2013-11-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
[official-gcc.git] / gcc / ada / sem_ch6.adb
blob3b5eee1680b94222ffc89cc0f94803bc2d9c16cf
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Dbug; use Exp_Dbug;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Fname; use Fname;
42 with Freeze; use Freeze;
43 with Itypes; use Itypes;
44 with Lib.Xref; use Lib.Xref;
45 with Layout; use Layout;
46 with Namet; use Namet;
47 with Lib; use Lib;
48 with Nlists; use Nlists;
49 with Nmake; use Nmake;
50 with Opt; use Opt;
51 with Output; use Output;
52 with Restrict; use Restrict;
53 with Rident; use Rident;
54 with Rtsfind; use Rtsfind;
55 with Sem; use Sem;
56 with Sem_Aux; use Sem_Aux;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch3; use Sem_Ch3;
59 with Sem_Ch4; use Sem_Ch4;
60 with Sem_Ch5; use Sem_Ch5;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch10; use Sem_Ch10;
63 with Sem_Ch12; use Sem_Ch12;
64 with Sem_Ch13; use Sem_Ch13;
65 with Sem_Dim; use Sem_Dim;
66 with Sem_Disp; use Sem_Disp;
67 with Sem_Dist; use Sem_Dist;
68 with Sem_Elim; use Sem_Elim;
69 with Sem_Eval; use Sem_Eval;
70 with Sem_Mech; use Sem_Mech;
71 with Sem_Prag; use Sem_Prag;
72 with Sem_Res; use Sem_Res;
73 with Sem_Util; use Sem_Util;
74 with Sem_Type; use Sem_Type;
75 with Sem_Warn; use Sem_Warn;
76 with Sinput; use Sinput;
77 with Stand; use Stand;
78 with Sinfo; use Sinfo;
79 with Sinfo.CN; use Sinfo.CN;
80 with Snames; use Snames;
81 with Stringt; use Stringt;
82 with Style;
83 with Stylesw; use Stylesw;
84 with Targparm; use Targparm;
85 with Tbuild; use Tbuild;
86 with Uintp; use Uintp;
87 with Urealp; use Urealp;
88 with Validsw; use Validsw;
90 package body Sem_Ch6 is
92 May_Hide_Profile : Boolean := False;
93 -- This flag is used to indicate that two formals in two subprograms being
94 -- checked for conformance differ only in that one is an access parameter
95 -- while the other is of a general access type with the same designated
96 -- type. In this case, if the rest of the signatures match, a call to
97 -- either subprogram may be ambiguous, which is worth a warning. The flag
98 -- is set in Compatible_Types, and the warning emitted in
99 -- New_Overloaded_Entity.
101 -----------------------
102 -- Local Subprograms --
103 -----------------------
105 procedure Analyze_Null_Procedure
106 (N : Node_Id;
107 Is_Completion : out Boolean);
108 -- A null procedure can be a declaration or (Ada 2012) a completion.
110 procedure Analyze_Return_Statement (N : Node_Id);
111 -- Common processing for simple and extended return statements
113 procedure Analyze_Function_Return (N : Node_Id);
114 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
115 -- applies to a [generic] function.
117 procedure Analyze_Return_Type (N : Node_Id);
118 -- Subsidiary to Process_Formals: analyze subtype mark in function
119 -- specification in a context where the formals are visible and hide
120 -- outer homographs.
122 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
123 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
124 -- that we can use RETURN but not skip the debug output at the end.
126 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
127 -- Analyze a generic subprogram body. N is the body to be analyzed, and
128 -- Gen_Id is the defining entity Id for the corresponding spec.
130 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id);
131 -- If a subprogram has pragma Inline and inlining is active, use generic
132 -- machinery to build an unexpanded body for the subprogram. This body is
133 -- subsequently used for inline expansions at call sites. If subprogram can
134 -- be inlined (depending on size and nature of local declarations) this
135 -- function returns true. Otherwise subprogram body is treated normally.
136 -- If proper warnings are enabled and the subprogram contains a construct
137 -- that cannot be inlined, the offending construct is flagged accordingly.
139 function Can_Override_Operator (Subp : Entity_Id) return Boolean;
140 -- Returns true if Subp can override a predefined operator.
142 procedure Check_And_Build_Body_To_Inline
143 (N : Node_Id;
144 Spec_Id : Entity_Id;
145 Body_Id : Entity_Id);
146 -- Spec_Id and Body_Id are the entities of the specification and body of
147 -- the subprogram body N. If N can be inlined by the frontend (supported
148 -- cases documented in Check_Body_To_Inline) then build the body-to-inline
149 -- associated with N and attach it to the declaration node of Spec_Id.
151 procedure Check_Conformance
152 (New_Id : Entity_Id;
153 Old_Id : Entity_Id;
154 Ctype : Conformance_Type;
155 Errmsg : Boolean;
156 Conforms : out Boolean;
157 Err_Loc : Node_Id := Empty;
158 Get_Inst : Boolean := False;
159 Skip_Controlling_Formals : Boolean := False);
160 -- Given two entities, this procedure checks that the profiles associated
161 -- with these entities meet the conformance criterion given by the third
162 -- parameter. If they conform, Conforms is set True and control returns
163 -- to the caller. If they do not conform, Conforms is set to False, and
164 -- in addition, if Errmsg is True on the call, proper messages are output
165 -- to complain about the conformance failure. If Err_Loc is non_Empty
166 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
167 -- error messages are placed on the appropriate part of the construct
168 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
169 -- against a formal access-to-subprogram type so Get_Instance_Of must
170 -- be called.
172 procedure Check_Subprogram_Order (N : Node_Id);
173 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
174 -- the alpha ordering rule for N if this ordering requirement applicable.
176 procedure Check_Returns
177 (HSS : Node_Id;
178 Mode : Character;
179 Err : out Boolean;
180 Proc : Entity_Id := Empty);
181 -- Called to check for missing return statements in a function body, or for
182 -- returns present in a procedure body which has No_Return set. HSS is the
183 -- handled statement sequence for the subprogram body. This procedure
184 -- checks all flow paths to make sure they either have return (Mode = 'F',
185 -- used for functions) or do not have a return (Mode = 'P', used for
186 -- No_Return procedures). The flag Err is set if there are any control
187 -- paths not explicitly terminated by a return in the function case, and is
188 -- True otherwise. Proc is the entity for the procedure case and is used
189 -- in posting the warning message.
191 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
192 -- In Ada 2012, a primitive equality operator on an untagged record type
193 -- must appear before the type is frozen, and have the same visibility as
194 -- that of the type. This procedure checks that this rule is met, and
195 -- otherwise emits an error on the subprogram declaration and a warning
196 -- on the earlier freeze point if it is easy to locate.
198 procedure Enter_Overloaded_Entity (S : Entity_Id);
199 -- This procedure makes S, a new overloaded entity, into the first visible
200 -- entity with that name.
202 function Is_Non_Overriding_Operation
203 (Prev_E : Entity_Id;
204 New_E : Entity_Id) return Boolean;
205 -- Enforce the rule given in 12.3(18): a private operation in an instance
206 -- overrides an inherited operation only if the corresponding operation
207 -- was overriding in the generic. This needs to be checked for primitive
208 -- operations of types derived (in the generic unit) from formal private
209 -- or formal derived types.
211 procedure Make_Inequality_Operator (S : Entity_Id);
212 -- Create the declaration for an inequality operator that is implicitly
213 -- created by a user-defined equality operator that yields a boolean.
215 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
216 -- Formal_Id is an formal parameter entity. This procedure deals with
217 -- setting the proper validity status for this entity, which depends on
218 -- the kind of parameter and the validity checking mode.
220 ---------------------------------------------
221 -- Analyze_Abstract_Subprogram_Declaration --
222 ---------------------------------------------
224 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
225 Designator : constant Entity_Id :=
226 Analyze_Subprogram_Specification (Specification (N));
227 Scop : constant Entity_Id := Current_Scope;
229 begin
230 Check_SPARK_Restriction ("abstract subprogram is not allowed", N);
232 Generate_Definition (Designator);
233 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
234 Set_Is_Abstract_Subprogram (Designator);
235 New_Overloaded_Entity (Designator);
236 Check_Delayed_Subprogram (Designator);
238 Set_Categorization_From_Scope (Designator, Scop);
240 if Ekind (Scope (Designator)) = E_Protected_Type then
241 Error_Msg_N
242 ("abstract subprogram not allowed in protected type", N);
244 -- Issue a warning if the abstract subprogram is neither a dispatching
245 -- operation nor an operation that overrides an inherited subprogram or
246 -- predefined operator, since this most likely indicates a mistake.
248 elsif Warn_On_Redundant_Constructs
249 and then not Is_Dispatching_Operation (Designator)
250 and then not Present (Overridden_Operation (Designator))
251 and then (not Is_Operator_Symbol_Name (Chars (Designator))
252 or else Scop /= Scope (Etype (First_Formal (Designator))))
253 then
254 Error_Msg_N
255 ("abstract subprogram is not dispatching or overriding?r?", N);
256 end if;
258 Generate_Reference_To_Formals (Designator);
259 Check_Eliminated (Designator);
261 if Has_Aspects (N) then
262 Analyze_Aspect_Specifications (N, Designator);
263 end if;
264 end Analyze_Abstract_Subprogram_Declaration;
266 ---------------------------------
267 -- Analyze_Expression_Function --
268 ---------------------------------
270 procedure Analyze_Expression_Function (N : Node_Id) is
271 Loc : constant Source_Ptr := Sloc (N);
272 LocX : constant Source_Ptr := Sloc (Expression (N));
273 Expr : constant Node_Id := Expression (N);
274 Spec : constant Node_Id := Specification (N);
276 Def_Id : Entity_Id;
278 Prev : Entity_Id;
279 -- If the expression is a completion, Prev is the entity whose
280 -- declaration is completed. Def_Id is needed to analyze the spec.
282 New_Body : Node_Id;
283 New_Decl : Node_Id;
284 New_Spec : Node_Id;
285 Ret : Node_Id;
287 begin
288 -- This is one of the occasions on which we transform the tree during
289 -- semantic analysis. If this is a completion, transform the expression
290 -- function into an equivalent subprogram body, and analyze it.
292 -- Expression functions are inlined unconditionally. The back-end will
293 -- determine whether this is possible.
295 Inline_Processing_Required := True;
297 -- Create a specification for the generated body. Types and defauts in
298 -- the profile are copies of the spec, but new entities must be created
299 -- for the unit name and the formals.
301 New_Spec := New_Copy_Tree (Spec);
302 Set_Defining_Unit_Name (New_Spec,
303 Make_Defining_Identifier (Sloc (Defining_Unit_Name (Spec)),
304 Chars (Defining_Unit_Name (Spec))));
306 if Present (Parameter_Specifications (New_Spec)) then
307 declare
308 Formal_Spec : Node_Id;
309 begin
310 Formal_Spec := First (Parameter_Specifications (New_Spec));
311 while Present (Formal_Spec) loop
312 Set_Defining_Identifier
313 (Formal_Spec,
314 Make_Defining_Identifier (Sloc (Formal_Spec),
315 Chars => Chars (Defining_Identifier (Formal_Spec))));
316 Next (Formal_Spec);
317 end loop;
318 end;
319 end if;
321 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
323 -- If there are previous overloadable entities with the same name,
324 -- check whether any of them is completed by the expression function.
326 if Present (Prev) and then Is_Overloadable (Prev) then
327 Def_Id := Analyze_Subprogram_Specification (Spec);
328 Prev := Find_Corresponding_Spec (N);
329 end if;
331 Ret := Make_Simple_Return_Statement (LocX, Expression (N));
333 New_Body :=
334 Make_Subprogram_Body (Loc,
335 Specification => New_Spec,
336 Declarations => Empty_List,
337 Handled_Statement_Sequence =>
338 Make_Handled_Sequence_Of_Statements (LocX,
339 Statements => New_List (Ret)));
341 -- If the expression completes a generic subprogram, we must create a
342 -- separate node for the body, because at instantiation the original
343 -- node of the generic copy must be a generic subprogram body, and
344 -- cannot be a expression function. Otherwise we just rewrite the
345 -- expression with the non-generic body.
347 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
348 Insert_After (N, New_Body);
350 -- Propagate any aspects or pragmas that apply to the expression
351 -- function to the proper body when the expression function acts
352 -- as a completion.
354 if Has_Aspects (N) then
355 Move_Aspects (N, To => New_Body);
356 end if;
358 Relocate_Pragmas_To_Body (New_Body);
360 Rewrite (N, Make_Null_Statement (Loc));
361 Set_Has_Completion (Prev, False);
362 Analyze (N);
363 Analyze (New_Body);
364 Set_Is_Inlined (Prev);
366 elsif Present (Prev) and then Comes_From_Source (Prev) then
367 Set_Has_Completion (Prev, False);
369 -- For navigation purposes, indicate that the function is a body
371 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
372 Rewrite (N, New_Body);
374 -- Propagate any pragmas that apply to the expression function to the
375 -- proper body when the expression function acts as a completion.
376 -- Aspects are automatically transfered because of node rewriting.
378 Relocate_Pragmas_To_Body (N);
379 Analyze (N);
381 -- Prev is the previous entity with the same name, but it is can
382 -- be an unrelated spec that is not completed by the expression
383 -- function. In that case the relevant entity is the one in the body.
384 -- Not clear that the backend can inline it in this case ???
386 if Has_Completion (Prev) then
387 Set_Is_Inlined (Prev);
389 -- The formals of the expression function are body formals,
390 -- and do not appear in the ali file, which will only contain
391 -- references to the formals of the original subprogram spec.
393 declare
394 F1 : Entity_Id;
395 F2 : Entity_Id;
397 begin
398 F1 := First_Formal (Def_Id);
399 F2 := First_Formal (Prev);
401 while Present (F1) loop
402 Set_Spec_Entity (F1, F2);
403 Next_Formal (F1);
404 Next_Formal (F2);
405 end loop;
406 end;
408 else
409 Set_Is_Inlined (Defining_Entity (New_Body));
410 end if;
412 -- If this is not a completion, create both a declaration and a body, so
413 -- that the expression can be inlined whenever possible.
415 else
416 -- An expression function that is not a completion is not a
417 -- subprogram declaration, and thus cannot appear in a protected
418 -- definition.
420 if Nkind (Parent (N)) = N_Protected_Definition then
421 Error_Msg_N
422 ("an expression function is not a legal protected operation", N);
423 end if;
425 New_Decl :=
426 Make_Subprogram_Declaration (Loc, Specification => Spec);
428 Rewrite (N, New_Decl);
429 Analyze (N);
430 Set_Is_Inlined (Defining_Entity (New_Decl));
432 -- To prevent premature freeze action, insert the new body at the end
433 -- of the current declarations, or at the end of the package spec.
434 -- However, resolve usage names now, to prevent spurious visibility
435 -- on later entities.
437 declare
438 Decls : List_Id := List_Containing (N);
439 Par : constant Node_Id := Parent (Decls);
440 Id : constant Entity_Id := Defining_Entity (New_Decl);
442 begin
443 if Nkind (Par) = N_Package_Specification
444 and then Decls = Visible_Declarations (Par)
445 and then Present (Private_Declarations (Par))
446 and then not Is_Empty_List (Private_Declarations (Par))
447 then
448 Decls := Private_Declarations (Par);
449 end if;
451 Insert_After (Last (Decls), New_Body);
452 Push_Scope (Id);
453 Install_Formals (Id);
455 -- Do a preanalysis of the expression on a separate copy, to
456 -- prevent visibility issues later with operators in instances.
457 -- Attach copy to tree so that parent links are available.
459 declare
460 Expr : constant Node_Id := New_Copy_Tree (Expression (Ret));
461 begin
462 Set_Parent (Expr, Ret);
463 Preanalyze_Spec_Expression (Expr, Etype (Id));
464 end;
466 End_Scope;
467 end;
468 end if;
470 -- If the return expression is a static constant, we suppress warning
471 -- messages on unused formals, which in most cases will be noise.
473 Set_Is_Trivial_Subprogram (Defining_Entity (New_Body),
474 Is_OK_Static_Expression (Expr));
475 end Analyze_Expression_Function;
477 ----------------------------------------
478 -- Analyze_Extended_Return_Statement --
479 ----------------------------------------
481 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
482 begin
483 Analyze_Return_Statement (N);
484 end Analyze_Extended_Return_Statement;
486 ----------------------------
487 -- Analyze_Function_Call --
488 ----------------------------
490 procedure Analyze_Function_Call (N : Node_Id) is
491 Actuals : constant List_Id := Parameter_Associations (N);
492 Func_Nam : constant Node_Id := Name (N);
493 Actual : Node_Id;
495 begin
496 Analyze (Func_Nam);
498 -- A call of the form A.B (X) may be an Ada 2005 call, which is
499 -- rewritten as B (A, X). If the rewriting is successful, the call
500 -- has been analyzed and we just return.
502 if Nkind (Func_Nam) = N_Selected_Component
503 and then Name (N) /= Func_Nam
504 and then Is_Rewrite_Substitution (N)
505 and then Present (Etype (N))
506 then
507 return;
508 end if;
510 -- If error analyzing name, then set Any_Type as result type and return
512 if Etype (Func_Nam) = Any_Type then
513 Set_Etype (N, Any_Type);
514 return;
515 end if;
517 -- Otherwise analyze the parameters
519 if Present (Actuals) then
520 Actual := First (Actuals);
521 while Present (Actual) loop
522 Analyze (Actual);
523 Check_Parameterless_Call (Actual);
524 Next (Actual);
525 end loop;
526 end if;
528 Analyze_Call (N);
529 end Analyze_Function_Call;
531 -----------------------------
532 -- Analyze_Function_Return --
533 -----------------------------
535 procedure Analyze_Function_Return (N : Node_Id) is
536 Loc : constant Source_Ptr := Sloc (N);
537 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
538 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
540 R_Type : constant Entity_Id := Etype (Scope_Id);
541 -- Function result subtype
543 procedure Check_Limited_Return (Expr : Node_Id);
544 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
545 -- limited types. Used only for simple return statements.
546 -- Expr is the expression returned.
548 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
549 -- Check that the return_subtype_indication properly matches the result
550 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
552 --------------------------
553 -- Check_Limited_Return --
554 --------------------------
556 procedure Check_Limited_Return (Expr : Node_Id) is
557 begin
558 -- Ada 2005 (AI-318-02): Return-by-reference types have been
559 -- removed and replaced by anonymous access results. This is an
560 -- incompatibility with Ada 95. Not clear whether this should be
561 -- enforced yet or perhaps controllable with special switch. ???
563 -- A limited interface that is not immutably limited is OK.
565 if Is_Limited_Interface (R_Type)
566 and then
567 not (Is_Task_Interface (R_Type)
568 or else Is_Protected_Interface (R_Type)
569 or else Is_Synchronized_Interface (R_Type))
570 then
571 null;
573 elsif Is_Limited_Type (R_Type)
574 and then not Is_Interface (R_Type)
575 and then Comes_From_Source (N)
576 and then not In_Instance_Body
577 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
578 then
579 -- Error in Ada 2005
581 if Ada_Version >= Ada_2005
582 and then not Debug_Flag_Dot_L
583 and then not GNAT_Mode
584 then
585 Error_Msg_N
586 ("(Ada 2005) cannot copy object of a limited type " &
587 "(RM-2005 6.5(5.5/2))", Expr);
589 if Is_Limited_View (R_Type) then
590 Error_Msg_N
591 ("\return by reference not permitted in Ada 2005", Expr);
592 end if;
594 -- Warn in Ada 95 mode, to give folks a heads up about this
595 -- incompatibility.
597 -- In GNAT mode, this is just a warning, to allow it to be
598 -- evilly turned off. Otherwise it is a real error.
600 -- In a generic context, simplify the warning because it makes
601 -- no sense to discuss pass-by-reference or copy.
603 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
604 if Inside_A_Generic then
605 Error_Msg_N
606 ("return of limited object not permitted in Ada 2005 "
607 & "(RM-2005 6.5(5.5/2))?y?", Expr);
609 elsif Is_Limited_View (R_Type) then
610 Error_Msg_N
611 ("return by reference not permitted in Ada 2005 "
612 & "(RM-2005 6.5(5.5/2))?y?", Expr);
613 else
614 Error_Msg_N
615 ("cannot copy object of a limited type in Ada 2005 "
616 & "(RM-2005 6.5(5.5/2))?y?", Expr);
617 end if;
619 -- Ada 95 mode, compatibility warnings disabled
621 else
622 return; -- skip continuation messages below
623 end if;
625 if not Inside_A_Generic then
626 Error_Msg_N
627 ("\consider switching to return of access type", Expr);
628 Explain_Limited_Type (R_Type, Expr);
629 end if;
630 end if;
631 end Check_Limited_Return;
633 -------------------------------------
634 -- Check_Return_Subtype_Indication --
635 -------------------------------------
637 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
638 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
640 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
641 -- Subtype given in the extended return statement (must match R_Type)
643 Subtype_Ind : constant Node_Id :=
644 Object_Definition (Original_Node (Obj_Decl));
646 R_Type_Is_Anon_Access :
647 constant Boolean :=
648 Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type
649 or else
650 Ekind (R_Type) = E_Anonymous_Access_Protected_Subprogram_Type
651 or else
652 Ekind (R_Type) = E_Anonymous_Access_Type;
653 -- True if return type of the function is an anonymous access type
654 -- Can't we make Is_Anonymous_Access_Type in einfo ???
656 R_Stm_Type_Is_Anon_Access :
657 constant Boolean :=
658 Ekind (R_Stm_Type) = E_Anonymous_Access_Subprogram_Type
659 or else
660 Ekind (R_Stm_Type) = E_Anonymous_Access_Protected_Subprogram_Type
661 or else
662 Ekind (R_Stm_Type) = E_Anonymous_Access_Type;
663 -- True if type of the return object is an anonymous access type
665 begin
666 -- First, avoid cascaded errors
668 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
669 return;
670 end if;
672 -- "return access T" case; check that the return statement also has
673 -- "access T", and that the subtypes statically match:
674 -- if this is an access to subprogram the signatures must match.
676 if R_Type_Is_Anon_Access then
677 if R_Stm_Type_Is_Anon_Access then
679 Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
680 then
681 if Base_Type (Designated_Type (R_Stm_Type)) /=
682 Base_Type (Designated_Type (R_Type))
683 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
684 then
685 Error_Msg_N
686 ("subtype must statically match function result subtype",
687 Subtype_Mark (Subtype_Ind));
688 end if;
690 else
691 -- For two anonymous access to subprogram types, the
692 -- types themselves must be type conformant.
694 if not Conforming_Types
695 (R_Stm_Type, R_Type, Fully_Conformant)
696 then
697 Error_Msg_N
698 ("subtype must statically match function result subtype",
699 Subtype_Ind);
700 end if;
701 end if;
703 else
704 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
705 end if;
707 -- If the return object is of an anonymous access type, then report
708 -- an error if the function's result type is not also anonymous.
710 elsif R_Stm_Type_Is_Anon_Access
711 and then not R_Type_Is_Anon_Access
712 then
713 Error_Msg_N ("anonymous access not allowed for function with " &
714 "named access result", Subtype_Ind);
716 -- Subtype indication case: check that the return object's type is
717 -- covered by the result type, and that the subtypes statically match
718 -- when the result subtype is constrained. Also handle record types
719 -- with unknown discriminants for which we have built the underlying
720 -- record view. Coverage is needed to allow specific-type return
721 -- objects when the result type is class-wide (see AI05-32).
723 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
724 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
725 and then
726 Covers
727 (Base_Type (R_Type),
728 Underlying_Record_View (Base_Type (R_Stm_Type))))
729 then
730 -- A null exclusion may be present on the return type, on the
731 -- function specification, on the object declaration or on the
732 -- subtype itself.
734 if Is_Access_Type (R_Type)
735 and then
736 (Can_Never_Be_Null (R_Type)
737 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
738 Can_Never_Be_Null (R_Stm_Type)
739 then
740 Error_Msg_N
741 ("subtype must statically match function result subtype",
742 Subtype_Ind);
743 end if;
745 -- AI05-103: for elementary types, subtypes must statically match
747 if Is_Constrained (R_Type)
748 or else Is_Access_Type (R_Type)
749 then
750 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
751 Error_Msg_N
752 ("subtype must statically match function result subtype",
753 Subtype_Ind);
754 end if;
755 end if;
757 elsif Etype (Base_Type (R_Type)) = R_Stm_Type
758 and then Is_Null_Extension (Base_Type (R_Type))
759 then
760 null;
762 else
763 Error_Msg_N
764 ("wrong type for return_subtype_indication", Subtype_Ind);
765 end if;
766 end Check_Return_Subtype_Indication;
768 ---------------------
769 -- Local Variables --
770 ---------------------
772 Expr : Node_Id;
774 -- Start of processing for Analyze_Function_Return
776 begin
777 Set_Return_Present (Scope_Id);
779 if Nkind (N) = N_Simple_Return_Statement then
780 Expr := Expression (N);
782 -- Guard against a malformed expression. The parser may have tried to
783 -- recover but the node is not analyzable.
785 if Nkind (Expr) = N_Error then
786 Set_Etype (Expr, Any_Type);
787 Expander_Mode_Save_And_Set (False);
788 return;
790 else
791 -- The resolution of a controlled [extension] aggregate associated
792 -- with a return statement creates a temporary which needs to be
793 -- finalized on function exit. Wrap the return statement inside a
794 -- block so that the finalization machinery can detect this case.
795 -- This early expansion is done only when the return statement is
796 -- not part of a handled sequence of statements.
798 if Nkind_In (Expr, N_Aggregate,
799 N_Extension_Aggregate)
800 and then Needs_Finalization (R_Type)
801 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
802 then
803 Rewrite (N,
804 Make_Block_Statement (Loc,
805 Handled_Statement_Sequence =>
806 Make_Handled_Sequence_Of_Statements (Loc,
807 Statements => New_List (Relocate_Node (N)))));
809 Analyze (N);
810 return;
811 end if;
813 Analyze_And_Resolve (Expr, R_Type);
814 Check_Limited_Return (Expr);
815 end if;
817 -- RETURN only allowed in SPARK as the last statement in function
819 if Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
820 and then
821 (Nkind (Parent (Parent (N))) /= N_Subprogram_Body
822 or else Present (Next (N)))
823 then
824 Check_SPARK_Restriction
825 ("RETURN should be the last statement in function", N);
826 end if;
828 else
829 Check_SPARK_Restriction ("extended RETURN is not allowed", N);
831 -- Analyze parts specific to extended_return_statement:
833 declare
834 Obj_Decl : constant Node_Id :=
835 Last (Return_Object_Declarations (N));
836 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
837 HSS : constant Node_Id := Handled_Statement_Sequence (N);
839 begin
840 Expr := Expression (Obj_Decl);
842 -- Note: The check for OK_For_Limited_Init will happen in
843 -- Analyze_Object_Declaration; we treat it as a normal
844 -- object declaration.
846 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
847 Analyze (Obj_Decl);
849 Check_Return_Subtype_Indication (Obj_Decl);
851 if Present (HSS) then
852 Analyze (HSS);
854 if Present (Exception_Handlers (HSS)) then
856 -- ???Has_Nested_Block_With_Handler needs to be set.
857 -- Probably by creating an actual N_Block_Statement.
858 -- Probably in Expand.
860 null;
861 end if;
862 end if;
864 -- Mark the return object as referenced, since the return is an
865 -- implicit reference of the object.
867 Set_Referenced (Defining_Identifier (Obj_Decl));
869 Check_References (Stm_Entity);
871 -- Check RM 6.5 (5.9/3)
873 if Has_Aliased then
874 if Ada_Version < Ada_2012 then
876 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
877 -- Can it really happen (extended return???)
879 Error_Msg_N
880 ("aliased only allowed for limited"
881 & " return objects in Ada 2012?", N);
883 elsif not Is_Limited_View (R_Type) then
884 Error_Msg_N ("aliased only allowed for limited"
885 & " return objects", N);
886 end if;
887 end if;
888 end;
889 end if;
891 -- Case of Expr present
893 if Present (Expr)
895 -- Defend against previous errors
897 and then Nkind (Expr) /= N_Empty
898 and then Present (Etype (Expr))
899 then
900 -- Apply constraint check. Note that this is done before the implicit
901 -- conversion of the expression done for anonymous access types to
902 -- ensure correct generation of the null-excluding check associated
903 -- with null-excluding expressions found in return statements.
905 Apply_Constraint_Check (Expr, R_Type);
907 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
908 -- type, apply an implicit conversion of the expression to that type
909 -- to force appropriate static and run-time accessibility checks.
911 if Ada_Version >= Ada_2005
912 and then Ekind (R_Type) = E_Anonymous_Access_Type
913 then
914 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
915 Analyze_And_Resolve (Expr, R_Type);
917 -- If this is a local anonymous access to subprogram, the
918 -- accessibility check can be applied statically. The return is
919 -- illegal if the access type of the return expression is declared
920 -- inside of the subprogram (except if it is the subtype indication
921 -- of an extended return statement).
923 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
924 if not Comes_From_Source (Current_Scope)
925 or else Ekind (Current_Scope) = E_Return_Statement
926 then
927 null;
929 elsif
930 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
931 then
932 Error_Msg_N ("cannot return local access to subprogram", N);
933 end if;
934 end if;
936 -- If the result type is class-wide, then check that the return
937 -- expression's type is not declared at a deeper level than the
938 -- function (RM05-6.5(5.6/2)).
940 if Ada_Version >= Ada_2005
941 and then Is_Class_Wide_Type (R_Type)
942 then
943 if Type_Access_Level (Etype (Expr)) >
944 Subprogram_Access_Level (Scope_Id)
945 then
946 Error_Msg_N
947 ("level of return expression type is deeper than " &
948 "class-wide function!", Expr);
949 end if;
950 end if;
952 -- Check incorrect use of dynamically tagged expression
954 if Is_Tagged_Type (R_Type) then
955 Check_Dynamically_Tagged_Expression
956 (Expr => Expr,
957 Typ => R_Type,
958 Related_Nod => N);
959 end if;
961 -- ??? A real run-time accessibility check is needed in cases
962 -- involving dereferences of access parameters. For now we just
963 -- check the static cases.
965 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
966 and then Is_Limited_View (Etype (Scope_Id))
967 and then Object_Access_Level (Expr) >
968 Subprogram_Access_Level (Scope_Id)
969 then
970 -- Suppress the message in a generic, where the rewriting
971 -- is irrelevant.
973 if Inside_A_Generic then
974 null;
976 else
977 Rewrite (N,
978 Make_Raise_Program_Error (Loc,
979 Reason => PE_Accessibility_Check_Failed));
980 Analyze (N);
982 Error_Msg_N
983 ("cannot return a local value by reference??", N);
984 Error_Msg_NE
985 ("\& will be raised at run time??",
986 N, Standard_Program_Error);
987 end if;
988 end if;
990 if Known_Null (Expr)
991 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
992 and then Null_Exclusion_Present (Parent (Scope_Id))
993 then
994 Apply_Compile_Time_Constraint_Error
995 (N => Expr,
996 Msg => "(Ada 2005) null not allowed for "
997 & "null-excluding return??",
998 Reason => CE_Null_Not_Allowed);
999 end if;
1000 end if;
1001 end Analyze_Function_Return;
1003 -------------------------------------
1004 -- Analyze_Generic_Subprogram_Body --
1005 -------------------------------------
1007 procedure Analyze_Generic_Subprogram_Body
1008 (N : Node_Id;
1009 Gen_Id : Entity_Id)
1011 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1012 Kind : constant Entity_Kind := Ekind (Gen_Id);
1013 Body_Id : Entity_Id;
1014 New_N : Node_Id;
1015 Spec : Node_Id;
1017 begin
1018 -- Copy body and disable expansion while analyzing the generic For a
1019 -- stub, do not copy the stub (which would load the proper body), this
1020 -- will be done when the proper body is analyzed.
1022 if Nkind (N) /= N_Subprogram_Body_Stub then
1023 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1024 Rewrite (N, New_N);
1025 Start_Generic;
1026 end if;
1028 Spec := Specification (N);
1030 -- Within the body of the generic, the subprogram is callable, and
1031 -- behaves like the corresponding non-generic unit.
1033 Body_Id := Defining_Entity (Spec);
1035 if Kind = E_Generic_Procedure
1036 and then Nkind (Spec) /= N_Procedure_Specification
1037 then
1038 Error_Msg_N ("invalid body for generic procedure ", Body_Id);
1039 return;
1041 elsif Kind = E_Generic_Function
1042 and then Nkind (Spec) /= N_Function_Specification
1043 then
1044 Error_Msg_N ("invalid body for generic function ", Body_Id);
1045 return;
1046 end if;
1048 Set_Corresponding_Body (Gen_Decl, Body_Id);
1050 if Has_Completion (Gen_Id)
1051 and then Nkind (Parent (N)) /= N_Subunit
1052 then
1053 Error_Msg_N ("duplicate generic body", N);
1054 return;
1055 else
1056 Set_Has_Completion (Gen_Id);
1057 end if;
1059 if Nkind (N) = N_Subprogram_Body_Stub then
1060 Set_Ekind (Defining_Entity (Specification (N)), Kind);
1061 else
1062 Set_Corresponding_Spec (N, Gen_Id);
1063 end if;
1065 if Nkind (Parent (N)) = N_Compilation_Unit then
1066 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1067 end if;
1069 -- Make generic parameters immediately visible in the body. They are
1070 -- needed to process the formals declarations. Then make the formals
1071 -- visible in a separate step.
1073 Push_Scope (Gen_Id);
1075 declare
1076 E : Entity_Id;
1077 First_Ent : Entity_Id;
1079 begin
1080 First_Ent := First_Entity (Gen_Id);
1082 E := First_Ent;
1083 while Present (E) and then not Is_Formal (E) loop
1084 Install_Entity (E);
1085 Next_Entity (E);
1086 end loop;
1088 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1090 -- Now generic formals are visible, and the specification can be
1091 -- analyzed, for subsequent conformance check.
1093 Body_Id := Analyze_Subprogram_Specification (Spec);
1095 -- Make formal parameters visible
1097 if Present (E) then
1099 -- E is the first formal parameter, we loop through the formals
1100 -- installing them so that they will be visible.
1102 Set_First_Entity (Gen_Id, E);
1103 while Present (E) loop
1104 Install_Entity (E);
1105 Next_Formal (E);
1106 end loop;
1107 end if;
1109 -- Visible generic entity is callable within its own body
1111 Set_Ekind (Gen_Id, Ekind (Body_Id));
1112 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
1113 Set_Ekind (Body_Id, E_Subprogram_Body);
1114 Set_Convention (Body_Id, Convention (Gen_Id));
1115 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1116 Set_Scope (Body_Id, Scope (Gen_Id));
1117 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1119 if Nkind (N) = N_Subprogram_Body_Stub then
1121 -- No body to analyze, so restore state of generic unit
1123 Set_Ekind (Gen_Id, Kind);
1124 Set_Ekind (Body_Id, Kind);
1126 if Present (First_Ent) then
1127 Set_First_Entity (Gen_Id, First_Ent);
1128 end if;
1130 End_Scope;
1131 return;
1132 end if;
1134 -- If this is a compilation unit, it must be made visible explicitly,
1135 -- because the compilation of the declaration, unlike other library
1136 -- unit declarations, does not. If it is not a unit, the following
1137 -- is redundant but harmless.
1139 Set_Is_Immediately_Visible (Gen_Id);
1140 Reference_Body_Formals (Gen_Id, Body_Id);
1142 if Is_Child_Unit (Gen_Id) then
1143 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1144 end if;
1146 Set_Actual_Subtypes (N, Current_Scope);
1148 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
1149 -- invariants and predicates associated with the body and its spec.
1150 -- Note that this is not pure expansion as Expand_Subprogram_Contract
1151 -- prepares the contract assertions for generic subprograms or for
1152 -- ASIS. Do not generate contract checks in SPARK mode.
1154 if not SPARK_Mode then
1155 Expand_Subprogram_Contract (N, Gen_Id, Body_Id);
1156 end if;
1158 -- If the generic unit carries pre- or post-conditions, copy them
1159 -- to the original generic tree, so that they are properly added
1160 -- to any instantiation.
1162 declare
1163 Orig : constant Node_Id := Original_Node (N);
1164 Cond : Node_Id;
1166 begin
1167 Cond := First (Declarations (N));
1168 while Present (Cond) loop
1169 if Nkind (Cond) = N_Pragma
1170 and then Pragma_Name (Cond) = Name_Check
1171 then
1172 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1174 elsif Nkind (Cond) = N_Pragma
1175 and then Pragma_Name (Cond) = Name_Postcondition
1176 then
1177 Set_Ekind (Defining_Entity (Orig), Ekind (Gen_Id));
1178 Prepend (New_Copy_Tree (Cond), Declarations (Orig));
1179 else
1180 exit;
1181 end if;
1183 Next (Cond);
1184 end loop;
1185 end;
1187 Analyze_Declarations (Declarations (N));
1188 Check_Completion;
1189 Analyze (Handled_Statement_Sequence (N));
1191 Save_Global_References (Original_Node (N));
1193 -- Prior to exiting the scope, include generic formals again (if any
1194 -- are present) in the set of local entities.
1196 if Present (First_Ent) then
1197 Set_First_Entity (Gen_Id, First_Ent);
1198 end if;
1200 Check_References (Gen_Id);
1201 end;
1203 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1204 End_Scope;
1205 Check_Subprogram_Order (N);
1207 -- Outside of its body, unit is generic again
1209 Set_Ekind (Gen_Id, Kind);
1210 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1212 if Style_Check then
1213 Style.Check_Identifier (Body_Id, Gen_Id);
1214 end if;
1216 End_Generic;
1217 end Analyze_Generic_Subprogram_Body;
1219 ----------------------------
1220 -- Analyze_Null_Procedure --
1221 ----------------------------
1223 procedure Analyze_Null_Procedure
1224 (N : Node_Id;
1225 Is_Completion : out Boolean)
1227 Loc : constant Source_Ptr := Sloc (N);
1228 Spec : constant Node_Id := Specification (N);
1229 Designator : Entity_Id;
1230 Form : Node_Id;
1231 Null_Body : Node_Id := Empty;
1232 Prev : Entity_Id;
1234 begin
1235 -- Capture the profile of the null procedure before analysis, for
1236 -- expansion at the freeze point and at each point of call. The body is
1237 -- used if the procedure has preconditions, or if it is a completion. In
1238 -- the first case the body is analyzed at the freeze point, in the other
1239 -- it replaces the null procedure declaration.
1241 Null_Body :=
1242 Make_Subprogram_Body (Loc,
1243 Specification => New_Copy_Tree (Spec),
1244 Declarations => New_List,
1245 Handled_Statement_Sequence =>
1246 Make_Handled_Sequence_Of_Statements (Loc,
1247 Statements => New_List (Make_Null_Statement (Loc))));
1249 -- Create new entities for body and formals
1251 Set_Defining_Unit_Name (Specification (Null_Body),
1252 Make_Defining_Identifier (Loc, Chars (Defining_Entity (N))));
1254 Form := First (Parameter_Specifications (Specification (Null_Body)));
1255 while Present (Form) loop
1256 Set_Defining_Identifier (Form,
1257 Make_Defining_Identifier (Loc, Chars (Defining_Identifier (Form))));
1258 Next (Form);
1259 end loop;
1261 -- Determine whether the null procedure may be a completion of a generic
1262 -- suprogram, in which case we use the new null body as the completion
1263 -- and set minimal semantic information on the original declaration,
1264 -- which is rewritten as a null statement.
1266 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1268 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
1269 Insert_Before (N, Null_Body);
1270 Set_Ekind (Defining_Entity (N), Ekind (Prev));
1271 Set_Contract (Defining_Entity (N), Make_Contract (Loc));
1273 Rewrite (N, Make_Null_Statement (Loc));
1274 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
1275 Is_Completion := True;
1276 return;
1278 else
1280 -- Resolve the types of the formals now, because the freeze point
1281 -- may appear in a different context, e.g. an instantiation.
1283 Form := First (Parameter_Specifications (Specification (Null_Body)));
1284 while Present (Form) loop
1285 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
1286 Find_Type (Parameter_Type (Form));
1288 elsif
1289 No (Access_To_Subprogram_Definition (Parameter_Type (Form)))
1290 then
1291 Find_Type (Subtype_Mark (Parameter_Type (Form)));
1293 else
1294 -- The case of a null procedure with a formal that is an
1295 -- access_to_subprogram type, and that is used as an actual
1296 -- in an instantiation is left to the enthusiastic reader.
1298 null;
1299 end if;
1301 Next (Form);
1302 end loop;
1303 end if;
1305 -- If there are previous overloadable entities with the same name,
1306 -- check whether any of them is completed by the null procedure.
1308 if Present (Prev) and then Is_Overloadable (Prev) then
1309 Designator := Analyze_Subprogram_Specification (Spec);
1310 Prev := Find_Corresponding_Spec (N);
1311 end if;
1313 if No (Prev) or else not Comes_From_Source (Prev) then
1314 Designator := Analyze_Subprogram_Specification (Spec);
1315 Set_Has_Completion (Designator);
1317 -- Signal to caller that this is a procedure declaration
1319 Is_Completion := False;
1321 -- Null procedures are always inlined, but generic formal subprograms
1322 -- which appear as such in the internal instance of formal packages,
1323 -- need no completion and are not marked Inline.
1325 if Expander_Active
1326 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
1327 then
1328 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
1329 Set_Body_To_Inline (N, Null_Body);
1330 Set_Is_Inlined (Designator);
1331 end if;
1333 else
1334 -- The null procedure is a completion
1336 Is_Completion := True;
1338 if Expander_Active then
1339 Rewrite (N, Null_Body);
1340 Analyze (N);
1342 else
1343 Designator := Analyze_Subprogram_Specification (Spec);
1344 Set_Has_Completion (Designator);
1345 Set_Has_Completion (Prev);
1346 end if;
1347 end if;
1348 end Analyze_Null_Procedure;
1350 -----------------------------
1351 -- Analyze_Operator_Symbol --
1352 -----------------------------
1354 -- An operator symbol such as "+" or "and" may appear in context where the
1355 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1356 -- is just a string, as in (conjunction = "or"). In these cases the parser
1357 -- generates this node, and the semantics does the disambiguation. Other
1358 -- such case are actuals in an instantiation, the generic unit in an
1359 -- instantiation, and pragma arguments.
1361 procedure Analyze_Operator_Symbol (N : Node_Id) is
1362 Par : constant Node_Id := Parent (N);
1364 begin
1365 if (Nkind (Par) = N_Function_Call
1366 and then N = Name (Par))
1367 or else Nkind (Par) = N_Function_Instantiation
1368 or else (Nkind (Par) = N_Indexed_Component
1369 and then N = Prefix (Par))
1370 or else (Nkind (Par) = N_Pragma_Argument_Association
1371 and then not Is_Pragma_String_Literal (Par))
1372 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
1373 or else (Nkind (Par) = N_Attribute_Reference
1374 and then Attribute_Name (Par) /= Name_Value)
1375 then
1376 Find_Direct_Name (N);
1378 else
1379 Change_Operator_Symbol_To_String_Literal (N);
1380 Analyze (N);
1381 end if;
1382 end Analyze_Operator_Symbol;
1384 -----------------------------------
1385 -- Analyze_Parameter_Association --
1386 -----------------------------------
1388 procedure Analyze_Parameter_Association (N : Node_Id) is
1389 begin
1390 Analyze (Explicit_Actual_Parameter (N));
1391 end Analyze_Parameter_Association;
1393 ----------------------------
1394 -- Analyze_Procedure_Call --
1395 ----------------------------
1397 procedure Analyze_Procedure_Call (N : Node_Id) is
1398 Loc : constant Source_Ptr := Sloc (N);
1399 P : constant Node_Id := Name (N);
1400 Actuals : constant List_Id := Parameter_Associations (N);
1401 Actual : Node_Id;
1402 New_N : Node_Id;
1404 procedure Analyze_Call_And_Resolve;
1405 -- Do Analyze and Resolve calls for procedure call
1406 -- At end, check illegal order dependence.
1408 ------------------------------
1409 -- Analyze_Call_And_Resolve --
1410 ------------------------------
1412 procedure Analyze_Call_And_Resolve is
1413 begin
1414 if Nkind (N) = N_Procedure_Call_Statement then
1415 Analyze_Call (N);
1416 Resolve (N, Standard_Void_Type);
1417 else
1418 Analyze (N);
1419 end if;
1420 end Analyze_Call_And_Resolve;
1422 -- Start of processing for Analyze_Procedure_Call
1424 begin
1425 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1426 -- a procedure call or an entry call. The prefix may denote an access
1427 -- to subprogram type, in which case an implicit dereference applies.
1428 -- If the prefix is an indexed component (without implicit dereference)
1429 -- then the construct denotes a call to a member of an entire family.
1430 -- If the prefix is a simple name, it may still denote a call to a
1431 -- parameterless member of an entry family. Resolution of these various
1432 -- interpretations is delicate.
1434 Analyze (P);
1436 -- If this is a call of the form Obj.Op, the call may have been
1437 -- analyzed and possibly rewritten into a block, in which case
1438 -- we are done.
1440 if Analyzed (N) then
1441 return;
1442 end if;
1444 -- If there is an error analyzing the name (which may have been
1445 -- rewritten if the original call was in prefix notation) then error
1446 -- has been emitted already, mark node and return.
1448 if Error_Posted (N) or else Etype (Name (N)) = Any_Type then
1449 Set_Etype (N, Any_Type);
1450 return;
1451 end if;
1453 -- Otherwise analyze the parameters
1455 if Present (Actuals) then
1456 Actual := First (Actuals);
1458 while Present (Actual) loop
1459 Analyze (Actual);
1460 Check_Parameterless_Call (Actual);
1461 Next (Actual);
1462 end loop;
1463 end if;
1465 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1467 if Nkind (P) = N_Attribute_Reference
1468 and then Nam_In (Attribute_Name (P), Name_Elab_Spec,
1469 Name_Elab_Body,
1470 Name_Elab_Subp_Body)
1471 then
1472 if Present (Actuals) then
1473 Error_Msg_N
1474 ("no parameters allowed for this call", First (Actuals));
1475 return;
1476 end if;
1478 Set_Etype (N, Standard_Void_Type);
1479 Set_Analyzed (N);
1481 elsif Is_Entity_Name (P)
1482 and then Is_Record_Type (Etype (Entity (P)))
1483 and then Remote_AST_I_Dereference (P)
1484 then
1485 return;
1487 elsif Is_Entity_Name (P)
1488 and then Ekind (Entity (P)) /= E_Entry_Family
1489 then
1490 if Is_Access_Type (Etype (P))
1491 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1492 and then No (Actuals)
1493 and then Comes_From_Source (N)
1494 then
1495 Error_Msg_N ("missing explicit dereference in call", N);
1496 end if;
1498 Analyze_Call_And_Resolve;
1500 -- If the prefix is the simple name of an entry family, this is
1501 -- a parameterless call from within the task body itself.
