1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2013, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Aggr
; use Exp_Aggr
;
33 with Exp_Atag
; use Exp_Atag
;
34 with Exp_Ch2
; use Exp_Ch2
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Ch6
; use Exp_Ch6
;
37 with Exp_Ch7
; use Exp_Ch7
;
38 with Exp_Ch9
; use Exp_Ch9
;
39 with Exp_Disp
; use Exp_Disp
;
40 with Exp_Fixd
; use Exp_Fixd
;
41 with Exp_Intr
; use Exp_Intr
;
42 with Exp_Pakd
; use Exp_Pakd
;
43 with Exp_Tss
; use Exp_Tss
;
44 with Exp_Util
; use Exp_Util
;
45 with Exp_VFpt
; use Exp_VFpt
;
46 with Freeze
; use Freeze
;
47 with Inline
; use Inline
;
49 with Namet
; use Namet
;
50 with Nlists
; use Nlists
;
51 with Nmake
; use Nmake
;
53 with Par_SCO
; use Par_SCO
;
54 with Restrict
; use Restrict
;
55 with Rident
; use Rident
;
56 with Rtsfind
; use Rtsfind
;
58 with Sem_Aux
; use Sem_Aux
;
59 with Sem_Cat
; use Sem_Cat
;
60 with Sem_Ch3
; use Sem_Ch3
;
61 with Sem_Ch8
; use Sem_Ch8
;
62 with Sem_Ch13
; use Sem_Ch13
;
63 with Sem_Eval
; use Sem_Eval
;
64 with Sem_Res
; use Sem_Res
;
65 with Sem_Type
; use Sem_Type
;
66 with Sem_Util
; use Sem_Util
;
67 with Sem_Warn
; use Sem_Warn
;
68 with Sinfo
; use Sinfo
;
69 with Snames
; use Snames
;
70 with Stand
; use Stand
;
71 with SCIL_LL
; use SCIL_LL
;
72 with Targparm
; use Targparm
;
73 with Tbuild
; use Tbuild
;
74 with Ttypes
; use Ttypes
;
75 with Uintp
; use Uintp
;
76 with Urealp
; use Urealp
;
77 with Validsw
; use Validsw
;
79 package body Exp_Ch4
is
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Binary_Op_Validity_Checks
(N
: Node_Id
);
86 pragma Inline
(Binary_Op_Validity_Checks
);
87 -- Performs validity checks for a binary operator
89 procedure Build_Boolean_Array_Proc_Call
93 -- If a boolean array assignment can be done in place, build call to
94 -- corresponding library procedure.
96 function Current_Anonymous_Master
return Entity_Id
;
97 -- Return the entity of the heterogeneous finalization master belonging to
98 -- the current unit (either function, package or procedure). This master
99 -- services all anonymous access-to-controlled types. If the current unit
100 -- does not have such master, create one.
102 procedure Displace_Allocator_Pointer
(N
: Node_Id
);
103 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
104 -- Expand_Allocator_Expression. Allocating class-wide interface objects
105 -- this routine displaces the pointer to the allocated object to reference
106 -- the component referencing the corresponding secondary dispatch table.
108 procedure Expand_Allocator_Expression
(N
: Node_Id
);
109 -- Subsidiary to Expand_N_Allocator, for the case when the expression
110 -- is a qualified expression or an aggregate.
112 procedure Expand_Array_Comparison
(N
: Node_Id
);
113 -- This routine handles expansion of the comparison operators (N_Op_Lt,
114 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
115 -- code for these operators is similar, differing only in the details of
116 -- the actual comparison call that is made. Special processing (call a
119 function Expand_Array_Equality
124 Typ
: Entity_Id
) return Node_Id
;
125 -- Expand an array equality into a call to a function implementing this
126 -- equality, and a call to it. Loc is the location for the generated nodes.
127 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
128 -- on which to attach bodies of local functions that are created in the
129 -- process. It is the responsibility of the caller to insert those bodies
130 -- at the right place. Nod provides the Sloc value for the generated code.
131 -- Normally the types used for the generated equality routine are taken
132 -- from Lhs and Rhs. However, in some situations of generated code, the
133 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
134 -- the type to be used for the formal parameters.
136 procedure Expand_Boolean_Operator
(N
: Node_Id
);
137 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
138 -- case of array type arguments.
140 procedure Expand_Short_Circuit_Operator
(N
: Node_Id
);
141 -- Common expansion processing for short-circuit boolean operators
143 procedure Expand_Compare_Minimize_Eliminate_Overflow
(N
: Node_Id
);
144 -- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
145 -- where we allow comparison of "out of range" values.
147 function Expand_Composite_Equality
152 Bodies
: List_Id
) return Node_Id
;
153 -- Local recursive function used to expand equality for nested composite
154 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
155 -- to attach bodies of local functions that are created in the process.
156 -- It is the responsibility of the caller to insert those bodies at the
157 -- right place. Nod provides the Sloc value for generated code. Lhs and Rhs
158 -- are the left and right sides for the comparison, and Typ is the type of
159 -- the objects to compare.
161 procedure Expand_Concatenate
(Cnode
: Node_Id
; Opnds
: List_Id
);
162 -- Routine to expand concatenation of a sequence of two or more operands
163 -- (in the list Operands) and replace node Cnode with the result of the
164 -- concatenation. The operands can be of any appropriate type, and can
165 -- include both arrays and singleton elements.
167 procedure Expand_Membership_Minimize_Eliminate_Overflow
(N
: Node_Id
);
168 -- N is an N_In membership test mode, with the overflow check mode set to
169 -- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
170 -- integer type. This is a case where top level processing is required to
171 -- handle overflow checks in subtrees.
173 procedure Fixup_Universal_Fixed_Operation
(N
: Node_Id
);
174 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
175 -- fixed. We do not have such a type at runtime, so the purpose of this
176 -- routine is to find the real type by looking up the tree. We also
177 -- determine if the operation must be rounded.
179 function Has_Inferable_Discriminants
(N
: Node_Id
) return Boolean;
180 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
181 -- discriminants if it has a constrained nominal type, unless the object
182 -- is a component of an enclosing Unchecked_Union object that is subject
183 -- to a per-object constraint and the enclosing object lacks inferable
186 -- An expression of an Unchecked_Union type has inferable discriminants
187 -- if it is either a name of an object with inferable discriminants or a
188 -- qualified expression whose subtype mark denotes a constrained subtype.
190 procedure Insert_Dereference_Action
(N
: Node_Id
);
191 -- N is an expression whose type is an access. When the type of the
192 -- associated storage pool is derived from Checked_Pool, generate a
193 -- call to the 'Dereference' primitive operation.
195 function Make_Array_Comparison_Op
197 Nod
: Node_Id
) return Node_Id
;
198 -- Comparisons between arrays are expanded in line. This function produces
199 -- the body of the implementation of (a > b), where a and b are one-
200 -- dimensional arrays of some discrete type. The original node is then
201 -- expanded into the appropriate call to this function. Nod provides the
202 -- Sloc value for the generated code.
204 function Make_Boolean_Array_Op
206 N
: Node_Id
) return Node_Id
;
207 -- Boolean operations on boolean arrays are expanded in line. This function
208 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
209 -- b). It is used only the normal case and not the packed case. The type
210 -- involved, Typ, is the Boolean array type, and the logical operations in
211 -- the body are simple boolean operations. Note that Typ is always a
212 -- constrained type (the caller has ensured this by using
213 -- Convert_To_Actual_Subtype if necessary).
215 function Minimized_Eliminated_Overflow_Check
(N
: Node_Id
) return Boolean;
216 -- For signed arithmetic operations when the current overflow mode is
217 -- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
218 -- as the first thing we do. We then return. We count on the recursive
219 -- apparatus for overflow checks to call us back with an equivalent
220 -- operation that is in CHECKED mode, avoiding a recursive entry into this
221 -- routine, and that is when we will proceed with the expansion of the
222 -- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
223 -- these optimizations without first making this check, since there may be
224 -- operands further down the tree that are relying on the recursive calls
225 -- triggered by the top level nodes to properly process overflow checking
226 -- and remaining expansion on these nodes. Note that this call back may be
227 -- skipped if the operation is done in Bignum mode but that's fine, since
228 -- the Bignum call takes care of everything.
230 procedure Optimize_Length_Comparison
(N
: Node_Id
);
231 -- Given an expression, if it is of the form X'Length op N (or the other
232 -- way round), where N is known at compile time to be 0 or 1, and X is a
233 -- simple entity, and op is a comparison operator, optimizes it into a
234 -- comparison of First and Last.
236 procedure Process_Transient_Object
239 -- Subsidiary routine to the expansion of expression_with_actions and if
240 -- expressions. Generate all the necessary code to finalize a transient
241 -- controlled object when the enclosing context is elaborated or evaluated.
242 -- Decl denotes the declaration of the transient controlled object which is
243 -- usually the result of a controlled function call. Rel_Node denotes the
244 -- context, either an expression_with_actions or an if expression.
246 procedure Rewrite_Comparison
(N
: Node_Id
);
247 -- If N is the node for a comparison whose outcome can be determined at
248 -- compile time, then the node N can be rewritten with True or False. If
249 -- the outcome cannot be determined at compile time, the call has no
250 -- effect. If N is a type conversion, then this processing is applied to
251 -- its expression. If N is neither comparison nor a type conversion, the
252 -- call has no effect.
254 procedure Tagged_Membership
256 SCIL_Node
: out Node_Id
;
257 Result
: out Node_Id
);
258 -- Construct the expression corresponding to the tagged membership test.
259 -- Deals with a second operand being (or not) a class-wide type.
261 function Safe_In_Place_Array_Op
264 Op2
: Node_Id
) return Boolean;
265 -- In the context of an assignment, where the right-hand side is a boolean
266 -- operation on arrays, check whether operation can be performed in place.
268 procedure Unary_Op_Validity_Checks
(N
: Node_Id
);
269 pragma Inline
(Unary_Op_Validity_Checks
);
270 -- Performs validity checks for a unary operator
272 -------------------------------
273 -- Binary_Op_Validity_Checks --
274 -------------------------------
276 procedure Binary_Op_Validity_Checks
(N
: Node_Id
) is
278 if Validity_Checks_On
and Validity_Check_Operands
then
279 Ensure_Valid
(Left_Opnd
(N
));
280 Ensure_Valid
(Right_Opnd
(N
));
282 end Binary_Op_Validity_Checks
;
284 ------------------------------------
285 -- Build_Boolean_Array_Proc_Call --
286 ------------------------------------
288 procedure Build_Boolean_Array_Proc_Call
293 Loc
: constant Source_Ptr
:= Sloc
(N
);
294 Kind
: constant Node_Kind
:= Nkind
(Expression
(N
));
295 Target
: constant Node_Id
:=
296 Make_Attribute_Reference
(Loc
,
298 Attribute_Name
=> Name_Address
);
300 Arg1
: Node_Id
:= Op1
;
301 Arg2
: Node_Id
:= Op2
;
303 Proc_Name
: Entity_Id
;
306 if Kind
= N_Op_Not
then
307 if Nkind
(Op1
) in N_Binary_Op
then
309 -- Use negated version of the binary operators
311 if Nkind
(Op1
) = N_Op_And
then
312 Proc_Name
:= RTE
(RE_Vector_Nand
);
314 elsif Nkind
(Op1
) = N_Op_Or
then
315 Proc_Name
:= RTE
(RE_Vector_Nor
);
317 else pragma Assert
(Nkind
(Op1
) = N_Op_Xor
);
318 Proc_Name
:= RTE
(RE_Vector_Xor
);
322 Make_Procedure_Call_Statement
(Loc
,
323 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
325 Parameter_Associations
=> New_List
(
327 Make_Attribute_Reference
(Loc
,
328 Prefix
=> Left_Opnd
(Op1
),
329 Attribute_Name
=> Name_Address
),
331 Make_Attribute_Reference
(Loc
,
332 Prefix
=> Right_Opnd
(Op1
),
333 Attribute_Name
=> Name_Address
),
335 Make_Attribute_Reference
(Loc
,
336 Prefix
=> Left_Opnd
(Op1
),
337 Attribute_Name
=> Name_Length
)));
340 Proc_Name
:= RTE
(RE_Vector_Not
);
343 Make_Procedure_Call_Statement
(Loc
,
344 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
345 Parameter_Associations
=> New_List
(
348 Make_Attribute_Reference
(Loc
,
350 Attribute_Name
=> Name_Address
),
352 Make_Attribute_Reference
(Loc
,
354 Attribute_Name
=> Name_Length
)));
358 -- We use the following equivalences:
360 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
361 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
362 -- (not X) xor (not Y) = X xor Y
363 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
365 if Nkind
(Op1
) = N_Op_Not
then
366 Arg1
:= Right_Opnd
(Op1
);
367 Arg2
:= Right_Opnd
(Op2
);
369 if Kind
= N_Op_And
then
370 Proc_Name
:= RTE
(RE_Vector_Nor
);
371 elsif Kind
= N_Op_Or
then
372 Proc_Name
:= RTE
(RE_Vector_Nand
);
374 Proc_Name
:= RTE
(RE_Vector_Xor
);
378 if Kind
= N_Op_And
then
379 Proc_Name
:= RTE
(RE_Vector_And
);
380 elsif Kind
= N_Op_Or
then
381 Proc_Name
:= RTE
(RE_Vector_Or
);
382 elsif Nkind
(Op2
) = N_Op_Not
then
383 Proc_Name
:= RTE
(RE_Vector_Nxor
);
384 Arg2
:= Right_Opnd
(Op2
);
386 Proc_Name
:= RTE
(RE_Vector_Xor
);
391 Make_Procedure_Call_Statement
(Loc
,
392 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
393 Parameter_Associations
=> New_List
(
395 Make_Attribute_Reference
(Loc
,
397 Attribute_Name
=> Name_Address
),
398 Make_Attribute_Reference
(Loc
,
400 Attribute_Name
=> Name_Address
),
401 Make_Attribute_Reference
(Loc
,
403 Attribute_Name
=> Name_Length
)));
406 Rewrite
(N
, Call_Node
);
410 when RE_Not_Available
=>
412 end Build_Boolean_Array_Proc_Call
;
414 ------------------------------
415 -- Current_Anonymous_Master --
416 ------------------------------
418 function Current_Anonymous_Master
return Entity_Id
is
426 Unit_Id
:= Cunit_Entity
(Current_Sem_Unit
);
428 -- Find the entity of the current unit
430 if Ekind
(Unit_Id
) = E_Subprogram_Body
then
432 -- When processing subprogram bodies, the proper scope is always that
435 Subp_Body
:= Unit_Id
;
436 while Present
(Subp_Body
)
437 and then Nkind
(Subp_Body
) /= N_Subprogram_Body
439 Subp_Body
:= Parent
(Subp_Body
);
442 Unit_Id
:= Corresponding_Spec
(Subp_Body
);
445 Loc
:= Sloc
(Unit_Id
);
446 Unit_Decl
:= Unit
(Cunit
(Current_Sem_Unit
));
448 -- Find the declarations list of the current unit
450 if Nkind
(Unit_Decl
) = N_Package_Declaration
then
451 Unit_Decl
:= Specification
(Unit_Decl
);
452 Decls
:= Visible_Declarations
(Unit_Decl
);
455 Decls
:= New_List
(Make_Null_Statement
(Loc
));
456 Set_Visible_Declarations
(Unit_Decl
, Decls
);
458 elsif Is_Empty_List
(Decls
) then
459 Append_To
(Decls
, Make_Null_Statement
(Loc
));
463 Decls
:= Declarations
(Unit_Decl
);
466 Decls
:= New_List
(Make_Null_Statement
(Loc
));
467 Set_Declarations
(Unit_Decl
, Decls
);
469 elsif Is_Empty_List
(Decls
) then
470 Append_To
(Decls
, Make_Null_Statement
(Loc
));
474 -- The current unit has an existing anonymous master, traverse its
475 -- declarations and locate the entity.
