PR c++/65072
[official-gcc.git] / gcc / expmed.c
blob8d4f9640934be3ea492390dfe692356d78d46bbb
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2015 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "rtl.h"
28 #include "hash-set.h"
29 #include "machmode.h"
30 #include "vec.h"
31 #include "double-int.h"
32 #include "input.h"
33 #include "alias.h"
34 #include "symtab.h"
35 #include "wide-int.h"
36 #include "inchash.h"
37 #include "tree.h"
38 #include "fold-const.h"
39 #include "stor-layout.h"
40 #include "tm_p.h"
41 #include "flags.h"
42 #include "insn-config.h"
43 #include "hashtab.h"
44 #include "hard-reg-set.h"
45 #include "function.h"
46 #include "statistics.h"
47 #include "real.h"
48 #include "fixed-value.h"
49 #include "expmed.h"
50 #include "dojump.h"
51 #include "explow.h"
52 #include "calls.h"
53 #include "emit-rtl.h"
54 #include "varasm.h"
55 #include "stmt.h"
56 #include "expr.h"
57 #include "insn-codes.h"
58 #include "optabs.h"
59 #include "recog.h"
60 #include "langhooks.h"
61 #include "predict.h"
62 #include "basic-block.h"
63 #include "df.h"
64 #include "target.h"
66 struct target_expmed default_target_expmed;
67 #if SWITCHABLE_TARGET
68 struct target_expmed *this_target_expmed = &default_target_expmed;
69 #endif
71 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
72 unsigned HOST_WIDE_INT,
73 unsigned HOST_WIDE_INT,
74 unsigned HOST_WIDE_INT,
75 rtx);
76 static void store_fixed_bit_field_1 (rtx, unsigned HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT,
78 rtx);
79 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
80 unsigned HOST_WIDE_INT,
81 unsigned HOST_WIDE_INT,
82 unsigned HOST_WIDE_INT,
83 rtx);
84 static rtx extract_fixed_bit_field (machine_mode, rtx,
85 unsigned HOST_WIDE_INT,
86 unsigned HOST_WIDE_INT, rtx, int);
87 static rtx extract_fixed_bit_field_1 (machine_mode, rtx,
88 unsigned HOST_WIDE_INT,
89 unsigned HOST_WIDE_INT, rtx, int);
90 static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
91 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
92 unsigned HOST_WIDE_INT, int);
93 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
94 static rtx expand_smod_pow2 (machine_mode, rtx, HOST_WIDE_INT);
95 static rtx expand_sdiv_pow2 (machine_mode, rtx, HOST_WIDE_INT);
97 /* Return a constant integer mask value of mode MODE with BITSIZE ones
98 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
99 The mask is truncated if necessary to the width of mode MODE. The
100 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
102 static inline rtx
103 mask_rtx (machine_mode mode, int bitpos, int bitsize, bool complement)
105 return immed_wide_int_const
106 (wi::shifted_mask (bitpos, bitsize, complement,
107 GET_MODE_PRECISION (mode)), mode);
110 /* Test whether a value is zero of a power of two. */
111 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
112 (((x) & ((x) - (unsigned HOST_WIDE_INT) 1)) == 0)
114 struct init_expmed_rtl
116 rtx reg;
117 rtx plus;
118 rtx neg;
119 rtx mult;
120 rtx sdiv;
121 rtx udiv;
122 rtx sdiv_32;
123 rtx smod_32;
124 rtx wide_mult;
125 rtx wide_lshr;
126 rtx wide_trunc;
127 rtx shift;
128 rtx shift_mult;
129 rtx shift_add;
130 rtx shift_sub0;
131 rtx shift_sub1;
132 rtx zext;
133 rtx trunc;
135 rtx pow2[MAX_BITS_PER_WORD];
136 rtx cint[MAX_BITS_PER_WORD];
139 static void
140 init_expmed_one_conv (struct init_expmed_rtl *all, machine_mode to_mode,
141 machine_mode from_mode, bool speed)
143 int to_size, from_size;
144 rtx which;
146 to_size = GET_MODE_PRECISION (to_mode);
147 from_size = GET_MODE_PRECISION (from_mode);
149 /* Most partial integers have a precision less than the "full"
150 integer it requires for storage. In case one doesn't, for
151 comparison purposes here, reduce the bit size by one in that
152 case. */
153 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
154 && exact_log2 (to_size) != -1)
155 to_size --;
156 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
157 && exact_log2 (from_size) != -1)
158 from_size --;
160 /* Assume cost of zero-extend and sign-extend is the same. */
161 which = (to_size < from_size ? all->trunc : all->zext);
163 PUT_MODE (all->reg, from_mode);
164 set_convert_cost (to_mode, from_mode, speed, set_src_cost (which, speed));
167 static void
168 init_expmed_one_mode (struct init_expmed_rtl *all,
169 machine_mode mode, int speed)
171 int m, n, mode_bitsize;
172 machine_mode mode_from;
174 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
176 PUT_MODE (all->reg, mode);
177 PUT_MODE (all->plus, mode);
178 PUT_MODE (all->neg, mode);
179 PUT_MODE (all->mult, mode);
180 PUT_MODE (all->sdiv, mode);
181 PUT_MODE (all->udiv, mode);
182 PUT_MODE (all->sdiv_32, mode);
183 PUT_MODE (all->smod_32, mode);
184 PUT_MODE (all->wide_trunc, mode);
185 PUT_MODE (all->shift, mode);
186 PUT_MODE (all->shift_mult, mode);
187 PUT_MODE (all->shift_add, mode);
188 PUT_MODE (all->shift_sub0, mode);
189 PUT_MODE (all->shift_sub1, mode);
190 PUT_MODE (all->zext, mode);
191 PUT_MODE (all->trunc, mode);
193 set_add_cost (speed, mode, set_src_cost (all->plus, speed));
194 set_neg_cost (speed, mode, set_src_cost (all->neg, speed));
195 set_mul_cost (speed, mode, set_src_cost (all->mult, speed));
196 set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, speed));
197 set_udiv_cost (speed, mode, set_src_cost (all->udiv, speed));
199 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, speed)
200 <= 2 * add_cost (speed, mode)));
201 set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, speed)
202 <= 4 * add_cost (speed, mode)));
204 set_shift_cost (speed, mode, 0, 0);
206 int cost = add_cost (speed, mode);
207 set_shiftadd_cost (speed, mode, 0, cost);
208 set_shiftsub0_cost (speed, mode, 0, cost);
209 set_shiftsub1_cost (speed, mode, 0, cost);
212 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
213 for (m = 1; m < n; m++)
215 XEXP (all->shift, 1) = all->cint[m];
216 XEXP (all->shift_mult, 1) = all->pow2[m];
218 set_shift_cost (speed, mode, m, set_src_cost (all->shift, speed));
219 set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, speed));
220 set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, speed));
221 set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, speed));
224 if (SCALAR_INT_MODE_P (mode))
226 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
227 mode_from = (machine_mode)(mode_from + 1))
228 init_expmed_one_conv (all, mode, mode_from, speed);
230 if (GET_MODE_CLASS (mode) == MODE_INT)
232 machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
233 if (wider_mode != VOIDmode)
235 PUT_MODE (all->zext, wider_mode);
236 PUT_MODE (all->wide_mult, wider_mode);
237 PUT_MODE (all->wide_lshr, wider_mode);
238 XEXP (all->wide_lshr, 1) = GEN_INT (mode_bitsize);
240 set_mul_widen_cost (speed, wider_mode,
241 set_src_cost (all->wide_mult, speed));
242 set_mul_highpart_cost (speed, mode,
243 set_src_cost (all->wide_trunc, speed));
248 void
249 init_expmed (void)
251 struct init_expmed_rtl all;
252 machine_mode mode = QImode;
253 int m, speed;
255 memset (&all, 0, sizeof all);
256 for (m = 1; m < MAX_BITS_PER_WORD; m++)
258 all.pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
259 all.cint[m] = GEN_INT (m);
262 /* Avoid using hard regs in ways which may be unsupported. */
263 all.reg = gen_rtx_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
264 all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
265 all.neg = gen_rtx_NEG (mode, all.reg);
266 all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
267 all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
268 all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
269 all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
270 all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
271 all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
272 all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
273 all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
274 all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
275 all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
276 all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
277 all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
278 all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
279 all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
280 all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
282 for (speed = 0; speed < 2; speed++)
284 crtl->maybe_hot_insn_p = speed;
285 set_zero_cost (speed, set_src_cost (const0_rtx, speed));
287 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
288 mode = (machine_mode)(mode + 1))
289 init_expmed_one_mode (&all, mode, speed);
291 if (MIN_MODE_PARTIAL_INT != VOIDmode)
292 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
293 mode = (machine_mode)(mode + 1))
294 init_expmed_one_mode (&all, mode, speed);
296 if (MIN_MODE_VECTOR_INT != VOIDmode)
297 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
298 mode = (machine_mode)(mode + 1))
299 init_expmed_one_mode (&all, mode, speed);
302 if (alg_hash_used_p ())
304 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
305 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
307 else
308 set_alg_hash_used_p (true);
309 default_rtl_profile ();
311 ggc_free (all.trunc);
312 ggc_free (all.shift_sub1);
313 ggc_free (all.shift_sub0);
314 ggc_free (all.shift_add);
315 ggc_free (all.shift_mult);
316 ggc_free (all.shift);
317 ggc_free (all.wide_trunc);
318 ggc_free (all.wide_lshr);
319 ggc_free (all.wide_mult);
320 ggc_free (all.zext);
321 ggc_free (all.smod_32);
322 ggc_free (all.sdiv_32);
323 ggc_free (all.udiv);
324 ggc_free (all.sdiv);
325 ggc_free (all.mult);
326 ggc_free (all.neg);
327 ggc_free (all.plus);
328 ggc_free (all.reg);
331 /* Return an rtx representing minus the value of X.
332 MODE is the intended mode of the result,
333 useful if X is a CONST_INT. */
336 negate_rtx (machine_mode mode, rtx x)
338 rtx result = simplify_unary_operation (NEG, mode, x, mode);
340 if (result == 0)
341 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
343 return result;
346 /* Adjust bitfield memory MEM so that it points to the first unit of mode
347 MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
348 If MODE is BLKmode, return a reference to every byte in the bitfield.
349 Set *NEW_BITNUM to the bit position of the field within the new memory. */
351 static rtx
352 narrow_bit_field_mem (rtx mem, machine_mode mode,
353 unsigned HOST_WIDE_INT bitsize,
354 unsigned HOST_WIDE_INT bitnum,
355 unsigned HOST_WIDE_INT *new_bitnum)
357 if (mode == BLKmode)
359 *new_bitnum = bitnum % BITS_PER_UNIT;
360 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
361 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
362 / BITS_PER_UNIT);
363 return adjust_bitfield_address_size (mem, mode, offset, size);
365 else
367 unsigned int unit = GET_MODE_BITSIZE (mode);
368 *new_bitnum = bitnum % unit;
369 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
370 return adjust_bitfield_address (mem, mode, offset);
374 /* The caller wants to perform insertion or extraction PATTERN on a
375 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
376 BITREGION_START and BITREGION_END are as for store_bit_field
377 and FIELDMODE is the natural mode of the field.
379 Search for a mode that is compatible with the memory access
380 restrictions and (where applicable) with a register insertion or
381 extraction. Return the new memory on success, storing the adjusted
382 bit position in *NEW_BITNUM. Return null otherwise. */
384 static rtx
385 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
386 rtx op0, HOST_WIDE_INT bitsize,
387 HOST_WIDE_INT bitnum,
388 unsigned HOST_WIDE_INT bitregion_start,
389 unsigned HOST_WIDE_INT bitregion_end,
390 machine_mode fieldmode,
391 unsigned HOST_WIDE_INT *new_bitnum)
393 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
394 bitregion_end, MEM_ALIGN (op0),
395 MEM_VOLATILE_P (op0));
396 machine_mode best_mode;
397 if (iter.next_mode (&best_mode))
399 /* We can use a memory in BEST_MODE. See whether this is true for
400 any wider modes. All other things being equal, we prefer to
401 use the widest mode possible because it tends to expose more
402 CSE opportunities. */
403 if (!iter.prefer_smaller_modes ())
405 /* Limit the search to the mode required by the corresponding
406 register insertion or extraction instruction, if any. */
407 machine_mode limit_mode = word_mode;
408 extraction_insn insn;
409 if (get_best_reg_extraction_insn (&insn, pattern,
410 GET_MODE_BITSIZE (best_mode),
411 fieldmode))
412 limit_mode = insn.field_mode;
414 machine_mode wider_mode;
415 while (iter.next_mode (&wider_mode)
416 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
417 best_mode = wider_mode;
419 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
420 new_bitnum);
422 return NULL_RTX;
425 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
426 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
427 offset is then BITNUM / BITS_PER_UNIT. */
429 static bool
430 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum,
431 unsigned HOST_WIDE_INT bitsize,
432 machine_mode struct_mode)
434 if (BYTES_BIG_ENDIAN)
435 return (bitnum % BITS_PER_UNIT == 0
436 && (bitnum + bitsize == GET_MODE_BITSIZE (struct_mode)
437 || (bitnum + bitsize) % BITS_PER_WORD == 0));
438 else
439 return bitnum % BITS_PER_WORD == 0;
442 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
443 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
444 Return false if the access would touch memory outside the range
445 BITREGION_START to BITREGION_END for conformance to the C++ memory
446 model. */
448 static bool
449 strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
450 unsigned HOST_WIDE_INT bitnum,
451 machine_mode fieldmode,
452 unsigned HOST_WIDE_INT bitregion_start,
453 unsigned HOST_WIDE_INT bitregion_end)
455 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
457 /* -fstrict-volatile-bitfields must be enabled and we must have a
458 volatile MEM. */
459 if (!MEM_P (op0)
460 || !MEM_VOLATILE_P (op0)
461 || flag_strict_volatile_bitfields <= 0)
462 return false;
464 /* Non-integral modes likely only happen with packed structures.
465 Punt. */
466 if (!SCALAR_INT_MODE_P (fieldmode))
467 return false;
469 /* The bit size must not be larger than the field mode, and
470 the field mode must not be larger than a word. */
471 if (bitsize > modesize || modesize > BITS_PER_WORD)
472 return false;
474 /* Check for cases of unaligned fields that must be split. */
475 if (bitnum % BITS_PER_UNIT + bitsize > modesize
476 || (STRICT_ALIGNMENT
477 && bitnum % GET_MODE_ALIGNMENT (fieldmode) + bitsize > modesize))
478 return false;
480 /* Check for cases where the C++ memory model applies. */
481 if (bitregion_end != 0
482 && (bitnum - bitnum % modesize < bitregion_start
483 || bitnum - bitnum % modesize + modesize - 1 > bitregion_end))
484 return false;
486 return true;
489 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
490 bit number BITNUM can be treated as a simple value of mode MODE. */
492 static bool
493 simple_mem_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
494 unsigned HOST_WIDE_INT bitnum, machine_mode mode)
496 return (MEM_P (op0)
497 && bitnum % BITS_PER_UNIT == 0
498 && bitsize == GET_MODE_BITSIZE (mode)
499 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
500 || (bitnum % GET_MODE_ALIGNMENT (mode) == 0
501 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
504 /* Try to use instruction INSV to store VALUE into a field of OP0.
505 BITSIZE and BITNUM are as for store_bit_field. */
507 static bool
508 store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
509 unsigned HOST_WIDE_INT bitsize,
510 unsigned HOST_WIDE_INT bitnum,
511 rtx value)
513 struct expand_operand ops[4];
514 rtx value1;
515 rtx xop0 = op0;
516 rtx_insn *last = get_last_insn ();
517 bool copy_back = false;
519 machine_mode op_mode = insv->field_mode;
520 unsigned int unit = GET_MODE_BITSIZE (op_mode);
521 if (bitsize == 0 || bitsize > unit)
522 return false;
524 if (MEM_P (xop0))
525 /* Get a reference to the first byte of the field. */
526 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
527 &bitnum);
528 else
530 /* Convert from counting within OP0 to counting in OP_MODE. */
531 if (BYTES_BIG_ENDIAN)
532 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
534 /* If xop0 is a register, we need it in OP_MODE
535 to make it acceptable to the format of insv. */
536 if (GET_CODE (xop0) == SUBREG)
537 /* We can't just change the mode, because this might clobber op0,
538 and we will need the original value of op0 if insv fails. */
539 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
540 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
541 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
544 /* If the destination is a paradoxical subreg such that we need a
545 truncate to the inner mode, perform the insertion on a temporary and
546 truncate the result to the original destination. Note that we can't
547 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
548 X) 0)) is (reg:N X). */
549 if (GET_CODE (xop0) == SUBREG
550 && REG_P (SUBREG_REG (xop0))
551 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
552 op_mode))
554 rtx tem = gen_reg_rtx (op_mode);
555 emit_move_insn (tem, xop0);
556 xop0 = tem;
557 copy_back = true;
560 /* There are similar overflow check at the start of store_bit_field_1,
561 but that only check the situation where the field lies completely
562 outside the register, while there do have situation where the field
563 lies partialy in the register, we need to adjust bitsize for this
564 partial overflow situation. Without this fix, pr48335-2.c on big-endian
565 will broken on those arch support bit insert instruction, like arm, aarch64
566 etc. */
567 if (bitsize + bitnum > unit && bitnum < unit)
569 warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
570 "destination object, data truncated into %wu-bit",
571 bitsize, unit - bitnum);
572 bitsize = unit - bitnum;
575 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
576 "backwards" from the size of the unit we are inserting into.
577 Otherwise, we count bits from the most significant on a
578 BYTES/BITS_BIG_ENDIAN machine. */
580 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
581 bitnum = unit - bitsize - bitnum;
583 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
584 value1 = value;
585 if (GET_MODE (value) != op_mode)
587 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
589 /* Optimization: Don't bother really extending VALUE
590 if it has all the bits we will actually use. However,
591 if we must narrow it, be sure we do it correctly. */
593 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
595 rtx tmp;
597 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
598 if (! tmp)
599 tmp = simplify_gen_subreg (op_mode,
600 force_reg (GET_MODE (value),
601 value1),
602 GET_MODE (value), 0);
603 value1 = tmp;
605 else
606 value1 = gen_lowpart (op_mode, value1);
608 else if (CONST_INT_P (value))
609 value1 = gen_int_mode (INTVAL (value), op_mode);
610 else
611 /* Parse phase is supposed to make VALUE's data type
612 match that of the component reference, which is a type
613 at least as wide as the field; so VALUE should have
614 a mode that corresponds to that type. */
615 gcc_assert (CONSTANT_P (value));
618 create_fixed_operand (&ops[0], xop0);
619 create_integer_operand (&ops[1], bitsize);
620 create_integer_operand (&ops[2], bitnum);
621 create_input_operand (&ops[3], value1, op_mode);
622 if (maybe_expand_insn (insv->icode, 4, ops))
624 if (copy_back)
625 convert_move (op0, xop0, true);
626 return true;
628 delete_insns_since (last);
629 return false;
632 /* A subroutine of store_bit_field, with the same arguments. Return true
633 if the operation could be implemented.
635 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
636 no other way of implementing the operation. If FALLBACK_P is false,
637 return false instead. */
639 static bool
640 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
641 unsigned HOST_WIDE_INT bitnum,
642 unsigned HOST_WIDE_INT bitregion_start,
643 unsigned HOST_WIDE_INT bitregion_end,
644 machine_mode fieldmode,
645 rtx value, bool fallback_p)
647 rtx op0 = str_rtx;
648 rtx orig_value;
650 while (GET_CODE (op0) == SUBREG)
652 /* The following line once was done only if WORDS_BIG_ENDIAN,
653 but I think that is a mistake. WORDS_BIG_ENDIAN is
654 meaningful at a much higher level; when structures are copied
655 between memory and regs, the higher-numbered regs
656 always get higher addresses. */
657 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
658 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
659 int byte_offset = 0;
661 /* Paradoxical subregs need special handling on big endian machines. */
662 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
664 int difference = inner_mode_size - outer_mode_size;
666 if (WORDS_BIG_ENDIAN)
667 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
668 if (BYTES_BIG_ENDIAN)
669 byte_offset += difference % UNITS_PER_WORD;
671 else
672 byte_offset = SUBREG_BYTE (op0);
674 bitnum += byte_offset * BITS_PER_UNIT;
675 op0 = SUBREG_REG (op0);
678 /* No action is needed if the target is a register and if the field
679 lies completely outside that register. This can occur if the source
680 code contains an out-of-bounds access to a small array. */
681 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
682 return true;
684 /* Use vec_set patterns for inserting parts of vectors whenever
685 available. */
686 if (VECTOR_MODE_P (GET_MODE (op0))
687 && !MEM_P (op0)
688 && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
689 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
690 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
691 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
693 struct expand_operand ops[3];
694 machine_mode outermode = GET_MODE (op0);
695 machine_mode innermode = GET_MODE_INNER (outermode);
696 enum insn_code icode = optab_handler (vec_set_optab, outermode);
697 int pos = bitnum / GET_MODE_BITSIZE (innermode);
699 create_fixed_operand (&ops[0], op0);
700 create_input_operand (&ops[1], value, innermode);
701 create_integer_operand (&ops[2], pos);
702 if (maybe_expand_insn (icode, 3, ops))
703 return true;
706 /* If the target is a register, overwriting the entire object, or storing
707 a full-word or multi-word field can be done with just a SUBREG. */
708 if (!MEM_P (op0)
709 && bitsize == GET_MODE_BITSIZE (fieldmode)
710 && ((bitsize == GET_MODE_BITSIZE (GET_MODE (op0)) && bitnum == 0)
711 || (bitsize % BITS_PER_WORD == 0 && bitnum % BITS_PER_WORD == 0)))
713 /* Use the subreg machinery either to narrow OP0 to the required
714 words or to cope with mode punning between equal-sized modes.