1503 elsif Is_Entity_Name (P)
1504 and then Nkind (P) = N_Identifier
1505 and then Ekind (Entity (P)) = E_Entry_Family
1506 and then Present (Actuals)
1507 and then No (Next (First (Actuals)))
1508 then
1509 -- Can be call to parameterless entry family. What appears to be the
1510 -- sole argument is in fact the entry index. Rewrite prefix of node
1511 -- accordingly. Source representation is unchanged by this
1512 -- transformation.
1514 New_N :=
1515 Make_Indexed_Component (Loc,
1516 Prefix =>
1517 Make_Selected_Component (Loc,
1518 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
1519 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
1520 Expressions => Actuals);
1521 Set_Name (N, New_N);
1522 Set_Etype (New_N, Standard_Void_Type);
1523 Set_Parameter_Associations (N, No_List);
1524 Analyze_Call_And_Resolve;
1526 elsif Nkind (P) = N_Explicit_Dereference then
1527 if Ekind (Etype (P)) = E_Subprogram_Type then
1528 Analyze_Call_And_Resolve;
1529 else
1530 Error_Msg_N ("expect access to procedure in call", P);
1531 end if;
1533 -- The name can be a selected component or an indexed component that
1534 -- yields an access to subprogram. Such a prefix is legal if the call
1535 -- has parameter associations.
1537 elsif Is_Access_Type (Etype (P))
1538 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
1539 then
1540 if Present (Actuals) then
1541 Analyze_Call_And_Resolve;
1542 else
1543 Error_Msg_N ("missing explicit dereference in call ", N);
1544 end if;
1546 -- If not an access to subprogram, then the prefix must resolve to the
1547 -- name of an entry, entry family, or protected operation.
1549 -- For the case of a simple entry call, P is a selected component where
1550 -- the prefix is the task and the selector name is the entry. A call to
1551 -- a protected procedure will have the same syntax. If the protected
1552 -- object contains overloaded operations, the entity may appear as a
1553 -- function, the context will select the operation whose type is Void.
1555 elsif Nkind (P) = N_Selected_Component
1556 and then Ekind_In (Entity (Selector_Name (P)), E_Entry,
1557 E_Procedure,
1558 E_Function)
1559 then
1560 Analyze_Call_And_Resolve;
1562 elsif Nkind (P) = N_Selected_Component
1563 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
1564 and then Present (Actuals)
1565 and then No (Next (First (Actuals)))
1566 then
1567 -- Can be call to parameterless entry family. What appears to be the
1568 -- sole argument is in fact the entry index. Rewrite prefix of node
1569 -- accordingly. Source representation is unchanged by this
1570 -- transformation.
1572 New_N :=
1573 Make_Indexed_Component (Loc,
1574 Prefix => New_Copy (P),
1575 Expressions => Actuals);
1576 Set_Name (N, New_N);
1577 Set_Etype (New_N, Standard_Void_Type);
1578 Set_Parameter_Associations (N, No_List);
1579 Analyze_Call_And_Resolve;
1581 -- For the case of a reference to an element of an entry family, P is
1582 -- an indexed component whose prefix is a selected component (task and
1583 -- entry family), and whose index is the entry family index.
1585 elsif Nkind (P) = N_Indexed_Component
1586 and then Nkind (Prefix (P)) = N_Selected_Component
1587 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
1588 then
1589 Analyze_Call_And_Resolve;
1591 -- If the prefix is the name of an entry family, it is a call from
1592 -- within the task body itself.
1594 elsif Nkind (P) = N_Indexed_Component
1595 and then Nkind (Prefix (P)) = N_Identifier
1596 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
1597 then
1598 New_N :=
1599 Make_Selected_Component (Loc,
1600 Prefix => New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
1601 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
1602 Rewrite (Prefix (P), New_N);
1603 Analyze (P);
1604 Analyze_Call_And_Resolve;
1606 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1607 -- procedure name, so the construct can only be a qualified expression.
1609 elsif Nkind (P) = N_Qualified_Expression
1610 and then Ada_Version >= Ada_2012
1611 then
1612 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
1613 Analyze (N);
1615 -- Anything else is an error
1617 else
1618 Error_Msg_N ("invalid procedure or entry call", N);
1619 end if;
1620 end Analyze_Procedure_Call;
1622 ------------------------------
1623 -- Analyze_Return_Statement --
1624 ------------------------------
1626 procedure Analyze_Return_Statement (N : Node_Id) is
1628 pragma Assert (Nkind_In (N, N_Simple_Return_Statement,
1629 N_Extended_Return_Statement));
1631 Returns_Object : constant Boolean :=
1632 Nkind (N) = N_Extended_Return_Statement
1633 or else
1634 (Nkind (N) = N_Simple_Return_Statement
1635 and then Present (Expression (N)));
1636 -- True if we're returning something; that is, "return <expression>;"
1637 -- or "return Result : T [:= ...]". False for "return;". Used for error
1638 -- checking: If Returns_Object is True, N should apply to a function
1639 -- body; otherwise N should apply to a procedure body, entry body,
1640 -- accept statement, or extended return statement.
1642 function Find_What_It_Applies_To return Entity_Id;
1643 -- Find the entity representing the innermost enclosing body, accept
1644 -- statement, or extended return statement. If the result is a callable
1645 -- construct or extended return statement, then this will be the value
1646 -- of the Return_Applies_To attribute. Otherwise, the program is
1647 -- illegal. See RM-6.5(4/2).
1649 -----------------------------
1650 -- Find_What_It_Applies_To --
1651 -----------------------------
1653 function Find_What_It_Applies_To return Entity_Id is
1654 Result : Entity_Id := Empty;
1656 begin
1657 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1658 -- and postconditions.
1660 for J in reverse 0 .. Scope_Stack.Last loop
1661 Result := Scope_Stack.Table (J).Entity;
1662 exit when not Ekind_In (Result, E_Block, E_Loop)
1663 and then Chars (Result) /= Name_uPostconditions;
1664 end loop;
1666 pragma Assert (Present (Result));
1667 return Result;
1668 end Find_What_It_Applies_To;
1670 -- Local declarations
1672 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
1673 Kind : constant Entity_Kind := Ekind (Scope_Id);
1674 Loc : constant Source_Ptr := Sloc (N);
1675 Stm_Entity : constant Entity_Id :=
1676 New_Internal_Entity
1677 (E_Return_Statement, Current_Scope, Loc, 'R');
1679 -- Start of processing for Analyze_Return_Statement
1681 begin
1682 Set_Return_Statement_Entity (N, Stm_Entity);
1684 Set_Etype (Stm_Entity, Standard_Void_Type);
1685 Set_Return_Applies_To (Stm_Entity, Scope_Id);
1687 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1688 -- (4/2): an inner return statement will apply to this extended return.
1690 if Nkind (N) = N_Extended_Return_Statement then
1691 Push_Scope (Stm_Entity);
1692 end if;
1694 -- Check that pragma No_Return is obeyed. Don't complain about the
1695 -- implicitly-generated return that is placed at the end.
1697 if No_Return (Scope_Id) and then Comes_From_Source (N) then
1698 Error_Msg_N ("RETURN statement not allowed (No_Return)", N);
1699 end if;
1701 -- Warn on any unassigned OUT parameters if in procedure
1703 if Ekind (Scope_Id) = E_Procedure then
1704 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
1705 end if;
1707 -- Check that functions return objects, and other things do not
1709 if Kind = E_Function or else Kind = E_Generic_Function then
1710 if not Returns_Object then
1711 Error_Msg_N ("missing expression in return from function", N);
1712 end if;
1714 elsif Kind = E_Procedure or else Kind = E_Generic_Procedure then
1715 if Returns_Object then
1716 Error_Msg_N ("procedure cannot return value (use function)", N);
1717 end if;
1719 elsif Kind = E_Entry or else Kind = E_Entry_Family then
1720 if Returns_Object then
1721 if Is_Protected_Type (Scope (Scope_Id)) then
1722 Error_Msg_N ("entry body cannot return value", N);
1723 else
1724 Error_Msg_N ("accept statement cannot return value", N);
1725 end if;
1726 end if;
1728 elsif Kind = E_Return_Statement then
1730 -- We are nested within another return statement, which must be an
1731 -- extended_return_statement.
1733 if Returns_Object then
1734 if Nkind (N) = N_Extended_Return_Statement then
1735 Error_Msg_N
1736 ("extended return statement cannot be nested (use `RETURN;`)",
1739 -- Case of a simple return statement with a value inside extended
1740 -- return statement.
1742 else
1743 Error_Msg_N
1744 ("return nested in extended return statement cannot return " &
1745 "value (use `RETURN;`)", N);
1746 end if;
1747 end if;
1749 else
1750 Error_Msg_N ("illegal context for return statement", N);
1751 end if;
1753 if Ekind_In (Kind, E_Function, E_Generic_Function) then
1754 Analyze_Function_Return (N);
1756 elsif Ekind_In (Kind, E_Procedure, E_Generic_Procedure) then
1757 Set_Return_Present (Scope_Id);
1758 end if;
1760 if Nkind (N) = N_Extended_Return_Statement then
1761 End_Scope;
1762 end if;
1764 Kill_Current_Values (Last_Assignment_Only => True);
1765 Check_Unreachable_Code (N);
1767 Analyze_Dimension (N);
1768 end Analyze_Return_Statement;
1770 -------------------------------------
1771 -- Analyze_Simple_Return_Statement --
1772 -------------------------------------
1774 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
1775 begin
1776 if Present (Expression (N)) then
1777 Mark_Coextensions (N, Expression (N));
1778 end if;
1780 Analyze_Return_Statement (N);
1781 end Analyze_Simple_Return_Statement;
1783 -------------------------
1784 -- Analyze_Return_Type --
1785 -------------------------
1787 procedure Analyze_Return_Type (N : Node_Id) is
1788 Designator : constant Entity_Id := Defining_Entity (N);
1789 Typ : Entity_Id := Empty;
1791 begin
1792 -- Normal case where result definition does not indicate an error
1794 if Result_Definition (N) /= Error then
1795 if Nkind (Result_Definition (N)) = N_Access_Definition then
1796 Check_SPARK_Restriction
1797 ("access result is not allowed", Result_Definition (N));
1799 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1801 declare
1802 AD : constant Node_Id :=
1803 Access_To_Subprogram_Definition (Result_Definition (N));
1804 begin
1805 if Present (AD) and then Protected_Present (AD) then
1806 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1807 else
1808 Typ := Access_Definition (N, Result_Definition (N));
1809 end if;
1810 end;
1812 Set_Parent (Typ, Result_Definition (N));
1813 Set_Is_Local_Anonymous_Access (Typ);
1814 Set_Etype (Designator, Typ);
1816 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1818 Null_Exclusion_Static_Checks (N);
1820 -- Subtype_Mark case
1822 else
1823 Find_Type (Result_Definition (N));
1824 Typ := Entity (Result_Definition (N));
1825 Set_Etype (Designator, Typ);
1827 -- Unconstrained array as result is not allowed in SPARK
1829 if Is_Array_Type (Typ) and then not Is_Constrained (Typ) then
1830 Check_SPARK_Restriction
1831 ("returning an unconstrained array is not allowed",
1832 Result_Definition (N));
1833 end if;
1835 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1837 Null_Exclusion_Static_Checks (N);
1839 -- If a null exclusion is imposed on the result type, then create
1840 -- a null-excluding itype (an access subtype) and use it as the
1841 -- function's Etype. Note that the null exclusion checks are done
1842 -- right before this, because they don't get applied to types that
1843 -- do not come from source.
1845 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
1846 Set_Etype (Designator,
1847 Create_Null_Excluding_Itype
1848 (T => Typ,
1849 Related_Nod => N,
1850 Scope_Id => Scope (Current_Scope)));
1852 -- The new subtype must be elaborated before use because
1853 -- it is visible outside of the function. However its base
1854 -- type may not be frozen yet, so the reference that will
1855 -- force elaboration must be attached to the freezing of
1856 -- the base type.
1858 -- If the return specification appears on a proper body,
1859 -- the subtype will have been created already on the spec.
1861 if Is_Frozen (Typ) then
1862 if Nkind (Parent (N)) = N_Subprogram_Body
1863 and then Nkind (Parent (Parent (N))) = N_Subunit
1864 then
1865 null;
1866 else
1867 Build_Itype_Reference (Etype (Designator), Parent (N));
1868 end if;
1870 else
1871 Ensure_Freeze_Node (Typ);
1873 declare
1874 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
1875 begin
1876 Set_Itype (IR, Etype (Designator));
1877 Append_Freeze_Actions (Typ, New_List (IR));
1878 end;
1879 end if;
1881 else
1882 Set_Etype (Designator, Typ);
1883 end if;
1885 if Ekind (Typ) = E_Incomplete_Type
1886 and then Is_Value_Type (Typ)
1887 then
1888 null;
1890 elsif Ekind (Typ) = E_Incomplete_Type
1891 or else (Is_Class_Wide_Type (Typ)
1892 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
1893 then
1894 -- AI05-0151: Tagged incomplete types are allowed in all formal
1895 -- parts. Untagged incomplete types are not allowed in bodies.
1897 if Ada_Version >= Ada_2012 then
1898 if Is_Tagged_Type (Typ) then
1899 null;
1901 elsif Nkind_In (Parent (Parent (N)),
1902 N_Accept_Statement,
1903 N_Entry_Body,
1904 N_Subprogram_Body)
1905 then
1906 Error_Msg_NE
1907 ("invalid use of untagged incomplete type&",
1908 Designator, Typ);
1909 end if;
1911 -- The type must be completed in the current package. This
1912 -- is checked at the end of the package declaraton, when
1913 -- Taft-amendment types are identified. If the return type
1914 -- is class-wide, there is no required check, the type can
1915 -- be a bona fide TAT.
1917 if Ekind (Scope (Current_Scope)) = E_Package
1918 and then In_Private_Part (Scope (Current_Scope))
1919 and then not Is_Class_Wide_Type (Typ)
1920 then
1921 Append_Elmt (Designator, Private_Dependents (Typ));
1922 end if;
1924 else
1925 Error_Msg_NE
1926 ("invalid use of incomplete type&", Designator, Typ);
1927 end if;
1928 end if;
1929 end if;
1931 -- Case where result definition does indicate an error
1933 else
1934 Set_Etype (Designator, Any_Type);
1935 end if;
1936 end Analyze_Return_Type;
1938 -----------------------------
1939 -- Analyze_Subprogram_Body --
1940 -----------------------------
1942 procedure Analyze_Subprogram_Body (N : Node_Id) is
1943 Loc : constant Source_Ptr := Sloc (N);
1944 Body_Spec : constant Node_Id := Specification (N);
1945 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
1947 begin
1948 if Debug_Flag_C then
1949 Write_Str ("==> subprogram body ");
1950 Write_Name (Chars (Body_Id));
1951 Write_Str (" from ");
1952 Write_Location (Loc);
1953 Write_Eol;
1954 Indent;
1955 end if;
1957 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
1959 -- The real work is split out into the helper, so it can do "return;"
1960 -- without skipping the debug output:
1962 Analyze_Subprogram_Body_Helper (N);
1964 if Debug_Flag_C then
1965 Outdent;
1966 Write_Str ("<== subprogram body ");
1967 Write_Name (Chars (Body_Id));
1968 Write_Str (" from ");
1969 Write_Location (Loc);
1970 Write_Eol;
1971 end if;
1972 end Analyze_Subprogram_Body;
1974 --------------------------------------
1975 -- Analyze_Subprogram_Body_Contract --
1976 --------------------------------------
1978 procedure Analyze_Subprogram_Body_Contract (Body_Id : Entity_Id) is
1979 Body_Decl : constant Node_Id := Parent (Parent (Body_Id));
1980 Spec_Id : constant Entity_Id := Corresponding_Spec (Body_Decl);
1981 Prag : Node_Id;
1982 Ref_Depends : Node_Id := Empty;
1983 Ref_Global : Node_Id := Empty;
1985 begin
1986 -- When a subprogram body declaration is erroneous, its defining entity
1987 -- is left unanalyzed. There is nothing left to do in this case because
1988 -- the body lacks a contract.
1990 if not Analyzed (Body_Id) then
1991 return;
1992 end if;
1994 -- Locate and store pragmas Refined_Depends and Refined_Global since
1995 -- their order of analysis matters.
1997 Prag := Classifications (Contract (Body_Id));
1998 while Present (Prag) loop
1999 if Pragma_Name (Prag) = Name_Refined_Depends then
2000 Ref_Depends := Prag;
2001 elsif Pragma_Name (Prag) = Name_Refined_Global then
2002 Ref_Global := Prag;
2003 end if;
2005 Prag := Next_Pragma (Prag);
2006 end loop;
2008 -- Analyze Refined_Global first as Refined_Depends may mention items
2009 -- classified in the global refinement.
2011 if Present (Ref_Global) then
2012 Analyze_Refined_Global_In_Decl_Part (Ref_Global);
2014 -- When the corresponding Global aspect/pragma references a state with
2015 -- visible refinement, the body requires Refined_Global.
2017 elsif Present (Spec_Id) then
2018 Prag := Get_Pragma (Spec_Id, Pragma_Global);
2020 if Present (Prag) and then Contains_Refined_State (Prag) then
2021 Error_Msg_NE
2022 ("body of subprogram & requires global refinement",
2023 Body_Decl, Spec_Id);
2024 end if;
2025 end if;
2027 -- Refined_Depends must be analyzed after Refined_Global in order to see
2028 -- the modes of all global refinements.
2030 if Present (Ref_Depends) then
2031 Analyze_Refined_Depends_In_Decl_Part (Ref_Depends);
2033 -- When the corresponding Depends aspect/pragma references a state with
2034 -- visible refinement, the body requires Refined_Depends.
2036 elsif Present (Spec_Id) then
2037 Prag := Get_Pragma (Spec_Id, Pragma_Depends);
2039 if Present (Prag) and then Contains_Refined_State (Prag) then
2040 Error_Msg_NE
2041 ("body of subprogram & requires dependance refinement",
2042 Body_Decl, Spec_Id);
2043 end if;
2044 end if;
2045 end Analyze_Subprogram_Body_Contract;
2047 ------------------------------------
2048 -- Analyze_Subprogram_Body_Helper --
2049 ------------------------------------
2051 -- This procedure is called for regular subprogram bodies, generic bodies,
2052 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2053 -- specification matters, and is used to create a proper declaration for
2054 -- the subprogram, or to perform conformance checks.
2056 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2057 Loc : constant Source_Ptr := Sloc (N);
2058 Body_Spec : constant Node_Id := Specification (N);
2059 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2060 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2061 Conformant : Boolean;
2062 HSS : Node_Id;
2063 Prot_Typ : Entity_Id := Empty;
2064 Spec_Id : Entity_Id;
2065 Spec_Decl : Node_Id := Empty;
2067 Last_Real_Spec_Entity : Entity_Id := Empty;
2068 -- When we analyze a separate spec, the entity chain ends up containing
2069 -- the formals, as well as any itypes generated during analysis of the
2070 -- default expressions for parameters, or the arguments of associated
2071 -- precondition/postcondition pragmas (which are analyzed in the context
2072 -- of the spec since they have visibility on formals).
2074 -- These entities belong with the spec and not the body. However we do
2075 -- the analysis of the body in the context of the spec (again to obtain
2076 -- visibility to the formals), and all the entities generated during
2077 -- this analysis end up also chained to the entity chain of the spec.
2078 -- But they really belong to the body, and there is circuitry to move
2079 -- them from the spec to the body.
2081 -- However, when we do this move, we don't want to move the real spec
2082 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2083 -- variable points to the last real spec entity, so we only move those
2084 -- chained beyond that point. It is initialized to Empty to deal with
2085 -- the case where there is no separate spec.
2087 procedure Check_Anonymous_Return;
2088 -- Ada 2005: if a function returns an access type that denotes a task,
2089 -- or a type that contains tasks, we must create a master entity for
2090 -- the anonymous type, which typically will be used in an allocator
2091 -- in the body of the function.
2093 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2094 -- Look ahead to recognize a pragma that may appear after the body.
2095 -- If there is a previous spec, check that it appears in the same
2096 -- declarative part. If the pragma is Inline_Always, perform inlining
2097 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2098 -- If the body acts as a spec, and inlining is required, we create a
2099 -- subprogram declaration for it, in order to attach the body to inline.
2100 -- If pragma does not appear after the body, check whether there is
2101 -- an inline pragma before any local declarations.
2103 procedure Check_Missing_Return;
2104 -- Checks for a function with a no return statements, and also performs
2105 -- the warning checks implemented by Check_Returns. In formal mode, also
2106 -- verify that a function ends with a RETURN and that a procedure does
2107 -- not contain any RETURN.
2109 function Disambiguate_Spec return Entity_Id;
2110 -- When a primitive is declared between the private view and the full
2111 -- view of a concurrent type which implements an interface, a special
2112 -- mechanism is used to find the corresponding spec of the primitive
2113 -- body.
2115 procedure Exchange_Limited_Views (Subp_Id : Entity_Id);
2116 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2117 -- incomplete types coming from a limited context and swap their limited
2118 -- views with the non-limited ones.
2120 function Is_Private_Concurrent_Primitive
2121 (Subp_Id : Entity_Id) return Boolean;
2122 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2123 -- type that implements an interface and has a private view.
2125 procedure Set_Trivial_Subprogram (N : Node_Id);
2126 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2127 -- subprogram whose body is being analyzed. N is the statement node
2128 -- causing the flag to be set, if the following statement is a return
2129 -- of an entity, we mark the entity as set in source to suppress any
2130 -- warning on the stylized use of function stubs with a dummy return.
2132 procedure Verify_Overriding_Indicator;
2133 -- If there was a previous spec, the entity has been entered in the
2134 -- current scope previously. If the body itself carries an overriding
2135 -- indicator, check that it is consistent with the known status of the
2136 -- entity.
2138 ----------------------------
2139 -- Check_Anonymous_Return --
2140 ----------------------------
2142 procedure Check_Anonymous_Return is
2143 Decl : Node_Id;
2144 Par : Node_Id;
2145 Scop : Entity_Id;
2147 begin
2148 if Present (Spec_Id) then
2149 Scop := Spec_Id;
2150 else
2151 Scop := Body_Id;
2152 end if;
2154 if Ekind (Scop) = E_Function
2155 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
2156 and then not Is_Thunk (Scop)
2157 and then (Has_Task (Designated_Type (Etype (Scop)))
2158 or else
2159 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
2160 and then
2161 Is_Limited_Record (Designated_Type (Etype (Scop)))))
2162 and then Expander_Active
2164 -- Avoid cases with no tasking support
2166 and then RTE_Available (RE_Current_Master)
2167 and then not Restriction_Active (No_Task_Hierarchy)
2168 then
2169 Decl :=
2170 Make_Object_Declaration (Loc,
2171 Defining_Identifier =>
2172 Make_Defining_Identifier (Loc, Name_uMaster),
2173 Constant_Present => True,
2174 Object_Definition =>
2175 New_Reference_To (RTE (RE_Master_Id), Loc),
2176 Expression =>
2177 Make_Explicit_Dereference (Loc,
2178 New_Reference_To (RTE (RE_Current_Master), Loc)));
2180 if Present (Declarations (N)) then
2181 Prepend (Decl, Declarations (N));
2182 else
2183 Set_Declarations (N, New_List (Decl));
2184 end if;
2186 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
2187 Set_Has_Master_Entity (Scop);
2189 -- Now mark the containing scope as a task master
2191 Par := N;
2192 while Nkind (Par) /= N_Compilation_Unit loop
2193 Par := Parent (Par);
2194 pragma Assert (Present (Par));
2196 -- If we fall off the top, we are at the outer level, and
2197 -- the environment task is our effective master, so nothing
2198 -- to mark.
2200 if Nkind_In
2201 (Par, N_Task_Body, N_Block_Statement, N_Subprogram_Body)
2202 then
2203 Set_Is_Task_Master (Par, True);
2204 exit;
2205 end if;
2206 end loop;
2207 end if;
2208 end Check_Anonymous_Return;
2210 -------------------------
2211 -- Check_Inline_Pragma --
2212 -------------------------
2214 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
2215 Prag : Node_Id;
2216 Plist : List_Id;
2218 function Is_Inline_Pragma (N : Node_Id) return Boolean;
2219 -- True when N is a pragma Inline or Inline_Always that applies
2220 -- to this subprogram.
2222 -----------------------
2223 -- Is_Inline_Pragma --
2224 -----------------------
2226 function Is_Inline_Pragma (N : Node_Id) return Boolean is
2227 begin
2228 return
2229 Nkind (N) = N_Pragma
2230 and then
2231 (Pragma_Name (N) = Name_Inline_Always
2232 or else
2233 (Front_End_Inlining
2234 and then Pragma_Name (N) = Name_Inline))
2235 and then
2236 Chars
2237 (Expression (First (Pragma_Argument_Associations (N)))) =
2238 Chars (Body_Id);
2239 end Is_Inline_Pragma;
2241 -- Start of processing for Check_Inline_Pragma
2243 begin
2244 if not Expander_Active then
2245 return;
2246 end if;
2248 if Is_List_Member (N)
2249 and then Present (Next (N))
2250 and then Is_Inline_Pragma (Next (N))
2251 then
2252 Prag := Next (N);
2254 elsif Nkind (N) /= N_Subprogram_Body_Stub
2255 and then Present (Declarations (N))
2256 and then Is_Inline_Pragma (First (Declarations (N)))
2257 then
2258 Prag := First (Declarations (N));
2260 else
2261 Prag := Empty;
2262 end if;
2264 if Present (Prag) then
2265 if Present (Spec_Id) then
2266 if In_Same_List (N, Unit_Declaration_Node (Spec_Id)) then
2267 Analyze (Prag);
2268 end if;
2270 else
2271 -- Create a subprogram declaration, to make treatment uniform
2273 declare
2274 Subp : constant Entity_Id :=
2275 Make_Defining_Identifier (Loc, Chars (Body_Id));
2276 Decl : constant Node_Id :=
2277 Make_Subprogram_Declaration (Loc,
2278 Specification =>
2279 New_Copy_Tree (Specification (N)));
2281 begin
2282 Set_Defining_Unit_Name (Specification (Decl), Subp);
2284 if Present (First_Formal (Body_Id)) then
2285 Plist := Copy_Parameter_List (Body_Id);
2286 Set_Parameter_Specifications
2287 (Specification (Decl), Plist);
2288 end if;
2290 Insert_Before (N, Decl);
2291 Analyze (Decl);
2292 Analyze (Prag);
2293 Set_Has_Pragma_Inline (Subp);
2295 if Pragma_Name (Prag) = Name_Inline_Always then
2296 Set_Is_Inlined (Subp);
2297 Set_Has_Pragma_Inline_Always (Subp);
2298 end if;
2300 Spec := Subp;
2301 end;
2302 end if;
2303 end if;
2304 end Check_Inline_Pragma;
2306 --------------------------
2307 -- Check_Missing_Return --
2308 --------------------------
2310 procedure Check_Missing_Return is
2311 Id : Entity_Id;
2312 Missing_Ret : Boolean;
2314 begin
2315 if Nkind (Body_Spec) = N_Function_Specification then
2316 if Present (Spec_Id) then
2317 Id := Spec_Id;
2318 else
2319 Id := Body_Id;
2320 end if;
2322 if Return_Present (Id) then
2323 Check_Returns (HSS, 'F', Missing_Ret);
2325 if Missing_Ret then
2326 Set_Has_Missing_Return (Id);
2327 end if;
2329 elsif Is_Generic_Subprogram (Id)
2330 or else not Is_Machine_Code_Subprogram (Id)
2331 then
2332 Error_Msg_N ("missing RETURN statement in function body", N);
2333 end if;
2335 -- If procedure with No_Return, check returns
2337 elsif Nkind (Body_Spec) = N_Procedure_Specification
2338 and then Present (Spec_Id)
2339 and then No_Return (Spec_Id)
2340 then
2341 Check_Returns (HSS, 'P', Missing_Ret, Spec_Id);
2342 end if;
2344 -- Special checks in SPARK mode
2346 if Nkind (Body_Spec) = N_Function_Specification then
2348 -- In SPARK mode, last statement of a function should be a return
2350 declare
2351 Stat : constant Node_Id := Last_Source_Statement (HSS);
2352 begin
2353 if Present (Stat)
2354 and then not Nkind_In (Stat, N_Simple_Return_Statement,
2355 N_Extended_Return_Statement)
2356 then
2357 Check_SPARK_Restriction
2358 ("last statement in function should be RETURN", Stat);
2359 end if;
2360 end;
2362 -- In SPARK mode, verify that a procedure has no return
2364 elsif Nkind (Body_Spec) = N_Procedure_Specification then
2365 if Present (Spec_Id) then
2366 Id := Spec_Id;
2367 else
2368 Id := Body_Id;
2369 end if;
2371 -- Would be nice to point to return statement here, can we
2372 -- borrow the Check_Returns procedure here ???
2374 if Return_Present (Id) then
2375 Check_SPARK_Restriction
2376 ("procedure should not have RETURN", N);
2377 end if;
2378 end if;
2379 end Check_Missing_Return;
2381 -----------------------
2382 -- Disambiguate_Spec --
2383 -----------------------
2385 function Disambiguate_Spec return Entity_Id is
2386 Priv_Spec : Entity_Id;
2387 Spec_N : Entity_Id;
2389 procedure Replace_Types (To_Corresponding : Boolean);
2390 -- Depending on the flag, replace the type of formal parameters of
2391 -- Body_Id if it is a concurrent type implementing interfaces with
2392 -- the corresponding record type or the other way around.
2394 procedure Replace_Types (To_Corresponding : Boolean) is
2395 Formal : Entity_Id;
2396 Formal_Typ : Entity_Id;
2398 begin
2399 Formal := First_Formal (Body_Id);
2400 while Present (Formal) loop
2401 Formal_Typ := Etype (Formal);
2403 if Is_Class_Wide_Type (Formal_Typ) then
2404 Formal_Typ := Root_Type (Formal_Typ);
2405 end if;
2407 -- From concurrent type to corresponding record
2409 if To_Corresponding then
2410 if Is_Concurrent_Type (Formal_Typ)
2411 and then Present (Corresponding_Record_Type (Formal_Typ))
2412 and then Present (Interfaces (
2413 Corresponding_Record_Type (Formal_Typ)))
2414 then
2415 Set_Etype (Formal,
2416 Corresponding_Record_Type (Formal_Typ));
2417 end if;
2419 -- From corresponding record to concurrent type
2421 else
2422 if Is_Concurrent_Record_Type (Formal_Typ)
2423 and then Present (Interfaces (Formal_Typ))
2424 then
2425 Set_Etype (Formal,
2426 Corresponding_Concurrent_Type (Formal_Typ));
2427 end if;
2428 end if;
2430 Next_Formal (Formal);
2431 end loop;
2432 end Replace_Types;
2434 -- Start of processing for Disambiguate_Spec
2436 begin
2437 -- Try to retrieve the specification of the body as is. All error
2438 -- messages are suppressed because the body may not have a spec in
2439 -- its current state.
2441 Spec_N := Find_Corresponding_Spec (N, False);
2443 -- It is possible that this is the body of a primitive declared
2444 -- between a private and a full view of a concurrent type. The
2445 -- controlling parameter of the spec carries the concurrent type,
2446 -- not the corresponding record type as transformed by Analyze_
2447 -- Subprogram_Specification. In such cases, we undo the change
2448 -- made by the analysis of the specification and try to find the
2449 -- spec again.
2451 -- Note that wrappers already have their corresponding specs and
2452 -- bodies set during their creation, so if the candidate spec is
2453 -- a wrapper, then we definitely need to swap all types to their
2454 -- original concurrent status.
2456 if No (Spec_N)
2457 or else Is_Primitive_Wrapper (Spec_N)
2458 then
2459 -- Restore all references of corresponding record types to the
2460 -- original concurrent types.
2462 Replace_Types (To_Corresponding => False);
2463 Priv_Spec := Find_Corresponding_Spec (N, False);
2465 -- The current body truly belongs to a primitive declared between
2466 -- a private and a full view. We leave the modified body as is,
2467 -- and return the true spec.
2469 if Present (Priv_Spec)
2470 and then Is_Private_Primitive (Priv_Spec)
2471 then
2472 return Priv_Spec;
2473 end if;
2475 -- In case that this is some sort of error, restore the original
2476 -- state of the body.
2478 Replace_Types (To_Corresponding => True);
2479 end if;
2481 return Spec_N;
2482 end Disambiguate_Spec;
2484 ----------------------------
2485 -- Exchange_Limited_Views --
2486 ----------------------------
2488 procedure Exchange_Limited_Views (Subp_Id : Entity_Id) is
2489 procedure Detect_And_Exchange (Id : Entity_Id);
2490 -- Determine whether Id's type denotes an incomplete type associated
2491 -- with a limited with clause and exchange the limited view with the
2492 -- non-limited one.
2494 -------------------------
2495 -- Detect_And_Exchange --
2496 -------------------------
2498 procedure Detect_And_Exchange (Id : Entity_Id) is
2499 Typ : constant Entity_Id := Etype (Id);
2501 begin
2502 if Ekind (Typ) = E_Incomplete_Type
2503 and then From_Limited_With (Typ)
2504 and then Present (Non_Limited_View (Typ))
2505 then
2506 Set_Etype (Id, Non_Limited_View (Typ));
2507 end if;
2508 end Detect_And_Exchange;
2510 -- Local variables
2512 Formal : Entity_Id;
2514 -- Start of processing for Exchange_Limited_Views
2516 begin
2517 if No (Subp_Id) then
2518 return;
2520 -- Do not process subprogram bodies as they already use the non-
2521 -- limited view of types.
2523 elsif not Ekind_In (Subp_Id, E_Function, E_Procedure) then
2524 return;
2525 end if;
2527 -- Examine all formals and swap views when applicable
2529 Formal := First_Formal (Subp_Id);
2530 while Present (Formal) loop
2531 Detect_And_Exchange (Formal);
2533 Next_Formal (Formal);
2534 end loop;
2536 -- Process the return type of a function
2538 if Ekind (Subp_Id) = E_Function then
2539 Detect_And_Exchange (Subp_Id);
2540 end if;
2541 end Exchange_Limited_Views;
2543 -------------------------------------
2544 -- Is_Private_Concurrent_Primitive --
2545 -------------------------------------
2547 function Is_Private_Concurrent_Primitive
2548 (Subp_Id : Entity_Id) return Boolean
2550 Formal_Typ : Entity_Id;
2552 begin
2553 if Present (First_Formal (Subp_Id)) then
2554 Formal_Typ := Etype (First_Formal (Subp_Id));
2556 if Is_Concurrent_Record_Type (Formal_Typ) then
2557 if Is_Class_Wide_Type (Formal_Typ) then
2558 Formal_Typ := Root_Type (Formal_Typ);
2559 end if;
2561 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
2562 end if;
2564 -- The type of the first formal is a concurrent tagged type with
2565 -- a private view.
2567 return
2568 Is_Concurrent_Type (Formal_Typ)
2569 and then Is_Tagged_Type (Formal_Typ)
2570 and then Has_Private_Declaration (Formal_Typ);
2571 end if;
2573 return False;
2574 end Is_Private_Concurrent_Primitive;
2576 ----------------------------
2577 -- Set_Trivial_Subprogram --
2578 ----------------------------
2580 procedure Set_Trivial_Subprogram (N : Node_Id) is
2581 Nxt : constant Node_Id := Next (N);
2583 begin
2584 Set_Is_Trivial_Subprogram (Body_Id);
2586 if Present (Spec_Id) then
2587 Set_Is_Trivial_Subprogram (Spec_Id);
2588 end if;
2590 if Present (Nxt)
2591 and then Nkind (Nxt) = N_Simple_Return_Statement
2592 and then No (Next (Nxt))
2593 and then Present (Expression (Nxt))
2594 and then Is_Entity_Name (Expression (Nxt))
2595 then
2596 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
2597 end if;
2598 end Set_Trivial_Subprogram;
2600 ---------------------------------
2601 -- Verify_Overriding_Indicator --
2602 ---------------------------------
2604 procedure Verify_Overriding_Indicator is
2605 begin
2606 if Must_Override (Body_Spec) then
2607 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
2608 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2609 then
2610 null;
2612 elsif not Present (Overridden_Operation (Spec_Id)) then
2613 Error_Msg_NE
2614 ("subprogram& is not overriding", Body_Spec, Spec_Id);
2615 end if;
2617 elsif Must_Not_Override (Body_Spec) then
2618 if Present (Overridden_Operation (Spec_Id)) then
2619 Error_Msg_NE
2620 ("subprogram& overrides inherited operation",
2621 Body_Spec, Spec_Id);
2623 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
2624 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
2625 then
2626 Error_Msg_NE
2627 ("subprogram & overrides predefined operator ",
2628 Body_Spec, Spec_Id);
2630 -- If this is not a primitive operation or protected subprogram,
2631 -- then the overriding indicator is altogether illegal.
2633 elsif not Is_Primitive (Spec_Id)
2634 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
2635 then
2636 Error_Msg_N
2637 ("overriding indicator only allowed " &
2638 "if subprogram is primitive",
2639 Body_Spec);
2640 end if;
2642 elsif Style_Check
2643 and then Present (Overridden_Operation (Spec_Id))
2644 then
2645 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
2646 Style.Missing_Overriding (N, Body_Id);
2648 elsif Style_Check
2649 and then Can_Override_Operator (Spec_Id)
2650 and then not Is_Predefined_File_Name
2651 (Unit_File_Name (Get_Source_Unit (Spec_Id)))
2652 then
2653 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
2654 Style.Missing_Overriding (N, Body_Id);
2655 end if;
2656 end Verify_Overriding_Indicator;
2658 -- Start of processing for Analyze_Subprogram_Body_Helper
2660 begin
2661 -- Generic subprograms are handled separately. They always have a
2662 -- generic specification. Determine whether current scope has a
2663 -- previous declaration.
2665 -- If the subprogram body is defined within an instance of the same
2666 -- name, the instance appears as a package renaming, and will be hidden
2667 -- within the subprogram.
2669 if Present (Prev_Id)
2670 and then not Is_Overloadable (Prev_Id)
2671 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
2672 or else Comes_From_Source (Prev_Id))
2673 then
2674 if Is_Generic_Subprogram (Prev_Id) then
2675 Spec_Id := Prev_Id;
2676 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2677 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2679 Analyze_Generic_Subprogram_Body (N, Spec_Id);
2681 if Nkind (N) = N_Subprogram_Body then
2682 HSS := Handled_Statement_Sequence (N);
2683 Check_Missing_Return;
2684 end if;
2686 return;
2688 else
2689 -- Previous entity conflicts with subprogram name. Attempting to
2690 -- enter name will post error.
2692 Enter_Name (Body_Id);
2693 return;
2694 end if;
2696 -- Non-generic case, find the subprogram declaration, if one was seen,
2697 -- or enter new overloaded entity in the current scope. If the
2698 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
2699 -- part of the context of one of its subunits. No need to redo the
2700 -- analysis.
2702 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
2703 return;
2705 else
2706 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
2708 if Nkind (N) = N_Subprogram_Body_Stub
2709 or else No (Corresponding_Spec (N))
2710 then
2711 if Is_Private_Concurrent_Primitive (Body_Id) then
2712 Spec_Id := Disambiguate_Spec;
2713 else
2714 Spec_Id := Find_Corresponding_Spec (N);
2715 end if;
2717 -- If this is a duplicate body, no point in analyzing it
2719 if Error_Posted (N) then
2720 return;
2721 end if;
2723 -- A subprogram body should cause freezing of its own declaration,
2724 -- but if there was no previous explicit declaration, then the
2725 -- subprogram will get frozen too late (there may be code within
2726 -- the body that depends on the subprogram having been frozen,
2727 -- such as uses of extra formals), so we force it to be frozen
2728 -- here. Same holds if the body and spec are compilation units.
2729 -- Finally, if the return type is an anonymous access to protected
2730 -- subprogram, it must be frozen before the body because its
2731 -- expansion has generated an equivalent type that is used when
2732 -- elaborating the body.
2734 -- An exception in the case of Ada 2012, AI05-177: The bodies
2735 -- created for expression functions do not freeze.
2737 if No (Spec_Id)
2738 and then Nkind (Original_Node (N)) /= N_Expression_Function
2739 then
2740 Freeze_Before (N, Body_Id);
2742 elsif Nkind (Parent (N)) = N_Compilation_Unit then
2743 Freeze_Before (N, Spec_Id);
2745 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
2746 Freeze_Before (N, Etype (Body_Id));
2747 end if;
2749 else
2750 Spec_Id := Corresponding_Spec (N);
2751 end if;
2752 end if;
2754 -- Language-defined aspects cannot appear in a subprogram body [stub] if
2755 -- the subprogram has a separate spec. Certainly implementation-defined
2756 -- aspects are allowed to appear (per Aspects_On_Body_Of_Stub_OK).
2758 if Has_Aspects (N) then
2759 if Present (Spec_Id)
2760 and then not Aspects_On_Body_Or_Stub_OK (N)
2762 -- Do not emit an error on a subprogram body stub that act as
2763 -- its own spec.
2765 and then Nkind (Parent (Parent (Spec_Id))) /= N_Subprogram_Body_Stub
2766 then
2767 Error_Msg_N
2768 ("aspect specifications must appear in subprogram declaration",
2771 -- Delay the analysis of aspect specifications that apply to a body
2772 -- stub until the proper body is analyzed. If the corresponding body
2773 -- is missing, the aspects are still analyzed in Analyze_Proper_Body.
2775 elsif Nkind (N) in N_Body_Stub then
2776 null;
2778 else
2779 Analyze_Aspect_Specifications (N, Body_Id);
2780 end if;
2781 end if;
2783 -- Previously we scanned the body to look for nested subprograms, and
2784 -- rejected an inline directive if nested subprograms were present,
2785 -- because the back-end would generate conflicting symbols for the
2786 -- nested bodies. This is now unnecessary.
2788 -- Look ahead to recognize a pragma Inline that appears after the body
2790 Check_Inline_Pragma (Spec_Id);
2792 -- Deal with special case of a fully private operation in the body of
2793 -- the protected type. We must create a declaration for the subprogram,
2794 -- in order to attach the protected subprogram that will be used in
2795 -- internal calls. We exclude compiler generated bodies from the
2796 -- expander since the issue does not arise for those cases.
2798 if No (Spec_Id)
2799 and then Comes_From_Source (N)
2800 and then Is_Protected_Type (Current_Scope)
2801 then
2802 Spec_Id := Build_Private_Protected_Declaration (N);
2803 end if;
2805 -- If a separate spec is present, then deal with freezing issues
2807 if Present (Spec_Id) then
2808 Spec_Decl := Unit_Declaration_Node (Spec_Id);
2809 Verify_Overriding_Indicator;
2811 -- In general, the spec will be frozen when we start analyzing the
2812 -- body. However, for internally generated operations, such as
2813 -- wrapper functions for inherited operations with controlling
2814 -- results, the spec may not have been frozen by the time we expand
2815 -- the freeze actions that include the bodies. In particular, extra
2816 -- formals for accessibility or for return-in-place may need to be
2817 -- generated. Freeze nodes, if any, are inserted before the current
2818 -- body. These freeze actions are also needed in ASIS mode to enable
2819 -- the proper back-annotations.
2821 if not Is_Frozen (Spec_Id)
2822 and then (Expander_Active or ASIS_Mode)
2823 then
2824 -- Force the generation of its freezing node to ensure proper
2825 -- management of access types in the backend.
2827 -- This is definitely needed for some cases, but it is not clear
2828 -- why, to be investigated further???
2830 Set_Has_Delayed_Freeze (Spec_Id);
2831 Freeze_Before (N, Spec_Id);
2832 end if;
2833 end if;
2835 -- Mark presence of postcondition procedure in current scope and mark
2836 -- the procedure itself as needing debug info. The latter is important
2837 -- when analyzing decision coverage (for example, for MC/DC coverage).
2839 if Chars (Body_Id) = Name_uPostconditions then
2840 Set_Has_Postconditions (Current_Scope);
2841 Set_Debug_Info_Needed (Body_Id);
2842 end if;
2844 -- Place subprogram on scope stack, and make formals visible. If there
2845 -- is a spec, the visible entity remains that of the spec.
2847 if Present (Spec_Id) then
2848 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
2850 if Is_Child_Unit (Spec_Id) then
2851 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
2852 end if;
2854 if Style_Check then
2855 Style.Check_Identifier (Body_Id, Spec_Id);
2856 end if;
2858 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
2859 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
2861 if Is_Abstract_Subprogram (Spec_Id) then
2862 Error_Msg_N ("an abstract subprogram cannot have a body", N);
2863 return;
2865 else
2866 Set_Convention (Body_Id, Convention (Spec_Id));
2867 Set_Has_Completion (Spec_Id);
2869 if Is_Protected_Type (Scope (Spec_Id)) then
2870 Prot_Typ := Scope (Spec_Id);
2871 end if;
2873 -- If this is a body generated for a renaming, do not check for
2874 -- full conformance. The check is redundant, because the spec of
2875 -- the body is a copy of the spec in the renaming declaration,
2876 -- and the test can lead to spurious errors on nested defaults.
2878 if Present (Spec_Decl)
2879 and then not Comes_From_Source (N)
2880 and then
2881 (Nkind (Original_Node (Spec_Decl)) =
2882 N_Subprogram_Renaming_Declaration
2883 or else (Present (Corresponding_Body (Spec_Decl))
2884 and then
2885 Nkind (Unit_Declaration_Node
2886 (Corresponding_Body (Spec_Decl))) =
2887 N_Subprogram_Renaming_Declaration))
2888 then
2889 Conformant := True;
2891 -- Conversely, the spec may have been generated for specless body
2892 -- with an inline pragma.