477 if Has_Anonymous_Master
(Unit_Id
) then
480 Fin_Mas_Id
: Entity_Id
;
483 Decl
:= First
(Decls
);
484 while Present
(Decl
) loop
486 -- Look for the first variable in the declarations whole type
487 -- is Finalization_Master.
489 if Nkind
(Decl
) = N_Object_Declaration
then
490 Fin_Mas_Id
:= Defining_Identifier
(Decl
);
492 if Ekind
(Fin_Mas_Id
) = E_Variable
493 and then Etype
(Fin_Mas_Id
) = RTE
(RE_Finalization_Master
)
502 -- The master was not found even though the unit was labeled as
508 -- Create a new anonymous master
512 First_Decl
: constant Node_Id
:= First
(Decls
);
514 Fin_Mas_Id
: Entity_Id
;
517 -- Since the master and its associated initialization is inserted
518 -- at top level, use the scope of the unit when analyzing.
520 Push_Scope
(Unit_Id
);
522 -- Create the finalization master
525 Make_Defining_Identifier
(Loc
,
526 Chars
=> New_External_Name
(Chars
(Unit_Id
), "AM"));
529 -- <Fin_Mas_Id> : Finalization_Master;
532 Make_Object_Declaration
(Loc
,
533 Defining_Identifier
=> Fin_Mas_Id
,
535 New_Reference_To
(RTE
(RE_Finalization_Master
), Loc
));
537 Insert_Before_And_Analyze
(First_Decl
, Action
);
539 -- Mark the unit to prevent the generation of multiple masters
541 Set_Has_Anonymous_Master
(Unit_Id
);
543 -- Do not set the base pool and mode of operation on .NET/JVM
544 -- since those targets do not support pools and all VM masters
545 -- are heterogeneous by default.
547 if VM_Target
= No_VM
then
551 -- (<Fin_Mas_Id>, Global_Pool_Object'Unrestricted_Access);
554 Make_Procedure_Call_Statement
(Loc
,
556 New_Reference_To
(RTE
(RE_Set_Base_Pool
), Loc
),
558 Parameter_Associations
=> New_List
(
559 New_Reference_To
(Fin_Mas_Id
, Loc
),
560 Make_Attribute_Reference
(Loc
,
562 New_Reference_To
(RTE
(RE_Global_Pool_Object
), Loc
),
563 Attribute_Name
=> Name_Unrestricted_Access
)));
565 Insert_Before_And_Analyze
(First_Decl
, Action
);
568 -- Set_Is_Heterogeneous (<Fin_Mas_Id>);
571 Make_Procedure_Call_Statement
(Loc
,
573 New_Reference_To
(RTE
(RE_Set_Is_Heterogeneous
), Loc
),
574 Parameter_Associations
=> New_List
(
575 New_Reference_To
(Fin_Mas_Id
, Loc
)));
577 Insert_Before_And_Analyze
(First_Decl
, Action
);
580 -- Restore the original state of the scope stack
587 end Current_Anonymous_Master
;
589 --------------------------------
590 -- Displace_Allocator_Pointer --
591 --------------------------------
593 procedure Displace_Allocator_Pointer
(N
: Node_Id
) is
594 Loc
: constant Source_Ptr
:= Sloc
(N
);
595 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
601 -- Do nothing in case of VM targets: the virtual machine will handle
602 -- interfaces directly.
604 if not Tagged_Type_Expansion
then
608 pragma Assert
(Nkind
(N
) = N_Identifier
609 and then Nkind
(Orig_Node
) = N_Allocator
);
611 PtrT
:= Etype
(Orig_Node
);
612 Dtyp
:= Available_View
(Designated_Type
(PtrT
));
613 Etyp
:= Etype
(Expression
(Orig_Node
));
615 if Is_Class_Wide_Type
(Dtyp
) and then Is_Interface
(Dtyp
) then
617 -- If the type of the allocator expression is not an interface type
618 -- we can generate code to reference the record component containing
619 -- the pointer to the secondary dispatch table.
621 if not Is_Interface
(Etyp
) then
623 Saved_Typ
: constant Entity_Id
:= Etype
(Orig_Node
);
626 -- 1) Get access to the allocated object
629 Make_Explicit_Dereference
(Loc
, Relocate_Node
(N
)));
633 -- 2) Add the conversion to displace the pointer to reference
634 -- the secondary dispatch table.
636 Rewrite
(N
, Convert_To
(Dtyp
, Relocate_Node
(N
)));
637 Analyze_And_Resolve
(N
, Dtyp
);
639 -- 3) The 'access to the secondary dispatch table will be used
640 -- as the value returned by the allocator.
643 Make_Attribute_Reference
(Loc
,
644 Prefix
=> Relocate_Node
(N
),
645 Attribute_Name
=> Name_Access
));
646 Set_Etype
(N
, Saved_Typ
);
650 -- If the type of the allocator expression is an interface type we
651 -- generate a run-time call to displace "this" to reference the
652 -- component containing the pointer to the secondary dispatch table
653 -- or else raise Constraint_Error if the actual object does not
654 -- implement the target interface. This case corresponds to the
655 -- following example:
657 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
659 -- return new Iface_2'Class'(Obj);
664 Unchecked_Convert_To
(PtrT
,
665 Make_Function_Call
(Loc
,
666 Name
=> New_Reference_To
(RTE
(RE_Displace
), Loc
),
667 Parameter_Associations
=> New_List
(
668 Unchecked_Convert_To
(RTE
(RE_Address
),
674 (Access_Disp_Table
(Etype
(Base_Type
(Dtyp
))))),
676 Analyze_And_Resolve
(N
, PtrT
);
679 end Displace_Allocator_Pointer
;
681 ---------------------------------
682 -- Expand_Allocator_Expression --
683 ---------------------------------
685 procedure Expand_Allocator_Expression
(N
: Node_Id
) is
686 Loc
: constant Source_Ptr
:= Sloc
(N
);
687 Exp
: constant Node_Id
:= Expression
(Expression
(N
));
688 PtrT
: constant Entity_Id
:= Etype
(N
);
689 DesigT
: constant Entity_Id
:= Designated_Type
(PtrT
);
691 procedure Apply_Accessibility_Check
693 Built_In_Place
: Boolean := False);
694 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
695 -- type, generate an accessibility check to verify that the level of the
696 -- type of the created object is not deeper than the level of the access
697 -- type. If the type of the qualified expression is class-wide, then
698 -- always generate the check (except in the case where it is known to be
699 -- unnecessary, see comment below). Otherwise, only generate the check
700 -- if the level of the qualified expression type is statically deeper
701 -- than the access type.
703 -- Although the static accessibility will generally have been performed
704 -- as a legality check, it won't have been done in cases where the
705 -- allocator appears in generic body, so a run-time check is needed in
706 -- general. One special case is when the access type is declared in the
707 -- same scope as the class-wide allocator, in which case the check can
708 -- never fail, so it need not be generated.
710 -- As an open issue, there seem to be cases where the static level
711 -- associated with the class-wide object's underlying type is not
712 -- sufficient to perform the proper accessibility check, such as for
713 -- allocators in nested subprograms or accept statements initialized by
714 -- class-wide formals when the actual originates outside at a deeper
715 -- static level. The nested subprogram case might require passing
716 -- accessibility levels along with class-wide parameters, and the task
717 -- case seems to be an actual gap in the language rules that needs to
718 -- be fixed by the ARG. ???
720 -------------------------------
721 -- Apply_Accessibility_Check --
722 -------------------------------
724 procedure Apply_Accessibility_Check
726 Built_In_Place
: Boolean := False)
728 Pool_Id
: constant Entity_Id
:= Associated_Storage_Pool
(PtrT
);
736 if Ada_Version
>= Ada_2005
737 and then Is_Class_Wide_Type
(DesigT
)
738 and then (Tagged_Type_Expansion
or else VM_Target
/= No_VM
)
739 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
741 (Type_Access_Level
(Etype
(Exp
)) > Type_Access_Level
(PtrT
)
743 (Is_Class_Wide_Type
(Etype
(Exp
))
744 and then Scope
(PtrT
) /= Current_Scope
))
746 -- If the allocator was built in place, Ref is already a reference
747 -- to the access object initialized to the result of the allocator
748 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
749 -- Remove_Side_Effects for cases where the build-in-place call may
750 -- still be the prefix of the reference (to avoid generating
751 -- duplicate calls). Otherwise, it is the entity associated with
752 -- the object containing the address of the allocated object.
754 if Built_In_Place
then
755 Remove_Side_Effects
(Ref
);
756 Obj_Ref
:= New_Copy_Tree
(Ref
);
758 Obj_Ref
:= New_Reference_To
(Ref
, Loc
);
761 -- Step 1: Create the object clean up code
765 -- Deallocate the object if the accessibility check fails. This
766 -- is done only on targets or profiles that support deallocation.
770 if RTE_Available
(RE_Free
) then
771 Free_Stmt
:= Make_Free_Statement
(Loc
, New_Copy_Tree
(Obj_Ref
));
772 Set_Storage_Pool
(Free_Stmt
, Pool_Id
);
774 Append_To
(Stmts
, Free_Stmt
);
776 -- The target or profile cannot deallocate objects
782 -- Finalize the object if applicable. Generate:
784 -- [Deep_]Finalize (Obj_Ref.all);
786 if Needs_Finalization
(DesigT
) then
790 Make_Explicit_Dereference
(Loc
, New_Copy
(Obj_Ref
)),
793 -- When the target or profile supports deallocation, wrap the
794 -- finalization call in a block to ensure proper deallocation
795 -- even if finalization fails. Generate:
805 if Present
(Free_Stmt
) then
807 Make_Block_Statement
(Loc
,
808 Handled_Statement_Sequence
=>
809 Make_Handled_Sequence_Of_Statements
(Loc
,
810 Statements
=> New_List
(Fin_Call
),
812 Exception_Handlers
=> New_List
(
813 Make_Exception_Handler
(Loc
,
814 Exception_Choices
=> New_List
(
815 Make_Others_Choice
(Loc
)),
817 Statements
=> New_List
(
818 New_Copy_Tree
(Free_Stmt
),
819 Make_Raise_Statement
(Loc
))))));
822 Prepend_To
(Stmts
, Fin_Call
);
825 -- Signal the accessibility failure through a Program_Error
828 Make_Raise_Program_Error
(Loc
,
829 Condition
=> New_Reference_To
(Standard_True
, Loc
),
830 Reason
=> PE_Accessibility_Check_Failed
));
832 -- Step 2: Create the accessibility comparison
838 Make_Attribute_Reference
(Loc
,
840 Attribute_Name
=> Name_Tag
);
842 -- For tagged types, determine the accessibility level by looking
843 -- at the type specific data of the dispatch table. Generate:
845 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
847 if Tagged_Type_Expansion
then
848 Cond
:= Build_Get_Access_Level
(Loc
, Obj_Ref
);
850 -- Use a runtime call to determine the accessibility level when
851 -- compiling on virtual machine targets. Generate:
853 -- Get_Access_Level (Ref'Tag)
857 Make_Function_Call
(Loc
,
859 New_Reference_To
(RTE
(RE_Get_Access_Level
), Loc
),
860 Parameter_Associations
=> New_List
(Obj_Ref
));
867 Make_Integer_Literal
(Loc
, Type_Access_Level
(PtrT
)));
869 -- Due to the complexity and side effects of the check, utilize an
870 -- if statement instead of the regular Program_Error circuitry.
873 Make_Implicit_If_Statement
(N
,
875 Then_Statements
=> Stmts
));
877 end Apply_Accessibility_Check
;
881 Aggr_In_Place
: constant Boolean := Is_Delayed_Aggregate
(Exp
);
882 Indic
: constant Node_Id
:= Subtype_Mark
(Expression
(N
));
883 T
: constant Entity_Id
:= Entity
(Indic
);
885 Tag_Assign
: Node_Id
;
889 TagT
: Entity_Id
:= Empty
;
890 -- Type used as source for tag assignment
892 TagR
: Node_Id
:= Empty
;
893 -- Target reference for tag assignment
895 -- Start of processing for Expand_Allocator_Expression
898 -- Handle call to C++ constructor
900 if Is_CPP_Constructor_Call
(Exp
) then
901 Make_CPP_Constructor_Call_In_Allocator
903 Function_Call
=> Exp
);
907 -- In the case of an Ada 2012 allocator whose initial value comes from a
908 -- function call, pass "the accessibility level determined by the point
909 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
910 -- Expand_Call but it couldn't be done there (because the Etype of the
911 -- allocator wasn't set then) so we generate the parameter here. See
912 -- the Boolean variable Defer in (a block within) Expand_Call.
914 if Ada_Version
>= Ada_2012
and then Nkind
(Exp
) = N_Function_Call
then
919 if Nkind
(Name
(Exp
)) = N_Explicit_Dereference
then
920 Subp
:= Designated_Type
(Etype
(Prefix
(Name
(Exp
))));
922 Subp
:= Entity
(Name
(Exp
));
925 Subp
:= Ultimate_Alias
(Subp
);
927 if Present
(Extra_Accessibility_Of_Result
(Subp
)) then
928 Add_Extra_Actual_To_Call
929 (Subprogram_Call
=> Exp
,
930 Extra_Formal
=> Extra_Accessibility_Of_Result
(Subp
),
931 Extra_Actual
=> Dynamic_Accessibility_Level
(PtrT
));
936 -- Case of tagged type or type requiring finalization
938 if Is_Tagged_Type
(T
) or else Needs_Finalization
(T
) then
940 -- Ada 2005 (AI-318-02): If the initialization expression is a call
941 -- to a build-in-place function, then access to the allocated object
942 -- must be passed to the function. Currently we limit such functions
943 -- to those with constrained limited result subtypes, but eventually
944 -- we plan to expand the allowed forms of functions that are treated
945 -- as build-in-place.