715 In the latter case, use subreg on the rhs side, not lhs. */
716 rtx sub;
718 if (bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
720 sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
721 if (sub)
723 emit_move_insn (op0, sub);
724 return true;
727 else
729 sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
730 bitnum / BITS_PER_UNIT);
731 if (sub)
733 emit_move_insn (sub, value);
734 return true;
739 /* If the target is memory, storing any naturally aligned field can be
740 done with a simple store. For targets that support fast unaligned
741 memory, any naturally sized, unit aligned field can be done directly. */
742 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode))
744 op0 = adjust_bitfield_address (op0, fieldmode, bitnum / BITS_PER_UNIT);
745 emit_move_insn (op0, value);
746 return true;
749 /* Make sure we are playing with integral modes. Pun with subregs
750 if we aren't. This must come after the entire register case above,
751 since that case is valid for any mode. The following cases are only
752 valid for integral modes. */
754 machine_mode imode = int_mode_for_mode (GET_MODE (op0));
755 if (imode != GET_MODE (op0))
757 if (MEM_P (op0))
758 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
759 else
761 gcc_assert (imode != BLKmode);
762 op0 = gen_lowpart (imode, op0);
767 /* Storing an lsb-aligned field in a register
768 can be done with a movstrict instruction. */
770 if (!MEM_P (op0)
771 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
772 && bitsize == GET_MODE_BITSIZE (fieldmode)
773 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
775 struct expand_operand ops[2];
776 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
777 rtx arg0 = op0;
778 unsigned HOST_WIDE_INT subreg_off;
780 if (GET_CODE (arg0) == SUBREG)
782 /* Else we've got some float mode source being extracted into
783 a different float mode destination -- this combination of
784 subregs results in Severe Tire Damage. */
785 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
786 || GET_MODE_CLASS (fieldmode) == MODE_INT
787 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
788 arg0 = SUBREG_REG (arg0);
791 subreg_off = bitnum / BITS_PER_UNIT;
792 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
794 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
796 create_fixed_operand (&ops[0], arg0);
797 /* Shrink the source operand to FIELDMODE. */
798 create_convert_operand_to (&ops[1], value, fieldmode, false);
799 if (maybe_expand_insn (icode, 2, ops))
800 return true;
804 /* Handle fields bigger than a word. */
806 if (bitsize > BITS_PER_WORD)
808 /* Here we transfer the words of the field
809 in the order least significant first.
810 This is because the most significant word is the one which may
811 be less than full.
812 However, only do that if the value is not BLKmode. */
814 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
815 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
816 unsigned int i;
817 rtx_insn *last;
819 /* This is the mode we must force value to, so that there will be enough
820 subwords to extract. Note that fieldmode will often (always?) be
821 VOIDmode, because that is what store_field uses to indicate that this
822 is a bit field, but passing VOIDmode to operand_subword_force
823 is not allowed. */
824 fieldmode = GET_MODE (value);
825 if (fieldmode == VOIDmode)
826 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
828 last = get_last_insn ();
829 for (i = 0; i < nwords; i++)
831 /* If I is 0, use the low-order word in both field and target;
832 if I is 1, use the next to lowest word; and so on. */
833 unsigned int wordnum = (backwards
834 ? GET_MODE_SIZE (fieldmode) / UNITS_PER_WORD
835 - i - 1
836 : i);
837 unsigned int bit_offset = (backwards
838 ? MAX ((int) bitsize - ((int) i + 1)
839 * BITS_PER_WORD,
841 : (int) i * BITS_PER_WORD);
842 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
843 unsigned HOST_WIDE_INT new_bitsize =
844 MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
846 /* If the remaining chunk doesn't have full wordsize we have
847 to make sure that for big endian machines the higher order
848 bits are used. */
849 if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
850 value_word = simplify_expand_binop (word_mode, lshr_optab,
851 value_word,
852 GEN_INT (BITS_PER_WORD
853 - new_bitsize),
854 NULL_RTX, true,
855 OPTAB_LIB_WIDEN);
857 if (!store_bit_field_1 (op0, new_bitsize,
858 bitnum + bit_offset,
859 bitregion_start, bitregion_end,
860 word_mode,
861 value_word, fallback_p))
863 delete_insns_since (last);
864 return false;
867 return true;
870 /* If VALUE has a floating-point or complex mode, access it as an
871 integer of the corresponding size. This can occur on a machine
872 with 64 bit registers that uses SFmode for float. It can also
873 occur for unaligned float or complex fields. */
874 orig_value = value;
875 if (GET_MODE (value) != VOIDmode
876 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
877 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
879 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
880 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
883 /* If OP0 is a multi-word register, narrow it to the affected word.
884 If the region spans two words, defer to store_split_bit_field. */
885 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
887 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
888 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
889 gcc_assert (op0);
890 bitnum %= BITS_PER_WORD;
891 if (bitnum + bitsize > BITS_PER_WORD)
893 if (!fallback_p)
894 return false;
896 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
897 bitregion_end, value);
898 return true;
902 /* From here on we can assume that the field to be stored in fits
903 within a word. If the destination is a register, it too fits
904 in a word. */
906 extraction_insn insv;
907 if (!MEM_P (op0)
908 && get_best_reg_extraction_insn (&insv, EP_insv,
909 GET_MODE_BITSIZE (GET_MODE (op0)),
910 fieldmode)
911 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
912 return true;
914 /* If OP0 is a memory, try copying it to a register and seeing if a
915 cheap register alternative is available. */
916 if (MEM_P (op0))
918 if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
919 fieldmode)
920 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
921 return true;
923 rtx_insn *last = get_last_insn ();
925 /* Try loading part of OP0 into a register, inserting the bitfield
926 into that, and then copying the result back to OP0. */
927 unsigned HOST_WIDE_INT bitpos;
928 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
929 bitregion_start, bitregion_end,
930 fieldmode, &bitpos);
931 if (xop0)
933 rtx tempreg = copy_to_reg (xop0);
934 if (store_bit_field_1 (tempreg, bitsize, bitpos,
935 bitregion_start, bitregion_end,
936 fieldmode, orig_value, false))
938 emit_move_insn (xop0, tempreg);
939 return true;
941 delete_insns_since (last);
945 if (!fallback_p)
946 return false;
948 store_fixed_bit_field (op0, bitsize, bitnum, bitregion_start,
949 bitregion_end, value);
950 return true;
953 /* Generate code to store value from rtx VALUE
954 into a bit-field within structure STR_RTX
955 containing BITSIZE bits starting at bit BITNUM.
957 BITREGION_START is bitpos of the first bitfield in this region.
958 BITREGION_END is the bitpos of the ending bitfield in this region.
959 These two fields are 0, if the C++ memory model does not apply,
960 or we are not interested in keeping track of bitfield regions.
962 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
964 void
965 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
966 unsigned HOST_WIDE_INT bitnum,
967 unsigned HOST_WIDE_INT bitregion_start,
968 unsigned HOST_WIDE_INT bitregion_end,
969 machine_mode fieldmode,
970 rtx value)
972 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
973 if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, fieldmode,
974 bitregion_start, bitregion_end))
976 /* Storing any naturally aligned field can be done with a simple
977 store. For targets that support fast unaligned memory, any
978 naturally sized, unit aligned field can be done directly. */
979 if (bitsize == GET_MODE_BITSIZE (fieldmode))
981 str_rtx = adjust_bitfield_address (str_rtx, fieldmode,
982 bitnum / BITS_PER_UNIT);
983 emit_move_insn (str_rtx, value);
985 else
987 rtx temp;
989 str_rtx = narrow_bit_field_mem (str_rtx, fieldmode, bitsize, bitnum,
990 &bitnum);
991 temp = copy_to_reg (str_rtx);
992 if (!store_bit_field_1 (temp, bitsize, bitnum, 0, 0,
993 fieldmode, value, true))
994 gcc_unreachable ();
996 emit_move_insn (str_rtx, temp);
999 return;
1002 /* Under the C++0x memory model, we must not touch bits outside the
1003 bit region. Adjust the address to start at the beginning of the
1004 bit region. */
1005 if (MEM_P (str_rtx) && bitregion_start > 0)
1007 machine_mode bestmode;
1008 HOST_WIDE_INT offset, size;
1010 gcc_assert ((bitregion_start % BITS_PER_UNIT) == 0);
1012 offset = bitregion_start / BITS_PER_UNIT;
1013 bitnum -= bitregion_start;
1014 size = (bitnum + bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
1015 bitregion_end -= bitregion_start;
1016 bitregion_start = 0;
1017 bestmode = get_best_mode (bitsize, bitnum,
1018 bitregion_start, bitregion_end,
1019 MEM_ALIGN (str_rtx), VOIDmode,
1020 MEM_VOLATILE_P (str_rtx));
1021 str_rtx = adjust_bitfield_address_size (str_rtx, bestmode, offset, size);
1024 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1025 bitregion_start, bitregion_end,
1026 fieldmode, value, true))
1027 gcc_unreachable ();
1030 /* Use shifts and boolean operations to store VALUE into a bit field of
1031 width BITSIZE in OP0, starting at bit BITNUM. */
1033 static void
1034 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1035 unsigned HOST_WIDE_INT bitnum,
1036 unsigned HOST_WIDE_INT bitregion_start,
1037 unsigned HOST_WIDE_INT bitregion_end,
1038 rtx value)
1040 /* There is a case not handled here:
1041 a structure with a known alignment of just a halfword
1042 and a field split across two aligned halfwords within the structure.
1043 Or likewise a structure with a known alignment of just a byte
1044 and a field split across two bytes.
1045 Such cases are not supposed to be able to occur. */
1047 if (MEM_P (op0))
1049 machine_mode mode = GET_MODE (op0);
1050 if (GET_MODE_BITSIZE (mode) == 0
1051 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
1052 mode = word_mode;
1053 mode = get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1054 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
1056 if (mode == VOIDmode)
1058 /* The only way this should occur is if the field spans word
1059 boundaries. */
1060 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
1061 bitregion_end, value);
1062 return;
1065 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1068 store_fixed_bit_field_1 (op0, bitsize, bitnum, value);
1071 /* Helper function for store_fixed_bit_field, stores
1072 the bit field always using the MODE of OP0. */
1074 static void
1075 store_fixed_bit_field_1 (rtx op0, unsigned HOST_WIDE_INT bitsize,
1076 unsigned HOST_WIDE_INT bitnum,
1077 rtx value)
1079 machine_mode mode;
1080 rtx temp;
1081 int all_zero = 0;
1082 int all_one = 0;
1084 mode = GET_MODE (op0);
1085 gcc_assert (SCALAR_INT_MODE_P (mode));
1087 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1088 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1090 if (BYTES_BIG_ENDIAN)
1091 /* BITNUM is the distance between our msb
1092 and that of the containing datum.
1093 Convert it to the distance from the lsb. */
1094 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1096 /* Now BITNUM is always the distance between our lsb
1097 and that of OP0. */
1099 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1100 we must first convert its mode to MODE. */
1102 if (CONST_INT_P (value))
1104 unsigned HOST_WIDE_INT v = UINTVAL (value);
1106 if (bitsize < HOST_BITS_PER_WIDE_INT)
1107 v &= ((unsigned HOST_WIDE_INT) 1 << bitsize) - 1;
1109 if (v == 0)
1110 all_zero = 1;
1111 else if ((bitsize < HOST_BITS_PER_WIDE_INT
1112 && v == ((unsigned HOST_WIDE_INT) 1 << bitsize) - 1)
1113 || (bitsize == HOST_BITS_PER_WIDE_INT
1114 && v == (unsigned HOST_WIDE_INT) -1))
1115 all_one = 1;
1117 value = lshift_value (mode, v, bitnum);
1119 else
1121 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
1122 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1124 if (GET_MODE (value) != mode)
1125 value = convert_to_mode (mode, value, 1);
1127 if (must_and)
1128 value = expand_binop (mode, and_optab, value,
1129 mask_rtx (mode, 0, bitsize, 0),
1130 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1131 if (bitnum > 0)
1132 value = expand_shift (LSHIFT_EXPR, mode, value,
1133 bitnum, NULL_RTX, 1);
1136 /* Now clear the chosen bits in OP0,
1137 except that if VALUE is -1 we need not bother. */
1138 /* We keep the intermediates in registers to allow CSE to combine
1139 consecutive bitfield assignments. */
1141 temp = force_reg (mode, op0);
1143 if (! all_one)
1145 temp = expand_binop (mode, and_optab, temp,
1146 mask_rtx (mode, bitnum, bitsize, 1),
1147 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1148 temp = force_reg (mode, temp);
1151 /* Now logical-or VALUE into OP0, unless it is zero. */
1153 if (! all_zero)
1155 temp = expand_binop (mode, ior_optab, temp, value,
1156 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1157 temp = force_reg (mode, temp);
1160 if (op0 != temp)
1162 op0 = copy_rtx (op0);
1163 emit_move_insn (op0, temp);
1167 /* Store a bit field that is split across multiple accessible memory objects.
1169 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1170 BITSIZE is the field width; BITPOS the position of its first bit
1171 (within the word).
1172 VALUE is the value to store.
1174 This does not yet handle fields wider than BITS_PER_WORD. */
1176 static void
1177 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1178 unsigned HOST_WIDE_INT bitpos,
1179 unsigned HOST_WIDE_INT bitregion_start,
1180 unsigned HOST_WIDE_INT bitregion_end,
1181 rtx value)
1183 unsigned int unit;
1184 unsigned int bitsdone = 0;
1186 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1187 much at a time. */
1188 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1189 unit = BITS_PER_WORD;
1190 else
1191 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1193 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1194 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1195 again, and we will mutually recurse forever. */
1196 if (MEM_P (op0) && GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
1197 unit = MIN (unit, GET_MODE_BITSIZE (GET_MODE (op0)));
1199 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1200 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1201 that VALUE might be a floating-point constant. */
1202 if (CONSTANT_P (value) && !CONST_INT_P (value))
1204 rtx word = gen_lowpart_common (word_mode, value);
1206 if (word && (value != word))
1207 value = word;
1208 else
1209 value = gen_lowpart_common (word_mode,
1210 force_reg (GET_MODE (value) != VOIDmode
1211 ? GET_MODE (value)
1212 : word_mode, value));
1215 while (bitsdone < bitsize)
1217 unsigned HOST_WIDE_INT thissize;
1218 rtx part, word;
1219 unsigned HOST_WIDE_INT thispos;
1220 unsigned HOST_WIDE_INT offset;
1222 offset = (bitpos + bitsdone) / unit;
1223 thispos = (bitpos + bitsdone) % unit;
1225 /* When region of bytes we can touch is restricted, decrease
1226 UNIT close to the end of the region as needed. If op0 is a REG
1227 or SUBREG of REG, don't do this, as there can't be data races
1228 on a register and we can expand shorter code in some cases. */
1229 if (bitregion_end
1230 && unit > BITS_PER_UNIT
1231 && bitpos + bitsdone - thispos + unit > bitregion_end + 1
1232 && !REG_P (op0)
1233 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1235 unit = unit / 2;
1236 continue;
1239 /* THISSIZE must not overrun a word boundary. Otherwise,
1240 store_fixed_bit_field will call us again, and we will mutually
1241 recurse forever. */
1242 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1243 thissize = MIN (thissize, unit - thispos);
1245 if (BYTES_BIG_ENDIAN)
1247 /* Fetch successively less significant portions. */
1248 if (CONST_INT_P (value))
1249 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1250 >> (bitsize - bitsdone - thissize))
1251 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1252 else
1254 int total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1255 /* The args are chosen so that the last part includes the
1256 lsb. Give extract_bit_field the value it needs (with
1257 endianness compensation) to fetch the piece we want. */
1258 part = extract_fixed_bit_field (word_mode, value, thissize,
1259 total_bits - bitsize + bitsdone,
1260 NULL_RTX, 1);
1263 else
1265 /* Fetch successively more significant portions. */
1266 if (CONST_INT_P (value))
1267 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1268 >> bitsdone)
1269 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1270 else
1271 part = extract_fixed_bit_field (word_mode, value, thissize,
1272 bitsdone, NULL_RTX, 1);
1275 /* If OP0 is a register, then handle OFFSET here.
1277 When handling multiword bitfields, extract_bit_field may pass
1278 down a word_mode SUBREG of a larger REG for a bitfield that actually
1279 crosses a word boundary. Thus, for a SUBREG, we must find
1280 the current word starting from the base register. */
1281 if (GET_CODE (op0) == SUBREG)
1283 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD)
1284 + (offset * unit / BITS_PER_WORD);
1285 machine_mode sub_mode = GET_MODE (SUBREG_REG (op0));
1286 if (sub_mode != BLKmode && GET_MODE_SIZE (sub_mode) < UNITS_PER_WORD)
1287 word = word_offset ? const0_rtx : op0;
1288 else
1289 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1290 GET_MODE (SUBREG_REG (op0)));
1291 offset &= BITS_PER_WORD / unit - 1;
1293 else if (REG_P (op0))
1295 machine_mode op0_mode = GET_MODE (op0);
1296 if (op0_mode != BLKmode && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD)
1297 word = offset ? const0_rtx : op0;
1298 else
1299 word = operand_subword_force (op0, offset * unit / BITS_PER_WORD,
1300 GET_MODE (op0));
1301 offset &= BITS_PER_WORD / unit - 1;
1303 else
1304 word = op0;
1306 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1307 it is just an out-of-bounds access. Ignore it. */
1308 if (word != const0_rtx)
1309 store_fixed_bit_field (word, thissize, offset * unit + thispos,
1310 bitregion_start, bitregion_end, part);
1311 bitsdone += thissize;
1315 /* A subroutine of extract_bit_field_1 that converts return value X
1316 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1317 to extract_bit_field. */
1319 static rtx
1320 convert_extracted_bit_field (rtx x, machine_mode mode,
1321 machine_mode tmode, bool unsignedp)
1323 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1324 return x;
1326 /* If the x mode is not a scalar integral, first convert to the
1327 integer mode of that size and then access it as a floating-point
1328 value via a SUBREG. */
1329 if (!SCALAR_INT_MODE_P (tmode))
1331 machine_mode smode;
1333 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1334 x = convert_to_mode (smode, x, unsignedp);
1335 x = force_reg (smode, x);
1336 return gen_lowpart (tmode, x);
1339 return convert_to_mode (tmode, x, unsignedp);
1342 /* Try to use an ext(z)v pattern to extract a field from OP0.
1343 Return the extracted value on success, otherwise return null.
1344 EXT_MODE is the mode of the extraction and the other arguments
1345 are as for extract_bit_field. */
1347 static rtx
1348 extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1349 unsigned HOST_WIDE_INT bitsize,
1350 unsigned HOST_WIDE_INT bitnum,
1351 int unsignedp, rtx target,
1352 machine_mode mode, machine_mode tmode)
1354 struct expand_operand ops[4];
1355 rtx spec_target = target;
1356 rtx spec_target_subreg = 0;
1357 machine_mode ext_mode = extv->field_mode;
1358 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1360 if (bitsize == 0 || unit < bitsize)
1361 return NULL_RTX;
1363 if (MEM_P (op0))
1364 /* Get a reference to the first byte of the field. */
1365 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1366 &bitnum);
1367 else
1369 /* Convert from counting within OP0 to counting in EXT_MODE. */
1370 if (BYTES_BIG_ENDIAN)
1371 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1373 /* If op0 is a register, we need it in EXT_MODE to make it
1374 acceptable to the format of ext(z)v. */
1375 if (GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1376 return NULL_RTX;
1377 if (REG_P (op0) && GET_MODE (op0) != ext_mode)
1378 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1381 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1382 "backwards" from the size of the unit we are extracting from.
1383 Otherwise, we count bits from the most significant on a
1384 BYTES/BITS_BIG_ENDIAN machine. */
1386 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1387 bitnum = unit - bitsize - bitnum;
1389 if (target == 0)
1390 target = spec_target = gen_reg_rtx (tmode);
1392 if (GET_MODE (target) != ext_mode)
1394 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1395 between the mode of the extraction (word_mode) and the target
1396 mode. Instead, create a temporary and use convert_move to set
1397 the target. */
1398 if (REG_P (target)
1399 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
1401 target = gen_lowpart (ext_mode, target);
1402 if (GET_MODE_PRECISION (ext_mode)
1403 > GET_MODE_PRECISION (GET_MODE (spec_target)))
1404 spec_target_subreg = target;
1406 else
1407 target = gen_reg_rtx (ext_mode);
1410 create_output_operand (&ops[0], target, ext_mode);
1411 create_fixed_operand (&ops[1], op0);
1412 create_integer_operand (&ops[2], bitsize);
1413 create_integer_operand (&ops[3], bitnum);
1414 if (maybe_expand_insn (extv->icode, 4, ops))
1416 target = ops[0].value;
1417 if (target == spec_target)
1418 return target;
1419 if (target == spec_target_subreg)
1420 return spec_target;
1421 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1423 return NULL_RTX;
1426 /* A subroutine of extract_bit_field, with the same arguments.
1427 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1428 if we can find no other means of implementing the operation.