2894 elsif Comes_From_Source (N)
2895 and then not Comes_From_Source (Spec_Id)
2896 and then Has_Pragma_Inline (Spec_Id)
2897 then
2898 Conformant := True;
2900 else
2901 Check_Conformance
2902 (Body_Id, Spec_Id,
2903 Fully_Conformant, True, Conformant, Body_Id);
2904 end if;
2906 -- If the body is not fully conformant, we have to decide if we
2907 -- should analyze it or not. If it has a really messed up profile
2908 -- then we probably should not analyze it, since we will get too
2909 -- many bogus messages.
2911 -- Our decision is to go ahead in the non-fully conformant case
2912 -- only if it is at least mode conformant with the spec. Note
2913 -- that the call to Check_Fully_Conformant has issued the proper
2914 -- error messages to complain about the lack of conformance.
2916 if not Conformant
2917 and then not Mode_Conformant (Body_Id, Spec_Id)
2918 then
2919 return;
2920 end if;
2921 end if;
2923 if Spec_Id /= Body_Id then
2924 Reference_Body_Formals (Spec_Id, Body_Id);
2925 end if;
2927 if Nkind (N) = N_Subprogram_Body_Stub then
2928 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
2930 -- Regular body
2932 else
2933 Set_Corresponding_Spec (N, Spec_Id);
2935 -- Ada 2005 (AI-345): If the operation is a primitive operation
2936 -- of a concurrent type, the type of the first parameter has been
2937 -- replaced with the corresponding record, which is the proper
2938 -- run-time structure to use. However, within the body there may
2939 -- be uses of the formals that depend on primitive operations
2940 -- of the type (in particular calls in prefixed form) for which
2941 -- we need the original concurrent type. The operation may have
2942 -- several controlling formals, so the replacement must be done
2943 -- for all of them.
2945 if Comes_From_Source (Spec_Id)
2946 and then Present (First_Entity (Spec_Id))
2947 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
2948 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
2949 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
2950 and then Present (Corresponding_Concurrent_Type
2951 (Etype (First_Entity (Spec_Id))))
2952 then
2953 declare
2954 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
2955 Form : Entity_Id;
2957 begin
2958 Form := First_Formal (Spec_Id);
2959 while Present (Form) loop
2960 if Etype (Form) = Typ then
2961 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
2962 end if;
2964 Next_Formal (Form);
2965 end loop;
2966 end;
2967 end if;
2969 -- Make the formals visible, and place subprogram on scope stack.
2970 -- This is also the point at which we set Last_Real_Spec_Entity
2971 -- to mark the entities which will not be moved to the body.
2973 Install_Formals (Spec_Id);
2974 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
2976 -- Within an instance, add local renaming declarations so that
2977 -- gdb can retrieve the values of actuals more easily. This is
2978 -- only relevant if generating code (and indeed we definitely
2979 -- do not want these definitions -gnatc mode, because that would
2980 -- confuse ASIS).
2982 if Is_Generic_Instance (Spec_Id)
2983 and then Is_Wrapper_Package (Current_Scope)
2984 and then Expander_Active
2985 then
2986 Build_Subprogram_Instance_Renamings (N, Current_Scope);
2987 end if;
2989 Push_Scope (Spec_Id);
2991 -- Make sure that the subprogram is immediately visible. For
2992 -- child units that have no separate spec this is indispensable.
2993 -- Otherwise it is safe albeit redundant.
2995 Set_Is_Immediately_Visible (Spec_Id);
2996 end if;
2998 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
2999 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
3000 Set_Ekind (Body_Id, E_Subprogram_Body);
3001 Set_Scope (Body_Id, Scope (Spec_Id));
3002 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
3004 -- Case of subprogram body with no previous spec
3006 else
3007 -- Check for style warning required
3009 if Style_Check
3011 -- Only apply check for source level subprograms for which checks
3012 -- have not been suppressed.
3014 and then Comes_From_Source (Body_Id)
3015 and then not Suppress_Style_Checks (Body_Id)
3017 -- No warnings within an instance
3019 and then not In_Instance
3021 -- No warnings for expression functions
3023 and then Nkind (Original_Node (N)) /= N_Expression_Function
3024 then
3025 Style.Body_With_No_Spec (N);
3026 end if;
3028 New_Overloaded_Entity (Body_Id);
3030 if Nkind (N) /= N_Subprogram_Body_Stub then
3031 Set_Acts_As_Spec (N);
3032 Generate_Definition (Body_Id);
3033 Set_Contract (Body_Id, Make_Contract (Sloc (Body_Id)));
3034 Generate_Reference
3035 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
3036 Install_Formals (Body_Id);
3037 Push_Scope (Body_Id);
3038 end if;
3040 -- For stubs and bodies with no previous spec, generate references to
3041 -- formals.
3043 Generate_Reference_To_Formals (Body_Id);
3044 end if;
3046 -- If the return type is an anonymous access type whose designated type
3047 -- is the limited view of a class-wide type and the non-limited view is
3048 -- available, update the return type accordingly.
3050 if Ada_Version >= Ada_2005 and then Comes_From_Source (N) then
3051 declare
3052 Etyp : Entity_Id;
3053 Rtyp : Entity_Id;
3055 begin
3056 Rtyp := Etype (Current_Scope);
3058 if Ekind (Rtyp) = E_Anonymous_Access_Type then
3059 Etyp := Directly_Designated_Type (Rtyp);
3061 if Is_Class_Wide_Type (Etyp)
3062 and then From_Limited_With (Etyp)
3063 then
3064 Set_Directly_Designated_Type
3065 (Etype (Current_Scope), Available_View (Etyp));
3066 end if;
3067 end if;
3068 end;
3069 end if;
3071 -- If this is the proper body of a stub, we must verify that the stub
3072 -- conforms to the body, and to the previous spec if one was present.
3073 -- We know already that the body conforms to that spec. This test is
3074 -- only required for subprograms that come from source.
3076 if Nkind (Parent (N)) = N_Subunit
3077 and then Comes_From_Source (N)
3078 and then not Error_Posted (Body_Id)
3079 and then Nkind (Corresponding_Stub (Parent (N))) =
3080 N_Subprogram_Body_Stub
3081 then
3082 declare
3083 Old_Id : constant Entity_Id :=
3084 Defining_Entity
3085 (Specification (Corresponding_Stub (Parent (N))));
3087 Conformant : Boolean := False;
3089 begin
3090 if No (Spec_Id) then
3091 Check_Fully_Conformant (Body_Id, Old_Id);
3093 else
3094 Check_Conformance
3095 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
3097 if not Conformant then
3099 -- The stub was taken to be a new declaration. Indicate that
3100 -- it lacks a body.
3102 Set_Has_Completion (Old_Id, False);
3103 end if;
3104 end if;
3105 end;
3106 end if;
3108 Set_Has_Completion (Body_Id);
3109 Check_Eliminated (Body_Id);
3111 if Nkind (N) = N_Subprogram_Body_Stub then
3112 return;
3113 end if;
3115 -- Handle frontend inlining. There is no need to prepare us for inlining
3116 -- if we will not generate the code.
3118 -- Old semantics
3120 if not Debug_Flag_Dot_K then
3121 if Present (Spec_Id)
3122 and then Expander_Active
3123 and then
3124 (Has_Pragma_Inline_Always (Spec_Id)
3125 or else (Has_Pragma_Inline (Spec_Id) and Front_End_Inlining))
3126 then
3127 Build_Body_To_Inline (N, Spec_Id);
3128 end if;
3130 -- New semantics
3132 elsif Expander_Active
3133 and then Serious_Errors_Detected = 0
3134 and then Present (Spec_Id)
3135 and then Has_Pragma_Inline (Spec_Id)
3136 then
3137 Check_And_Build_Body_To_Inline (N, Spec_Id, Body_Id);
3138 end if;
3140 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3141 -- of the specification we have to install the private withed units.
3142 -- This holds for child units as well.
3144 if Is_Compilation_Unit (Body_Id)
3145 or else Nkind (Parent (N)) = N_Compilation_Unit
3146 then
3147 Install_Private_With_Clauses (Body_Id);
3148 end if;
3150 Check_Anonymous_Return;
3152 -- Set the Protected_Formal field of each extra formal of the protected
3153 -- subprogram to reference the corresponding extra formal of the
3154 -- subprogram that implements it. For regular formals this occurs when
3155 -- the protected subprogram's declaration is expanded, but the extra
3156 -- formals don't get created until the subprogram is frozen. We need to
3157 -- do this before analyzing the protected subprogram's body so that any
3158 -- references to the original subprogram's extra formals will be changed
3159 -- refer to the implementing subprogram's formals (see Expand_Formal).
3161 if Present (Spec_Id)
3162 and then Is_Protected_Type (Scope (Spec_Id))
3163 and then Present (Protected_Body_Subprogram (Spec_Id))
3164 then
3165 declare
3166 Impl_Subp : constant Entity_Id :=
3167 Protected_Body_Subprogram (Spec_Id);
3168 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
3169 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
3170 begin
3171 while Present (Prot_Ext_Formal) loop
3172 pragma Assert (Present (Impl_Ext_Formal));
3173 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
3174 Next_Formal_With_Extras (Prot_Ext_Formal);
3175 Next_Formal_With_Extras (Impl_Ext_Formal);
3176 end loop;
3177 end;
3178 end if;
3180 -- Now we can go on to analyze the body
3182 HSS := Handled_Statement_Sequence (N);
3183 Set_Actual_Subtypes (N, Current_Scope);
3185 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
3186 -- invariants and predicates associated with the body and its spec.
3187 -- Note that this is not pure expansion as Expand_Subprogram_Contract
3188 -- prepares the contract assertions for generic subprograms or for ASIS.
3189 -- Do not generate contract checks in SPARK mode.
3191 if not SPARK_Mode then
3192 Expand_Subprogram_Contract (N, Spec_Id, Body_Id);
3193 end if;
3195 -- Add a declaration for the Protection object, renaming declarations
3196 -- for discriminals and privals and finally a declaration for the entry
3197 -- family index (if applicable). This form of early expansion is done
3198 -- when the Expander is active because Install_Private_Data_Declarations
3199 -- references entities which were created during regular expansion. The
3200 -- body may be the rewritting of an expression function, and we need to
3201 -- verify that the original node is in the source.
3203 if Full_Expander_Active
3204 and then Comes_From_Source (Original_Node (N))
3205 and then Present (Prot_Typ)
3206 and then Present (Spec_Id)
3207 and then not Is_Eliminated (Spec_Id)
3208 then
3209 Install_Private_Data_Declarations
3210 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
3211 end if;
3213 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3214 -- may now appear in parameter and result profiles. Since the analysis
3215 -- of a subprogram body may use the parameter and result profile of the
3216 -- spec, swap any limited views with their non-limited counterpart.
3218 if Ada_Version >= Ada_2012 then
3219 Exchange_Limited_Views (Spec_Id);
3220 end if;
3222 -- Analyze the declarations (this call will analyze the precondition
3223 -- Check pragmas we prepended to the list, as well as the declaration
3224 -- of the _Postconditions procedure).
3226 Analyze_Declarations (Declarations (N));
3228 -- Check completion, and analyze the statements
3230 Check_Completion;
3231 Inspect_Deferred_Constant_Completion (Declarations (N));
3232 Analyze (HSS);
3234 -- Deal with end of scope processing for the body
3236 Process_End_Label (HSS, 't', Current_Scope);
3237 End_Scope;
3238 Check_Subprogram_Order (N);
3239 Set_Analyzed (Body_Id);
3241 -- If we have a separate spec, then the analysis of the declarations
3242 -- caused the entities in the body to be chained to the spec id, but
3243 -- we want them chained to the body id. Only the formal parameters
3244 -- end up chained to the spec id in this case.
3246 if Present (Spec_Id) then
3248 -- We must conform to the categorization of our spec
3250 Validate_Categorization_Dependency (N, Spec_Id);
3252 -- And if this is a child unit, the parent units must conform
3254 if Is_Child_Unit (Spec_Id) then
3255 Validate_Categorization_Dependency
3256 (Unit_Declaration_Node (Spec_Id), Spec_Id);
3257 end if;
3259 -- Here is where we move entities from the spec to the body
3261 -- Case where there are entities that stay with the spec
3263 if Present (Last_Real_Spec_Entity) then
3265 -- No body entities (happens when the only real spec entities come
3266 -- from precondition and postcondition pragmas).
3268 if No (Last_Entity (Body_Id)) then
3269 Set_First_Entity
3270 (Body_Id, Next_Entity (Last_Real_Spec_Entity));
3272 -- Body entities present (formals), so chain stuff past them
3274 else
3275 Set_Next_Entity
3276 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
3277 end if;
3279 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
3280 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3281 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
3283 -- Case where there are no spec entities, in this case there can be
3284 -- no body entities either, so just move everything.
3286 else
3287 pragma Assert (No (Last_Entity (Body_Id)));
3288 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
3289 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
3290 Set_First_Entity (Spec_Id, Empty);
3291 Set_Last_Entity (Spec_Id, Empty);
3292 end if;
3293 end if;
3295 Check_Missing_Return;
3297 -- Now we are going to check for variables that are never modified in
3298 -- the body of the procedure. But first we deal with a special case
3299 -- where we want to modify this check. If the body of the subprogram
3300 -- starts with a raise statement or its equivalent, or if the body
3301 -- consists entirely of a null statement, then it is pretty obvious
3302 -- that it is OK to not reference the parameters. For example, this
3303 -- might be the following common idiom for a stubbed function:
3304 -- statement of the procedure raises an exception. In particular this
3305 -- deals with the common idiom of a stubbed function, which might
3306 -- appear as something like:
3308 -- function F (A : Integer) return Some_Type;
3309 -- X : Some_Type;
3310 -- begin
3311 -- raise Program_Error;
3312 -- return X;
3313 -- end F;
3315 -- Here the purpose of X is simply to satisfy the annoying requirement
3316 -- in Ada that there be at least one return, and we certainly do not
3317 -- want to go posting warnings on X that it is not initialized! On
3318 -- the other hand, if X is entirely unreferenced that should still
3319 -- get a warning.
3321 -- What we do is to detect these cases, and if we find them, flag the
3322 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3323 -- suppress unwanted warnings. For the case of the function stub above
3324 -- we have a special test to set X as apparently assigned to suppress
3325 -- the warning.
3327 declare
3328 Stm : Node_Id;
3330 begin
3331 -- Skip initial labels (for one thing this occurs when we are in
3332 -- front end ZCX mode, but in any case it is irrelevant), and also
3333 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
3335 Stm := First (Statements (HSS));
3336 while Nkind (Stm) = N_Label
3337 or else Nkind (Stm) in N_Push_xxx_Label
3338 loop
3339 Next (Stm);
3340 end loop;
3342 -- Do the test on the original statement before expansion
3344 declare
3345 Ostm : constant Node_Id := Original_Node (Stm);
3347 begin
3348 -- If explicit raise statement, turn on flag
3350 if Nkind (Ostm) = N_Raise_Statement then
3351 Set_Trivial_Subprogram (Stm);
3353 -- If null statement, and no following statements, turn on flag
3355 elsif Nkind (Stm) = N_Null_Statement
3356 and then Comes_From_Source (Stm)
3357 and then No (Next (Stm))
3358 then
3359 Set_Trivial_Subprogram (Stm);
3361 -- Check for explicit call cases which likely raise an exception
3363 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
3364 if Is_Entity_Name (Name (Ostm)) then
3365 declare
3366 Ent : constant Entity_Id := Entity (Name (Ostm));
3368 begin
3369 -- If the procedure is marked No_Return, then likely it
3370 -- raises an exception, but in any case it is not coming
3371 -- back here, so turn on the flag.
3373 if Present (Ent)
3374 and then Ekind (Ent) = E_Procedure
3375 and then No_Return (Ent)
3376 then
3377 Set_Trivial_Subprogram (Stm);
3378 end if;
3379 end;
3380 end if;
3381 end if;
3382 end;
3383 end;
3385 -- Check for variables that are never modified
3387 declare
3388 E1, E2 : Entity_Id;
3390 begin
3391 -- If there is a separate spec, then transfer Never_Set_In_Source
3392 -- flags from out parameters to the corresponding entities in the
3393 -- body. The reason we do that is we want to post error flags on
3394 -- the body entities, not the spec entities.
3396 if Present (Spec_Id) then
3397 E1 := First_Entity (Spec_Id);
3398 while Present (E1) loop
3399 if Ekind (E1) = E_Out_Parameter then
3400 E2 := First_Entity (Body_Id);
3401 while Present (E2) loop
3402 exit when Chars (E1) = Chars (E2);
3403 Next_Entity (E2);
3404 end loop;
3406 if Present (E2) then
3407 Set_Never_Set_In_Source (E2, Never_Set_In_Source (E1));
3408 end if;
3409 end if;
3411 Next_Entity (E1);
3412 end loop;
3413 end if;
3415 -- Check references in body
3417 Check_References (Body_Id);
3418 end;
3419 end Analyze_Subprogram_Body_Helper;
3421 ---------------------------------
3422 -- Analyze_Subprogram_Contract --
3423 ---------------------------------
3425 procedure Analyze_Subprogram_Contract (Subp : Entity_Id) is
3426 Result_Seen : Boolean := False;
3427 -- A flag which keeps track of whether at least one postcondition or
3428 -- contract-case mentions attribute 'Result (set True if so).
3430 procedure Check_Result_And_Post_State
3431 (Prag : Node_Id;
3432 Error_Nod : in out Node_Id);
3433 -- Determine whether pragma Prag mentions attribute 'Result and whether
3434 -- the pragma contains an expression that evaluates differently in pre-
3435 -- and post-state. Prag is a postcondition or a contract-cases pragma.
3436 -- Error_Nod denotes the proper error node.
3438 ---------------------------------
3439 -- Check_Result_And_Post_State --
3440 ---------------------------------
3442 procedure Check_Result_And_Post_State
3443 (Prag : Node_Id;
3444 Error_Nod : in out Node_Id)
3446 procedure Check_Expression (Expr : Node_Id);
3447 -- Perform the 'Result and post-state checks on a given expression
3449 function Is_Function_Result (N : Node_Id) return Traverse_Result;
3450 -- Attempt to find attribute 'Result in a subtree denoted by N
3452 function Is_Trivial_Boolean (N : Node_Id) return Boolean;
3453 -- Determine whether source node N denotes "True" or "False"
3455 function Mentions_Post_State (N : Node_Id) return Boolean;
3456 -- Determine whether a subtree denoted by N mentions any construct
3457 -- that denotes a post-state.
3459 procedure Check_Function_Result is
3460 new Traverse_Proc (Is_Function_Result);
3462 ----------------------
3463 -- Check_Expression --
3464 ----------------------
3466 procedure Check_Expression (Expr : Node_Id) is
3467 begin
3468 if not Is_Trivial_Boolean (Expr) then
3469 Check_Function_Result (Expr);
3471 if not Mentions_Post_State (Expr) then
3472 if Pragma_Name (Prag) = Name_Contract_Cases then
3473 Error_Msg_N
3474 ("contract case refers only to pre-state?T?", Expr);
3475 else
3476 Error_Msg_N
3477 ("postcondition refers only to pre-state?T?", Prag);
3478 end if;
3479 end if;
3480 end if;
3481 end Check_Expression;
3483 ------------------------
3484 -- Is_Function_Result --
3485 ------------------------
3487 function Is_Function_Result (N : Node_Id) return Traverse_Result is
3488 begin
3489 if Nkind (N) = N_Attribute_Reference
3490 and then Attribute_Name (N) = Name_Result
3491 then
3492 Result_Seen := True;
3493 return Abandon;
3495 -- Continue the traversal
3497 else
3498 return OK;
3499 end if;
3500 end Is_Function_Result;
3502 ------------------------
3503 -- Is_Trivial_Boolean --
3504 ------------------------
3506 function Is_Trivial_Boolean (N : Node_Id) return Boolean is
3507 begin
3508 return
3509 Comes_From_Source (N)
3510 and then Is_Entity_Name (N)
3511 and then (Entity (N) = Standard_True
3512 or else Entity (N) = Standard_False);
3513 end Is_Trivial_Boolean;
3515 -------------------------
3516 -- Mentions_Post_State --
3517 -------------------------
3519 function Mentions_Post_State (N : Node_Id) return Boolean is
3520 Post_State_Seen : Boolean := False;
3522 function Is_Post_State (N : Node_Id) return Traverse_Result;
3523 -- Attempt to find a construct that denotes a post-state. If this
3524 -- is the case, set flag Post_State_Seen.
3526 -------------------
3527 -- Is_Post_State --
3528 -------------------
3530 function Is_Post_State (N : Node_Id) return Traverse_Result is
3531 Ent : Entity_Id;
3533 begin
3534 if Nkind_In (N, N_Explicit_Dereference, N_Function_Call) then
3535 Post_State_Seen := True;
3536 return Abandon;
3538 elsif Nkind_In (N, N_Expanded_Name, N_Identifier) then
3539 Ent := Entity (N);
3541 if No (Ent) or else Ekind (Ent) in Assignable_Kind then
3542 Post_State_Seen := True;
3543 return Abandon;
3544 end if;
3546 elsif Nkind (N) = N_Attribute_Reference then
3547 if Attribute_Name (N) = Name_Old then
3548 return Skip;
3549 elsif Attribute_Name (N) = Name_Result then
3550 Post_State_Seen := True;
3551 return Abandon;
3552 end if;
3553 end if;
3555 return OK;
3556 end Is_Post_State;
3558 procedure Find_Post_State is new Traverse_Proc (Is_Post_State);
3560 -- Start of processing for Mentions_Post_State
3562 begin
3563 Find_Post_State (N);
3564 return Post_State_Seen;
3565 end Mentions_Post_State;
3567 -- Local variables
3569 Expr : constant Node_Id :=
3570 Expression (First (Pragma_Argument_Associations (Prag)));
3571 Nam : constant Name_Id := Pragma_Name (Prag);
3572 CCase : Node_Id;
3574 -- Start of processing for Check_Result_And_Post_State
3576 begin
3577 if No (Error_Nod) then
3578 Error_Nod := Prag;
3579 end if;
3581 -- Examine all consequences
3583 if Nam = Name_Contract_Cases then
3584 CCase := First (Component_Associations (Expr));
3585 while Present (CCase) loop
3586 Check_Expression (Expression (CCase));
3588 Next (CCase);
3589 end loop;
3591 -- Examine the expression of a postcondition
3593 else
3594 pragma Assert (Nam = Name_Postcondition);
3595 Check_Expression (Expr);
3596 end if;
3597 end Check_Result_And_Post_State;
3599 -- Local variables
3601 Items : constant Node_Id := Contract (Subp);
3602 Depends : Node_Id := Empty;
3603 Error_CCase : Node_Id := Empty;
3604 Error_Post : Node_Id := Empty;
3605 Global : Node_Id := Empty;
3606 Nam : Name_Id;
3607 Prag : Node_Id;
3609 -- Start of processing for Analyze_Subprogram_Contract
3611 begin
3612 if Present (Items) then
3614 -- Analyze pre- and postconditions
3616 Prag := Pre_Post_Conditions (Items);
3617 while Present (Prag) loop
3618 Analyze_Pre_Post_Condition_In_Decl_Part (Prag, Subp);
3620 -- Verify whether a postcondition mentions attribute 'Result and
3621 -- its expression introduces a post-state.
3623 if Warn_On_Suspicious_Contract
3624 and then Pragma_Name (Prag) = Name_Postcondition
3625 then
3626 Check_Result_And_Post_State (Prag, Error_Post);
3627 end if;
3629 Prag := Next_Pragma (Prag);
3630 end loop;
3632 -- Analyze contract-cases and test-cases
3634 Prag := Contract_Test_Cases (Items);
3635 while Present (Prag) loop
3636 Nam := Pragma_Name (Prag);
3638 if Nam = Name_Contract_Cases then
3639 Analyze_Contract_Cases_In_Decl_Part (Prag);
3641 -- Verify whether contract-cases mention attribute 'Result and
3642 -- its expression introduces a post-state. Perform the check
3643 -- only when the pragma is legal.
3645 if Warn_On_Suspicious_Contract
3646 and then not Error_Posted (Prag)
3647 then
3648 Check_Result_And_Post_State (Prag, Error_CCase);
3649 end if;
3651 else
3652 pragma Assert (Nam = Name_Test_Case);
3653 Analyze_Test_Case_In_Decl_Part (Prag, Subp);
3654 end if;
3656 Prag := Next_Pragma (Prag);
3657 end loop;
3659 -- Analyze classification pragmas
3661 Prag := Classifications (Contract (Subp));
3662 while Present (Prag) loop
3663 Nam := Pragma_Name (Prag);
3665 if Nam = Name_Depends then
3666 Depends := Prag;
3667 else pragma Assert (Nam = Name_Global);
3668 Global := Prag;
3669 end if;
3671 Prag := Next_Pragma (Prag);
3672 end loop;
3674 -- Analyze Global first as Depends may mention items classified in
3675 -- the global categorization.
3677 if Present (Global) then
3678 Analyze_Global_In_Decl_Part (Global);
3679 end if;
3681 -- Depends must be analyzed after Global in order to see the modes of
3682 -- all global items.
3684 if Present (Depends) then
3685 Analyze_Depends_In_Decl_Part (Depends);
3686 end if;
3687 end if;
3689 -- Emit an error when none of the postconditions or contract-cases
3690 -- mention attribute 'Result in the context of a function.
3692 if Warn_On_Suspicious_Contract
3693 and then Ekind_In (Subp, E_Function, E_Generic_Function)
3694 and then not Result_Seen
3695 then
3696 if Present (Error_Post) and then Present (Error_CCase) then
3697 Error_Msg_N
3698 ("neither function postcondition nor contract cases mention "
3699 & "result?T?", Error_Post);
3701 elsif Present (Error_Post) then
3702 Error_Msg_N
3703 ("function postcondition does not mention result?T?",
3704 Error_Post);
3706 elsif Present (Error_CCase) then
3707 Error_Msg_N
3708 ("contract cases do not mention result?T?", Error_CCase);
3709 end if;
3710 end if;
3711 end Analyze_Subprogram_Contract;
3713 ------------------------------------
3714 -- Analyze_Subprogram_Declaration --
3715 ------------------------------------
3717 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
3718 Scop : constant Entity_Id := Current_Scope;
3719 Designator : Entity_Id;
3720 Is_Completion : Boolean;
3721 -- Indicates whether a null procedure declaration is a completion
3723 begin
3724 -- Null procedures are not allowed in SPARK
3726 if Nkind (Specification (N)) = N_Procedure_Specification
3727 and then Null_Present (Specification (N))
3728 then
3729 Check_SPARK_Restriction ("null procedure is not allowed", N);
3731 if Is_Protected_Type (Current_Scope) then
3732 Error_Msg_N ("protected operation cannot be a null procedure", N);
3733 end if;
3735 Analyze_Null_Procedure (N, Is_Completion);
3737 if Is_Completion then
3739 -- The null procedure acts as a body, nothing further is needed.
3741 return;
3742 end if;
3743 end if;
3745 Designator := Analyze_Subprogram_Specification (Specification (N));
3747 -- A reference may already have been generated for the unit name, in
3748 -- which case the following call is redundant. However it is needed for
3749 -- declarations that are the rewriting of an expression function.
3751 Generate_Definition (Designator);
3753 if Debug_Flag_C then
3754 Write_Str ("==> subprogram spec ");
3755 Write_Name (Chars (Designator));
3756 Write_Str (" from ");
3757 Write_Location (Sloc (N));
3758 Write_Eol;
3759 Indent;
3760 end if;
3762 Validate_RCI_Subprogram_Declaration (N);
3763 New_Overloaded_Entity (Designator);
3764 Check_Delayed_Subprogram (Designator);
3766 -- If the type of the first formal of the current subprogram is a
3767 -- non-generic tagged private type, mark the subprogram as being a
3768 -- private primitive. Ditto if this is a function with controlling
3769 -- result, and the return type is currently private. In both cases,
3770 -- the type of the controlling argument or result must be in the
3771 -- current scope for the operation to be primitive.
3773 if Has_Controlling_Result (Designator)
3774 and then Is_Private_Type (Etype (Designator))
3775 and then Scope (Etype (Designator)) = Current_Scope
3776 and then not Is_Generic_Actual_Type (Etype (Designator))
3777 then
3778 Set_Is_Private_Primitive (Designator);
3780 elsif Present (First_Formal (Designator)) then
3781 declare
3782 Formal_Typ : constant Entity_Id :=
3783 Etype (First_Formal (Designator));
3784 begin
3785 Set_Is_Private_Primitive (Designator,
3786 Is_Tagged_Type (Formal_Typ)
3787 and then Scope (Formal_Typ) = Current_Scope
3788 and then Is_Private_Type (Formal_Typ)
3789 and then not Is_Generic_Actual_Type (Formal_Typ));
3790 end;
3791 end if;
3793 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
3794 -- or null.
3796 if Ada_Version >= Ada_2005
3797 and then Comes_From_Source (N)
3798 and then Is_Dispatching_Operation (Designator)
3799 then
3800 declare
3801 E : Entity_Id;
3802 Etyp : Entity_Id;
3804 begin
3805 if Has_Controlling_Result (Designator) then
3806 Etyp := Etype (Designator);
3808 else
3809 E := First_Entity (Designator);
3810 while Present (E)
3811 and then Is_Formal (E)
3812 and then not Is_Controlling_Formal (E)
3813 loop
3814 Next_Entity (E);
3815 end loop;
3817 Etyp := Etype (E);
3818 end if;
3820 if Is_Access_Type (Etyp) then
3821 Etyp := Directly_Designated_Type (Etyp);
3822 end if;
3824 if Is_Interface (Etyp)
3825 and then not Is_Abstract_Subprogram (Designator)
3826 and then not (Ekind (Designator) = E_Procedure
3827 and then Null_Present (Specification (N)))
3828 then
3829 Error_Msg_Name_1 := Chars (Defining_Entity (N));
3831 -- Specialize error message based on procedures vs. functions,
3832 -- since functions can't be null subprograms.
3834 if Ekind (Designator) = E_Procedure then
3835 Error_Msg_N
3836 ("interface procedure % must be abstract or null", N);
3837 else
3838 Error_Msg_N ("interface function % must be abstract", N);
3839 end if;
3840 end if;
3841 end;
3842 end if;
3844 -- What is the following code for, it used to be
3846 -- ??? Set_Suppress_Elaboration_Checks
3847 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
3849 -- The following seems equivalent, but a bit dubious
3851 if Elaboration_Checks_Suppressed (Designator) then
3852 Set_Kill_Elaboration_Checks (Designator);
3853 end if;
3855 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
3856 Set_Categorization_From_Scope (Designator, Scop);
3858 else
3859 -- For a compilation unit, check for library-unit pragmas
3861 Push_Scope (Designator);
3862 Set_Categorization_From_Pragmas (N);
3863 Validate_Categorization_Dependency (N, Designator);
3864 Pop_Scope;
3865 end if;
3867 -- For a compilation unit, set body required. This flag will only be
3868 -- reset if a valid Import or Interface pragma is processed later on.
3870 if Nkind (Parent (N)) = N_Compilation_Unit then
3871 Set_Body_Required (Parent (N), True);
3873 if Ada_Version >= Ada_2005
3874 and then Nkind (Specification (N)) = N_Procedure_Specification
3875 and then Null_Present (Specification (N))
3876 then
3877 Error_Msg_N
3878 ("null procedure cannot be declared at library level", N);
3879 end if;
3880 end if;
3882 Generate_Reference_To_Formals (Designator);
3883 Check_Eliminated (Designator);
3885 if Debug_Flag_C then
3886 Outdent;
3887 Write_Str ("<== subprogram spec ");
3888 Write_Name (Chars (Designator));
3889 Write_Str (" from ");
3890 Write_Location (Sloc (N));
3891 Write_Eol;
3892 end if;
3894 if Is_Protected_Type (Current_Scope) then
3896 -- Indicate that this is a protected operation, because it may be
3897 -- used in subsequent declarations within the protected type.
3899 Set_Convention (Designator, Convention_Protected);
3900 end if;
3902 List_Inherited_Pre_Post_Aspects (Designator);
3904 if Has_Aspects (N) then
3905 Analyze_Aspect_Specifications (N, Designator);
3906 end if;
3907 end Analyze_Subprogram_Declaration;
3909 --------------------------------------
3910 -- Analyze_Subprogram_Specification --
3911 --------------------------------------
3913 -- Reminder: N here really is a subprogram specification (not a subprogram
3914 -- declaration). This procedure is called to analyze the specification in
3915 -- both subprogram bodies and subprogram declarations (specs).
3917 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
3918 Designator : constant Entity_Id := Defining_Entity (N);
3919 Formals : constant List_Id := Parameter_Specifications (N);
3921 -- Start of processing for Analyze_Subprogram_Specification
3923 begin
3924 -- User-defined operator is not allowed in SPARK, except as a renaming
3926 if Nkind (Defining_Unit_Name (N)) = N_Defining_Operator_Symbol
3927 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
3928 then
3929 Check_SPARK_Restriction ("user-defined operator is not allowed", N);
3930 end if;
3932 -- Proceed with analysis. Do not emit a cross-reference entry if the
3933 -- specification comes from an expression function, because it may be
3934 -- the completion of a previous declaration. It is is not, the cross-
3935 -- reference entry will be emitted for the new subprogram declaration.
3937 if Nkind (Parent (N)) /= N_Expression_Function then
3938 Generate_Definition (Designator);
3939 end if;
3941 Set_Contract (Designator, Make_Contract (Sloc (Designator)));
3943 if Nkind (N) = N_Function_Specification then
3944 Set_Ekind (Designator, E_Function);
3945 Set_Mechanism (Designator, Default_Mechanism);
3946 else
3947 Set_Ekind (Designator, E_Procedure);
3948 Set_Etype (Designator, Standard_Void_Type);
3949 end if;
3951 -- Introduce new scope for analysis of the formals and the return type
3953 Set_Scope (Designator, Current_Scope);
3955 if Present (Formals) then
3956 Push_Scope (Designator);
3957 Process_Formals (Formals, N);
3959 -- Check dimensions in N for formals with default expression
3961 Analyze_Dimension_Formals (N, Formals);
3963 -- Ada 2005 (AI-345): If this is an overriding operation of an
3964 -- inherited interface operation, and the controlling type is
3965 -- a synchronized type, replace the type with its corresponding
3966 -- record, to match the proper signature of an overriding operation.
3967 -- Same processing for an access parameter whose designated type is
3968 -- derived from a synchronized interface.
3970 if Ada_Version >= Ada_2005 then
3971 declare
3972 Formal : Entity_Id;
3973 Formal_Typ : Entity_Id;
3974 Rec_Typ : Entity_Id;
3975 Desig_Typ : Entity_Id;
3977 begin
3978 Formal := First_Formal (Designator);
3979 while Present (Formal) loop
3980 Formal_Typ := Etype (Formal);
3982 if Is_Concurrent_Type (Formal_Typ)
3983 and then Present (Corresponding_Record_Type (Formal_Typ))
3984 then
3985 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
3987 if Present (Interfaces (Rec_Typ)) then
3988 Set_Etype (Formal, Rec_Typ);
3989 end if;
3991 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
3992 Desig_Typ := Designated_Type (Formal_Typ);
3994 if Is_Concurrent_Type (Desig_Typ)
3995 and then Present (Corresponding_Record_Type (Desig_Typ))
3996 then
3997 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
3999 if Present (Interfaces (Rec_Typ)) then
4000 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
4001 end if;
4002 end if;
4003 end if;
4005 Next_Formal (Formal);
4006 end loop;
4007 end;
4008 end if;
4010 End_Scope;
4012 -- The subprogram scope is pushed and popped around the processing of
4013 -- the return type for consistency with call above to Process_Formals
4014 -- (which itself can call Analyze_Return_Type), and to ensure that any
4015 -- itype created for the return type will be associated with the proper
4016 -- scope.
4018 elsif Nkind (N) = N_Function_Specification then
4019 Push_Scope (Designator);
4020 Analyze_Return_Type (N);
4021 End_Scope;
4022 end if;
4024 -- Function case
4026 if Nkind (N) = N_Function_Specification then
4028 -- Deal with operator symbol case
4030 if Nkind (Designator) = N_Defining_Operator_Symbol then
4031 Valid_Operator_Definition (Designator);
4032 end if;
4034 May_Need_Actuals (Designator);
4036 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4037 -- the subprogram is abstract also. This does not apply to renaming
4038 -- declarations, where abstractness is inherited, and to subprogram
4039 -- bodies generated for stream operations, which become renamings as
4040 -- bodies.
4042 -- In case of primitives associated with abstract interface types
4043 -- the check is applied later (see Analyze_Subprogram_Declaration).
4045 if not Nkind_In (Original_Node (Parent (N)),
4046 N_Subprogram_Renaming_Declaration,
4047 N_Abstract_Subprogram_Declaration,
4048 N_Formal_Abstract_Subprogram_Declaration)
4049 then
4050 if Is_Abstract_Type (Etype (Designator))
4051 and then not Is_Interface (Etype (Designator))
4052 then
4053 Error_Msg_N
4054 ("function that returns abstract type must be abstract", N);
4056 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4057 -- access result whose designated type is abstract.
4059 elsif Nkind (Result_Definition (N)) = N_Access_Definition
4060 and then
4061 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
4062 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
4063 and then Ada_Version >= Ada_2012
4064 then
4065 Error_Msg_N ("function whose access result designates "
4066 & "abstract type must be abstract", N);
4067 end if;
4068 end if;
4069 end if;
4071 return Designator;
4072 end Analyze_Subprogram_Specification;
4074 --------------------------
4075 -- Build_Body_To_Inline --
4076 --------------------------
4078 procedure Build_Body_To_Inline (N : Node_Id; Subp : Entity_Id) is
4079 Decl : constant Node_Id := Unit_Declaration_Node (Subp);
4080 Original_Body : Node_Id;
4081 Body_To_Analyze : Node_Id;
4082 Max_Size : constant := 10;
4083 Stat_Count : Integer := 0;
4085 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
4086 -- Check for declarations that make inlining not worthwhile
4088 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
4089 -- Check for statements that make inlining not worthwhile: any tasking
4090 -- statement, nested at any level. Keep track of total number of
4091 -- elementary statements, as a measure of acceptable size.
4093 function Has_Pending_Instantiation return Boolean;
4094 -- If some enclosing body contains instantiations that appear before the
4095 -- corresponding generic body, the enclosing body has a freeze node so
4096 -- that it can be elaborated after the generic itself. This might
4097 -- conflict with subsequent inlinings, so that it is unsafe to try to
4098 -- inline in such a case.
4100 function Has_Single_Return return Boolean;
4101 -- In general we cannot inline functions that return unconstrained type.
4102 -- However, we can handle such functions if all return statements return
4103 -- a local variable that is the only declaration in the body of the
4104 -- function. In that case the call can be replaced by that local
4105 -- variable as is done for other inlined calls.
4107 procedure Remove_Pragmas;
4108 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
4109 -- parameter has no meaning when the body is inlined and the formals
4110 -- are rewritten. Remove it from body to inline. The analysis of the
4111 -- non-inlined body will handle the pragma properly.
4113 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
4114 -- If the body of the subprogram includes a call that returns an
4115 -- unconstrained type, the secondary stack is involved, and it
4116 -- is not worth inlining.
4118 ------------------------------
4119 -- Has_Excluded_Declaration --
4120 ------------------------------
4122 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
4123 D : Node_Id;
4125 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
4126 -- Nested subprograms make a given body ineligible for inlining, but
4127 -- we make an exception for instantiations of unchecked conversion.
4128 -- The body has not been analyzed yet, so check the name, and verify
4129 -- that the visible entity with that name is the predefined unit.
4131 -----------------------------
4132 -- Is_Unchecked_Conversion --
4133 -----------------------------
4135 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
4136 Id : constant Node_Id := Name (D);
4137 Conv : Entity_Id;
4139 begin
4140 if Nkind (Id) = N_Identifier
4141 and then Chars (Id) = Name_Unchecked_Conversion
4142 then
4143 Conv := Current_Entity (Id);
4145 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
4146 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
4147 then
4148 Conv := Current_Entity (Selector_Name (Id));
4149 else
4150 return False;
4151 end if;
4153 return Present (Conv)
4154 and then Is_Predefined_File_Name
4155 (Unit_File_Name (Get_Source_Unit (Conv)))
4156 and then Is_Intrinsic_Subprogram (Conv);
4157 end Is_Unchecked_Conversion;
4159 -- Start of processing for Has_Excluded_Declaration
4161 begin
4162 D := First (Decls);
4163 while Present (D) loop
4164 if (Nkind (D) = N_Function_Instantiation
4165 and then not Is_Unchecked_Conversion (D))
4166 or else Nkind_In (D, N_Protected_Type_Declaration,
4167 N_Package_Declaration,
4168 N_Package_Instantiation,
4169 N_Subprogram_Body,
4170 N_Procedure_Instantiation,
4171 N_Task_Type_Declaration)
4172 then
4173 Cannot_Inline
4174 ("cannot inline & (non-allowed declaration)?", D, Subp);
4175 return True;
4176 end if;
4178 Next (D);
4179 end loop;
4181 return False;
4182 end Has_Excluded_Declaration;
4184 ----------------------------
4185 -- Has_Excluded_Statement --
4186 ----------------------------
4188 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
4189 S : Node_Id;
4190 E : Node_Id;
4192 begin
4193 S := First (Stats);
4194 while Present (S) loop
4195 Stat_Count := Stat_Count + 1;
4197 if Nkind_In (S, N_Abort_Statement,
4198 N_Asynchronous_Select,
4199 N_Conditional_Entry_Call,
4200 N_Delay_Relative_Statement,
4201 N_Delay_Until_Statement,
4202 N_Selective_Accept,
4203 N_Timed_Entry_Call)
4204 then
4205 Cannot_Inline
4206 ("cannot inline & (non-allowed statement)?", S, Subp);
4207 return True;
4209 elsif Nkind (S) = N_Block_Statement then
4210 if Present (Declarations (S))
4211 and then Has_Excluded_Declaration (Declarations (S))
4212 then
4213 return True;
4215 elsif Present (Handled_Statement_Sequence (S))
4216 and then
4217 (Present
4218 (Exception_Handlers (Handled_Statement_Sequence (S)))
4219 or else
4220 Has_Excluded_Statement
4221 (Statements (Handled_Statement_Sequence (S))))
4222 then
4223 return True;
4224 end if;
4226 elsif Nkind (S) = N_Case_Statement then
4227 E := First (Alternatives (S));
4228 while Present (E) loop
4229 if Has_Excluded_Statement (Statements (E)) then
4230 return True;
4231 end if;
4233 Next (E);
4234 end loop;
4236 elsif Nkind (S) = N_If_Statement then
4237 if Has_Excluded_Statement (Then_Statements (S)) then
4238 return True;
4239 end if;
4241 if Present (Elsif_Parts (S)) then
4242 E := First (Elsif_Parts (S));
4243 while Present (E) loop
4244 if Has_Excluded_Statement (Then_Statements (E)) then
4245 return True;
4246 end if;
4248 Next (E);
4249 end loop;
4250 end if;
4252 if Present (Else_Statements (S))
4253 and then Has_Excluded_Statement (Else_Statements (S))
4254 then
4255 return True;
4256 end if;
4258 elsif Nkind (S) = N_Loop_Statement
4259 and then Has_Excluded_Statement (Statements (S))
4260 then
4261 return True;
4263 elsif Nkind (S) = N_Extended_Return_Statement then
4264 if Has_Excluded_Statement
4265 (Statements (Handled_Statement_Sequence (S)))
4266 or else Present
4267 (Exception_Handlers (Handled_Statement_Sequence (S)))
4268 then
4269 return True;
4270 end if;
4271 end if;
4273 Next (S);
4274 end loop;
4276 return False;
4277 end Has_Excluded_Statement;
4279 -------------------------------
4280 -- Has_Pending_Instantiation --
4281 -------------------------------
4283 function Has_Pending_Instantiation return Boolean is
4284 S : Entity_Id;
4286 begin
4287 S := Current_Scope;
4288 while Present (S) loop
4289 if Is_Compilation_Unit (S)
4290 or else Is_Child_Unit (S)
4291 then
4292 return False;
4294 elsif Ekind (S) = E_Package
4295 and then Has_Forward_Instantiation (S)
4296 then
4297 return True;
4298 end if;
4300 S := Scope (S);
4301 end loop;
4303 return False;
4304 end Has_Pending_Instantiation;
4306 ------------------------
4307 -- Has_Single_Return --
4308 ------------------------
4310 function Has_Single_Return return Boolean is
4311 Return_Statement : Node_Id := Empty;
4313 function Check_Return (N : Node_Id) return Traverse_Result;
4315 ------------------
4316 -- Check_Return --
4317 ------------------
4319 function Check_Return (N : Node_Id) return Traverse_Result is
4320 begin
4321 if Nkind (N) = N_Simple_Return_Statement then
4322 if Present (Expression (N))
4323 and then Is_Entity_Name (Expression (N))
4324 then
4325 if No (Return_Statement) then
4326 Return_Statement := N;
4327 return OK;
4329 elsif Chars (Expression (N)) =
4330 Chars (Expression (Return_Statement))
4331 then
4332 return OK;
4334 else
4335 return Abandon;
4336 end if;
4338 -- A return statement within an extended return is a noop
4339 -- after inlining.
4341 elsif No (Expression (N))
4342 and then Nkind (Parent (Parent (N))) =
4343 N_Extended_Return_Statement
4344 then
4345 return OK;
4347 else
4348 -- Expression has wrong form
4350 return Abandon;
4351 end if;
4353 -- We can only inline a build-in-place function if
4354 -- it has a single extended return.