947 if Ada_Version
>= Ada_2005
948 and then Is_Build_In_Place_Function_Call
(Exp
)
950 Make_Build_In_Place_Call_In_Allocator
(N
, Exp
);
951 Apply_Accessibility_Check
(N
, Built_In_Place
=> True);
955 -- Actions inserted before:
956 -- Temp : constant ptr_T := new T'(Expression);
957 -- Temp._tag = T'tag; -- when not class-wide
958 -- [Deep_]Adjust (Temp.all);
960 -- We analyze by hand the new internal allocator to avoid any
961 -- recursion and inappropriate call to Initialize
963 -- We don't want to remove side effects when the expression must be
964 -- built in place. In the case of a build-in-place function call,
965 -- that could lead to a duplication of the call, which was already
966 -- substituted for the allocator.
968 if not Aggr_In_Place
then
969 Remove_Side_Effects
(Exp
);
972 Temp
:= Make_Temporary
(Loc
, 'P', N
);
974 -- For a class wide allocation generate the following code:
976 -- type Equiv_Record is record ... end record;
977 -- implicit subtype CW is <Class_Wide_Subytpe>;
978 -- temp : PtrT := new CW'(CW!(expr));
980 if Is_Class_Wide_Type
(T
) then
981 Expand_Subtype_From_Expr
(Empty
, T
, Indic
, Exp
);
983 -- Ada 2005 (AI-251): If the expression is a class-wide interface
984 -- object we generate code to move up "this" to reference the
985 -- base of the object before allocating the new object.
987 -- Note that Exp'Address is recursively expanded into a call
988 -- to Base_Address (Exp.Tag)
990 if Is_Class_Wide_Type
(Etype
(Exp
))
991 and then Is_Interface
(Etype
(Exp
))
992 and then Tagged_Type_Expansion
996 Unchecked_Convert_To
(Entity
(Indic
),
997 Make_Explicit_Dereference
(Loc
,
998 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
999 Make_Attribute_Reference
(Loc
,
1001 Attribute_Name
=> Name_Address
)))));
1005 Unchecked_Convert_To
(Entity
(Indic
), Exp
));
1008 Analyze_And_Resolve
(Expression
(N
), Entity
(Indic
));
1011 -- Processing for allocators returning non-interface types
1013 if not Is_Interface
(Directly_Designated_Type
(PtrT
)) then
1014 if Aggr_In_Place
then
1016 Make_Object_Declaration
(Loc
,
1017 Defining_Identifier
=> Temp
,
1018 Object_Definition
=> New_Reference_To
(PtrT
, Loc
),
1020 Make_Allocator
(Loc
,
1022 New_Reference_To
(Etype
(Exp
), Loc
)));
1024 -- Copy the Comes_From_Source flag for the allocator we just
1025 -- built, since logically this allocator is a replacement of
1026 -- the original allocator node. This is for proper handling of
1027 -- restriction No_Implicit_Heap_Allocations.
1029 Set_Comes_From_Source
1030 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1032 Set_No_Initialization
(Expression
(Temp_Decl
));
1033 Insert_Action
(N
, Temp_Decl
);
1035 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1036 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1038 -- Attach the object to the associated finalization master.
1039 -- This is done manually on .NET/JVM since those compilers do
1040 -- no support pools and can't benefit from internally generated
1041 -- Allocate / Deallocate procedures.
1043 if VM_Target
/= No_VM
1044 and then Is_Controlled
(DesigT
)
1045 and then Present
(Finalization_Master
(PtrT
))
1050 New_Reference_To
(Temp
, Loc
),
1055 Node
:= Relocate_Node
(N
);
1056 Set_Analyzed
(Node
);
1059 Make_Object_Declaration
(Loc
,
1060 Defining_Identifier
=> Temp
,
1061 Constant_Present
=> True,
1062 Object_Definition
=> New_Reference_To
(PtrT
, Loc
),
1063 Expression
=> Node
);
1065 Insert_Action
(N
, Temp_Decl
);
1066 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1068 -- Attach the object to the associated finalization master.
1069 -- This is done manually on .NET/JVM since those compilers do
1070 -- no support pools and can't benefit from internally generated
1071 -- Allocate / Deallocate procedures.
1073 if VM_Target
/= No_VM
1074 and then Is_Controlled
(DesigT
)
1075 and then Present
(Finalization_Master
(PtrT
))
1080 New_Reference_To
(Temp
, Loc
),
1085 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
1086 -- interface type. In this case we use the type of the qualified
1087 -- expression to allocate the object.
1091 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
1096 Make_Full_Type_Declaration
(Loc
,
1097 Defining_Identifier
=> Def_Id
,
1099 Make_Access_To_Object_Definition
(Loc
,
1100 All_Present
=> True,
1101 Null_Exclusion_Present
=> False,
1103 Is_Access_Constant
(Etype
(N
)),
1104 Subtype_Indication
=>
1105 New_Reference_To
(Etype
(Exp
), Loc
)));
1107 Insert_Action
(N
, New_Decl
);
1109 -- Inherit the allocation-related attributes from the original
1112 Set_Finalization_Master
(Def_Id
, Finalization_Master
(PtrT
));
1114 Set_Associated_Storage_Pool
(Def_Id
,
1115 Associated_Storage_Pool
(PtrT
));
1117 -- Declare the object using the previous type declaration
1119 if Aggr_In_Place
then
1121 Make_Object_Declaration
(Loc
,
1122 Defining_Identifier
=> Temp
,
1123 Object_Definition
=> New_Reference_To
(Def_Id
, Loc
),
1125 Make_Allocator
(Loc
,
1126 New_Reference_To
(Etype
(Exp
), Loc
)));
1128 -- Copy the Comes_From_Source flag for the allocator we just
1129 -- built, since logically this allocator is a replacement of
1130 -- the original allocator node. This is for proper handling
1131 -- of restriction No_Implicit_Heap_Allocations.
1133 Set_Comes_From_Source
1134 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1136 Set_No_Initialization
(Expression
(Temp_Decl
));
1137 Insert_Action
(N
, Temp_Decl
);
1139 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1140 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1143 Node
:= Relocate_Node
(N
);
1144 Set_Analyzed
(Node
);
1147 Make_Object_Declaration
(Loc
,
1148 Defining_Identifier
=> Temp
,
1149 Constant_Present
=> True,
1150 Object_Definition
=> New_Reference_To
(Def_Id
, Loc
),
1151 Expression
=> Node
);
1153 Insert_Action
(N
, Temp_Decl
);
1154 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1157 -- Generate an additional object containing the address of the
1158 -- returned object. The type of this second object declaration
1159 -- is the correct type required for the common processing that
1160 -- is still performed by this subprogram. The displacement of
1161 -- this pointer to reference the component associated with the
1162 -- interface type will be done at the end of common processing.
1165 Make_Object_Declaration
(Loc
,
1166 Defining_Identifier
=> Make_Temporary
(Loc
, 'P'),
1167 Object_Definition
=> New_Reference_To
(PtrT
, Loc
),
1169 Unchecked_Convert_To
(PtrT
,
1170 New_Reference_To
(Temp
, Loc
)));
1172 Insert_Action
(N
, New_Decl
);
1174 Temp_Decl
:= New_Decl
;
1175 Temp
:= Defining_Identifier
(New_Decl
);
1179 Apply_Accessibility_Check
(Temp
);
1181 -- Generate the tag assignment
1183 -- Suppress the tag assignment when VM_Target because VM tags are
1184 -- represented implicitly in objects.
1186 if not Tagged_Type_Expansion
then
1189 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1190 -- interface objects because in this case the tag does not change.
1192 elsif Is_Interface
(Directly_Designated_Type
(Etype
(N
))) then
1193 pragma Assert
(Is_Class_Wide_Type
1194 (Directly_Designated_Type
(Etype
(N
))));
1197 elsif Is_Tagged_Type
(T
) and then not Is_Class_Wide_Type
(T
) then
1199 TagR
:= New_Reference_To
(Temp
, Loc
);
1201 elsif Is_Private_Type
(T
)
1202 and then Is_Tagged_Type
(Underlying_Type
(T
))
1204 TagT
:= Underlying_Type
(T
);
1206 Unchecked_Convert_To
(Underlying_Type
(T
),
1207 Make_Explicit_Dereference
(Loc
,
1208 Prefix
=> New_Reference_To
(Temp
, Loc
)));
1211 if Present
(TagT
) then
1213 Full_T
: constant Entity_Id
:= Underlying_Type
(TagT
);
1216 Make_Assignment_Statement
(Loc
,
1218 Make_Selected_Component
(Loc
,
1221 New_Reference_To
(First_Tag_Component
(Full_T
), Loc
)),
1223 Unchecked_Convert_To
(RTE
(RE_Tag
),
1226 (First_Elmt
(Access_Disp_Table
(Full_T
))), Loc
)));
1229 -- The previous assignment has to be done in any case
1231 Set_Assignment_OK
(Name
(Tag_Assign
));
1232 Insert_Action
(N
, Tag_Assign
);
1235 if Needs_Finalization
(DesigT
) and then Needs_Finalization
(T
) then
1237 -- Generate an Adjust call if the object will be moved. In Ada
1238 -- 2005, the object may be inherently limited, in which case
1239 -- there is no Adjust procedure, and the object is built in
1240 -- place. In Ada 95, the object can be limited but not
1241 -- inherently limited if this allocator came from a return
1242 -- statement (we're allocating the result on the secondary
1243 -- stack). In that case, the object will be moved, so we _do_
1246 if not Aggr_In_Place
1247 and then not Is_Limited_View
(T
)
1251 -- An unchecked conversion is needed in the classwide case
1252 -- because the designated type can be an ancestor of the
1253 -- subtype mark of the allocator.
1257 Unchecked_Convert_To
(T
,
1258 Make_Explicit_Dereference
(Loc
,
1259 Prefix
=> New_Reference_To
(Temp
, Loc
))),
1264 -- Set_Finalize_Address (<PtrT>FM, <T>FD'Unrestricted_Access);
1266 -- Do not generate this call in the following cases:
1268 -- * .NET/JVM - these targets do not support address arithmetic
1269 -- and unchecked conversion, key elements of Finalize_Address.
1271 -- * CodePeer mode - TSS primitive Finalize_Address is not
1272 -- created in this mode.
1274 if VM_Target
= No_VM
1275 and then not CodePeer_Mode
1276 and then Present
(Finalization_Master
(PtrT
))
1277 and then Present
(Temp_Decl
)
1278 and then Nkind
(Expression
(Temp_Decl
)) = N_Allocator
1281 Make_Set_Finalize_Address_Call
1288 Rewrite
(N
, New_Reference_To
(Temp
, Loc
));
1289 Analyze_And_Resolve
(N
, PtrT
);
1291 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1292 -- component containing the secondary dispatch table of the interface
1295 if Is_Interface
(Directly_Designated_Type
(PtrT
)) then
1296 Displace_Allocator_Pointer
(N
);
1299 elsif Aggr_In_Place
then
1300 Temp
:= Make_Temporary
(Loc
, 'P', N
);
1302 Make_Object_Declaration
(Loc
,
1303 Defining_Identifier
=> Temp
,
1304 Object_Definition
=> New_Reference_To
(PtrT
, Loc
),
1306 Make_Allocator
(Loc
,
1307 Expression
=> New_Reference_To
(Etype
(Exp
), Loc
)));
1309 -- Copy the Comes_From_Source flag for the allocator we just built,
1310 -- since logically this allocator is a replacement of the original
1311 -- allocator node. This is for proper handling of restriction
1312 -- No_Implicit_Heap_Allocations.
1314 Set_Comes_From_Source
1315 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1317 Set_No_Initialization
(Expression
(Temp_Decl
));
1318 Insert_Action
(N
, Temp_Decl
);
1320 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1321 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1323 -- Attach the object to the associated finalization master. Thisis
1324 -- done manually on .NET/JVM since those compilers do no support
1325 -- pools and cannot benefit from internally generated Allocate and
1326 -- Deallocate procedures.
1328 if VM_Target
/= No_VM
1329 and then Is_Controlled
(DesigT
)
1330 and then Present
(Finalization_Master
(PtrT
))
1334 (Obj_Ref
=> New_Reference_To
(Temp
, Loc
),
1338 Rewrite
(N
, New_Reference_To
(Temp
, Loc
));
1339 Analyze_And_Resolve
(N
, PtrT
);
1341 elsif Is_Access_Type
(T
) and then Can_Never_Be_Null
(T
) then
1342 Install_Null_Excluding_Check
(Exp
);
1344 elsif Is_Access_Type
(DesigT
)
1345 and then Nkind
(Exp
) = N_Allocator
1346 and then Nkind
(Expression
(Exp
)) /= N_Qualified_Expression
1348 -- Apply constraint to designated subtype indication
1350 Apply_Constraint_Check
(Expression
(Exp
),
1351 Designated_Type
(DesigT
),
1352 No_Sliding
=> True);
1354 if Nkind
(Expression
(Exp
)) = N_Raise_Constraint_Error
then
1356 -- Propagate constraint_error to enclosing allocator
1358 Rewrite
(Exp
, New_Copy
(Expression
(Exp
)));
1362 Build_Allocate_Deallocate_Proc
(N
, True);
1365 -- type A is access T1;
1366 -- X : A := new T2'(...);
1367 -- T1 and T2 can be different subtypes, and we might need to check
1368 -- both constraints. First check against the type of the qualified
1371 Apply_Constraint_Check
(Exp
, T
, No_Sliding
=> True);
1373 if Do_Range_Check
(Exp
) then
1374 Set_Do_Range_Check
(Exp
, False);
1375 Generate_Range_Check
(Exp
, DesigT
, CE_Range_Check_Failed
);
1378 -- A check is also needed in cases where the designated subtype is
1379 -- constrained and differs from the subtype given in the qualified
1380 -- expression. Note that the check on the qualified expression does
1381 -- not allow sliding, but this check does (a relaxation from Ada 83).
1383 if Is_Constrained
(DesigT
)
1384 and then not Subtypes_Statically_Match
(T
, DesigT
)
1386 Apply_Constraint_Check
1387 (Exp
, DesigT
, No_Sliding
=> False);
1389 if Do_Range_Check
(Exp
) then
1390 Set_Do_Range_Check
(Exp
, False);
1391 Generate_Range_Check
(Exp
, DesigT
, CE_Range_Check_Failed
);
1395 -- For an access to unconstrained packed array, GIGI needs to see an
1396 -- expression with a constrained subtype in order to compute the
1397 -- proper size for the allocator.
1399 if Is_Array_Type
(T
)
1400 and then not Is_Constrained
(T
)
1401 and then Is_Packed
(T
)
1404 ConstrT
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
1405 Internal_Exp
: constant Node_Id
:= Relocate_Node
(Exp
);
1408 Make_Subtype_Declaration
(Loc
,
1409 Defining_Identifier
=> ConstrT
,
1410 Subtype_Indication
=>
1411 Make_Subtype_From_Expr
(Internal_Exp
, T
)));
1412 Freeze_Itype
(ConstrT
, Exp
);
1413 Rewrite
(Exp
, OK_Convert_To
(ConstrT
, Internal_Exp
));
1417 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1418 -- to a build-in-place function, then access to the allocated object
1419 -- must be passed to the function. Currently we limit such functions
1420 -- to those with constrained limited result subtypes, but eventually
1421 -- we plan to expand the allowed forms of functions that are treated
1422 -- as build-in-place.
