1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
9 -- Copyright (C) 1992-2011, Free Software Foundation, Inc. --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
30 ------------------------------------------------------------------------------
32 -- This is a Solaris (native) version of this package
34 -- This package contains all the GNULL primitives that interface directly with
38 -- Turn off polling, we do not want ATC polling to take place during tasking
39 -- operations. It causes infinite loops and other problems.
43 with System
.Multiprocessors
;
44 with System
.Tasking
.Debug
;
45 with System
.Interrupt_Management
;
46 with System
.OS_Constants
;
47 with System
.OS_Primitives
;
48 with System
.Task_Info
;
50 pragma Warnings
(Off
);
54 with System
.Soft_Links
;
55 -- We use System.Soft_Links instead of System.Tasking.Initialization
56 -- because the later is a higher level package that we shouldn't depend on.
57 -- For example when using the restricted run time, it is replaced by
58 -- System.Tasking.Restricted.Stages.
60 package body System
.Task_Primitives
.Operations
is
62 package OSC
renames System
.OS_Constants
;
63 package SSL
renames System
.Soft_Links
;
65 use System
.Tasking
.Debug
;
68 use System
.OS_Interface
;
69 use System
.Parameters
;
70 use System
.OS_Primitives
;
76 -- The following are logically constants, but need to be initialized
79 Environment_Task_Id
: Task_Id
;
80 -- A variable to hold Task_Id for the environment task.
81 -- If we use this variable to get the Task_Id, we need the following
82 -- ATCB_Key only for non-Ada threads.
84 Unblocked_Signal_Mask
: aliased sigset_t
;
85 -- The set of signals that should unblocked in all tasks
87 ATCB_Key
: aliased thread_key_t
;
88 -- Key used to find the Ada Task_Id associated with a thread,
89 -- at least for C threads unknown to the Ada run-time system.
91 Single_RTS_Lock
: aliased RTS_Lock
;
92 -- This is a lock to allow only one thread of control in the RTS at
93 -- a time; it is used to execute in mutual exclusion from all other tasks.
94 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
96 Next_Serial_Number
: Task_Serial_Number
:= 100;
97 -- We start at 100, to reserve some special values for
98 -- using in error checking.
99 -- The following are internal configuration constants needed.
101 Abort_Handler_Installed
: Boolean := False;
102 -- True if a handler for the abort signal is installed
104 Null_Thread_Id
: constant Thread_Id
:= Thread_Id
'Last;
105 -- Constant to indicate that the thread identifier has not yet been
108 ----------------------
109 -- Priority Support --
110 ----------------------
112 Priority_Ceiling_Emulation
: constant Boolean := True;
113 -- controls whether we emulate priority ceiling locking
115 -- To get a scheduling close to annex D requirements, we use the real-time
116 -- class provided for LWPs and map each task/thread to a specific and
117 -- unique LWP (there is 1 thread per LWP, and 1 LWP per thread).
119 -- The real time class can only be set when the process has root
120 -- privileges, so in the other cases, we use the normal thread scheduling
121 -- and priority handling.
123 Using_Real_Time_Class
: Boolean := False;
124 -- indicates whether the real time class is being used (i.e. the process
125 -- has root privileges).
127 Prio_Param
: aliased struct_pcparms
;
128 -- Hold priority info (Real_Time) initialized during the package
131 -----------------------------------
132 -- External Configuration Values --
133 -----------------------------------
135 Time_Slice_Val
: Integer;
136 pragma Import
(C
, Time_Slice_Val
, "__gl_time_slice_val");
138 Locking_Policy
: Character;
139 pragma Import
(C
, Locking_Policy
, "__gl_locking_policy");
141 Dispatching_Policy
: Character;
142 pragma Import
(C
, Dispatching_Policy
, "__gl_task_dispatching_policy");
144 Foreign_Task_Elaborated
: aliased Boolean := True;
145 -- Used to identified fake tasks (i.e., non-Ada Threads)
147 -----------------------
148 -- Local Subprograms --
149 -----------------------
151 function sysconf
(name
: System
.OS_Interface
.int
) return processorid_t
;
152 pragma Import
(C
, sysconf
, "sysconf");
154 SC_NPROCESSORS_CONF
: constant System
.OS_Interface
.int
:= 14;
157 (name
: System
.OS_Interface
.int
:= SC_NPROCESSORS_CONF
)
158 return processorid_t
renames sysconf
;
160 procedure Abort_Handler
162 Code
: not null access siginfo_t
;
163 Context
: not null access ucontext_t
);
164 -- Target-dependent binding of inter-thread Abort signal to
165 -- the raising of the Abort_Signal exception.
166 -- See also comments in 7staprop.adb
172 function Check_Initialize_Lock
174 Level
: Lock_Level
) return Boolean;
175 pragma Inline
(Check_Initialize_Lock
);
177 function Check_Lock
(L
: Lock_Ptr
) return Boolean;
178 pragma Inline
(Check_Lock
);
180 function Record_Lock
(L
: Lock_Ptr
) return Boolean;
181 pragma Inline
(Record_Lock
);
183 function Check_Sleep
(Reason
: Task_States
) return Boolean;
184 pragma Inline
(Check_Sleep
);
186 function Record_Wakeup
188 Reason
: Task_States
) return Boolean;
189 pragma Inline
(Record_Wakeup
);
191 function Check_Wakeup
193 Reason
: Task_States
) return Boolean;
194 pragma Inline
(Check_Wakeup
);
196 function Check_Unlock
(L
: Lock_Ptr
) return Boolean;
197 pragma Inline
(Check_Unlock
);
199 function Check_Finalize_Lock
(L
: Lock_Ptr
) return Boolean;
200 pragma Inline
(Check_Finalize_Lock
);
208 procedure Initialize
(Environment_Task
: Task_Id
);
209 pragma Inline
(Initialize
);
210 -- Initialize various data needed by this package
212 function Is_Valid_Task
return Boolean;
213 pragma Inline
(Is_Valid_Task
);
214 -- Does executing thread have a TCB?