4356 elsif Nkind (N) = N_Extended_Return_Statement then
4357 if No (Return_Statement) then
4358 Return_Statement := N;
4359 return OK;
4361 else
4362 return Abandon;
4363 end if;
4365 else
4366 return OK;
4367 end if;
4368 end Check_Return;
4370 function Check_All_Returns is new Traverse_Func (Check_Return);
4372 -- Start of processing for Has_Single_Return
4374 begin
4375 if Check_All_Returns (N) /= OK then
4376 return False;
4378 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
4379 return True;
4381 else
4382 return Present (Declarations (N))
4383 and then Present (First (Declarations (N)))
4384 and then Chars (Expression (Return_Statement)) =
4385 Chars (Defining_Identifier (First (Declarations (N))));
4386 end if;
4387 end Has_Single_Return;
4389 --------------------
4390 -- Remove_Pragmas --
4391 --------------------
4393 procedure Remove_Pragmas is
4394 Decl : Node_Id;
4395 Nxt : Node_Id;
4397 begin
4398 Decl := First (Declarations (Body_To_Analyze));
4399 while Present (Decl) loop
4400 Nxt := Next (Decl);
4402 if Nkind (Decl) = N_Pragma
4403 and then Nam_In (Pragma_Name (Decl), Name_Unreferenced,
4404 Name_Unmodified)
4405 then
4406 Remove (Decl);
4407 end if;
4409 Decl := Nxt;
4410 end loop;
4411 end Remove_Pragmas;
4413 --------------------------
4414 -- Uses_Secondary_Stack --
4415 --------------------------
4417 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
4418 function Check_Call (N : Node_Id) return Traverse_Result;
4419 -- Look for function calls that return an unconstrained type
4421 ----------------
4422 -- Check_Call --
4423 ----------------
4425 function Check_Call (N : Node_Id) return Traverse_Result is
4426 begin
4427 if Nkind (N) = N_Function_Call
4428 and then Is_Entity_Name (Name (N))
4429 and then Is_Composite_Type (Etype (Entity (Name (N))))
4430 and then not Is_Constrained (Etype (Entity (Name (N))))
4431 then
4432 Cannot_Inline
4433 ("cannot inline & (call returns unconstrained type)?",
4434 N, Subp);
4435 return Abandon;
4436 else
4437 return OK;
4438 end if;
4439 end Check_Call;
4441 function Check_Calls is new Traverse_Func (Check_Call);
4443 begin
4444 return Check_Calls (Bod) = Abandon;
4445 end Uses_Secondary_Stack;
4447 -- Start of processing for Build_Body_To_Inline
4449 begin
4450 -- Return immediately if done already
4452 if Nkind (Decl) = N_Subprogram_Declaration
4453 and then Present (Body_To_Inline (Decl))
4454 then
4455 return;
4457 -- Functions that return unconstrained composite types require
4458 -- secondary stack handling, and cannot currently be inlined, unless
4459 -- all return statements return a local variable that is the first
4460 -- local declaration in the body.
4462 elsif Ekind (Subp) = E_Function
4463 and then not Is_Scalar_Type (Etype (Subp))
4464 and then not Is_Access_Type (Etype (Subp))
4465 and then not Is_Constrained (Etype (Subp))
4466 then
4467 if not Has_Single_Return then
4468 Cannot_Inline
4469 ("cannot inline & (unconstrained return type)?", N, Subp);
4470 return;
4471 end if;
4473 -- Ditto for functions that return controlled types, where controlled
4474 -- actions interfere in complex ways with inlining.
4476 elsif Ekind (Subp) = E_Function
4477 and then Needs_Finalization (Etype (Subp))
4478 then
4479 Cannot_Inline
4480 ("cannot inline & (controlled return type)?", N, Subp);
4481 return;
4482 end if;
4484 if Present (Declarations (N))
4485 and then Has_Excluded_Declaration (Declarations (N))
4486 then
4487 return;
4488 end if;
4490 if Present (Handled_Statement_Sequence (N)) then
4491 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
4492 Cannot_Inline
4493 ("cannot inline& (exception handler)?",
4494 First (Exception_Handlers (Handled_Statement_Sequence (N))),
4495 Subp);
4496 return;
4497 elsif
4498 Has_Excluded_Statement
4499 (Statements (Handled_Statement_Sequence (N)))
4500 then
4501 return;
4502 end if;
4503 end if;
4505 -- We do not inline a subprogram that is too large, unless it is
4506 -- marked Inline_Always. This pragma does not suppress the other
4507 -- checks on inlining (forbidden declarations, handlers, etc).
4509 if Stat_Count > Max_Size
4510 and then not Has_Pragma_Inline_Always (Subp)
4511 then
4512 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
4513 return;
4514 end if;
4516 if Has_Pending_Instantiation then
4517 Cannot_Inline
4518 ("cannot inline& (forward instance within enclosing body)?",
4519 N, Subp);
4520 return;
4521 end if;
4523 -- Within an instance, the body to inline must be treated as a nested
4524 -- generic, so that the proper global references are preserved.
4526 -- Note that we do not do this at the library level, because it is not
4527 -- needed, and furthermore this causes trouble if front end inlining
4528 -- is activated (-gnatN).
4530 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
4531 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
4532 Original_Body := Copy_Generic_Node (N, Empty, True);
4533 else
4534 Original_Body := Copy_Separate_Tree (N);
4535 end if;
4537 -- We need to capture references to the formals in order to substitute
4538 -- the actuals at the point of inlining, i.e. instantiation. To treat
4539 -- the formals as globals to the body to inline, we nest it within
4540 -- a dummy parameterless subprogram, declared within the real one.
4541 -- To avoid generating an internal name (which is never public, and
4542 -- which affects serial numbers of other generated names), we use
4543 -- an internal symbol that cannot conflict with user declarations.
4545 Set_Parameter_Specifications (Specification (Original_Body), No_List);
4546 Set_Defining_Unit_Name
4547 (Specification (Original_Body),
4548 Make_Defining_Identifier (Sloc (N), Name_uParent));
4549 Set_Corresponding_Spec (Original_Body, Empty);
4551 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
4553 -- Set return type of function, which is also global and does not need
4554 -- to be resolved.
4556 if Ekind (Subp) = E_Function then
4557 Set_Result_Definition (Specification (Body_To_Analyze),
4558 New_Occurrence_Of (Etype (Subp), Sloc (N)));
4559 end if;
4561 if No (Declarations (N)) then
4562 Set_Declarations (N, New_List (Body_To_Analyze));
4563 else
4564 Append (Body_To_Analyze, Declarations (N));
4565 end if;
4567 Expander_Mode_Save_And_Set (False);
4568 Remove_Pragmas;
4570 Analyze (Body_To_Analyze);
4571 Push_Scope (Defining_Entity (Body_To_Analyze));
4572 Save_Global_References (Original_Body);
4573 End_Scope;
4574 Remove (Body_To_Analyze);
4576 Expander_Mode_Restore;
4578 -- Restore environment if previously saved
4580 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
4581 Restore_Env;
4582 end if;
4584 -- If secondary stk used there is no point in inlining. We have
4585 -- already issued the warning in this case, so nothing to do.
4587 if Uses_Secondary_Stack (Body_To_Analyze) then
4588 return;
4589 end if;
4591 Set_Body_To_Inline (Decl, Original_Body);
4592 Set_Ekind (Defining_Entity (Original_Body), Ekind (Subp));
4593 Set_Is_Inlined (Subp);
4594 end Build_Body_To_Inline;
4596 -------------------
4597 -- Cannot_Inline --
4598 -------------------
4600 procedure Cannot_Inline
4601 (Msg : String;
4602 N : Node_Id;
4603 Subp : Entity_Id;
4604 Is_Serious : Boolean := False)
4606 begin
4607 pragma Assert (Msg (Msg'Last) = '?');
4609 -- Old semantics
4611 if not Debug_Flag_Dot_K then
4613 -- Do not emit warning if this is a predefined unit which is not
4614 -- the main unit. With validity checks enabled, some predefined
4615 -- subprograms may contain nested subprograms and become ineligible
4616 -- for inlining.
4618 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
4619 and then not In_Extended_Main_Source_Unit (Subp)
4620 then
4621 null;
4623 elsif Has_Pragma_Inline_Always (Subp) then
4625 -- Remove last character (question mark) to make this into an
4626 -- error, because the Inline_Always pragma cannot be obeyed.
4628 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
4630 elsif Ineffective_Inline_Warnings then
4631 Error_Msg_NE (Msg & "p?", N, Subp);
4632 end if;
4634 return;
4636 -- New semantics
4638 elsif Is_Serious then
4640 -- Remove last character (question mark) to make this into an error.
4642 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
4644 elsif Optimization_Level = 0 then
4646 -- Do not emit warning if this is a predefined unit which is not
4647 -- the main unit. This behavior is currently provided for backward
4648 -- compatibility but it will be removed when we enforce the
4649 -- strictness of the new rules.
4651 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
4652 and then not In_Extended_Main_Source_Unit (Subp)
4653 then
4654 null;
4656 elsif Has_Pragma_Inline_Always (Subp) then
4658 -- Emit a warning if this is a call to a runtime subprogram
4659 -- which is located inside a generic. Previously this call
4660 -- was silently skipped!
4662 if Is_Generic_Instance (Subp) then
4663 declare
4664 Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
4665 begin
4666 if Is_Predefined_File_Name
4667 (Unit_File_Name (Get_Source_Unit (Gen_P)))
4668 then
4669 Set_Is_Inlined (Subp, False);
4670 Error_Msg_NE (Msg & "p?", N, Subp);
4671 return;
4672 end if;
4673 end;
4674 end if;
4676 -- Remove last character (question mark) to make this into an
4677 -- error, because the Inline_Always pragma cannot be obeyed.
4679 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
4681 else pragma Assert (Front_End_Inlining);
4682 Set_Is_Inlined (Subp, False);
4684 -- When inlining cannot take place we must issue an error.
4685 -- For backward compatibility we still report a warning.
4687 if Ineffective_Inline_Warnings then
4688 Error_Msg_NE (Msg & "p?", N, Subp);
4689 end if;
4690 end if;
4692 -- Compiling with optimizations enabled it is too early to report
4693 -- problems since the backend may still perform inlining. In order
4694 -- to report unhandled inlinings the program must be compiled with
4695 -- -Winline and the error is reported by the backend.
4697 else
4698 null;
4699 end if;
4700 end Cannot_Inline;
4702 ------------------------------------
4703 -- Check_And_Build_Body_To_Inline --
4704 ------------------------------------
4706 procedure Check_And_Build_Body_To_Inline
4707 (N : Node_Id;
4708 Spec_Id : Entity_Id;
4709 Body_Id : Entity_Id)
4711 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
4712 -- Use generic machinery to build an unexpanded body for the subprogram.
4713 -- This body is subsequently used for inline expansions at call sites.
4715 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
4716 -- Return true if we generate code for the function body N, the function
4717 -- body N has no local declarations and its unique statement is a single
4718 -- extended return statement with a handled statements sequence.
4720 function Check_Body_To_Inline
4721 (N : Node_Id;
4722 Subp : Entity_Id) return Boolean;
4723 -- N is the N_Subprogram_Body of Subp. Return true if Subp can be
4724 -- inlined by the frontend. These are the rules:
4725 -- * At -O0 use fe inlining when inline_always is specified except if
4726 -- the function returns a controlled type.
4727 -- * At other optimization levels use the fe inlining for both inline
4728 -- and inline_always in the following cases:
4729 -- - function returning a known at compile time constant
4730 -- - function returning a call to an intrinsic function
4731 -- - function returning an unconstrained type (see Can_Split
4732 -- Unconstrained_Function).
4733 -- - function returning a call to a frontend-inlined function
4734 -- Use the back-end mechanism otherwise
4736 -- In addition, in the following cases the function cannot be inlined by
4737 -- the frontend:
4738 -- - functions that uses the secondary stack
4739 -- - functions that have declarations of:
4740 -- - Concurrent types
4741 -- - Packages
4742 -- - Instantiations
4743 -- - Subprograms
4744 -- - functions that have some of the following statements:
4745 -- - abort
4746 -- - asynchronous-select
4747 -- - conditional-entry-call
4748 -- - delay-relative
4749 -- - delay-until
4750 -- - selective-accept
4751 -- - timed-entry-call
4752 -- - functions that have exception handlers
4753 -- - functions that have some enclosing body containing instantiations
4754 -- that appear before the corresponding generic body.
4756 procedure Generate_Body_To_Inline
4757 (N : Node_Id;
4758 Body_To_Inline : out Node_Id);
4759 -- Generate a parameterless duplicate of subprogram body N. Occurrences
4760 -- of pragmas referencing the formals are removed since they have no
4761 -- meaning when the body is inlined and the formals are rewritten (the
4762 -- analysis of the non-inlined body will handle these pragmas properly).
4763 -- A new internal name is associated with Body_To_Inline.
4765 procedure Split_Unconstrained_Function
4766 (N : Node_Id;
4767 Spec_Id : Entity_Id);
4768 -- N is an inlined function body that returns an unconstrained type and
4769 -- has a single extended return statement. Split N in two subprograms:
4770 -- a procedure P' and a function F'. The formals of P' duplicate the
4771 -- formals of N plus an extra formal which is used return a value;
4772 -- its body is composed by the declarations and list of statements
4773 -- of the extended return statement of N.
4775 --------------------------
4776 -- Build_Body_To_Inline --
4777 --------------------------
4779 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
4780 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
4781 Original_Body : Node_Id;
4782 Body_To_Analyze : Node_Id;
4784 begin
4785 pragma Assert (Current_Scope = Spec_Id);
4787 -- Within an instance, the body to inline must be treated as a nested
4788 -- generic, so that the proper global references are preserved. We
4789 -- do not do this at the library level, because it is not needed, and
4790 -- furthermore this causes trouble if front end inlining is activated
4791 -- (-gnatN).
4793 if In_Instance
4794 and then Scope (Current_Scope) /= Standard_Standard
4795 then
4796 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
4797 end if;
4799 -- We need to capture references to the formals in order
4800 -- to substitute the actuals at the point of inlining, i.e.
4801 -- instantiation. To treat the formals as globals to the body to
4802 -- inline, we nest it within a dummy parameterless subprogram,
4803 -- declared within the real one.
4805 Generate_Body_To_Inline (N, Original_Body);
4806 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
4808 -- Set return type of function, which is also global and does not
4809 -- need to be resolved.
4811 if Ekind (Spec_Id) = E_Function then
4812 Set_Result_Definition (Specification (Body_To_Analyze),
4813 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
4814 end if;
4816 if No (Declarations (N)) then
4817 Set_Declarations (N, New_List (Body_To_Analyze));
4818 else
4819 Append_To (Declarations (N), Body_To_Analyze);
4820 end if;
4822 Preanalyze (Body_To_Analyze);
4824 Push_Scope (Defining_Entity (Body_To_Analyze));
4825 Save_Global_References (Original_Body);
4826 End_Scope;
4827 Remove (Body_To_Analyze);
4829 -- Restore environment if previously saved
4831 if In_Instance
4832 and then Scope (Current_Scope) /= Standard_Standard
4833 then
4834 Restore_Env;
4835 end if;
4837 pragma Assert (No (Body_To_Inline (Decl)));
4838 Set_Body_To_Inline (Decl, Original_Body);
4839 Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
4840 end Build_Body_To_Inline;
4842 --------------------------
4843 -- Check_Body_To_Inline --
4844 --------------------------
4846 function Check_Body_To_Inline
4847 (N : Node_Id;
4848 Subp : Entity_Id) return Boolean
4850 Max_Size : constant := 10;
4851 Stat_Count : Integer := 0;
4853 function Has_Excluded_Declaration (Decls : List_Id) return Boolean;
4854 -- Check for declarations that make inlining not worthwhile
4856 function Has_Excluded_Statement (Stats : List_Id) return Boolean;
4857 -- Check for statements that make inlining not worthwhile: any
4858 -- tasking statement, nested at any level. Keep track of total
4859 -- number of elementary statements, as a measure of acceptable size.
4861 function Has_Pending_Instantiation return Boolean;
4862 -- Return True if some enclosing body contains instantiations that
4863 -- appear before the corresponding generic body.
4865 function Returns_Compile_Time_Constant (N : Node_Id) return Boolean;
4866 -- Return True if all the return statements of the function body N
4867 -- are simple return statements and return a compile time constant
4869 function Returns_Intrinsic_Function_Call (N : Node_Id) return Boolean;
4870 -- Return True if all the return statements of the function body N
4871 -- are simple return statements and return an intrinsic function call
4873 function Uses_Secondary_Stack (N : Node_Id) return Boolean;
4874 -- If the body of the subprogram includes a call that returns an
4875 -- unconstrained type, the secondary stack is involved, and it
4876 -- is not worth inlining.
4878 ------------------------------
4879 -- Has_Excluded_Declaration --
4880 ------------------------------
4882 function Has_Excluded_Declaration (Decls : List_Id) return Boolean is
4883 D : Node_Id;
4885 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
4886 -- Nested subprograms make a given body ineligible for inlining,
4887 -- but we make an exception for instantiations of unchecked
4888 -- conversion. The body has not been analyzed yet, so check the
4889 -- name, and verify that the visible entity with that name is the
4890 -- predefined unit.
4892 -----------------------------
4893 -- Is_Unchecked_Conversion --
4894 -----------------------------
4896 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
4897 Id : constant Node_Id := Name (D);
4898 Conv : Entity_Id;
4900 begin
4901 if Nkind (Id) = N_Identifier
4902 and then Chars (Id) = Name_Unchecked_Conversion
4903 then
4904 Conv := Current_Entity (Id);
4906 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
4907 and then
4908 Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
4909 then
4910 Conv := Current_Entity (Selector_Name (Id));
4911 else
4912 return False;
4913 end if;
4915 return Present (Conv)
4916 and then Is_Predefined_File_Name
4917 (Unit_File_Name (Get_Source_Unit (Conv)))
4918 and then Is_Intrinsic_Subprogram (Conv);
4919 end Is_Unchecked_Conversion;
4921 -- Start of processing for Has_Excluded_Declaration
4923 begin
4924 D := First (Decls);
4925 while Present (D) loop
4926 if (Nkind (D) = N_Function_Instantiation
4927 and then not Is_Unchecked_Conversion (D))
4928 or else Nkind_In (D, N_Protected_Type_Declaration,
4929 N_Package_Declaration,
4930 N_Package_Instantiation,
4931 N_Subprogram_Body,
4932 N_Procedure_Instantiation,
4933 N_Task_Type_Declaration)
4934 then
4935 Cannot_Inline
4936 ("cannot inline & (non-allowed declaration)?", D, Subp);
4938 return True;
4939 end if;
4941 Next (D);
4942 end loop;
4944 return False;
4945 end Has_Excluded_Declaration;
4947 ----------------------------
4948 -- Has_Excluded_Statement --
4949 ----------------------------
4951 function Has_Excluded_Statement (Stats : List_Id) return Boolean is
4952 S : Node_Id;
4953 E : Node_Id;
4955 begin
4956 S := First (Stats);
4957 while Present (S) loop
4958 Stat_Count := Stat_Count + 1;
4960 if Nkind_In (S, N_Abort_Statement,
4961 N_Asynchronous_Select,
4962 N_Conditional_Entry_Call,
4963 N_Delay_Relative_Statement,
4964 N_Delay_Until_Statement,
4965 N_Selective_Accept,
4966 N_Timed_Entry_Call)
4967 then
4968 Cannot_Inline
4969 ("cannot inline & (non-allowed statement)?", S, Subp);
4970 return True;
4972 elsif Nkind (S) = N_Block_Statement then
4973 if Present (Declarations (S))
4974 and then Has_Excluded_Declaration (Declarations (S))
4975 then
4976 return True;
4978 elsif Present (Handled_Statement_Sequence (S)) then
4979 if Present
4980 (Exception_Handlers (Handled_Statement_Sequence (S)))
4981 then
4982 Cannot_Inline
4983 ("cannot inline& (exception handler)?",
4984 First (Exception_Handlers
4985 (Handled_Statement_Sequence (S))),
4986 Subp);
4987 return True;
4989 elsif Has_Excluded_Statement
4990 (Statements (Handled_Statement_Sequence (S)))
4991 then
4992 return True;
4993 end if;
4994 end if;
4996 elsif Nkind (S) = N_Case_Statement then
4997 E := First (Alternatives (S));
4998 while Present (E) loop
4999 if Has_Excluded_Statement (Statements (E)) then
5000 return True;
5001 end if;
5003 Next (E);
5004 end loop;
5006 elsif Nkind (S) = N_If_Statement then
5007 if Has_Excluded_Statement (Then_Statements (S)) then
5008 return True;
5009 end if;
5011 if Present (Elsif_Parts (S)) then
5012 E := First (Elsif_Parts (S));
5013 while Present (E) loop
5014 if Has_Excluded_Statement (Then_Statements (E)) then
5015 return True;
5016 end if;
5017 Next (E);
5018 end loop;
5019 end if;
5021 if Present (Else_Statements (S))
5022 and then Has_Excluded_Statement (Else_Statements (S))
5023 then
5024 return True;
5025 end if;
5027 elsif Nkind (S) = N_Loop_Statement
5028 and then Has_Excluded_Statement (Statements (S))
5029 then
5030 return True;
5032 elsif Nkind (S) = N_Extended_Return_Statement then
5033 if Present (Handled_Statement_Sequence (S))
5034 and then
5035 Has_Excluded_Statement
5036 (Statements (Handled_Statement_Sequence (S)))
5037 then
5038 return True;
5040 elsif Present (Handled_Statement_Sequence (S))
5041 and then
5042 Present (Exception_Handlers
5043 (Handled_Statement_Sequence (S)))
5044 then
5045 Cannot_Inline
5046 ("cannot inline& (exception handler)?",
5047 First (Exception_Handlers
5048 (Handled_Statement_Sequence (S))),
5049 Subp);
5050 return True;
5051 end if;
5052 end if;
5054 Next (S);
5055 end loop;
5057 return False;
5058 end Has_Excluded_Statement;
5060 -------------------------------
5061 -- Has_Pending_Instantiation --
5062 -------------------------------
5064 function Has_Pending_Instantiation return Boolean is
5065 S : Entity_Id;
5067 begin
5068 S := Current_Scope;
5069 while Present (S) loop
5070 if Is_Compilation_Unit (S)
5071 or else Is_Child_Unit (S)
5072 then
5073 return False;
5075 elsif Ekind (S) = E_Package
5076 and then Has_Forward_Instantiation (S)
5077 then
5078 return True;
5079 end if;
5081 S := Scope (S);
5082 end loop;
5084 return False;
5085 end Has_Pending_Instantiation;
5087 ------------------------------------
5088 -- Returns_Compile_Time_Constant --
5089 ------------------------------------
5091 function Returns_Compile_Time_Constant (N : Node_Id) return Boolean is
5093 function Check_Return (N : Node_Id) return Traverse_Result;
5095 ------------------
5096 -- Check_Return --
5097 ------------------
5099 function Check_Return (N : Node_Id) return Traverse_Result is
5100 begin
5101 if Nkind (N) = N_Extended_Return_Statement then
5102 return Abandon;
5104 elsif Nkind (N) = N_Simple_Return_Statement then
5105 if Present (Expression (N)) then
5106 declare
5107 Orig_Expr : constant Node_Id :=
5108 Original_Node (Expression (N));
5110 begin
5111 if Nkind_In (Orig_Expr, N_Integer_Literal,
5112 N_Real_Literal,
5113 N_Character_Literal)
5114 then
5115 return OK;
5117 elsif Is_Entity_Name (Orig_Expr)
5118 and then Ekind (Entity (Orig_Expr)) = E_Constant
5119 and then Is_Static_Expression (Orig_Expr)
5120 then
5121 return OK;
5122 else
5123 return Abandon;
5124 end if;
5125 end;
5127 -- Expression has wrong form
5129 else
5130 return Abandon;
5131 end if;
5133 -- Continue analyzing statements
5135 else
5136 return OK;
5137 end if;
5138 end Check_Return;
5140 function Check_All_Returns is new Traverse_Func (Check_Return);
5142 -- Start of processing for Returns_Compile_Time_Constant
5144 begin
5145 return Check_All_Returns (N) = OK;
5146 end Returns_Compile_Time_Constant;
5148 --------------------------------------
5149 -- Returns_Intrinsic_Function_Call --
5150 --------------------------------------
5152 function Returns_Intrinsic_Function_Call
5153 (N : Node_Id) return Boolean
5155 function Check_Return (N : Node_Id) return Traverse_Result;
5157 ------------------
5158 -- Check_Return --
5159 ------------------
5161 function Check_Return (N : Node_Id) return Traverse_Result is
5162 begin
5163 if Nkind (N) = N_Extended_Return_Statement then
5164 return Abandon;
5166 elsif Nkind (N) = N_Simple_Return_Statement then
5167 if Present (Expression (N)) then
5168 declare
5169 Orig_Expr : constant Node_Id :=
5170 Original_Node (Expression (N));
5172 begin
5173 if Nkind (Orig_Expr) in N_Op
5174 and then Is_Intrinsic_Subprogram (Entity (Orig_Expr))
5175 then
5176 return OK;
5178 elsif Nkind (Orig_Expr) in N_Has_Entity
5179 and then Present (Entity (Orig_Expr))
5180 and then Ekind (Entity (Orig_Expr)) = E_Function
5181 and then Is_Inlined (Entity (Orig_Expr))
5182 then
5183 return OK;
5185 elsif Nkind (Orig_Expr) in N_Has_Entity
5186 and then Present (Entity (Orig_Expr))
5187 and then Is_Intrinsic_Subprogram (Entity (Orig_Expr))
5188 then
5189 return OK;
5191 else
5192 return Abandon;
5193 end if;
5194 end;
5196 -- Expression has wrong form
5198 else
5199 return Abandon;
5200 end if;
5202 -- Continue analyzing statements
5204 else
5205 return OK;
5206 end if;
5207 end Check_Return;
5209 function Check_All_Returns is new Traverse_Func (Check_Return);
5211 -- Start of processing for Returns_Intrinsic_Function_Call
5213 begin
5214 return Check_All_Returns (N) = OK;
5215 end Returns_Intrinsic_Function_Call;
5217 --------------------------
5218 -- Uses_Secondary_Stack --
5219 --------------------------
5221 function Uses_Secondary_Stack (N : Node_Id) return Boolean is
5223 function Check_Call (N : Node_Id) return Traverse_Result;
5224 -- Look for function calls that return an unconstrained type
5226 ----------------
5227 -- Check_Call --
5228 ----------------
5230 function Check_Call (N : Node_Id) return Traverse_Result is
5231 begin
5232 if Nkind (N) = N_Function_Call
5233 and then Is_Entity_Name (Name (N))
5234 and then Is_Composite_Type (Etype (Entity (Name (N))))
5235 and then not Is_Constrained (Etype (Entity (Name (N))))
5236 then
5237 Cannot_Inline
5238 ("cannot inline & (call returns unconstrained type)?",
5239 N, Subp);
5241 return Abandon;
5242 else
5243 return OK;
5244 end if;
5245 end Check_Call;
5247 function Check_Calls is new Traverse_Func (Check_Call);
5249 -- Start of processing for Uses_Secondary_Stack
5251 begin
5252 return Check_Calls (N) = Abandon;
5253 end Uses_Secondary_Stack;
5255 -- Local variables
5257 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
5258 May_Inline : constant Boolean :=
5259 Has_Pragma_Inline_Always (Spec_Id)
5260 or else (Has_Pragma_Inline (Spec_Id)
5261 and then ((Optimization_Level > 0
5262 and then Ekind (Spec_Id)
5263 = E_Function)
5264 or else Front_End_Inlining));
5265 Body_To_Analyze : Node_Id;
5267 -- Start of processing for Check_Body_To_Inline
5269 begin
5270 -- No action needed in stubs since the attribute Body_To_Inline
5271 -- is not available
5273 if Nkind (Decl) = N_Subprogram_Body_Stub then
5274 return False;
5276 -- Cannot build the body to inline if the attribute is already set.
5277 -- This attribute may have been set if this is a subprogram renaming
5278 -- declarations (see Freeze.Build_Renamed_Body).
5280 elsif Present (Body_To_Inline (Decl)) then
5281 return False;
5283 -- No action needed if the subprogram does not fulfill the minimum
5284 -- conditions to be inlined by the frontend
5286 elsif not May_Inline then
5287 return False;
5288 end if;
5290 -- Check excluded declarations
5292 if Present (Declarations (N))
5293 and then Has_Excluded_Declaration (Declarations (N))
5294 then
5295 return False;
5296 end if;
5298 -- Check excluded statements
5300 if Present (Handled_Statement_Sequence (N)) then
5301 if Present
5302 (Exception_Handlers (Handled_Statement_Sequence (N)))
5303 then
5304 Cannot_Inline
5305 ("cannot inline& (exception handler)?",
5306 First
5307 (Exception_Handlers (Handled_Statement_Sequence (N))),
5308 Subp);
5310 return False;
5312 elsif Has_Excluded_Statement
5313 (Statements (Handled_Statement_Sequence (N)))
5314 then
5315 return False;
5316 end if;
5317 end if;
5319 -- For backward compatibility, compiling under -gnatN we do not
5320 -- inline a subprogram that is too large, unless it is marked
5321 -- Inline_Always. This pragma does not suppress the other checks
5322 -- on inlining (forbidden declarations, handlers, etc).
5324 if Front_End_Inlining
5325 and then not Has_Pragma_Inline_Always (Subp)
5326 and then Stat_Count > Max_Size
5327 then
5328 Cannot_Inline ("cannot inline& (body too large)?", N, Subp);
5329 return False;
5330 end if;
5332 -- If some enclosing body contains instantiations that appear before
5333 -- the corresponding generic body, the enclosing body has a freeze
5334 -- node so that it can be elaborated after the generic itself. This
5335 -- might conflict with subsequent inlinings, so that it is unsafe to
5336 -- try to inline in such a case.
5338 if Has_Pending_Instantiation then
5339 Cannot_Inline
5340 ("cannot inline& (forward instance within enclosing body)?",
5341 N, Subp);
5343 return False;
5344 end if;
5346 -- Generate and preanalyze the body to inline (needed to perform
5347 -- the rest of the checks)
5349 Generate_Body_To_Inline (N, Body_To_Analyze);
5351 if Ekind (Subp) = E_Function then
5352 Set_Result_Definition (Specification (Body_To_Analyze),
5353 New_Occurrence_Of (Etype (Subp), Sloc (N)));
5354 end if;
5356 -- Nest the body to analyze within the real one
5358 if No (Declarations (N)) then
5359 Set_Declarations (N, New_List (Body_To_Analyze));
5360 else
5361 Append_To (Declarations (N), Body_To_Analyze);
5362 end if;
5364 Preanalyze (Body_To_Analyze);
5365 Remove (Body_To_Analyze);
5367 -- Keep separate checks needed when compiling without optimizations
5369 if Optimization_Level = 0
5371 -- AAMP and VM targets have no support for inlining in the backend
5372 -- and hence we use frontend inlining at all optimization levels.
5374 or else AAMP_On_Target
5375 or else VM_Target /= No_VM
5376 then
5377 -- Cannot inline functions whose body has a call that returns an
5378 -- unconstrained type since the secondary stack is involved, and
5379 -- it is not worth inlining.
5381 if Uses_Secondary_Stack (Body_To_Analyze) then
5382 return False;
5384 -- Cannot inline functions that return controlled types since
5385 -- controlled actions interfere in complex ways with inlining.
5387 elsif Ekind (Subp) = E_Function
5388 and then Needs_Finalization (Etype (Subp))
5389 then
5390 Cannot_Inline
5391 ("cannot inline & (controlled return type)?", N, Subp);
5392 return False;
5394 elsif Returns_Unconstrained_Type (Subp) then
5395 Cannot_Inline
5396 ("cannot inline & (unconstrained return type)?", N, Subp);
5397 return False;
5398 end if;
5400 -- Compiling with optimizations enabled
5402 else
5403 -- Procedures are never frontend inlined in this case!
5405 if Ekind (Subp) /= E_Function then
5406 return False;
5408 -- Functions returning unconstrained types are tested
5409 -- separately (see Can_Split_Unconstrained_Function).
5411 elsif Returns_Unconstrained_Type (Subp) then
5412 null;
5414 -- Check supported cases
5416 elsif not Returns_Compile_Time_Constant (Body_To_Analyze)
5417 and then Convention (Subp) /= Convention_Intrinsic
5418 and then not Returns_Intrinsic_Function_Call (Body_To_Analyze)
5419 then
5420 return False;
5421 end if;
5422 end if;
5424 return True;
5425 end Check_Body_To_Inline;
5427 --------------------------------------
5428 -- Can_Split_Unconstrained_Function --
5429 --------------------------------------
5431 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean
5433 Ret_Node : constant Node_Id :=
5434 First (Statements (Handled_Statement_Sequence (N)));
5435 D : Node_Id;
5437 begin
5438 -- No user defined declarations allowed in the function except inside
5439 -- the unique return statement; implicit labels are the only allowed
5440 -- declarations.
5442 if not Is_Empty_List (Declarations (N)) then
5443 D := First (Declarations (N));
5444 while Present (D) loop
5445 if Nkind (D) /= N_Implicit_Label_Declaration then
5446 return False;
5447 end if;
5449 Next (D);
5450 end loop;
5451 end if;
5453 -- We only split the inlined function when we are generating the code
5454 -- of its body; otherwise we leave duplicated split subprograms in
5455 -- the tree which (if referenced) generate wrong references at link
5456 -- time.
5458 return In_Extended_Main_Code_Unit (N)
5459 and then Present (Ret_Node)
5460 and then Nkind (Ret_Node) = N_Extended_Return_Statement
5461 and then No (Next (Ret_Node))
5462 and then Present (Handled_Statement_Sequence (Ret_Node));
5463 end Can_Split_Unconstrained_Function;
5465 -----------------------------
5466 -- Generate_Body_To_Inline --
5467 -----------------------------
5469 procedure Generate_Body_To_Inline
5470 (N : Node_Id;
5471 Body_To_Inline : out Node_Id)
5473 procedure Remove_Pragmas (N : Node_Id);
5474 -- Remove occurrences of pragmas that may reference the formals of
5475 -- N. The analysis of the non-inlined body will handle these pragmas
5476 -- properly.
5478 --------------------
5479 -- Remove_Pragmas --
5480 --------------------
5482 procedure Remove_Pragmas (N : Node_Id) is
5483 Decl : Node_Id;
5484 Nxt : Node_Id;
5486 begin
5487 Decl := First (Declarations (N));
5488 while Present (Decl) loop
5489 Nxt := Next (Decl);
5491 if Nkind (Decl) = N_Pragma
5492 and then Nam_In (Pragma_Name (Decl), Name_Unreferenced,
5493 Name_Unmodified)
5494 then
5495 Remove (Decl);
5496 end if;
5498 Decl := Nxt;
5499 end loop;
5500 end Remove_Pragmas;
5502 -- Start of processing for Generate_Body_To_Inline
5504 begin
5505 -- Within an instance, the body to inline must be treated as a nested
5506 -- generic, so that the proper global references are preserved.
5508 -- Note that we do not do this at the library level, because it
5509 -- is not needed, and furthermore this causes trouble if front
5510 -- end inlining is activated (-gnatN).
5512 if In_Instance
5513 and then Scope (Current_Scope) /= Standard_Standard
5514 then
5515 Body_To_Inline := Copy_Generic_Node (N, Empty, True);
5516 else
5517 Body_To_Inline := Copy_Separate_Tree (N);
5518 end if;
5520 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
5521 -- parameter has no meaning when the body is inlined and the formals
5522 -- are rewritten. Remove it from body to inline. The analysis of the
5523 -- non-inlined body will handle the pragma properly.
5525 Remove_Pragmas (Body_To_Inline);
5527 -- We need to capture references to the formals in order
5528 -- to substitute the actuals at the point of inlining, i.e.
5529 -- instantiation. To treat the formals as globals to the body to
5530 -- inline, we nest it within a dummy parameterless subprogram,
5531 -- declared within the real one.
5533 Set_Parameter_Specifications
5534 (Specification (Body_To_Inline), No_List);
5536 -- A new internal name is associated with Body_To_Inline to avoid
5537 -- conflicts when the non-inlined body N is analyzed.
5539 Set_Defining_Unit_Name (Specification (Body_To_Inline),
5540 Make_Defining_Identifier (Sloc (N), New_Internal_Name ('P')));
5541 Set_Corresponding_Spec (Body_To_Inline, Empty);
5542 end Generate_Body_To_Inline;
5544 ----------------------------------
5545 -- Split_Unconstrained_Function --
5546 ----------------------------------
5548 procedure Split_Unconstrained_Function
5549 (N : Node_Id;
5550 Spec_Id : Entity_Id)
5552 Loc : constant Source_Ptr := Sloc (N);
5553 Ret_Node : constant Node_Id :=
5554 First (Statements (Handled_Statement_Sequence (N)));
5555 Ret_Obj : constant Node_Id :=
5556 First (Return_Object_Declarations (Ret_Node));
5558 procedure Build_Procedure
5559 (Proc_Id : out Entity_Id;
5560 Decl_List : out List_Id);
5561 -- Build a procedure containing the statements found in the extended
5562 -- return statement of the unconstrained function body N.
5564 procedure Build_Procedure
5565 (Proc_Id : out Entity_Id;
5566 Decl_List : out List_Id)
5568 Formal : Entity_Id;
5569 Formal_List : constant List_Id := New_List;
5570 Proc_Spec : Node_Id;
5571 Proc_Body : Node_Id;
5572 Subp_Name : constant Name_Id := New_Internal_Name ('F');
5573 Body_Decl_List : List_Id := No_List;
5574 Param_Type : Node_Id;
5576 begin
5577 if Nkind (Object_Definition (Ret_Obj)) = N_Identifier then
5578 Param_Type := New_Copy (Object_Definition (Ret_Obj));
5579 else
5580 Param_Type :=
5581 New_Copy (Subtype_Mark (Object_Definition (Ret_Obj)));
5582 end if;
5584 Append_To (Formal_List,
5585 Make_Parameter_Specification (Loc,
5586 Defining_Identifier =>
5587 Make_Defining_Identifier (Loc,
5588 Chars => Chars (Defining_Identifier (Ret_Obj))),
5589 In_Present => False,
5590 Out_Present => True,
5591 Null_Exclusion_Present => False,
5592 Parameter_Type => Param_Type));
5594 Formal := First_Formal (Spec_Id);
5595 while Present (Formal) loop
5596 Append_To (Formal_List,
5597 Make_Parameter_Specification (Loc,
5598 Defining_Identifier =>
5599 Make_Defining_Identifier (Sloc (Formal),
5600 Chars => Chars (Formal)),
5601 In_Present => In_Present (Parent (Formal)),
5602 Out_Present => Out_Present (Parent (Formal)),
5603 Null_Exclusion_Present =>
5604 Null_Exclusion_Present (Parent (Formal)),
5605 Parameter_Type =>
5606 New_Reference_To (Etype (Formal), Loc),
5607 Expression =>
5608 Copy_Separate_Tree (Expression (Parent (Formal)))));
5610 Next_Formal (Formal);
5611 end loop;
5613 Proc_Id :=
5614 Make_Defining_Identifier (Loc, Chars => Subp_Name);
5616 Proc_Spec :=
5617 Make_Procedure_Specification (Loc,
5618 Defining_Unit_Name => Proc_Id,
5619 Parameter_Specifications => Formal_List);
5621 Decl_List := New_List;
5623 Append_To (Decl_List,
5624 Make_Subprogram_Declaration (Loc, Proc_Spec));
5626 -- Can_Convert_Unconstrained_Function checked that the function
5627 -- has no local declarations except implicit label declarations.
5628 -- Copy these declarations to the built procedure.
5630 if Present (Declarations (N)) then
5631 Body_Decl_List := New_List;
5633 declare
5634 D : Node_Id;
5635 New_D : Node_Id;
5637 begin
5638 D := First (Declarations (N));
5639 while Present (D) loop
5640 pragma Assert (Nkind (D) = N_Implicit_Label_Declaration);
5642 New_D :=
5643 Make_Implicit_Label_Declaration (Loc,
5644 Make_Defining_Identifier (Loc,
5645 Chars => Chars (Defining_Identifier (D))),
5646 Label_Construct => Empty);
5647 Append_To (Body_Decl_List, New_D);
5649 Next (D);
5650 end loop;
5651 end;
5652 end if;
5654 pragma Assert (Present (Handled_Statement_Sequence (Ret_Node)));
5656 Proc_Body :=
5657 Make_Subprogram_Body (Loc,
5658 Specification => Copy_Separate_Tree (Proc_Spec),
5659 Declarations => Body_Decl_List,
5660 Handled_Statement_Sequence =>
5661 Copy_Separate_Tree (Handled_Statement_Sequence (Ret_Node)));
5663 Set_Defining_Unit_Name (Specification (Proc_Body),
5664 Make_Defining_Identifier (Loc, Subp_Name));
5666 Append_To (Decl_List, Proc_Body);
5667 end Build_Procedure;
5669 -- Local variables
5671 New_Obj : constant Node_Id := Copy_Separate_Tree (Ret_Obj);
5672 Blk_Stmt : Node_Id;
5673 Proc_Id : Entity_Id;
5674 Proc_Call : Node_Id;
5676 -- Start of processing for Split_Unconstrained_Function
5678 begin
5679 -- Build the associated procedure, analyze it and insert it before
5680 -- the function body N
5682 declare
5683 Scope : constant Entity_Id := Current_Scope;
5684 Decl_List : List_Id;
5685 begin
5686 Pop_Scope;
5687 Build_Procedure (Proc_Id, Decl_List);
5688 Insert_Actions (N, Decl_List);
5689 Push_Scope (Scope);
5690 end;
5692 -- Build the call to the generated procedure
5694 declare
5695 Actual_List : constant List_Id := New_List;
5696 Formal : Entity_Id;
5698 begin
5699 Append_To (Actual_List,
5700 New_Reference_To (Defining_Identifier (New_Obj), Loc));
5702 Formal := First_Formal (Spec_Id);
5703 while Present (Formal) loop
5704 Append_To (Actual_List, New_Reference_To (Formal, Loc));
5706 -- Avoid spurious warning on unreferenced formals
5708 Set_Referenced (Formal);
5709 Next_Formal (Formal);
5710 end loop;
5712 Proc_Call :=
5713 Make_Procedure_Call_Statement (Loc,
5714 Name => New_Reference_To (Proc_Id, Loc),
5715 Parameter_Associations => Actual_List);
5716 end;
5718 -- Generate
5720 -- declare
5721 -- New_Obj : ...
5722 -- begin
5723 -- main_1__F1b (New_Obj, ...);
5724 -- return Obj;
5725 -- end B10b;
5727 Blk_Stmt :=
5728 Make_Block_Statement (Loc,
5729 Declarations => New_List (New_Obj),
5730 Handled_Statement_Sequence =>
5731 Make_Handled_Sequence_Of_Statements (Loc,
5732 Statements => New_List (
5734 Proc_Call,
5736 Make_Simple_Return_Statement (Loc,
5737 Expression =>
5738 New_Reference_To
5739 (Defining_Identifier (New_Obj), Loc)))));
5741 Rewrite (Ret_Node, Blk_Stmt);
5742 end Split_Unconstrained_Function;
5744 -- Start of processing for Check_And_Build_Body_To_Inline
5746 begin
5747 -- Do not inline any subprogram that contains nested subprograms, since
5748 -- the backend inlining circuit seems to generate uninitialized
5749 -- references in this case. We know this happens in the case of front
5750 -- end ZCX support, but it also appears it can happen in other cases as
5751 -- well. The backend often rejects attempts to inline in the case of
5752 -- nested procedures anyway, so little if anything is lost by this.
5753 -- Note that this is test is for the benefit of the back-end. There is
5754 -- a separate test for front-end inlining that also rejects nested
5755 -- subprograms.
5757 -- Do not do this test if errors have been detected, because in some
5758 -- error cases, this code blows up, and we don't need it anyway if
5759 -- there have been errors, since we won't get to the linker anyway.
5761 if Comes_From_Source (Body_Id)
5762 and then (Has_Pragma_Inline_Always (Spec_Id)
5763 or else Optimization_Level > 0)
5764 and then Serious_Errors_Detected = 0
5765 then
5766 declare
5767 P_Ent : Node_Id;
5769 begin
5770 P_Ent := Body_Id;
5771 loop
5772 P_Ent := Scope (P_Ent);
5773 exit when No (P_Ent) or else P_Ent = Standard_Standard;
5775 if Is_Subprogram (P_Ent) then
5776 Set_Is_Inlined (P_Ent, False);
5778 if Comes_From_Source (P_Ent)
5779 and then Has_Pragma_Inline (P_Ent)
5780 then
5781 Cannot_Inline
5782 ("cannot inline& (nested subprogram)?", N, P_Ent,
5783 Is_Serious => True);
5784 end if;
5785 end if;
5786 end loop;
5787 end;
5788 end if;
5790 -- Build the body to inline only if really needed!
5792 if Check_Body_To_Inline (N, Spec_Id)
5793 and then Serious_Errors_Detected = 0
5794 then
5795 if Returns_Unconstrained_Type (Spec_Id) then
5796 if Can_Split_Unconstrained_Function (N) then
5797 Split_Unconstrained_Function (N, Spec_Id);
5798 Build_Body_To_Inline (N, Spec_Id);
5799 Set_Is_Inlined (Spec_Id);
5800 end if;
5801 else
5802 Build_Body_To_Inline (N, Spec_Id);
5803 Set_Is_Inlined (Spec_Id);
5804 end if;
5805 end if;
5806 end Check_And_Build_Body_To_Inline;
5808 -----------------------
5809 -- Check_Conformance --
5810 -----------------------
5812 procedure Check_Conformance
5813 (New_Id : Entity_Id;
5814 Old_Id : Entity_Id;
5815 Ctype : Conformance_Type;
5816 Errmsg : Boolean;
5817 Conforms : out Boolean;
5818 Err_Loc : Node_Id := Empty;
5819 Get_Inst : Boolean := False;
5820 Skip_Controlling_Formals : Boolean := False)
5822 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
5823 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
5824 -- If Errmsg is True, then processing continues to post an error message
5825 -- for conformance error on given node. Two messages are output. The
5826 -- first message points to the previous declaration with a general "no
5827 -- conformance" message. The second is the detailed reason, supplied as
5828 -- Msg. The parameter N provide information for a possible & insertion
5829 -- in the message, and also provides the location for posting the
5830 -- message in the absence of a specified Err_Loc location.