1424 if Ada_Version
>= Ada_2005
1425 and then Is_Build_In_Place_Function_Call
(Exp
)
1427 Make_Build_In_Place_Call_In_Allocator
(N
, Exp
);
1432 when RE_Not_Available
=>
1434 end Expand_Allocator_Expression
;
1436 -----------------------------
1437 -- Expand_Array_Comparison --
1438 -----------------------------
1440 -- Expansion is only required in the case of array types. For the unpacked
1441 -- case, an appropriate runtime routine is called. For packed cases, and
1442 -- also in some other cases where a runtime routine cannot be called, the
1443 -- form of the expansion is:
1445 -- [body for greater_nn; boolean_expression]
1447 -- The body is built by Make_Array_Comparison_Op, and the form of the
1448 -- Boolean expression depends on the operator involved.
1450 procedure Expand_Array_Comparison
(N
: Node_Id
) is
1451 Loc
: constant Source_Ptr
:= Sloc
(N
);
1452 Op1
: Node_Id
:= Left_Opnd
(N
);
1453 Op2
: Node_Id
:= Right_Opnd
(N
);
1454 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
1455 Ctyp
: constant Entity_Id
:= Component_Type
(Typ1
);
1458 Func_Body
: Node_Id
;
1459 Func_Name
: Entity_Id
;
1463 Byte_Addressable
: constant Boolean := System_Storage_Unit
= Byte
'Size;
1464 -- True for byte addressable target
1466 function Length_Less_Than_4
(Opnd
: Node_Id
) return Boolean;
1467 -- Returns True if the length of the given operand is known to be less
1468 -- than 4. Returns False if this length is known to be four or greater
1469 -- or is not known at compile time.
1471 ------------------------
1472 -- Length_Less_Than_4 --
1473 ------------------------
1475 function Length_Less_Than_4
(Opnd
: Node_Id
) return Boolean is
1476 Otyp
: constant Entity_Id
:= Etype
(Opnd
);
1479 if Ekind
(Otyp
) = E_String_Literal_Subtype
then
1480 return String_Literal_Length
(Otyp
) < 4;
1484 Ityp
: constant Entity_Id
:= Etype
(First_Index
(Otyp
));
1485 Lo
: constant Node_Id
:= Type_Low_Bound
(Ityp
);
1486 Hi
: constant Node_Id
:= Type_High_Bound
(Ityp
);
1491 if Compile_Time_Known_Value
(Lo
) then
1492 Lov
:= Expr_Value
(Lo
);
1497 if Compile_Time_Known_Value
(Hi
) then
1498 Hiv
:= Expr_Value
(Hi
);
1503 return Hiv
< Lov
+ 3;
1506 end Length_Less_Than_4
;
1508 -- Start of processing for Expand_Array_Comparison
1511 -- Deal first with unpacked case, where we can call a runtime routine
1512 -- except that we avoid this for targets for which are not addressable
1513 -- by bytes, and for the JVM/CIL, since they do not support direct
1514 -- addressing of array components.
1516 if not Is_Bit_Packed_Array
(Typ1
)
1517 and then Byte_Addressable
1518 and then VM_Target
= No_VM
1520 -- The call we generate is:
1522 -- Compare_Array_xn[_Unaligned]
1523 -- (left'address, right'address, left'length, right'length) <op> 0
1525 -- x = U for unsigned, S for signed
1526 -- n = 8,16,32,64 for component size
1527 -- Add _Unaligned if length < 4 and component size is 8.
1528 -- <op> is the standard comparison operator
1530 if Component_Size
(Typ1
) = 8 then
1531 if Length_Less_Than_4
(Op1
)
1533 Length_Less_Than_4
(Op2
)
1535 if Is_Unsigned_Type
(Ctyp
) then
1536 Comp
:= RE_Compare_Array_U8_Unaligned
;
1538 Comp
:= RE_Compare_Array_S8_Unaligned
;
1542 if Is_Unsigned_Type
(Ctyp
) then
1543 Comp
:= RE_Compare_Array_U8
;
1545 Comp
:= RE_Compare_Array_S8
;
1549 elsif Component_Size
(Typ1
) = 16 then
1550 if Is_Unsigned_Type
(Ctyp
) then
1551 Comp
:= RE_Compare_Array_U16
;
1553 Comp
:= RE_Compare_Array_S16
;
1556 elsif Component_Size
(Typ1
) = 32 then
1557 if Is_Unsigned_Type
(Ctyp
) then
1558 Comp
:= RE_Compare_Array_U32
;
1560 Comp
:= RE_Compare_Array_S32
;
1563 else pragma Assert
(Component_Size
(Typ1
) = 64);
1564 if Is_Unsigned_Type
(Ctyp
) then
1565 Comp
:= RE_Compare_Array_U64
;
1567 Comp
:= RE_Compare_Array_S64
;
1571 Remove_Side_Effects
(Op1
, Name_Req
=> True);
1572 Remove_Side_Effects
(Op2
, Name_Req
=> True);
1575 Make_Function_Call
(Sloc
(Op1
),
1576 Name
=> New_Occurrence_Of
(RTE
(Comp
), Loc
),
1578 Parameter_Associations
=> New_List
(
1579 Make_Attribute_Reference
(Loc
,
1580 Prefix
=> Relocate_Node
(Op1
),
1581 Attribute_Name
=> Name_Address
),
1583 Make_Attribute_Reference
(Loc
,
1584 Prefix
=> Relocate_Node
(Op2
),
1585 Attribute_Name
=> Name_Address
),
1587 Make_Attribute_Reference
(Loc
,
1588 Prefix
=> Relocate_Node
(Op1
),
1589 Attribute_Name
=> Name_Length
),
1591 Make_Attribute_Reference
(Loc
,
1592 Prefix
=> Relocate_Node
(Op2
),
1593 Attribute_Name
=> Name_Length
))));
1596 Make_Integer_Literal
(Sloc
(Op2
),
1599 Analyze_And_Resolve
(Op1
, Standard_Integer
);
1600 Analyze_And_Resolve
(Op2
, Standard_Integer
);
1604 -- Cases where we cannot make runtime call
1606 -- For (a <= b) we convert to not (a > b)
1608 if Chars
(N
) = Name_Op_Le
then
1614 Right_Opnd
=> Op2
)));
1615 Analyze_And_Resolve
(N
, Standard_Boolean
);
1618 -- For < the Boolean expression is
1619 -- greater__nn (op2, op1)
1621 elsif Chars
(N
) = Name_Op_Lt
then
1622 Func_Body
:= Make_Array_Comparison_Op
(Typ1
, N
);
1626 Op1
:= Right_Opnd
(N
);
1627 Op2
:= Left_Opnd
(N
);
1629 -- For (a >= b) we convert to not (a < b)
1631 elsif Chars
(N
) = Name_Op_Ge
then
1637 Right_Opnd
=> Op2
)));
1638 Analyze_And_Resolve
(N
, Standard_Boolean
);
1641 -- For > the Boolean expression is
1642 -- greater__nn (op1, op2)
1645 pragma Assert
(Chars
(N
) = Name_Op_Gt
);
1646 Func_Body
:= Make_Array_Comparison_Op
(Typ1
, N
);
1649 Func_Name
:= Defining_Unit_Name
(Specification
(Func_Body
));
1651 Make_Function_Call
(Loc
,
1652 Name
=> New_Reference_To
(Func_Name
, Loc
),
1653 Parameter_Associations
=> New_List
(Op1
, Op2
));
1655 Insert_Action
(N
, Func_Body
);
1657 Analyze_And_Resolve
(N
, Standard_Boolean
);
1660 when RE_Not_Available
=>
1662 end Expand_Array_Comparison
;
1664 ---------------------------
1665 -- Expand_Array_Equality --
1666 ---------------------------
1668 -- Expand an equality function for multi-dimensional arrays. Here is an
1669 -- example of such a function for Nb_Dimension = 2
1671 -- function Enn (A : atyp; B : btyp) return boolean is
1673 -- if (A'length (1) = 0 or else A'length (2) = 0)
1675 -- (B'length (1) = 0 or else B'length (2) = 0)
1677 -- return True; -- RM 4.5.2(22)
1680 -- if A'length (1) /= B'length (1)
1682 -- A'length (2) /= B'length (2)
1684 -- return False; -- RM 4.5.2(23)
1688 -- A1 : Index_T1 := A'first (1);
1689 -- B1 : Index_T1 := B'first (1);
1693 -- A2 : Index_T2 := A'first (2);
1694 -- B2 : Index_T2 := B'first (2);
1697 -- if A (A1, A2) /= B (B1, B2) then
1701 -- exit when A2 = A'last (2);
1702 -- A2 := Index_T2'succ (A2);
1703 -- B2 := Index_T2'succ (B2);
1707 -- exit when A1 = A'last (1);
1708 -- A1 := Index_T1'succ (A1);
1709 -- B1 := Index_T1'succ (B1);
1716 -- Note on the formal types used (atyp and btyp). If either of the arrays
1717 -- is of a private type, we use the underlying type, and do an unchecked
1718 -- conversion of the actual. If either of the arrays has a bound depending
1719 -- on a discriminant, then we use the base type since otherwise we have an
1720 -- escaped discriminant in the function.
1722 -- If both arrays are constrained and have the same bounds, we can generate
1723 -- a loop with an explicit iteration scheme using a 'Range attribute over
1726 function Expand_Array_Equality
1731 Typ
: Entity_Id
) return Node_Id
1733 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
1734 Decls
: constant List_Id
:= New_List
;
1735 Index_List1
: constant List_Id
:= New_List
;
1736 Index_List2
: constant List_Id
:= New_List
;
1740 Func_Name
: Entity_Id
;
1741 Func_Body
: Node_Id
;
1743 A
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uA
);
1744 B
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uB
);
1748 -- The parameter types to be used for the formals
1753 Num
: Int
) return Node_Id
;
1754 -- This builds the attribute reference Arr'Nam (Expr)
1756 function Component_Equality
(Typ
: Entity_Id
) return Node_Id
;
1757 -- Create one statement to compare corresponding components, designated
1758 -- by a full set of indexes.
1760 function Get_Arg_Type
(N
: Node_Id
) return Entity_Id
;
1761 -- Given one of the arguments, computes the appropriate type to be used
1762 -- for that argument in the corresponding function formal
1764 function Handle_One_Dimension
1766 Index
: Node_Id
) return Node_Id
;
1767 -- This procedure returns the following code
1770 -- Bn : Index_T := B'First (N);
1774 -- exit when An = A'Last (N);
1775 -- An := Index_T'Succ (An)
1776 -- Bn := Index_T'Succ (Bn)
1780 -- If both indexes are constrained and identical, the procedure
1781 -- returns a simpler loop:
1783 -- for An in A'Range (N) loop
1787 -- N is the dimension for which we are generating a loop. Index is the
1788 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1789 -- xxx statement is either the loop or declare for the next dimension
1790 -- or if this is the last dimension the comparison of corresponding
1791 -- components of the arrays.
1793 -- The actual way the code works is to return the comparison of
1794 -- corresponding components for the N+1 call. That's neater!
1796 function Test_Empty_Arrays
return Node_Id
;
1797 -- This function constructs the test for both arrays being empty
1798 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1800 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1802 function Test_Lengths_Correspond
return Node_Id
;
1803 -- This function constructs the test for arrays having different lengths
1804 -- in at least one index position, in which case the resulting code is:
1806 -- A'length (1) /= B'length (1)
1808 -- A'length (2) /= B'length (2)
1819 Num
: Int
) return Node_Id
1823 Make_Attribute_Reference
(Loc
,
1824 Attribute_Name
=> Nam
,
1825 Prefix
=> New_Reference_To
(Arr
, Loc
),
1826 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, Num
)));
1829 ------------------------
1830 -- Component_Equality --
1831 ------------------------
1833 function Component_Equality
(Typ
: Entity_Id
) return Node_Id
is
1838 -- if a(i1...) /= b(j1...) then return false; end if;
1841 Make_Indexed_Component
(Loc
,
1842 Prefix
=> Make_Identifier
(Loc
, Chars
(A
)),
1843 Expressions
=> Index_List1
);
1846 Make_Indexed_Component
(Loc
,
1847 Prefix
=> Make_Identifier
(Loc
, Chars
(B
)),
1848 Expressions
=> Index_List2
);
1850 Test
:= Expand_Composite_Equality
1851 (Nod
, Component_Type
(Typ
), L
, R
, Decls
);
1853 -- If some (sub)component is an unchecked_union, the whole operation
1854 -- will raise program error.
1856 if Nkind
(Test
) = N_Raise_Program_Error
then
1858 -- This node is going to be inserted at a location where a
1859 -- statement is expected: clear its Etype so analysis will set
1860 -- it to the expected Standard_Void_Type.
1862 Set_Etype
(Test
, Empty
);
1867 Make_Implicit_If_Statement
(Nod
,
1868 Condition
=> Make_Op_Not
(Loc
, Right_Opnd
=> Test
),
1869 Then_Statements
=> New_List
(
1870 Make_Simple_Return_Statement
(Loc
,
1871 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))));
1873 end Component_Equality
;
1879 function Get_Arg_Type
(N
: Node_Id
) return Entity_Id
is
1890 T
:= Underlying_Type
(T
);
1892 X
:= First_Index
(T
);
1893 while Present
(X
) loop
1894 if Denotes_Discriminant
(Type_Low_Bound
(Etype
(X
)))
1896 Denotes_Discriminant
(Type_High_Bound
(Etype
(X
)))
1909 --------------------------
1910 -- Handle_One_Dimension --
1911 ---------------------------
1913 function Handle_One_Dimension
1915 Index
: Node_Id
) return Node_Id
1917 Need_Separate_Indexes
: constant Boolean :=
1918 Ltyp
/= Rtyp
or else not Is_Constrained
(Ltyp
);
1919 -- If the index types are identical, and we are working with
1920 -- constrained types, then we can use the same index for both
1923 An
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
1926 Index_T
: Entity_Id
;
1931 if N
> Number_Dimensions
(Ltyp
) then
1932 return Component_Equality
(Ltyp
);
1935 -- Case where we generate a loop
1937 Index_T
:= Base_Type
(Etype
(Index
));
1939 if Need_Separate_Indexes
then
1940 Bn
:= Make_Temporary
(Loc
, 'B');
1945 Append
(New_Reference_To
(An
, Loc
), Index_List1
);
1946 Append
(New_Reference_To
(Bn
, Loc
), Index_List2
);
1948 Stm_List
:= New_List
(
1949 Handle_One_Dimension
(N
+ 1, Next_Index
(Index
)));
1951 if Need_Separate_Indexes
then
1953 -- Generate guard for loop, followed by increments of indexes
1955 Append_To
(Stm_List
,
1956 Make_Exit_Statement
(Loc
,
1959 Left_Opnd
=> New_Reference_To
(An
, Loc
),
1960 Right_Opnd
=> Arr_Attr
(A
, Name_Last
, N
))));
1962 Append_To
(Stm_List
,
1963 Make_Assignment_Statement
(Loc
,
1964 Name
=> New_Reference_To
(An
, Loc
),
1966 Make_Attribute_Reference
(Loc
,
1967 Prefix
=> New_Reference_To
(Index_T
, Loc
),
1968 Attribute_Name
=> Name_Succ
,
1969 Expressions
=> New_List
(New_Reference_To
(An
, Loc
)))));
1971 Append_To
(Stm_List
,
1972 Make_Assignment_Statement
(Loc
,
1973 Name
=> New_Reference_To
(Bn
, Loc
),
1975 Make_Attribute_Reference
(Loc
,
1976 Prefix
=> New_Reference_To
(Index_T
, Loc
),
1977 Attribute_Name
=> Name_Succ
,
1978 Expressions
=> New_List
(New_Reference_To
(Bn
, Loc
)))));
1981 -- If separate indexes, we need a declare block for An and Bn, and a
1982 -- loop without an iteration scheme.