216 procedure Set
(Self_Id
: Task_Id
);
218 -- Set the self id for the current task
220 function Self
return Task_Id
;
221 pragma Inline
(Self
);
222 -- Return a pointer to the Ada Task Control Block of the calling task
226 package body Specific
is separate;
227 -- The body of this package is target specific
229 ----------------------------------
230 -- ATCB allocation/deallocation --
231 ----------------------------------
233 package body ATCB_Allocation
is separate;
234 -- The body of this package is shared across several targets
236 ---------------------------------
237 -- Support for foreign threads --
238 ---------------------------------
240 function Register_Foreign_Thread
(Thread
: Thread_Id
) return Task_Id
;
241 -- Allocate and Initialize a new ATCB for the current Thread
243 function Register_Foreign_Thread
244 (Thread
: Thread_Id
) return Task_Id
is separate;
250 Check_Count
: Integer := 0;
251 Lock_Count
: Integer := 0;
252 Unlock_Count
: Integer := 0;
258 procedure Abort_Handler
260 Code
: not null access siginfo_t
;
261 Context
: not null access ucontext_t
)
263 pragma Unreferenced
(Sig
);
264 pragma Unreferenced
(Code
);
265 pragma Unreferenced
(Context
);
267 Self_ID
: constant Task_Id
:= Self
;
268 Old_Set
: aliased sigset_t
;
270 Result
: Interfaces
.C
.int
;
271 pragma Warnings
(Off
, Result
);
274 -- It's not safe to raise an exception when using GCC ZCX mechanism.
275 -- Note that we still need to install a signal handler, since in some
276 -- cases (e.g. shutdown of the Server_Task in System.Interrupts) we
277 -- need to send the Abort signal to a task.
279 if ZCX_By_Default
then
283 if Self_ID
.Deferral_Level
= 0
284 and then Self_ID
.Pending_ATC_Level
< Self_ID
.ATC_Nesting_Level
285 and then not Self_ID
.Aborting
287 Self_ID
.Aborting
:= True;
289 -- Make sure signals used for RTS internal purpose are unmasked
294 Unblocked_Signal_Mask
'Unchecked_Access,
295 Old_Set
'Unchecked_Access);
296 pragma Assert
(Result
= 0);
298 raise Standard
'Abort_Signal;
306 -- The underlying thread system sets a guard page at the
307 -- bottom of a thread stack, so nothing is needed.
309 procedure Stack_Guard
(T
: ST
.Task_Id
; On
: Boolean) is
310 pragma Unreferenced
(T
);
311 pragma Unreferenced
(On
);
320 function Get_Thread_Id
(T
: ST
.Task_Id
) return OSI
.Thread_Id
is
322 return T
.Common
.LL
.Thread
;
329 procedure Initialize
(Environment_Task
: ST
.Task_Id
) is
330 act
: aliased struct_sigaction
;
331 old_act
: aliased struct_sigaction
;
332 Tmp_Set
: aliased sigset_t
;
333 Result
: Interfaces
.C
.int
;
335 procedure Configure_Processors
;
336 -- Processors configuration
337 -- The user can specify a processor which the program should run
338 -- on to emulate a single-processor system. This can be easily
339 -- done by setting environment variable GNAT_PROCESSOR to one of
342 -- -2 : use the default configuration (run the program on all
343 -- available processors) - this is the same as having
344 -- GNAT_PROCESSOR unset
345 -- -1 : let the RTS choose one processor and run the program on
347 -- 0 .. Last_Proc : run the program on the specified processor
349 -- Last_Proc is equal to the value of the system variable
350 -- _SC_NPROCESSORS_CONF, minus one.
352 procedure Configure_Processors
is
353 Proc_Acc
: constant System
.OS_Lib
.String_Access
:=
354 System
.OS_Lib
.Getenv
("GNAT_PROCESSOR");
355 Proc
: aliased processorid_t
; -- User processor #
356 Last_Proc
: processorid_t
; -- Last processor #
359 if Proc_Acc
.all'Length /= 0 then
361 -- Environment variable is defined
363 Last_Proc
:= Num_Procs
- 1;
365 if Last_Proc
/= -1 then
366 Proc
:= processorid_t
'Value (Proc_Acc
.all);
368 if Proc
<= -2 or else Proc
> Last_Proc
then
370 -- Use the default configuration
376 -- Choose a processor
379 while Proc
< Last_Proc
loop
381 Result
:= p_online
(Proc
, PR_STATUS
);
382 exit when Result
= PR_ONLINE
;
385 pragma Assert
(Result
= PR_ONLINE
);
386 Result
:= processor_bind
(P_PID
, P_MYID
, Proc
, null);
387 pragma Assert
(Result
= 0);
390 -- Use user processor
392 Result
:= processor_bind
(P_PID
, P_MYID
, Proc
, null);
393 pragma Assert
(Result
= 0);
399 when Constraint_Error
=>
401 -- Illegal environment variable GNAT_PROCESSOR - ignored
404 end Configure_Processors
;
407 (Int
: System
.Interrupt_Management
.Interrupt_ID
) return Character;
408 pragma Import
(C
, State
, "__gnat_get_interrupt_state");
409 -- Get interrupt state. Defined in a-init.c
410 -- The input argument is the interrupt number,
411 -- and the result is one of the following:
413 Default
: constant Character := 's';
414 -- 'n' this interrupt not set by any Interrupt_State pragma
415 -- 'u' Interrupt_State pragma set state to User
416 -- 'r' Interrupt_State pragma set state to Runtime
417 -- 's' Interrupt_State pragma set state to System (use "default"
420 -- Start of processing for Initialize
423 Environment_Task_Id
:= Environment_Task
;
425 Interrupt_Management
.Initialize
;
427 -- Prepare the set of signals that should unblocked in all tasks
429 Result
:= sigemptyset
(Unblocked_Signal_Mask
'Access);
430 pragma Assert
(Result
= 0);
432 for J
in Interrupt_Management
.Interrupt_ID
loop
433 if System
.Interrupt_Management
.Keep_Unmasked
(J
) then
434 Result
:= sigaddset
(Unblocked_Signal_Mask
'Access, Signal
(J
));
435 pragma Assert
(Result
= 0);
439 if Dispatching_Policy
= 'F' then
441 Result
: Interfaces
.C
.long
;
442 Class_Info
: aliased struct_pcinfo
;
443 Secs
, Nsecs
: Interfaces
.C
.long
;
446 -- If a pragma Time_Slice is specified, takes the value in account
448 if Time_Slice_Val
> 0 then
450 -- Convert Time_Slice_Val (microseconds) to seconds/nanosecs
452 Secs
:= Interfaces
.C
.long
(Time_Slice_Val
/ 1_000_000
);
454 Interfaces
.C
.long
((Time_Slice_Val
rem 1_000_000
) * 1_000
);
456 -- Otherwise, default to no time slicing (i.e run until blocked)
463 -- Get the real time class id
465 Class_Info
.pc_clname
(1) := 'R';
466 Class_Info
.pc_clname
(2) := 'T';
467 Class_Info
.pc_clname
(3) := ASCII
.NUL
;
469 Result
:= priocntl
(PC_VERSION
, P_LWPID
, P_MYID
, PC_GETCID
,
472 -- Request the real time class
474 Prio_Param
.pc_cid
:= Class_Info
.pc_cid
;
475 Prio_Param
.rt_pri
:= pri_t
(Class_Info
.rt_maxpri
);
476 Prio_Param
.rt_tqsecs
:= Secs
;
477 Prio_Param
.rt_tqnsecs
:= Nsecs
;
481 (PC_VERSION
, P_LWPID
, P_MYID
, PC_SETPARMS
, Prio_Param
'Address);
483 Using_Real_Time_Class
:= Result
/= -1;
487 Specific
.Initialize
(Environment_Task
);
489 -- The following is done in Enter_Task, but this is too late for the
490 -- Environment Task, since we need to call Self in Check_Locks when
491 -- the run time is compiled with assertions on.