5832 -----------------------
5833 -- Conformance_Error --
5834 -----------------------
5836 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
5837 Enode : Node_Id;
5839 begin
5840 Conforms := False;
5842 if Errmsg then
5843 if No (Err_Loc) then
5844 Enode := N;
5845 else
5846 Enode := Err_Loc;
5847 end if;
5849 Error_Msg_Sloc := Sloc (Old_Id);
5851 case Ctype is
5852 when Type_Conformant =>
5853 Error_Msg_N -- CODEFIX
5854 ("not type conformant with declaration#!", Enode);
5856 when Mode_Conformant =>
5857 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5858 Error_Msg_N
5859 ("not mode conformant with operation inherited#!",
5860 Enode);
5861 else
5862 Error_Msg_N
5863 ("not mode conformant with declaration#!", Enode);
5864 end if;
5866 when Subtype_Conformant =>
5867 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5868 Error_Msg_N
5869 ("not subtype conformant with operation inherited#!",
5870 Enode);
5871 else
5872 Error_Msg_N
5873 ("not subtype conformant with declaration#!", Enode);
5874 end if;
5876 when Fully_Conformant =>
5877 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
5878 Error_Msg_N -- CODEFIX
5879 ("not fully conformant with operation inherited#!",
5880 Enode);
5881 else
5882 Error_Msg_N -- CODEFIX
5883 ("not fully conformant with declaration#!", Enode);
5884 end if;
5885 end case;
5887 Error_Msg_NE (Msg, Enode, N);
5888 end if;
5889 end Conformance_Error;
5891 -- Local Variables
5893 Old_Type : constant Entity_Id := Etype (Old_Id);
5894 New_Type : constant Entity_Id := Etype (New_Id);
5895 Old_Formal : Entity_Id;
5896 New_Formal : Entity_Id;
5897 Access_Types_Match : Boolean;
5898 Old_Formal_Base : Entity_Id;
5899 New_Formal_Base : Entity_Id;
5901 -- Start of processing for Check_Conformance
5903 begin
5904 Conforms := True;
5906 -- We need a special case for operators, since they don't appear
5907 -- explicitly.
5909 if Ctype = Type_Conformant then
5910 if Ekind (New_Id) = E_Operator
5911 and then Operator_Matches_Spec (New_Id, Old_Id)
5912 then
5913 return;
5914 end if;
5915 end if;
5917 -- If both are functions/operators, check return types conform
5919 if Old_Type /= Standard_Void_Type
5920 and then New_Type /= Standard_Void_Type
5921 then
5923 -- If we are checking interface conformance we omit controlling
5924 -- arguments and result, because we are only checking the conformance
5925 -- of the remaining parameters.
5927 if Has_Controlling_Result (Old_Id)
5928 and then Has_Controlling_Result (New_Id)
5929 and then Skip_Controlling_Formals
5930 then
5931 null;
5933 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
5934 Conformance_Error ("\return type does not match!", New_Id);
5935 return;
5936 end if;
5938 -- Ada 2005 (AI-231): In case of anonymous access types check the
5939 -- null-exclusion and access-to-constant attributes match.
5941 if Ada_Version >= Ada_2005
5942 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
5943 and then
5944 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
5945 or else Is_Access_Constant (Etype (Old_Type)) /=
5946 Is_Access_Constant (Etype (New_Type)))
5947 then
5948 Conformance_Error ("\return type does not match!", New_Id);
5949 return;
5950 end if;
5952 -- If either is a function/operator and the other isn't, error
5954 elsif Old_Type /= Standard_Void_Type
5955 or else New_Type /= Standard_Void_Type
5956 then
5957 Conformance_Error ("\functions can only match functions!", New_Id);
5958 return;
5959 end if;
5961 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
5962 -- If this is a renaming as body, refine error message to indicate that
5963 -- the conflict is with the original declaration. If the entity is not
5964 -- frozen, the conventions don't have to match, the one of the renamed
5965 -- entity is inherited.
5967 if Ctype >= Subtype_Conformant then
5968 if Convention (Old_Id) /= Convention (New_Id) then
5969 if not Is_Frozen (New_Id) then
5970 null;
5972 elsif Present (Err_Loc)
5973 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
5974 and then Present (Corresponding_Spec (Err_Loc))
5975 then
5976 Error_Msg_Name_1 := Chars (New_Id);
5977 Error_Msg_Name_2 :=
5978 Name_Ada + Convention_Id'Pos (Convention (New_Id));
5979 Conformance_Error ("\prior declaration for% has convention %!");
5981 else
5982 Conformance_Error ("\calling conventions do not match!");
5983 end if;
5985 return;
5987 elsif Is_Formal_Subprogram (Old_Id)
5988 or else Is_Formal_Subprogram (New_Id)
5989 then
5990 Conformance_Error ("\formal subprograms not allowed!");
5991 return;
5992 end if;
5993 end if;
5995 -- Deal with parameters
5997 -- Note: we use the entity information, rather than going directly
5998 -- to the specification in the tree. This is not only simpler, but
5999 -- absolutely necessary for some cases of conformance tests between
6000 -- operators, where the declaration tree simply does not exist!
6002 Old_Formal := First_Formal (Old_Id);
6003 New_Formal := First_Formal (New_Id);
6004 while Present (Old_Formal) and then Present (New_Formal) loop
6005 if Is_Controlling_Formal (Old_Formal)
6006 and then Is_Controlling_Formal (New_Formal)
6007 and then Skip_Controlling_Formals
6008 then
6009 -- The controlling formals will have different types when
6010 -- comparing an interface operation with its match, but both
6011 -- or neither must be access parameters.
6013 if Is_Access_Type (Etype (Old_Formal))
6015 Is_Access_Type (Etype (New_Formal))
6016 then
6017 goto Skip_Controlling_Formal;
6018 else
6019 Conformance_Error
6020 ("\access parameter does not match!", New_Formal);
6021 end if;
6022 end if;
6024 -- Ada 2012: Mode conformance also requires that formal parameters
6025 -- be both aliased, or neither.
6027 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
6028 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
6029 Conformance_Error
6030 ("\aliased parameter mismatch!", New_Formal);
6031 end if;
6032 end if;
6034 if Ctype = Fully_Conformant then
6036 -- Names must match. Error message is more accurate if we do
6037 -- this before checking that the types of the formals match.
6039 if Chars (Old_Formal) /= Chars (New_Formal) then
6040 Conformance_Error ("\name & does not match!", New_Formal);
6042 -- Set error posted flag on new formal as well to stop
6043 -- junk cascaded messages in some cases.
6045 Set_Error_Posted (New_Formal);
6046 return;
6047 end if;
6049 -- Null exclusion must match
6051 if Null_Exclusion_Present (Parent (Old_Formal))
6053 Null_Exclusion_Present (Parent (New_Formal))
6054 then
6055 -- Only give error if both come from source. This should be
6056 -- investigated some time, since it should not be needed ???
6058 if Comes_From_Source (Old_Formal)
6059 and then
6060 Comes_From_Source (New_Formal)
6061 then
6062 Conformance_Error
6063 ("\null exclusion for & does not match", New_Formal);
6065 -- Mark error posted on the new formal to avoid duplicated
6066 -- complaint about types not matching.
6068 Set_Error_Posted (New_Formal);
6069 end if;
6070 end if;
6071 end if;
6073 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
6074 -- case occurs whenever a subprogram is being renamed and one of its
6075 -- parameters imposes a null exclusion. For example:
6077 -- type T is null record;
6078 -- type Acc_T is access T;
6079 -- subtype Acc_T_Sub is Acc_T;
6081 -- procedure P (Obj : not null Acc_T_Sub); -- itype
6082 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
6083 -- renames P;
6085 Old_Formal_Base := Etype (Old_Formal);
6086 New_Formal_Base := Etype (New_Formal);
6088 if Get_Inst then
6089 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
6090 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
6091 end if;
6093 Access_Types_Match := Ada_Version >= Ada_2005
6095 -- Ensure that this rule is only applied when New_Id is a
6096 -- renaming of Old_Id.
6098 and then Nkind (Parent (Parent (New_Id))) =
6099 N_Subprogram_Renaming_Declaration
6100 and then Nkind (Name (Parent (Parent (New_Id)))) in N_Has_Entity
6101 and then Present (Entity (Name (Parent (Parent (New_Id)))))
6102 and then Entity (Name (Parent (Parent (New_Id)))) = Old_Id
6104 -- Now handle the allowed access-type case
6106 and then Is_Access_Type (Old_Formal_Base)
6107 and then Is_Access_Type (New_Formal_Base)
6109 -- The type kinds must match. The only exception occurs with
6110 -- multiple generics of the form:
6112 -- generic generic
6113 -- type F is private; type A is private;
6114 -- type F_Ptr is access F; type A_Ptr is access A;
6115 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
6116 -- package F_Pack is ... package A_Pack is
6117 -- package F_Inst is
6118 -- new F_Pack (A, A_Ptr, A_P);
6120 -- When checking for conformance between the parameters of A_P
6121 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
6122 -- because the compiler has transformed A_Ptr into a subtype of
6123 -- F_Ptr. We catch this case in the code below.
6125 and then (Ekind (Old_Formal_Base) = Ekind (New_Formal_Base)
6126 or else
6127 (Is_Generic_Type (Old_Formal_Base)
6128 and then Is_Generic_Type (New_Formal_Base)
6129 and then Is_Internal (New_Formal_Base)
6130 and then Etype (Etype (New_Formal_Base)) =
6131 Old_Formal_Base))
6132 and then Directly_Designated_Type (Old_Formal_Base) =
6133 Directly_Designated_Type (New_Formal_Base)
6134 and then ((Is_Itype (Old_Formal_Base)
6135 and then Can_Never_Be_Null (Old_Formal_Base))
6136 or else
6137 (Is_Itype (New_Formal_Base)
6138 and then Can_Never_Be_Null (New_Formal_Base)));
6140 -- Types must always match. In the visible part of an instance,
6141 -- usual overloading rules for dispatching operations apply, and
6142 -- we check base types (not the actual subtypes).
6144 if In_Instance_Visible_Part
6145 and then Is_Dispatching_Operation (New_Id)
6146 then
6147 if not Conforming_Types
6148 (T1 => Base_Type (Etype (Old_Formal)),
6149 T2 => Base_Type (Etype (New_Formal)),
6150 Ctype => Ctype,
6151 Get_Inst => Get_Inst)
6152 and then not Access_Types_Match
6153 then
6154 Conformance_Error ("\type of & does not match!", New_Formal);
6155 return;
6156 end if;
6158 elsif not Conforming_Types
6159 (T1 => Old_Formal_Base,
6160 T2 => New_Formal_Base,
6161 Ctype => Ctype,
6162 Get_Inst => Get_Inst)
6163 and then not Access_Types_Match
6164 then
6165 -- Don't give error message if old type is Any_Type. This test
6166 -- avoids some cascaded errors, e.g. in case of a bad spec.
6168 if Errmsg and then Old_Formal_Base = Any_Type then
6169 Conforms := False;
6170 else
6171 Conformance_Error ("\type of & does not match!", New_Formal);
6172 end if;
6174 return;
6175 end if;
6177 -- For mode conformance, mode must match
6179 if Ctype >= Mode_Conformant then
6180 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
6181 if not Ekind_In (New_Id, E_Function, E_Procedure)
6182 or else not Is_Primitive_Wrapper (New_Id)
6183 then
6184 Conformance_Error ("\mode of & does not match!", New_Formal);
6186 else
6187 declare
6188 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
6189 begin
6190 if Is_Protected_Type
6191 (Corresponding_Concurrent_Type (T))
6192 then
6193 Error_Msg_PT (T, New_Id);
6194 else
6195 Conformance_Error
6196 ("\mode of & does not match!", New_Formal);
6197 end if;
6198 end;
6199 end if;
6201 return;
6203 -- Part of mode conformance for access types is having the same
6204 -- constant modifier.
6206 elsif Access_Types_Match
6207 and then Is_Access_Constant (Old_Formal_Base) /=
6208 Is_Access_Constant (New_Formal_Base)
6209 then
6210 Conformance_Error
6211 ("\constant modifier does not match!", New_Formal);
6212 return;
6213 end if;
6214 end if;
6216 if Ctype >= Subtype_Conformant then
6218 -- Ada 2005 (AI-231): In case of anonymous access types check
6219 -- the null-exclusion and access-to-constant attributes must
6220 -- match. For null exclusion, we test the types rather than the
6221 -- formals themselves, since the attribute is only set reliably
6222 -- on the formals in the Ada 95 case, and we exclude the case
6223 -- where Old_Formal is marked as controlling, to avoid errors
6224 -- when matching completing bodies with dispatching declarations
6225 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
6227 if Ada_Version >= Ada_2005
6228 and then Ekind (Etype (Old_Formal)) = E_Anonymous_Access_Type
6229 and then Ekind (Etype (New_Formal)) = E_Anonymous_Access_Type
6230 and then
6231 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
6232 Can_Never_Be_Null (Etype (New_Formal))
6233 and then
6234 not Is_Controlling_Formal (Old_Formal))
6235 or else
6236 Is_Access_Constant (Etype (Old_Formal)) /=
6237 Is_Access_Constant (Etype (New_Formal)))
6239 -- Do not complain if error already posted on New_Formal. This
6240 -- avoids some redundant error messages.
6242 and then not Error_Posted (New_Formal)
6243 then
6244 -- It is allowed to omit the null-exclusion in case of stream
6245 -- attribute subprograms. We recognize stream subprograms
6246 -- through their TSS-generated suffix.
6248 declare
6249 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
6251 begin
6252 if TSS_Name /= TSS_Stream_Read
6253 and then TSS_Name /= TSS_Stream_Write
6254 and then TSS_Name /= TSS_Stream_Input
6255 and then TSS_Name /= TSS_Stream_Output
6256 then
6257 -- Here we have a definite conformance error. It is worth
6258 -- special casing the error message for the case of a
6259 -- controlling formal (which excludes null).
6261 if Is_Controlling_Formal (New_Formal) then
6262 Error_Msg_Node_2 := Scope (New_Formal);
6263 Conformance_Error
6264 ("\controlling formal& of& excludes null, "
6265 & "declaration must exclude null as well",
6266 New_Formal);
6268 -- Normal case (couldn't we give more detail here???)
6270 else
6271 Conformance_Error
6272 ("\type of & does not match!", New_Formal);
6273 end if;
6275 return;
6276 end if;
6277 end;
6278 end if;
6279 end if;
6281 -- Full conformance checks
6283 if Ctype = Fully_Conformant then
6285 -- We have checked already that names match
6287 if Parameter_Mode (Old_Formal) = E_In_Parameter then
6289 -- Check default expressions for in parameters
6291 declare
6292 NewD : constant Boolean :=
6293 Present (Default_Value (New_Formal));
6294 OldD : constant Boolean :=
6295 Present (Default_Value (Old_Formal));
6296 begin
6297 if NewD or OldD then
6299 -- The old default value has been analyzed because the
6300 -- current full declaration will have frozen everything
6301 -- before. The new default value has not been analyzed,
6302 -- so analyze it now before we check for conformance.
6304 if NewD then
6305 Push_Scope (New_Id);
6306 Preanalyze_Spec_Expression
6307 (Default_Value (New_Formal), Etype (New_Formal));
6308 End_Scope;
6309 end if;
6311 if not (NewD and OldD)
6312 or else not Fully_Conformant_Expressions
6313 (Default_Value (Old_Formal),
6314 Default_Value (New_Formal))
6315 then
6316 Conformance_Error
6317 ("\default expression for & does not match!",
6318 New_Formal);
6319 return;
6320 end if;
6321 end if;
6322 end;
6323 end if;
6324 end if;
6326 -- A couple of special checks for Ada 83 mode. These checks are
6327 -- skipped if either entity is an operator in package Standard,
6328 -- or if either old or new instance is not from the source program.
6330 if Ada_Version = Ada_83
6331 and then Sloc (Old_Id) > Standard_Location
6332 and then Sloc (New_Id) > Standard_Location
6333 and then Comes_From_Source (Old_Id)
6334 and then Comes_From_Source (New_Id)
6335 then
6336 declare
6337 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
6338 New_Param : constant Node_Id := Declaration_Node (New_Formal);
6340 begin
6341 -- Explicit IN must be present or absent in both cases. This
6342 -- test is required only in the full conformance case.
6344 if In_Present (Old_Param) /= In_Present (New_Param)
6345 and then Ctype = Fully_Conformant
6346 then
6347 Conformance_Error
6348 ("\(Ada 83) IN must appear in both declarations",
6349 New_Formal);
6350 return;
6351 end if;
6353 -- Grouping (use of comma in param lists) must be the same
6354 -- This is where we catch a misconformance like:
6356 -- A, B : Integer
6357 -- A : Integer; B : Integer
6359 -- which are represented identically in the tree except
6360 -- for the setting of the flags More_Ids and Prev_Ids.
6362 if More_Ids (Old_Param) /= More_Ids (New_Param)
6363 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
6364 then
6365 Conformance_Error
6366 ("\grouping of & does not match!", New_Formal);
6367 return;
6368 end if;
6369 end;
6370 end if;
6372 -- This label is required when skipping controlling formals
6374 <<Skip_Controlling_Formal>>
6376 Next_Formal (Old_Formal);
6377 Next_Formal (New_Formal);
6378 end loop;
6380 if Present (Old_Formal) then
6381 Conformance_Error ("\too few parameters!");
6382 return;
6384 elsif Present (New_Formal) then
6385 Conformance_Error ("\too many parameters!", New_Formal);
6386 return;
6387 end if;
6388 end Check_Conformance;
6390 -----------------------
6391 -- Check_Conventions --
6392 -----------------------
6394 procedure Check_Conventions (Typ : Entity_Id) is
6395 Ifaces_List : Elist_Id;
6397 procedure Check_Convention (Op : Entity_Id);
6398 -- Verify that the convention of inherited dispatching operation Op is
6399 -- consistent among all subprograms it overrides. In order to minimize
6400 -- the search, Search_From is utilized to designate a specific point in
6401 -- the list rather than iterating over the whole list once more.
6403 ----------------------
6404 -- Check_Convention --
6405 ----------------------
6407 procedure Check_Convention (Op : Entity_Id) is
6408 function Convention_Of (Id : Entity_Id) return Convention_Id;
6409 -- Given an entity, return its convention. The function treats Ghost
6410 -- as convention Ada because the two have the same dynamic semantics.
6412 -------------------
6413 -- Convention_Of --
6414 -------------------
6416 function Convention_Of (Id : Entity_Id) return Convention_Id is
6417 Conv : constant Convention_Id := Convention (Id);
6418 begin
6419 if Conv = Convention_Ghost then
6420 return Convention_Ada;
6421 else
6422 return Conv;
6423 end if;
6424 end Convention_Of;
6426 -- Local variables
6428 Op_Conv : constant Convention_Id := Convention_Of (Op);
6429 Iface_Conv : Convention_Id;
6430 Iface_Elmt : Elmt_Id;
6431 Iface_Prim_Elmt : Elmt_Id;
6432 Iface_Prim : Entity_Id;
6434 -- Start of processing for Check_Convention
6436 begin
6437 Iface_Elmt := First_Elmt (Ifaces_List);
6438 while Present (Iface_Elmt) loop
6439 Iface_Prim_Elmt :=
6440 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
6441 while Present (Iface_Prim_Elmt) loop
6442 Iface_Prim := Node (Iface_Prim_Elmt);
6443 Iface_Conv := Convention_Of (Iface_Prim);
6445 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
6446 and then Iface_Conv /= Op_Conv
6447 then
6448 Error_Msg_N
6449 ("inconsistent conventions in primitive operations", Typ);
6451 Error_Msg_Name_1 := Chars (Op);
6452 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
6453 Error_Msg_Sloc := Sloc (Op);
6455 if Comes_From_Source (Op) or else No (Alias (Op)) then
6456 if not Present (Overridden_Operation (Op)) then
6457 Error_Msg_N ("\\primitive % defined #", Typ);
6458 else
6459 Error_Msg_N
6460 ("\\overriding operation % with " &
6461 "convention % defined #", Typ);
6462 end if;
6464 else pragma Assert (Present (Alias (Op)));
6465 Error_Msg_Sloc := Sloc (Alias (Op));
6466 Error_Msg_N
6467 ("\\inherited operation % with " &
6468 "convention % defined #", Typ);
6469 end if;
6471 Error_Msg_Name_1 := Chars (Op);
6472 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
6473 Error_Msg_Sloc := Sloc (Iface_Prim);
6474 Error_Msg_N
6475 ("\\overridden operation % with " &
6476 "convention % defined #", Typ);
6478 -- Avoid cascading errors
6480 return;
6481 end if;
6483 Next_Elmt (Iface_Prim_Elmt);
6484 end loop;
6486 Next_Elmt (Iface_Elmt);
6487 end loop;
6488 end Check_Convention;
6490 -- Local variables
6492 Prim_Op : Entity_Id;
6493 Prim_Op_Elmt : Elmt_Id;
6495 -- Start of processing for Check_Conventions
6497 begin
6498 if not Has_Interfaces (Typ) then
6499 return;
6500 end if;
6502 Collect_Interfaces (Typ, Ifaces_List);
6504 -- The algorithm checks every overriding dispatching operation against
6505 -- all the corresponding overridden dispatching operations, detecting
6506 -- differences in conventions.
6508 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
6509 while Present (Prim_Op_Elmt) loop
6510 Prim_Op := Node (Prim_Op_Elmt);
6512 -- A small optimization: skip the predefined dispatching operations
6513 -- since they always have the same convention.
6515 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
6516 Check_Convention (Prim_Op);
6517 end if;
6519 Next_Elmt (Prim_Op_Elmt);
6520 end loop;
6521 end Check_Conventions;
6523 ------------------------------
6524 -- Check_Delayed_Subprogram --
6525 ------------------------------
6527 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
6528 F : Entity_Id;
6530 procedure Possible_Freeze (T : Entity_Id);
6531 -- T is the type of either a formal parameter or of the return type.
6532 -- If T is not yet frozen and needs a delayed freeze, then the
6533 -- subprogram itself must be delayed. If T is the limited view of an
6534 -- incomplete type the subprogram must be frozen as well, because
6535 -- T may depend on local types that have not been frozen yet.
6537 ---------------------
6538 -- Possible_Freeze --
6539 ---------------------
6541 procedure Possible_Freeze (T : Entity_Id) is
6542 begin
6543 if Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
6544 Set_Has_Delayed_Freeze (Designator);
6546 elsif Is_Access_Type (T)
6547 and then Has_Delayed_Freeze (Designated_Type (T))
6548 and then not Is_Frozen (Designated_Type (T))
6549 then
6550 Set_Has_Delayed_Freeze (Designator);
6552 elsif Ekind (T) = E_Incomplete_Type
6553 and then From_Limited_With (T)
6554 then
6555 Set_Has_Delayed_Freeze (Designator);
6557 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
6558 -- of a subprogram or entry declaration.
6560 elsif Ekind (T) = E_Incomplete_Type
6561 and then Ada_Version >= Ada_2012
6562 then
6563 Set_Has_Delayed_Freeze (Designator);
6564 end if;
6566 end Possible_Freeze;
6568 -- Start of processing for Check_Delayed_Subprogram
6570 begin
6571 -- All subprograms, including abstract subprograms, may need a freeze
6572 -- node if some formal type or the return type needs one.
6574 Possible_Freeze (Etype (Designator));
6575 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
6577 -- Need delayed freeze if any of the formal types themselves need
6578 -- a delayed freeze and are not yet frozen.
6580 F := First_Formal (Designator);
6581 while Present (F) loop
6582 Possible_Freeze (Etype (F));
6583 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
6584 Next_Formal (F);
6585 end loop;
6587 -- Mark functions that return by reference. Note that it cannot be
6588 -- done for delayed_freeze subprograms because the underlying
6589 -- returned type may not be known yet (for private types)
6591 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
6592 declare
6593 Typ : constant Entity_Id := Etype (Designator);
6594 Utyp : constant Entity_Id := Underlying_Type (Typ);
6595 begin
6596 if Is_Limited_View (Typ) then
6597 Set_Returns_By_Ref (Designator);
6598 elsif Present (Utyp) and then CW_Or_Has_Controlled_Part (Utyp) then
6599 Set_Returns_By_Ref (Designator);
6600 end if;
6601 end;
6602 end if;
6603 end Check_Delayed_Subprogram;
6605 ------------------------------------
6606 -- Check_Discriminant_Conformance --
6607 ------------------------------------
6609 procedure Check_Discriminant_Conformance
6610 (N : Node_Id;
6611 Prev : Entity_Id;
6612 Prev_Loc : Node_Id)
6614 Old_Discr : Entity_Id := First_Discriminant (Prev);
6615 New_Discr : Node_Id := First (Discriminant_Specifications (N));
6616 New_Discr_Id : Entity_Id;
6617 New_Discr_Type : Entity_Id;
6619 procedure Conformance_Error (Msg : String; N : Node_Id);
6620 -- Post error message for conformance error on given node. Two messages
6621 -- are output. The first points to the previous declaration with a
6622 -- general "no conformance" message. The second is the detailed reason,
6623 -- supplied as Msg. The parameter N provide information for a possible
6624 -- & insertion in the message.
6626 -----------------------
6627 -- Conformance_Error --
6628 -----------------------
6630 procedure Conformance_Error (Msg : String; N : Node_Id) is
6631 begin
6632 Error_Msg_Sloc := Sloc (Prev_Loc);
6633 Error_Msg_N -- CODEFIX
6634 ("not fully conformant with declaration#!", N);
6635 Error_Msg_NE (Msg, N, N);
6636 end Conformance_Error;
6638 -- Start of processing for Check_Discriminant_Conformance
6640 begin
6641 while Present (Old_Discr) and then Present (New_Discr) loop
6642 New_Discr_Id := Defining_Identifier (New_Discr);
6644 -- The subtype mark of the discriminant on the full type has not
6645 -- been analyzed so we do it here. For an access discriminant a new
6646 -- type is created.
6648 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
6649 New_Discr_Type :=
6650 Access_Definition (N, Discriminant_Type (New_Discr));
6652 else
6653 Analyze (Discriminant_Type (New_Discr));
6654 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
6656 -- Ada 2005: if the discriminant definition carries a null
6657 -- exclusion, create an itype to check properly for consistency
6658 -- with partial declaration.
6660 if Is_Access_Type (New_Discr_Type)
6661 and then Null_Exclusion_Present (New_Discr)
6662 then
6663 New_Discr_Type :=
6664 Create_Null_Excluding_Itype
6665 (T => New_Discr_Type,
6666 Related_Nod => New_Discr,
6667 Scope_Id => Current_Scope);
6668 end if;
6669 end if;
6671 if not Conforming_Types
6672 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
6673 then
6674 Conformance_Error ("type of & does not match!", New_Discr_Id);
6675 return;
6676 else
6677 -- Treat the new discriminant as an occurrence of the old one,
6678 -- for navigation purposes, and fill in some semantic
6679 -- information, for completeness.
6681 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
6682 Set_Etype (New_Discr_Id, Etype (Old_Discr));
6683 Set_Scope (New_Discr_Id, Scope (Old_Discr));
6684 end if;
6686 -- Names must match
6688 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
6689 Conformance_Error ("name & does not match!", New_Discr_Id);
6690 return;
6691 end if;
6693 -- Default expressions must match
6695 declare
6696 NewD : constant Boolean :=
6697 Present (Expression (New_Discr));
6698 OldD : constant Boolean :=
6699 Present (Expression (Parent (Old_Discr)));
6701 begin
6702 if NewD or OldD then
6704 -- The old default value has been analyzed and expanded,
6705 -- because the current full declaration will have frozen
6706 -- everything before. The new default values have not been
6707 -- expanded, so expand now to check conformance.
6709 if NewD then
6710 Preanalyze_Spec_Expression
6711 (Expression (New_Discr), New_Discr_Type);
6712 end if;
6714 if not (NewD and OldD)
6715 or else not Fully_Conformant_Expressions
6716 (Expression (Parent (Old_Discr)),
6717 Expression (New_Discr))
6719 then
6720 Conformance_Error
6721 ("default expression for & does not match!",
6722 New_Discr_Id);
6723 return;
6724 end if;
6725 end if;
6726 end;
6728 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
6730 if Ada_Version = Ada_83 then
6731 declare
6732 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
6734 begin
6735 -- Grouping (use of comma in param lists) must be the same
6736 -- This is where we catch a misconformance like:
6738 -- A, B : Integer
6739 -- A : Integer; B : Integer
6741 -- which are represented identically in the tree except
6742 -- for the setting of the flags More_Ids and Prev_Ids.
6744 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
6745 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
6746 then
6747 Conformance_Error
6748 ("grouping of & does not match!", New_Discr_Id);
6749 return;
6750 end if;
6751 end;
6752 end if;
6754 Next_Discriminant (Old_Discr);
6755 Next (New_Discr);
6756 end loop;
6758 if Present (Old_Discr) then
6759 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
6760 return;
6762 elsif Present (New_Discr) then
6763 Conformance_Error
6764 ("too many discriminants!", Defining_Identifier (New_Discr));
6765 return;
6766 end if;
6767 end Check_Discriminant_Conformance;
6769 ----------------------------
6770 -- Check_Fully_Conformant --
6771 ----------------------------
6773 procedure Check_Fully_Conformant
6774 (New_Id : Entity_Id;
6775 Old_Id : Entity_Id;
6776 Err_Loc : Node_Id := Empty)
6778 Result : Boolean;
6779 pragma Warnings (Off, Result);
6780 begin
6781 Check_Conformance
6782 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
6783 end Check_Fully_Conformant;
6785 ---------------------------
6786 -- Check_Mode_Conformant --
6787 ---------------------------
6789 procedure Check_Mode_Conformant
6790 (New_Id : Entity_Id;
6791 Old_Id : Entity_Id;
6792 Err_Loc : Node_Id := Empty;
6793 Get_Inst : Boolean := False)
6795 Result : Boolean;
6796 pragma Warnings (Off, Result);
6797 begin
6798 Check_Conformance
6799 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
6800 end Check_Mode_Conformant;
6802 --------------------------------
6803 -- Check_Overriding_Indicator --
6804 --------------------------------
6806 procedure Check_Overriding_Indicator
6807 (Subp : Entity_Id;
6808 Overridden_Subp : Entity_Id;
6809 Is_Primitive : Boolean)
6811 Decl : Node_Id;
6812 Spec : Node_Id;
6814 begin
6815 -- No overriding indicator for literals
6817 if Ekind (Subp) = E_Enumeration_Literal then
6818 return;
6820 elsif Ekind (Subp) = E_Entry then
6821 Decl := Parent (Subp);
6823 -- No point in analyzing a malformed operator
6825 elsif Nkind (Subp) = N_Defining_Operator_Symbol
6826 and then Error_Posted (Subp)
6827 then
6828 return;
6830 else
6831 Decl := Unit_Declaration_Node (Subp);
6832 end if;
6834 if Nkind_In (Decl, N_Subprogram_Body,
6835 N_Subprogram_Body_Stub,
6836 N_Subprogram_Declaration,
6837 N_Abstract_Subprogram_Declaration,
6838 N_Subprogram_Renaming_Declaration)
6839 then
6840 Spec := Specification (Decl);
6842 elsif Nkind (Decl) = N_Entry_Declaration then
6843 Spec := Decl;
6845 else
6846 return;
6847 end if;
6849 -- The overriding operation is type conformant with the overridden one,
6850 -- but the names of the formals are not required to match. If the names
6851 -- appear permuted in the overriding operation, this is a possible
6852 -- source of confusion that is worth diagnosing. Controlling formals
6853 -- often carry names that reflect the type, and it is not worthwhile
6854 -- requiring that their names match.
6856 if Present (Overridden_Subp)
6857 and then Nkind (Subp) /= N_Defining_Operator_Symbol
6858 then
6859 declare
6860 Form1 : Entity_Id;
6861 Form2 : Entity_Id;
6863 begin
6864 Form1 := First_Formal (Subp);
6865 Form2 := First_Formal (Overridden_Subp);
6867 -- If the overriding operation is a synchronized operation, skip
6868 -- the first parameter of the overridden operation, which is
6869 -- implicit in the new one. If the operation is declared in the
6870 -- body it is not primitive and all formals must match.
6872 if Is_Concurrent_Type (Scope (Subp))
6873 and then Is_Tagged_Type (Scope (Subp))
6874 and then not Has_Completion (Scope (Subp))
6875 then
6876 Form2 := Next_Formal (Form2);
6877 end if;
6879 if Present (Form1) then
6880 Form1 := Next_Formal (Form1);
6881 Form2 := Next_Formal (Form2);
6882 end if;
6884 while Present (Form1) loop
6885 if not Is_Controlling_Formal (Form1)
6886 and then Present (Next_Formal (Form2))
6887 and then Chars (Form1) = Chars (Next_Formal (Form2))
6888 then
6889 Error_Msg_Node_2 := Alias (Overridden_Subp);
6890 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
6891 Error_Msg_NE
6892 ("& does not match corresponding formal of&#",
6893 Form1, Form1);
6894 exit;
6895 end if;
6897 Next_Formal (Form1);
6898 Next_Formal (Form2);
6899 end loop;
6900 end;
6901 end if;
6903 -- If there is an overridden subprogram, then check that there is no
6904 -- "not overriding" indicator, and mark the subprogram as overriding.
6905 -- This is not done if the overridden subprogram is marked as hidden,
6906 -- which can occur for the case of inherited controlled operations
6907 -- (see Derive_Subprogram), unless the inherited subprogram's parent
6908 -- subprogram is not itself hidden. (Note: This condition could probably
6909 -- be simplified, leaving out the testing for the specific controlled
6910 -- cases, but it seems safer and clearer this way, and echoes similar
6911 -- special-case tests of this kind in other places.)
6913 if Present (Overridden_Subp)
6914 and then (not Is_Hidden (Overridden_Subp)
6915 or else
6916 (Nam_In (Chars (Overridden_Subp), Name_Initialize,
6917 Name_Adjust,
6918 Name_Finalize)
6919 and then Present (Alias (Overridden_Subp))
6920 and then not Is_Hidden (Alias (Overridden_Subp))))
6921 then
6922 if Must_Not_Override (Spec) then
6923 Error_Msg_Sloc := Sloc (Overridden_Subp);
6925 if Ekind (Subp) = E_Entry then
6926 Error_Msg_NE
6927 ("entry & overrides inherited operation #", Spec, Subp);
6928 else
6929 Error_Msg_NE
6930 ("subprogram & overrides inherited operation #", Spec, Subp);
6931 end if;
6933 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
6934 -- as an extension of Root_Controlled, and thus has a useless Adjust
6935 -- operation. This operation should not be inherited by other limited
6936 -- controlled types. An explicit Adjust for them is not overriding.
6938 elsif Must_Override (Spec)
6939 and then Chars (Overridden_Subp) = Name_Adjust
6940 and then Is_Limited_Type (Etype (First_Formal (Subp)))
6941 and then Present (Alias (Overridden_Subp))
6942 and then
6943 Is_Predefined_File_Name
6944 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))))
6945 then
6946 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
6948 elsif Is_Subprogram (Subp) then
6949 if Is_Init_Proc (Subp) then
6950 null;
6952 elsif No (Overridden_Operation (Subp)) then
6954 -- For entities generated by Derive_Subprograms the overridden
6955 -- operation is the inherited primitive (which is available
6956 -- through the attribute alias)
6958 if (Is_Dispatching_Operation (Subp)
6959 or else Is_Dispatching_Operation (Overridden_Subp))
6960 and then not Comes_From_Source (Overridden_Subp)
6961 and then Find_Dispatching_Type (Overridden_Subp) =
6962 Find_Dispatching_Type (Subp)
6963 and then Present (Alias (Overridden_Subp))
6964 and then Comes_From_Source (Alias (Overridden_Subp))
6965 then
6966 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
6968 else
6969 Set_Overridden_Operation (Subp, Overridden_Subp);
6970 end if;
6971 end if;
6972 end if;
6974 -- If primitive flag is set or this is a protected operation, then
6975 -- the operation is overriding at the point of its declaration, so
6976 -- warn if necessary. Otherwise it may have been declared before the
6977 -- operation it overrides and no check is required.
6979 if Style_Check
6980 and then not Must_Override (Spec)
6981 and then (Is_Primitive
6982 or else Ekind (Scope (Subp)) = E_Protected_Type)
6983 then
6984 Style.Missing_Overriding (Decl, Subp);
6985 end if;
6987 -- If Subp is an operator, it may override a predefined operation, if
6988 -- it is defined in the same scope as the type to which it applies.
6989 -- In that case Overridden_Subp is empty because of our implicit
6990 -- representation for predefined operators. We have to check whether the
6991 -- signature of Subp matches that of a predefined operator. Note that
6992 -- first argument provides the name of the operator, and the second
6993 -- argument the signature that may match that of a standard operation.
6994 -- If the indicator is overriding, then the operator must match a
6995 -- predefined signature, because we know already that there is no
6996 -- explicit overridden operation.
6998 elsif Nkind (Subp) = N_Defining_Operator_Symbol then
6999 if Must_Not_Override (Spec) then
7001 -- If this is not a primitive or a protected subprogram, then
7002 -- "not overriding" is illegal.
7004 if not Is_Primitive
7005 and then Ekind (Scope (Subp)) /= E_Protected_Type
7006 then
7007 Error_Msg_N
7008 ("overriding indicator only allowed "
7009 & "if subprogram is primitive", Subp);
7011 elsif Can_Override_Operator (Subp) then
7012 Error_Msg_NE
7013 ("subprogram& overrides predefined operator ", Spec, Subp);
7014 end if;
7016 elsif Must_Override (Spec) then
7017 if No (Overridden_Operation (Subp))
7018 and then not Can_Override_Operator (Subp)
7019 then
7020 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
7021 end if;
7023 elsif not Error_Posted (Subp)
7024 and then Style_Check
7025 and then Can_Override_Operator (Subp)
7026 and then
7027 not Is_Predefined_File_Name
7028 (Unit_File_Name (Get_Source_Unit (Subp)))
7029 then
7030 -- If style checks are enabled, indicate that the indicator is
7031 -- missing. However, at the point of declaration, the type of
7032 -- which this is a primitive operation may be private, in which
7033 -- case the indicator would be premature.
7035 if Has_Private_Declaration (Etype (Subp))
7036 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
7037 then
7038 null;
7039 else
7040 Style.Missing_Overriding (Decl, Subp);
7041 end if;
7042 end if;
7044 elsif Must_Override (Spec) then
7045 if Ekind (Subp) = E_Entry then
7046 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
7047 else
7048 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
7049 end if;
7051 -- If the operation is marked "not overriding" and it's not primitive
7052 -- then an error is issued, unless this is an operation of a task or
7053 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
7054 -- has been specified have already been checked above.
7056 elsif Must_Not_Override (Spec)
7057 and then not Is_Primitive
7058 and then Ekind (Subp) /= E_Entry
7059 and then Ekind (Scope (Subp)) /= E_Protected_Type
7060 then
7061 Error_Msg_N
7062 ("overriding indicator only allowed if subprogram is primitive",
7063 Subp);
7064 return;
7065 end if;
7066 end Check_Overriding_Indicator;
7068 -------------------
7069 -- Check_Returns --
7070 -------------------
7072 -- Note: this procedure needs to know far too much about how the expander
7073 -- messes with exceptions. The use of the flag Exception_Junk and the
7074 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
7075 -- works, but is not very clean. It would be better if the expansion
7076 -- routines would leave Original_Node working nicely, and we could use
7077 -- Original_Node here to ignore all the peculiar expander messing ???
7079 procedure Check_Returns
7080 (HSS : Node_Id;
7081 Mode : Character;
7082 Err : out Boolean;
7083 Proc : Entity_Id := Empty)
7085 Handler : Node_Id;
7087 procedure Check_Statement_Sequence (L : List_Id);
7088 -- Internal recursive procedure to check a list of statements for proper
7089 -- termination by a return statement (or a transfer of control or a
7090 -- compound statement that is itself internally properly terminated).
7092 ------------------------------
7093 -- Check_Statement_Sequence --
7094 ------------------------------
7096 procedure Check_Statement_Sequence (L : List_Id) is
7097 Last_Stm : Node_Id;
7098 Stm : Node_Id;
7099 Kind : Node_Kind;
7101 Raise_Exception_Call : Boolean;
7102 -- Set True if statement sequence terminated by Raise_Exception call
7103 -- or a Reraise_Occurrence call.
7105 begin
7106 Raise_Exception_Call := False;
7108 -- Get last real statement
7110 Last_Stm := Last (L);
7112 -- Deal with digging out exception handler statement sequences that
7113 -- have been transformed by the local raise to goto optimization.
7114 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
7115 -- optimization has occurred, we are looking at something like:
7117 -- begin
7118 -- original stmts in block
7120 -- exception \
7121 -- when excep1 => |
7122 -- goto L1; | omitted if No_Exception_Propagation
7123 -- when excep2 => |
7124 -- goto L2; /
7125 -- end;
7127 -- goto L3; -- skip handler when exception not raised
7129 -- <<L1>> -- target label for local exception
7130 -- begin
7131 -- estmts1
7132 -- end;
7134 -- goto L3;
7136 -- <<L2>>
7137 -- begin
7138 -- estmts2
7139 -- end;
7141 -- <<L3>>
7143 -- and what we have to do is to dig out the estmts1 and estmts2
7144 -- sequences (which were the original sequences of statements in
7145 -- the exception handlers) and check them.
7147 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
7148 Stm := Last_Stm;
7149 loop
7150 Prev (Stm);
7151 exit when No (Stm);
7152 exit when Nkind (Stm) /= N_Block_Statement;
7153 exit when not Exception_Junk (Stm);
7154 Prev (Stm);
7155 exit when No (Stm);
7156 exit when Nkind (Stm) /= N_Label;
7157 exit when not Exception_Junk (Stm);
7158 Check_Statement_Sequence
7159 (Statements (Handled_Statement_Sequence (Next (Stm))));
7161 Prev (Stm);
7162 Last_Stm := Stm;
7163 exit when No (Stm);
7164 exit when Nkind (Stm) /= N_Goto_Statement;
7165 exit when not Exception_Junk (Stm);
7166 end loop;
7167 end if;
7169 -- Don't count pragmas
7171 while Nkind (Last_Stm) = N_Pragma
7173 -- Don't count call to SS_Release (can happen after Raise_Exception)
7175 or else
7176 (Nkind (Last_Stm) = N_Procedure_Call_Statement
7177 and then
7178 Nkind (Name (Last_Stm)) = N_Identifier
7179 and then
7180 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
7182 -- Don't count exception junk
7184 or else
7185 (Nkind_In (Last_Stm, N_Goto_Statement,
7186 N_Label,
7187 N_Object_Declaration)
7188 and then Exception_Junk (Last_Stm))
7189 or else Nkind (Last_Stm) in N_Push_xxx_Label
7190 or else Nkind (Last_Stm) in N_Pop_xxx_Label
7192 -- Inserted code, such as finalization calls, is irrelevant: we only
7193 -- need to check original source.
7195 or else Is_Rewrite_Insertion (Last_Stm)
7196 loop
7197 Prev (Last_Stm);
7198 end loop;
7200 -- Here we have the "real" last statement
7202 Kind := Nkind (Last_Stm);
7204 -- Transfer of control, OK. Note that in the No_Return procedure
7205 -- case, we already diagnosed any explicit return statements, so
7206 -- we can treat them as OK in this context.
7208 if Is_Transfer (Last_Stm) then
7209 return;
7211 -- Check cases of explicit non-indirect procedure calls
7213 elsif Kind = N_Procedure_Call_Statement
7214 and then Is_Entity_Name (Name (Last_Stm))
7215 then
7216 -- Check call to Raise_Exception procedure which is treated
7217 -- specially, as is a call to Reraise_Occurrence.
7219 -- We suppress the warning in these cases since it is likely that
7220 -- the programmer really does not expect to deal with the case
7221 -- of Null_Occurrence, and thus would find a warning about a
7222 -- missing return curious, and raising Program_Error does not
7223 -- seem such a bad behavior if this does occur.
7225 -- Note that in the Ada 2005 case for Raise_Exception, the actual
7226 -- behavior will be to raise Constraint_Error (see AI-329).
7228 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
7229 or else
7230 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
7231 then
7232 Raise_Exception_Call := True;
7234 -- For Raise_Exception call, test first argument, if it is
7235 -- an attribute reference for a 'Identity call, then we know
7236 -- that the call cannot possibly return.
7238 declare
7239 Arg : constant Node_Id :=
7240 Original_Node (First_Actual (Last_Stm));
7241 begin
7242 if Nkind (Arg) = N_Attribute_Reference
7243 and then Attribute_Name (Arg) = Name_Identity
7244 then
7245 return;
7246 end if;
7247 end;
7248 end if;
7250 -- If statement, need to look inside if there is an else and check
7251 -- each constituent statement sequence for proper termination.
7253 elsif Kind = N_If_Statement
7254 and then Present (Else_Statements (Last_Stm))
7255 then
7256 Check_Statement_Sequence (Then_Statements (Last_Stm));
7257 Check_Statement_Sequence (Else_Statements (Last_Stm));
7259 if Present (Elsif_Parts (Last_Stm)) then
7260 declare
7261 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
7263 begin
7264 while Present (Elsif_Part) loop
7265 Check_Statement_Sequence (Then_Statements (Elsif_Part));
7266 Next (Elsif_Part);
7267 end loop;
7268 end;
7269 end if;
7271 return;
7273 -- Case statement, check each case for proper termination
7275 elsif Kind = N_Case_Statement then
7276 declare
7277 Case_Alt : Node_Id;
7278 begin
7279 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
7280 while Present (Case_Alt) loop
7281 Check_Statement_Sequence (Statements (Case_Alt));
7282 Next_Non_Pragma (Case_Alt);
7283 end loop;
7284 end;
7286 return;
7288 -- Block statement, check its handled sequence of statements
7290 elsif Kind = N_Block_Statement then
7291 declare
7292 Err1 : Boolean;
7294 begin
7295 Check_Returns
7296 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
7298 if Err1 then
7299 Err := True;
7300 end if;
7302 return;
7303 end;
7305 -- Loop statement. If there is an iteration scheme, we can definitely
7306 -- fall out of the loop. Similarly if there is an exit statement, we
7307 -- can fall out. In either case we need a following return.
7309 elsif Kind = N_Loop_Statement then
7310 if Present (Iteration_Scheme (Last_Stm))
7311 or else Has_Exit (Entity (Identifier (Last_Stm)))
7312 then
7313 null;
7315 -- A loop with no exit statement or iteration scheme is either
7316 -- an infinite loop, or it has some other exit (raise/return).
7317 -- In either case, no warning is required.