1429 if FALLBACK_P is false, return NULL instead. */
1431 static rtx
1432 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1433 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1434 machine_mode mode, machine_mode tmode,
1435 bool fallback_p)
1437 rtx op0 = str_rtx;
1438 machine_mode int_mode;
1439 machine_mode mode1;
1441 if (tmode == VOIDmode)
1442 tmode = mode;
1444 while (GET_CODE (op0) == SUBREG)
1446 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1447 op0 = SUBREG_REG (op0);
1450 /* If we have an out-of-bounds access to a register, just return an
1451 uninitialized register of the required mode. This can occur if the
1452 source code contains an out-of-bounds access to a small array. */
1453 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1454 return gen_reg_rtx (tmode);
1456 if (REG_P (op0)
1457 && mode == GET_MODE (op0)
1458 && bitnum == 0
1459 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1461 /* We're trying to extract a full register from itself. */
1462 return op0;
1465 /* See if we can get a better vector mode before extracting. */
1466 if (VECTOR_MODE_P (GET_MODE (op0))
1467 && !MEM_P (op0)
1468 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1470 machine_mode new_mode;
1472 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1473 new_mode = MIN_MODE_VECTOR_FLOAT;
1474 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1475 new_mode = MIN_MODE_VECTOR_FRACT;
1476 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1477 new_mode = MIN_MODE_VECTOR_UFRACT;
1478 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1479 new_mode = MIN_MODE_VECTOR_ACCUM;
1480 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1481 new_mode = MIN_MODE_VECTOR_UACCUM;
1482 else
1483 new_mode = MIN_MODE_VECTOR_INT;
1485 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1486 if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1487 && targetm.vector_mode_supported_p (new_mode))
1488 break;
1489 if (new_mode != VOIDmode)
1490 op0 = gen_lowpart (new_mode, op0);
1493 /* Use vec_extract patterns for extracting parts of vectors whenever
1494 available. */
1495 if (VECTOR_MODE_P (GET_MODE (op0))
1496 && !MEM_P (op0)
1497 && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
1498 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1499 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1501 struct expand_operand ops[3];
1502 machine_mode outermode = GET_MODE (op0);
1503 machine_mode innermode = GET_MODE_INNER (outermode);
1504 enum insn_code icode = optab_handler (vec_extract_optab, outermode);
1505 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1507 create_output_operand (&ops[0], target, innermode);
1508 create_input_operand (&ops[1], op0, outermode);
1509 create_integer_operand (&ops[2], pos);
1510 if (maybe_expand_insn (icode, 3, ops))
1512 target = ops[0].value;
1513 if (GET_MODE (target) != mode)
1514 return gen_lowpart (tmode, target);
1515 return target;
1519 /* Make sure we are playing with integral modes. Pun with subregs
1520 if we aren't. */
1522 machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1523 if (imode != GET_MODE (op0))
1525 if (MEM_P (op0))
1526 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
1527 else if (imode != BLKmode)
1529 op0 = gen_lowpart (imode, op0);
1531 /* If we got a SUBREG, force it into a register since we
1532 aren't going to be able to do another SUBREG on it. */
1533 if (GET_CODE (op0) == SUBREG)
1534 op0 = force_reg (imode, op0);
1536 else if (REG_P (op0))
1538 rtx reg, subreg;
1539 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1540 MODE_INT);
1541 reg = gen_reg_rtx (imode);
1542 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1543 emit_move_insn (subreg, op0);
1544 op0 = reg;
1545 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1547 else
1549 HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (op0));
1550 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1551 emit_move_insn (mem, op0);
1552 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1557 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1558 If that's wrong, the solution is to test for it and set TARGET to 0
1559 if needed. */
1561 /* Get the mode of the field to use for atomic access or subreg
1562 conversion. */
1563 mode1 = mode;
1564 if (SCALAR_INT_MODE_P (tmode))
1566 machine_mode try_mode = mode_for_size (bitsize,
1567 GET_MODE_CLASS (tmode), 0);
1568 if (try_mode != BLKmode)
1569 mode1 = try_mode;
1571 gcc_assert (mode1 != BLKmode);
1573 /* Extraction of a full MODE1 value can be done with a subreg as long
1574 as the least significant bit of the value is the least significant
1575 bit of either OP0 or a word of OP0. */
1576 if (!MEM_P (op0)
1577 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1578 && bitsize == GET_MODE_BITSIZE (mode1)
1579 && TRULY_NOOP_TRUNCATION_MODES_P (mode1, GET_MODE (op0)))
1581 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1582 bitnum / BITS_PER_UNIT);
1583 if (sub)
1584 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1587 /* Extraction of a full MODE1 value can be done with a load as long as
1588 the field is on a byte boundary and is sufficiently aligned. */
1589 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1))
1591 op0 = adjust_bitfield_address (op0, mode1, bitnum / BITS_PER_UNIT);
1592 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1595 /* Handle fields bigger than a word. */
1597 if (bitsize > BITS_PER_WORD)
1599 /* Here we transfer the words of the field
1600 in the order least significant first.
1601 This is because the most significant word is the one which may
1602 be less than full. */
1604 unsigned int backwards = WORDS_BIG_ENDIAN;
1605 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1606 unsigned int i;
1607 rtx_insn *last;
1609 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1610 target = gen_reg_rtx (mode);
1612 /* Indicate for flow that the entire target reg is being set. */
1613 emit_clobber (target);
1615 last = get_last_insn ();
1616 for (i = 0; i < nwords; i++)
1618 /* If I is 0, use the low-order word in both field and target;
1619 if I is 1, use the next to lowest word; and so on. */
1620 /* Word number in TARGET to use. */
1621 unsigned int wordnum
1622 = (backwards
1623 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1624 : i);
1625 /* Offset from start of field in OP0. */
1626 unsigned int bit_offset = (backwards
1627 ? MAX ((int) bitsize - ((int) i + 1)
1628 * BITS_PER_WORD,
1630 : (int) i * BITS_PER_WORD);
1631 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1632 rtx result_part
1633 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1634 bitsize - i * BITS_PER_WORD),
1635 bitnum + bit_offset, 1, target_part,
1636 mode, word_mode, fallback_p);
1638 gcc_assert (target_part);
1639 if (!result_part)
1641 delete_insns_since (last);
1642 return NULL;
1645 if (result_part != target_part)
1646 emit_move_insn (target_part, result_part);
1649 if (unsignedp)
1651 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1652 need to be zero'd out. */
1653 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1655 unsigned int i, total_words;
1657 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1658 for (i = nwords; i < total_words; i++)
1659 emit_move_insn
1660 (operand_subword (target,
1661 backwards ? total_words - i - 1 : i,
1662 1, VOIDmode),
1663 const0_rtx);
1665 return target;
1668 /* Signed bit field: sign-extend with two arithmetic shifts. */
1669 target = expand_shift (LSHIFT_EXPR, mode, target,
1670 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1671 return expand_shift (RSHIFT_EXPR, mode, target,
1672 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1675 /* If OP0 is a multi-word register, narrow it to the affected word.
1676 If the region spans two words, defer to extract_split_bit_field. */
1677 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1679 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
1680 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1681 bitnum %= BITS_PER_WORD;
1682 if (bitnum + bitsize > BITS_PER_WORD)
1684 if (!fallback_p)
1685 return NULL_RTX;
1686 target = extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1687 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1691 /* From here on we know the desired field is smaller than a word.
1692 If OP0 is a register, it too fits within a word. */
1693 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1694 extraction_insn extv;
1695 if (!MEM_P (op0)
1696 /* ??? We could limit the structure size to the part of OP0 that
1697 contains the field, with appropriate checks for endianness
1698 and TRULY_NOOP_TRUNCATION. */
1699 && get_best_reg_extraction_insn (&extv, pattern,
1700 GET_MODE_BITSIZE (GET_MODE (op0)),
1701 tmode))
1703 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize, bitnum,
1704 unsignedp, target, mode,
1705 tmode);
1706 if (result)
1707 return result;
1710 /* If OP0 is a memory, try copying it to a register and seeing if a
1711 cheap register alternative is available. */
1712 if (MEM_P (op0))
1714 if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
1715 tmode))
1717 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize,
1718 bitnum, unsignedp,
1719 target, mode,
1720 tmode);
1721 if (result)
1722 return result;
1725 rtx_insn *last = get_last_insn ();
1727 /* Try loading part of OP0 into a register and extracting the
1728 bitfield from that. */
1729 unsigned HOST_WIDE_INT bitpos;
1730 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
1731 0, 0, tmode, &bitpos);
1732 if (xop0)
1734 xop0 = copy_to_reg (xop0);
1735 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
1736 unsignedp, target,
1737 mode, tmode, false);
1738 if (result)
1739 return result;
1740 delete_insns_since (last);
1744 if (!fallback_p)
1745 return NULL;
1747 /* Find a correspondingly-sized integer field, so we can apply
1748 shifts and masks to it. */
1749 int_mode = int_mode_for_mode (tmode);
1750 if (int_mode == BLKmode)
1751 int_mode = int_mode_for_mode (mode);
1752 /* Should probably push op0 out to memory and then do a load. */
1753 gcc_assert (int_mode != BLKmode);
1755 target = extract_fixed_bit_field (int_mode, op0, bitsize, bitnum,
1756 target, unsignedp);
1757 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1760 /* Generate code to extract a byte-field from STR_RTX
1761 containing BITSIZE bits, starting at BITNUM,
1762 and put it in TARGET if possible (if TARGET is nonzero).
1763 Regardless of TARGET, we return the rtx for where the value is placed.
1765 STR_RTX is the structure containing the byte (a REG or MEM).
1766 UNSIGNEDP is nonzero if this is an unsigned bit field.
1767 MODE is the natural mode of the field value once extracted.
1768 TMODE is the mode the caller would like the value to have;
1769 but the value may be returned with type MODE instead.
1771 If a TARGET is specified and we can store in it at no extra cost,
1772 we do so, and return TARGET.
1773 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1774 if they are equally easy. */
1777 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1778 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1779 machine_mode mode, machine_mode tmode)
1781 machine_mode mode1;
1783 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1784 if (GET_MODE_BITSIZE (GET_MODE (str_rtx)) > 0)
1785 mode1 = GET_MODE (str_rtx);
1786 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1787 mode1 = GET_MODE (target);
1788 else
1789 mode1 = tmode;
1791 if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, mode1, 0, 0))
1793 /* Extraction of a full MODE1 value can be done with a load as long as
1794 the field is on a byte boundary and is sufficiently aligned. */
1795 if (bitsize == GET_MODE_BITSIZE(mode1))
1797 rtx result = adjust_bitfield_address (str_rtx, mode1,
1798 bitnum / BITS_PER_UNIT);
1799 return convert_extracted_bit_field (result, mode, tmode, unsignedp);
1802 str_rtx = narrow_bit_field_mem (str_rtx, mode1, bitsize, bitnum,
1803 &bitnum);
1804 str_rtx = copy_to_reg (str_rtx);
1807 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1808 target, mode, tmode, true);
1811 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1812 from bit BITNUM of OP0.
1814 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1815 If TARGET is nonzero, attempts to store the value there
1816 and return TARGET, but this is not guaranteed.
1817 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1819 static rtx
1820 extract_fixed_bit_field (machine_mode tmode, rtx op0,
1821 unsigned HOST_WIDE_INT bitsize,
1822 unsigned HOST_WIDE_INT bitnum, rtx target,
1823 int unsignedp)
1825 if (MEM_P (op0))
1827 machine_mode mode
1828 = get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0), word_mode,
1829 MEM_VOLATILE_P (op0));
1831 if (mode == VOIDmode)
1832 /* The only way this should occur is if the field spans word
1833 boundaries. */
1834 return extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1836 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1839 return extract_fixed_bit_field_1 (tmode, op0, bitsize, bitnum,
1840 target, unsignedp);
1843 /* Helper function for extract_fixed_bit_field, extracts
1844 the bit field always using the MODE of OP0. */
1846 static rtx
1847 extract_fixed_bit_field_1 (machine_mode tmode, rtx op0,
1848 unsigned HOST_WIDE_INT bitsize,
1849 unsigned HOST_WIDE_INT bitnum, rtx target,
1850 int unsignedp)
1852 machine_mode mode = GET_MODE (op0);
1853 gcc_assert (SCALAR_INT_MODE_P (mode));
1855 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1856 for invalid input, such as extract equivalent of f5 from
1857 gcc.dg/pr48335-2.c. */
1859 if (BYTES_BIG_ENDIAN)
1860 /* BITNUM is the distance between our msb and that of OP0.
1861 Convert it to the distance from the lsb. */
1862 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1864 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
1865 We have reduced the big-endian case to the little-endian case. */
1867 if (unsignedp)
1869 if (bitnum)
1871 /* If the field does not already start at the lsb,
1872 shift it so it does. */
1873 /* Maybe propagate the target for the shift. */
1874 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1875 if (tmode != mode)
1876 subtarget = 0;
1877 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
1879 /* Convert the value to the desired mode. */
1880 if (mode != tmode)
1881 op0 = convert_to_mode (tmode, op0, 1);
1883 /* Unless the msb of the field used to be the msb when we shifted,
1884 mask out the upper bits. */
1886 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
1887 return expand_binop (GET_MODE (op0), and_optab, op0,
1888 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1889 target, 1, OPTAB_LIB_WIDEN);
1890 return op0;
1893 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1894 then arithmetic-shift its lsb to the lsb of the word. */
1895 op0 = force_reg (mode, op0);
1897 /* Find the narrowest integer mode that contains the field. */
1899 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1900 mode = GET_MODE_WIDER_MODE (mode))
1901 if (GET_MODE_BITSIZE (mode) >= bitsize + bitnum)
1903 op0 = convert_to_mode (mode, op0, 0);
1904 break;
1907 if (mode != tmode)
1908 target = 0;
1910 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
1912 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
1913 /* Maybe propagate the target for the shift. */
1914 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1915 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1918 return expand_shift (RSHIFT_EXPR, mode, op0,
1919 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
1922 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1923 VALUE << BITPOS. */
1925 static rtx
1926 lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
1927 int bitpos)
1929 return immed_wide_int_const (wi::lshift (value, bitpos), mode);
1932 /* Extract a bit field that is split across two words
1933 and return an RTX for the result.
1935 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1936 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1937 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1939 static rtx
1940 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1941 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1943 unsigned int unit;
1944 unsigned int bitsdone = 0;
1945 rtx result = NULL_RTX;
1946 int first = 1;
1948 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1949 much at a time. */
1950 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1951 unit = BITS_PER_WORD;
1952 else
1953 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1955 while (bitsdone < bitsize)
1957 unsigned HOST_WIDE_INT thissize;
1958 rtx part, word;
1959 unsigned HOST_WIDE_INT thispos;
1960 unsigned HOST_WIDE_INT offset;
1962 offset = (bitpos + bitsdone) / unit;
1963 thispos = (bitpos + bitsdone) % unit;
1965 /* THISSIZE must not overrun a word boundary. Otherwise,
1966 extract_fixed_bit_field will call us again, and we will mutually
1967 recurse forever. */
1968 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1969 thissize = MIN (thissize, unit - thispos);
1971 /* If OP0 is a register, then handle OFFSET here.
1973 When handling multiword bitfields, extract_bit_field may pass
1974 down a word_mode SUBREG of a larger REG for a bitfield that actually
1975 crosses a word boundary. Thus, for a SUBREG, we must find
1976 the current word starting from the base register. */
1977 if (GET_CODE (op0) == SUBREG)
1979 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1980 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1981 GET_MODE (SUBREG_REG (op0)));
1982 offset = 0;
1984 else if (REG_P (op0))
1986 word = operand_subword_force (op0, offset, GET_MODE (op0));
1987 offset = 0;
1989 else
1990 word = op0;
1992 /* Extract the parts in bit-counting order,
1993 whose meaning is determined by BYTES_PER_UNIT.
1994 OFFSET is in UNITs, and UNIT is in bits. */
1995 part = extract_fixed_bit_field (word_mode, word, thissize,
1996 offset * unit + thispos, 0, 1);
1997 bitsdone += thissize;
1999 /* Shift this part into place for the result. */
2000 if (BYTES_BIG_ENDIAN)
2002 if (bitsize != bitsdone)
2003 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2004 bitsize - bitsdone, 0, 1);
2006 else
2008 if (bitsdone != thissize)
2009 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2010 bitsdone - thissize, 0, 1);
2013 if (first)
2014 result = part;
2015 else
2016 /* Combine the parts with bitwise or. This works
2017 because we extracted each part as an unsigned bit field. */
2018 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2019 OPTAB_LIB_WIDEN);
2021 first = 0;
2024 /* Unsigned bit field: we are done. */
2025 if (unsignedp)
2026 return result;
2027 /* Signed bit field: sign-extend with two arithmetic shifts. */
2028 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2029 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2030 return expand_shift (RSHIFT_EXPR, word_mode, result,
2031 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2034 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2035 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2036 MODE, fill the upper bits with zeros. Fail if the layout of either
2037 mode is unknown (as for CC modes) or if the extraction would involve
2038 unprofitable mode punning. Return the value on success, otherwise
2039 return null.
2041 This is different from gen_lowpart* in these respects:
2043 - the returned value must always be considered an rvalue
2045 - when MODE is wider than SRC_MODE, the extraction involves
2046 a zero extension
2048 - when MODE is smaller than SRC_MODE, the extraction involves
2049 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2051 In other words, this routine performs a computation, whereas the
2052 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2053 operations. */
2056 extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
2058 machine_mode int_mode, src_int_mode;
2060 if (mode == src_mode)
2061 return src;
2063 if (CONSTANT_P (src))
2065 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2066 fails, it will happily create (subreg (symbol_ref)) or similar
2067 invalid SUBREGs. */
2068 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2069 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2070 if (ret)
2071 return ret;
2073 if (GET_MODE (src) == VOIDmode
2074 || !validate_subreg (mode, src_mode, src, byte))
2075 return NULL_RTX;
2077 src = force_reg (GET_MODE (src), src);
2078 return gen_rtx_SUBREG (mode, src, byte);
2081 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2082 return NULL_RTX;
2084 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2085 && MODES_TIEABLE_P (mode, src_mode))
2087 rtx x = gen_lowpart_common (mode, src);
2088 if (x)
2089 return x;
2092 src_int_mode = int_mode_for_mode (src_mode);
2093 int_mode = int_mode_for_mode (mode);
2094 if (src_int_mode == BLKmode || int_mode == BLKmode)
2095 return NULL_RTX;
2097 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2098 return NULL_RTX;
2099 if (!MODES_TIEABLE_P (int_mode, mode))
2100 return NULL_RTX;
2102 src = gen_lowpart (src_int_mode, src);
2103 src = convert_modes (int_mode, src_int_mode, src, true);
2104 src = gen_lowpart (mode, src);
2105 return src;
2108 /* Add INC into TARGET. */
2110 void
2111 expand_inc (rtx target, rtx inc)
2113 rtx value = expand_binop (GET_MODE (target), add_optab,
2114 target, inc,
2115 target, 0, OPTAB_LIB_WIDEN);
2116 if (value != target)
2117 emit_move_insn (target, value);
2120 /* Subtract DEC from TARGET. */
2122 void
2123 expand_dec (rtx target, rtx dec)
2125 rtx value = expand_binop (GET_MODE (target), sub_optab,
2126 target, dec,
2127 target, 0, OPTAB_LIB_WIDEN);
2128 if (value != target)
2129 emit_move_insn (target, value);
2132 /* Output a shift instruction for expression code CODE,
2133 with SHIFTED being the rtx for the value to shift,
2134 and AMOUNT the rtx for the amount to shift by.
2135 Store the result in the rtx TARGET, if that is convenient.
2136 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2137 Return the rtx for where the value is. */
2139 static rtx
2140 expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
2141 rtx amount, rtx target, int unsignedp)
2143 rtx op1, temp = 0;
2144 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2145 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2146 optab lshift_optab = ashl_optab;
2147 optab rshift_arith_optab = ashr_optab;
2148 optab rshift_uns_optab = lshr_optab;
2149 optab lrotate_optab = rotl_optab;
2150 optab rrotate_optab = rotr_optab;
2151 machine_mode op1_mode;
2152 machine_mode scalar_mode = mode;
2153 int attempt;
2154 bool speed = optimize_insn_for_speed_p ();
2156 if (VECTOR_MODE_P (mode))
2157 scalar_mode = GET_MODE_INNER (mode);
2158 op1 = amount;
2159 op1_mode = GET_MODE (op1);
2161 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2162 shift amount is a vector, use the vector/vector shift patterns. */
2163 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2165 lshift_optab = vashl_optab;
2166 rshift_arith_optab = vashr_optab;
2167 rshift_uns_optab = vlshr_optab;
2168 lrotate_optab = vrotl_optab;
2169 rrotate_optab = vrotr_optab;
2172 /* Previously detected shift-counts computed by NEGATE_EXPR
2173 and shifted in the other direction; but that does not work
2174 on all machines. */
2176 if (SHIFT_COUNT_TRUNCATED)
2178 if (CONST_INT_P (op1)
2179 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2180 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
2181 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2182 % GET_MODE_BITSIZE (scalar_mode));
2183 else if (GET_CODE (op1) == SUBREG
2184 && subreg_lowpart_p (op1)
2185 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2186 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2187 op1 = SUBREG_REG (op1);
2190 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2191 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2192 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2193 amount instead. */
2194 if (rotate
2195 && CONST_INT_P (op1)
2196 && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
2197 GET_MODE_BITSIZE (scalar_mode) - 1))
2199 op1 = GEN_INT (GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
2200 left = !left;
2201 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2204 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2205 Note that this is not the case for bigger values. For instance a rotation
2206 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2207 0x04030201 (bswapsi). */
2208 if (rotate
2209 && CONST_INT_P (op1)
2210 && INTVAL (op1) == BITS_PER_UNIT
2211 && GET_MODE_SIZE (scalar_mode) == 2
2212 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing)
2213 return expand_unop (HImode, bswap_optab, shifted, NULL_RTX,
2214 unsignedp);
2216 if (op1 == const0_rtx)
2217 return shifted;
2219 /* Check whether its cheaper to implement a left shift by a constant
2220 bit count by a sequence of additions. */
2221 if (code == LSHIFT_EXPR
2222 && CONST_INT_P (op1)
2223 && INTVAL (op1) > 0
2224 && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
2225 && INTVAL (op1) < MAX_BITS_PER_WORD
2226 && (shift_cost (speed, mode, INTVAL (op1))
2227 > INTVAL (op1) * add_cost (speed, mode))
2228 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2230 int i;
2231 for (i = 0; i < INTVAL (op1); i++)
2233 temp = force_reg (mode, shifted);
2234 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2235 unsignedp, OPTAB_LIB_WIDEN);
2237 return shifted;
2240 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2242 enum optab_methods methods;
2244 if (attempt == 0)
2245 methods = OPTAB_DIRECT;
2246 else if (attempt == 1)
2247 methods = OPTAB_WIDEN;
2248 else
2249 methods = OPTAB_LIB_WIDEN;
2251 if (rotate)
2253 /* Widening does not work for rotation. */
2254 if (methods == OPTAB_WIDEN)
2255 continue;
2256 else if (methods == OPTAB_LIB_WIDEN)
2258 /* If we have been unable to open-code this by a rotation,
2259 do it as the IOR of two shifts. I.e., to rotate A
2260 by N bits, compute
2261 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2262 where C is the bitsize of A.