493 Specific
.Set
(Environment_Task
);
495 -- Initialize the lock used to synchronize chain of all ATCBs
497 Initialize_Lock
(Single_RTS_Lock
'Access, RTS_Lock_Level
);
499 -- Make environment task known here because it doesn't go through
500 -- Activate_Tasks, which does it for all other tasks.
502 Known_Tasks
(Known_Tasks
'First) := Environment_Task
;
503 Environment_Task
.Known_Tasks_Index
:= Known_Tasks
'First;
505 Enter_Task
(Environment_Task
);
507 Configure_Processors
;
510 (System
.Interrupt_Management
.Abort_Task_Interrupt
) /= Default
512 -- Set sa_flags to SA_NODEFER so that during the handler execution
513 -- we do not change the Signal_Mask to be masked for the Abort_Signal
514 -- This is a temporary fix to the problem that the Signal_Mask is
515 -- not restored after the exception (longjmp) from the handler.
516 -- The right fix should be made in sigsetjmp so that we save
517 -- the Signal_Set and restore it after a longjmp.
518 -- In that case, this field should be changed back to 0. ???
522 act
.sa_handler
:= Abort_Handler
'Address;
523 Result
:= sigemptyset
(Tmp_Set
'Access);
524 pragma Assert
(Result
= 0);
525 act
.sa_mask
:= Tmp_Set
;
529 (Signal
(System
.Interrupt_Management
.Abort_Task_Interrupt
),
530 act
'Unchecked_Access,
531 old_act
'Unchecked_Access);
532 pragma Assert
(Result
= 0);
533 Abort_Handler_Installed
:= True;
537 ---------------------
538 -- Initialize_Lock --
539 ---------------------
541 -- Note: mutexes and cond_variables needed per-task basis are initialized
542 -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
543 -- as RTS_Lock, Memory_Lock...) used in RTS is initialized before any
544 -- status change of RTS. Therefore raising Storage_Error in the following
545 -- routines should be able to be handled safely.
547 procedure Initialize_Lock
548 (Prio
: System
.Any_Priority
;
549 L
: not null access Lock
)
551 Result
: Interfaces
.C
.int
;
554 pragma Assert
(Check_Initialize_Lock
(Lock_Ptr
(L
), PO_Level
));
556 if Priority_Ceiling_Emulation
then
560 Result
:= mutex_init
(L
.L
'Access, USYNC_THREAD
, System
.Null_Address
);
561 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
563 if Result
= ENOMEM
then
564 raise Storage_Error
with "Failed to allocate a lock";
568 procedure Initialize_Lock
569 (L
: not null access RTS_Lock
;
572 Result
: Interfaces
.C
.int
;
576 (Check_Initialize_Lock
(To_Lock_Ptr
(RTS_Lock_Ptr
(L
)), Level
));
577 Result
:= mutex_init
(L
.L
'Access, USYNC_THREAD
, System
.Null_Address
);
578 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
580 if Result
= ENOMEM
then
581 raise Storage_Error
with "Failed to allocate a lock";
589 procedure Finalize_Lock
(L
: not null access Lock
) is
590 Result
: Interfaces
.C
.int
;
592 pragma Assert
(Check_Finalize_Lock
(Lock_Ptr
(L
)));
593 Result
:= mutex_destroy
(L
.L
'Access);
594 pragma Assert
(Result
= 0);
597 procedure Finalize_Lock
(L
: not null access RTS_Lock
) is
598 Result
: Interfaces
.C
.int
;
600 pragma Assert
(Check_Finalize_Lock
(To_Lock_Ptr
(RTS_Lock_Ptr
(L
))));
601 Result
:= mutex_destroy
(L
.L
'Access);
602 pragma Assert
(Result
= 0);
610 (L
: not null access Lock
;
611 Ceiling_Violation
: out Boolean)
613 Result
: Interfaces
.C
.int
;
616 pragma Assert
(Check_Lock
(Lock_Ptr
(L
)));
618 if Priority_Ceiling_Emulation
and then Locking_Policy
= 'C' then
620 Self_Id
: constant Task_Id
:= Self
;
621 Saved_Priority
: System
.Any_Priority
;
624 if Self_Id
.Common
.LL
.Active_Priority
> L
.Ceiling
then
625 Ceiling_Violation
:= True;
629 Saved_Priority
:= Self_Id
.Common
.LL
.Active_Priority
;
631 if Self_Id
.Common
.LL
.Active_Priority
< L
.Ceiling
then
632 Set_Priority
(Self_Id
, L
.Ceiling
);
635 Result
:= mutex_lock
(L
.L
'Access);
636 pragma Assert
(Result
= 0);
637 Ceiling_Violation
:= False;
639 L
.Saved_Priority
:= Saved_Priority
;
643 Result
:= mutex_lock
(L
.L
'Access);
644 pragma Assert
(Result
= 0);
645 Ceiling_Violation
:= False;
648 pragma Assert
(Record_Lock
(Lock_Ptr
(L
)));
652 (L
: not null access RTS_Lock
;
653 Global_Lock
: Boolean := False)
655 Result
: Interfaces
.C
.int
;
657 if not Single_Lock
or else Global_Lock
then
658 pragma Assert
(Check_Lock
(To_Lock_Ptr
(RTS_Lock_Ptr
(L
))));
659 Result
:= mutex_lock
(L
.L
'Access);
660 pragma Assert
(Result
= 0);
661 pragma Assert
(Record_Lock
(To_Lock_Ptr
(RTS_Lock_Ptr
(L
))));
665 procedure Write_Lock
(T
: Task_Id
) is
666 Result
: Interfaces
.C
.int
;
668 if not Single_Lock
then
669 pragma Assert
(Check_Lock
(To_Lock_Ptr
(T
.Common
.LL
.L
'Access)));
670 Result
:= mutex_lock
(T
.Common
.LL
.L
.L
'Access);
671 pragma Assert
(Result
= 0);
672 pragma Assert
(Record_Lock
(To_Lock_Ptr
(T
.Common
.LL
.L
'Access)));
681 (L
: not null access Lock
;
682 Ceiling_Violation
: out Boolean) is
684 Write_Lock
(L
, Ceiling_Violation
);
691 procedure Unlock
(L
: not null access Lock
) is
692 Result
: Interfaces
.C
.int
;
695 pragma Assert
(Check_Unlock
(Lock_Ptr
(L
)));
697 if Priority_Ceiling_Emulation
and then Locking_Policy
= 'C' then
699 Self_Id
: constant Task_Id
:= Self
;
702 Result
:= mutex_unlock
(L
.L
'Access);
703 pragma Assert
(Result
= 0);
705 if Self_Id
.Common
.LL
.Active_Priority
> L
.Saved_Priority
then
706 Set_Priority
(Self_Id
, L
.Saved_Priority
);
710 Result
:= mutex_unlock
(L
.L
'Access);
711 pragma Assert
(Result
= 0);
716 (L
: not null access RTS_Lock
;
717 Global_Lock
: Boolean := False)
719 Result
: Interfaces
.C
.int
;
721 if not Single_Lock
or else Global_Lock
then
722 pragma Assert