7319 else
7320 return;
7321 end if;
7323 -- Timed entry call, check entry call and delay alternatives
7325 -- Note: in expanded code, the timed entry call has been converted
7326 -- to a set of expanded statements on which the check will work
7327 -- correctly in any case.
7329 elsif Kind = N_Timed_Entry_Call then
7330 declare
7331 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7332 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
7334 begin
7335 -- If statement sequence of entry call alternative is missing,
7336 -- then we can definitely fall through, and we post the error
7337 -- message on the entry call alternative itself.
7339 if No (Statements (ECA)) then
7340 Last_Stm := ECA;
7342 -- If statement sequence of delay alternative is missing, then
7343 -- we can definitely fall through, and we post the error
7344 -- message on the delay alternative itself.
7346 -- Note: if both ECA and DCA are missing the return, then we
7347 -- post only one message, should be enough to fix the bugs.
7348 -- If not we will get a message next time on the DCA when the
7349 -- ECA is fixed!
7351 elsif No (Statements (DCA)) then
7352 Last_Stm := DCA;
7354 -- Else check both statement sequences
7356 else
7357 Check_Statement_Sequence (Statements (ECA));
7358 Check_Statement_Sequence (Statements (DCA));
7359 return;
7360 end if;
7361 end;
7363 -- Conditional entry call, check entry call and else part
7365 -- Note: in expanded code, the conditional entry call has been
7366 -- converted to a set of expanded statements on which the check
7367 -- will work correctly in any case.
7369 elsif Kind = N_Conditional_Entry_Call then
7370 declare
7371 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7373 begin
7374 -- If statement sequence of entry call alternative is missing,
7375 -- then we can definitely fall through, and we post the error
7376 -- message on the entry call alternative itself.
7378 if No (Statements (ECA)) then
7379 Last_Stm := ECA;
7381 -- Else check statement sequence and else part
7383 else
7384 Check_Statement_Sequence (Statements (ECA));
7385 Check_Statement_Sequence (Else_Statements (Last_Stm));
7386 return;
7387 end if;
7388 end;
7389 end if;
7391 -- If we fall through, issue appropriate message
7393 if Mode = 'F' then
7394 if not Raise_Exception_Call then
7395 Error_Msg_N
7396 ("RETURN statement missing following this statement??!",
7397 Last_Stm);
7398 Error_Msg_N
7399 ("\Program_Error may be raised at run time??!",
7400 Last_Stm);
7401 end if;
7403 -- Note: we set Err even though we have not issued a warning
7404 -- because we still have a case of a missing return. This is
7405 -- an extremely marginal case, probably will never be noticed
7406 -- but we might as well get it right.
7408 Err := True;
7410 -- Otherwise we have the case of a procedure marked No_Return
7412 else
7413 if not Raise_Exception_Call then
7414 Error_Msg_N
7415 ("implied return after this statement " &
7416 "will raise Program_Error??",
7417 Last_Stm);
7418 Error_Msg_NE
7419 ("\procedure & is marked as No_Return??!",
7420 Last_Stm, Proc);
7421 end if;
7423 declare
7424 RE : constant Node_Id :=
7425 Make_Raise_Program_Error (Sloc (Last_Stm),
7426 Reason => PE_Implicit_Return);
7427 begin
7428 Insert_After (Last_Stm, RE);
7429 Analyze (RE);
7430 end;
7431 end if;
7432 end Check_Statement_Sequence;
7434 -- Start of processing for Check_Returns
7436 begin
7437 Err := False;
7438 Check_Statement_Sequence (Statements (HSS));
7440 if Present (Exception_Handlers (HSS)) then
7441 Handler := First_Non_Pragma (Exception_Handlers (HSS));
7442 while Present (Handler) loop
7443 Check_Statement_Sequence (Statements (Handler));
7444 Next_Non_Pragma (Handler);
7445 end loop;
7446 end if;
7447 end Check_Returns;
7449 ----------------------------
7450 -- Check_Subprogram_Order --
7451 ----------------------------
7453 procedure Check_Subprogram_Order (N : Node_Id) is
7455 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
7456 -- This is used to check if S1 > S2 in the sense required by this test,
7457 -- for example nameab < namec, but name2 < name10.
7459 -----------------------------
7460 -- Subprogram_Name_Greater --
7461 -----------------------------
7463 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
7464 L1, L2 : Positive;
7465 N1, N2 : Natural;
7467 begin
7468 -- Deal with special case where names are identical except for a
7469 -- numerical suffix. These are handled specially, taking the numeric
7470 -- ordering from the suffix into account.
7472 L1 := S1'Last;
7473 while S1 (L1) in '0' .. '9' loop
7474 L1 := L1 - 1;
7475 end loop;
7477 L2 := S2'Last;
7478 while S2 (L2) in '0' .. '9' loop
7479 L2 := L2 - 1;
7480 end loop;
7482 -- If non-numeric parts non-equal, do straight compare
7484 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
7485 return S1 > S2;
7487 -- If non-numeric parts equal, compare suffixed numeric parts. Note
7488 -- that a missing suffix is treated as numeric zero in this test.
7490 else
7491 N1 := 0;
7492 while L1 < S1'Last loop
7493 L1 := L1 + 1;
7494 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
7495 end loop;
7497 N2 := 0;
7498 while L2 < S2'Last loop
7499 L2 := L2 + 1;
7500 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
7501 end loop;
7503 return N1 > N2;
7504 end if;
7505 end Subprogram_Name_Greater;
7507 -- Start of processing for Check_Subprogram_Order
7509 begin
7510 -- Check body in alpha order if this is option
7512 if Style_Check
7513 and then Style_Check_Order_Subprograms
7514 and then Nkind (N) = N_Subprogram_Body
7515 and then Comes_From_Source (N)
7516 and then In_Extended_Main_Source_Unit (N)
7517 then
7518 declare
7519 LSN : String_Ptr
7520 renames Scope_Stack.Table
7521 (Scope_Stack.Last).Last_Subprogram_Name;
7523 Body_Id : constant Entity_Id :=
7524 Defining_Entity (Specification (N));
7526 begin
7527 Get_Decoded_Name_String (Chars (Body_Id));
7529 if LSN /= null then
7530 if Subprogram_Name_Greater
7531 (LSN.all, Name_Buffer (1 .. Name_Len))
7532 then
7533 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
7534 end if;
7536 Free (LSN);
7537 end if;
7539 LSN := new String'(Name_Buffer (1 .. Name_Len));
7540 end;
7541 end if;
7542 end Check_Subprogram_Order;
7544 ------------------------------
7545 -- Check_Subtype_Conformant --
7546 ------------------------------
7548 procedure Check_Subtype_Conformant
7549 (New_Id : Entity_Id;
7550 Old_Id : Entity_Id;
7551 Err_Loc : Node_Id := Empty;
7552 Skip_Controlling_Formals : Boolean := False;
7553 Get_Inst : Boolean := False)
7555 Result : Boolean;
7556 pragma Warnings (Off, Result);
7557 begin
7558 Check_Conformance
7559 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
7560 Skip_Controlling_Formals => Skip_Controlling_Formals,
7561 Get_Inst => Get_Inst);
7562 end Check_Subtype_Conformant;
7564 ---------------------------
7565 -- Check_Type_Conformant --
7566 ---------------------------
7568 procedure Check_Type_Conformant
7569 (New_Id : Entity_Id;
7570 Old_Id : Entity_Id;
7571 Err_Loc : Node_Id := Empty)
7573 Result : Boolean;
7574 pragma Warnings (Off, Result);
7575 begin
7576 Check_Conformance
7577 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
7578 end Check_Type_Conformant;
7580 ---------------------------
7581 -- Can_Override_Operator --
7582 ---------------------------
7584 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
7585 Typ : Entity_Id;
7587 begin
7588 if Nkind (Subp) /= N_Defining_Operator_Symbol then
7589 return False;
7591 else
7592 Typ := Base_Type (Etype (First_Formal (Subp)));
7594 -- Check explicitly that the operation is a primitive of the type
7596 return Operator_Matches_Spec (Subp, Subp)
7597 and then not Is_Generic_Type (Typ)
7598 and then Scope (Subp) = Scope (Typ)
7599 and then not Is_Class_Wide_Type (Typ);
7600 end if;
7601 end Can_Override_Operator;
7603 ----------------------
7604 -- Conforming_Types --
7605 ----------------------
7607 function Conforming_Types
7608 (T1 : Entity_Id;
7609 T2 : Entity_Id;
7610 Ctype : Conformance_Type;
7611 Get_Inst : Boolean := False) return Boolean
7613 Type_1 : Entity_Id := T1;
7614 Type_2 : Entity_Id := T2;
7615 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
7617 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
7618 -- If neither T1 nor T2 are generic actual types, or if they are in
7619 -- different scopes (e.g. parent and child instances), then verify that
7620 -- the base types are equal. Otherwise T1 and T2 must be on the same
7621 -- subtype chain. The whole purpose of this procedure is to prevent
7622 -- spurious ambiguities in an instantiation that may arise if two
7623 -- distinct generic types are instantiated with the same actual.
7625 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
7626 -- An access parameter can designate an incomplete type. If the
7627 -- incomplete type is the limited view of a type from a limited_
7628 -- with_clause, check whether the non-limited view is available. If
7629 -- it is a (non-limited) incomplete type, get the full view.
7631 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
7632 -- Returns True if and only if either T1 denotes a limited view of T2
7633 -- or T2 denotes a limited view of T1. This can arise when the limited
7634 -- with view of a type is used in a subprogram declaration and the
7635 -- subprogram body is in the scope of a regular with clause for the
7636 -- same unit. In such a case, the two type entities can be considered
7637 -- identical for purposes of conformance checking.
7639 ----------------------
7640 -- Base_Types_Match --
7641 ----------------------
7643 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
7644 BT1 : constant Entity_Id := Base_Type (T1);
7645 BT2 : constant Entity_Id := Base_Type (T2);
7647 begin
7648 if T1 = T2 then
7649 return True;
7651 elsif BT1 = BT2 then
7653 -- The following is too permissive. A more precise test should
7654 -- check that the generic actual is an ancestor subtype of the
7655 -- other ???.
7657 -- See code in Find_Corresponding_Spec that applies an additional
7658 -- filter to handle accidental amiguities in instances.
7660 return not Is_Generic_Actual_Type (T1)
7661 or else not Is_Generic_Actual_Type (T2)
7662 or else Scope (T1) /= Scope (T2);
7664 -- If T2 is a generic actual type it is declared as the subtype of
7665 -- the actual. If that actual is itself a subtype we need to use its
7666 -- own base type to check for compatibility.
7668 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
7669 return True;
7671 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
7672 return True;
7674 else
7675 return False;
7676 end if;
7677 end Base_Types_Match;
7679 --------------------------
7680 -- Find_Designated_Type --
7681 --------------------------
7683 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
7684 Desig : Entity_Id;
7686 begin
7687 Desig := Directly_Designated_Type (T);
7689 if Ekind (Desig) = E_Incomplete_Type then
7691 -- If regular incomplete type, get full view if available
7693 if Present (Full_View (Desig)) then
7694 Desig := Full_View (Desig);
7696 -- If limited view of a type, get non-limited view if available,
7697 -- and check again for a regular incomplete type.
7699 elsif Present (Non_Limited_View (Desig)) then
7700 Desig := Get_Full_View (Non_Limited_View (Desig));
7701 end if;
7702 end if;
7704 return Desig;
7705 end Find_Designated_Type;
7707 -------------------------------
7708 -- Matches_Limited_With_View --
7709 -------------------------------
7711 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
7712 begin
7713 -- In some cases a type imported through a limited_with clause, and
7714 -- its nonlimited view are both visible, for example in an anonymous
7715 -- access-to-class-wide type in a formal. Both entities designate the
7716 -- same type.
7718 if From_Limited_With (T1) and then T2 = Available_View (T1) then
7719 return True;
7721 elsif From_Limited_With (T2) and then T1 = Available_View (T2) then
7722 return True;
7724 elsif From_Limited_With (T1)
7725 and then From_Limited_With (T2)
7726 and then Available_View (T1) = Available_View (T2)
7727 then
7728 return True;
7730 else
7731 return False;
7732 end if;
7733 end Matches_Limited_With_View;
7735 -- Start of processing for Conforming_Types
7737 begin
7738 -- The context is an instance association for a formal access-to-
7739 -- subprogram type; the formal parameter types require mapping because
7740 -- they may denote other formal parameters of the generic unit.
7742 if Get_Inst then
7743 Type_1 := Get_Instance_Of (T1);
7744 Type_2 := Get_Instance_Of (T2);
7745 end if;
7747 -- If one of the types is a view of the other introduced by a limited
7748 -- with clause, treat these as conforming for all purposes.
7750 if Matches_Limited_With_View (T1, T2) then
7751 return True;
7753 elsif Base_Types_Match (Type_1, Type_2) then
7754 return Ctype <= Mode_Conformant
7755 or else Subtypes_Statically_Match (Type_1, Type_2);
7757 elsif Is_Incomplete_Or_Private_Type (Type_1)
7758 and then Present (Full_View (Type_1))
7759 and then Base_Types_Match (Full_View (Type_1), Type_2)
7760 then
7761 return Ctype <= Mode_Conformant
7762 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
7764 elsif Ekind (Type_2) = E_Incomplete_Type
7765 and then Present (Full_View (Type_2))
7766 and then Base_Types_Match (Type_1, Full_View (Type_2))
7767 then
7768 return Ctype <= Mode_Conformant
7769 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7771 elsif Is_Private_Type (Type_2)
7772 and then In_Instance
7773 and then Present (Full_View (Type_2))
7774 and then Base_Types_Match (Type_1, Full_View (Type_2))
7775 then
7776 return Ctype <= Mode_Conformant
7777 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
7778 end if;
7780 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
7781 -- treated recursively because they carry a signature. As far as
7782 -- conformance is concerned, convention plays no role, and either
7783 -- or both could be access to protected subprograms.
7785 Are_Anonymous_Access_To_Subprogram_Types :=
7786 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
7787 E_Anonymous_Access_Protected_Subprogram_Type)
7788 and then
7789 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
7790 E_Anonymous_Access_Protected_Subprogram_Type);
7792 -- Test anonymous access type case. For this case, static subtype
7793 -- matching is required for mode conformance (RM 6.3.1(15)). We check
7794 -- the base types because we may have built internal subtype entities
7795 -- to handle null-excluding types (see Process_Formals).
7797 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
7798 and then
7799 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
7801 -- Ada 2005 (AI-254)
7803 or else Are_Anonymous_Access_To_Subprogram_Types
7804 then
7805 declare
7806 Desig_1 : Entity_Id;
7807 Desig_2 : Entity_Id;
7809 begin
7810 -- In Ada 2005, access constant indicators must match for
7811 -- subtype conformance.
7813 if Ada_Version >= Ada_2005
7814 and then Ctype >= Subtype_Conformant
7815 and then
7816 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
7817 then
7818 return False;
7819 end if;
7821 Desig_1 := Find_Designated_Type (Type_1);
7822 Desig_2 := Find_Designated_Type (Type_2);
7824 -- If the context is an instance association for a formal
7825 -- access-to-subprogram type; formal access parameter designated
7826 -- types require mapping because they may denote other formal
7827 -- parameters of the generic unit.
7829 if Get_Inst then
7830 Desig_1 := Get_Instance_Of (Desig_1);
7831 Desig_2 := Get_Instance_Of (Desig_2);
7832 end if;
7834 -- It is possible for a Class_Wide_Type to be introduced for an
7835 -- incomplete type, in which case there is a separate class_ wide
7836 -- type for the full view. The types conform if their Etypes
7837 -- conform, i.e. one may be the full view of the other. This can
7838 -- only happen in the context of an access parameter, other uses
7839 -- of an incomplete Class_Wide_Type are illegal.
7841 if Is_Class_Wide_Type (Desig_1)
7842 and then
7843 Is_Class_Wide_Type (Desig_2)
7844 then
7845 return
7846 Conforming_Types
7847 (Etype (Base_Type (Desig_1)),
7848 Etype (Base_Type (Desig_2)), Ctype);
7850 elsif Are_Anonymous_Access_To_Subprogram_Types then
7851 if Ada_Version < Ada_2005 then
7852 return Ctype = Type_Conformant
7853 or else
7854 Subtypes_Statically_Match (Desig_1, Desig_2);
7856 -- We must check the conformance of the signatures themselves
7858 else
7859 declare
7860 Conformant : Boolean;
7861 begin
7862 Check_Conformance
7863 (Desig_1, Desig_2, Ctype, False, Conformant);
7864 return Conformant;
7865 end;
7866 end if;
7868 else
7869 return Base_Type (Desig_1) = Base_Type (Desig_2)
7870 and then (Ctype = Type_Conformant
7871 or else
7872 Subtypes_Statically_Match (Desig_1, Desig_2));
7873 end if;
7874 end;
7876 -- Otherwise definitely no match
7878 else
7879 if ((Ekind (Type_1) = E_Anonymous_Access_Type
7880 and then Is_Access_Type (Type_2))
7881 or else (Ekind (Type_2) = E_Anonymous_Access_Type
7882 and then Is_Access_Type (Type_1)))
7883 and then
7884 Conforming_Types
7885 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
7886 then
7887 May_Hide_Profile := True;
7888 end if;
7890 return False;
7891 end if;
7892 end Conforming_Types;
7894 --------------------------
7895 -- Create_Extra_Formals --
7896 --------------------------
7898 procedure Create_Extra_Formals (E : Entity_Id) is
7899 Formal : Entity_Id;
7900 First_Extra : Entity_Id := Empty;
7901 Last_Extra : Entity_Id;
7902 Formal_Type : Entity_Id;
7903 P_Formal : Entity_Id := Empty;
7905 function Add_Extra_Formal
7906 (Assoc_Entity : Entity_Id;
7907 Typ : Entity_Id;
7908 Scope : Entity_Id;
7909 Suffix : String) return Entity_Id;
7910 -- Add an extra formal to the current list of formals and extra formals.
7911 -- The extra formal is added to the end of the list of extra formals,
7912 -- and also returned as the result. These formals are always of mode IN.
7913 -- The new formal has the type Typ, is declared in Scope, and its name
7914 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
7915 -- The following suffixes are currently used. They should not be changed
7916 -- without coordinating with CodePeer, which makes use of these to
7917 -- provide better messages.
7919 -- O denotes the Constrained bit.
7920 -- L denotes the accessibility level.
7921 -- BIP_xxx denotes an extra formal for a build-in-place function. See
7922 -- the full list in exp_ch6.BIP_Formal_Kind.
7924 ----------------------
7925 -- Add_Extra_Formal --
7926 ----------------------
7928 function Add_Extra_Formal
7929 (Assoc_Entity : Entity_Id;
7930 Typ : Entity_Id;
7931 Scope : Entity_Id;
7932 Suffix : String) return Entity_Id
7934 EF : constant Entity_Id :=
7935 Make_Defining_Identifier (Sloc (Assoc_Entity),
7936 Chars => New_External_Name (Chars (Assoc_Entity),
7937 Suffix => Suffix));
7939 begin
7940 -- A little optimization. Never generate an extra formal for the
7941 -- _init operand of an initialization procedure, since it could
7942 -- never be used.
7944 if Chars (Formal) = Name_uInit then
7945 return Empty;
7946 end if;
7948 Set_Ekind (EF, E_In_Parameter);
7949 Set_Actual_Subtype (EF, Typ);
7950 Set_Etype (EF, Typ);
7951 Set_Scope (EF, Scope);
7952 Set_Mechanism (EF, Default_Mechanism);
7953 Set_Formal_Validity (EF);
7955 if No (First_Extra) then
7956 First_Extra := EF;
7957 Set_Extra_Formals (Scope, First_Extra);
7958 end if;
7960 if Present (Last_Extra) then
7961 Set_Extra_Formal (Last_Extra, EF);
7962 end if;
7964 Last_Extra := EF;
7966 return EF;
7967 end Add_Extra_Formal;
7969 -- Start of processing for Create_Extra_Formals
7971 begin
7972 -- We never generate extra formals if expansion is not active because we
7973 -- don't need them unless we are generating code.
7975 if not Expander_Active then
7976 return;
7977 end if;
7979 -- No need to generate extra formals in interface thunks whose target
7980 -- primitive has no extra formals.
7982 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
7983 return;
7984 end if;
7986 -- If this is a derived subprogram then the subtypes of the parent
7987 -- subprogram's formal parameters will be used to determine the need
7988 -- for extra formals.
7990 if Is_Overloadable (E) and then Present (Alias (E)) then
7991 P_Formal := First_Formal (Alias (E));
7992 end if;
7994 Last_Extra := Empty;
7995 Formal := First_Formal (E);
7996 while Present (Formal) loop
7997 Last_Extra := Formal;
7998 Next_Formal (Formal);
7999 end loop;
8001 -- If Extra_formals were already created, don't do it again. This
8002 -- situation may arise for subprogram types created as part of
8003 -- dispatching calls (see Expand_Dispatching_Call)
8005 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
8006 return;
8007 end if;
8009 -- If the subprogram is a predefined dispatching subprogram then don't
8010 -- generate any extra constrained or accessibility level formals. In
8011 -- general we suppress these for internal subprograms (by not calling
8012 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
8013 -- generated stream attributes do get passed through because extra
8014 -- build-in-place formals are needed in some cases (limited 'Input).
8016 if Is_Predefined_Internal_Operation (E) then
8017 goto Test_For_Func_Result_Extras;
8018 end if;
8020 Formal := First_Formal (E);
8021 while Present (Formal) loop
8023 -- Create extra formal for supporting the attribute 'Constrained.
8024 -- The case of a private type view without discriminants also
8025 -- requires the extra formal if the underlying type has defaulted
8026 -- discriminants.
8028 if Ekind (Formal) /= E_In_Parameter then
8029 if Present (P_Formal) then
8030 Formal_Type := Etype (P_Formal);
8031 else
8032 Formal_Type := Etype (Formal);
8033 end if;
8035 -- Do not produce extra formals for Unchecked_Union parameters.
8036 -- Jump directly to the end of the loop.
8038 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
8039 goto Skip_Extra_Formal_Generation;
8040 end if;
8042 if not Has_Discriminants (Formal_Type)
8043 and then Ekind (Formal_Type) in Private_Kind
8044 and then Present (Underlying_Type (Formal_Type))
8045 then
8046 Formal_Type := Underlying_Type (Formal_Type);
8047 end if;
8049 -- Suppress the extra formal if formal's subtype is constrained or
8050 -- indefinite, or we're compiling for Ada 2012 and the underlying
8051 -- type is tagged and limited. In Ada 2012, a limited tagged type
8052 -- can have defaulted discriminants, but 'Constrained is required
8053 -- to return True, so the formal is never needed (see AI05-0214).
8054 -- Note that this ensures consistency of calling sequences for
8055 -- dispatching operations when some types in a class have defaults
8056 -- on discriminants and others do not (and requiring the extra
8057 -- formal would introduce distributed overhead).
8059 -- If the type does not have a completion yet, treat as prior to
8060 -- Ada 2012 for consistency.
8062 if Has_Discriminants (Formal_Type)
8063 and then not Is_Constrained (Formal_Type)
8064 and then not Is_Indefinite_Subtype (Formal_Type)
8065 and then (Ada_Version < Ada_2012
8066 or else No (Underlying_Type (Formal_Type))
8067 or else not
8068 (Is_Limited_Type (Formal_Type)
8069 and then
8070 (Is_Tagged_Type
8071 (Underlying_Type (Formal_Type)))))
8072 then
8073 Set_Extra_Constrained
8074 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
8075 end if;
8076 end if;
8078 -- Create extra formal for supporting accessibility checking. This
8079 -- is done for both anonymous access formals and formals of named
8080 -- access types that are marked as controlling formals. The latter
8081 -- case can occur when Expand_Dispatching_Call creates a subprogram
8082 -- type and substitutes the types of access-to-class-wide actuals
8083 -- for the anonymous access-to-specific-type of controlling formals.
8084 -- Base_Type is applied because in cases where there is a null
8085 -- exclusion the formal may have an access subtype.
8087 -- This is suppressed if we specifically suppress accessibility
8088 -- checks at the package level for either the subprogram, or the
8089 -- package in which it resides. However, we do not suppress it
8090 -- simply if the scope has accessibility checks suppressed, since
8091 -- this could cause trouble when clients are compiled with a
8092 -- different suppression setting. The explicit checks at the
8093 -- package level are safe from this point of view.
8095 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
8096 or else (Is_Controlling_Formal (Formal)
8097 and then Is_Access_Type (Base_Type (Etype (Formal)))))
8098 and then not
8099 (Explicit_Suppress (E, Accessibility_Check)
8100 or else
8101 Explicit_Suppress (Scope (E), Accessibility_Check))
8102 and then
8103 (No (P_Formal)
8104 or else Present (Extra_Accessibility (P_Formal)))
8105 then
8106 Set_Extra_Accessibility
8107 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
8108 end if;
8110 -- This label is required when skipping extra formal generation for
8111 -- Unchecked_Union parameters.
8113 <<Skip_Extra_Formal_Generation>>
8115 if Present (P_Formal) then
8116 Next_Formal (P_Formal);
8117 end if;
8119 Next_Formal (Formal);
8120 end loop;
8122 <<Test_For_Func_Result_Extras>>
8124 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
8125 -- function call is ... determined by the point of call ...".
8127 if Needs_Result_Accessibility_Level (E) then
8128 Set_Extra_Accessibility_Of_Result
8129 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
8130 end if;
8132 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
8133 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
8135 if Ada_Version >= Ada_2005 and then Is_Build_In_Place_Function (E) then
8136 declare
8137 Result_Subt : constant Entity_Id := Etype (E);
8138 Full_Subt : constant Entity_Id := Available_View (Result_Subt);
8139 Formal_Typ : Entity_Id;
8141 Discard : Entity_Id;
8142 pragma Warnings (Off, Discard);
8144 begin
8145 -- In the case of functions with unconstrained result subtypes,
8146 -- add a 4-state formal indicating whether the return object is
8147 -- allocated by the caller (1), or should be allocated by the
8148 -- callee on the secondary stack (2), in the global heap (3), or
8149 -- in a user-defined storage pool (4). For the moment we just use
8150 -- Natural for the type of this formal. Note that this formal
8151 -- isn't usually needed in the case where the result subtype is
8152 -- constrained, but it is needed when the function has a tagged
8153 -- result, because generally such functions can be called in a
8154 -- dispatching context and such calls must be handled like calls
8155 -- to a class-wide function.
8157 if Needs_BIP_Alloc_Form (E) then
8158 Discard :=
8159 Add_Extra_Formal
8160 (E, Standard_Natural,
8161 E, BIP_Formal_Suffix (BIP_Alloc_Form));
8163 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
8164 -- use a user-defined pool. This formal is not added on
8165 -- .NET/JVM/ZFP as those targets do not support pools.
8167 if VM_Target = No_VM
8168 and then RTE_Available (RE_Root_Storage_Pool_Ptr)
8169 then
8170 Discard :=
8171 Add_Extra_Formal
8172 (E, RTE (RE_Root_Storage_Pool_Ptr),
8173 E, BIP_Formal_Suffix (BIP_Storage_Pool));
8174 end if;
8175 end if;
8177 -- In the case of functions whose result type needs finalization,
8178 -- add an extra formal which represents the finalization master.
8180 if Needs_BIP_Finalization_Master (E) then
8181 Discard :=
8182 Add_Extra_Formal
8183 (E, RTE (RE_Finalization_Master_Ptr),
8184 E, BIP_Formal_Suffix (BIP_Finalization_Master));
8185 end if;
8187 -- When the result type contains tasks, add two extra formals: the
8188 -- master of the tasks to be created, and the caller's activation
8189 -- chain.
8191 if Has_Task (Full_Subt) then
8192 Discard :=
8193 Add_Extra_Formal
8194 (E, RTE (RE_Master_Id),
8195 E, BIP_Formal_Suffix (BIP_Task_Master));
8196 Discard :=
8197 Add_Extra_Formal
8198 (E, RTE (RE_Activation_Chain_Access),
8199 E, BIP_Formal_Suffix (BIP_Activation_Chain));
8200 end if;
8202 -- All build-in-place functions get an extra formal that will be
8203 -- passed the address of the return object within the caller.
8205 Formal_Typ :=
8206 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
8208 Set_Directly_Designated_Type (Formal_Typ, Result_Subt);
8209 Set_Etype (Formal_Typ, Formal_Typ);
8210 Set_Depends_On_Private
8211 (Formal_Typ, Has_Private_Component (Formal_Typ));
8212 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
8213 Set_Is_Access_Constant (Formal_Typ, False);
8215 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
8216 -- the designated type comes from the limited view (for back-end
8217 -- purposes).
8219 Set_From_Limited_With
8220 (Formal_Typ, From_Limited_With (Result_Subt));
8222 Layout_Type (Formal_Typ);
8224 Discard :=
8225 Add_Extra_Formal
8226 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
8227 end;
8228 end if;
8229 end Create_Extra_Formals;
8231 -----------------------------
8232 -- Enter_Overloaded_Entity --
8233 -----------------------------
8235 procedure Enter_Overloaded_Entity (S : Entity_Id) is
8236 E : Entity_Id := Current_Entity_In_Scope (S);
8237 C_E : Entity_Id := Current_Entity (S);
8239 begin
8240 if Present (E) then
8241 Set_Has_Homonym (E);
8242 Set_Has_Homonym (S);
8243 end if;
8245 Set_Is_Immediately_Visible (S);
8246 Set_Scope (S, Current_Scope);
8248 -- Chain new entity if front of homonym in current scope, so that
8249 -- homonyms are contiguous.
8251 if Present (E) and then E /= C_E then
8252 while Homonym (C_E) /= E loop
8253 C_E := Homonym (C_E);
8254 end loop;
8256 Set_Homonym (C_E, S);
8258 else
8259 E := C_E;
8260 Set_Current_Entity (S);
8261 end if;
8263 Set_Homonym (S, E);
8265 if Is_Inherited_Operation (S) then
8266 Append_Inherited_Subprogram (S);
8267 else
8268 Append_Entity (S, Current_Scope);
8269 end if;
8271 Set_Public_Status (S);
8273 if Debug_Flag_E then
8274 Write_Str ("New overloaded entity chain: ");
8275 Write_Name (Chars (S));
8277 E := S;
8278 while Present (E) loop
8279 Write_Str (" "); Write_Int (Int (E));
8280 E := Homonym (E);
8281 end loop;
8283 Write_Eol;
8284 end if;
8286 -- Generate warning for hiding
8288 if Warn_On_Hiding
8289 and then Comes_From_Source (S)
8290 and then In_Extended_Main_Source_Unit (S)
8291 then
8292 E := S;
8293 loop
8294 E := Homonym (E);
8295 exit when No (E);
8297 -- Warn unless genuine overloading. Do not emit warning on
8298 -- hiding predefined operators in Standard (these are either an
8299 -- (artifact of our implicit declarations, or simple noise) but
8300 -- keep warning on a operator defined on a local subtype, because
8301 -- of the real danger that different operators may be applied in
8302 -- various parts of the program.
8304 -- Note that if E and S have the same scope, there is never any
8305 -- hiding. Either the two conflict, and the program is illegal,
8306 -- or S is overriding an implicit inherited subprogram.
8308 if Scope (E) /= Scope (S)
8309 and then (not Is_Overloadable (E)
8310 or else Subtype_Conformant (E, S))
8311 and then (Is_Immediately_Visible (E)
8312 or else
8313 Is_Potentially_Use_Visible (S))
8314 then
8315 if Scope (E) /= Standard_Standard then
8316 Error_Msg_Sloc := Sloc (E);
8317 Error_Msg_N ("declaration of & hides one#?h?", S);
8319 elsif Nkind (S) = N_Defining_Operator_Symbol
8320 and then
8321 Scope (Base_Type (Etype (First_Formal (S)))) /= Scope (S)
8322 then
8323 Error_Msg_N
8324 ("declaration of & hides predefined operator?h?", S);
8325 end if;
8326 end if;
8327 end loop;
8328 end if;
8329 end Enter_Overloaded_Entity;
8331 -----------------------------
8332 -- Check_Untagged_Equality --
8333 -----------------------------
8335 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
8336 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
8337 Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
8338 Obj_Decl : Node_Id;
8340 begin
8341 if Nkind (Decl) = N_Subprogram_Declaration
8342 and then Is_Record_Type (Typ)
8343 and then not Is_Tagged_Type (Typ)
8344 then
8345 -- If the type is not declared in a package, or if we are in the
8346 -- body of the package or in some other scope, the new operation is
8347 -- not primitive, and therefore legal, though suspicious. If the
8348 -- type is a generic actual (sub)type, the operation is not primitive
8349 -- either because the base type is declared elsewhere.
8351 if Is_Frozen (Typ) then
8352 if Ekind (Scope (Typ)) /= E_Package
8353 or else Scope (Typ) /= Current_Scope
8354 then
8355 null;
8357 elsif Is_Generic_Actual_Type (Typ) then
8358 null;
8360 elsif In_Package_Body (Scope (Typ)) then
8361 Error_Msg_NE
8362 ("equality operator must be declared "
8363 & "before type& is frozen", Eq_Op, Typ);
8364 Error_Msg_N
8365 ("\move declaration to package spec", Eq_Op);
8367 else
8368 Error_Msg_NE
8369 ("equality operator must be declared "
8370 & "before type& is frozen", Eq_Op, Typ);
8372 Obj_Decl := Next (Parent (Typ));
8373 while Present (Obj_Decl) and then Obj_Decl /= Decl loop
8374 if Nkind (Obj_Decl) = N_Object_Declaration
8375 and then Etype (Defining_Identifier (Obj_Decl)) = Typ
8376 then
8377 Error_Msg_NE
8378 ("type& is frozen by declaration??", Obj_Decl, Typ);
8379 Error_Msg_N
8380 ("\an equality operator cannot be declared after this "
8381 & "point (RM 4.5.2 (9.8)) (Ada 2012))??", Obj_Decl);
8382 exit;
8383 end if;
8385 Next (Obj_Decl);
8386 end loop;
8387 end if;
8389 elsif not In_Same_List (Parent (Typ), Decl)
8390 and then not Is_Limited_Type (Typ)
8391 then
8393 -- This makes it illegal to have a primitive equality declared in
8394 -- the private part if the type is visible.
8396 Error_Msg_N ("equality operator appears too late", Eq_Op);
8397 end if;
8398 end if;
8399 end Check_Untagged_Equality;
8401 -----------------------------
8402 -- Find_Corresponding_Spec --
8403 -----------------------------
8405 function Find_Corresponding_Spec
8406 (N : Node_Id;
8407 Post_Error : Boolean := True) return Entity_Id
8409 Spec : constant Node_Id := Specification (N);
8410 Designator : constant Entity_Id := Defining_Entity (Spec);
8412 E : Entity_Id;
8414 function Different_Generic_Profile (E : Entity_Id) return Boolean;
8415 -- Even if fully conformant, a body may depend on a generic actual when
8416 -- the spec does not, or vice versa, in which case they were distinct
8417 -- entities in the generic.
8419 -------------------------------
8420 -- Different_Generic_Profile --
8421 -------------------------------
8423 function Different_Generic_Profile (E : Entity_Id) return Boolean is
8424 F1, F2 : Entity_Id;
8426 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
8427 -- Check that the types of corresponding formals have the same
8428 -- generic actual if any. We have to account for subtypes of a
8429 -- generic formal, declared between a spec and a body, which may
8430 -- appear distinct in an instance but matched in the generic.
8432 -------------------------
8433 -- Same_Generic_Actual --
8434 -------------------------
8436 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
8437 begin
8438 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
8439 or else
8440 (Present (Parent (T1))
8441 and then Comes_From_Source (Parent (T1))
8442 and then Nkind (Parent (T1)) = N_Subtype_Declaration
8443 and then Is_Entity_Name (Subtype_Indication (Parent (T1)))
8444 and then Entity (Subtype_Indication (Parent (T1))) = T2);
8445 end Same_Generic_Actual;
8447 -- Start of processing for Different_Generic_Profile
8449 begin
8450 if not In_Instance then
8451 return False;
8453 elsif Ekind (E) = E_Function
8454 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
8455 then
8456 return True;
8457 end if;
8459 F1 := First_Formal (Designator);
8460 F2 := First_Formal (E);
8461 while Present (F1) loop
8462 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
8463 return True;
8464 end if;
8466 Next_Formal (F1);
8467 Next_Formal (F2);
8468 end loop;
8470 return False;
8471 end Different_Generic_Profile;
8473 -- Start of processing for Find_Corresponding_Spec
8475 begin
8476 E := Current_Entity (Designator);
8477 while Present (E) loop
8479 -- We are looking for a matching spec. It must have the same scope,
8480 -- and the same name, and either be type conformant, or be the case
8481 -- of a library procedure spec and its body (which belong to one
8482 -- another regardless of whether they are type conformant or not).
8484 if Scope (E) = Current_Scope then
8485 if Current_Scope = Standard_Standard
8486 or else (Ekind (E) = Ekind (Designator)
8487 and then Type_Conformant (E, Designator))
8488 then
8489 -- Within an instantiation, we know that spec and body are
8490 -- subtype conformant, because they were subtype conformant in
8491 -- the generic. We choose the subtype-conformant entity here as
8492 -- well, to resolve spurious ambiguities in the instance that
8493 -- were not present in the generic (i.e. when two different
8494 -- types are given the same actual). If we are looking for a
8495 -- spec to match a body, full conformance is expected.
8497 if In_Instance then
8498 Set_Convention (Designator, Convention (E));
8500 -- Skip past subprogram bodies and subprogram renamings that
8501 -- may appear to have a matching spec, but that aren't fully
8502 -- conformant with it. That can occur in cases where an
8503 -- actual type causes unrelated homographs in the instance.
8505 if Nkind_In (N, N_Subprogram_Body,
8506 N_Subprogram_Renaming_Declaration)
8507 and then Present (Homonym (E))
8508 and then not Fully_Conformant (Designator, E)
8509 then
8510 goto Next_Entity;
8512 elsif not Subtype_Conformant (Designator, E) then
8513 goto Next_Entity;
8515 elsif Different_Generic_Profile (E) then
8516 goto Next_Entity;
8517 end if;
8518 end if;
8520 -- Ada 2012 (AI05-0165): For internally generated bodies of
8521 -- null procedures locate the internally generated spec. We
8522 -- enforce mode conformance since a tagged type may inherit
8523 -- from interfaces several null primitives which differ only
8524 -- in the mode of the formals.
8526 if not (Comes_From_Source (E))
8527 and then Is_Null_Procedure (E)
8528 and then not Mode_Conformant (Designator, E)
8529 then
8530 null;
8532 -- For null procedures coming from source that are completions,
8533 -- analysis of the generated body will establish the link.
8535 elsif Comes_From_Source (E)
8536 and then Nkind (Spec) = N_Procedure_Specification
8537 and then Null_Present (Spec)
8538 then
8539 return E;
8541 elsif not Has_Completion (E) then
8542 if Nkind (N) /= N_Subprogram_Body_Stub then
8543 Set_Corresponding_Spec (N, E);
8544 end if;
8546 Set_Has_Completion (E);
8547 return E;
8549 elsif Nkind (Parent (N)) = N_Subunit then
8551 -- If this is the proper body of a subunit, the completion
8552 -- flag is set when analyzing the stub.
8554 return E;
8556 -- If E is an internal function with a controlling result that
8557 -- was created for an operation inherited by a null extension,
8558 -- it may be overridden by a body without a previous spec (one
8559 -- more reason why these should be shunned). In that case we
8560 -- remove the generated body if present, because the current
8561 -- one is the explicit overriding.
8563 elsif Ekind (E) = E_Function
8564 and then Ada_Version >= Ada_2005
8565 and then not Comes_From_Source (E)
8566 and then Has_Controlling_Result (E)
8567 and then Is_Null_Extension (Etype (E))
8568 and then Comes_From_Source (Spec)
8569 then
8570 Set_Has_Completion (E, False);
8572 if Expander_Active
8573 and then Nkind (Parent (E)) = N_Function_Specification
8574 then
8575 Remove
8576 (Unit_Declaration_Node
8577 (Corresponding_Body (Unit_Declaration_Node (E))));
8579 return E;
8581 -- If expansion is disabled, or if the wrapper function has
8582 -- not been generated yet, this a late body overriding an
8583 -- inherited operation, or it is an overriding by some other
8584 -- declaration before the controlling result is frozen. In
8585 -- either case this is a declaration of a new entity.
8587 else
8588 return Empty;
8589 end if;
8591 -- If the body already exists, then this is an error unless
8592 -- the previous declaration is the implicit declaration of a
8593 -- derived subprogram. It is also legal for an instance to
8594 -- contain type conformant overloadable declarations (but the
8595 -- generic declaration may not), per 8.3(26/2).
8597 elsif No (Alias (E))
8598 and then not Is_Intrinsic_Subprogram (E)
8599 and then not In_Instance
8600 and then Post_Error
8601 then
8602 Error_Msg_Sloc := Sloc (E);
8604 if Is_Imported (E) then
8605 Error_Msg_NE
8606 ("body not allowed for imported subprogram & declared#",
8607 N, E);
8608 else
8609 Error_Msg_NE ("duplicate body for & declared#", N, E);
8610 end if;
8611 end if;
8613 -- Child units cannot be overloaded, so a conformance mismatch
8614 -- between body and a previous spec is an error.
8616 elsif Is_Child_Unit (E)
8617 and then
8618 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
8619 and then
8620 Nkind (Parent (Unit_Declaration_Node (Designator))) =
8621 N_Compilation_Unit
8622 and then Post_Error
8623 then
8624 Error_Msg_N
8625 ("body of child unit does not match previous declaration", N);
8626 end if;
8627 end if;
8629 <<Next_Entity>>
8630 E := Homonym (E);
8631 end loop;
8633 -- On exit, we know that no previous declaration of subprogram exists
8635 return Empty;
8636 end Find_Corresponding_Spec;
8638 ----------------------
8639 -- Fully_Conformant --
8640 ----------------------
8642 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
8643 Result : Boolean;
8644 begin
8645 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
8646 return Result;
8647 end Fully_Conformant;
8649 ----------------------------------
8650 -- Fully_Conformant_Expressions --
8651 ----------------------------------
8653 function Fully_Conformant_Expressions
8654 (Given_E1 : Node_Id;
8655 Given_E2 : Node_Id) return Boolean
8657 E1 : constant Node_Id := Original_Node (Given_E1);
8658 E2 : constant Node_Id := Original_Node (Given_E2);
8659 -- We always test conformance on original nodes, since it is possible
8660 -- for analysis and/or expansion to make things look as though they
8661 -- conform when they do not, e.g. by converting 1+2 into 3.
8663 function FCE (Given_E1, Given_E2 : Node_Id) return Boolean
8664 renames Fully_Conformant_Expressions;
8666 function FCL (L1, L2 : List_Id) return Boolean;
8667 -- Compare elements of two lists for conformance. Elements have to be
8668 -- conformant, and actuals inserted as default parameters do not match
8669 -- explicit actuals with the same value.
8671 function FCO (Op_Node, Call_Node : Node_Id) return Boolean;
8672 -- Compare an operator node with a function call
8674 ---------
8675 -- FCL --
8676 ---------
8678 function FCL (L1, L2 : List_Id) return Boolean is
8679 N1, N2 : Node_Id;
8681 begin
8682 if L1 = No_List then
8683 N1 := Empty;
8684 else
8685 N1 := First (L1);
8686 end if;
8688 if L2 = No_List then
8689 N2 := Empty;
8690 else
8691 N2 := First (L2);
8692 end if;
8694 -- Compare two lists, skipping rewrite insertions (we want to compare
8695 -- the original trees, not the expanded versions!)
8697 loop
8698 if Is_Rewrite_Insertion (N1) then
8699 Next (N1);
8700 elsif Is_Rewrite_Insertion (N2) then
8701 Next (N2);
8702 elsif No (N1) then
8703 return No (N2);
8704 elsif No (N2) then
8705 return False;
8706 elsif not FCE (N1, N2) then
8707 return False;
8708 else
8709 Next (N1);
8710 Next (N2);
8711 end if;
8712 end loop;
8713 end FCL;
8715 ---------
8716 -- FCO --
8717 ---------
8719 function FCO (Op_Node, Call_Node : Node_Id) return Boolean is
8720 Actuals : constant List_Id := Parameter_Associations (Call_Node);
8721 Act : Node_Id;
8723 begin
8724 if No (Actuals)
8725 or else Entity (Op_Node) /= Entity (Name (Call_Node))
8726 then
8727 return False;
8729 else
8730 Act := First (Actuals);
8732 if Nkind (Op_Node) in N_Binary_Op then
8733 if not FCE (Left_Opnd (Op_Node), Act) then
8734 return False;
8735 end if;
8737 Next (Act);
8738 end if;
8740 return Present (Act)
8741 and then FCE (Right_Opnd (Op_Node), Act)
8742 and then No (Next (Act));
8743 end if;
8744 end FCO;
8746 -- Start of processing for Fully_Conformant_Expressions
8748 begin
8749 -- Non-conformant if paren count does not match. Note: if some idiot
8750 -- complains that we don't do this right for more than 3 levels of
8751 -- parentheses, they will be treated with the respect they deserve!
8753 if Paren_Count (E1) /= Paren_Count (E2) then
8754 return False;
8756 -- If same entities are referenced, then they are conformant even if
8757 -- they have different forms (RM 8.3.1(19-20)).
8759 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
8760 if Present (Entity (E1)) then
8761 return Entity (E1) = Entity (E2)
8762 or else (Chars (Entity (E1)) = Chars (Entity (E2))
8763 and then Ekind (Entity (E1)) = E_Discriminant
8764 and then Ekind (Entity (E2)) = E_In_Parameter);
8766 elsif Nkind (E1) = N_Expanded_Name
8767 and then Nkind (E2) = N_Expanded_Name
8768 and then Nkind (Selector_Name (E1)) = N_Character_Literal
8769 and then Nkind (Selector_Name (E2)) = N_Character_Literal
8770 then
8771 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
8773 else
8774 -- Identifiers in component associations don't always have
8775 -- entities, but their names must conform.