1984 if Need_Separate_Indexes
then
1986 Make_Implicit_Loop_Statement
(Nod
, Statements
=> Stm_List
);
1989 Make_Block_Statement
(Loc
,
1990 Declarations
=> New_List
(
1991 Make_Object_Declaration
(Loc
,
1992 Defining_Identifier
=> An
,
1993 Object_Definition
=> New_Reference_To
(Index_T
, Loc
),
1994 Expression
=> Arr_Attr
(A
, Name_First
, N
)),
1996 Make_Object_Declaration
(Loc
,
1997 Defining_Identifier
=> Bn
,
1998 Object_Definition
=> New_Reference_To
(Index_T
, Loc
),
1999 Expression
=> Arr_Attr
(B
, Name_First
, N
))),
2001 Handled_Statement_Sequence
=>
2002 Make_Handled_Sequence_Of_Statements
(Loc
,
2003 Statements
=> New_List
(Loop_Stm
)));
2005 -- If no separate indexes, return loop statement with explicit
2006 -- iteration scheme on its own
2010 Make_Implicit_Loop_Statement
(Nod
,
2011 Statements
=> Stm_List
,
2013 Make_Iteration_Scheme
(Loc
,
2014 Loop_Parameter_Specification
=>
2015 Make_Loop_Parameter_Specification
(Loc
,
2016 Defining_Identifier
=> An
,
2017 Discrete_Subtype_Definition
=>
2018 Arr_Attr
(A
, Name_Range
, N
))));
2021 end Handle_One_Dimension
;
2023 -----------------------
2024 -- Test_Empty_Arrays --
2025 -----------------------
2027 function Test_Empty_Arrays
return Node_Id
is
2037 for J
in 1 .. Number_Dimensions
(Ltyp
) loop
2040 Left_Opnd
=> Arr_Attr
(A
, Name_Length
, J
),
2041 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
2045 Left_Opnd
=> Arr_Attr
(B
, Name_Length
, J
),
2046 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
2055 Left_Opnd
=> Relocate_Node
(Alist
),
2056 Right_Opnd
=> Atest
);
2060 Left_Opnd
=> Relocate_Node
(Blist
),
2061 Right_Opnd
=> Btest
);
2068 Right_Opnd
=> Blist
);
2069 end Test_Empty_Arrays
;
2071 -----------------------------
2072 -- Test_Lengths_Correspond --
2073 -----------------------------
2075 function Test_Lengths_Correspond
return Node_Id
is
2081 for J
in 1 .. Number_Dimensions
(Ltyp
) loop
2084 Left_Opnd
=> Arr_Attr
(A
, Name_Length
, J
),
2085 Right_Opnd
=> Arr_Attr
(B
, Name_Length
, J
));
2092 Left_Opnd
=> Relocate_Node
(Result
),
2093 Right_Opnd
=> Rtest
);
2098 end Test_Lengths_Correspond
;
2100 -- Start of processing for Expand_Array_Equality
2103 Ltyp
:= Get_Arg_Type
(Lhs
);
2104 Rtyp
:= Get_Arg_Type
(Rhs
);
2106 -- For now, if the argument types are not the same, go to the base type,
2107 -- since the code assumes that the formals have the same type. This is
2108 -- fixable in future ???
2110 if Ltyp
/= Rtyp
then
2111 Ltyp
:= Base_Type
(Ltyp
);
2112 Rtyp
:= Base_Type
(Rtyp
);
2113 pragma Assert
(Ltyp
= Rtyp
);
2116 -- Build list of formals for function
2118 Formals
:= New_List
(
2119 Make_Parameter_Specification
(Loc
,
2120 Defining_Identifier
=> A
,
2121 Parameter_Type
=> New_Reference_To
(Ltyp
, Loc
)),
2123 Make_Parameter_Specification
(Loc
,
2124 Defining_Identifier
=> B
,
2125 Parameter_Type
=> New_Reference_To
(Rtyp
, Loc
)));
2127 Func_Name
:= Make_Temporary
(Loc
, 'E');
2129 -- Build statement sequence for function
2132 Make_Subprogram_Body
(Loc
,
2134 Make_Function_Specification
(Loc
,
2135 Defining_Unit_Name
=> Func_Name
,
2136 Parameter_Specifications
=> Formals
,
2137 Result_Definition
=> New_Reference_To
(Standard_Boolean
, Loc
)),
2139 Declarations
=> Decls
,
2141 Handled_Statement_Sequence
=>
2142 Make_Handled_Sequence_Of_Statements
(Loc
,
2143 Statements
=> New_List
(
2145 Make_Implicit_If_Statement
(Nod
,
2146 Condition
=> Test_Empty_Arrays
,
2147 Then_Statements
=> New_List
(
2148 Make_Simple_Return_Statement
(Loc
,
2150 New_Occurrence_Of
(Standard_True
, Loc
)))),
2152 Make_Implicit_If_Statement
(Nod
,
2153 Condition
=> Test_Lengths_Correspond
,
2154 Then_Statements
=> New_List
(
2155 Make_Simple_Return_Statement
(Loc
,
2157 New_Occurrence_Of
(Standard_False
, Loc
)))),
2159 Handle_One_Dimension
(1, First_Index
(Ltyp
)),
2161 Make_Simple_Return_Statement
(Loc
,
2162 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)))));
2164 Set_Has_Completion
(Func_Name
, True);
2165 Set_Is_Inlined
(Func_Name
);
2167 -- If the array type is distinct from the type of the arguments, it
2168 -- is the full view of a private type. Apply an unchecked conversion
2169 -- to insure that analysis of the call succeeds.
2179 or else Base_Type
(Etype
(Lhs
)) /= Base_Type
(Ltyp
)
2181 L
:= OK_Convert_To
(Ltyp
, Lhs
);
2185 or else Base_Type
(Etype
(Rhs
)) /= Base_Type
(Rtyp
)
2187 R
:= OK_Convert_To
(Rtyp
, Rhs
);
2190 Actuals
:= New_List
(L
, R
);
2193 Append_To
(Bodies
, Func_Body
);
2196 Make_Function_Call
(Loc
,
2197 Name
=> New_Reference_To
(Func_Name
, Loc
),
2198 Parameter_Associations
=> Actuals
);
2199 end Expand_Array_Equality
;
2201 -----------------------------
2202 -- Expand_Boolean_Operator --
2203 -----------------------------
2205 -- Note that we first get the actual subtypes of the operands, since we
2206 -- always want to deal with types that have bounds.
2208 procedure Expand_Boolean_Operator
(N
: Node_Id
) is
2209 Typ
: constant Entity_Id
:= Etype
(N
);
2212 -- Special case of bit packed array where both operands are known to be
2213 -- properly aligned. In this case we use an efficient run time routine
2214 -- to carry out the operation (see System.Bit_Ops).
2216 if Is_Bit_Packed_Array
(Typ
)
2217 and then not Is_Possibly_Unaligned_Object
(Left_Opnd
(N
))
2218 and then not Is_Possibly_Unaligned_Object
(Right_Opnd
(N
))
2220 Expand_Packed_Boolean_Operator
(N
);
2224 -- For the normal non-packed case, the general expansion is to build
2225 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2226 -- and then inserting it into the tree. The original operator node is
2227 -- then rewritten as a call to this function. We also use this in the
2228 -- packed case if either operand is a possibly unaligned object.
2231 Loc
: constant Source_Ptr
:= Sloc
(N
);
2232 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
2233 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
2234 Func_Body
: Node_Id
;
2235 Func_Name
: Entity_Id
;
2238 Convert_To_Actual_Subtype
(L
);
2239 Convert_To_Actual_Subtype
(R
);
2240 Ensure_Defined
(Etype
(L
), N
);
2241 Ensure_Defined
(Etype
(R
), N
);
2242 Apply_Length_Check
(R
, Etype
(L
));
2244 if Nkind
(N
) = N_Op_Xor
then
2245 Silly_Boolean_Array_Xor_Test
(N
, Etype
(L
));
2248 if Nkind
(Parent
(N
)) = N_Assignment_Statement
2249 and then Safe_In_Place_Array_Op
(Name
(Parent
(N
)), L
, R
)
2251 Build_Boolean_Array_Proc_Call
(Parent
(N
), L
, R
);
2253 elsif Nkind
(Parent
(N
)) = N_Op_Not
2254 and then Nkind
(N
) = N_Op_And
2256 Safe_In_Place_Array_Op
(Name
(Parent
(Parent
(N
))), L
, R
)
2261 Func_Body
:= Make_Boolean_Array_Op
(Etype
(L
), N
);
2262 Func_Name
:= Defining_Unit_Name
(Specification
(Func_Body
));
2263 Insert_Action
(N
, Func_Body
);
2265 -- Now rewrite the expression with a call
2268 Make_Function_Call
(Loc
,
2269 Name
=> New_Reference_To
(Func_Name
, Loc
),
2270 Parameter_Associations
=>
2273 Make_Type_Conversion
2274 (Loc
, New_Reference_To
(Etype
(L
), Loc
), R
))));
2276 Analyze_And_Resolve
(N
, Typ
);
2279 end Expand_Boolean_Operator
;
2281 ------------------------------------------------
2282 -- Expand_Compare_Minimize_Eliminate_Overflow --
2283 ------------------------------------------------
2285 procedure Expand_Compare_Minimize_Eliminate_Overflow
(N
: Node_Id
) is
2286 Loc
: constant Source_Ptr
:= Sloc
(N
);
2288 Result_Type
: constant Entity_Id
:= Etype
(N
);
2289 -- Capture result type (could be a derived boolean type)
2294 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
2295 -- Entity for Long_Long_Integer'Base
2297 Check
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
2298 -- Current overflow checking mode
2301 procedure Set_False
;
2302 -- These procedures rewrite N with an occurrence of Standard_True or
2303 -- Standard_False, and then makes a call to Warn_On_Known_Condition.
2309 procedure Set_False
is
2311 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
2312 Warn_On_Known_Condition
(N
);
2319 procedure Set_True
is
2321 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
2322 Warn_On_Known_Condition
(N
);
2325 -- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2328 -- Nothing to do unless we have a comparison operator with operands
2329 -- that are signed integer types, and we are operating in either
2330 -- MINIMIZED or ELIMINATED overflow checking mode.
2332 if Nkind
(N
) not in N_Op_Compare
2333 or else Check
not in Minimized_Or_Eliminated
2334 or else not Is_Signed_Integer_Type
(Etype
(Left_Opnd
(N
)))
2339 -- OK, this is the case we are interested in. First step is to process
2340 -- our operands using the Minimize_Eliminate circuitry which applies
2341 -- this processing to the two operand subtrees.
2343 Minimize_Eliminate_Overflows
2344 (Left_Opnd
(N
), Llo
, Lhi
, Top_Level
=> False);
2345 Minimize_Eliminate_Overflows
2346 (Right_Opnd
(N
), Rlo
, Rhi
, Top_Level
=> False);
2348 -- See if the range information decides the result of the comparison.
2349 -- We can only do this if we in fact have full range information (which
2350 -- won't be the case if either operand is bignum at this stage).
2352 if Llo
/= No_Uint
and then Rlo
/= No_Uint
then
2353 case N_Op_Compare
(Nkind
(N
)) is
2355 if Llo
= Lhi
and then Rlo
= Rhi
and then Llo
= Rlo
then
2357 elsif Llo
> Rhi
or else Lhi
< Rlo
then
2364 elsif Lhi
< Rlo
then
2371 elsif Lhi
<= Rlo
then
2378 elsif Lhi
<= Rlo
then
2385 elsif Lhi
< Rlo
then
2390 if Llo
= Lhi
and then Rlo
= Rhi
and then Llo
= Rlo
then
2392 elsif Llo
> Rhi
or else Lhi
< Rlo
then
2397 -- All done if we did the rewrite
2399 if Nkind
(N
) not in N_Op_Compare
then
2404 -- Otherwise, time to do the comparison
2407 Ltype
: constant Entity_Id
:= Etype
(Left_Opnd
(N
));
2408 Rtype
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
2411 -- If the two operands have the same signed integer type we are
2412 -- all set, nothing more to do. This is the case where either
2413 -- both operands were unchanged, or we rewrote both of them to
2414 -- be Long_Long_Integer.
2416 -- Note: Entity for the comparison may be wrong, but it's not worth
2417 -- the effort to change it, since the back end does not use it.
2419 if Is_Signed_Integer_Type
(Ltype
)
2420 and then Base_Type
(Ltype
) = Base_Type
(Rtype
)
2424 -- Here if bignums are involved (can only happen in ELIMINATED mode)
2426 elsif Is_RTE
(Ltype
, RE_Bignum
) or else Is_RTE
(Rtype
, RE_Bignum
) then
2428 Left
: Node_Id
:= Left_Opnd
(N
);
2429 Right
: Node_Id
:= Right_Opnd
(N
);
2430 -- Bignum references for left and right operands
2433 if not Is_RTE
(Ltype
, RE_Bignum
) then
2434 Left
:= Convert_To_Bignum
(Left
);
2435 elsif not Is_RTE
(Rtype
, RE_Bignum
) then
2436 Right
:= Convert_To_Bignum
(Right
);
2439 -- We rewrite our node with:
2442 -- Bnn : Result_Type;
2444 -- M : Mark_Id := SS_Mark;
2446 -- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2454 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
2455 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
2459 case N_Op_Compare
(Nkind
(N
)) is
2460 when N_Op_Eq
=> Ent
:= RE_Big_EQ
;
2461 when N_Op_Ge
=> Ent
:= RE_Big_GE
;
2462 when N_Op_Gt
=> Ent
:= RE_Big_GT
;
2463 when N_Op_Le
=> Ent
:= RE_Big_LE
;
2464 when N_Op_Lt
=> Ent
:= RE_Big_LT
;
2465 when N_Op_Ne
=> Ent
:= RE_Big_NE
;
2468 -- Insert assignment to Bnn into the bignum block
2471 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
2472 Make_Assignment_Statement
(Loc
,
2473 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
2475 Make_Function_Call
(Loc
,
2477 New_Occurrence_Of
(RTE
(Ent
), Loc
),
2478 Parameter_Associations
=> New_List
(Left
, Right
))));
2480 -- Now do the rewrite with expression actions
2483 Make_Expression_With_Actions
(Loc
,
2484 Actions
=> New_List
(
2485 Make_Object_Declaration
(Loc
,
2486 Defining_Identifier
=> Bnn
,
2487 Object_Definition
=>
2488 New_Occurrence_Of
(Result_Type
, Loc
)),
2490 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
2491 Analyze_And_Resolve
(N
, Result_Type
);
2495 -- No bignums involved, but types are different, so we must have
2496 -- rewritten one of the operands as a Long_Long_Integer but not
2499 -- If left operand is Long_Long_Integer, convert right operand
2500 -- and we are done (with a comparison of two Long_Long_Integers).