2264 It is theoretically possible that the target machine might
2265 not be able to perform either shift and hence we would
2266 be making two libcalls rather than just the one for the
2267 shift (similarly if IOR could not be done). We will allow
2268 this extremely unlikely lossage to avoid complicating the
2269 code below. */
2271 rtx subtarget = target == shifted ? 0 : target;
2272 rtx new_amount, other_amount;
2273 rtx temp1;
2275 new_amount = op1;
2276 if (op1 == const0_rtx)
2277 return shifted;
2278 else if (CONST_INT_P (op1))
2279 other_amount = GEN_INT (GET_MODE_BITSIZE (scalar_mode)
2280 - INTVAL (op1));
2281 else
2283 other_amount
2284 = simplify_gen_unary (NEG, GET_MODE (op1),
2285 op1, GET_MODE (op1));
2286 HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
2287 other_amount
2288 = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2289 gen_int_mode (mask, GET_MODE (op1)));
2292 shifted = force_reg (mode, shifted);
2294 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2295 mode, shifted, new_amount, 0, 1);
2296 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2297 mode, shifted, other_amount,
2298 subtarget, 1);
2299 return expand_binop (mode, ior_optab, temp, temp1, target,
2300 unsignedp, methods);
2303 temp = expand_binop (mode,
2304 left ? lrotate_optab : rrotate_optab,
2305 shifted, op1, target, unsignedp, methods);
2307 else if (unsignedp)
2308 temp = expand_binop (mode,
2309 left ? lshift_optab : rshift_uns_optab,
2310 shifted, op1, target, unsignedp, methods);
2312 /* Do arithmetic shifts.
2313 Also, if we are going to widen the operand, we can just as well
2314 use an arithmetic right-shift instead of a logical one. */
2315 if (temp == 0 && ! rotate
2316 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2318 enum optab_methods methods1 = methods;
2320 /* If trying to widen a log shift to an arithmetic shift,
2321 don't accept an arithmetic shift of the same size. */
2322 if (unsignedp)
2323 methods1 = OPTAB_MUST_WIDEN;
2325 /* Arithmetic shift */
2327 temp = expand_binop (mode,
2328 left ? lshift_optab : rshift_arith_optab,
2329 shifted, op1, target, unsignedp, methods1);
2332 /* We used to try extzv here for logical right shifts, but that was
2333 only useful for one machine, the VAX, and caused poor code
2334 generation there for lshrdi3, so the code was deleted and a
2335 define_expand for lshrsi3 was added to vax.md. */
2338 gcc_assert (temp);
2339 return temp;
2342 /* Output a shift instruction for expression code CODE,
2343 with SHIFTED being the rtx for the value to shift,
2344 and AMOUNT the amount to shift by.
2345 Store the result in the rtx TARGET, if that is convenient.
2346 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2347 Return the rtx for where the value is. */
2350 expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2351 int amount, rtx target, int unsignedp)
2353 return expand_shift_1 (code, mode,
2354 shifted, GEN_INT (amount), target, unsignedp);
2357 /* Output a shift instruction for expression code CODE,
2358 with SHIFTED being the rtx for the value to shift,
2359 and AMOUNT the tree for the amount to shift by.
2360 Store the result in the rtx TARGET, if that is convenient.
2361 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2362 Return the rtx for where the value is. */
2365 expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
2366 tree amount, rtx target, int unsignedp)
2368 return expand_shift_1 (code, mode,
2369 shifted, expand_normal (amount), target, unsignedp);
2373 /* Indicates the type of fixup needed after a constant multiplication.
2374 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2375 the result should be negated, and ADD_VARIANT means that the
2376 multiplicand should be added to the result. */
2377 enum mult_variant {basic_variant, negate_variant, add_variant};
2379 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2380 const struct mult_cost *, machine_mode mode);
2381 static bool choose_mult_variant (machine_mode, HOST_WIDE_INT,
2382 struct algorithm *, enum mult_variant *, int);
2383 static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
2384 const struct algorithm *, enum mult_variant);
2385 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2386 static rtx extract_high_half (machine_mode, rtx);
2387 static rtx expmed_mult_highpart (machine_mode, rtx, rtx, rtx, int, int);
2388 static rtx expmed_mult_highpart_optab (machine_mode, rtx, rtx, rtx,
2389 int, int);
2390 /* Compute and return the best algorithm for multiplying by T.
2391 The algorithm must cost less than cost_limit
2392 If retval.cost >= COST_LIMIT, no algorithm was found and all
2393 other field of the returned struct are undefined.
2394 MODE is the machine mode of the multiplication. */
2396 static void
2397 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2398 const struct mult_cost *cost_limit, machine_mode mode)
2400 int m;
2401 struct algorithm *alg_in, *best_alg;
2402 struct mult_cost best_cost;
2403 struct mult_cost new_limit;
2404 int op_cost, op_latency;
2405 unsigned HOST_WIDE_INT orig_t = t;
2406 unsigned HOST_WIDE_INT q;
2407 int maxm, hash_index;
2408 bool cache_hit = false;
2409 enum alg_code cache_alg = alg_zero;
2410 bool speed = optimize_insn_for_speed_p ();
2411 machine_mode imode;
2412 struct alg_hash_entry *entry_ptr;
2414 /* Indicate that no algorithm is yet found. If no algorithm
2415 is found, this value will be returned and indicate failure. */
2416 alg_out->cost.cost = cost_limit->cost + 1;
2417 alg_out->cost.latency = cost_limit->latency + 1;
2419 if (cost_limit->cost < 0
2420 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2421 return;
2423 /* Be prepared for vector modes. */
2424 imode = GET_MODE_INNER (mode);
2425 if (imode == VOIDmode)
2426 imode = mode;
2428 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2430 /* Restrict the bits of "t" to the multiplication's mode. */
2431 t &= GET_MODE_MASK (imode);
2433 /* t == 1 can be done in zero cost. */
2434 if (t == 1)
2436 alg_out->ops = 1;
2437 alg_out->cost.cost = 0;
2438 alg_out->cost.latency = 0;
2439 alg_out->op[0] = alg_m;
2440 return;
2443 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2444 fail now. */
2445 if (t == 0)
2447 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2448 return;
2449 else
2451 alg_out->ops = 1;
2452 alg_out->cost.cost = zero_cost (speed);
2453 alg_out->cost.latency = zero_cost (speed);
2454 alg_out->op[0] = alg_zero;
2455 return;
2459 /* We'll be needing a couple extra algorithm structures now. */
2461 alg_in = XALLOCA (struct algorithm);
2462 best_alg = XALLOCA (struct algorithm);
2463 best_cost = *cost_limit;
2465 /* Compute the hash index. */
2466 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2468 /* See if we already know what to do for T. */
2469 entry_ptr = alg_hash_entry_ptr (hash_index);
2470 if (entry_ptr->t == t
2471 && entry_ptr->mode == mode
2472 && entry_ptr->mode == mode
2473 && entry_ptr->speed == speed
2474 && entry_ptr->alg != alg_unknown)
2476 cache_alg = entry_ptr->alg;
2478 if (cache_alg == alg_impossible)
2480 /* The cache tells us that it's impossible to synthesize
2481 multiplication by T within entry_ptr->cost. */
2482 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2483 /* COST_LIMIT is at least as restrictive as the one
2484 recorded in the hash table, in which case we have no
2485 hope of synthesizing a multiplication. Just
2486 return. */
2487 return;
2489 /* If we get here, COST_LIMIT is less restrictive than the
2490 one recorded in the hash table, so we may be able to
2491 synthesize a multiplication. Proceed as if we didn't
2492 have the cache entry. */
2494 else
2496 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2497 /* The cached algorithm shows that this multiplication
2498 requires more cost than COST_LIMIT. Just return. This
2499 way, we don't clobber this cache entry with
2500 alg_impossible but retain useful information. */
2501 return;
2503 cache_hit = true;
2505 switch (cache_alg)
2507 case alg_shift:
2508 goto do_alg_shift;
2510 case alg_add_t_m2:
2511 case alg_sub_t_m2:
2512 goto do_alg_addsub_t_m2;
2514 case alg_add_factor:
2515 case alg_sub_factor:
2516 goto do_alg_addsub_factor;
2518 case alg_add_t2_m:
2519 goto do_alg_add_t2_m;
2521 case alg_sub_t2_m:
2522 goto do_alg_sub_t2_m;
2524 default:
2525 gcc_unreachable ();
2530 /* If we have a group of zero bits at the low-order part of T, try
2531 multiplying by the remaining bits and then doing a shift. */
2533 if ((t & 1) == 0)
2535 do_alg_shift:
2536 m = floor_log2 (t & -t); /* m = number of low zero bits */
2537 if (m < maxm)
2539 q = t >> m;
2540 /* The function expand_shift will choose between a shift and
2541 a sequence of additions, so the observed cost is given as
2542 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2543 op_cost = m * add_cost (speed, mode);
2544 if (shift_cost (speed, mode, m) < op_cost)
2545 op_cost = shift_cost (speed, mode, m);
2546 new_limit.cost = best_cost.cost - op_cost;
2547 new_limit.latency = best_cost.latency - op_cost;
2548 synth_mult (alg_in, q, &new_limit, mode);
2550 alg_in->cost.cost += op_cost;
2551 alg_in->cost.latency += op_cost;
2552 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2554 best_cost = alg_in->cost;
2555 std::swap (alg_in, best_alg);
2556 best_alg->log[best_alg->ops] = m;
2557 best_alg->op[best_alg->ops] = alg_shift;
2560 /* See if treating ORIG_T as a signed number yields a better
2561 sequence. Try this sequence only for a negative ORIG_T
2562 as it would be useless for a non-negative ORIG_T. */
2563 if ((HOST_WIDE_INT) orig_t < 0)
2565 /* Shift ORIG_T as follows because a right shift of a
2566 negative-valued signed type is implementation
2567 defined. */
2568 q = ~(~orig_t >> m);
2569 /* The function expand_shift will choose between a shift
2570 and a sequence of additions, so the observed cost is
2571 given as MIN (m * add_cost(speed, mode),
2572 shift_cost(speed, mode, m)). */
2573 op_cost = m * add_cost (speed, mode);
2574 if (shift_cost (speed, mode, m) < op_cost)
2575 op_cost = shift_cost (speed, mode, m);
2576 new_limit.cost = best_cost.cost - op_cost;
2577 new_limit.latency = best_cost.latency - op_cost;
2578 synth_mult (alg_in, q, &new_limit, mode);
2580 alg_in->cost.cost += op_cost;
2581 alg_in->cost.latency += op_cost;
2582 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2584 best_cost = alg_in->cost;
2585 std::swap (alg_in, best_alg);
2586 best_alg->log[best_alg->ops] = m;
2587 best_alg->op[best_alg->ops] = alg_shift;
2591 if (cache_hit)
2592 goto done;
2595 /* If we have an odd number, add or subtract one. */
2596 if ((t & 1) != 0)
2598 unsigned HOST_WIDE_INT w;
2600 do_alg_addsub_t_m2:
2601 for (w = 1; (w & t) != 0; w <<= 1)
2603 /* If T was -1, then W will be zero after the loop. This is another
2604 case where T ends with ...111. Handling this with (T + 1) and
2605 subtract 1 produces slightly better code and results in algorithm
2606 selection much faster than treating it like the ...0111 case
2607 below. */
2608 if (w == 0
2609 || (w > 2
2610 /* Reject the case where t is 3.
2611 Thus we prefer addition in that case. */
2612 && t != 3))
2614 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2616 op_cost = add_cost (speed, mode);
2617 new_limit.cost = best_cost.cost - op_cost;
2618 new_limit.latency = best_cost.latency - op_cost;
2619 synth_mult (alg_in, t + 1, &new_limit, mode);
2621 alg_in->cost.cost += op_cost;
2622 alg_in->cost.latency += op_cost;
2623 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2625 best_cost = alg_in->cost;
2626 std::swap (alg_in, best_alg);
2627 best_alg->log[best_alg->ops] = 0;
2628 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2631 else
2633 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2635 op_cost = add_cost (speed, mode);
2636 new_limit.cost = best_cost.cost - op_cost;
2637 new_limit.latency = best_cost.latency - op_cost;
2638 synth_mult (alg_in, t - 1, &new_limit, mode);
2640 alg_in->cost.cost += op_cost;
2641 alg_in->cost.latency += op_cost;
2642 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2644 best_cost = alg_in->cost;
2645 std::swap (alg_in, best_alg);
2646 best_alg->log[best_alg->ops] = 0;
2647 best_alg->op[best_alg->ops] = alg_add_t_m2;
2651 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2652 quickly with a - a * n for some appropriate constant n. */
2653 m = exact_log2 (-orig_t + 1);
2654 if (m >= 0 && m < maxm)
2656 op_cost = shiftsub1_cost (speed, mode, m);
2657 new_limit.cost = best_cost.cost - op_cost;
2658 new_limit.latency = best_cost.latency - op_cost;
2659 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2660 &new_limit, mode);
2662 alg_in->cost.cost += op_cost;
2663 alg_in->cost.latency += op_cost;
2664 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2666 best_cost = alg_in->cost;
2667 std::swap (alg_in, best_alg);
2668 best_alg->log[best_alg->ops] = m;
2669 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2673 if (cache_hit)
2674 goto done;
2677 /* Look for factors of t of the form
2678 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2679 If we find such a factor, we can multiply by t using an algorithm that
2680 multiplies by q, shift the result by m and add/subtract it to itself.
2682 We search for large factors first and loop down, even if large factors
2683 are less probable than small; if we find a large factor we will find a
2684 good sequence quickly, and therefore be able to prune (by decreasing
2685 COST_LIMIT) the search. */
2687 do_alg_addsub_factor:
2688 for (m = floor_log2 (t - 1); m >= 2; m--)
2690 unsigned HOST_WIDE_INT d;
2692 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2693 if (t % d == 0 && t > d && m < maxm
2694 && (!cache_hit || cache_alg == alg_add_factor))
2696 /* If the target has a cheap shift-and-add instruction use
2697 that in preference to a shift insn followed by an add insn.
2698 Assume that the shift-and-add is "atomic" with a latency
2699 equal to its cost, otherwise assume that on superscalar
2700 hardware the shift may be executed concurrently with the
2701 earlier steps in the algorithm. */
2702 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2703 if (shiftadd_cost (speed, mode, m) < op_cost)
2705 op_cost = shiftadd_cost (speed, mode, m);
2706 op_latency = op_cost;
2708 else
2709 op_latency = add_cost (speed, mode);
2711 new_limit.cost = best_cost.cost - op_cost;
2712 new_limit.latency = best_cost.latency - op_latency;
2713 synth_mult (alg_in, t / d, &new_limit, mode);
2715 alg_in->cost.cost += op_cost;
2716 alg_in->cost.latency += op_latency;
2717 if (alg_in->cost.latency < op_cost)
2718 alg_in->cost.latency = op_cost;
2719 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2721 best_cost = alg_in->cost;
2722 std::swap (alg_in, best_alg);
2723 best_alg->log[best_alg->ops] = m;
2724 best_alg->op[best_alg->ops] = alg_add_factor;
2726 /* Other factors will have been taken care of in the recursion. */
2727 break;
2730 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2731 if (t % d == 0 && t > d && m < maxm
2732 && (!cache_hit || cache_alg == alg_sub_factor))
2734 /* If the target has a cheap shift-and-subtract insn use
2735 that in preference to a shift insn followed by a sub insn.
2736 Assume that the shift-and-sub is "atomic" with a latency
2737 equal to it's cost, otherwise assume that on superscalar
2738 hardware the shift may be executed concurrently with the
2739 earlier steps in the algorithm. */
2740 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2741 if (shiftsub0_cost (speed, mode, m) < op_cost)
2743 op_cost = shiftsub0_cost (speed, mode, m);
2744 op_latency = op_cost;
2746 else
2747 op_latency = add_cost (speed, mode);
2749 new_limit.cost = best_cost.cost - op_cost;
2750 new_limit.latency = best_cost.latency - op_latency;
2751 synth_mult (alg_in, t / d, &new_limit, mode);
2753 alg_in->cost.cost += op_cost;
2754 alg_in->cost.latency += op_latency;
2755 if (alg_in->cost.latency < op_cost)
2756 alg_in->cost.latency = op_cost;
2757 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2759 best_cost = alg_in->cost;
2760 std::swap (alg_in, best_alg);
2761 best_alg->log[best_alg->ops] = m;
2762 best_alg->op[best_alg->ops] = alg_sub_factor;
2764 break;
2767 if (cache_hit)
2768 goto done;
2770 /* Try shift-and-add (load effective address) instructions,
2771 i.e. do a*3, a*5, a*9. */
2772 if ((t & 1) != 0)
2774 do_alg_add_t2_m:
2775 q = t - 1;
2776 q = q & -q;
2777 m = exact_log2 (q);
2778 if (m >= 0 && m < maxm)
2780 op_cost = shiftadd_cost (speed, mode, m);
2781 new_limit.cost = best_cost.cost - op_cost;
2782 new_limit.latency = best_cost.latency - op_cost;
2783 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2785 alg_in->cost.cost += op_cost;
2786 alg_in->cost.latency += op_cost;
2787 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2789 best_cost = alg_in->cost;
2790 std::swap (alg_in, best_alg);
2791 best_alg->log[best_alg->ops] = m;
2792 best_alg->op[best_alg->ops] = alg_add_t2_m;
2795 if (cache_hit)
2796 goto done;
2798 do_alg_sub_t2_m:
2799 q = t + 1;
2800 q = q & -q;
2801 m = exact_log2 (q);
2802 if (m >= 0 && m < maxm)
2804 op_cost = shiftsub0_cost (speed, mode, m);
2805 new_limit.cost = best_cost.cost - op_cost;
2806 new_limit.latency = best_cost.latency - op_cost;
2807 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2809 alg_in->cost.cost += op_cost;
2810 alg_in->cost.latency += op_cost;
2811 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2813 best_cost = alg_in->cost;
2814 std::swap (alg_in, best_alg);
2815 best_alg->log[best_alg->ops] = m;
2816 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2819 if (cache_hit)
2820 goto done;
2823 done:
2824 /* If best_cost has not decreased, we have not found any algorithm. */
2825 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2827 /* We failed to find an algorithm. Record alg_impossible for
2828 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2829 we are asked to find an algorithm for T within the same or
2830 lower COST_LIMIT, we can immediately return to the
2831 caller. */
2832 entry_ptr->t = t;
2833 entry_ptr->mode = mode;
2834 entry_ptr->speed = speed;
2835 entry_ptr->alg = alg_impossible;
2836 entry_ptr->cost = *cost_limit;
2837 return;
2840 /* Cache the result. */
2841 if (!cache_hit)
2843 entry_ptr->t = t;
2844 entry_ptr->mode = mode;
2845 entry_ptr->speed = speed;
2846 entry_ptr->alg = best_alg->op[best_alg->ops];
2847 entry_ptr->cost.cost = best_cost.cost;
2848 entry_ptr->cost.latency = best_cost.latency;
2851 /* If we are getting a too long sequence for `struct algorithm'
2852 to record, make this search fail. */
2853 if (best_alg->ops == MAX_BITS_PER_WORD)
2854 return;
2856 /* Copy the algorithm from temporary space to the space at alg_out.
2857 We avoid using structure assignment because the majority of
2858 best_alg is normally undefined, and this is a critical function. */
2859 alg_out->ops = best_alg->ops + 1;
2860 alg_out->cost = best_cost;
2861 memcpy (alg_out->op, best_alg->op,
2862 alg_out->ops * sizeof *alg_out->op);
2863 memcpy (alg_out->log, best_alg->log,
2864 alg_out->ops * sizeof *alg_out->log);
2867 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2868 Try three variations:
2870 - a shift/add sequence based on VAL itself
2871 - a shift/add sequence based on -VAL, followed by a negation
2872 - a shift/add sequence based on VAL - 1, followed by an addition.