(Check_Unlock
(To_Lock_Ptr
(RTS_Lock_Ptr
(L
))));
723 Result
:= mutex_unlock
(L
.L
'Access);
724 pragma Assert
(Result
= 0);
728 procedure Unlock
(T
: Task_Id
) is
729 Result
: Interfaces
.C
.int
;
731 if not Single_Lock
then
732 pragma Assert
(Check_Unlock
(To_Lock_Ptr
(T
.Common
.LL
.L
'Access)));
733 Result
:= mutex_unlock
(T
.Common
.LL
.L
.L
'Access);
734 pragma Assert
(Result
= 0);
742 -- Dynamic priority ceilings are not supported by the underlying system
744 procedure Set_Ceiling
745 (L
: not null access Lock
;
746 Prio
: System
.Any_Priority
)
748 pragma Unreferenced
(L
, Prio
);
753 -- For the time delay implementation, we need to make sure we
754 -- achieve following criteria:
756 -- 1) We have to delay at least for the amount requested.
757 -- 2) We have to give up CPU even though the actual delay does not
758 -- result in blocking.
759 -- 3) Except for restricted run-time systems that do not support
760 -- ATC or task abort, the delay must be interrupted by the
761 -- abort_task operation.
762 -- 4) The implementation has to be efficient so that the delay overhead
763 -- is relatively cheap.
764 -- (1)-(3) are Ada requirements. Even though (2) is an Annex-D
765 -- requirement we still want to provide the effect in all cases.
766 -- The reason is that users may want to use short delays to implement
767 -- their own scheduling effect in the absence of language provided
768 -- scheduling policies.
770 ---------------------
771 -- Monotonic_Clock --
772 ---------------------
774 function Monotonic_Clock
return Duration is
775 TS
: aliased timespec
;
776 Result
: Interfaces
.C
.int
;
778 Result
:= clock_gettime
(OSC
.CLOCK_RT_Ada
, TS
'Unchecked_Access);
779 pragma Assert
(Result
= 0);
780 return To_Duration
(TS
);
787 function RT_Resolution
return Duration is
796 procedure Yield
(Do_Yield
: Boolean := True) is
799 System
.OS_Interface
.thr_yield
;
807 function Self
return Task_Id
renames Specific
.Self
;
813 procedure Set_Priority
815 Prio
: System
.Any_Priority
;
816 Loss_Of_Inheritance
: Boolean := False)
818 pragma Unreferenced
(Loss_Of_Inheritance
);
820 Result
: Interfaces
.C
.int
;
821 pragma Unreferenced
(Result
);
823 Param
: aliased struct_pcparms
;
828 T
.Common
.Current_Priority
:= Prio
;
830 if Priority_Ceiling_Emulation
then
831 T
.Common
.LL
.Active_Priority
:= Prio
;
834 if Using_Real_Time_Class
then
835 Param
.pc_cid
:= Prio_Param
.pc_cid
;
836 Param
.rt_pri
:= pri_t
(Prio
);
837 Param
.rt_tqsecs
:= Prio_Param
.rt_tqsecs
;
838 Param
.rt_tqnsecs
:= Prio_Param
.rt_tqnsecs
;
840 Result
:= Interfaces
.C
.int
(
841 priocntl
(PC_VERSION
, P_LWPID
, T
.Common
.LL
.LWP
, PC_SETPARMS
,
845 if T
.Common
.Task_Info
/= null
846 and then not T
.Common
.Task_Info
.Bound_To_LWP
848 -- The task is not bound to a LWP, so use thr_setprio
851 thr_setprio
(T
.Common
.LL
.Thread
, Interfaces
.C
.int
(Prio
));
854 -- The task is bound to a LWP, use priocntl
866 function Get_Priority
(T
: Task_Id
) return System
.Any_Priority
is
868 return T
.Common
.Current_Priority
;
875 procedure Enter_Task
(Self_ID
: Task_Id
) is
877 Self_ID
.Common
.LL
.Thread
:= thr_self
;
878 Self_ID
.Common
.LL
.LWP
:= lwp_self
;
880 Set_Task_Affinity
(Self_ID
);
881 Specific
.Set
(Self_ID
);
883 -- We need the above code even if we do direct fetch of Task_Id in Self
884 -- for the main task on Sun, x86 Solaris and for gcc 2.7.2.
891 function Is_Valid_Task
return Boolean renames Specific
.Is_Valid_Task
;
893 -----------------------------
894 -- Register_Foreign_Thread --
895 -----------------------------
897 function Register_Foreign_Thread
return Task_Id
is
899 if Is_Valid_Task
then
902 return Register_Foreign_Thread
(thr_self
);
904 end Register_Foreign_Thread
;
910 procedure Initialize_TCB
(Self_ID
: Task_Id
; Succeeded
: out Boolean) is
911 Result
: Interfaces
.C
.int
:= 0;
914 -- Give the task a unique serial number
916 Self_ID
.Serial_Number
:= Next_Serial_Number
;
917 Next_Serial_Number
:= Next_Serial_Number
+ 1;
918 pragma Assert
(Next_Serial_Number
/= 0);
920 Self_ID
.Common
.LL
.Thread
:= Null_Thread_Id
;
922 if not Single_Lock
then
925 (Self_ID
.Common
.LL
.L
.L
'Access, USYNC_THREAD
, System
.Null_Address
);
926 Self_ID
.Common
.LL
.L
.Level
:=
927 Private_Task_Serial_Number
(Self_ID
.Serial_Number
);
928 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
932 Result
:= cond_init
(Self_ID
.Common
.LL
.CV
'Access, USYNC_THREAD
, 0);
933 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
939 if not Single_Lock
then
940 Result
:= mutex_destroy
(Self_ID
.Common
.LL
.L
.L
'Access);
941 pragma Assert
(Result
= 0);
952 procedure Create_Task
954 Wrapper
: System
.Address
;
955 Stack_Size
: System
.Parameters
.Size_Type
;
956 Priority
: System
.Any_Priority
;
957 Succeeded
: out Boolean)
959 pragma Unreferenced
(Priority
);
961 Result
: Interfaces
.C
.int
;
962 Adjusted_Stack_Size
: Interfaces
.C
.size_t
;
963 Opts
: Interfaces
.C
.int
:= THR_DETACHED
;
965 Page_Size
: constant System
.Parameters
.Size_Type
:= 4096;
966 -- This constant is for reserving extra space at the
967 -- end of the stack, which can be used by the stack
968 -- checking as guard page. The idea is that we need
969 -- to have at least Stack_Size bytes available for
972 use System
.Task_Info
;
973 use type System
.Multiprocessors
.CPU_Range
;
976 -- Check whether both Dispatching_Domain and CPU are specified for the
977 -- task, and the CPU value is not contained within the range of
978 -- processors for the domain.
