't matter if this increment moves us into the
614 next word. */
615 start_bit += !bi->bits;
617 *bit_no = start_bit;
620 /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2. */
622 static inline void
623 bmp_iter_and_compl_init (bitmap_iterator *bi,
624 const_bitmap map1, const_bitmap map2,
625 unsigned start_bit, unsigned *bit_no)
627 bi->elt1 = map1->first;
628 bi->elt2 = map2->first;
630 gcc_checking_assert (!map1->tree_form && !map2->tree_form);
632 /* Advance elt1 until it is not before the block containing start_bit. */
633 while (1)
635 if (!bi->elt1)
637 bi->elt1 = &bitmap_zero_bits;
638 break;
641 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
642 break;
643 bi->elt1 = bi->elt1->next;
646 /* Advance elt2 until it is not before elt1. */
647 while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
648 bi->elt2 = bi->elt2->next;
650 /* We might have advanced beyond the start_bit, so reinitialize for
651 that. */
652 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
653 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
655 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
656 bi->bits = bi->elt1->bits[bi->word_no];
657 if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
658 bi->bits &= ~bi->elt2->bits[bi->word_no];
659 bi->bits >>= start_bit % BITMAP_WORD_BITS;
661 /* If this word is zero, we must make sure we're not pointing at the
662 first bit, otherwise our incrementing to the next word boundary
663 will fail. It won't matter if this increment moves us into the
664 next word. */
665 start_bit += !bi->bits;
667 *bit_no = start_bit;
670 /* Advance to the next bit in BI. We don't advance to the next
671 nonzero bit yet. */
673 static inline void
674 bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
676 bi->bits >>= 1;
677 *bit_no += 1;
680 /* Advance to first set bit in BI. */
682 static inline void
683 bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
685 #if (GCC_VERSION >= 3004)
687 unsigned int n = __builtin_ctzl (bi->bits);
688 gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
689 bi->bits >>= n;
690 *bit_no += n;
692 #else
693 while (!(bi->bits & 1))
695 bi->bits >>= 1;
696 *bit_no += 1;
698 #endif
701 /* Advance to the next nonzero bit of a single bitmap, we will have
702 already advanced past the just iterated bit. Return true if there
703 is a bit to iterate. */
705 static inline bool
706 bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
708 /* If our current word is nonzero, it contains the bit we want. */
709 if (bi->bits)
711 next_bit:
712 bmp_iter_next_bit (bi, bit_no);
713 return true;
716 /* Round up to the word boundary. We might have just iterated past
717 the end of the last word, hence the -1. It is not possible for
718 bit_no to point at the beginning of the now last word. */
719 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
720 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
721 bi->word_no++;
723 while (1)
725 /* Find the next nonzero word in this elt. */
726 while (bi->word_no != BITMAP_ELEMENT_WORDS)
728 bi->bits = bi->elt1->bits[bi->word_no];
729 if (bi->bits)
730 goto next_bit;
731 *bit_no += BITMAP_WORD_BITS;
732 bi->word_no++;
735 /* Make sure we didn't remove the element while iterating. */
736 gcc_checking_assert (bi->elt1->indx != -1U);
738 /* Advance to the next element. */
739 bi->elt1 = bi->elt1->next;
740 if (!bi->elt1)
741 return false;
742 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
743 bi->word_no = 0;
747 /* Advance to the next nonzero bit of an intersecting pair of
748 bitmaps. We will have already advanced past the just iterated bit.