2874 Return true if the cheapest of these cost less than MULT_COST,
2875 describing the algorithm in *ALG and final fixup in *VARIANT. */
2877 static bool
2878 choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
2879 struct algorithm *alg, enum mult_variant *variant,
2880 int mult_cost)
2882 struct algorithm alg2;
2883 struct mult_cost limit;
2884 int op_cost;
2885 bool speed = optimize_insn_for_speed_p ();
2887 /* Fail quickly for impossible bounds. */
2888 if (mult_cost < 0)
2889 return false;
2891 /* Ensure that mult_cost provides a reasonable upper bound.
2892 Any constant multiplication can be performed with less
2893 than 2 * bits additions. */
2894 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
2895 if (mult_cost > op_cost)
2896 mult_cost = op_cost;
2898 *variant = basic_variant;
2899 limit.cost = mult_cost;
2900 limit.latency = mult_cost;
2901 synth_mult (alg, val, &limit, mode);
2903 /* This works only if the inverted value actually fits in an
2904 `unsigned int' */
2905 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
2907 op_cost = neg_cost (speed, mode);
2908 if (MULT_COST_LESS (&alg->cost, mult_cost))
2910 limit.cost = alg->cost.cost - op_cost;
2911 limit.latency = alg->cost.latency - op_cost;
2913 else
2915 limit.cost = mult_cost - op_cost;
2916 limit.latency = mult_cost - op_cost;
2919 synth_mult (&alg2, -val, &limit, mode);
2920 alg2.cost.cost += op_cost;
2921 alg2.cost.latency += op_cost;
2922 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2923 *alg = alg2, *variant = negate_variant;
2926 /* This proves very useful for division-by-constant. */
2927 op_cost = add_cost (speed, mode);
2928 if (MULT_COST_LESS (&alg->cost, mult_cost))
2930 limit.cost = alg->cost.cost - op_cost;
2931 limit.latency = alg->cost.latency - op_cost;
2933 else
2935 limit.cost = mult_cost - op_cost;
2936 limit.latency = mult_cost - op_cost;
2939 synth_mult (&alg2, val - 1, &limit, mode);
2940 alg2.cost.cost += op_cost;
2941 alg2.cost.latency += op_cost;
2942 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2943 *alg = alg2, *variant = add_variant;
2945 return MULT_COST_LESS (&alg->cost, mult_cost);
2948 /* A subroutine of expand_mult, used for constant multiplications.
2949 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2950 convenient. Use the shift/add sequence described by ALG and apply
2951 the final fixup specified by VARIANT. */
2953 static rtx
2954 expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
2955 rtx target, const struct algorithm *alg,
2956 enum mult_variant variant)
2958 HOST_WIDE_INT val_so_far;
2959 rtx_insn *insn;
2960 rtx accum, tem;
2961 int opno;
2962 machine_mode nmode;
2964 /* Avoid referencing memory over and over and invalid sharing
2965 on SUBREGs. */
2966 op0 = force_reg (mode, op0);
2968 /* ACCUM starts out either as OP0 or as a zero, depending on
2969 the first operation. */
2971 if (alg->op[0] == alg_zero)
2973 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
2974 val_so_far = 0;
2976 else if (alg->op[0] == alg_m)
2978 accum = copy_to_mode_reg (mode, op0);
2979 val_so_far = 1;
2981 else
2982 gcc_unreachable ();
2984 for (opno = 1; opno < alg->ops; opno++)
2986 int log = alg->log[opno];
2987 rtx shift_subtarget = optimize ? 0 : accum;
2988 rtx add_target
2989 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2990 && !optimize)
2991 ? target : 0;
2992 rtx accum_target = optimize ? 0 : accum;
2993 rtx accum_inner;
2995 switch (alg->op[opno])
2997 case alg_shift:
2998 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
2999 /* REG_EQUAL note will be attached to the following insn. */
3000 emit_move_insn (accum, tem);
3001 val_so_far <<= log;
3002 break;
3004 case alg_add_t_m2:
3005 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3006 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3007 add_target ? add_target : accum_target);
3008 val_so_far += (HOST_WIDE_INT) 1 << log;
3009 break;
3011 case alg_sub_t_m2:
3012 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3013 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3014 add_target ? add_target : accum_target);
3015 val_so_far -= (HOST_WIDE_INT) 1 << log;
3016 break;
3018 case alg_add_t2_m:
3019 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3020 log, shift_subtarget, 0);
3021 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3022 add_target ? add_target : accum_target);
3023 val_so_far = (val_so_far << log) + 1;
3024 break;
3026 case alg_sub_t2_m:
3027 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3028 log, shift_subtarget, 0);
3029 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3030 add_target ? add_target : accum_target);
3031 val_so_far = (val_so_far << log) - 1;
3032 break;
3034 case alg_add_factor:
3035 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3036 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3037 add_target ? add_target : accum_target);
3038 val_so_far += val_so_far << log;
3039 break;
3041 case alg_sub_factor:
3042 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3043 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3044 (add_target
3045 ? add_target : (optimize ? 0 : tem)));
3046 val_so_far = (val_so_far << log) - val_so_far;
3047 break;
3049 default:
3050 gcc_unreachable ();
3053 if (SCALAR_INT_MODE_P (mode))
3055 /* Write a REG_EQUAL note on the last insn so that we can cse
3056 multiplication sequences. Note that if ACCUM is a SUBREG,
3057 we've set the inner register and must properly indicate that. */
3058 tem = op0, nmode = mode;
3059 accum_inner = accum;
3060 if (GET_CODE (accum) == SUBREG)
3062 accum_inner = SUBREG_REG (accum);
3063 nmode = GET_MODE (accum_inner);
3064 tem = gen_lowpart (nmode, op0);
3067 insn = get_last_insn ();
3068 set_dst_reg_note (insn, REG_EQUAL,
3069 gen_rtx_MULT (nmode, tem,
3070 gen_int_mode (val_so_far, nmode)),
3071 accum_inner);
3075 if (variant == negate_variant)
3077 val_so_far = -val_so_far;
3078 accum = expand_unop (mode, neg_optab, accum, target, 0);
3080 else if (variant == add_variant)
3082 val_so_far = val_so_far + 1;
3083 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3086 /* Compare only the bits of val and val_so_far that are significant
3087 in the result mode, to avoid sign-/zero-extension confusion. */
3088 nmode = GET_MODE_INNER (mode);
3089 if (nmode == VOIDmode)
3090 nmode = mode;
3091 val &= GET_MODE_MASK (nmode);
3092 val_so_far &= GET_MODE_MASK (nmode);
3093 gcc_assert (val == val_so_far);
3095 return accum;
3098 /* Perform a multiplication and return an rtx for the result.
3099 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3100 TARGET is a suggestion for where to store the result (an rtx).
3102 We check specially for a constant integer as OP1.
3103 If you want this check for OP0 as well, then before calling
3104 you should swap the two operands if OP0 would be constant. */
3107 expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3108 int unsignedp)
3110 enum mult_variant variant;
3111 struct algorithm algorithm;
3112 rtx scalar_op1;
3113 int max_cost;
3114 bool speed = optimize_insn_for_speed_p ();
3115 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3117 if (CONSTANT_P (op0))
3118 std::swap (op0, op1);
3120 /* For vectors, there are several simplifications that can be made if
3121 all elements of the vector constant are identical. */
3122 scalar_op1 = op1;
3123 if (GET_CODE (op1) == CONST_VECTOR)
3125 int i, n = CONST_VECTOR_NUNITS (op1);
3126 scalar_op1 = CONST_VECTOR_ELT (op1, 0);
3127 for (i = 1; i < n; ++i)
3128 if (!rtx_equal_p (scalar_op1, CONST_VECTOR_ELT (op1, i)))
3129 goto skip_scalar;
3132 if (INTEGRAL_MODE_P (mode))
3134 rtx fake_reg;
3135 HOST_WIDE_INT coeff;
3136 bool is_neg;
3137 int mode_bitsize;
3139 if (op1 == CONST0_RTX (mode))
3140 return op1;
3141 if (op1 == CONST1_RTX (mode))
3142 return op0;
3143 if (op1 == CONSTM1_RTX (mode))
3144 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3145 op0, target, 0);
3147 if (do_trapv)
3148 goto skip_synth;
3150 /* If mode is integer vector mode, check if the backend supports
3151 vector lshift (by scalar or vector) at all. If not, we can't use
3152 synthetized multiply. */
3153 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3154 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
3155 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
3156 goto skip_synth;
3158 /* These are the operations that are potentially turned into
3159 a sequence of shifts and additions. */
3160 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3162 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3163 less than or equal in size to `unsigned int' this doesn't matter.
3164 If the mode is larger than `unsigned int', then synth_mult works
3165 only if the constant value exactly fits in an `unsigned int' without
3166 any truncation. This means that multiplying by negative values does
3167 not work; results are off by 2^32 on a 32 bit machine. */
3168 if (CONST_INT_P (scalar_op1))
3170 coeff = INTVAL (scalar_op1);
3171 is_neg = coeff < 0;
3173 #if TARGET_SUPPORTS_WIDE_INT
3174 else if (CONST_WIDE_INT_P (scalar_op1))
3175 #else
3176 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3177 #endif
3179 int shift = wi::exact_log2 (std::make_pair (scalar_op1, mode));
3180 /* Perfect power of 2 (other than 1, which is handled above). */
3181 if (shift > 0)
3182 return expand_shift (LSHIFT_EXPR, mode, op0,
3183 shift, target, unsignedp);
3184 else
3185 goto skip_synth;
3187 else
3188 goto skip_synth;
3190 /* We used to test optimize here, on the grounds that it's better to
3191 produce a smaller program when -O is not used. But this causes
3192 such a terrible slowdown sometimes that it seems better to always
3193 use synth_mult. */
3195 /* Special case powers of two. */
3196 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3197 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3198 return expand_shift (LSHIFT_EXPR, mode, op0,
3199 floor_log2 (coeff), target, unsignedp);
3201 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3203 /* Attempt to handle multiplication of DImode values by negative
3204 coefficients, by performing the multiplication by a positive
3205 multiplier and then inverting the result. */
3206 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3208 /* Its safe to use -coeff even for INT_MIN, as the
3209 result is interpreted as an unsigned coefficient.
3210 Exclude cost of op0 from max_cost to match the cost
3211 calculation of the synth_mult. */
3212 coeff = -(unsigned HOST_WIDE_INT) coeff;
3213 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed)
3214 - neg_cost (speed, mode));
3215 if (max_cost <= 0)
3216 goto skip_synth;
3218 /* Special case powers of two. */
3219 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3221 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3222 floor_log2 (coeff), target, unsignedp);
3223 return expand_unop (mode, neg_optab, temp, target, 0);
3226 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3227 max_cost))
3229 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3230 &algorithm, variant);
3231 return expand_unop (mode, neg_optab, temp, target, 0);
3233 goto skip_synth;
3236 /* Exclude cost of op0 from max_cost to match the cost
3237 calculation of the synth_mult. */
3238 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed);
3239 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3240 return expand_mult_const (mode, op0, coeff, target,
3241 &algorithm, variant);
3243 skip_synth:
3245 /* Expand x*2.0 as x+x. */
3246 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1))
3248 REAL_VALUE_TYPE d;
3249 REAL_VALUE_FROM_CONST_DOUBLE (d, scalar_op1);
3251 if (REAL_VALUES_EQUAL (d, dconst2))
3253 op0 = force_reg (GET_MODE (op0), op0);
3254 return expand_binop (mode, add_optab, op0, op0,
3255 target, unsignedp, OPTAB_LIB_WIDEN);
3258 skip_scalar:
3260 /* This used to use umul_optab if unsigned, but for non-widening multiply
3261 there is no difference between signed and unsigned. */
3262 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3263 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3264 gcc_assert (op0);
3265 return op0;
3268 /* Return a cost estimate for multiplying a register by the given
3269 COEFFicient in the given MODE and SPEED. */
3272 mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
3274 int max_cost;
3275 struct algorithm algorithm;
3276 enum mult_variant variant;
3278 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3279 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg), speed);
3280 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3281 return algorithm.cost.cost;
3282 else
3283 return max_cost;
3286 /* Perform a widening multiplication and return an rtx for the result.
3287 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3288 TARGET is a suggestion for where to store the result (an rtx).
3289 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3290 or smul_widen_optab.
3292 We check specially for a constant integer as OP1, comparing the
3293 cost of a widening multiply against the cost of a sequence of shifts
3294 and adds. */
3297 expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3298 int unsignedp, optab this_optab)
3300 bool speed = optimize_insn_for_speed_p ();
3301 rtx cop1;
3303 if (CONST_INT_P (op1)
3304 && GET_MODE (op0) != VOIDmode
3305 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3306 this_optab == umul_widen_optab))
3307 && CONST_INT_P (cop1)
3308 && (INTVAL (cop1) >= 0
3309 || HWI_COMPUTABLE_MODE_P (mode)))
3311 HOST_WIDE_INT coeff = INTVAL (cop1);
3312 int max_cost;
3313 enum mult_variant variant;
3314 struct algorithm algorithm;
3316 if (coeff == 0)
3317 return CONST0_RTX (mode);
3319 /* Special case powers of two. */
3320 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3322 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3323 return expand_shift (LSHIFT_EXPR, mode, op0,
3324 floor_log2 (coeff), target, unsignedp);
3327 /* Exclude cost of op0 from max_cost to match the cost
3328 calculation of the synth_mult. */
3329 max_cost = mul_widen_cost (speed, mode);
3330 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3331 max_cost))
3333 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3334 return expand_mult_const (mode, op0, coeff, target,
3335 &algorithm, variant);
3338 return expand_binop (mode, this_optab, op0, op1, target,
3339 unsignedp, OPTAB_LIB_WIDEN);
3342 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3343 replace division by D, and put the least significant N bits of the result
3344 in *MULTIPLIER_PTR and return the most significant bit.
3346 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3347 needed precision is in PRECISION (should be <= N).
3349 PRECISION should be as small as possible so this function can choose
3350 multiplier more freely.
3352 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3353 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3355 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3356 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3358 unsigned HOST_WIDE_INT
3359 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3360 unsigned HOST_WIDE_INT *multiplier_ptr,
3361 int *post_shift_ptr, int *lgup_ptr)
3363 int lgup, post_shift;
3364 int pow, pow2;
3366 /* lgup = ceil(log2(divisor)); */
3367 lgup = ceil_log2 (d);
3369 gcc_assert (lgup <= n);
3371 pow = n + lgup;
3372 pow2 = n + lgup - precision;
3374 /* mlow = 2^(N + lgup)/d */
3375 wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
3376 wide_int mlow = wi::udiv_trunc (val, d);
3378 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3379 val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
3380 wide_int mhigh = wi::udiv_trunc (val, d);
3382 /* If precision == N, then mlow, mhigh exceed 2^N
3383 (but they do not exceed 2^(N+1)). */
3385 /* Reduce to lowest terms. */
3386 for (post_shift = lgup; post_shift > 0; post_shift--)
3388 unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
3389 HOST_BITS_PER_WIDE_INT);
3390 unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
3391 HOST_BITS_PER_WIDE_INT);
3392 if (ml_lo >= mh_lo)
3393 break;
3395 mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
3396 mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
3399 *post_shift_ptr = post_shift;
3400 *lgup_ptr = lgup;
3401 if (n < HOST_BITS_PER_WIDE_INT)
3403 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3404 *multiplier_ptr = mhigh.to_uhwi () & mask;
3405 return mhigh.to_uhwi () >= mask;
3407 else
3409 *multiplier_ptr = mhigh.to_uhwi ();
3410 return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
3414 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3415 congruent to 1 (mod 2**N). */
3417 static unsigned HOST_WIDE_INT
3418 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3420 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3422 /* The algorithm notes that the choice y = x satisfies
3423 x*y == 1 mod 2^3, since x is assumed odd.
3424 Each iteration doubles the number of bits of significance in y. */
3426 unsigned HOST_WIDE_INT mask;
3427 unsigned HOST_WIDE_INT y = x;
3428 int nbit = 3;
3430 mask = (n == HOST_BITS_PER_WIDE_INT
3431 ? ~(unsigned HOST_WIDE_INT) 0
3432 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3434 while (nbit < n)
3436 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3437 nbit *= 2;
3439 return y;
3442 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3443 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3444 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3445 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3446 become signed.
3448 The result is put in TARGET if that is convenient.
3450 MODE is the mode of operation. */
3453 expand_mult_highpart_adjust (machine_mode mode, rtx adj_operand, rtx op0,
3454 rtx op1, rtx target, int unsignedp)
3456 rtx tem;
3457 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3459 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3460 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3461 tem = expand_and (mode, tem, op1, NULL_RTX);
3462 adj_operand
3463 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3464 adj_operand);
3466 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3467 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3468 tem = expand_and (mode, tem, op0, NULL_RTX);
3469 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3470 target);
3472 return target;
3475 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3477 static rtx
3478 extract_high_half (machine_mode mode, rtx op)
3480 machine_mode wider_mode;
3482 if (mode == word_mode)
3483 return gen_highpart (mode, op);
3485 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3487 wider_mode = GET_MODE_WIDER_MODE (mode);
3488 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3489 GET_MODE_BITSIZE (mode), 0, 1);
3490 return convert_modes (mode, wider_mode, op, 0);
3493 /* Like expmed_mult_highpart, but only consider using a multiplication
3494 optab. OP1 is an rtx for the constant operand. */
3496 static rtx
3497 expmed_mult_highpart_optab (machine_mode mode, rtx op0, rtx op1,
3498 rtx target, int unsignedp, int max_cost)
3500 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3501 machine_mode wider_mode;
3502 optab moptab;
3503 rtx tem;
3504 int size;
3505 bool speed = optimize_insn_for_speed_p ();
3507 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3509 wider_mode = GET_MODE_WIDER_MODE (mode);
3510 size = GET_MODE_BITSIZE (mode);
3512 /* Firstly, try using a multiplication insn that only generates the needed
3513 high part of the product, and in the sign flavor of unsignedp. */
3514 if (mul_highpart_cost (speed, mode) < max_cost)
3516 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3517 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3518 unsignedp, OPTAB_DIRECT);
3519 if (tem)
3520 return tem;
3523 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3524 Need to adjust the result after the multiplication. */
3525 if (size - 1 < BITS_PER_WORD
3526 && (mul_highpart_cost (speed, mode)
3527 + 2 * shift_cost (speed, mode, size-1)
3528 + 4 * add_cost (speed, mode) < max_cost))
3530 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3531 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3532 unsignedp, OPTAB_DIRECT);
3533 if (tem)
3534 /* We used the wrong signedness. Adjust the result. */
3535 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3536 tem, unsignedp);
3539 /* Try widening multiplication. */
3540 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3541 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3542 && mul_widen_cost (speed, wider_mode) < max_cost)
3544 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3545 unsignedp, OPTAB_WIDEN);
3546 if (tem)
3547 return extract_high_half (mode, tem);
3550 /* Try widening the mode and perform a non-widening multiplication. */
3551 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3552 && size - 1 < BITS_PER_WORD
3553 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3554 < max_cost))
3556 rtx_insn *insns;
3557 rtx wop0, wop1;
3559 /* We need to widen the operands, for example to ensure the
3560 constant multiplier is correctly sign or zero extended.
3561 Use a sequence to clean-up any instructions emitted by
3562 the conversions if things don't work out. */
3563 start_sequence ();
3564 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3565 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3566 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3567 unsignedp, OPTAB_WIDEN);
3568 insns = get_insns ();
3569 end_sequence ();
3571 if (tem)
3573 emit_insn (insns);
3574 return extract_high_half (mode, tem);
3578 /* Try widening multiplication of opposite signedness, and adjust. */
3579 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3580 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3581 && size - 1 < BITS_PER_WORD
3582 && (mul_widen_cost (speed, wider_mode)
3583 + 2 * shift_cost (speed, mode, size-1)
3584 + 4 * add_cost (speed, mode) < max_cost))
3586 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3587 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3588 if (tem != 0)
3590 tem = extract_high_half (mode, tem);
3591 /* We used the wrong signedness. Adjust the result. */
3592 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3593 target, unsignedp);
3597 return 0;
3600 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3601 putting the high half of the result in TARGET if that is convenient,
3602 and return where the result is. If the operation can not be performed,
3603 0 is returned.
3605 MODE is the mode of operation and result.
3607 UNSIGNEDP nonzero means unsigned multiply.
3609 MAX_COST is the total allowed cost for the expanded RTL. */
3611 static rtx
3612 expmed_mult_highpart (machine_mode mode, rtx op0, rtx op1,
3613 rtx target, int unsignedp, int max_cost)
3615 machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3616 unsigned HOST_WIDE_INT cnst1;
3617 int extra_cost;
3618 bool sign_adjust = false;
3619 enum mult_variant variant;
3620 struct algorithm alg;
3621 rtx tem;
3622 bool speed = optimize_insn_for_speed_p ();
3624 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3625 /* We can't support modes wider than HOST_BITS_PER_INT. */
3626 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3628 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3630 /* We can't optimize modes wider than BITS_PER_WORD.