8777 return Nkind (E1) = N_Identifier
8778 and then Nkind (E2) = N_Identifier
8779 and then Chars (E1) = Chars (E2);
8780 end if;
8782 elsif Nkind (E1) = N_Character_Literal
8783 and then Nkind (E2) = N_Expanded_Name
8784 then
8785 return Nkind (Selector_Name (E2)) = N_Character_Literal
8786 and then Chars (E1) = Chars (Selector_Name (E2));
8788 elsif Nkind (E2) = N_Character_Literal
8789 and then Nkind (E1) = N_Expanded_Name
8790 then
8791 return Nkind (Selector_Name (E1)) = N_Character_Literal
8792 and then Chars (E2) = Chars (Selector_Name (E1));
8794 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
8795 return FCO (E1, E2);
8797 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
8798 return FCO (E2, E1);
8800 -- Otherwise we must have the same syntactic entity
8802 elsif Nkind (E1) /= Nkind (E2) then
8803 return False;
8805 -- At this point, we specialize by node type
8807 else
8808 case Nkind (E1) is
8810 when N_Aggregate =>
8811 return
8812 FCL (Expressions (E1), Expressions (E2))
8813 and then
8814 FCL (Component_Associations (E1),
8815 Component_Associations (E2));
8817 when N_Allocator =>
8818 if Nkind (Expression (E1)) = N_Qualified_Expression
8819 or else
8820 Nkind (Expression (E2)) = N_Qualified_Expression
8821 then
8822 return FCE (Expression (E1), Expression (E2));
8824 -- Check that the subtype marks and any constraints
8825 -- are conformant
8827 else
8828 declare
8829 Indic1 : constant Node_Id := Expression (E1);
8830 Indic2 : constant Node_Id := Expression (E2);
8831 Elt1 : Node_Id;
8832 Elt2 : Node_Id;
8834 begin
8835 if Nkind (Indic1) /= N_Subtype_Indication then
8836 return
8837 Nkind (Indic2) /= N_Subtype_Indication
8838 and then Entity (Indic1) = Entity (Indic2);
8840 elsif Nkind (Indic2) /= N_Subtype_Indication then
8841 return
8842 Nkind (Indic1) /= N_Subtype_Indication
8843 and then Entity (Indic1) = Entity (Indic2);
8845 else
8846 if Entity (Subtype_Mark (Indic1)) /=
8847 Entity (Subtype_Mark (Indic2))
8848 then
8849 return False;
8850 end if;
8852 Elt1 := First (Constraints (Constraint (Indic1)));
8853 Elt2 := First (Constraints (Constraint (Indic2)));
8854 while Present (Elt1) and then Present (Elt2) loop
8855 if not FCE (Elt1, Elt2) then
8856 return False;
8857 end if;
8859 Next (Elt1);
8860 Next (Elt2);
8861 end loop;
8863 return True;
8864 end if;
8865 end;
8866 end if;
8868 when N_Attribute_Reference =>
8869 return
8870 Attribute_Name (E1) = Attribute_Name (E2)
8871 and then FCL (Expressions (E1), Expressions (E2));
8873 when N_Binary_Op =>
8874 return
8875 Entity (E1) = Entity (E2)
8876 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
8877 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
8879 when N_Short_Circuit | N_Membership_Test =>
8880 return
8881 FCE (Left_Opnd (E1), Left_Opnd (E2))
8882 and then
8883 FCE (Right_Opnd (E1), Right_Opnd (E2));
8885 when N_Case_Expression =>
8886 declare
8887 Alt1 : Node_Id;
8888 Alt2 : Node_Id;
8890 begin
8891 if not FCE (Expression (E1), Expression (E2)) then
8892 return False;
8894 else
8895 Alt1 := First (Alternatives (E1));
8896 Alt2 := First (Alternatives (E2));
8897 loop
8898 if Present (Alt1) /= Present (Alt2) then
8899 return False;
8900 elsif No (Alt1) then
8901 return True;
8902 end if;
8904 if not FCE (Expression (Alt1), Expression (Alt2))
8905 or else not FCL (Discrete_Choices (Alt1),
8906 Discrete_Choices (Alt2))
8907 then
8908 return False;
8909 end if;
8911 Next (Alt1);
8912 Next (Alt2);
8913 end loop;
8914 end if;
8915 end;
8917 when N_Character_Literal =>
8918 return
8919 Char_Literal_Value (E1) = Char_Literal_Value (E2);
8921 when N_Component_Association =>
8922 return
8923 FCL (Choices (E1), Choices (E2))
8924 and then
8925 FCE (Expression (E1), Expression (E2));
8927 when N_Explicit_Dereference =>
8928 return
8929 FCE (Prefix (E1), Prefix (E2));
8931 when N_Extension_Aggregate =>
8932 return
8933 FCL (Expressions (E1), Expressions (E2))
8934 and then Null_Record_Present (E1) =
8935 Null_Record_Present (E2)
8936 and then FCL (Component_Associations (E1),
8937 Component_Associations (E2));
8939 when N_Function_Call =>
8940 return
8941 FCE (Name (E1), Name (E2))
8942 and then
8943 FCL (Parameter_Associations (E1),
8944 Parameter_Associations (E2));
8946 when N_If_Expression =>
8947 return
8948 FCL (Expressions (E1), Expressions (E2));
8950 when N_Indexed_Component =>
8951 return
8952 FCE (Prefix (E1), Prefix (E2))
8953 and then
8954 FCL (Expressions (E1), Expressions (E2));
8956 when N_Integer_Literal =>
8957 return (Intval (E1) = Intval (E2));
8959 when N_Null =>
8960 return True;
8962 when N_Operator_Symbol =>
8963 return
8964 Chars (E1) = Chars (E2);
8966 when N_Others_Choice =>
8967 return True;
8969 when N_Parameter_Association =>
8970 return
8971 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
8972 and then FCE (Explicit_Actual_Parameter (E1),
8973 Explicit_Actual_Parameter (E2));
8975 when N_Qualified_Expression =>
8976 return
8977 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
8978 and then
8979 FCE (Expression (E1), Expression (E2));
8981 when N_Quantified_Expression =>
8982 if not FCE (Condition (E1), Condition (E2)) then
8983 return False;
8984 end if;
8986 if Present (Loop_Parameter_Specification (E1))
8987 and then Present (Loop_Parameter_Specification (E2))
8988 then
8989 declare
8990 L1 : constant Node_Id :=
8991 Loop_Parameter_Specification (E1);
8992 L2 : constant Node_Id :=
8993 Loop_Parameter_Specification (E2);
8995 begin
8996 return
8997 Reverse_Present (L1) = Reverse_Present (L2)
8998 and then
8999 FCE (Defining_Identifier (L1),
9000 Defining_Identifier (L2))
9001 and then
9002 FCE (Discrete_Subtype_Definition (L1),
9003 Discrete_Subtype_Definition (L2));
9004 end;
9006 elsif Present (Iterator_Specification (E1))
9007 and then Present (Iterator_Specification (E2))
9008 then
9009 declare
9010 I1 : constant Node_Id := Iterator_Specification (E1);
9011 I2 : constant Node_Id := Iterator_Specification (E2);
9013 begin
9014 return
9015 FCE (Defining_Identifier (I1),
9016 Defining_Identifier (I2))
9017 and then
9018 Of_Present (I1) = Of_Present (I2)
9019 and then
9020 Reverse_Present (I1) = Reverse_Present (I2)
9021 and then FCE (Name (I1), Name (I2))
9022 and then FCE (Subtype_Indication (I1),
9023 Subtype_Indication (I2));
9024 end;
9026 -- The quantified expressions used different specifications to
9027 -- walk their respective ranges.
9029 else
9030 return False;
9031 end if;
9033 when N_Range =>
9034 return
9035 FCE (Low_Bound (E1), Low_Bound (E2))
9036 and then
9037 FCE (High_Bound (E1), High_Bound (E2));
9039 when N_Real_Literal =>
9040 return (Realval (E1) = Realval (E2));
9042 when N_Selected_Component =>
9043 return
9044 FCE (Prefix (E1), Prefix (E2))
9045 and then
9046 FCE (Selector_Name (E1), Selector_Name (E2));
9048 when N_Slice =>
9049 return
9050 FCE (Prefix (E1), Prefix (E2))
9051 and then
9052 FCE (Discrete_Range (E1), Discrete_Range (E2));
9054 when N_String_Literal =>
9055 declare
9056 S1 : constant String_Id := Strval (E1);
9057 S2 : constant String_Id := Strval (E2);
9058 L1 : constant Nat := String_Length (S1);
9059 L2 : constant Nat := String_Length (S2);
9061 begin
9062 if L1 /= L2 then
9063 return False;
9065 else
9066 for J in 1 .. L1 loop
9067 if Get_String_Char (S1, J) /=
9068 Get_String_Char (S2, J)
9069 then
9070 return False;
9071 end if;
9072 end loop;
9074 return True;
9075 end if;
9076 end;
9078 when N_Type_Conversion =>
9079 return
9080 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9081 and then
9082 FCE (Expression (E1), Expression (E2));
9084 when N_Unary_Op =>
9085 return
9086 Entity (E1) = Entity (E2)
9087 and then
9088 FCE (Right_Opnd (E1), Right_Opnd (E2));
9090 when N_Unchecked_Type_Conversion =>
9091 return
9092 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
9093 and then
9094 FCE (Expression (E1), Expression (E2));
9096 -- All other node types cannot appear in this context. Strictly
9097 -- we should raise a fatal internal error. Instead we just ignore
9098 -- the nodes. This means that if anyone makes a mistake in the
9099 -- expander and mucks an expression tree irretrievably, the result
9100 -- will be a failure to detect a (probably very obscure) case
9101 -- of non-conformance, which is better than bombing on some
9102 -- case where two expressions do in fact conform.
9104 when others =>
9105 return True;
9107 end case;
9108 end if;
9109 end Fully_Conformant_Expressions;
9111 ----------------------------------------
9112 -- Fully_Conformant_Discrete_Subtypes --
9113 ----------------------------------------
9115 function Fully_Conformant_Discrete_Subtypes
9116 (Given_S1 : Node_Id;
9117 Given_S2 : Node_Id) return Boolean
9119 S1 : constant Node_Id := Original_Node (Given_S1);
9120 S2 : constant Node_Id := Original_Node (Given_S2);
9122 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
9123 -- Special-case for a bound given by a discriminant, which in the body
9124 -- is replaced with the discriminal of the enclosing type.
9126 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
9127 -- Check both bounds
9129 -----------------------
9130 -- Conforming_Bounds --
9131 -----------------------
9133 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
9134 begin
9135 if Is_Entity_Name (B1)
9136 and then Is_Entity_Name (B2)
9137 and then Ekind (Entity (B1)) = E_Discriminant
9138 then
9139 return Chars (B1) = Chars (B2);
9141 else
9142 return Fully_Conformant_Expressions (B1, B2);
9143 end if;
9144 end Conforming_Bounds;
9146 -----------------------
9147 -- Conforming_Ranges --
9148 -----------------------
9150 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
9151 begin
9152 return
9153 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
9154 and then
9155 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
9156 end Conforming_Ranges;
9158 -- Start of processing for Fully_Conformant_Discrete_Subtypes
9160 begin
9161 if Nkind (S1) /= Nkind (S2) then
9162 return False;
9164 elsif Is_Entity_Name (S1) then
9165 return Entity (S1) = Entity (S2);
9167 elsif Nkind (S1) = N_Range then
9168 return Conforming_Ranges (S1, S2);
9170 elsif Nkind (S1) = N_Subtype_Indication then
9171 return
9172 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
9173 and then
9174 Conforming_Ranges
9175 (Range_Expression (Constraint (S1)),
9176 Range_Expression (Constraint (S2)));
9177 else
9178 return True;
9179 end if;
9180 end Fully_Conformant_Discrete_Subtypes;
9182 --------------------
9183 -- Install_Entity --
9184 --------------------
9186 procedure Install_Entity (E : Entity_Id) is
9187 Prev : constant Entity_Id := Current_Entity (E);
9188 begin
9189 Set_Is_Immediately_Visible (E);
9190 Set_Current_Entity (E);
9191 Set_Homonym (E, Prev);
9192 end Install_Entity;
9194 ---------------------
9195 -- Install_Formals --
9196 ---------------------
9198 procedure Install_Formals (Id : Entity_Id) is
9199 F : Entity_Id;
9200 begin
9201 F := First_Formal (Id);
9202 while Present (F) loop
9203 Install_Entity (F);
9204 Next_Formal (F);
9205 end loop;
9206 end Install_Formals;
9208 -----------------------------
9209 -- Is_Interface_Conformant --
9210 -----------------------------
9212 function Is_Interface_Conformant
9213 (Tagged_Type : Entity_Id;
9214 Iface_Prim : Entity_Id;
9215 Prim : Entity_Id) return Boolean
9217 -- The operation may in fact be an inherited (implicit) operation
9218 -- rather than the original interface primitive, so retrieve the
9219 -- ultimate ancestor.
9221 Iface : constant Entity_Id :=
9222 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
9223 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
9225 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
9226 -- Return the controlling formal of Prim
9228 ------------------------
9229 -- Controlling_Formal --
9230 ------------------------
9232 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
9233 E : Entity_Id;
9235 begin
9236 E := First_Entity (Prim);
9237 while Present (E) loop
9238 if Is_Formal (E) and then Is_Controlling_Formal (E) then
9239 return E;
9240 end if;
9242 Next_Entity (E);
9243 end loop;
9245 return Empty;
9246 end Controlling_Formal;
9248 -- Local variables
9250 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
9251 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
9253 -- Start of processing for Is_Interface_Conformant
9255 begin
9256 pragma Assert (Is_Subprogram (Iface_Prim)
9257 and then Is_Subprogram (Prim)
9258 and then Is_Dispatching_Operation (Iface_Prim)
9259 and then Is_Dispatching_Operation (Prim));
9261 pragma Assert (Is_Interface (Iface)
9262 or else (Present (Alias (Iface_Prim))
9263 and then
9264 Is_Interface
9265 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
9267 if Prim = Iface_Prim
9268 or else not Is_Subprogram (Prim)
9269 or else Ekind (Prim) /= Ekind (Iface_Prim)
9270 or else not Is_Dispatching_Operation (Prim)
9271 or else Scope (Prim) /= Scope (Tagged_Type)
9272 or else No (Typ)
9273 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
9274 or else not Primitive_Names_Match (Iface_Prim, Prim)
9275 then
9276 return False;
9278 -- The mode of the controlling formals must match
9280 elsif Present (Iface_Ctrl_F)
9281 and then Present (Prim_Ctrl_F)
9282 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
9283 then
9284 return False;
9286 -- Case of a procedure, or a function whose result type matches the
9287 -- result type of the interface primitive, or a function that has no
9288 -- controlling result (I or access I).
9290 elsif Ekind (Iface_Prim) = E_Procedure
9291 or else Etype (Prim) = Etype (Iface_Prim)
9292 or else not Has_Controlling_Result (Prim)
9293 then
9294 return Type_Conformant
9295 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
9297 -- Case of a function returning an interface, or an access to one. Check
9298 -- that the return types correspond.
9300 elsif Implements_Interface (Typ, Iface) then
9301 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
9303 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
9304 then
9305 return False;
9306 else
9307 return
9308 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
9309 Skip_Controlling_Formals => True);
9310 end if;
9312 else
9313 return False;
9314 end if;
9315 end Is_Interface_Conformant;
9317 ---------------------------------
9318 -- Is_Non_Overriding_Operation --
9319 ---------------------------------
9321 function Is_Non_Overriding_Operation
9322 (Prev_E : Entity_Id;
9323 New_E : Entity_Id) return Boolean
9325 Formal : Entity_Id;
9326 F_Typ : Entity_Id;
9327 G_Typ : Entity_Id := Empty;
9329 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
9330 -- If F_Type is a derived type associated with a generic actual subtype,
9331 -- then return its Generic_Parent_Type attribute, else return Empty.
9333 function Types_Correspond
9334 (P_Type : Entity_Id;
9335 N_Type : Entity_Id) return Boolean;
9336 -- Returns true if and only if the types (or designated types in the
9337 -- case of anonymous access types) are the same or N_Type is derived
9338 -- directly or indirectly from P_Type.
9340 -----------------------------
9341 -- Get_Generic_Parent_Type --
9342 -----------------------------
9344 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
9345 G_Typ : Entity_Id;
9346 Defn : Node_Id;
9347 Indic : Node_Id;
9349 begin
9350 if Is_Derived_Type (F_Typ)
9351 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
9352 then
9353 -- The tree must be traversed to determine the parent subtype in
9354 -- the generic unit, which unfortunately isn't always available
9355 -- via semantic attributes. ??? (Note: The use of Original_Node
9356 -- is needed for cases where a full derived type has been
9357 -- rewritten.)
9359 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
9360 if Nkind (Defn) = N_Derived_Type_Definition then
9361 Indic := Subtype_Indication (Defn);
9363 if Nkind (Indic) = N_Subtype_Indication then
9364 G_Typ := Entity (Subtype_Mark (Indic));
9365 else
9366 G_Typ := Entity (Indic);
9367 end if;
9369 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
9370 and then Present (Generic_Parent_Type (Parent (G_Typ)))
9371 then
9372 return Generic_Parent_Type (Parent (G_Typ));
9373 end if;
9374 end if;
9375 end if;
9377 return Empty;
9378 end Get_Generic_Parent_Type;
9380 ----------------------
9381 -- Types_Correspond --
9382 ----------------------
9384 function Types_Correspond
9385 (P_Type : Entity_Id;
9386 N_Type : Entity_Id) return Boolean
9388 Prev_Type : Entity_Id := Base_Type (P_Type);
9389 New_Type : Entity_Id := Base_Type (N_Type);
9391 begin
9392 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
9393 Prev_Type := Designated_Type (Prev_Type);
9394 end if;
9396 if Ekind (New_Type) = E_Anonymous_Access_Type then
9397 New_Type := Designated_Type (New_Type);
9398 end if;
9400 if Prev_Type = New_Type then
9401 return True;
9403 elsif not Is_Class_Wide_Type (New_Type) then
9404 while Etype (New_Type) /= New_Type loop
9405 New_Type := Etype (New_Type);
9406 if New_Type = Prev_Type then
9407 return True;
9408 end if;
9409 end loop;
9410 end if;
9411 return False;
9412 end Types_Correspond;
9414 -- Start of processing for Is_Non_Overriding_Operation
9416 begin
9417 -- In the case where both operations are implicit derived subprograms
9418 -- then neither overrides the other. This can only occur in certain
9419 -- obscure cases (e.g., derivation from homographs created in a generic
9420 -- instantiation).
9422 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
9423 return True;
9425 elsif Ekind (Current_Scope) = E_Package
9426 and then Is_Generic_Instance (Current_Scope)
9427 and then In_Private_Part (Current_Scope)
9428 and then Comes_From_Source (New_E)
9429 then
9430 -- We examine the formals and result type of the inherited operation,
9431 -- to determine whether their type is derived from (the instance of)
9432 -- a generic type. The first such formal or result type is the one
9433 -- tested.
9435 Formal := First_Formal (Prev_E);
9436 while Present (Formal) loop
9437 F_Typ := Base_Type (Etype (Formal));
9439 if Ekind (F_Typ) = E_Anonymous_Access_Type then
9440 F_Typ := Designated_Type (F_Typ);
9441 end if;
9443 G_Typ := Get_Generic_Parent_Type (F_Typ);
9444 exit when Present (G_Typ);
9446 Next_Formal (Formal);
9447 end loop;
9449 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
9450 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
9451 end if;
9453 if No (G_Typ) then
9454 return False;
9455 end if;
9457 -- If the generic type is a private type, then the original operation
9458 -- was not overriding in the generic, because there was no primitive
9459 -- operation to override.
9461 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
9462 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
9463 N_Formal_Private_Type_Definition
9464 then
9465 return True;
9467 -- The generic parent type is the ancestor of a formal derived
9468 -- type declaration. We need to check whether it has a primitive
9469 -- operation that should be overridden by New_E in the generic.
9471 else
9472 declare
9473 P_Formal : Entity_Id;
9474 N_Formal : Entity_Id;
9475 P_Typ : Entity_Id;
9476 N_Typ : Entity_Id;
9477 P_Prim : Entity_Id;
9478 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
9480 begin
9481 while Present (Prim_Elt) loop
9482 P_Prim := Node (Prim_Elt);
9484 if Chars (P_Prim) = Chars (New_E)
9485 and then Ekind (P_Prim) = Ekind (New_E)
9486 then
9487 P_Formal := First_Formal (P_Prim);
9488 N_Formal := First_Formal (New_E);
9489 while Present (P_Formal) and then Present (N_Formal) loop
9490 P_Typ := Etype (P_Formal);
9491 N_Typ := Etype (N_Formal);
9493 if not Types_Correspond (P_Typ, N_Typ) then
9494 exit;
9495 end if;
9497 Next_Entity (P_Formal);
9498 Next_Entity (N_Formal);
9499 end loop;
9501 -- Found a matching primitive operation belonging to the
9502 -- formal ancestor type, so the new subprogram is
9503 -- overriding.
9505 if No (P_Formal)
9506 and then No (N_Formal)
9507 and then (Ekind (New_E) /= E_Function
9508 or else
9509 Types_Correspond
9510 (Etype (P_Prim), Etype (New_E)))
9511 then
9512 return False;
9513 end if;
9514 end if;
9516 Next_Elmt (Prim_Elt);
9517 end loop;
9519 -- If no match found, then the new subprogram does not override
9520 -- in the generic (nor in the instance).
9522 -- If the type in question is not abstract, and the subprogram
9523 -- is, this will be an error if the new operation is in the
9524 -- private part of the instance. Emit a warning now, which will
9525 -- make the subsequent error message easier to understand.
9527 if not Is_Abstract_Type (F_Typ)
9528 and then Is_Abstract_Subprogram (Prev_E)
9529 and then In_Private_Part (Current_Scope)
9530 then
9531 Error_Msg_Node_2 := F_Typ;
9532 Error_Msg_NE
9533 ("private operation& in generic unit does not override " &
9534 "any primitive operation of& (RM 12.3 (18))??",
9535 New_E, New_E);
9536 end if;
9538 return True;
9539 end;
9540 end if;
9541 else
9542 return False;
9543 end if;
9544 end Is_Non_Overriding_Operation;
9546 -------------------------------------
9547 -- List_Inherited_Pre_Post_Aspects --
9548 -------------------------------------
9550 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
9551 begin
9552 if Opt.List_Inherited_Aspects
9553 and then (Is_Subprogram (E) or else Is_Generic_Subprogram (E))
9554 then
9555 declare
9556 Inherited : constant Subprogram_List := Inherited_Subprograms (E);
9557 P : Node_Id;
9559 begin
9560 for J in Inherited'Range loop
9561 P := Pre_Post_Conditions (Contract (Inherited (J)));
9562 while Present (P) loop
9563 Error_Msg_Sloc := Sloc (P);
9565 if Class_Present (P) and then not Split_PPC (P) then
9566 if Pragma_Name (P) = Name_Precondition then
9567 Error_Msg_N
9568 ("info: & inherits `Pre''Class` aspect from #?L?",
9570 else
9571 Error_Msg_N
9572 ("info: & inherits `Post''Class` aspect from #?L?",
9574 end if;
9575 end if;
9577 P := Next_Pragma (P);
9578 end loop;
9579 end loop;
9580 end;
9581 end if;
9582 end List_Inherited_Pre_Post_Aspects;
9584 ------------------------------
9585 -- Make_Inequality_Operator --
9586 ------------------------------
9588 -- S is the defining identifier of an equality operator. We build a
9589 -- subprogram declaration with the right signature. This operation is
9590 -- intrinsic, because it is always expanded as the negation of the
9591 -- call to the equality function.
9593 procedure Make_Inequality_Operator (S : Entity_Id) is
9594 Loc : constant Source_Ptr := Sloc (S);
9595 Decl : Node_Id;
9596 Formals : List_Id;
9597 Op_Name : Entity_Id;
9599 FF : constant Entity_Id := First_Formal (S);
9600 NF : constant Entity_Id := Next_Formal (FF);
9602 begin
9603 -- Check that equality was properly defined, ignore call if not
9605 if No (NF) then
9606 return;
9607 end if;
9609 declare
9610 A : constant Entity_Id :=
9611 Make_Defining_Identifier (Sloc (FF),
9612 Chars => Chars (FF));
9614 B : constant Entity_Id :=
9615 Make_Defining_Identifier (Sloc (NF),
9616 Chars => Chars (NF));
9618 begin
9619 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
9621 Formals := New_List (
9622 Make_Parameter_Specification (Loc,
9623 Defining_Identifier => A,
9624 Parameter_Type =>
9625 New_Reference_To (Etype (First_Formal (S)),
9626 Sloc (Etype (First_Formal (S))))),
9628 Make_Parameter_Specification (Loc,
9629 Defining_Identifier => B,
9630 Parameter_Type =>
9631 New_Reference_To (Etype (Next_Formal (First_Formal (S))),
9632 Sloc (Etype (Next_Formal (First_Formal (S)))))));
9634 Decl :=
9635 Make_Subprogram_Declaration (Loc,
9636 Specification =>
9637 Make_Function_Specification (Loc,
9638 Defining_Unit_Name => Op_Name,
9639 Parameter_Specifications => Formals,
9640 Result_Definition =>
9641 New_Reference_To (Standard_Boolean, Loc)));
9643 -- Insert inequality right after equality if it is explicit or after
9644 -- the derived type when implicit. These entities are created only
9645 -- for visibility purposes, and eventually replaced in the course
9646 -- of expansion, so they do not need to be attached to the tree and
9647 -- seen by the back-end. Keeping them internal also avoids spurious
9648 -- freezing problems. The declaration is inserted in the tree for
9649 -- analysis, and removed afterwards. If the equality operator comes
9650 -- from an explicit declaration, attach the inequality immediately
9651 -- after. Else the equality is inherited from a derived type
9652 -- declaration, so insert inequality after that declaration.
9654 if No (Alias (S)) then
9655 Insert_After (Unit_Declaration_Node (S), Decl);
9656 elsif Is_List_Member (Parent (S)) then
9657 Insert_After (Parent (S), Decl);
9658 else
9659 Insert_After (Parent (Etype (First_Formal (S))), Decl);
9660 end if;
9662 Mark_Rewrite_Insertion (Decl);
9663 Set_Is_Intrinsic_Subprogram (Op_Name);
9664 Analyze (Decl);
9665 Remove (Decl);
9666 Set_Has_Completion (Op_Name);
9667 Set_Corresponding_Equality (Op_Name, S);
9668 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
9669 end;
9670 end Make_Inequality_Operator;
9672 ----------------------
9673 -- May_Need_Actuals --
9674 ----------------------
9676 procedure May_Need_Actuals (Fun : Entity_Id) is
9677 F : Entity_Id;
9678 B : Boolean;
9680 begin
9681 F := First_Formal (Fun);
9682 B := True;
9683 while Present (F) loop
9684 if No (Default_Value (F)) then
9685 B := False;
9686 exit;
9687 end if;
9689 Next_Formal (F);
9690 end loop;
9692 Set_Needs_No_Actuals (Fun, B);
9693 end May_Need_Actuals;
9695 ---------------------
9696 -- Mode_Conformant --
9697 ---------------------
9699 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
9700 Result : Boolean;
9701 begin
9702 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
9703 return Result;
9704 end Mode_Conformant;
9706 ---------------------------
9707 -- New_Overloaded_Entity --
9708 ---------------------------
9710 procedure New_Overloaded_Entity
9711 (S : Entity_Id;
9712 Derived_Type : Entity_Id := Empty)
9714 Overridden_Subp : Entity_Id := Empty;
9715 -- Set if the current scope has an operation that is type-conformant
9716 -- with S, and becomes hidden by S.
9718 Is_Primitive_Subp : Boolean;
9719 -- Set to True if the new subprogram is primitive
9721 E : Entity_Id;
9722 -- Entity that S overrides
9724 Prev_Vis : Entity_Id := Empty;
9725 -- Predecessor of E in Homonym chain
9727 procedure Check_For_Primitive_Subprogram
9728 (Is_Primitive : out Boolean;
9729 Is_Overriding : Boolean := False);
9730 -- If the subprogram being analyzed is a primitive operation of the type
9731 -- of a formal or result, set the Has_Primitive_Operations flag on the
9732 -- type, and set Is_Primitive to True (otherwise set to False). Set the
9733 -- corresponding flag on the entity itself for later use.
9735 procedure Check_Synchronized_Overriding
9736 (Def_Id : Entity_Id;
9737 Overridden_Subp : out Entity_Id);
9738 -- First determine if Def_Id is an entry or a subprogram either defined
9739 -- in the scope of a task or protected type, or is a primitive of such
9740 -- a type. Check whether Def_Id overrides a subprogram of an interface
9741 -- implemented by the synchronized type, return the overridden entity
9742 -- or Empty.
9744 function Is_Private_Declaration (E : Entity_Id) return Boolean;
9745 -- Check that E is declared in the private part of the current package,
9746 -- or in the package body, where it may hide a previous declaration.
9747 -- We can't use In_Private_Part by itself because this flag is also
9748 -- set when freezing entities, so we must examine the place of the
9749 -- declaration in the tree, and recognize wrapper packages as well.
9751 function Is_Overriding_Alias
9752 (Old_E : Entity_Id;
9753 New_E : Entity_Id) return Boolean;
9754 -- Check whether new subprogram and old subprogram are both inherited
9755 -- from subprograms that have distinct dispatch table entries. This can
9756 -- occur with derivations from instances with accidental homonyms. The
9757 -- function is conservative given that the converse is only true within
9758 -- instances that contain accidental overloadings.
9760 ------------------------------------
9761 -- Check_For_Primitive_Subprogram --
9762 ------------------------------------
9764 procedure Check_For_Primitive_Subprogram
9765 (Is_Primitive : out Boolean;
9766 Is_Overriding : Boolean := False)
9768 Formal : Entity_Id;
9769 F_Typ : Entity_Id;
9770 B_Typ : Entity_Id;
9772 function Visible_Part_Type (T : Entity_Id) return Boolean;
9773 -- Returns true if T is declared in the visible part of the current
9774 -- package scope; otherwise returns false. Assumes that T is declared
9775 -- in a package.
9777 procedure Check_Private_Overriding (T : Entity_Id);
9778 -- Checks that if a primitive abstract subprogram of a visible
9779 -- abstract type is declared in a private part, then it must override
9780 -- an abstract subprogram declared in the visible part. Also checks
9781 -- that if a primitive function with a controlling result is declared
9782 -- in a private part, then it must override a function declared in
9783 -- the visible part.
9785 ------------------------------
9786 -- Check_Private_Overriding --
9787 ------------------------------
9789 procedure Check_Private_Overriding (T : Entity_Id) is
9790 begin
9791 if Is_Package_Or_Generic_Package (Current_Scope)
9792 and then In_Private_Part (Current_Scope)
9793 and then Visible_Part_Type (T)
9794 and then not In_Instance
9795 then
9796 if Is_Abstract_Type (T)
9797 and then Is_Abstract_Subprogram (S)
9798 and then (not Is_Overriding
9799 or else not Is_Abstract_Subprogram (E))
9800 then
9801 Error_Msg_N
9802 ("abstract subprograms must be visible "
9803 & "(RM 3.9.3(10))!", S);
9805 elsif Ekind (S) = E_Function and then not Is_Overriding then
9806 if Is_Tagged_Type (T) and then T = Base_Type (Etype (S)) then
9807 Error_Msg_N
9808 ("private function with tagged result must"
9809 & " override visible-part function", S);
9810 Error_Msg_N
9811 ("\move subprogram to the visible part"
9812 & " (RM 3.9.3(10))", S);
9814 -- AI05-0073: extend this test to the case of a function
9815 -- with a controlling access result.
9817 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
9818 and then Is_Tagged_Type (Designated_Type (Etype (S)))
9819 and then
9820 not Is_Class_Wide_Type (Designated_Type (Etype (S)))
9821 and then Ada_Version >= Ada_2012
9822 then
9823 Error_Msg_N
9824 ("private function with controlling access result "
9825 & "must override visible-part function", S);
9826 Error_Msg_N
9827 ("\move subprogram to the visible part"
9828 & " (RM 3.9.3(10))", S);
9829 end if;
9830 end if;
9831 end if;
9832 end Check_Private_Overriding;
9834 -----------------------
9835 -- Visible_Part_Type --
9836 -----------------------
9838 function Visible_Part_Type (T : Entity_Id) return Boolean is
9839 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
9840 N : Node_Id;
9842 begin
9843 -- If the entity is a private type, then it must be declared in a
9844 -- visible part.
9846 if Ekind (T) in Private_Kind then
9847 return True;
9848 end if;
9850 -- Otherwise, we traverse the visible part looking for its
9851 -- corresponding declaration. We cannot use the declaration
9852 -- node directly because in the private part the entity of a
9853 -- private type is the one in the full view, which does not
9854 -- indicate that it is the completion of something visible.
9856 N := First (Visible_Declarations (Specification (P)));
9857 while Present (N) loop
9858 if Nkind (N) = N_Full_Type_Declaration
9859 and then Present (Defining_Identifier (N))
9860 and then T = Defining_Identifier (N)
9861 then
9862 return True;
9864 elsif Nkind_In (N, N_Private_Type_Declaration,
9865 N_Private_Extension_Declaration)
9866 and then Present (Defining_Identifier (N))
9867 and then T = Full_View (Defining_Identifier (N))
9868 then
9869 return True;
9870 end if;
9872 Next (N);
9873 end loop;
9875 return False;
9876 end Visible_Part_Type;
9878 -- Start of processing for Check_For_Primitive_Subprogram
9880 begin
9881 Is_Primitive := False;
9883 if not Comes_From_Source (S) then
9884 null;
9886 -- If subprogram is at library level, it is not primitive operation
9888 elsif Current_Scope = Standard_Standard then
9889 null;
9891 elsif (Is_Package_Or_Generic_Package (Current_Scope)
9892 and then not In_Package_Body (Current_Scope))
9893 or else Is_Overriding
9894 then
9895 -- For function, check return type
9897 if Ekind (S) = E_Function then
9898 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
9899 F_Typ := Designated_Type (Etype (S));
9900 else
9901 F_Typ := Etype (S);
9902 end if;
9904 B_Typ := Base_Type (F_Typ);
9906 if Scope (B_Typ) = Current_Scope
9907 and then not Is_Class_Wide_Type (B_Typ)
9908 and then not Is_Generic_Type (B_Typ)
9909 then
9910 Is_Primitive := True;
9911 Set_Has_Primitive_Operations (B_Typ);
9912 Set_Is_Primitive (S);
9913 Check_Private_Overriding (B_Typ);
9914 end if;
9915 end if;
9917 -- For all subprograms, check formals
9919 Formal := First_Formal (S);
9920 while Present (Formal) loop
9921 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
9922 F_Typ := Designated_Type (Etype (Formal));
9923 else
9924 F_Typ := Etype (Formal);
9925 end if;
9927 B_Typ := Base_Type (F_Typ);
9929 if Ekind (B_Typ) = E_Access_Subtype then
9930 B_Typ := Base_Type (B_Typ);
9931 end if;
9933 if Scope (B_Typ) = Current_Scope
9934 and then not Is_Class_Wide_Type (B_Typ)
9935 and then not Is_Generic_Type (B_Typ)
9936 then
9937 Is_Primitive := True;
9938 Set_Is_Primitive (S);
9939 Set_Has_Primitive_Operations (B_Typ);
9940 Check_Private_Overriding (B_Typ);
9941 end if;
9943 Next_Formal (Formal);
9944 end loop;
9946 -- Special case: An equality function can be redefined for a type
9947 -- occurring in a declarative part, and won't otherwise be treated as
9948 -- a primitive because it doesn't occur in a package spec and doesn't
9949 -- override an inherited subprogram. It's important that we mark it
9950 -- primitive so it can be returned by Collect_Primitive_Operations
9951 -- and be used in composing the equality operation of later types
9952 -- that have a component of the type.
9954 elsif Chars (S) = Name_Op_Eq
9955 and then Etype (S) = Standard_Boolean
9956 then
9957 B_Typ := Base_Type (Etype (First_Formal (S)));
9959 if Scope (B_Typ) = Current_Scope
9960 and then
9961 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
9962 and then not Is_Limited_Type (B_Typ)
9963 then
9964 Is_Primitive := True;
9965 Set_Is_Primitive (S);
9966 Set_Has_Primitive_Operations (B_Typ);
9967 Check_Private_Overriding (B_Typ);
9968 end if;
9969 end if;
9970 end Check_For_Primitive_Subprogram;
9972 -----------------------------------
9973 -- Check_Synchronized_Overriding --
9974 -----------------------------------
9976 procedure Check_Synchronized_Overriding
9977 (Def_Id : Entity_Id;
9978 Overridden_Subp : out Entity_Id)
9980 Ifaces_List : Elist_Id;
9981 In_Scope : Boolean;
9982 Typ : Entity_Id;
9984 function Matches_Prefixed_View_Profile
9985 (Prim_Params : List_Id;
9986 Iface_Params : List_Id) return Boolean;
9987 -- Determine whether a subprogram's parameter profile Prim_Params
9988 -- matches that of a potentially overridden interface subprogram
9989 -- Iface_Params. Also determine if the type of first parameter of
9990 -- Iface_Params is an implemented interface.
9992 -----------------------------------
9993 -- Matches_Prefixed_View_Profile --
9994 -----------------------------------
9996 function Matches_Prefixed_View_Profile
9997 (Prim_Params : List_Id;
9998 Iface_Params : List_Id) return Boolean
10000 Iface_Id : Entity_Id;
10001 Iface_Param : Node_Id;
10002 Iface_Typ : Entity_Id;
10003 Prim_Id : Entity_Id;
10004 Prim_Param : Node_Id;
10005 Prim_Typ : Entity_Id;
10007 function Is_Implemented
10008 (Ifaces_List : Elist_Id;
10009 Iface : Entity_Id) return Boolean;
10010 -- Determine if Iface is implemented by the current task or
10011 -- protected type.
10013 --------------------
10014 -- Is_Implemented --
10015 --------------------
10017 function Is_Implemented
10018 (Ifaces_List : Elist_Id;
10019 Iface : Entity_Id) return Boolean
10021 Iface_Elmt : Elmt_Id;
10023 begin
10024 Iface_Elmt := First_Elmt (Ifaces_List);
10025 while Present (Iface_Elmt) loop
10026 if Node (Iface_Elmt) = Iface then
10027 return True;
10028 end if;
10030 Next_Elmt (Iface_Elmt);
10031 end loop;
10033 return False;
10034 end Is_Implemented;
10036 -- Start of processing for Matches_Prefixed_View_Profile
10038 begin
10039 Iface_Param := First (Iface_Params);
10040 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
10042 if Is_Access_Type (Iface_Typ) then
10043 Iface_Typ := Designated_Type (Iface_Typ);
10044 end if;
10046 Prim_Param := First (Prim_Params);
10048 -- The first parameter of the potentially overridden subprogram
10049 -- must be an interface implemented by Prim.
10051 if not Is_Interface (Iface_Typ)
10052 or else not Is_Implemented (Ifaces_List, Iface_Typ)
10053 then
10054 return False;
10055 end if;
10057 -- The checks on the object parameters are done, move onto the
10058 -- rest of the parameters.
10060 if not In_Scope then
10061 Prim_Param := Next (Prim_Param);
10062 end if;
10064 Iface_Param := Next (Iface_Param);
10065 while Present (Iface_Param) and then Present (Prim_Param) loop
10066 Iface_Id := Defining_Identifier (Iface_Param);
10067 Iface_Typ := Find_Parameter_Type (Iface_Param);
10069 Prim_Id := Defining_Identifier (Prim_Param);
10070 Prim_Typ := Find_Parameter_Type (Prim_Param);
10072 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
10073 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
10074 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
10075 then
10076 Iface_Typ := Designated_Type (Iface_Typ);
10077 Prim_Typ := Designated_Type (Prim_Typ);
10078 end if;
10080 -- Case of multiple interface types inside a parameter profile
10082 -- (Obj_Param : in out Iface; ...; Param : Iface)
10084 -- If the interface type is implemented, then the matching type
10085 -- in the primitive should be the implementing record type.
10087 if Ekind (Iface_Typ) = E_Record_Type
10088 and then Is_Interface (Iface_Typ)
10089 and then Is_Implemented (Ifaces_List, Iface_Typ)
10090 then
10091 if Prim_Typ /= Typ then
10092 return False;
10093 end if;
10095 -- The two parameters must be both mode and subtype conformant
10097 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
10098 or else not
10099 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
10100 then
10101 return False;
10102 end if;
10104 Next (Iface_Param);
10105 Next (Prim_Param);
10106 end loop;
10108 -- One of the two lists contains more parameters than the other
10110 if Present (Iface_Param) or else Present (Prim_Param) then
10111 return False;
10112 end if;
10114 return True;
10115 end Matches_Prefixed_View_Profile;
10117 -- Start of processing for Check_Synchronized_Overriding
10119 begin
10120 Overridden_Subp := Empty;
10122 -- Def_Id must be an entry or a subprogram. We should skip predefined
10123 -- primitives internally generated by the frontend; however at this
10124 -- stage predefined primitives are still not fully decorated. As a
10125 -- minor optimization we skip here internally generated subprograms.
10127 if (Ekind (Def_Id) /= E_Entry
10128 and then Ekind (Def_Id) /= E_Function
10129 and then Ekind (Def_Id) /= E_Procedure)
10130 or else not Comes_From_Source (Def_Id)
10131 then
10132 return;
10133 end if;
10135 -- Search for the concurrent declaration since it contains the list
10136 -- of all implemented interfaces. In this case, the subprogram is
10137 -- declared within the scope of a protected or a task type.
10139 if Present (Scope (Def_Id))
10140 and then Is_Concurrent_Type (Scope (Def_Id))
10141 and then not Is_Generic_Actual_Type (Scope (Def_Id))
10142 then
10143 Typ := Scope (Def_Id);
10144 In_Scope := True;
10146 -- The enclosing scope is not a synchronized type and the subprogram
10147 -- has no formals.
10149 elsif No (First_Formal (Def_Id)) then
10150 return;
10152 -- The subprogram has formals and hence it may be a primitive of a
10153 -- concurrent type.
10155 else
10156 Typ := Etype (First_Formal (Def_Id));
10158 if Is_Access_Type (Typ) then
10159 Typ := Directly_Designated_Type (Typ);
10160 end if;
10162 if Is_Concurrent_Type (Typ)
10163 and then not Is_Generic_Actual_Type (Typ)
10164 then
10165 In_Scope := False;
10167 -- This case occurs when the concurrent type is declared within
10168 -- a generic unit. As a result the corresponding record has been
10169 -- built and used as the type of the first formal, we just have
10170 -- to retrieve the corresponding concurrent type.
10172 elsif Is_Concurrent_Record_Type (Typ)
10173 and then not Is_Class_Wide_Type (Typ)
10174 and then Present (Corresponding_Concurrent_Type (Typ))
10175 then
10176 Typ := Corresponding_Concurrent_Type (Typ);
10177 In_Scope := False;
10179 else
10180 return;
10181 end if;
10182 end if;
10184 -- There is no overriding to check if is an inherited operation in a
10185 -- type derivation on for a generic actual.
10187 Collect_Interfaces (Typ, Ifaces_List);
10189 if Is_Empty_Elmt_List (Ifaces_List) then
10190 return;
10191 end if;
10193 -- Determine whether entry or subprogram Def_Id overrides a primitive
10194 -- operation that belongs to one of the interfaces in Ifaces_List.
10196 declare
10197 Candidate : Entity_Id := Empty;
10198 Hom : Entity_Id := Empty;
10199 Iface_Typ : Entity_Id;
10200 Subp : Entity_Id := Empty;
10202 begin
10203 -- Traverse the homonym chain, looking for a potentially
10204 -- overridden subprogram that belongs to an implemented
10205 -- interface.
10207 Hom := Current_Entity_In_Scope (Def_Id);
10208 while Present (Hom) loop
10209 Subp := Hom;
10211 if Subp = Def_Id
10212 or else not Is_Overloadable (Subp)
10213 or else not Is_Primitive (Subp)
10214 or else not Is_Dispatching_Operation (Subp)
10215 or else not Present (Find_Dispatching_Type (Subp))
10216 or else not Is_Interface (Find_Dispatching_Type (Subp))
10217 then
10218 null;
10220 -- Entries and procedures can override abstract or null
10221 -- interface procedures.
10223 elsif (Ekind (Def_Id) = E_Procedure
10224 or else Ekind (Def_Id) = E_Entry)
10225 and then Ekind (Subp) = E_Procedure
10226 and then Matches_Prefixed_View_Profile
10227 (Parameter_Specifications (Parent (Def_Id)),
10228 Parameter_Specifications (Parent (Subp)))
10229 then
10230 Candidate := Subp;
10232 -- For an overridden subprogram Subp, check whether the mode
10233 -- of its first parameter is correct depending on the kind
10234 -- of synchronized type.
10236 declare
10237 Formal : constant Node_Id := First_Formal (Candidate);
10239 begin
10240 -- In order for an entry or a protected procedure to
10241 -- override, the first parameter of the overridden
10242 -- routine must be of mode "out", "in out" or
10243 -- access-to-variable.
10245 if Ekind_In (Candidate, E_Entry, E_Procedure)
10246 and then Is_Protected_Type (Typ)
10247 and then Ekind (Formal) /= E_In_Out_Parameter
10248 and then Ekind (Formal) /= E_Out_Parameter
10249 and then Nkind (Parameter_Type (Parent (Formal))) /=
10250 N_Access_Definition
10251 then
10252 null;
10254 -- All other cases are OK since a task entry or routine
10255 -- does not have a restriction on the mode of the first
10256 -- parameter of the overridden interface routine.
10258 else
10259 Overridden_Subp := Candidate;
10260 return;
10261 end if;
10262 end;
10264 -- Functions can override abstract interface functions
10266 elsif Ekind (Def_Id) = E_Function
10267 and then Ekind (Subp) = E_Function
10268 and then Matches_Prefixed_View_Profile
10269 (Parameter_Specifications (Parent (Def_Id)),
10270 Parameter_Specifications (Parent (Subp)))
10271 and then Etype (Result_Definition (Parent (Def_Id))) =
10272 Etype (Result_Definition (Parent (Subp)))
10273 then
10274 Overridden_Subp := Subp;
10275 return;
10276 end if;
10278 Hom := Homonym (Hom);
10279 end loop;
10281 -- After examining all candidates for overriding, we are left with
10282 -- the best match which is a mode incompatible interface routine.