2502 elsif Ltype
= LLIB
then
2503 Convert_To_And_Rewrite
(LLIB
, Right_Opnd
(N
));
2504 Analyze_And_Resolve
(Right_Opnd
(N
), LLIB
, Suppress
=> All_Checks
);
2507 -- If right operand is Long_Long_Integer, convert left operand
2508 -- and we are done (with a comparison of two Long_Long_Integers).
2510 -- This is the only remaining possibility
2512 else pragma Assert
(Rtype
= LLIB
);
2513 Convert_To_And_Rewrite
(LLIB
, Left_Opnd
(N
));
2514 Analyze_And_Resolve
(Left_Opnd
(N
), LLIB
, Suppress
=> All_Checks
);
2518 end Expand_Compare_Minimize_Eliminate_Overflow
;
2520 -------------------------------
2521 -- Expand_Composite_Equality --
2522 -------------------------------
2524 -- This function is only called for comparing internal fields of composite
2525 -- types when these fields are themselves composites. This is a special
2526 -- case because it is not possible to respect normal Ada visibility rules.
2528 function Expand_Composite_Equality
2533 Bodies
: List_Id
) return Node_Id
2535 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
2536 Full_Type
: Entity_Id
;
2540 function Find_Primitive_Eq
return Node_Id
;
2541 -- AI05-0123: Locate primitive equality for type if it exists, and
2542 -- build the corresponding call. If operation is abstract, replace
2543 -- call with an explicit raise. Return Empty if there is no primitive.
2545 -----------------------
2546 -- Find_Primitive_Eq --
2547 -----------------------
2549 function Find_Primitive_Eq
return Node_Id
is
2554 Prim_E
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
2555 while Present
(Prim_E
) loop
2556 Prim
:= Node
(Prim_E
);
2558 -- Locate primitive equality with the right signature
2560 if Chars
(Prim
) = Name_Op_Eq
2561 and then Etype
(First_Formal
(Prim
)) =
2562 Etype
(Next_Formal
(First_Formal
(Prim
)))
2563 and then Etype
(Prim
) = Standard_Boolean
2565 if Is_Abstract_Subprogram
(Prim
) then
2567 Make_Raise_Program_Error
(Loc
,
2568 Reason
=> PE_Explicit_Raise
);
2572 Make_Function_Call
(Loc
,
2573 Name
=> New_Reference_To
(Prim
, Loc
),
2574 Parameter_Associations
=> New_List
(Lhs
, Rhs
));
2581 -- If not found, predefined operation will be used
2584 end Find_Primitive_Eq
;
2586 -- Start of processing for Expand_Composite_Equality
2589 if Is_Private_Type
(Typ
) then
2590 Full_Type
:= Underlying_Type
(Typ
);
2595 -- If the private type has no completion the context may be the
2596 -- expansion of a composite equality for a composite type with some
2597 -- still incomplete components. The expression will not be analyzed
2598 -- until the enclosing type is completed, at which point this will be
2599 -- properly expanded, unless there is a bona fide completion error.
2601 if No
(Full_Type
) then
2602 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2605 Full_Type
:= Base_Type
(Full_Type
);
2607 -- When the base type itself is private, use the full view to expand
2608 -- the composite equality.
2610 if Is_Private_Type
(Full_Type
) then
2611 Full_Type
:= Underlying_Type
(Full_Type
);
2614 -- Case of array types
2616 if Is_Array_Type
(Full_Type
) then
2618 -- If the operand is an elementary type other than a floating-point
2619 -- type, then we can simply use the built-in block bitwise equality,
2620 -- since the predefined equality operators always apply and bitwise
2621 -- equality is fine for all these cases.
2623 if Is_Elementary_Type
(Component_Type
(Full_Type
))
2624 and then not Is_Floating_Point_Type
(Component_Type
(Full_Type
))
2626 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2628 -- For composite component types, and floating-point types, use the
2629 -- expansion. This deals with tagged component types (where we use
2630 -- the applicable equality routine) and floating-point, (where we
2631 -- need to worry about negative zeroes), and also the case of any
2632 -- composite type recursively containing such fields.
2635 return Expand_Array_Equality
(Nod
, Lhs
, Rhs
, Bodies
, Full_Type
);
2638 -- Case of tagged record types
2640 elsif Is_Tagged_Type
(Full_Type
) then
2642 -- Call the primitive operation "=" of this type
2644 if Is_Class_Wide_Type
(Full_Type
) then
2645 Full_Type
:= Root_Type
(Full_Type
);
2648 -- If this is derived from an untagged private type completed with a
2649 -- tagged type, it does not have a full view, so we use the primitive
2650 -- operations of the private type. This check should no longer be
2651 -- necessary when these types receive their full views ???
2653 if Is_Private_Type
(Typ
)
2654 and then not Is_Tagged_Type
(Typ
)
2655 and then not Is_Controlled
(Typ
)
2656 and then Is_Derived_Type
(Typ
)
2657 and then No
(Full_View
(Typ
))
2659 Prim
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
2661 Prim
:= First_Elmt
(Primitive_Operations
(Full_Type
));
2665 Eq_Op
:= Node
(Prim
);
2666 exit when Chars
(Eq_Op
) = Name_Op_Eq
2667 and then Etype
(First_Formal
(Eq_Op
)) =
2668 Etype
(Next_Formal
(First_Formal
(Eq_Op
)))
2669 and then Base_Type
(Etype
(Eq_Op
)) = Standard_Boolean
;
2671 pragma Assert
(Present
(Prim
));
2674 Eq_Op
:= Node
(Prim
);
2677 Make_Function_Call
(Loc
,
2678 Name
=> New_Reference_To
(Eq_Op
, Loc
),
2679 Parameter_Associations
=>
2681 (Unchecked_Convert_To
(Etype
(First_Formal
(Eq_Op
)), Lhs
),
2682 Unchecked_Convert_To
(Etype
(First_Formal
(Eq_Op
)), Rhs
)));
2684 -- Case of untagged record types
2686 elsif Is_Record_Type
(Full_Type
) then
2687 Eq_Op
:= TSS
(Full_Type
, TSS_Composite_Equality
);
2689 if Present
(Eq_Op
) then
2690 if Etype
(First_Formal
(Eq_Op
)) /= Full_Type
then
2692 -- Inherited equality from parent type. Convert the actuals to
2693 -- match signature of operation.
2696 T
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
2700 Make_Function_Call
(Loc
,
2701 Name
=> New_Reference_To
(Eq_Op
, Loc
),
2702 Parameter_Associations
=> New_List
(
2703 OK_Convert_To
(T
, Lhs
),
2704 OK_Convert_To
(T
, Rhs
)));
2708 -- Comparison between Unchecked_Union components
2710 if Is_Unchecked_Union
(Full_Type
) then
2712 Lhs_Type
: Node_Id
:= Full_Type
;
2713 Rhs_Type
: Node_Id
:= Full_Type
;
2714 Lhs_Discr_Val
: Node_Id
;
2715 Rhs_Discr_Val
: Node_Id
;
2720 if Nkind
(Lhs
) = N_Selected_Component
then
2721 Lhs_Type
:= Etype
(Entity
(Selector_Name
(Lhs
)));
2726 if Nkind
(Rhs
) = N_Selected_Component
then
2727 Rhs_Type
:= Etype
(Entity
(Selector_Name
(Rhs
)));
2730 -- Lhs of the composite equality
2732 if Is_Constrained
(Lhs_Type
) then
2734 -- Since the enclosing record type can never be an
2735 -- Unchecked_Union (this code is executed for records
2736 -- that do not have variants), we may reference its
2739 if Nkind
(Lhs
) = N_Selected_Component
2740 and then Has_Per_Object_Constraint
2741 (Entity
(Selector_Name
(Lhs
)))
2744 Make_Selected_Component
(Loc
,
2745 Prefix
=> Prefix
(Lhs
),
2748 (Get_Discriminant_Value
2749 (First_Discriminant
(Lhs_Type
),
2751 Stored_Constraint
(Lhs_Type
))));
2756 (Get_Discriminant_Value
2757 (First_Discriminant
(Lhs_Type
),
2759 Stored_Constraint
(Lhs_Type
)));
2763 -- It is not possible to infer the discriminant since
2764 -- the subtype is not constrained.
2767 Make_Raise_Program_Error
(Loc
,
2768 Reason
=> PE_Unchecked_Union_Restriction
);
2771 -- Rhs of the composite equality
2773 if Is_Constrained
(Rhs_Type
) then
2774 if Nkind
(Rhs
) = N_Selected_Component
2775 and then Has_Per_Object_Constraint
2776 (Entity
(Selector_Name
(Rhs
)))
2779 Make_Selected_Component
(Loc
,
2780 Prefix
=> Prefix
(Rhs
),
2783 (Get_Discriminant_Value
2784 (First_Discriminant
(Rhs_Type
),
2786 Stored_Constraint
(Rhs_Type
))));
2791 (Get_Discriminant_Value
2792 (First_Discriminant
(Rhs_Type
),
2794 Stored_Constraint
(Rhs_Type
)));
2799 Make_Raise_Program_Error
(Loc
,
2800 Reason
=> PE_Unchecked_Union_Restriction
);
2803 -- Call the TSS equality function with the inferred
2804 -- discriminant values.
2807 Make_Function_Call
(Loc
,
2808 Name
=> New_Reference_To
(Eq_Op
, Loc
),
2809 Parameter_Associations
=> New_List
(
2818 Make_Function_Call
(Loc
,
2819 Name
=> New_Reference_To
(Eq_Op
, Loc
),
2820 Parameter_Associations
=> New_List
(Lhs
, Rhs
));
2824 -- Equality composes in Ada 2012 for untagged record types. It also
2825 -- composes for bounded strings, because they are part of the
2826 -- predefined environment. We could make it compose for bounded
2827 -- strings by making them tagged, or by making sure all subcomponents
2828 -- are set to the same value, even when not used. Instead, we have
2829 -- this special case in the compiler, because it's more efficient.
2831 elsif Ada_Version
>= Ada_2012
or else Is_Bounded_String
(Typ
) then
2833 -- If no TSS has been created for the type, check whether there is
2834 -- a primitive equality declared for it.
2837 Op
: constant Node_Id
:= Find_Primitive_Eq
;
2840 -- Use user-defined primitive if it exists, otherwise use
2841 -- predefined equality.
2843 if Present
(Op
) then
2846 return Make_Op_Eq
(Loc
, Lhs
, Rhs
);
2851 return Expand_Record_Equality
(Nod
, Full_Type
, Lhs
, Rhs
, Bodies
);
2854 -- Non-composite types (always use predefined equality)
2857 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2859 end Expand_Composite_Equality
;
2861 ------------------------
2862 -- Expand_Concatenate --
2863 ------------------------
2865 procedure Expand_Concatenate
(Cnode
: Node_Id
; Opnds
: List_Id
) is
2866 Loc
: constant Source_Ptr
:= Sloc
(Cnode
);
2868 Atyp
: constant Entity_Id
:= Base_Type
(Etype
(Cnode
));
2869 -- Result type of concatenation
2871 Ctyp
: constant Entity_Id
:= Base_Type
(Component_Type
(Etype
(Cnode
)));
2872 -- Component type. Elements of this component type can appear as one
2873 -- of the operands of concatenation as well as arrays.
2875 Istyp
: constant Entity_Id
:= Etype
(First_Index
(Atyp
));
2878 Ityp
: constant Entity_Id
:= Base_Type
(Istyp
);
2879 -- Index type. This is the base type of the index subtype, and is used
2880 -- for all computed bounds (which may be out of range of Istyp in the
2881 -- case of null ranges).
2884 -- This is the type we use to do arithmetic to compute the bounds and
2885 -- lengths of operands. The choice of this type is a little subtle and
2886 -- is discussed in a separate section at the start of the body code.
2888 Concatenation_Error
: exception;
2889 -- Raised if concatenation is sure to raise a CE
2891 Result_May_Be_Null
: Boolean := True;
2892 -- Reset to False if at least one operand is encountered which is known
2893 -- at compile time to be non-null. Used for handling the special case
2894 -- of setting the high bound to the last operand high bound for a null
2895 -- result, thus ensuring a proper high bound in the super-flat case.
2897 N
: constant Nat
:= List_Length
(Opnds
);
2898 -- Number of concatenation operands including possibly null operands
2901 -- Number of operands excluding any known to be null, except that the
2902 -- last operand is always retained, in case it provides the bounds for
2906 -- Current operand being processed in the loop through operands. After
2907 -- this loop is complete, always contains the last operand (which is not
2908 -- the same as Operands (NN), since null operands are skipped).
2910 -- Arrays describing the operands, only the first NN entries of each
2911 -- array are set (NN < N when we exclude known null operands).
2913 Is_Fixed_Length
: array (1 .. N
) of Boolean;
2914 -- True if length of corresponding operand known at compile time
2916 Operands
: array (1 .. N
) of Node_Id
;
2917 -- Set to the corresponding entry in the Opnds list (but note that null
2918 -- operands are excluded, so not all entries in the list are stored).
2920 Fixed_Length
: array (1 .. N
) of Uint
;
2921 -- Set to length of operand. Entries in this array are set only if the
2922 -- corresponding entry in Is_Fixed_Length is True.
2924 Opnd_Low_Bound
: array (1 .. N
) of Node_Id
;
2925 -- Set to lower bound of operand. Either an integer literal in the case
2926 -- where the bound is known at compile time, else actual lower bound.
2927 -- The operand low bound is of type Ityp.
2929 Var_Length
: array (1 .. N
) of Entity_Id
;
2930 -- Set to an entity of type Natural that contains the length of an
2931 -- operand whose length is not known at compile time. Entries in this
2932 -- array are set only if the corresponding entry in Is_Fixed_Length
2933 -- is False. The entity is of type Artyp.
2935 Aggr_Length
: array (0 .. N
) of Node_Id
;
2936 -- The J'th entry in an expression node that represents the total length
2937 -- of operands 1 through J. It is either an integer literal node, or a
2938 -- reference to a constant entity with the right value, so it is fine
2939 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
2940 -- entry always is set to zero. The length is of type Artyp.