980 if T
.Common
.Domain
/= null
981 and then T
.Common
.Base_CPU
/= System
.Multiprocessors
.Not_A_Specific_CPU
983 (T
.Common
.Base_CPU
not in T
.Common
.Domain
'Range
984 or else not T
.Common
.Domain
(T
.Common
.Base_CPU
))
990 Adjusted_Stack_Size
:= Interfaces
.C
.size_t
(Stack_Size
+ Page_Size
);
992 -- Since the initial signal mask of a thread is inherited from the
993 -- creator, and the Environment task has all its signals masked, we
994 -- do not need to manipulate caller's signal mask at this point.
995 -- All tasks in RTS will have All_Tasks_Mask initially.
997 if T
.Common
.Task_Info
/= null then
998 if T
.Common
.Task_Info
.New_LWP
then
999 Opts
:= Opts
+ THR_NEW_LWP
;
1002 if T
.Common
.Task_Info
.Bound_To_LWP
then
1003 Opts
:= Opts
+ THR_BOUND
;
1007 Opts
:= THR_DETACHED
+ THR_BOUND
;
1010 -- Note: the use of Unrestricted_Access in the following call is needed
1011 -- because otherwise we have an error of getting a access-to-volatile
1012 -- value which points to a non-volatile object. But in this case it is
1013 -- safe to do this, since we know we have no problems with aliasing and
1014 -- Unrestricted_Access bypasses this check.
1018 (System
.Null_Address
,
1019 Adjusted_Stack_Size
,
1020 Thread_Body_Access
(Wrapper
),
1023 T
.Common
.LL
.Thread
'Unrestricted_Access);
1025 Succeeded
:= Result
= 0;
1028 or else Result
= ENOMEM
1029 or else Result
= EAGAIN
);
1036 procedure Finalize_TCB
(T
: Task_Id
) is
1037 Result
: Interfaces
.C
.int
;
1040 T
.Common
.LL
.Thread
:= Null_Thread_Id
;
1042 if not Single_Lock
then
1043 Result
:= mutex_destroy
(T
.Common
.LL
.L
.L
'Access);
1044 pragma Assert
(Result
= 0);
1047 Result
:= cond_destroy
(T
.Common
.LL
.CV
'Access);
1048 pragma Assert
(Result
= 0);
1050 if T
.Known_Tasks_Index
/= -1 then
1051 Known_Tasks
(T
.Known_Tasks_Index
) := null;
1054 ATCB_Allocation
.Free_ATCB
(T
);
1061 -- This procedure must be called with abort deferred. It can no longer
1062 -- call Self or access the current task's ATCB, since the ATCB has been
1065 procedure Exit_Task
is
1067 Specific
.Set
(null);
1074 procedure Abort_Task
(T
: Task_Id
) is
1075 Result
: Interfaces
.C
.int
;
1077 if Abort_Handler_Installed
then
1078 pragma Assert
(T
/= Self
);
1081 (T
.Common
.LL
.Thread
,
1082 Signal
(System
.Interrupt_Management
.Abort_Task_Interrupt
));
1083 pragma Assert
(Result
= 0);
1093 Reason
: Task_States
)
1095 Result
: Interfaces
.C
.int
;
1098 pragma Assert
(Check_Sleep
(Reason
));
1103 (Self_ID
.Common
.LL
.CV
'Access, Single_RTS_Lock
.L
'Access);
1107 (Self_ID
.Common
.LL
.CV
'Access, Self_ID
.Common
.LL
.L
.L
'Access);
1111 (Record_Wakeup
(To_Lock_Ptr
(Self_ID
.Common
.LL
.L
'Access), Reason
));
1112 pragma Assert
(Result
= 0 or else Result
= EINTR
);
1115 -- Note that we are relying heavily here on GNAT representing
1116 -- Calendar.Time, System.Real_Time.Time, Duration,
1117 -- System.Real_Time.Time_Span in the same way, i.e., as a 64-bit count of
1120 -- This allows us to always pass the timeout value as a Duration
1123 -- We are taking liberties here with the semantics of the delays. That is,
1124 -- we make no distinction between delays on the Calendar clock and delays
1125 -- on the Real_Time clock. That is technically incorrect, if the Calendar
1126 -- clock happens to be reset or adjusted. To solve this defect will require
1127 -- modification to the compiler interface, so that it can pass through more
1128 -- information, to tell us here which clock to use!
1130 -- cond_timedwait will return if any of the following happens:
1131 -- 1) some other task did cond_signal on this condition variable
1132 -- In this case, the return value is 0
1133 -- 2) the call just returned, for no good reason
1134 -- This is called a "spurious wakeup".
1135 -- In this case, the return value may also be 0.
1136 -- 3) the time delay expires
1137 -- In this case, the return value is ETIME
1138 -- 4) this task received a signal, which was handled by some
1139 -- handler procedure, and now the thread is resuming execution
1140 -- UNIX calls this an "interrupted" system call.
1141 -- In this case, the return value is EINTR
1143 -- If the cond_timedwait returns 0 or EINTR, it is still possible that the
1144 -- time has actually expired, and by chance a signal or cond_signal
1145 -- occurred at around the same time.
1147 -- We have also observed that on some OS's the value ETIME will be
1148 -- returned, but the clock will show that the full delay has not yet
1151 -- For these reasons, we need to check the clock after return from
1152 -- cond_timedwait. If the time has expired, we will set Timedout = True.
1154 -- This check might be omitted for systems on which the cond_timedwait()
1155 -- never returns early or wakes up spuriously.