749 Return true if there is a bit to iterate. */
751 static inline bool
752 bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
754 /* If our current word is nonzero, it contains the bit we want. */
755 if (bi->bits)
757 next_bit:
758 bmp_iter_next_bit (bi, bit_no);
759 return true;
762 /* Round up to the word boundary. We might have just iterated past
763 the end of the last word, hence the -1. It is not possible for
764 bit_no to point at the beginning of the now last word. */
765 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
766 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
767 bi->word_no++;
769 while (1)
771 /* Find the next nonzero word in this elt. */
772 while (bi->word_no != BITMAP_ELEMENT_WORDS)
774 bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
775 if (bi->bits)
776 goto next_bit;
777 *bit_no += BITMAP_WORD_BITS;
778 bi->word_no++;
781 /* Advance to the next identical element. */
784 /* Make sure we didn't remove the element while iterating. */
785 gcc_checking_assert (bi->elt1->indx != -1U);
787 /* Advance elt1 while it is less than elt2. We always want
788 to advance one elt. */
791 bi->elt1 = bi->elt1->next;
792 if (!bi->elt1)
793 return false;
795 while (bi->elt1->indx < bi->elt2->indx);
797 /* Make sure we didn't remove the element while iterating. */
798 gcc_checking_assert (bi->elt2->indx != -1U);
800 /* Advance elt2 to be no less than elt1. This might not
801 advance. */
802 while (bi->elt2->indx < bi->elt1->indx)
804 bi->elt2 = bi->elt2->next;
805 if (!bi->elt2)
806 return false;
809 while (bi->elt1->indx != bi->elt2->indx);
811 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
812 bi->word_no = 0;
816 /* Advance to the next nonzero bit in the intersection of
817 complemented bitmaps. We will have already advanced past the just
818 iterated bit. */
820 static inline bool
821 bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
823 /* If our current word is nonzero, it contains the bit we want. */
824 if (bi->bits)
826 next_bit:
827 bmp_iter_next_bit (bi, bit_no);
828 return true;
831 /* Round up to the word boundary. We might have just iterated past
832 the end of the last word, hence the -1. It is not possible for
833 bit_no to point at the beginning of the now last word. */
834 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
835 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
836 bi->word_no++;
838 while (1)
840 /* Find the next nonzero word in this elt. */
841 while (bi->word_no != BITMAP_ELEMENT_WORDS)
843 bi->bits = bi->elt1->bits[bi->word_no];
844 if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
845 bi->bits &= ~bi->elt2->bits[bi->word_no];
846 if (bi->bits)
847 goto next_bit;
848 *bit_no += BITMAP_WORD_BITS;
849 bi->word_no++;
852 /* Make sure we didn't remove the element while iterating. */
853 gcc_checking_assert (bi->elt1->indx != -1U);
855 /* Advance to the next element of elt1. */
856 bi->elt1 = bi->elt1->next;
857 if (!bi->elt1)
858 return false;
860 /* Make sure we didn't remove the element while iterating. */
861 gcc_checking_assert (! bi->elt2 || bi->elt2->indx != -1U);
863 /* Advance elt2 until it is no less than elt1. */
864 while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
865 bi->elt2 = bi->elt2->next;
867 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
868 bi->word_no = 0;
872 /* If you are modifying a bitmap you are currently iterating over you
873 have to ensure to
874 - never remove the current bit;
875 - if you set or clear a bit before the current bit this operation
876 will not affect the set of bits you are visiting during the iteration;
877 - if you set or clear a bit after the current bit it is unspecified
878 whether that affects the set of bits you are visiting during the
879 iteration.
880 If you want to remove the current bit you can delay this to the next
881 iteration (and after the iteration in case the last iteration is
882 affected). */
884 /* Loop over all bits set in BITMAP, starting with MIN and setting
885 BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
886 should be treated as a read-only variable as it contains loop
887 state. */
889 #ifndef EXECUTE_IF_SET_IN_BITMAP
890 /* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP. */
891 #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
892 for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
893 bmp_iter_set (&(ITER), &(BITNUM)); \
894 bmp_iter_next (&(ITER), &(BITNUM)))
895 #endif
897 /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
898 and setting BITNUM to the bit number. ITER is a bitmap iterator.
899 BITNUM should be treated as a read-only variable as it contains
900 loop state. */
902 #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
903 for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
904 &(BITNUM)); \
905 bmp_iter_and (&(ITER), &(BITNUM)); \
906 bmp_iter_next (&(ITER), &(BITNUM)))
908 /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
909 and setting BITNUM to the bit number. ITER is a bitmap iterator.
910 BITNUM should be treated as a read-only variable as it contains
911 loop state. */
913 #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
914 for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
915 &(BITNUM)); \
916 bmp_iter_and_compl (&(ITER), &(BITNUM)); \
917 bmp_iter_next (&(ITER), &(BITNUM)))
919 /* A class that ties the lifetime of a bitmap to its scope. */
920 class auto_bitmap
922 public:
923 auto_bitmap () { bitmap_initialize (&m_bits, &bitmap_default_obstack); }
924 explicit auto_bitmap (bitmap_obstack *o) { bitmap_initialize (&m_bits, o); }
925 ~auto_bitmap () { bitmap_clear (&m_bits); }
926 // Allow calling bitmap functions on our bitmap.
927 operator bitmap () { return &m_bits; }
929 private:
930 // Prevent making a copy that references our bitmap.
931 auto_bitmap (const auto_bitmap &);
932 auto_bitmap &operator = (const auto_bitmap &);
933 #if __cplusplus >= 201103L
934 auto_bitmap (auto_bitmap &&);
935 auto_bitmap &operator = (auto_bitmap &&);
936 #endif
938 bitmap_head m_bits;
941 #endif /* GCC_BITMAP_H */