3631 ??? We might be able to perform double-word arithmetic if
3632 mode == word_mode, however all the cost calculations in
3633 synth_mult etc. assume single-word operations. */
3634 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3635 return expmed_mult_highpart_optab (mode, op0, op1, target,
3636 unsignedp, max_cost);
3638 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3640 /* Check whether we try to multiply by a negative constant. */
3641 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3643 sign_adjust = true;
3644 extra_cost += add_cost (speed, mode);
3647 /* See whether shift/add multiplication is cheap enough. */
3648 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3649 max_cost - extra_cost))
3651 /* See whether the specialized multiplication optabs are
3652 cheaper than the shift/add version. */
3653 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3654 alg.cost.cost + extra_cost);
3655 if (tem)
3656 return tem;
3658 tem = convert_to_mode (wider_mode, op0, unsignedp);
3659 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3660 tem = extract_high_half (mode, tem);
3662 /* Adjust result for signedness. */
3663 if (sign_adjust)
3664 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3666 return tem;
3668 return expmed_mult_highpart_optab (mode, op0, op1, target,
3669 unsignedp, max_cost);
3673 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3675 static rtx
3676 expand_smod_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3678 rtx result, temp, shift;
3679 rtx_code_label *label;
3680 int logd;
3681 int prec = GET_MODE_PRECISION (mode);
3683 logd = floor_log2 (d);
3684 result = gen_reg_rtx (mode);
3686 /* Avoid conditional branches when they're expensive. */
3687 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3688 && optimize_insn_for_speed_p ())
3690 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3691 mode, 0, -1);
3692 if (signmask)
3694 HOST_WIDE_INT masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3695 signmask = force_reg (mode, signmask);
3696 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3698 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3699 which instruction sequence to use. If logical right shifts
3700 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3701 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3703 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3704 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3705 || (set_src_cost (temp, optimize_insn_for_speed_p ())
3706 > COSTS_N_INSNS (2)))
3708 temp = expand_binop (mode, xor_optab, op0, signmask,
3709 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3710 temp = expand_binop (mode, sub_optab, temp, signmask,
3711 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3712 temp = expand_binop (mode, and_optab, temp,
3713 gen_int_mode (masklow, mode),
3714 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3715 temp = expand_binop (mode, xor_optab, temp, signmask,
3716 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3717 temp = expand_binop (mode, sub_optab, temp, signmask,
3718 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3720 else
3722 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3723 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3724 signmask = force_reg (mode, signmask);
3726 temp = expand_binop (mode, add_optab, op0, signmask,
3727 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3728 temp = expand_binop (mode, and_optab, temp,
3729 gen_int_mode (masklow, mode),
3730 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3731 temp = expand_binop (mode, sub_optab, temp, signmask,
3732 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3734 return temp;
3738 /* Mask contains the mode's signbit and the significant bits of the
3739 modulus. By including the signbit in the operation, many targets
3740 can avoid an explicit compare operation in the following comparison
3741 against zero. */
3742 wide_int mask = wi::mask (logd, false, prec);
3743 mask = wi::set_bit (mask, prec - 1);
3745 temp = expand_binop (mode, and_optab, op0,
3746 immed_wide_int_const (mask, mode),
3747 result, 1, OPTAB_LIB_WIDEN);
3748 if (temp != result)
3749 emit_move_insn (result, temp);
3751 label = gen_label_rtx ();
3752 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3754 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3755 0, OPTAB_LIB_WIDEN);
3757 mask = wi::mask (logd, true, prec);
3758 temp = expand_binop (mode, ior_optab, temp,
3759 immed_wide_int_const (mask, mode),
3760 result, 1, OPTAB_LIB_WIDEN);
3761 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3762 0, OPTAB_LIB_WIDEN);
3763 if (temp != result)
3764 emit_move_insn (result, temp);
3765 emit_label (label);
3766 return result;
3769 /* Expand signed division of OP0 by a power of two D in mode MODE.
3770 This routine is only called for positive values of D. */
3772 static rtx
3773 expand_sdiv_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3775 rtx temp;
3776 rtx_code_label *label;
3777 int logd;
3779 logd = floor_log2 (d);
3781 if (d == 2
3782 && BRANCH_COST (optimize_insn_for_speed_p (),
3783 false) >= 1)
3785 temp = gen_reg_rtx (mode);
3786 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3787 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3788 0, OPTAB_LIB_WIDEN);
3789 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3792 #ifdef HAVE_conditional_move
3793 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3794 >= 2)
3796 rtx temp2;
3798 start_sequence ();
3799 temp2 = copy_to_mode_reg (mode, op0);
3800 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
3801 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3802 temp = force_reg (mode, temp);
3804 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3805 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3806 mode, temp, temp2, mode, 0);
3807 if (temp2)
3809 rtx_insn *seq = get_insns ();
3810 end_sequence ();
3811 emit_insn (seq);
3812 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
3814 end_sequence ();
3816 #endif
3818 if (BRANCH_COST (optimize_insn_for_speed_p (),
3819 false) >= 2)
3821 int ushift = GET_MODE_BITSIZE (mode) - logd;
3823 temp = gen_reg_rtx (mode);
3824 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3825 if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
3826 || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
3827 > COSTS_N_INSNS (1))
3828 temp = expand_binop (mode, and_optab, temp, gen_int_mode (d - 1, mode),
3829 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3830 else
3831 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3832 ushift, NULL_RTX, 1);
3833 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3834 0, OPTAB_LIB_WIDEN);
3835 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3838 label = gen_label_rtx ();
3839 temp = copy_to_mode_reg (mode, op0);
3840 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3841 expand_inc (temp, gen_int_mode (d - 1, mode));
3842 emit_label (label);
3843 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3846 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3847 if that is convenient, and returning where the result is.
3848 You may request either the quotient or the remainder as the result;
3849 specify REM_FLAG nonzero to get the remainder.
3851 CODE is the expression code for which kind of division this is;
3852 it controls how rounding is done. MODE is the machine mode to use.
3853 UNSIGNEDP nonzero means do unsigned division. */
3855 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3856 and then correct it by or'ing in missing high bits
3857 if result of ANDI is nonzero.
3858 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3859 This could optimize to a bfexts instruction.
3860 But C doesn't use these operations, so their optimizations are
3861 left for later. */
3862 /* ??? For modulo, we don't actually need the highpart of the first product,
3863 the low part will do nicely. And for small divisors, the second multiply
3864 can also be a low-part only multiply or even be completely left out.
3865 E.g. to calculate the remainder of a division by 3 with a 32 bit
3866 multiply, multiply with 0x55555556 and extract the upper two bits;
3867 the result is exact for inputs up to 0x1fffffff.
3868 The input range can be reduced by using cross-sum rules.
3869 For odd divisors >= 3, the following table gives right shift counts
3870 so that if a number is shifted by an integer multiple of the given
3871 amount, the remainder stays the same:
3872 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3873 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3874 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3875 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3876 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3878 Cross-sum rules for even numbers can be derived by leaving as many bits
3879 to the right alone as the divisor has zeros to the right.
3880 E.g. if x is an unsigned 32 bit number:
3881 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3885 expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
3886 rtx op0, rtx op1, rtx target, int unsignedp)
3888 machine_mode compute_mode;
3889 rtx tquotient;
3890 rtx quotient = 0, remainder = 0;
3891 rtx_insn *last;
3892 int size;
3893 rtx_insn *insn;
3894 optab optab1, optab2;
3895 int op1_is_constant, op1_is_pow2 = 0;
3896 int max_cost, extra_cost;
3897 static HOST_WIDE_INT last_div_const = 0;
3898 bool speed = optimize_insn_for_speed_p ();
3900 op1_is_constant = CONST_INT_P (op1);
3901 if (op1_is_constant)
3903 unsigned HOST_WIDE_INT ext_op1 = UINTVAL (op1);
3904 if (unsignedp)
3905 ext_op1 &= GET_MODE_MASK (mode);
3906 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3907 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3911 This is the structure of expand_divmod:
3913 First comes code to fix up the operands so we can perform the operations
3914 correctly and efficiently.
3916 Second comes a switch statement with code specific for each rounding mode.
3917 For some special operands this code emits all RTL for the desired
3918 operation, for other cases, it generates only a quotient and stores it in
3919 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3920 to indicate that it has not done anything.
3922 Last comes code that finishes the operation. If QUOTIENT is set and
3923 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3924 QUOTIENT is not set, it is computed using trunc rounding.
3926 We try to generate special code for division and remainder when OP1 is a
3927 constant. If |OP1| = 2**n we can use shifts and some other fast
3928 operations. For other values of OP1, we compute a carefully selected
3929 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3930 by m.
3932 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3933 half of the product. Different strategies for generating the product are
3934 implemented in expmed_mult_highpart.
3936 If what we actually want is the remainder, we generate that by another
3937 by-constant multiplication and a subtraction. */
3939 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3940 code below will malfunction if we are, so check here and handle
3941 the special case if so. */
3942 if (op1 == const1_rtx)
3943 return rem_flag ? const0_rtx : op0;
3945 /* When dividing by -1, we could get an overflow.
3946 negv_optab can handle overflows. */
3947 if (! unsignedp && op1 == constm1_rtx)
3949 if (rem_flag)
3950 return const0_rtx;
3951 return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
3952 ? negv_optab : neg_optab, op0, target, 0);
3955 if (target
3956 /* Don't use the function value register as a target
3957 since we have to read it as well as write it,
3958 and function-inlining gets confused by this. */
3959 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3960 /* Don't clobber an operand while doing a multi-step calculation. */
3961 || ((rem_flag || op1_is_constant)
3962 && (reg_mentioned_p (target, op0)
3963 || (MEM_P (op0) && MEM_P (target))))
3964 || reg_mentioned_p (target, op1)
3965 || (MEM_P (op1) && MEM_P (target))))
3966 target = 0;
3968 /* Get the mode in which to perform this computation. Normally it will
3969 be MODE, but sometimes we can't do the desired operation in MODE.
3970 If so, pick a wider mode in which we can do the operation. Convert
3971 to that mode at the start to avoid repeated conversions.
3973 First see what operations we need. These depend on the expression
3974 we are evaluating. (We assume that divxx3 insns exist under the
3975 same conditions that modxx3 insns and that these insns don't normally
3976 fail. If these assumptions are not correct, we may generate less
3977 efficient code in some cases.)
3979 Then see if we find a mode in which we can open-code that operation
3980 (either a division, modulus, or shift). Finally, check for the smallest
3981 mode for which we can do the operation with a library call. */
3983 /* We might want to refine this now that we have division-by-constant
3984 optimization. Since expmed_mult_highpart tries so many variants, it is
3985 not straightforward to generalize this. Maybe we should make an array
3986 of possible modes in init_expmed? Save this for GCC 2.7. */
3988 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3989 ? (unsignedp ? lshr_optab : ashr_optab)
3990 : (unsignedp ? udiv_optab : sdiv_optab));
3991 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3992 ? optab1
3993 : (unsignedp ? udivmod_optab : sdivmod_optab));
3995 for (compute_mode = mode; compute_mode != VOIDmode;
3996 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3997 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
3998 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
3999 break;
4001 if (compute_mode == VOIDmode)
4002 for (compute_mode = mode; compute_mode != VOIDmode;
4003 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
4004 if (optab_libfunc (optab1, compute_mode)
4005 || optab_libfunc (optab2, compute_mode))
4006 break;
4008 /* If we still couldn't find a mode, use MODE, but expand_binop will
4009 probably die. */
4010 if (compute_mode == VOIDmode)
4011 compute_mode = mode;
4013 if (target && GET_MODE (target) == compute_mode)
4014 tquotient = target;
4015 else
4016 tquotient = gen_reg_rtx (compute_mode);
4018 size = GET_MODE_BITSIZE (compute_mode);
4019 #if 0
4020 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4021 (mode), and thereby get better code when OP1 is a constant. Do that
4022 later. It will require going over all usages of SIZE below. */
4023 size = GET_MODE_BITSIZE (mode);
4024 #endif
4026 /* Only deduct something for a REM if the last divide done was
4027 for a different constant. Then set the constant of the last
4028 divide. */
4029 max_cost = (unsignedp
4030 ? udiv_cost (speed, compute_mode)
4031 : sdiv_cost (speed, compute_mode));
4032 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4033 && INTVAL (op1) == last_div_const))
4034 max_cost -= (mul_cost (speed, compute_mode)
4035 + add_cost (speed, compute_mode));
4037 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4039 /* Now convert to the best mode to use. */
4040 if (compute_mode != mode)
4042 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4043 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4045 /* convert_modes may have placed op1 into a register, so we
4046 must recompute the following. */
4047 op1_is_constant = CONST_INT_P (op1);
4048 op1_is_pow2 = (op1_is_constant
4049 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4050 || (! unsignedp
4051 && EXACT_POWER_OF_2_OR_ZERO_P (-UINTVAL (op1))))));
4054 /* If one of the operands is a volatile MEM, copy it into a register. */
4056 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4057 op0 = force_reg (compute_mode, op0);
4058 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4059 op1 = force_reg (compute_mode, op1);
4061 /* If we need the remainder or if OP1 is constant, we need to
4062 put OP0 in a register in case it has any queued subexpressions. */
4063 if (rem_flag || op1_is_constant)
4064 op0 = force_reg (compute_mode, op0);
4066 last = get_last_insn ();
4068 /* Promote floor rounding to trunc rounding for unsigned operations. */
4069 if (unsignedp)
4071 if (code == FLOOR_DIV_EXPR)
4072 code = TRUNC_DIV_EXPR;
4073 if (code == FLOOR_MOD_EXPR)
4074 code = TRUNC_MOD_EXPR;
4075 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4076 code = TRUNC_DIV_EXPR;
4079 if (op1 != const0_rtx)
4080 switch (code)
4082 case TRUNC_MOD_EXPR:
4083 case TRUNC_DIV_EXPR:
4084 if (op1_is_constant)
4086 if (unsignedp)
4088 unsigned HOST_WIDE_INT mh, ml;
4089 int pre_shift, post_shift;
4090 int dummy;
4091 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4092 & GET_MODE_MASK (compute_mode));
4094 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4096 pre_shift = floor_log2 (d);
4097 if (rem_flag)
4099 unsigned HOST_WIDE_INT mask
4100 = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4101 remainder
4102 = expand_binop (compute_mode, and_optab, op0,
4103 gen_int_mode (mask, compute_mode),
4104 remainder, 1,
4105 OPTAB_LIB_WIDEN);
4106 if (remainder)
4107 return gen_lowpart (mode, remainder);
4109 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4110 pre_shift, tquotient, 1);
4112 else if (size <= HOST_BITS_PER_WIDE_INT)
4114 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4116 /* Most significant bit of divisor is set; emit an scc
4117 insn. */
4118 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4119 compute_mode, 1, 1);
4121 else
4123 /* Find a suitable multiplier and right shift count
4124 instead of multiplying with D. */
4126 mh = choose_multiplier (d, size, size,
4127 &ml, &post_shift, &dummy);
4129 /* If the suggested multiplier is more than SIZE bits,
4130 we can do better for even divisors, using an
4131 initial right shift. */
4132 if (mh != 0 && (d & 1) == 0)
4134 pre_shift = floor_log2 (d & -d);
4135 mh = choose_multiplier (d >> pre_shift, size,
4136 size - pre_shift,
4137 &ml, &post_shift, &dummy);
4138 gcc_assert (!mh);
4140 else
4141 pre_shift = 0;
4143 if (mh != 0)
4145 rtx t1, t2, t3, t4;
4147 if (post_shift - 1 >= BITS_PER_WORD)
4148 goto fail1;
4150 extra_cost
4151 = (shift_cost (speed, compute_mode, post_shift - 1)
4152 + shift_cost (speed, compute_mode, 1)
4153 + 2 * add_cost (speed, compute_mode));
4154 t1 = expmed_mult_highpart
4155 (compute_mode, op0,
4156 gen_int_mode (ml, compute_mode),
4157 NULL_RTX, 1, max_cost - extra_cost);
4158 if (t1 == 0)
4159 goto fail1;
4160 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4161 op0, t1),
4162 NULL_RTX);
4163 t3 = expand_shift (RSHIFT_EXPR, compute_mode,
4164 t2, 1, NULL_RTX, 1);
4165 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4166 t1, t3),
4167 NULL_RTX);
4168 quotient = expand_shift
4169 (RSHIFT_EXPR, compute_mode, t4,
4170 post_shift - 1, tquotient, 1);
4172 else
4174 rtx t1, t2;
4176 if (pre_shift >= BITS_PER_WORD
4177 || post_shift >= BITS_PER_WORD)
4178 goto fail1;
4180 t1 = expand_shift
4181 (RSHIFT_EXPR, compute_mode, op0,
4182 pre_shift, NULL_RTX, 1);
4183 extra_cost
4184 = (shift_cost (speed, compute_mode, pre_shift)
4185 + shift_cost (speed, compute_mode, post_shift));
4186 t2 = expmed_mult_highpart
4187 (compute_mode, t1,
4188 gen_int_mode (ml, compute_mode),
4189 NULL_RTX, 1, max_cost - extra_cost);
4190 if (t2 == 0)
4191 goto fail1;
4192 quotient = expand_shift
4193 (RSHIFT_EXPR, compute_mode, t2,
4194 post_shift, tquotient, 1);
4198 else /* Too wide mode to use tricky code */
4199 break;
4201 insn = get_last_insn ();
4202 if (insn != last)
4203 set_dst_reg_note (insn, REG_EQUAL,
4204 gen_rtx_UDIV (compute_mode, op0, op1),
4205 quotient);
4207 else /* TRUNC_DIV, signed */
4209 unsigned HOST_WIDE_INT ml;
4210 int lgup, post_shift;
4211 rtx mlr;
4212 HOST_WIDE_INT d = INTVAL (op1);
4213 unsigned HOST_WIDE_INT abs_d;
4215 /* Since d might be INT_MIN, we have to cast to
4216 unsigned HOST_WIDE_INT before negating to avoid
4217 undefined signed overflow. */
4218 abs_d = (d >= 0
4219 ? (unsigned HOST_WIDE_INT) d
4220 : - (unsigned HOST_WIDE_INT) d);
4222 /* n rem d = n rem -d */
4223 if (rem_flag && d < 0)
4225 d = abs_d;
4226 op1 = gen_int_mode (abs_d, compute_mode);
4229 if (d == 1)
4230 quotient = op0;
4231 else if (d == -1)
4232 quotient = expand_unop (compute_mode, neg_optab, op0,
4233 tquotient, 0);
4234 else if (HOST_BITS_PER_WIDE_INT >= size
4235 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4237 /* This case is not handled correctly below. */
4238 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4239 compute_mode, 1, 1);
4240 if (quotient == 0)
4241 goto fail1;
4243 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4244 && (rem_flag
4245 ? smod_pow2_cheap (speed, compute_mode)
4246 : sdiv_pow2_cheap (speed, compute_mode))
4247 /* We assume that cheap metric is true if the
4248 optab has an expander for this mode. */
4249 && ((optab_handler ((rem_flag ? smod_optab
4250 : sdiv_optab),
4251 compute_mode)
4252 != CODE_FOR_nothing)
4253 || (optab_handler (sdivmod_optab,
4254 compute_mode)
4255 != CODE_FOR_nothing)))
4257 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4259 if (rem_flag)
4261 remainder = expand_smod_pow2 (compute_mode, op0, d);
4262 if (remainder)
4263 return gen_lowpart (mode, remainder);
4266 if (sdiv_pow2_cheap (speed, compute_mode)
4267 && ((optab_handler (sdiv_optab, compute_mode)
4268 != CODE_FOR_nothing)
4269 || (optab_handler (sdivmod_optab, compute_mode)
4270 != CODE_FOR_nothing)))
4271 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4272 compute_mode, op0,
4273 gen_int_mode (abs_d,
4274 compute_mode),
4275 NULL_RTX, 0);
4276 else
4277 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4279 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4280 negate the quotient. */
4281 if (d < 0)
4283 insn = get_last_insn ();
4284 if (insn != last
4285 && abs_d < ((unsigned HOST_WIDE_INT) 1
4286 << (HOST_BITS_PER_WIDE_INT - 1)))
4287 set_dst_reg_note (insn, REG_EQUAL,
4288 gen_rtx_DIV (compute_mode, op0,
4289 gen_int_mode
4290 (abs_d,
4291 compute_mode)),
4292 quotient);
4294 quotient = expand_unop (compute_mode, neg_optab,
4295 quotient, quotient, 0);
4298 else if (size <= HOST_BITS_PER_WIDE_INT)
4300 choose_multiplier (abs_d, size, size - 1,
4301 &ml, &post_shift, &lgup);
4302 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4304 rtx t1, t2, t3;
4306 if (post_shift >= BITS_PER_WORD
4307 || size - 1 >= BITS_PER_WORD)
4308 goto fail1;
4310 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4311 + shift_cost (speed, compute_mode, size - 1)
4312 + add_cost (speed, compute_mode));
4313 t1 = expmed_mult_highpart
4314 (compute_mode, op0, gen_int_mode (ml, compute_mode),
4315 NULL_RTX, 0, max_cost - extra_cost);
4316 if (t1 == 0)
4317 goto fail1;
4318 t2 = expand_shift
4319 (RSHIFT_EXPR, compute_mode, t1,
4320 post_shift, NULL_RTX, 0);
4321 t3 = expand_shift
4322 (RSHIFT_EXPR, compute_mode, op0,
4323 size - 1, NULL_RTX, 0);
4324 if (d < 0)
4325 quotient
4326 = force_operand (gen_rtx_MINUS (compute_mode,
4327 t3, t2),
4328 tquotient);
4329 else
4330 quotient
4331 = force_operand (gen_rtx_MINUS (compute_mode,
4332 t2, t3),
4333 tquotient);
4335 else
4337 rtx t1, t2, t3, t4;
4339 if (post_shift >= BITS_PER_WORD
4340 || size - 1 >= BITS_PER_WORD)
4341 goto fail1;
4343 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4344 mlr = gen_int_mode (ml, compute_mode);
4345 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4346 + shift_cost (speed, compute_mode, size - 1)
4347 + 2 * add_cost (speed, compute_mode));
4348 t1 = expmed_mult_highpart (compute_mode, op0, mlr,
4349 NULL_RTX, 0,
4350 max_cost - extra_cost);
4351 if (t1 == 0)
4352 goto fail1;
4353 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4354 t1, op0),
4355 NULL_RTX);
4356 t3 = expand_shift
4357 (RSHIFT_EXPR, compute_mode, t2,
4358 post_shift, NULL_RTX, 0);
4359 t4 = expand_shift
4360 (RSHIFT_EXPR, compute_mode, op0,
4361 size - 1, NULL_RTX, 0);
4362 if (d < 0)
4363 quotient
4364 = force_operand (gen_rtx_MINUS (compute_mode,
4365 t4, t3),
4366 tquotient);
4367 else
4368 quotient
4369 = force_operand (gen_rtx_MINUS (compute_mode,
4370 t3, t4),
4371 tquotient);
4374 else /* Too wide mode to use tricky code */
4375 break;
4377 insn = get_last_insn ();
4378 if (insn != last)
4379 set_dst_reg_note (insn, REG_EQUAL,
4380 gen_rtx_DIV (compute_mode, op0, op1),
4381 quotient);
4383 break;
4385 fail1:
4386 delete_insns_since (last);
4387 break;
4389 case FLOOR_DIV_EXPR:
4390 case FLOOR_MOD_EXPR:
4391 /* We will come here only for signed operations. */
4392 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4394 unsigned HOST_WIDE_INT mh, ml;
4395 int pre_shift, lgup, post_shift;
4396 HOST_WIDE_INT d = INTVAL (op1);
4398 if (d > 0)
4400 /* We could just as easily deal with negative constants here,
4401 but it does not seem worth the trouble for GCC 2.6. */
4402 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4404 pre_shift = floor_log2 (d);
4405 if (rem_flag)
4407 unsigned HOST_WIDE_INT mask
4408 = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4409 remainder = expand_binop
4410 (compute_mode, and_optab, op0,
4411 gen_int_mode (mask, compute_mode),
4412 remainder, 0, OPTAB_LIB_WIDEN);
4413 if (remainder)
4414 return gen_lowpart (mode, remainder);
4416 quotient = expand_shift
4417 (RSHIFT_EXPR, compute_mode, op0,
4418 pre_shift, tquotient, 0);
4420 else
4422 rtx t1, t2, t3, t4;
4424 mh = choose_multiplier (d, size, size - 1,
4425 &ml, &post_shift, &lgup);
4426 gcc_assert (!mh);
4428 if (post_shift < BITS_PER_WORD
4429 && size - 1 < BITS_PER_WORD)
4431 t1 = expand_shift
4432 (RSHIFT_EXPR, compute_mode, op0,
4433 size - 1, NULL_RTX, 0);
4434 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4435 NULL_RTX, 0, OPTAB_WIDEN);
4436 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4437 + shift_cost (speed, compute_mode, size - 1)
4438 + 2 * add_cost (speed, compute_mode));
4439 t3 = expmed_mult_highpart
4440 (compute_mode, t2, gen_int_mode (ml, compute_mode),
4441 NULL_RTX, 1, max_cost - extra_cost);
4442 if (t3 != 0)
4444 t4 = expand_shift
4445 (RSHIFT_EXPR, compute_mode, t3,
4446 post_shift, NULL_RTX, 1);
4447 quotient = expand_binop (compute_mode, xor_optab,
4448 t4, t1, tquotient, 0,
4449 OPTAB_WIDEN);
4454 else
4456 rtx nsign, t1, t2, t3, t4;
4457 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4458 op0, constm1_rtx), NULL_RTX);
4459 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4460 0, OPTAB_WIDEN);
4461 nsign = expand_shift
4462 (RSHIFT_EXPR, compute_mode, t2,
4463 size - 1, NULL_RTX, 0);
4464 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4465 NULL_RTX);
4466 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4467 NULL_RTX, 0);
4468 if (t4)
4470 rtx t5;
4471 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4472 NULL_RTX, 0);
4473 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4474 t4, t5),
4475 tquotient);
4480 if (quotient != 0)
4481 break;
4482 delete_insns_since (last);
4484 /* Try using an instruction that produces both the quotient and
4485 remainder, using truncation. We can easily compensate the quotient
4486 or remainder to get floor rounding, once we have the remainder.