1157 -- Annex D requires that completion of a delay cause the task to go to the
1158 -- end of its priority queue, regardless of whether the task actually was
1159 -- suspended by the delay. Since cond_timedwait does not do this on
1160 -- Solaris, we add a call to thr_yield at the end. We might do this at the
1161 -- beginning, instead, but then the round-robin effect would not be the
1162 -- same; the delayed task would be ahead of other tasks of the same
1163 -- priority that awoke while it was sleeping.
1165 -- For Timed_Sleep, we are expecting possible cond_signals to indicate
1166 -- other events (e.g., completion of a RV or completion of the abortable
1167 -- part of an async. select), we want to always return if interrupted. The
1168 -- caller will be responsible for checking the task state to see whether
1169 -- the wakeup was spurious, and to go back to sleep again in that case. We
1170 -- don't need to check for pending abort or priority change on the way in
1171 -- our out; that is the caller's responsibility.
1173 -- For Timed_Delay, we are not expecting any cond_signals or other
1174 -- interruptions, except for priority changes and aborts. Therefore, we
1175 -- don't want to return unless the delay has actually expired, or the call
1176 -- has been aborted. In this case, since we want to implement the entire
1177 -- delay statement semantics, we do need to check for pending abort and
1178 -- priority changes. We can quietly handle priority changes inside the
1179 -- procedure, since there is no entry-queue reordering involved.
1185 procedure Timed_Sleep
1188 Mode
: ST
.Delay_Modes
;
1189 Reason
: System
.Tasking
.Task_States
;
1190 Timedout
: out Boolean;
1191 Yielded
: out Boolean)
1193 Base_Time
: constant Duration := Monotonic_Clock
;
1194 Check_Time
: Duration := Base_Time
;
1195 Abs_Time
: Duration;
1196 Request
: aliased timespec
;
1197 Result
: Interfaces
.C
.int
;
1200 pragma Assert
(Check_Sleep
(Reason
));
1206 then Duration'Min (Time
, Max_Sensible_Delay
) + Check_Time
1207 else Duration'Min (Check_Time
+ Max_Sensible_Delay
, Time
));
1209 if Abs_Time
> Check_Time
then
1210 Request
:= To_Timespec
(Abs_Time
);
1212 exit when Self_ID
.Pending_ATC_Level
< Self_ID
.ATC_Nesting_Level
;
1217 (Self_ID
.Common
.LL
.CV
'Access,
1218 Single_RTS_Lock
.L
'Access, Request
'Access);
1222 (Self_ID
.Common
.LL
.CV
'Access,
1223 Self_ID
.Common
.LL
.L
.L
'Access, Request
'Access);
1228 Check_Time
:= Monotonic_Clock
;
1229 exit when Abs_Time
<= Check_Time
or else Check_Time
< Base_Time
;
1231 if Result
= 0 or Result
= EINTR
then
1233 -- Somebody may have called Wakeup for us
1239 pragma Assert
(Result
= ETIME
);
1244 (Record_Wakeup
(To_Lock_Ptr
(Self_ID
.Common
.LL
.L
'Access), Reason
));
1251 procedure Timed_Delay
1254 Mode
: ST
.Delay_Modes
)
1256 Base_Time
: constant Duration := Monotonic_Clock
;
1257 Check_Time
: Duration := Base_Time
;
1258 Abs_Time
: Duration;
1259 Request
: aliased timespec
;
1260 Result
: Interfaces
.C
.int
;
1261 Yielded
: Boolean := False;
1268 Write_Lock
(Self_ID
);
1272 then Time
+ Check_Time
1273 else Duration'Min (Check_Time
+ Max_Sensible_Delay
, Time
));
1275 if Abs_Time
> Check_Time
then
1276 Request
:= To_Timespec
(Abs_Time
);
1277 Self_ID
.Common
.State
:= Delay_Sleep
;
1279 pragma Assert
(Check_Sleep
(Delay_Sleep
));
1282 exit when Self_ID
.Pending_ATC_Level
< Self_ID
.ATC_Nesting_Level
;
1287 (Self_ID
.Common
.LL
.CV
'Access,
1288 Single_RTS_Lock
.L
'Access,
1293 (Self_ID
.Common
.LL
.CV
'Access,
1294 Self_ID
.Common
.LL
.L
.L
'Access,
1300 Check_Time
:= Monotonic_Clock
;
1301 exit when Abs_Time
<= Check_Time
or else Check_Time
< Base_Time
;
1305 Result
= ETIME
or else
1311 (To_Lock_Ptr
(Self_ID
.Common
.LL
.L
'Access), Delay_Sleep
));
1313 Self_ID
.Common
.State
:= Runnable
;
1333 Reason
: Task_States
)
1335 Result
: Interfaces
.C
.int
;
1337 pragma Assert
(Check_Wakeup
(T
, Reason
));
1338 Result
:= cond_signal
(T
.Common
.LL
.CV
'Access);
1339 pragma Assert
(Result
= 0);
1342 ---------------------------
1343 -- Check_Initialize_Lock --
1344 ---------------------------
1346 -- The following code is intended to check some of the invariant assertions
1347 -- related to lock usage, on which we depend.