2942 Low_Bound
: Node_Id
;
2943 -- A tree node representing the low bound of the result (of type Ityp).
2944 -- This is either an integer literal node, or an identifier reference to
2945 -- a constant entity initialized to the appropriate value.
2947 Last_Opnd_Low_Bound
: Node_Id
;
2948 -- A tree node representing the low bound of the last operand. This
2949 -- need only be set if the result could be null. It is used for the
2950 -- special case of setting the right low bound for a null result.
2951 -- This is of type Ityp.
2953 Last_Opnd_High_Bound
: Node_Id
;
2954 -- A tree node representing the high bound of the last operand. This
2955 -- need only be set if the result could be null. It is used for the
2956 -- special case of setting the right high bound for a null result.
2957 -- This is of type Ityp.
2959 High_Bound
: Node_Id
;
2960 -- A tree node representing the high bound of the result (of type Ityp)
2963 -- Result of the concatenation (of type Ityp)
2965 Actions
: constant List_Id
:= New_List
;
2966 -- Collect actions to be inserted
2968 Known_Non_Null_Operand_Seen
: Boolean;
2969 -- Set True during generation of the assignments of operands into
2970 -- result once an operand known to be non-null has been seen.
2972 function Make_Artyp_Literal
(Val
: Nat
) return Node_Id
;
2973 -- This function makes an N_Integer_Literal node that is returned in
2974 -- analyzed form with the type set to Artyp. Importantly this literal
2975 -- is not flagged as static, so that if we do computations with it that
2976 -- result in statically detected out of range conditions, we will not
2977 -- generate error messages but instead warning messages.
2979 function To_Artyp
(X
: Node_Id
) return Node_Id
;
2980 -- Given a node of type Ityp, returns the corresponding value of type
2981 -- Artyp. For non-enumeration types, this is a plain integer conversion.
2982 -- For enum types, the Pos of the value is returned.
2984 function To_Ityp
(X
: Node_Id
) return Node_Id
;
2985 -- The inverse function (uses Val in the case of enumeration types)
2987 ------------------------
2988 -- Make_Artyp_Literal --
2989 ------------------------
2991 function Make_Artyp_Literal
(Val
: Nat
) return Node_Id
is
2992 Result
: constant Node_Id
:= Make_Integer_Literal
(Loc
, Val
);
2994 Set_Etype
(Result
, Artyp
);
2995 Set_Analyzed
(Result
, True);
2996 Set_Is_Static_Expression
(Result
, False);
2998 end Make_Artyp_Literal
;
3004 function To_Artyp
(X
: Node_Id
) return Node_Id
is
3006 if Ityp
= Base_Type
(Artyp
) then
3009 elsif Is_Enumeration_Type
(Ityp
) then
3011 Make_Attribute_Reference
(Loc
,
3012 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
3013 Attribute_Name
=> Name_Pos
,
3014 Expressions
=> New_List
(X
));
3017 return Convert_To
(Artyp
, X
);
3025 function To_Ityp
(X
: Node_Id
) return Node_Id
is
3027 if Is_Enumeration_Type
(Ityp
) then
3029 Make_Attribute_Reference
(Loc
,
3030 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
3031 Attribute_Name
=> Name_Val
,
3032 Expressions
=> New_List
(X
));
3034 -- Case where we will do a type conversion
3037 if Ityp
= Base_Type
(Artyp
) then
3040 return Convert_To
(Ityp
, X
);
3045 -- Local Declarations
3047 Opnd_Typ
: Entity_Id
;
3054 -- Start of processing for Expand_Concatenate
3057 -- Choose an appropriate computational type
3059 -- We will be doing calculations of lengths and bounds in this routine
3060 -- and computing one from the other in some cases, e.g. getting the high
3061 -- bound by adding the length-1 to the low bound.
3063 -- We can't just use the index type, or even its base type for this
3064 -- purpose for two reasons. First it might be an enumeration type which
3065 -- is not suitable for computations of any kind, and second it may
3066 -- simply not have enough range. For example if the index type is
3067 -- -128..+127 then lengths can be up to 256, which is out of range of
3070 -- For enumeration types, we can simply use Standard_Integer, this is
3071 -- sufficient since the actual number of enumeration literals cannot
3072 -- possibly exceed the range of integer (remember we will be doing the
3073 -- arithmetic with POS values, not representation values).
3075 if Is_Enumeration_Type
(Ityp
) then
3076 Artyp
:= Standard_Integer
;
3078 -- If index type is Positive, we use the standard unsigned type, to give
3079 -- more room on the top of the range, obviating the need for an overflow
3080 -- check when creating the upper bound. This is needed to avoid junk
3081 -- overflow checks in the common case of String types.
3083 -- ??? Disabled for now
3085 -- elsif Istyp = Standard_Positive then
3086 -- Artyp := Standard_Unsigned;
3088 -- For modular types, we use a 32-bit modular type for types whose size
3089 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
3090 -- identity type, and for larger unsigned types we use 64-bits.
3092 elsif Is_Modular_Integer_Type
(Ityp
) then
3093 if RM_Size
(Ityp
) < RM_Size
(Standard_Unsigned
) then
3094 Artyp
:= Standard_Unsigned
;
3095 elsif RM_Size
(Ityp
) = RM_Size
(Standard_Unsigned
) then
3098 Artyp
:= RTE
(RE_Long_Long_Unsigned
);
3101 -- Similar treatment for signed types
3104 if RM_Size
(Ityp
) < RM_Size
(Standard_Integer
) then
3105 Artyp
:= Standard_Integer
;
3106 elsif RM_Size
(Ityp
) = RM_Size
(Standard_Integer
) then
3109 Artyp
:= Standard_Long_Long_Integer
;
3113 -- Supply dummy entry at start of length array
3115 Aggr_Length
(0) := Make_Artyp_Literal
(0);
3117 -- Go through operands setting up the above arrays
3121 Opnd
:= Remove_Head
(Opnds
);
3122 Opnd_Typ
:= Etype
(Opnd
);
3124 -- The parent got messed up when we put the operands in a list,
3125 -- so now put back the proper parent for the saved operand, that
3126 -- is to say the concatenation node, to make sure that each operand
3127 -- is seen as a subexpression, e.g. if actions must be inserted.
3129 Set_Parent
(Opnd
, Cnode
);
3131 -- Set will be True when we have setup one entry in the array
3135 -- Singleton element (or character literal) case
3137 if Base_Type
(Opnd_Typ
) = Ctyp
then
3139 Operands
(NN
) := Opnd
;
3140 Is_Fixed_Length
(NN
) := True;
3141 Fixed_Length
(NN
) := Uint_1
;
3142 Result_May_Be_Null
:= False;
3144 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
3145 -- since we know that the result cannot be null).
3147 Opnd_Low_Bound
(NN
) :=
3148 Make_Attribute_Reference
(Loc
,
3149 Prefix
=> New_Reference_To
(Istyp
, Loc
),
3150 Attribute_Name
=> Name_First
);
3154 -- String literal case (can only occur for strings of course)
3156 elsif Nkind
(Opnd
) = N_String_Literal
then
3157 Len
:= String_Literal_Length
(Opnd_Typ
);
3160 Result_May_Be_Null
:= False;
3163 -- Capture last operand low and high bound if result could be null
3165 if J
= N
and then Result_May_Be_Null
then
3166 Last_Opnd_Low_Bound
:=
3167 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
));
3169 Last_Opnd_High_Bound
:=
3170 Make_Op_Subtract
(Loc
,
3172 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
)),
3173 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
3176 -- Skip null string literal
3178 if J
< N
and then Len
= 0 then
3183 Operands
(NN
) := Opnd
;
3184 Is_Fixed_Length
(NN
) := True;
3186 -- Set length and bounds
3188 Fixed_Length
(NN
) := Len
;
3190 Opnd_Low_Bound
(NN
) :=
3191 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
));
3198 -- Check constrained case with known bounds
3200 if Is_Constrained
(Opnd_Typ
) then
3202 Index
: constant Node_Id
:= First_Index
(Opnd_Typ
);
3203 Indx_Typ
: constant Entity_Id
:= Etype
(Index
);
3204 Lo
: constant Node_Id
:= Type_Low_Bound
(Indx_Typ
);
3205 Hi
: constant Node_Id
:= Type_High_Bound
(Indx_Typ
);
3208 -- Fixed length constrained array type with known at compile
3209 -- time bounds is last case of fixed length operand.
3211 if Compile_Time_Known_Value
(Lo
)
3213 Compile_Time_Known_Value
(Hi
)
3216 Loval
: constant Uint
:= Expr_Value
(Lo
);
3217 Hival
: constant Uint
:= Expr_Value
(Hi
);
3218 Len
: constant Uint
:=
3219 UI_Max
(Hival
- Loval
+ 1, Uint_0
);
3223 Result_May_Be_Null
:= False;
3226 -- Capture last operand bounds if result could be null
3228 if J
= N
and then Result_May_Be_Null
then
3229 Last_Opnd_Low_Bound
:=
3231 Make_Integer_Literal
(Loc
, Expr_Value
(Lo
)));
3233 Last_Opnd_High_Bound
:=
3235 Make_Integer_Literal
(Loc
, Expr_Value
(Hi
)));
3238 -- Exclude null length case unless last operand
3240 if J
< N
and then Len
= 0 then
3245 Operands
(NN
) := Opnd
;
3246 Is_Fixed_Length
(NN
) := True;
3247 Fixed_Length
(NN
) := Len
;
3249 Opnd_Low_Bound
(NN
) :=
3251 (Make_Integer_Literal
(Loc
, Expr_Value
(Lo
)));
3258 -- All cases where the length is not known at compile time, or the
3259 -- special case of an operand which is known to be null but has a
3260 -- lower bound other than 1 or is other than a string type.
3265 -- Capture operand bounds
3267 Opnd_Low_Bound
(NN
) :=
3268 Make_Attribute_Reference
(Loc
,
3270 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3271 Attribute_Name
=> Name_First
);
3273 -- Capture last operand bounds if result could be null
3275 if J
= N
and Result_May_Be_Null
then
3276 Last_Opnd_Low_Bound
:=
3278 Make_Attribute_Reference
(Loc
,
3280 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3281 Attribute_Name
=> Name_First
));
3283 Last_Opnd_High_Bound
:=
3285 Make_Attribute_Reference
(Loc
,
3287 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3288 Attribute_Name
=> Name_Last
));
3291 -- Capture length of operand in entity
3293 Operands
(NN
) := Opnd
;
3294 Is_Fixed_Length
(NN
) := False;
3296 Var_Length
(NN
) := Make_Temporary
(Loc
, 'L');
3299 Make_Object_Declaration
(Loc
,
3300 Defining_Identifier
=> Var_Length
(NN
),
3301 Constant_Present
=> True,
3302 Object_Definition
=> New_Occurrence_Of
(Artyp
, Loc
),
3304 Make_Attribute_Reference
(Loc
,
3306 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3307 Attribute_Name
=> Name_Length
)));
3311 -- Set next entry in aggregate length array
3313 -- For first entry, make either integer literal for fixed length
3314 -- or a reference to the saved length for variable length.
3317 if Is_Fixed_Length
(1) then
3318 Aggr_Length
(1) := Make_Integer_Literal
(Loc
, Fixed_Length
(1));
3320 Aggr_Length
(1) := New_Reference_To
(Var_Length
(1), Loc
);
3323 -- If entry is fixed length and only fixed lengths so far, make
3324 -- appropriate new integer literal adding new length.
3326 elsif Is_Fixed_Length
(NN
)
3327 and then Nkind
(Aggr_Length
(NN
- 1)) = N_Integer_Literal
3330 Make_Integer_Literal
(Loc
,
3331 Intval
=> Fixed_Length
(NN
) + Intval
(Aggr_Length
(NN
- 1)));
3333 -- All other cases, construct an addition node for the length and
3334 -- create an entity initialized to this length.
3337 Ent
:= Make_Temporary
(Loc
, 'L');
3339 if Is_Fixed_Length
(NN
) then
3340 Clen
:= Make_Integer_Literal
(Loc
, Fixed_Length
(NN
));
3342 Clen
:= New_Reference_To
(Var_Length
(NN
), Loc
);
3346 Make_Object_Declaration
(Loc
,
3347 Defining_Identifier
=> Ent
,
3348 Constant_Present
=> True,
3349 Object_Definition
=> New_Occurrence_Of
(Artyp
, Loc
),
3352 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
- 1)),
3353 Right_Opnd
=> Clen
)));
3355 Aggr_Length
(NN
) := Make_Identifier
(Loc
, Chars
=> Chars
(Ent
));
3362 -- If we have only skipped null operands, return the last operand
3369 -- If we have only one non-null operand, return it and we are done.
3370 -- There is one case in which this cannot be done, and that is when
3371 -- the sole operand is of the element type, in which case it must be
3372 -- converted to an array, and the easiest way of doing that is to go
3373 -- through the normal general circuit.
3375 if NN
= 1 and then Base_Type
(Etype
(Operands
(1))) /= Ctyp
then
3376 Result
:= Operands
(1);
3380 -- Cases where we have a real concatenation
3382 -- Next step is to find the low bound for the result array that we
3383 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3385 -- If the ultimate ancestor of the index subtype is a constrained array
3386 -- definition, then the lower bound is that of the index subtype as
3387 -- specified by (RM 4.5.3(6)).
3389 -- The right test here is to go to the root type, and then the ultimate
3390 -- ancestor is the first subtype of this root type.
3392 if Is_Constrained
(First_Subtype
(Root_Type
(Atyp
))) then
3394 Make_Attribute_Reference
(Loc
,
3396 New_Occurrence_Of
(First_Subtype
(Root_Type
(Atyp
)), Loc
),
3397 Attribute_Name
=> Name_First
);
3399 -- If the first operand in the list has known length we know that
3400 -- the lower bound of the result is the lower bound of this operand.
3402 elsif Is_Fixed_Length
(1) then
3403 Low_Bound
:= Opnd_Low_Bound
(1);
3405 -- OK, we don't know the lower bound, we have to build a horrible
3406 -- if expression node of the form
3408 -- if Cond1'Length /= 0 then
3411 -- if Opnd2'Length /= 0 then
3416 -- The nesting ends either when we hit an operand whose length is known
3417 -- at compile time, or on reaching the last operand, whose low bound we
3418 -- take unconditionally whether or not it is null. It's easiest to do
3419 -- this with a recursive procedure:
3423 function Get_Known_Bound
(J
: Nat
) return Node_Id
;
3424 -- Returns the lower bound determined by operands J .. NN
3426 ---------------------
3427 -- Get_Known_Bound --
3428 ---------------------
3430 function Get_Known_Bound
(J
: Nat
) return Node_Id
is
3432 if Is_Fixed_Length
(J
) or else J
= NN
then
3433 return New_Copy
(Opnd_Low_Bound
(J
));
3437 Make_If_Expression
(Loc
,
3438 Expressions
=> New_List
(
3441 Left_Opnd
=> New_Reference_To
(Var_Length
(J
), Loc
),
3442 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
3444 New_Copy
(Opnd_Low_Bound
(J
)),
3445 Get_Known_Bound
(J
+ 1)));
3447 end Get_Known_Bound
;
3450 Ent
:= Make_Temporary
(Loc
, 'L');
3453 Make_Object_Declaration
(Loc
,
3454 Defining_Identifier
=> Ent
,
3455 Constant_Present
=> True,
3456 Object_Definition
=> New_Occurrence_Of
(Ityp
, Loc
),
3457 Expression
=> Get_Known_Bound
(1)));
3459 Low_Bound
:= New_Reference_To
(Ent
, Loc
);
3463 -- Now we can safely compute the upper bound, normally
3464 -- Low_Bound + Length - 1.