4487 Notice that we compute also the final remainder value here,
4488 and return the result right away. */
4489 if (target == 0 || GET_MODE (target) != compute_mode)
4490 target = gen_reg_rtx (compute_mode);
4492 if (rem_flag)
4494 remainder
4495 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4496 quotient = gen_reg_rtx (compute_mode);
4498 else
4500 quotient
4501 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4502 remainder = gen_reg_rtx (compute_mode);
4505 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4506 quotient, remainder, 0))
4508 /* This could be computed with a branch-less sequence.
4509 Save that for later. */
4510 rtx tem;
4511 rtx_code_label *label = gen_label_rtx ();
4512 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4513 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4514 NULL_RTX, 0, OPTAB_WIDEN);
4515 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4516 expand_dec (quotient, const1_rtx);
4517 expand_inc (remainder, op1);
4518 emit_label (label);
4519 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4522 /* No luck with division elimination or divmod. Have to do it
4523 by conditionally adjusting op0 *and* the result. */
4525 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4526 rtx adjusted_op0;
4527 rtx tem;
4529 quotient = gen_reg_rtx (compute_mode);
4530 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4531 label1 = gen_label_rtx ();
4532 label2 = gen_label_rtx ();
4533 label3 = gen_label_rtx ();
4534 label4 = gen_label_rtx ();
4535 label5 = gen_label_rtx ();
4536 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4537 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4538 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4539 quotient, 0, OPTAB_LIB_WIDEN);
4540 if (tem != quotient)
4541 emit_move_insn (quotient, tem);
4542 emit_jump_insn (gen_jump (label5));
4543 emit_barrier ();
4544 emit_label (label1);
4545 expand_inc (adjusted_op0, const1_rtx);
4546 emit_jump_insn (gen_jump (label4));
4547 emit_barrier ();
4548 emit_label (label2);
4549 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4550 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4551 quotient, 0, OPTAB_LIB_WIDEN);
4552 if (tem != quotient)
4553 emit_move_insn (quotient, tem);
4554 emit_jump_insn (gen_jump (label5));
4555 emit_barrier ();
4556 emit_label (label3);
4557 expand_dec (adjusted_op0, const1_rtx);
4558 emit_label (label4);
4559 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4560 quotient, 0, OPTAB_LIB_WIDEN);
4561 if (tem != quotient)
4562 emit_move_insn (quotient, tem);
4563 expand_dec (quotient, const1_rtx);
4564 emit_label (label5);
4566 break;
4568 case CEIL_DIV_EXPR:
4569 case CEIL_MOD_EXPR:
4570 if (unsignedp)
4572 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4574 rtx t1, t2, t3;
4575 unsigned HOST_WIDE_INT d = INTVAL (op1);
4576 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4577 floor_log2 (d), tquotient, 1);
4578 t2 = expand_binop (compute_mode, and_optab, op0,
4579 gen_int_mode (d - 1, compute_mode),
4580 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4581 t3 = gen_reg_rtx (compute_mode);
4582 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4583 compute_mode, 1, 1);
4584 if (t3 == 0)
4586 rtx_code_label *lab;
4587 lab = gen_label_rtx ();
4588 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4589 expand_inc (t1, const1_rtx);
4590 emit_label (lab);
4591 quotient = t1;
4593 else
4594 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4595 t1, t3),
4596 tquotient);
4597 break;
4600 /* Try using an instruction that produces both the quotient and
4601 remainder, using truncation. We can easily compensate the
4602 quotient or remainder to get ceiling rounding, once we have the
4603 remainder. Notice that we compute also the final remainder
4604 value here, and return the result right away. */
4605 if (target == 0 || GET_MODE (target) != compute_mode)
4606 target = gen_reg_rtx (compute_mode);
4608 if (rem_flag)
4610 remainder = (REG_P (target)
4611 ? target : gen_reg_rtx (compute_mode));
4612 quotient = gen_reg_rtx (compute_mode);
4614 else
4616 quotient = (REG_P (target)
4617 ? target : gen_reg_rtx (compute_mode));
4618 remainder = gen_reg_rtx (compute_mode);
4621 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4622 remainder, 1))
4624 /* This could be computed with a branch-less sequence.
4625 Save that for later. */
4626 rtx_code_label *label = gen_label_rtx ();
4627 do_cmp_and_jump (remainder, const0_rtx, EQ,
4628 compute_mode, label);
4629 expand_inc (quotient, const1_rtx);
4630 expand_dec (remainder, op1);
4631 emit_label (label);
4632 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4635 /* No luck with division elimination or divmod. Have to do it
4636 by conditionally adjusting op0 *and* the result. */
4638 rtx_code_label *label1, *label2;
4639 rtx adjusted_op0, tem;
4641 quotient = gen_reg_rtx (compute_mode);
4642 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4643 label1 = gen_label_rtx ();
4644 label2 = gen_label_rtx ();
4645 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4646 compute_mode, label1);
4647 emit_move_insn (quotient, const0_rtx);
4648 emit_jump_insn (gen_jump (label2));
4649 emit_barrier ();
4650 emit_label (label1);
4651 expand_dec (adjusted_op0, const1_rtx);
4652 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4653 quotient, 1, OPTAB_LIB_WIDEN);
4654 if (tem != quotient)
4655 emit_move_insn (quotient, tem);
4656 expand_inc (quotient, const1_rtx);
4657 emit_label (label2);
4660 else /* signed */
4662 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4663 && INTVAL (op1) >= 0)
4665 /* This is extremely similar to the code for the unsigned case
4666 above. For 2.7 we should merge these variants, but for
4667 2.6.1 I don't want to touch the code for unsigned since that
4668 get used in C. The signed case will only be used by other
4669 languages (Ada). */
4671 rtx t1, t2, t3;
4672 unsigned HOST_WIDE_INT d = INTVAL (op1);
4673 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4674 floor_log2 (d), tquotient, 0);
4675 t2 = expand_binop (compute_mode, and_optab, op0,
4676 gen_int_mode (d - 1, compute_mode),
4677 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4678 t3 = gen_reg_rtx (compute_mode);
4679 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4680 compute_mode, 1, 1);
4681 if (t3 == 0)
4683 rtx_code_label *lab;
4684 lab = gen_label_rtx ();
4685 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4686 expand_inc (t1, const1_rtx);
4687 emit_label (lab);
4688 quotient = t1;
4690 else
4691 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4692 t1, t3),
4693 tquotient);
4694 break;
4697 /* Try using an instruction that produces both the quotient and
4698 remainder, using truncation. We can easily compensate the
4699 quotient or remainder to get ceiling rounding, once we have the
4700 remainder. Notice that we compute also the final remainder
4701 value here, and return the result right away. */
4702 if (target == 0 || GET_MODE (target) != compute_mode)
4703 target = gen_reg_rtx (compute_mode);
4704 if (rem_flag)
4706 remainder= (REG_P (target)
4707 ? target : gen_reg_rtx (compute_mode));
4708 quotient = gen_reg_rtx (compute_mode);
4710 else
4712 quotient = (REG_P (target)
4713 ? target : gen_reg_rtx (compute_mode));
4714 remainder = gen_reg_rtx (compute_mode);
4717 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4718 remainder, 0))
4720 /* This could be computed with a branch-less sequence.
4721 Save that for later. */
4722 rtx tem;
4723 rtx_code_label *label = gen_label_rtx ();
4724 do_cmp_and_jump (remainder, const0_rtx, EQ,
4725 compute_mode, label);
4726 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4727 NULL_RTX, 0, OPTAB_WIDEN);
4728 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4729 expand_inc (quotient, const1_rtx);
4730 expand_dec (remainder, op1);
4731 emit_label (label);
4732 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4735 /* No luck with division elimination or divmod. Have to do it
4736 by conditionally adjusting op0 *and* the result. */
4738 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4739 rtx adjusted_op0;
4740 rtx tem;
4742 quotient = gen_reg_rtx (compute_mode);
4743 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4744 label1 = gen_label_rtx ();
4745 label2 = gen_label_rtx ();
4746 label3 = gen_label_rtx ();
4747 label4 = gen_label_rtx ();
4748 label5 = gen_label_rtx ();
4749 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4750 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4751 compute_mode, label1);
4752 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4753 quotient, 0, OPTAB_LIB_WIDEN);
4754 if (tem != quotient)
4755 emit_move_insn (quotient, tem);
4756 emit_jump_insn (gen_jump (label5));
4757 emit_barrier ();
4758 emit_label (label1);
4759 expand_dec (adjusted_op0, const1_rtx);
4760 emit_jump_insn (gen_jump (label4));
4761 emit_barrier ();
4762 emit_label (label2);
4763 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4764 compute_mode, label3);
4765 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4766 quotient, 0, OPTAB_LIB_WIDEN);
4767 if (tem != quotient)
4768 emit_move_insn (quotient, tem);
4769 emit_jump_insn (gen_jump (label5));
4770 emit_barrier ();
4771 emit_label (label3);
4772 expand_inc (adjusted_op0, const1_rtx);
4773 emit_label (label4);
4774 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4775 quotient, 0, OPTAB_LIB_WIDEN);
4776 if (tem != quotient)
4777 emit_move_insn (quotient, tem);
4778 expand_inc (quotient, const1_rtx);
4779 emit_label (label5);
4782 break;
4784 case EXACT_DIV_EXPR:
4785 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4787 HOST_WIDE_INT d = INTVAL (op1);
4788 unsigned HOST_WIDE_INT ml;
4789 int pre_shift;
4790 rtx t1;
4792 pre_shift = floor_log2 (d & -d);
4793 ml = invert_mod2n (d >> pre_shift, size);
4794 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4795 pre_shift, NULL_RTX, unsignedp);
4796 quotient = expand_mult (compute_mode, t1,
4797 gen_int_mode (ml, compute_mode),
4798 NULL_RTX, 1);
4800 insn = get_last_insn ();
4801 set_dst_reg_note (insn, REG_EQUAL,
4802 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4803 compute_mode, op0, op1),
4804 quotient);
4806 break;
4808 case ROUND_DIV_EXPR:
4809 case ROUND_MOD_EXPR:
4810 if (unsignedp)
4812 rtx tem;
4813 rtx_code_label *label;
4814 label = gen_label_rtx ();
4815 quotient = gen_reg_rtx (compute_mode);
4816 remainder = gen_reg_rtx (compute_mode);
4817 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4819 rtx tem;
4820 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4821 quotient, 1, OPTAB_LIB_WIDEN);
4822 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4823 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4824 remainder, 1, OPTAB_LIB_WIDEN);
4826 tem = plus_constant (compute_mode, op1, -1);
4827 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem, 1, NULL_RTX, 1);
4828 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4829 expand_inc (quotient, const1_rtx);
4830 expand_dec (remainder, op1);
4831 emit_label (label);
4833 else
4835 rtx abs_rem, abs_op1, tem, mask;
4836 rtx_code_label *label;
4837 label = gen_label_rtx ();
4838 quotient = gen_reg_rtx (compute_mode);
4839 remainder = gen_reg_rtx (compute_mode);
4840 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4842 rtx tem;
4843 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4844 quotient, 0, OPTAB_LIB_WIDEN);
4845 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4846 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4847 remainder, 0, OPTAB_LIB_WIDEN);
4849 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4850 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4851 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4852 1, NULL_RTX, 1);
4853 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4854 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4855 NULL_RTX, 0, OPTAB_WIDEN);
4856 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4857 size - 1, NULL_RTX, 0);
4858 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4859 NULL_RTX, 0, OPTAB_WIDEN);
4860 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4861 NULL_RTX, 0, OPTAB_WIDEN);
4862 expand_inc (quotient, tem);
4863 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4864 NULL_RTX, 0, OPTAB_WIDEN);
4865 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4866 NULL_RTX, 0, OPTAB_WIDEN);
4867 expand_dec (remainder, tem);
4868 emit_label (label);
4870 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4872 default:
4873 gcc_unreachable ();
4876 if (quotient == 0)
4878 if (target && GET_MODE (target) != compute_mode)
4879 target = 0;
4881 if (rem_flag)
4883 /* Try to produce the remainder without producing the quotient.
4884 If we seem to have a divmod pattern that does not require widening,
4885 don't try widening here. We should really have a WIDEN argument
4886 to expand_twoval_binop, since what we'd really like to do here is
4887 1) try a mod insn in compute_mode
4888 2) try a divmod insn in compute_mode
4889 3) try a div insn in compute_mode and multiply-subtract to get
4890 remainder
4891 4) try the same things with widening allowed. */
4892 remainder
4893 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4894 op0, op1, target,
4895 unsignedp,
4896 ((optab_handler (optab2, compute_mode)
4897 != CODE_FOR_nothing)
4898 ? OPTAB_DIRECT : OPTAB_WIDEN));
4899 if (remainder == 0)
4901 /* No luck there. Can we do remainder and divide at once
4902 without a library call? */
4903 remainder = gen_reg_rtx (compute_mode);
4904 if (! expand_twoval_binop ((unsignedp
4905 ? udivmod_optab
4906 : sdivmod_optab),
4907 op0, op1,
4908 NULL_RTX, remainder, unsignedp))
4909 remainder = 0;
4912 if (remainder)
4913 return gen_lowpart (mode, remainder);
4916 /* Produce the quotient. Try a quotient insn, but not a library call.
4917 If we have a divmod in this mode, use it in preference to widening
4918 the div (for this test we assume it will not fail). Note that optab2
4919 is set to the one of the two optabs that the call below will use. */
4920 quotient
4921 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4922 op0, op1, rem_flag ? NULL_RTX : target,
4923 unsignedp,
4924 ((optab_handler (optab2, compute_mode)
4925 != CODE_FOR_nothing)
4926 ? OPTAB_DIRECT : OPTAB_WIDEN));
4928 if (quotient == 0)
4930 /* No luck there. Try a quotient-and-remainder insn,
4931 keeping the quotient alone. */
4932 quotient = gen_reg_rtx (compute_mode);
4933 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4934 op0, op1,
4935 quotient, NULL_RTX, unsignedp))
4937 quotient = 0;
4938 if (! rem_flag)
4939 /* Still no luck. If we are not computing the remainder,
4940 use a library call for the quotient. */
4941 quotient = sign_expand_binop (compute_mode,
4942 udiv_optab, sdiv_optab,
4943 op0, op1, target,
4944 unsignedp, OPTAB_LIB_WIDEN);
4949 if (rem_flag)
4951 if (target && GET_MODE (target) != compute_mode)
4952 target = 0;
4954 if (quotient == 0)
4956 /* No divide instruction either. Use library for remainder. */
4957 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4958 op0, op1, target,
4959 unsignedp, OPTAB_LIB_WIDEN);
4960 /* No remainder function. Try a quotient-and-remainder
4961 function, keeping the remainder. */
4962 if (!remainder)
4964 remainder = gen_reg_rtx (compute_mode);
4965 if (!expand_twoval_binop_libfunc
4966 (unsignedp ? udivmod_optab : sdivmod_optab,
4967 op0, op1,
4968 NULL_RTX, remainder,
4969 unsignedp ? UMOD : MOD))
4970 remainder = NULL_RTX;
4973 else
4975 /* We divided. Now finish doing X - Y * (X / Y). */
4976 remainder = expand_mult (compute_mode, quotient, op1,
4977 NULL_RTX, unsignedp);
4978 remainder = expand_binop (compute_mode, sub_optab, op0,
4979 remainder, target, unsignedp,
4980 OPTAB_LIB_WIDEN);
4984 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4987 /* Return a tree node with data type TYPE, describing the value of X.