10283 -- Do not emit an error if the Expander is active since this error
10284 -- will be detected later on after all concurrent types are
10285 -- expanded and all wrappers are built. This check is meant for
10286 -- spec-only compilations.
10288 if Present (Candidate) and then not Expander_Active then
10289 Iface_Typ :=
10290 Find_Parameter_Type (Parent (First_Formal (Candidate)));
10292 -- Def_Id is primitive of a protected type, declared inside the
10293 -- type, and the candidate is primitive of a limited or
10294 -- synchronized interface.
10296 if In_Scope
10297 and then Is_Protected_Type (Typ)
10298 and then
10299 (Is_Limited_Interface (Iface_Typ)
10300 or else Is_Protected_Interface (Iface_Typ)
10301 or else Is_Synchronized_Interface (Iface_Typ)
10302 or else Is_Task_Interface (Iface_Typ))
10303 then
10304 Error_Msg_PT (Parent (Typ), Candidate);
10305 end if;
10306 end if;
10308 Overridden_Subp := Candidate;
10309 return;
10310 end;
10311 end Check_Synchronized_Overriding;
10313 ----------------------------
10314 -- Is_Private_Declaration --
10315 ----------------------------
10317 function Is_Private_Declaration (E : Entity_Id) return Boolean is
10318 Priv_Decls : List_Id;
10319 Decl : constant Node_Id := Unit_Declaration_Node (E);
10321 begin
10322 if Is_Package_Or_Generic_Package (Current_Scope)
10323 and then In_Private_Part (Current_Scope)
10324 then
10325 Priv_Decls :=
10326 Private_Declarations (Package_Specification (Current_Scope));
10328 return In_Package_Body (Current_Scope)
10329 or else
10330 (Is_List_Member (Decl)
10331 and then List_Containing (Decl) = Priv_Decls)
10332 or else (Nkind (Parent (Decl)) = N_Package_Specification
10333 and then not
10334 Is_Compilation_Unit
10335 (Defining_Entity (Parent (Decl)))
10336 and then List_Containing (Parent (Parent (Decl))) =
10337 Priv_Decls);
10338 else
10339 return False;
10340 end if;
10341 end Is_Private_Declaration;
10343 --------------------------
10344 -- Is_Overriding_Alias --
10345 --------------------------
10347 function Is_Overriding_Alias
10348 (Old_E : Entity_Id;
10349 New_E : Entity_Id) return Boolean
10351 AO : constant Entity_Id := Alias (Old_E);
10352 AN : constant Entity_Id := Alias (New_E);
10354 begin
10355 return Scope (AO) /= Scope (AN)
10356 or else No (DTC_Entity (AO))
10357 or else No (DTC_Entity (AN))
10358 or else DT_Position (AO) = DT_Position (AN);
10359 end Is_Overriding_Alias;
10361 -- Start of processing for New_Overloaded_Entity
10363 begin
10364 -- We need to look for an entity that S may override. This must be a
10365 -- homonym in the current scope, so we look for the first homonym of
10366 -- S in the current scope as the starting point for the search.
10368 E := Current_Entity_In_Scope (S);
10370 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
10371 -- They are directly added to the list of primitive operations of
10372 -- Derived_Type, unless this is a rederivation in the private part
10373 -- of an operation that was already derived in the visible part of
10374 -- the current package.
10376 if Ada_Version >= Ada_2005
10377 and then Present (Derived_Type)
10378 and then Present (Alias (S))
10379 and then Is_Dispatching_Operation (Alias (S))
10380 and then Present (Find_Dispatching_Type (Alias (S)))
10381 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
10382 then
10383 -- For private types, when the full-view is processed we propagate to
10384 -- the full view the non-overridden entities whose attribute "alias"
10385 -- references an interface primitive. These entities were added by
10386 -- Derive_Subprograms to ensure that interface primitives are
10387 -- covered.
10389 -- Inside_Freeze_Actions is non zero when S corresponds with an
10390 -- internal entity that links an interface primitive with its
10391 -- covering primitive through attribute Interface_Alias (see
10392 -- Add_Internal_Interface_Entities).
10394 if Inside_Freezing_Actions = 0
10395 and then Is_Package_Or_Generic_Package (Current_Scope)
10396 and then In_Private_Part (Current_Scope)
10397 and then Nkind (Parent (E)) = N_Private_Extension_Declaration
10398 and then Nkind (Parent (S)) = N_Full_Type_Declaration
10399 and then Full_View (Defining_Identifier (Parent (E)))
10400 = Defining_Identifier (Parent (S))
10401 and then Alias (E) = Alias (S)
10402 then
10403 Check_Operation_From_Private_View (S, E);
10404 Set_Is_Dispatching_Operation (S);
10406 -- Common case
10408 else
10409 Enter_Overloaded_Entity (S);
10410 Check_Dispatching_Operation (S, Empty);
10411 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10412 end if;
10414 return;
10415 end if;
10417 -- If there is no homonym then this is definitely not overriding
10419 if No (E) then
10420 Enter_Overloaded_Entity (S);
10421 Check_Dispatching_Operation (S, Empty);
10422 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10424 -- If subprogram has an explicit declaration, check whether it has an
10425 -- overriding indicator.
10427 if Comes_From_Source (S) then
10428 Check_Synchronized_Overriding (S, Overridden_Subp);
10430 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
10431 -- it may have overridden some hidden inherited primitive. Update
10432 -- Overridden_Subp to avoid spurious errors when checking the
10433 -- overriding indicator.
10435 if Ada_Version >= Ada_2012
10436 and then No (Overridden_Subp)
10437 and then Is_Dispatching_Operation (S)
10438 and then Present (Overridden_Operation (S))
10439 then
10440 Overridden_Subp := Overridden_Operation (S);
10441 end if;
10443 Check_Overriding_Indicator
10444 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10445 end if;
10447 -- If there is a homonym that is not overloadable, then we have an
10448 -- error, except for the special cases checked explicitly below.
10450 elsif not Is_Overloadable (E) then
10452 -- Check for spurious conflict produced by a subprogram that has the
10453 -- same name as that of the enclosing generic package. The conflict
10454 -- occurs within an instance, between the subprogram and the renaming
10455 -- declaration for the package. After the subprogram, the package
10456 -- renaming declaration becomes hidden.
10458 if Ekind (E) = E_Package
10459 and then Present (Renamed_Object (E))
10460 and then Renamed_Object (E) = Current_Scope
10461 and then Nkind (Parent (Renamed_Object (E))) =
10462 N_Package_Specification
10463 and then Present (Generic_Parent (Parent (Renamed_Object (E))))
10464 then
10465 Set_Is_Hidden (E);
10466 Set_Is_Immediately_Visible (E, False);
10467 Enter_Overloaded_Entity (S);
10468 Set_Homonym (S, Homonym (E));
10469 Check_Dispatching_Operation (S, Empty);
10470 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
10472 -- If the subprogram is implicit it is hidden by the previous
10473 -- declaration. However if it is dispatching, it must appear in the
10474 -- dispatch table anyway, because it can be dispatched to even if it
10475 -- cannot be called directly.
10477 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
10478 Set_Scope (S, Current_Scope);
10480 if Is_Dispatching_Operation (Alias (S)) then
10481 Check_Dispatching_Operation (S, Empty);
10482 end if;
10484 return;
10486 else
10487 Error_Msg_Sloc := Sloc (E);
10489 -- Generate message, with useful additional warning if in generic
10491 if Is_Generic_Unit (E) then
10492 Error_Msg_N ("previous generic unit cannot be overloaded", S);
10493 Error_Msg_N ("\& conflicts with declaration#", S);
10494 else
10495 Error_Msg_N ("& conflicts with declaration#", S);
10496 end if;
10498 return;
10499 end if;
10501 -- E exists and is overloadable
10503 else
10504 Check_Synchronized_Overriding (S, Overridden_Subp);
10506 -- Loop through E and its homonyms to determine if any of them is
10507 -- the candidate for overriding by S.
10509 while Present (E) loop
10511 -- Definitely not interesting if not in the current scope
10513 if Scope (E) /= Current_Scope then
10514 null;
10516 -- Ada 2012 (AI05-0165): For internally generated bodies of null
10517 -- procedures locate the internally generated spec. We enforce
10518 -- mode conformance since a tagged type may inherit from
10519 -- interfaces several null primitives which differ only in
10520 -- the mode of the formals.
10522 elsif not Comes_From_Source (S)
10523 and then Is_Null_Procedure (S)
10524 and then not Mode_Conformant (E, S)
10525 then
10526 null;
10528 -- Check if we have type conformance
10530 elsif Type_Conformant (E, S) then
10532 -- If the old and new entities have the same profile and one
10533 -- is not the body of the other, then this is an error, unless
10534 -- one of them is implicitly declared.
10536 -- There are some cases when both can be implicit, for example
10537 -- when both a literal and a function that overrides it are
10538 -- inherited in a derivation, or when an inherited operation
10539 -- of a tagged full type overrides the inherited operation of
10540 -- a private extension. Ada 83 had a special rule for the
10541 -- literal case. In Ada 95, the later implicit operation hides
10542 -- the former, and the literal is always the former. In the
10543 -- odd case where both are derived operations declared at the
10544 -- same point, both operations should be declared, and in that
10545 -- case we bypass the following test and proceed to the next
10546 -- part. This can only occur for certain obscure cases in
10547 -- instances, when an operation on a type derived from a formal
10548 -- private type does not override a homograph inherited from
10549 -- the actual. In subsequent derivations of such a type, the
10550 -- DT positions of these operations remain distinct, if they
10551 -- have been set.
10553 if Present (Alias (S))
10554 and then (No (Alias (E))
10555 or else Comes_From_Source (E)
10556 or else Is_Abstract_Subprogram (S)
10557 or else
10558 (Is_Dispatching_Operation (E)
10559 and then Is_Overriding_Alias (E, S)))
10560 and then Ekind (E) /= E_Enumeration_Literal
10561 then
10562 -- When an derived operation is overloaded it may be due to
10563 -- the fact that the full view of a private extension
10564 -- re-inherits. It has to be dealt with.
10566 if Is_Package_Or_Generic_Package (Current_Scope)
10567 and then In_Private_Part (Current_Scope)
10568 then
10569 Check_Operation_From_Private_View (S, E);
10570 end if;
10572 -- In any case the implicit operation remains hidden by the
10573 -- existing declaration, which is overriding. Indicate that
10574 -- E overrides the operation from which S is inherited.
10576 if Present (Alias (S)) then
10577 Set_Overridden_Operation (E, Alias (S));
10578 else
10579 Set_Overridden_Operation (E, S);
10580 end if;
10582 if Comes_From_Source (E) then
10583 Check_Overriding_Indicator (E, S, Is_Primitive => False);
10584 end if;
10586 return;
10588 -- Within an instance, the renaming declarations for actual
10589 -- subprograms may become ambiguous, but they do not hide each
10590 -- other.
10592 elsif Ekind (E) /= E_Entry
10593 and then not Comes_From_Source (E)
10594 and then not Is_Generic_Instance (E)
10595 and then (Present (Alias (E))
10596 or else Is_Intrinsic_Subprogram (E))
10597 and then (not In_Instance
10598 or else No (Parent (E))
10599 or else Nkind (Unit_Declaration_Node (E)) /=
10600 N_Subprogram_Renaming_Declaration)
10601 then
10602 -- A subprogram child unit is not allowed to override an
10603 -- inherited subprogram (10.1.1(20)).
10605 if Is_Child_Unit (S) then
10606 Error_Msg_N
10607 ("child unit overrides inherited subprogram in parent",
10609 return;
10610 end if;
10612 if Is_Non_Overriding_Operation (E, S) then
10613 Enter_Overloaded_Entity (S);
10615 if No (Derived_Type)
10616 or else Is_Tagged_Type (Derived_Type)
10617 then
10618 Check_Dispatching_Operation (S, Empty);
10619 end if;
10621 return;
10622 end if;
10624 -- E is a derived operation or an internal operator which
10625 -- is being overridden. Remove E from further visibility.
10626 -- Furthermore, if E is a dispatching operation, it must be
10627 -- replaced in the list of primitive operations of its type
10628 -- (see Override_Dispatching_Operation).
10630 Overridden_Subp := E;
10632 declare
10633 Prev : Entity_Id;
10635 begin
10636 Prev := First_Entity (Current_Scope);
10637 while Present (Prev) and then Next_Entity (Prev) /= E loop
10638 Next_Entity (Prev);
10639 end loop;
10641 -- It is possible for E to be in the current scope and
10642 -- yet not in the entity chain. This can only occur in a
10643 -- generic context where E is an implicit concatenation
10644 -- in the formal part, because in a generic body the
10645 -- entity chain starts with the formals.
10647 pragma Assert
10648 (Present (Prev) or else Chars (E) = Name_Op_Concat);
10650 -- E must be removed both from the entity_list of the
10651 -- current scope, and from the visibility chain
10653 if Debug_Flag_E then
10654 Write_Str ("Override implicit operation ");
10655 Write_Int (Int (E));
10656 Write_Eol;
10657 end if;
10659 -- If E is a predefined concatenation, it stands for four
10660 -- different operations. As a result, a single explicit
10661 -- declaration does not hide it. In a possible ambiguous
10662 -- situation, Disambiguate chooses the user-defined op,
10663 -- so it is correct to retain the previous internal one.
10665 if Chars (E) /= Name_Op_Concat
10666 or else Ekind (E) /= E_Operator
10667 then
10668 -- For nondispatching derived operations that are
10669 -- overridden by a subprogram declared in the private
10670 -- part of a package, we retain the derived subprogram
10671 -- but mark it as not immediately visible. If the
10672 -- derived operation was declared in the visible part
10673 -- then this ensures that it will still be visible
10674 -- outside the package with the proper signature
10675 -- (calls from outside must also be directed to this
10676 -- version rather than the overriding one, unlike the
10677 -- dispatching case). Calls from inside the package
10678 -- will still resolve to the overriding subprogram
10679 -- since the derived one is marked as not visible
10680 -- within the package.
10682 -- If the private operation is dispatching, we achieve
10683 -- the overriding by keeping the implicit operation
10684 -- but setting its alias to be the overriding one. In
10685 -- this fashion the proper body is executed in all
10686 -- cases, but the original signature is used outside
10687 -- of the package.
10689 -- If the overriding is not in the private part, we
10690 -- remove the implicit operation altogether.
10692 if Is_Private_Declaration (S) then
10693 if not Is_Dispatching_Operation (E) then
10694 Set_Is_Immediately_Visible (E, False);
10695 else
10696 -- Work done in Override_Dispatching_Operation,
10697 -- so nothing else needs to be done here.
10699 null;
10700 end if;
10702 else
10703 -- Find predecessor of E in Homonym chain
10705 if E = Current_Entity (E) then
10706 Prev_Vis := Empty;
10707 else
10708 Prev_Vis := Current_Entity (E);
10709 while Homonym (Prev_Vis) /= E loop
10710 Prev_Vis := Homonym (Prev_Vis);
10711 end loop;
10712 end if;
10714 if Prev_Vis /= Empty then
10716 -- Skip E in the visibility chain
10718 Set_Homonym (Prev_Vis, Homonym (E));
10720 else
10721 Set_Name_Entity_Id (Chars (E), Homonym (E));
10722 end if;
10724 Set_Next_Entity (Prev, Next_Entity (E));
10726 if No (Next_Entity (Prev)) then
10727 Set_Last_Entity (Current_Scope, Prev);
10728 end if;
10729 end if;
10730 end if;
10732 Enter_Overloaded_Entity (S);
10734 -- For entities generated by Derive_Subprograms the
10735 -- overridden operation is the inherited primitive
10736 -- (which is available through the attribute alias).
10738 if not (Comes_From_Source (E))
10739 and then Is_Dispatching_Operation (E)
10740 and then Find_Dispatching_Type (E) =
10741 Find_Dispatching_Type (S)
10742 and then Present (Alias (E))
10743 and then Comes_From_Source (Alias (E))
10744 then
10745 Set_Overridden_Operation (S, Alias (E));
10747 -- Normal case of setting entity as overridden
10749 -- Note: Static_Initialization and Overridden_Operation
10750 -- attributes use the same field in subprogram entities.
10751 -- Static_Initialization is only defined for internal
10752 -- initialization procedures, where Overridden_Operation
10753 -- is irrelevant. Therefore the setting of this attribute
10754 -- must check whether the target is an init_proc.
10756 elsif not Is_Init_Proc (S) then
10757 Set_Overridden_Operation (S, E);
10758 end if;
10760 Check_Overriding_Indicator (S, E, Is_Primitive => True);
10762 -- If S is a user-defined subprogram or a null procedure
10763 -- expanded to override an inherited null procedure, or a
10764 -- predefined dispatching primitive then indicate that E
10765 -- overrides the operation from which S is inherited.
10767 if Comes_From_Source (S)
10768 or else
10769 (Present (Parent (S))
10770 and then
10771 Nkind (Parent (S)) = N_Procedure_Specification
10772 and then
10773 Null_Present (Parent (S)))
10774 or else
10775 (Present (Alias (E))
10776 and then
10777 Is_Predefined_Dispatching_Operation (Alias (E)))
10778 then
10779 if Present (Alias (E)) then
10780 Set_Overridden_Operation (S, Alias (E));
10781 end if;
10782 end if;
10784 if Is_Dispatching_Operation (E) then
10786 -- An overriding dispatching subprogram inherits the
10787 -- convention of the overridden subprogram (AI-117).
10789 Set_Convention (S, Convention (E));
10790 Check_Dispatching_Operation (S, E);
10792 else
10793 Check_Dispatching_Operation (S, Empty);
10794 end if;
10796 Check_For_Primitive_Subprogram
10797 (Is_Primitive_Subp, Is_Overriding => True);
10798 goto Check_Inequality;
10799 end;
10801 -- Apparent redeclarations in instances can occur when two
10802 -- formal types get the same actual type. The subprograms in
10803 -- in the instance are legal, even if not callable from the
10804 -- outside. Calls from within are disambiguated elsewhere.
10805 -- For dispatching operations in the visible part, the usual
10806 -- rules apply, and operations with the same profile are not
10807 -- legal (B830001).
10809 elsif (In_Instance_Visible_Part
10810 and then not Is_Dispatching_Operation (E))
10811 or else In_Instance_Not_Visible
10812 then
10813 null;
10815 -- Here we have a real error (identical profile)
10817 else
10818 Error_Msg_Sloc := Sloc (E);
10820 -- Avoid cascaded errors if the entity appears in
10821 -- subsequent calls.
10823 Set_Scope (S, Current_Scope);
10825 -- Generate error, with extra useful warning for the case
10826 -- of a generic instance with no completion.
10828 if Is_Generic_Instance (S)
10829 and then not Has_Completion (E)
10830 then
10831 Error_Msg_N
10832 ("instantiation cannot provide body for&", S);
10833 Error_Msg_N ("\& conflicts with declaration#", S);
10834 else
10835 Error_Msg_N ("& conflicts with declaration#", S);
10836 end if;
10838 return;
10839 end if;
10841 else
10842 -- If one subprogram has an access parameter and the other
10843 -- a parameter of an access type, calls to either might be
10844 -- ambiguous. Verify that parameters match except for the
10845 -- access parameter.
10847 if May_Hide_Profile then
10848 declare
10849 F1 : Entity_Id;
10850 F2 : Entity_Id;
10852 begin
10853 F1 := First_Formal (S);
10854 F2 := First_Formal (E);
10855 while Present (F1) and then Present (F2) loop
10856 if Is_Access_Type (Etype (F1)) then
10857 if not Is_Access_Type (Etype (F2))
10858 or else not Conforming_Types
10859 (Designated_Type (Etype (F1)),
10860 Designated_Type (Etype (F2)),
10861 Type_Conformant)
10862 then
10863 May_Hide_Profile := False;
10864 end if;
10866 elsif
10867 not Conforming_Types
10868 (Etype (F1), Etype (F2), Type_Conformant)
10869 then
10870 May_Hide_Profile := False;
10871 end if;
10873 Next_Formal (F1);
10874 Next_Formal (F2);
10875 end loop;
10877 if May_Hide_Profile
10878 and then No (F1)
10879 and then No (F2)
10880 then
10881 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
10882 end if;
10883 end;
10884 end if;
10885 end if;
10887 E := Homonym (E);
10888 end loop;
10890 -- On exit, we know that S is a new entity
10892 Enter_Overloaded_Entity (S);
10893 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
10894 Check_Overriding_Indicator
10895 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
10897 -- Overloading is not allowed in SPARK, except for operators
10899 if Nkind (S) /= N_Defining_Operator_Symbol then
10900 Error_Msg_Sloc := Sloc (Homonym (S));
10901 Check_SPARK_Restriction
10902 ("overloading not allowed with entity#", S);
10903 end if;
10905 -- If S is a derived operation for an untagged type then by
10906 -- definition it's not a dispatching operation (even if the parent
10907 -- operation was dispatching), so Check_Dispatching_Operation is not
10908 -- called in that case.
10910 if No (Derived_Type)
10911 or else Is_Tagged_Type (Derived_Type)
10912 then
10913 Check_Dispatching_Operation (S, Empty);
10914 end if;
10915 end if;
10917 -- If this is a user-defined equality operator that is not a derived
10918 -- subprogram, create the corresponding inequality. If the operation is
10919 -- dispatching, the expansion is done elsewhere, and we do not create
10920 -- an explicit inequality operation.
10922 <<Check_Inequality>>
10923 if Chars (S) = Name_Op_Eq
10924 and then Etype (S) = Standard_Boolean
10925 and then Present (Parent (S))
10926 and then not Is_Dispatching_Operation (S)
10927 then
10928 Make_Inequality_Operator (S);
10930 if Ada_Version >= Ada_2012 then
10931 Check_Untagged_Equality (S);
10932 end if;
10933 end if;
10934 end New_Overloaded_Entity;
10936 ---------------------
10937 -- Process_Formals --
10938 ---------------------
10940 procedure Process_Formals
10941 (T : List_Id;
10942 Related_Nod : Node_Id)
10944 Param_Spec : Node_Id;
10945 Formal : Entity_Id;
10946 Formal_Type : Entity_Id;
10947 Default : Node_Id;
10948 Ptype : Entity_Id;
10950 Num_Out_Params : Nat := 0;
10951 First_Out_Param : Entity_Id := Empty;
10952 -- Used for setting Is_Only_Out_Parameter
10954 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
10955 -- Determine whether an access type designates a type coming from a
10956 -- limited view.
10958 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
10959 -- Check whether the default has a class-wide type. After analysis the
10960 -- default has the type of the formal, so we must also check explicitly
10961 -- for an access attribute.
10963 ----------------------------------
10964 -- Designates_From_Limited_With --
10965 ----------------------------------
10967 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
10968 Desig : Entity_Id := Typ;
10970 begin
10971 if Is_Access_Type (Desig) then
10972 Desig := Directly_Designated_Type (Desig);
10973 end if;
10975 if Is_Class_Wide_Type (Desig) then
10976 Desig := Root_Type (Desig);
10977 end if;
10979 return
10980 Ekind (Desig) = E_Incomplete_Type
10981 and then From_Limited_With (Desig);
10982 end Designates_From_Limited_With;
10984 ---------------------------
10985 -- Is_Class_Wide_Default --
10986 ---------------------------
10988 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
10989 begin
10990 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
10991 or else (Nkind (D) = N_Attribute_Reference
10992 and then Attribute_Name (D) = Name_Access
10993 and then Is_Class_Wide_Type (Etype (Prefix (D))));
10994 end Is_Class_Wide_Default;
10996 -- Start of processing for Process_Formals
10998 begin
10999 -- In order to prevent premature use of the formals in the same formal
11000 -- part, the Ekind is left undefined until all default expressions are
11001 -- analyzed. The Ekind is established in a separate loop at the end.
11003 Param_Spec := First (T);
11004 while Present (Param_Spec) loop
11005 Formal := Defining_Identifier (Param_Spec);
11006 Set_Never_Set_In_Source (Formal, True);
11007 Enter_Name (Formal);
11009 -- Case of ordinary parameters
11011 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
11012 Find_Type (Parameter_Type (Param_Spec));
11013 Ptype := Parameter_Type (Param_Spec);
11015 if Ptype = Error then
11016 goto Continue;
11017 end if;
11019 Formal_Type := Entity (Ptype);
11021 if Is_Incomplete_Type (Formal_Type)
11022 or else
11023 (Is_Class_Wide_Type (Formal_Type)
11024 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
11025 then
11026 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
11027 -- primitive operations, as long as their completion is
11028 -- in the same declarative part. If in the private part
11029 -- this means that the type cannot be a Taft-amendment type.
11030 -- Check is done on package exit. For access to subprograms,
11031 -- the use is legal for Taft-amendment types.
11033 -- Ada 2012: tagged incomplete types are allowed as generic
11034 -- formal types. They do not introduce dependencies and the
11035 -- corresponding generic subprogram does not have a delayed
11036 -- freeze, because it does not need a freeze node.
11038 if Is_Tagged_Type (Formal_Type) then
11039 if Ekind (Scope (Current_Scope)) = E_Package
11040 and then not From_Limited_With (Formal_Type)
11041 and then not Is_Generic_Type (Formal_Type)
11042 and then not Is_Class_Wide_Type (Formal_Type)
11043 then
11044 if not Nkind_In
11045 (Parent (T), N_Access_Function_Definition,
11046 N_Access_Procedure_Definition)
11047 then
11048 Append_Elmt
11049 (Current_Scope,
11050 Private_Dependents (Base_Type (Formal_Type)));
11052 -- Freezing is delayed to ensure that Register_Prim
11053 -- will get called for this operation, which is needed
11054 -- in cases where static dispatch tables aren't built.
11055 -- (Note that the same is done for controlling access
11056 -- parameter cases in function Access_Definition.)
11058 Set_Has_Delayed_Freeze (Current_Scope);
11059 end if;
11060 end if;
11062 -- Special handling of Value_Type for CIL case
11064 elsif Is_Value_Type (Formal_Type) then
11065 null;
11067 elsif not Nkind_In (Parent (T), N_Access_Function_Definition,
11068 N_Access_Procedure_Definition)
11069 then
11070 -- AI05-0151: Tagged incomplete types are allowed in all
11071 -- formal parts. Untagged incomplete types are not allowed
11072 -- in bodies.
11074 if Ada_Version >= Ada_2012 then
11075 if Is_Tagged_Type (Formal_Type) then
11076 null;
11078 elsif Nkind_In (Parent (Parent (T)), N_Accept_Statement,
11079 N_Entry_Body,
11080 N_Subprogram_Body)
11081 then
11082 Error_Msg_NE
11083 ("invalid use of untagged incomplete type&",
11084 Ptype, Formal_Type);
11085 end if;
11087 else
11088 Error_Msg_NE
11089 ("invalid use of incomplete type&",
11090 Param_Spec, Formal_Type);
11092 -- Further checks on the legality of incomplete types
11093 -- in formal parts are delayed until the freeze point
11094 -- of the enclosing subprogram or access to subprogram.
11095 end if;
11096 end if;
11098 elsif Ekind (Formal_Type) = E_Void then
11099 Error_Msg_NE
11100 ("premature use of&",
11101 Parameter_Type (Param_Spec), Formal_Type);
11102 end if;
11104 -- Ada 2012 (AI-142): Handle aliased parameters
11106 if Ada_Version >= Ada_2012
11107 and then Aliased_Present (Param_Spec)
11108 then
11109 Set_Is_Aliased (Formal);
11110 end if;
11112 -- Ada 2005 (AI-231): Create and decorate an internal subtype
11113 -- declaration corresponding to the null-excluding type of the
11114 -- formal in the enclosing scope. Finally, replace the parameter
11115 -- type of the formal with the internal subtype.
11117 if Ada_Version >= Ada_2005
11118 and then Null_Exclusion_Present (Param_Spec)
11119 then
11120 if not Is_Access_Type (Formal_Type) then
11121 Error_Msg_N
11122 ("`NOT NULL` allowed only for an access type", Param_Spec);
11124 else
11125 if Can_Never_Be_Null (Formal_Type)
11126 and then Comes_From_Source (Related_Nod)
11127 then
11128 Error_Msg_NE
11129 ("`NOT NULL` not allowed (& already excludes null)",
11130 Param_Spec, Formal_Type);
11131 end if;
11133 Formal_Type :=
11134 Create_Null_Excluding_Itype
11135 (T => Formal_Type,
11136 Related_Nod => Related_Nod,
11137 Scope_Id => Scope (Current_Scope));
11139 -- If the designated type of the itype is an itype that is
11140 -- not frozen yet, we set the Has_Delayed_Freeze attribute
11141 -- on the access subtype, to prevent order-of-elaboration
11142 -- issues in the backend.
11144 -- Example:
11145 -- type T is access procedure;
11146 -- procedure Op (O : not null T);
11148 if Is_Itype (Directly_Designated_Type (Formal_Type))
11149 and then
11150 not Is_Frozen (Directly_Designated_Type (Formal_Type))
11151 then
11152 Set_Has_Delayed_Freeze (Formal_Type);
11153 end if;
11154 end if;
11155 end if;
11157 -- An access formal type
11159 else
11160 Formal_Type :=
11161 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
11163 -- No need to continue if we already notified errors
11165 if not Present (Formal_Type) then
11166 return;
11167 end if;
11169 -- Ada 2005 (AI-254)
11171 declare
11172 AD : constant Node_Id :=
11173 Access_To_Subprogram_Definition
11174 (Parameter_Type (Param_Spec));
11175 begin
11176 if Present (AD) and then Protected_Present (AD) then
11177 Formal_Type :=
11178 Replace_Anonymous_Access_To_Protected_Subprogram
11179 (Param_Spec);
11180 end if;
11181 end;
11182 end if;
11184 Set_Etype (Formal, Formal_Type);
11186 -- Deal with default expression if present
11188 Default := Expression (Param_Spec);
11190 if Present (Default) then
11191 Check_SPARK_Restriction
11192 ("default expression is not allowed", Default);
11194 if Out_Present (Param_Spec) then
11195 Error_Msg_N
11196 ("default initialization only allowed for IN parameters",
11197 Param_Spec);
11198 end if;
11200 -- Do the special preanalysis of the expression (see section on
11201 -- "Handling of Default Expressions" in the spec of package Sem).
11203 Preanalyze_Spec_Expression (Default, Formal_Type);
11205 -- An access to constant cannot be the default for
11206 -- an access parameter that is an access to variable.
11208 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11209 and then not Is_Access_Constant (Formal_Type)
11210 and then Is_Access_Type (Etype (Default))
11211 and then Is_Access_Constant (Etype (Default))
11212 then
11213 Error_Msg_N
11214 ("formal that is access to variable cannot be initialized " &
11215 "with an access-to-constant expression", Default);
11216 end if;
11218 -- Check that the designated type of an access parameter's default
11219 -- is not a class-wide type unless the parameter's designated type
11220 -- is also class-wide.
11222 if Ekind (Formal_Type) = E_Anonymous_Access_Type
11223 and then not Designates_From_Limited_With (Formal_Type)
11224 and then Is_Class_Wide_Default (Default)
11225 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
11226 then
11227 Error_Msg_N
11228 ("access to class-wide expression not allowed here", Default);
11229 end if;
11231 -- Check incorrect use of dynamically tagged expressions
11233 if Is_Tagged_Type (Formal_Type) then
11234 Check_Dynamically_Tagged_Expression
11235 (Expr => Default,
11236 Typ => Formal_Type,
11237 Related_Nod => Default);
11238 end if;
11239 end if;
11241 -- Ada 2005 (AI-231): Static checks
11243 if Ada_Version >= Ada_2005
11244 and then Is_Access_Type (Etype (Formal))
11245 and then Can_Never_Be_Null (Etype (Formal))
11246 then
11247 Null_Exclusion_Static_Checks (Param_Spec);
11248 end if;
11250 <<Continue>>
11251 Next (Param_Spec);
11252 end loop;
11254 -- If this is the formal part of a function specification, analyze the
11255 -- subtype mark in the context where the formals are visible but not
11256 -- yet usable, and may hide outer homographs.
11258 if Nkind (Related_Nod) = N_Function_Specification then
11259 Analyze_Return_Type (Related_Nod);
11260 end if;
11262 -- Now set the kind (mode) of each formal
11264 Param_Spec := First (T);
11265 while Present (Param_Spec) loop
11266 Formal := Defining_Identifier (Param_Spec);
11267 Set_Formal_Mode (Formal);
11269 if Ekind (Formal) = E_In_Parameter then
11270 Set_Default_Value (Formal, Expression (Param_Spec));
11272 if Present (Expression (Param_Spec)) then
11273 Default := Expression (Param_Spec);
11275 if Is_Scalar_Type (Etype (Default)) then
11276 if Nkind (Parameter_Type (Param_Spec)) /=
11277 N_Access_Definition
11278 then
11279 Formal_Type := Entity (Parameter_Type (Param_Spec));
11280 else
11281 Formal_Type :=
11282 Access_Definition
11283 (Related_Nod, Parameter_Type (Param_Spec));
11284 end if;
11286 Apply_Scalar_Range_Check (Default, Formal_Type);
11287 end if;
11288 end if;
11290 elsif Ekind (Formal) = E_Out_Parameter then
11291 Num_Out_Params := Num_Out_Params + 1;
11293 if Num_Out_Params = 1 then
11294 First_Out_Param := Formal;
11295 end if;
11297 elsif Ekind (Formal) = E_In_Out_Parameter then
11298 Num_Out_Params := Num_Out_Params + 1;
11299 end if;
11301 -- Skip remaining processing if formal type was in error
11303 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
11304 goto Next_Parameter;
11305 end if;
11307 -- Force call by reference if aliased
11309 if Is_Aliased (Formal) then
11310 Set_Mechanism (Formal, By_Reference);
11312 -- Warn if user asked this to be passed by copy
11314 if Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
11315 Error_Msg_N
11316 ("cannot pass aliased parameter & by copy?", Formal);
11317 end if;
11319 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
11321 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Copy then
11322 Set_Mechanism (Formal, By_Copy);
11324 elsif Convention (Formal_Type) = Convention_Ada_Pass_By_Reference then
11325 Set_Mechanism (Formal, By_Reference);
11326 end if;
11328 <<Next_Parameter>>
11329 Next (Param_Spec);
11330 end loop;
11332 if Present (First_Out_Param) and then Num_Out_Params = 1 then
11333 Set_Is_Only_Out_Parameter (First_Out_Param);
11334 end if;
11335 end Process_Formals;
11337 ----------------------------
11338 -- Reference_Body_Formals --
11339 ----------------------------
11341 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
11342 Fs : Entity_Id;
11343 Fb : Entity_Id;
11345 begin
11346 if Error_Posted (Spec) then
11347 return;
11348 end if;
11350 -- Iterate over both lists. They may be of different lengths if the two
11351 -- specs are not conformant.
11353 Fs := First_Formal (Spec);
11354 Fb := First_Formal (Bod);
11355 while Present (Fs) and then Present (Fb) loop
11356 Generate_Reference (Fs, Fb, 'b');
11358 if Style_Check then
11359 Style.Check_Identifier (Fb, Fs);
11360 end if;
11362 Set_Spec_Entity (Fb, Fs);
11363 Set_Referenced (Fs, False);
11364 Next_Formal (Fs);
11365 Next_Formal (Fb);
11366 end loop;
11367 end Reference_Body_Formals;
11369 -------------------------
11370 -- Set_Actual_Subtypes --
11371 -------------------------
11373 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
11374 Decl : Node_Id;
11375 Formal : Entity_Id;
11376 T : Entity_Id;
11377 First_Stmt : Node_Id := Empty;
11378 AS_Needed : Boolean;
11380 begin
11381 -- If this is an empty initialization procedure, no need to create
11382 -- actual subtypes (small optimization).
11384 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
11385 return;
11386 end if;
11388 Formal := First_Formal (Subp);
11389 while Present (Formal) loop
11390 T := Etype (Formal);
11392 -- We never need an actual subtype for a constrained formal
11394 if Is_Constrained (T) then
11395 AS_Needed := False;
11397 -- If we have unknown discriminants, then we do not need an actual
11398 -- subtype, or more accurately we cannot figure it out! Note that
11399 -- all class-wide types have unknown discriminants.
11401 elsif Has_Unknown_Discriminants (T) then
11402 AS_Needed := False;
11404 -- At this stage we have an unconstrained type that may need an
11405 -- actual subtype. For sure the actual subtype is needed if we have
11406 -- an unconstrained array type.
11408 elsif Is_Array_Type (T) then
11409 AS_Needed := True;
11411 -- The only other case needing an actual subtype is an unconstrained
11412 -- record type which is an IN parameter (we cannot generate actual
11413 -- subtypes for the OUT or IN OUT case, since an assignment can
11414 -- change the discriminant values. However we exclude the case of
11415 -- initialization procedures, since discriminants are handled very
11416 -- specially in this context, see the section entitled "Handling of
11417 -- Discriminants" in Einfo.
11419 -- We also exclude the case of Discrim_SO_Functions (functions used
11420 -- in front end layout mode for size/offset values), since in such
11421 -- functions only discriminants are referenced, and not only are such
11422 -- subtypes not needed, but they cannot always be generated, because
11423 -- of order of elaboration issues.
11425 elsif Is_Record_Type (T)
11426 and then Ekind (Formal) = E_In_Parameter
11427 and then Chars (Formal) /= Name_uInit
11428 and then not Is_Unchecked_Union (T)
11429 and then not Is_Discrim_SO_Function (Subp)
11430 then
11431 AS_Needed := True;
11433 -- All other cases do not need an actual subtype
11435 else
11436 AS_Needed := False;
11437 end if;
11439 -- Generate actual subtypes for unconstrained arrays and
11440 -- unconstrained discriminated records.
11442 if AS_Needed then
11443 if Nkind (N) = N_Accept_Statement then
11445 -- If expansion is active, the formal is replaced by a local
11446 -- variable that renames the corresponding entry of the
11447 -- parameter block, and it is this local variable that may
11448 -- require an actual subtype.
11450 if Full_Expander_Active then
11451 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
11452 else
11453 Decl := Build_Actual_Subtype (T, Formal);
11454 end if;
11456 if Present (Handled_Statement_Sequence (N)) then
11457 First_Stmt :=
11458 First (Statements (Handled_Statement_Sequence (N)));
11459 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
11460 Mark_Rewrite_Insertion (Decl);
11461 else
11462 -- If the accept statement has no body, there will be no
11463 -- reference to the actuals, so no need to compute actual
11464 -- subtypes.
11466 return;
11467 end if;
11469 else
11470 Decl := Build_Actual_Subtype (T, Formal);
11471 Prepend (Decl, Declarations (N));
11472 Mark_Rewrite_Insertion (Decl);
11473 end if;
11475 -- The declaration uses the bounds of an existing object, and
11476 -- therefore needs no constraint checks.
11478 Analyze (Decl, Suppress => All_Checks);
11480 -- We need to freeze manually the generated type when it is
11481 -- inserted anywhere else than in a declarative part.
11483 if Present (First_Stmt) then
11484 Insert_List_Before_And_Analyze (First_Stmt,
11485 Freeze_Entity (Defining_Identifier (Decl), N));
11486 end if;
11488 if Nkind (N) = N_Accept_Statement
11489 and then Full_Expander_Active
11490 then
11491 Set_Actual_Subtype (Renamed_Object (Formal),
11492 Defining_Identifier (Decl));
11493 else
11494 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
11495 end if;
11496 end if;
11498 Next_Formal (Formal);
11499 end loop;
11500 end Set_Actual_Subtypes;
11502 ---------------------
11503 -- Set_Formal_Mode --
11504 ---------------------
11506 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
11507 Spec : constant Node_Id := Parent (Formal_Id);
11509 begin
11510 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
11511 -- since we ensure that corresponding actuals are always valid at the
11512 -- point of the call.
11514 if Out_Present (Spec) then
11515 if Ekind (Scope (Formal_Id)) = E_Function
11516 or else Ekind (Scope (Formal_Id)) = E_Generic_Function
11517 then
11518 -- [IN] OUT parameters allowed for functions in Ada 2012
11520 if Ada_Version >= Ada_2012 then
11522 -- Even in Ada 2012 operators can only have IN parameters
11524 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
11525 Error_Msg_N ("operators can only have IN parameters", Spec);
11526 end if;
11528 if In_Present (Spec) then
11529 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11530 else
11531 Set_Ekind (Formal_Id, E_Out_Parameter);
11532 end if;
11534 -- But not in earlier versions of Ada
11536 else
11537 Error_Msg_N ("functions can only have IN parameters", Spec);
11538 Set_Ekind (Formal_Id, E_In_Parameter);
11539 end if;
11541 elsif In_Present (Spec) then
11542 Set_Ekind (Formal_Id, E_In_Out_Parameter);
11544 else
11545 Set_Ekind (Formal_Id, E_Out_Parameter);
11546 Set_Never_Set_In_Source (Formal_Id, True);
11547 Set_Is_True_Constant (Formal_Id, False);
11548 Set_Current_Value (Formal_Id, Empty);
11549 end if;
11551 else
11552 Set_Ekind (Formal_Id, E_In_Parameter);
11553 end if;
11555 -- Set Is_Known_Non_Null for access parameters since the language
11556 -- guarantees that access parameters are always non-null. We also set
11557 -- Can_Never_Be_Null, since there is no way to change the value.
11559 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
11561 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
11562 -- null; In Ada 2005, only if then null_exclusion is explicit.
11564 if Ada_Version < Ada_2005
11565 or else Can_Never_Be_Null (Etype (Formal_Id))
11566 then
11567 Set_Is_Known_Non_Null (Formal_Id);
11568 Set_Can_Never_Be_Null (Formal_Id);
11569 end if;
11571 -- Ada 2005 (AI-231): Null-exclusion access subtype
11573 elsif Is_Access_Type (Etype (Formal_Id))
11574 and then Can_Never_Be_Null (Etype (Formal_Id))
11575 then
11576 Set_Is_Known_Non_Null (Formal_Id);
11578 -- We can also set Can_Never_Be_Null (thus preventing some junk
11579 -- access checks) for the case of an IN parameter, which cannot
11580 -- be changed, or for an IN OUT parameter, which can be changed but
11581 -- not to a null value. But for an OUT parameter, the initial value
11582 -- passed in can be null, so we can't set this flag in that case.
11584 if Ekind (Formal_Id) /= E_Out_Parameter then
11585 Set_Can_Never_Be_Null (Formal_Id);
11586 end if;
11587 end if;
11589 Set_Mechanism (Formal_Id, Default_Mechanism);
11590 Set_Formal_Validity (Formal_Id);
11591 end Set_Formal_Mode;
11593 -------------------------
11594 -- Set_Formal_Validity --
11595 -------------------------
11597 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
11598 begin
11599 -- If no validity checking, then we cannot assume anything about the
11600 -- validity of parameters, since we do not know there is any checking
11601 -- of the validity on the call side.
11603 if not Validity_Checks_On then
11604 return;
11606 -- If validity checking for parameters is enabled, this means we are
11607 -- not supposed to make any assumptions about argument values.
11609 elsif Validity_Check_Parameters then
11610 return;
11612 -- If we are checking in parameters, we will assume that the caller is
11613 -- also checking parameters, so we can assume the parameter is valid.
11615 elsif Ekind (Formal_Id) = E_In_Parameter
11616 and then Validity_Check_In_Params
11617 then
11618 Set_Is_Known_Valid (Formal_Id, True);
11620 -- Similar treatment for IN OUT parameters
11622 elsif Ekind (Formal_Id) = E_In_Out_Parameter
11623 and then Validity_Check_In_Out_Params
11624 then
11625 Set_Is_Known_Valid (Formal_Id, True);
11626 end if;
11627 end Set_Formal_Validity;
11629 ------------------------
11630 -- Subtype_Conformant --
11631 ------------------------
11633 function Subtype_Conformant
11634 (New_Id : Entity_Id;
11635 Old_Id : Entity_Id;
11636 Skip_Controlling_Formals : Boolean := False) return Boolean
11638 Result : Boolean;
11639 begin
11640 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
11641 Skip_Controlling_Formals => Skip_Controlling_Formals);
11642 return Result;
11643 end Subtype_Conformant;
11645 ---------------------
11646 -- Type_Conformant --
11647 ---------------------
11649 function Type_Conformant
11650 (New_Id : Entity_Id;
11651 Old_Id : Entity_Id;
11652 Skip_Controlling_Formals : Boolean := False) return Boolean
11654 Result : Boolean;
11655 begin
11656 May_Hide_Profile := False;
11658 Check_Conformance
11659 (New_Id, Old_Id, Type_Conformant, False, Result,
11660 Skip_Controlling_Formals => Skip_Controlling_Formals);
11661 return Result;
11662 end Type_Conformant;
11664 -------------------------------
11665 -- Valid_Operator_Definition --
11666 -------------------------------
11668 procedure Valid_Operator_Definition (Designator : Entity_Id) is
11669 N : Integer := 0;
11670 F : Entity_Id;
11671 Id : constant Name_Id := Chars (Designator);
11672 N_OK : Boolean;
11674 begin
11675 F := First_Formal (Designator);
11676 while Present (F) loop
11677 N := N + 1;
11679 if Present (Default_Value (F)) then
11680 Error_Msg_N
11681 ("default values not allowed for operator parameters",
11682 Parent (F));
11683 end if;
11685 Next_Formal (F);
11686 end loop;
11688 -- Verify that user-defined operators have proper number of arguments
11689 -- First case of operators which can only be unary
11691 if Nam_In (Id, Name_Op_Not, Name_Op_Abs) then
11692 N_OK := (N = 1);
11694 -- Case of operators which can be unary or binary
11696 elsif Nam_In (Id, Name_Op_Add, Name_Op_Subtract) then
11697 N_OK := (N in 1 .. 2);
11699 -- All other operators can only be binary
11701 else
11702 N_OK := (N = 2);
11703 end if;
11705 if not N_OK then
11706 Error_Msg_N
11707 ("incorrect number of arguments for operator", Designator);
11708 end if;
11710 if Id = Name_Op_Ne
11711 and then Base_Type (Etype (Designator)) = Standard_Boolean
11712 and then not Is_Intrinsic_Subprogram (Designator)
11713 then
11714 Error_Msg_N
11715 ("explicit definition of inequality not allowed", Designator);
11716 end if;
11717 end Valid_Operator_Definition;
11719 end Sem_Ch6;