1349 function Check_Initialize_Lock
1351 Level
: Lock_Level
) return Boolean
1353 Self_ID
: constant Task_Id
:= Self
;
1356 -- Check that caller is abort-deferred
1358 if Self_ID
.Deferral_Level
= 0 then
1362 -- Check that the lock is not yet initialized
1364 if L
.Level
/= 0 then
1368 L
.Level
:= Lock_Level
'Pos (Level
) + 1;
1370 end Check_Initialize_Lock
;
1376 function Check_Lock
(L
: Lock_Ptr
) return Boolean is
1377 Self_ID
: constant Task_Id
:= Self
;
1381 -- Check that the argument is not null
1387 -- Check that L is not frozen
1393 -- Check that caller is abort-deferred
1395 if Self_ID
.Deferral_Level
= 0 then
1399 -- Check that caller is not holding this lock already
1401 if L
.Owner
= To_Owner_ID
(To_Address
(Self_ID
)) then
1409 -- Check that TCB lock order rules are satisfied
1411 P
:= Self_ID
.Common
.LL
.Locks
;
1413 if P
.Level
>= L
.Level
1414 and then (P
.Level
> 2 or else L
.Level
> 2)
1427 function Record_Lock
(L
: Lock_Ptr
) return Boolean is
1428 Self_ID
: constant Task_Id
:= Self
;
1432 Lock_Count
:= Lock_Count
+ 1;
1434 -- There should be no owner for this lock at this point
1436 if L
.Owner
/= null then
1442 L
.Owner
:= To_Owner_ID
(To_Address
(Self_ID
));
1448 -- Check that TCB lock order rules are satisfied
1450 P
:= Self_ID
.Common
.LL
.Locks
;
1456 Self_ID
.Common
.LL
.Locking
:= null;
1457 Self_ID
.Common
.LL
.Locks
:= L
;
1465 function Check_Sleep
(Reason
: Task_States
) return Boolean is
1466 pragma Unreferenced
(Reason
);
1468 Self_ID
: constant Task_Id
:= Self
;
1472 -- Check that caller is abort-deferred
1474 if Self_ID
.Deferral_Level
= 0 then
1482 -- Check that caller is holding own lock, on top of list
1484 if Self_ID
.Common
.LL
.Locks
/=
1485 To_Lock_Ptr
(Self_ID
.Common
.LL
.L
'Access)
1490 -- Check that TCB lock order rules are satisfied
1492 if Self_ID
.Common
.LL
.Locks
.Next
/= null then
1496 Self_ID
.Common
.LL
.L
.Owner
:= null;
1497 P
:= Self_ID
.Common
.LL
.Locks
;
1498 Self_ID
.Common
.LL
.Locks
:= Self_ID
.Common
.LL
.Locks
.Next
;
1507 function Record_Wakeup
1509 Reason
: Task_States
) return Boolean
1511 pragma Unreferenced
(Reason
);
1513 Self_ID
: constant Task_Id
:= Self
;
1519 L
.Owner
:= To_Owner_ID
(To_Address
(Self_ID
));
1525 -- Check that TCB lock order rules are satisfied
1527 P
:= Self_ID
.Common
.LL
.Locks
;
1533 Self_ID
.Common
.LL
.Locking
:= null;
1534 Self_ID
.Common
.LL
.Locks
:= L
;
1542 function Check_Wakeup
1544 Reason
: Task_States
) return Boolean
1546 Self_ID
: constant Task_Id
:= Self
;
1549 -- Is caller holding T's lock?
1551 if T
.Common
.LL
.L
.Owner
/= To_Owner_ID
(To_Address
(Self_ID
)) then
1555 -- Are reasons for wakeup and sleep consistent?
1557 if T
.Common
.State
/= Reason
then
1568 function Check_Unlock
(L
: Lock_Ptr
) return Boolean is
1569 Self_ID
: constant Task_Id
:= Self
;
1573 Unlock_Count
:= Unlock_Count
+ 1;
1579 if L
.Buddy
/= null then
1583 -- Magic constant 4???
1586 Check_Count
:= Unlock_Count
;
1589 -- Magic constant 1000???
1591 if Unlock_Count
- Check_Count
> 1000 then
1592 Check_Count
:= Unlock_Count
;
1595 -- Check that caller is abort-deferred
1597 if Self_ID
.Deferral_Level
= 0 then
1601 -- Check that caller is holding this lock, on top of list
1603 if Self_ID
.Common
.LL
.Locks
/= L
then
1607 -- Record there is no owner now
1610 P
:= Self_ID
.Common
.LL
.Locks
;
1611 Self_ID
.Common
.LL
.Locks
:= Self_ID
.Common
.LL
.Locks
.Next
;
1616 --------------------
1617 -- Check_Finalize --
1618 --------------------
1620 function Check_Finalize_Lock
(L
: Lock_Ptr
) return Boolean is
1621 Self_ID
: constant Task_Id
:= Self
;
1624 -- Check that caller is abort-deferred
1626 if Self_ID
.Deferral_Level
= 0 then
1630 -- Check that no one is holding this lock
1632 if L
.Owner
/= null then
1638 end Check_Finalize_Lock
;
1644 procedure Initialize
(S
: in out Suspension_Object
) is
1645 Result
: Interfaces
.C
.int
;
1648 -- Initialize internal state (always to zero (RM D.10(6)))
1653 -- Initialize internal mutex
1655 Result
:= mutex_init
(S
.L
'Access, USYNC_THREAD
, System
.Null_Address
);
1656 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1658 if Result
= ENOMEM
then
1659 raise Storage_Error
with "Failed to allocate a lock";
1662 -- Initialize internal condition variable
1664 Result
:= cond_init
(S
.CV
'Access, USYNC_THREAD
, 0);
1665 pragma Assert
(Result
= 0 or else Result
= ENOMEM
);
1668 Result
:= mutex_destroy
(S
.L
'Access);
1669 pragma Assert
(Result
= 0);
1671 if Result
= ENOMEM
then
1672 raise Storage_Error
;
1681 procedure Finalize
(S
: in out Suspension_Object
) is
1682 Result
: Interfaces
.C
.int
;
1685 -- Destroy internal mutex
1687 Result
:= mutex_destroy
(S
.L
'Access);
1688 pragma Assert
(Result
= 0);
1690 -- Destroy internal condition variable
1692 Result
:= cond_destroy
(S
.CV
'Access);
1693 pragma Assert
(Result
= 0);
1700 function Current_State
(S
: Suspension_Object
) return Boolean is
1702 -- We do not want to use lock on this read operation. State is marked
1703 -- as Atomic so that we ensure that the value retrieved is correct.
1712 procedure Set_False
(S
: in out Suspension_Object
) is
1713 Result
: Interfaces
.C
.int
;
1716 SSL
.Abort_Defer
.all;
1718 Result
:= mutex_lock
(S
.L
'Access);
1719 pragma Assert
(Result
= 0);
1723 Result
:= mutex_unlock
(S
.L
'Access);
1724 pragma Assert
(Result
= 0);
1726 SSL
.Abort_Undefer
.all;
1733 procedure Set_True
(S
: in out Suspension_Object
) is
1734 Result
: Interfaces
.C
.int
;
1737 SSL
.Abort_Defer
.all;
1739 Result
:= mutex_lock
(S
.L
'Access);
1740 pragma Assert
(Result
= 0);
1742 -- If there is already a task waiting on this suspension object then
1743 -- we resume it, leaving the state of the suspension object to False,
1744 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1745 -- the state to True.
1751 Result
:= cond_signal
(S
.CV
'Access);
1752 pragma Assert
(Result
= 0);
1758 Result
:= mutex_unlock
(S
.L
'Access);
1759 pragma Assert
(Result
= 0);
1761 SSL
.Abort_Undefer
.all;
1764 ------------------------
1765 -- Suspend_Until_True --
1766 ------------------------
1768 procedure Suspend_Until_True
(S
: in out Suspension_Object
) is
1769 Result
: Interfaces
.C
.int
;
1772 SSL
.Abort_Defer
.all;
1774 Result
:= mutex_lock
(S
.L
'Access);
1775 pragma Assert
(Result
= 0);
1779 -- Program_Error must be raised upon calling Suspend_Until_True
1780 -- if another task is already waiting on that suspension object
1783 Result
:= mutex_unlock
(S
.L
'Access);
1784 pragma Assert
(Result
= 0);
1786 SSL
.Abort_Undefer
.all;
1788 raise Program_Error
;
1791 -- Suspend the task if the state is False. Otherwise, the task
1792 -- continues its execution, and the state of the suspension object
1793 -- is set to False (ARM D.10 par. 9).