4988 Usually this is an VAR_DECL, if there is no obvious better choice.
4989 X may be an expression, however we only support those expressions
4990 generated by loop.c. */
4992 tree
4993 make_tree (tree type, rtx x)
4995 tree t;
4997 switch (GET_CODE (x))
4999 case CONST_INT:
5000 case CONST_WIDE_INT:
5001 t = wide_int_to_tree (type, std::make_pair (x, TYPE_MODE (type)));
5002 return t;
5004 case CONST_DOUBLE:
5005 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
5006 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
5007 t = wide_int_to_tree (type,
5008 wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
5009 HOST_BITS_PER_WIDE_INT * 2));
5010 else
5012 REAL_VALUE_TYPE d;
5014 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
5015 t = build_real (type, d);
5018 return t;
5020 case CONST_VECTOR:
5022 int units = CONST_VECTOR_NUNITS (x);
5023 tree itype = TREE_TYPE (type);
5024 tree *elts;
5025 int i;
5027 /* Build a tree with vector elements. */
5028 elts = XALLOCAVEC (tree, units);
5029 for (i = units - 1; i >= 0; --i)
5031 rtx elt = CONST_VECTOR_ELT (x, i);
5032 elts[i] = make_tree (itype, elt);
5035 return build_vector (type, elts);
5038 case PLUS:
5039 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5040 make_tree (type, XEXP (x, 1)));
5042 case MINUS:
5043 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5044 make_tree (type, XEXP (x, 1)));
5046 case NEG:
5047 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5049 case MULT:
5050 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5051 make_tree (type, XEXP (x, 1)));
5053 case ASHIFT:
5054 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5055 make_tree (type, XEXP (x, 1)));
5057 case LSHIFTRT:
5058 t = unsigned_type_for (type);
5059 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5060 make_tree (t, XEXP (x, 0)),
5061 make_tree (type, XEXP (x, 1))));
5063 case ASHIFTRT:
5064 t = signed_type_for (type);
5065 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5066 make_tree (t, XEXP (x, 0)),
5067 make_tree (type, XEXP (x, 1))));
5069 case DIV:
5070 if (TREE_CODE (type) != REAL_TYPE)
5071 t = signed_type_for (type);
5072 else
5073 t = type;
5075 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5076 make_tree (t, XEXP (x, 0)),
5077 make_tree (t, XEXP (x, 1))));
5078 case UDIV:
5079 t = unsigned_type_for (type);
5080 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5081 make_tree (t, XEXP (x, 0)),
5082 make_tree (t, XEXP (x, 1))));
5084 case SIGN_EXTEND:
5085 case ZERO_EXTEND:
5086 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5087 GET_CODE (x) == ZERO_EXTEND);
5088 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5090 case CONST:
5091 return make_tree (type, XEXP (x, 0));
5093 case SYMBOL_REF:
5094 t = SYMBOL_REF_DECL (x);
5095 if (t)
5096 return fold_convert (type, build_fold_addr_expr (t));
5097 /* else fall through. */
5099 default:
5100 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5102 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5103 address mode to pointer mode. */
5104 if (POINTER_TYPE_P (type))
5105 x = convert_memory_address_addr_space
5106 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5108 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5109 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5110 t->decl_with_rtl.rtl = x;
5112 return t;
5116 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5117 and returning TARGET.
5119 If TARGET is 0, a pseudo-register or constant is returned. */
5122 expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
5124 rtx tem = 0;
5126 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5127 tem = simplify_binary_operation (AND, mode, op0, op1);
5128 if (tem == 0)
5129 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5131 if (target == 0)
5132 target = tem;
5133 else if (tem != target)
5134 emit_move_insn (target, tem);
5135 return target;
5138 /* Helper function for emit_store_flag. */
5140 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5141 machine_mode mode, machine_mode compare_mode,
5142 int unsignedp, rtx x, rtx y, int normalizep,
5143 machine_mode target_mode)
5145 struct expand_operand ops[4];
5146 rtx op0, comparison, subtarget;
5147 rtx_insn *last;
5148 machine_mode result_mode = targetm.cstore_mode (icode);
5150 last = get_last_insn ();
5151 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5152 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5153 if (!x || !y)
5155 delete_insns_since (last);
5156 return NULL_RTX;
5159 if (target_mode == VOIDmode)
5160 target_mode = result_mode;
5161 if (!target)
5162 target = gen_reg_rtx (target_mode);
5164 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5166 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5167 create_fixed_operand (&ops[1], comparison);
5168 create_fixed_operand (&ops[2], x);
5169 create_fixed_operand (&ops[3], y);
5170 if (!maybe_expand_insn (icode, 4, ops))
5172 delete_insns_since (last);
5173 return NULL_RTX;
5175 subtarget = ops[0].value;
5177 /* If we are converting to a wider mode, first convert to
5178 TARGET_MODE, then normalize. This produces better combining
5179 opportunities on machines that have a SIGN_EXTRACT when we are
5180 testing a single bit. This mostly benefits the 68k.
5182 If STORE_FLAG_VALUE does not have the sign bit set when
5183 interpreted in MODE, we can do this conversion as unsigned, which
5184 is usually more efficient. */
5185 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5187 convert_move (target, subtarget,
5188 val_signbit_known_clear_p (result_mode,
5189 STORE_FLAG_VALUE));
5190 op0 = target;
5191 result_mode = target_mode;
5193 else
5194 op0 = subtarget;
5196 /* If we want to keep subexpressions around, don't reuse our last
5197 target. */
5198 if (optimize)
5199 subtarget = 0;
5201 /* Now normalize to the proper value in MODE. Sometimes we don't
5202 have to do anything. */
5203 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5205 /* STORE_FLAG_VALUE might be the most negative number, so write
5206 the comparison this way to avoid a compiler-time warning. */
5207 else if (- normalizep == STORE_FLAG_VALUE)
5208 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5210 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5211 it hard to use a value of just the sign bit due to ANSI integer
5212 constant typing rules. */
5213 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5214 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5215 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5216 normalizep == 1);
5217 else
5219 gcc_assert (STORE_FLAG_VALUE & 1);
5221 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5222 if (normalizep == -1)
5223 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5226 /* If we were converting to a smaller mode, do the conversion now. */
5227 if (target_mode != result_mode)
5229 convert_move (target, op0, 0);
5230 return target;
5232 else
5233 return op0;
5237 /* A subroutine of emit_store_flag only including "tricks" that do not
5238 need a recursive call. These are kept separate to avoid infinite
5239 loops. */
5241 static rtx
5242 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5243 machine_mode mode, int unsignedp, int normalizep,
5244 machine_mode target_mode)
5246 rtx subtarget;
5247 enum insn_code icode;
5248 machine_mode compare_mode;
5249 enum mode_class mclass;
5250 enum rtx_code scode;
5251 rtx tem;
5253 if (unsignedp)
5254 code = unsigned_condition (code);
5255 scode = swap_condition (code);
5257 /* If one operand is constant, make it the second one. Only do this
5258 if the other operand is not constant as well. */
5260 if (swap_commutative_operands_p (op0, op1))
5262 tem = op0;
5263 op0 = op1;
5264 op1 = tem;
5265 code = swap_condition (code);
5268 if (mode == VOIDmode)
5269 mode = GET_MODE (op0);
5271 /* For some comparisons with 1 and -1, we can convert this to
5272 comparisons with zero. This will often produce more opportunities for
5273 store-flag insns. */
5275 switch (code)
5277 case LT:
5278 if (op1 == const1_rtx)
5279 op1 = const0_rtx, code = LE;
5280 break;
5281 case LE:
5282 if (op1 == constm1_rtx)
5283 op1 = const0_rtx, code = LT;
5284 break;
5285 case GE:
5286 if (op1 == const1_rtx)
5287 op1 = const0_rtx, code = GT;
5288 break;
5289 case GT:
5290 if (op1 == constm1_rtx)
5291 op1 = const0_rtx, code = GE;
5292 break;
5293 case GEU:
5294 if (op1 == const1_rtx)
5295 op1 = const0_rtx, code = NE;
5296 break;
5297 case LTU:
5298 if (op1 == const1_rtx)
5299 op1 = const0_rtx, code = EQ;
5300 break;
5301 default:
5302 break;
5305 /* If we are comparing a double-word integer with zero or -1, we can
5306 convert the comparison into one involving a single word. */
5307 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5308 && GET_MODE_CLASS (mode) == MODE_INT
5309 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5311 if ((code == EQ || code == NE)
5312 && (op1 == const0_rtx || op1 == constm1_rtx))
5314 rtx op00, op01;
5316 /* Do a logical OR or AND of the two words and compare the
5317 result. */
5318 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5319 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5320 tem = expand_binop (word_mode,
5321 op1 == const0_rtx ? ior_optab : and_optab,
5322 op00, op01, NULL_RTX, unsignedp,
5323 OPTAB_DIRECT);
5325 if (tem != 0)
5326 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5327 unsignedp, normalizep);
5329 else if ((code == LT || code == GE) && op1 == const0_rtx)
5331 rtx op0h;
5333 /* If testing the sign bit, can just test on high word. */
5334 op0h = simplify_gen_subreg (word_mode, op0, mode,
5335 subreg_highpart_offset (word_mode,
5336 mode));
5337 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5338 unsignedp, normalizep);
5340 else
5341 tem = NULL_RTX;
5343 if (tem)
5345 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5346 return tem;
5347 if (!target)
5348 target = gen_reg_rtx (target_mode);
5350 convert_move (target, tem,
5351 !val_signbit_known_set_p (word_mode,
5352 (normalizep ? normalizep
5353 : STORE_FLAG_VALUE)));
5354 return target;
5358 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5359 complement of A (for GE) and shifting the sign bit to the low bit. */
5360 if (op1 == const0_rtx && (code == LT || code == GE)
5361 && GET_MODE_CLASS (mode) == MODE_INT
5362 && (normalizep || STORE_FLAG_VALUE == 1
5363 || val_signbit_p (mode, STORE_FLAG_VALUE)))
5365 subtarget = target;
5367 if (!target)
5368 target_mode = mode;
5370 /* If the result is to be wider than OP0, it is best to convert it
5371 first. If it is to be narrower, it is *incorrect* to convert it
5372 first. */
5373 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5375 op0 = convert_modes (target_mode, mode, op0, 0);
5376 mode = target_mode;
5379 if (target_mode != mode)
5380 subtarget = 0;
5382 if (code == GE)
5383 op0 = expand_unop (mode, one_cmpl_optab, op0,
5384 ((STORE_FLAG_VALUE == 1 || normalizep)
5385 ? 0 : subtarget), 0);
5387 if (STORE_FLAG_VALUE == 1 || normalizep)
5388 /* If we are supposed to produce a 0/1 value, we want to do
5389 a logical shift from the sign bit to the low-order bit; for
5390 a -1/0 value, we do an arithmetic shift. */
5391 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5392 GET_MODE_BITSIZE (mode) - 1,
5393 subtarget, normalizep != -1);
5395 if (mode != target_mode)
5396 op0 = convert_modes (target_mode, mode, op0, 0);
5398 return op0;
5401 mclass = GET_MODE_CLASS (mode);
5402 for (compare_mode = mode; compare_mode != VOIDmode;
5403 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5405 machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5406 icode = optab_handler (cstore_optab, optab_mode);
5407 if (icode != CODE_FOR_nothing)
5409 do_pending_stack_adjust ();
5410 tem = emit_cstore (target, icode, code, mode, compare_mode,
5411 unsignedp, op0, op1, normalizep, target_mode);
5412 if (tem)
5413 return tem;
5415 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5417 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5418 unsignedp, op1, op0, normalizep, target_mode);
5419 if (tem)
5420 return tem;
5422 break;
5426 return 0;
5429 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5430 and storing in TARGET. Normally return TARGET.
5431 Return 0 if that cannot be done.
5433 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5434 it is VOIDmode, they cannot both be CONST_INT.
5436 UNSIGNEDP is for the case where we have to widen the operands
5437 to perform the operation. It says to use zero-extension.
5439 NORMALIZEP is 1 if we should convert the result to be either zero
5440 or one. Normalize is -1 if we should convert the result to be
5441 either zero or -1. If NORMALIZEP is zero, the result will be left
5442 "raw" out of the scc insn. */
5445 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5446 machine_mode mode, int unsignedp, int normalizep)
5448 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5449 enum rtx_code rcode;
5450 rtx subtarget;
5451 rtx tem, trueval;
5452 rtx_insn *last;
5454 /* If we compare constants, we shouldn't use a store-flag operation,
5455 but a constant load. We can get there via the vanilla route that
5456 usually generates a compare-branch sequence, but will in this case
5457 fold the comparison to a constant, and thus elide the branch. */
5458 if (CONSTANT_P (op0) && CONSTANT_P (op1))
5459 return NULL_RTX;
5461 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5462 target_mode);
5463 if (tem)
5464 return tem;
5466 /* If we reached here, we can't do this with a scc insn, however there
5467 are some comparisons that can be done in other ways. Don't do any
5468 of these cases if branches are very cheap. */
5469 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5470 return 0;
5472 /* See what we need to return. We can only return a 1, -1, or the
5473 sign bit. */
5475 if (normalizep == 0)
5477 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5478 normalizep = STORE_FLAG_VALUE;
5480 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
5482 else
5483 return 0;
5486 last = get_last_insn ();
5488 /* If optimizing, use different pseudo registers for each insn, instead
5489 of reusing the same pseudo. This leads to better CSE, but slows
5490 down the compiler, since there are more pseudos */
5491 subtarget = (!optimize
5492 && (target_mode == mode)) ? target : NULL_RTX;
5493 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5495 /* For floating-point comparisons, try the reverse comparison or try
5496 changing the "orderedness" of the comparison. */
5497 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5499 enum rtx_code first_code;
5500 bool and_them;
5502 rcode = reverse_condition_maybe_unordered (code);
5503 if (can_compare_p (rcode, mode, ccp_store_flag)
5504 && (code == ORDERED || code == UNORDERED
5505 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5506 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5508 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5509 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5511 /* For the reverse comparison, use either an addition or a XOR. */
5512 if (want_add
5513 && rtx_cost (GEN_INT (normalizep), PLUS, 1,
5514 optimize_insn_for_speed_p ()) == 0)
5516 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5517 STORE_FLAG_VALUE, target_mode);
5518 if (tem)
5519 return expand_binop (target_mode, add_optab, tem,
5520 gen_int_mode (normalizep, target_mode),
5521 target, 0, OPTAB_WIDEN);
5523 else if (!want_add
5524 && rtx_cost (trueval, XOR, 1,
5525 optimize_insn_for_speed_p ()) == 0)
5527 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5528 normalizep, target_mode);
5529 if (tem)
5530 return expand_binop (target_mode, xor_optab, tem, trueval,
5531 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5535 delete_insns_since (last);
5537 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5538 if (code == ORDERED || code == UNORDERED)
5539 return 0;
5541 and_them = split_comparison (code, mode, &first_code, &code);
5543 /* If there are no NaNs, the first comparison should always fall through.
5544 Effectively change the comparison to the other one. */
5545 if (!HONOR_NANS (mode))
5547 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5548 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5549 target_mode);
5552 #ifdef HAVE_conditional_move
5553 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5554 conditional move. */
5555 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5556 normalizep, target_mode);
5557 if (tem == 0)
5558 return 0;
5560 if (and_them)
5561 tem = emit_conditional_move (target, code, op0, op1, mode,
5562 tem, const0_rtx, GET_MODE (tem), 0);
5563 else
5564 tem = emit_conditional_move (target, code, op0, op1, mode,
5565 trueval, tem, GET_MODE (tem), 0);
5567 if (tem == 0)
5568 delete_insns_since (last);
5569 return tem;
5570 #else
5571 return 0;
5572 #endif
5575 /* The remaining tricks only apply to integer comparisons. */
5577 if (GET_MODE_CLASS (mode) != MODE_INT)
5578 return 0;
5580 /* If this is an equality comparison of integers, we can try to exclusive-or
5581 (or subtract) the two operands and use a recursive call to try the
5582 comparison with zero. Don't do any of these cases if branches are
5583 very cheap. */
5585 if ((code == EQ || code == NE) && op1 != const0_rtx)
5587 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5588 OPTAB_WIDEN);
5590 if (tem == 0)
5591 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5592 OPTAB_WIDEN);
5593 if (tem != 0)
5594 tem = emit_store_flag (target, code, tem, const0_rtx,
5595 mode, unsignedp, normalizep);
5596 if (tem != 0)
5597 return tem;
5599 delete_insns_since (last);
5602 /* For integer comparisons, try the reverse comparison. However, for
5603 small X and if we'd have anyway to extend, implementing "X != 0"
5604 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5605 rcode = reverse_condition (code);
5606 if (can_compare_p (rcode, mode, ccp_store_flag)
5607 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5608 && code == NE
5609 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5610 && op1 == const0_rtx))
5612 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5613 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5615 /* Again, for the reverse comparison, use either an addition or a XOR. */
5616 if (want_add
5617 && rtx_cost (GEN_INT (normalizep), PLUS, 1,
5618 optimize_insn_for_speed_p ()) == 0)
5620 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5621 STORE_FLAG_VALUE, target_mode);
5622 if (tem != 0)
5623 tem = expand_binop (target_mode, add_optab, tem,
5624 gen_int_mode (normalizep, target_mode),
5625 target, 0, OPTAB_WIDEN);
5627 else if (!want_add
5628 && rtx_cost (trueval, XOR, 1,
5629 optimize_insn_for_speed_p ()) == 0)
5631 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5632 normalizep, target_mode);
5633 if (tem != 0)
5634 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5635 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5638 if (tem != 0)
5639 return tem;
5640 delete_insns_since (last);
5643 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5644 the constant zero. Reject all other comparisons at this point. Only
5645 do LE and GT if branches are expensive since they are expensive on
5646 2-operand machines. */
5648 if (op1 != const0_rtx
5649 || (code != EQ && code != NE
5650 && (BRANCH_COST (optimize_insn_for_speed_p (),
5651 false) <= 1 || (code != LE && code != GT))))
5652 return 0;
5654 /* Try to put the result of the comparison in the sign bit. Assume we can't
5655 do the necessary operation below. */
5657 tem = 0;
5659 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5660 the sign bit set. */
5662 if (code == LE)
5664 /* This is destructive, so SUBTARGET can't be OP0. */
5665 if (rtx_equal_p (subtarget, op0))
5666 subtarget = 0;
5668 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5669 OPTAB_WIDEN);
5670 if (tem)
5671 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5672 OPTAB_WIDEN);
5675 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5676 number of bits in the mode of OP0, minus one. */
5678 if (code == GT)
5680 if (rtx_equal_p (subtarget, op0))
5681 subtarget = 0;
5683 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5684 GET_MODE_BITSIZE (mode) - 1,
5685 subtarget, 0);
5686 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5687 OPTAB_WIDEN);
5690 if (code == EQ || code == NE)
5692 /* For EQ or NE, one way to do the comparison is to apply an operation
5693 that converts the operand into a positive number if it is nonzero
5694 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5695 for NE we negate. This puts the result in the sign bit. Then we
5696 normalize with a shift, if needed.
5698 Two operations that can do the above actions are ABS and FFS, so try
5699 them. If that doesn't work, and MODE is smaller than a full word,
5700 we can use zero-extension to the wider mode (an unsigned conversion)
5701 as the operation. */
5703 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5704 that is compensated by the subsequent overflow when subtracting
5705 one / negating. */
5707 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5708 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5709 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5710 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5711 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5713 tem = convert_modes (word_mode, mode, op0, 1);
5714 mode = word_mode;
5717 if (tem != 0)
5719 if (code == EQ)
5720 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5721 0, OPTAB_WIDEN);
5722 else
5723 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5726 /* If we couldn't do it that way, for NE we can "or" the two's complement
5727 of the value with itself. For EQ, we take the one's complement of
5728 that "or", which is an extra insn, so we only handle EQ if branches
5729 are expensive. */
5731 if (tem == 0
5732 && (code == NE
5733 || BRANCH_COST (optimize_insn_for_speed_p (),
5734 false) > 1))
5736 if (rtx_equal_p (subtarget, op0))
5737 subtarget = 0;
5739 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5740 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5741 OPTAB_WIDEN);
5743 if (tem && code == EQ)
5744 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5748 if (tem && normalizep)
5749 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5750 GET_MODE_BITSIZE (mode) - 1,
5751 subtarget, normalizep == 1);
5753 if (tem)
5755 if (!target)
5757 else if (GET_MODE (tem) != target_mode)
5759 convert_move (target, tem, 0);
5760 tem = target;
5762 else if (!subtarget)
5764 emit_move_insn (target, tem);
5765 tem = target;
5768 else
5769 delete_insns_since (last);
5771 return tem;
5774 /* Like emit_store_flag, but always succeeds. */
5777 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5778 machine_mode mode, int unsignedp, int normalizep)
5780 rtx tem;
5781 rtx_code_label *label;
5782 rtx trueval, falseval;
5784 /* First see if emit_store_flag can do the job. */
5785 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5786 if (tem != 0)
5787 return tem;
5789 if (!target)
5790 target = gen_reg_rtx (word_mode);
5792 /* If this failed, we have to do this with set/compare/jump/set code.
5793 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5794 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5795 if (code == NE
5796 && GET_MODE_CLASS (mode) == MODE_INT
5797 && REG_P (target)
5798 && op0 == target
5799 && op1 == const0_rtx)
5801 label = gen_label_rtx ();
5802 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
5803 mode, NULL_RTX, NULL_RTX, label, -1);
5804 emit_move_insn (target, trueval);
5805 emit_label (label);
5806 return target;
5809 if (!REG_P (target)
5810 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5811 target = gen_reg_rtx (GET_MODE (target));
5813 /* Jump in the right direction if the target cannot implement CODE
5814 but can jump on its reverse condition. */
5815 falseval = const0_rtx;
5816 if (! can_compare_p (code, mode, ccp_jump)
5817 && (! FLOAT_MODE_P (mode)
5818 || code == ORDERED || code == UNORDERED
5819 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5820 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5822 enum rtx_code rcode;
5823 if (FLOAT_MODE_P (mode))
5824 rcode = reverse_condition_maybe_unordered (code);
5825 else
5826 rcode = reverse_condition (code);
5828 /* Canonicalize to UNORDERED for the libcall. */
5829 if (can_compare_p (rcode, mode, ccp_jump)
5830 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5832 falseval = trueval;
5833 trueval = const0_rtx;
5834 code = rcode;
5838 emit_move_insn (target, trueval);
5839 label = gen_label_rtx ();
5840 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5841 NULL_RTX, label, -1);
5843 emit_move_insn (target, falseval);
5844 emit_label (label);
5846 return target;
5849 /* Perform possibly multi-word comparison and conditional jump to LABEL
5850 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5851 now a thin wrapper around do_compare_rtx_and_jump. */
5853 static void
5854 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
5855 rtx_code_label *label)
5857 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5858 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5859 NULL_RTX, NULL_RTX, label, -1);