1801 -- Loop in case pthread_cond_wait returns earlier than expected
1802 -- (e.g. in case of EINTR caused by a signal).
1804 Result
:= cond_wait
(S
.CV
'Access, S
.L
'Access);
1805 pragma Assert
(Result
= 0 or else Result
= EINTR
);
1807 exit when not S
.Waiting
;
1811 Result
:= mutex_unlock
(S
.L
'Access);
1812 pragma Assert
(Result
= 0);
1814 SSL
.Abort_Undefer
.all;
1816 end Suspend_Until_True
;
1822 function Check_Exit
(Self_ID
: Task_Id
) return Boolean is
1824 -- Check that caller is just holding Global_Task_Lock and no other locks
1826 if Self_ID
.Common
.LL
.Locks
= null then
1830 -- 2 = Global_Task_Level
1832 if Self_ID
.Common
.LL
.Locks
.Level
/= 2 then
1836 if Self_ID
.Common
.LL
.Locks
.Next
/= null then
1840 -- Check that caller is abort-deferred
1842 if Self_ID
.Deferral_Level
= 0 then
1849 --------------------
1850 -- Check_No_Locks --
1851 --------------------
1853 function Check_No_Locks
(Self_ID
: Task_Id
) return Boolean is
1855 return Self_ID
.Common
.LL
.Locks
= null;
1858 ----------------------
1859 -- Environment_Task --
1860 ----------------------
1862 function Environment_Task
return Task_Id
is
1864 return Environment_Task_Id
;
1865 end Environment_Task
;
1871 procedure Lock_RTS
is
1873 Write_Lock
(Single_RTS_Lock
'Access, Global_Lock
=> True);
1880 procedure Unlock_RTS
is
1882 Unlock
(Single_RTS_Lock
'Access, Global_Lock
=> True);
1889 function Suspend_Task
1891 Thread_Self
: Thread_Id
) return Boolean
1894 if T
.Common
.LL
.Thread
/= Thread_Self
then
1895 return thr_suspend
(T
.Common
.LL
.Thread
) = 0;
1905 function Resume_Task
1907 Thread_Self
: Thread_Id
) return Boolean
1910 if T
.Common
.LL
.Thread
/= Thread_Self
then
1911 return thr_continue
(T
.Common
.LL
.Thread
) = 0;
1917 --------------------
1918 -- Stop_All_Tasks --
1919 --------------------
1921 procedure Stop_All_Tasks
is
1930 function Stop_Task
(T
: ST
.Task_Id
) return Boolean is
1931 pragma Unreferenced
(T
);
1940 function Continue_Task
(T
: ST
.Task_Id
) return Boolean is
1941 pragma Unreferenced
(T
);
1946 -----------------------
1947 -- Set_Task_Affinity --
1948 -----------------------
1950 procedure Set_Task_Affinity
(T
: ST
.Task_Id
) is
1951 Result
: Interfaces
.C
.int
;
1952 Proc
: processorid_t
; -- User processor #
1953 Last_Proc
: processorid_t
; -- Last processor #
1955 use System
.Task_Info
;
1956 use type System
.Multiprocessors
.CPU_Range
;
1959 -- Do nothing if the underlying thread has not yet been created. If the
1960 -- thread has not yet been created then the proper affinity will be set
1961 -- during its creation.
1963 if T
.Common
.LL
.Thread
= Null_Thread_Id
then
1968 elsif T
.Common
.Base_CPU
/=
1969 System
.Multiprocessors
.Not_A_Specific_CPU
1971 -- The CPU numbering in pragma CPU starts at 1 while the subprogram
1972 -- to set the affinity starts at 0, therefore we must substract 1.
1976 (P_LWPID
, id_t
(T
.Common
.LL
.LWP
),
1977 processorid_t
(T
.Common
.Base_CPU
) - 1, null);
1978 pragma Assert
(Result
= 0);
1982 elsif T
.Common
.Task_Info
/= null then
1983 if T
.Common
.Task_Info
.New_LWP
1984 and then T
.Common
.Task_Info
.CPU
/= CPU_UNCHANGED
1986 Last_Proc
:= Num_Procs
- 1;
1988 if T
.Common
.Task_Info
.CPU
= ANY_CPU
then
1992 while Proc
< Last_Proc
loop
1993 Result
:= p_online
(Proc
, PR_STATUS
);
1994 exit when Result
= PR_ONLINE
;
2000 (P_LWPID
, id_t
(T
.Common
.LL
.LWP
), Proc
, null);
2001 pragma Assert
(Result
= 0);
2004 -- Use specified processor
2006 if T
.Common
.Task_Info
.CPU
< 0
2007 or else T
.Common
.Task_Info
.CPU
> Last_Proc
2009 raise Invalid_CPU_Number
;
2014 (P_LWPID
, id_t
(T
.Common
.LL
.LWP
),
2015 T
.Common
.Task_Info
.CPU
, null);
2016 pragma Assert
(Result
= 0);
2020 -- Handle dispatching domains
2022 elsif T
.Common
.Domain
/= null
2023 and then (T
.Common
.Domain
/= ST
.System_Domain
2024 or else T
.Common
.Domain
.all /=
2025 (Multiprocessors
.CPU
'First ..
2026 Multiprocessors
.Number_Of_CPUs
=> True))
2029 CPU_Set
: aliased psetid_t
;
2033 Result
:= pset_create
(CPU_Set
'Access);
2034 pragma Assert
(Result
= 0);
2036 -- Set the affinity to all the processors belonging to the
2037 -- dispatching domain.
2039 for Proc
in T
.Common
.Domain
'Range loop
2041 -- The Ada CPU numbering starts at 1 while the subprogram to
2042 -- set the affinity starts at 0, therefore we must substract 1.
2044 if T
.Common
.Domain
(Proc
) then
2046 pset_assign
(CPU_Set
, processorid_t
(Proc
) - 1, null);
2047 pragma Assert
(Result
= 0);
2052 pset_bind
(CPU_Set
, P_LWPID
, id_t
(T
.Common
.LL
.LWP
), null);
2053 pragma Assert
(Result
= 0);
2056 end Set_Task_Affinity
;
2058 end System
.Task_Primitives
.Operations
;