3469 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3471 Make_Op_Subtract
(Loc
,
3472 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3473 Right_Opnd
=> Make_Artyp_Literal
(1))));
3475 -- Note that calculation of the high bound may cause overflow in some
3476 -- very weird cases, so in the general case we need an overflow check on
3477 -- the high bound. We can avoid this for the common case of string types
3478 -- and other types whose index is Positive, since we chose a wider range
3479 -- for the arithmetic type.
3481 if Istyp
/= Standard_Positive
then
3482 Activate_Overflow_Check
(High_Bound
);
3485 -- Handle the exceptional case where the result is null, in which case
3486 -- case the bounds come from the last operand (so that we get the proper
3487 -- bounds if the last operand is super-flat).
3489 if Result_May_Be_Null
then
3491 Make_If_Expression
(Loc
,
3492 Expressions
=> New_List
(
3494 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3495 Right_Opnd
=> Make_Artyp_Literal
(0)),
3496 Last_Opnd_Low_Bound
,
3500 Make_If_Expression
(Loc
,
3501 Expressions
=> New_List
(
3503 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3504 Right_Opnd
=> Make_Artyp_Literal
(0)),
3505 Last_Opnd_High_Bound
,
3509 -- Here is where we insert the saved up actions
3511 Insert_Actions
(Cnode
, Actions
, Suppress
=> All_Checks
);
3513 -- Now we construct an array object with appropriate bounds. We mark
3514 -- the target as internal to prevent useless initialization when
3515 -- Initialize_Scalars is enabled. Also since this is the actual result
3516 -- entity, we make sure we have debug information for the result.
3518 Ent
:= Make_Temporary
(Loc
, 'S');
3519 Set_Is_Internal
(Ent
);
3520 Set_Needs_Debug_Info
(Ent
);
3522 -- If the bound is statically known to be out of range, we do not want
3523 -- to abort, we want a warning and a runtime constraint error. Note that
3524 -- we have arranged that the result will not be treated as a static
3525 -- constant, so we won't get an illegality during this insertion.
3527 Insert_Action
(Cnode
,
3528 Make_Object_Declaration
(Loc
,
3529 Defining_Identifier
=> Ent
,
3530 Object_Definition
=>
3531 Make_Subtype_Indication
(Loc
,
3532 Subtype_Mark
=> New_Occurrence_Of
(Atyp
, Loc
),
3534 Make_Index_Or_Discriminant_Constraint
(Loc
,
3535 Constraints
=> New_List
(
3537 Low_Bound
=> Low_Bound
,
3538 High_Bound
=> High_Bound
))))),
3539 Suppress
=> All_Checks
);
3541 -- If the result of the concatenation appears as the initializing
3542 -- expression of an object declaration, we can just rename the
3543 -- result, rather than copying it.
3545 Set_OK_To_Rename
(Ent
);
3547 -- Catch the static out of range case now
3549 if Raises_Constraint_Error
(High_Bound
) then
3550 raise Concatenation_Error
;
3553 -- Now we will generate the assignments to do the actual concatenation
3555 -- There is one case in which we will not do this, namely when all the
3556 -- following conditions are met:
3558 -- The result type is Standard.String
3560 -- There are nine or fewer retained (non-null) operands
3562 -- The optimization level is -O0
3564 -- The corresponding System.Concat_n.Str_Concat_n routine is
3565 -- available in the run time.
3567 -- The debug flag gnatd.c is not set
3569 -- If all these conditions are met then we generate a call to the
3570 -- relevant concatenation routine. The purpose of this is to avoid
3571 -- undesirable code bloat at -O0.
3573 if Atyp
= Standard_String
3574 and then NN
in 2 .. 9
3575 and then (Opt
.Optimization_Level
= 0 or else Debug_Flag_Dot_CC
)
3576 and then not Debug_Flag_Dot_C
3579 RR
: constant array (Nat
range 2 .. 9) of RE_Id
:=
3590 if RTE_Available
(RR
(NN
)) then
3592 Opnds
: constant List_Id
:=
3593 New_List
(New_Occurrence_Of
(Ent
, Loc
));
3596 for J
in 1 .. NN
loop
3597 if Is_List_Member
(Operands
(J
)) then
3598 Remove
(Operands
(J
));
3601 if Base_Type
(Etype
(Operands
(J
))) = Ctyp
then
3603 Make_Aggregate
(Loc
,
3604 Component_Associations
=> New_List
(
3605 Make_Component_Association
(Loc
,
3606 Choices
=> New_List
(
3607 Make_Integer_Literal
(Loc
, 1)),
3608 Expression
=> Operands
(J
)))));
3611 Append_To
(Opnds
, Operands
(J
));
3615 Insert_Action
(Cnode
,
3616 Make_Procedure_Call_Statement
(Loc
,
3617 Name
=> New_Reference_To
(RTE
(RR
(NN
)), Loc
),
3618 Parameter_Associations
=> Opnds
));
3620 Result
:= New_Reference_To
(Ent
, Loc
);
3627 -- Not special case so generate the assignments
3629 Known_Non_Null_Operand_Seen
:= False;
3631 for J
in 1 .. NN
loop
3633 Lo
: constant Node_Id
:=
3635 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3636 Right_Opnd
=> Aggr_Length
(J
- 1));
3638 Hi
: constant Node_Id
:=
3640 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3642 Make_Op_Subtract
(Loc
,
3643 Left_Opnd
=> Aggr_Length
(J
),
3644 Right_Opnd
=> Make_Artyp_Literal
(1)));
3647 -- Singleton case, simple assignment
3649 if Base_Type
(Etype
(Operands
(J
))) = Ctyp
then
3650 Known_Non_Null_Operand_Seen
:= True;
3651 Insert_Action
(Cnode
,
3652 Make_Assignment_Statement
(Loc
,
3654 Make_Indexed_Component
(Loc
,
3655 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
3656 Expressions
=> New_List
(To_Ityp
(Lo
))),
3657 Expression
=> Operands
(J
)),
3658 Suppress
=> All_Checks
);
3660 -- Array case, slice assignment, skipped when argument is fixed
3661 -- length and known to be null.
3663 elsif (not Is_Fixed_Length
(J
)) or else (Fixed_Length
(J
) > 0) then
3666 Make_Assignment_Statement
(Loc
,
3670 New_Occurrence_Of
(Ent
, Loc
),
3673 Low_Bound
=> To_Ityp
(Lo
),
3674 High_Bound
=> To_Ityp
(Hi
))),
3675 Expression
=> Operands
(J
));
3677 if Is_Fixed_Length
(J
) then
3678 Known_Non_Null_Operand_Seen
:= True;
3680 elsif not Known_Non_Null_Operand_Seen
then
3682 -- Here if operand length is not statically known and no
3683 -- operand known to be non-null has been processed yet.
3684 -- If operand length is 0, we do not need to perform the
3685 -- assignment, and we must avoid the evaluation of the
3686 -- high bound of the slice, since it may underflow if the
3687 -- low bound is Ityp'First.
3690 Make_Implicit_If_Statement
(Cnode
,
3694 New_Occurrence_Of
(Var_Length
(J
), Loc
),
3695 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
3696 Then_Statements
=> New_List
(Assign
));
3699 Insert_Action
(Cnode
, Assign
, Suppress
=> All_Checks
);
3705 -- Finally we build the result, which is a reference to the array object
3707 Result
:= New_Reference_To
(Ent
, Loc
);
3710 Rewrite
(Cnode
, Result
);
3711 Analyze_And_Resolve
(Cnode
, Atyp
);
3714 when Concatenation_Error
=>
3716 -- Kill warning generated for the declaration of the static out of
3717 -- range high bound, and instead generate a Constraint_Error with
3718 -- an appropriate specific message.
3720 Kill_Dead_Code
(Declaration_Node
(Entity
(High_Bound
)));
3721 Apply_Compile_Time_Constraint_Error
3723 Msg
=> "concatenation result upper bound out of range??",
3724 Reason
=> CE_Range_Check_Failed
);
3725 end Expand_Concatenate
;
3727 ---------------------------------------------------
3728 -- Expand_Membership_Minimize_Eliminate_Overflow --
3729 ---------------------------------------------------
3731 procedure Expand_Membership_Minimize_Eliminate_Overflow
(N
: Node_Id
) is
3732 pragma Assert
(Nkind
(N
) = N_In
);
3733 -- Despite the name, this routine applies only to N_In, not to
3734 -- N_Not_In. The latter is always rewritten as not (X in Y).
3736 Result_Type
: constant Entity_Id
:= Etype
(N
);
3737 -- Capture result type, may be a derived boolean type
3739 Loc
: constant Source_Ptr
:= Sloc
(N
);
3740 Lop
: constant Node_Id
:= Left_Opnd
(N
);
3741 Rop
: constant Node_Id
:= Right_Opnd
(N
);
3743 -- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3744 -- is thus tempting to capture these values, but due to the rewrites
3745 -- that occur as a result of overflow checking, these values change
3746 -- as we go along, and it is safe just to always use Etype explicitly.
3748 Restype
: constant Entity_Id
:= Etype
(N
);
3752 -- Bounds in Minimize calls, not used currently
3754 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
3755 -- Entity for Long_Long_Integer'Base (Standard should export this???)
3758 Minimize_Eliminate_Overflows
(Lop
, Lo
, Hi
, Top_Level
=> False);
3760 -- If right operand is a subtype name, and the subtype name has no
3761 -- predicate, then we can just replace the right operand with an
3762 -- explicit range T'First .. T'Last, and use the explicit range code.
3764 if Nkind
(Rop
) /= N_Range
3765 and then No
(Predicate_Function
(Etype
(Rop
)))
3768 Rtyp
: constant Entity_Id
:= Etype
(Rop
);
3773 Make_Attribute_Reference
(Loc
,
3774 Attribute_Name
=> Name_First
,
3775 Prefix
=> New_Reference_To
(Rtyp
, Loc
)),
3777 Make_Attribute_Reference
(Loc
,
3778 Attribute_Name
=> Name_Last
,
3779 Prefix
=> New_Reference_To
(Rtyp
, Loc
))));
3780 Analyze_And_Resolve
(Rop
, Rtyp
, Suppress
=> All_Checks
);
3784 -- Here for the explicit range case. Note that the bounds of the range
3785 -- have not been processed for minimized or eliminated checks.
3787 if Nkind
(Rop
) = N_Range
then
3788 Minimize_Eliminate_Overflows
3789 (Low_Bound
(Rop
), Lo
, Hi
, Top_Level
=> False);
3790 Minimize_Eliminate_Overflows
3791 (High_Bound
(Rop
), Lo
, Hi
, Top_Level
=> False);
3793 -- We have A in B .. C, treated as A >= B and then A <= C
3797 if Is_RTE
(Etype
(Lop
), RE_Bignum
)
3798 or else Is_RTE
(Etype
(Low_Bound
(Rop
)), RE_Bignum
)
3799 or else Is_RTE
(Etype
(High_Bound
(Rop
)), RE_Bignum
)
3802 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
3803 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
3804 L
: constant Entity_Id
:=
3805 Make_Defining_Identifier
(Loc
, Name_uL
);
3806 Lopnd
: constant Node_Id
:= Convert_To_Bignum
(Lop
);
3807 Lbound
: constant Node_Id
:=
3808 Convert_To_Bignum
(Low_Bound
(Rop
));
3809 Hbound
: constant Node_Id
:=
3810 Convert_To_Bignum
(High_Bound
(Rop
));
3812 -- Now we rewrite the membership test node to look like
3815 -- Bnn : Result_Type;
3817 -- M : Mark_Id := SS_Mark;
3818 -- L : Bignum := Lopnd;
3820 -- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3828 -- Insert declaration of L into declarations of bignum block
3831 (Last
(Declarations
(Blk
)),
3832 Make_Object_Declaration
(Loc
,
3833 Defining_Identifier
=> L
,
3834 Object_Definition
=>
3835 New_Occurrence_Of
(RTE
(RE_Bignum
), Loc
),
3836 Expression
=> Lopnd
));
3838 -- Insert assignment to Bnn into expressions of bignum block
3841 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
3842 Make_Assignment_Statement
(Loc
,
3843 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
3847 Make_Function_Call
(Loc
,
3849 New_Occurrence_Of
(RTE
(RE_Big_GE
), Loc
),
3850 Parameter_Associations
=> New_List
(
3851 New_Occurrence_Of
(L
, Loc
),
3854 Make_Function_Call
(Loc
,
3856 New_Occurrence_Of
(RTE
(RE_Big_LE
), Loc
),
3857 Parameter_Associations
=> New_List
(
3858 New_Occurrence_Of
(L
, Loc
),
3861 -- Now rewrite the node
3864 Make_Expression_With_Actions
(Loc
,
3865 Actions
=> New_List
(
3866 Make_Object_Declaration
(Loc
,
3867 Defining_Identifier
=> Bnn
,
3868 Object_Definition
=>
3869 New_Occurrence_Of
(Result_Type
, Loc
)),
3871 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
3872 Analyze_And_Resolve
(N
, Result_Type
);
3876 -- Here if no bignums around
3879 -- Case where types are all the same
3881 if Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(Low_Bound
(Rop
)))
3883 Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(High_Bound
(Rop
)))
3887 -- If types are not all the same, it means that we have rewritten
3888 -- at least one of them to be of type Long_Long_Integer, and we
3889 -- will convert the other operands to Long_Long_Integer.
3892 Convert_To_And_Rewrite
(LLIB
, Lop
);
3893 Set_Analyzed
(Lop
, False);
3894 Analyze_And_Resolve
(Lop
, LLIB
);
3896 -- For the right operand, avoid unnecessary recursion into
3897 -- this routine, we know that overflow is not possible.
3899 Convert_To_And_Rewrite
(LLIB
, Low_Bound
(Rop
));
3900 Convert_To_And_Rewrite
(LLIB
, High_Bound
(Rop
));
3901 Set_Analyzed
(Rop
, False);
3902 Analyze_And_Resolve
(Rop
, LLIB
, Suppress
=> Overflow_Check
);
3905 -- Now the three operands are of the same signed integer type,
3906 -- so we can use the normal expansion routine for membership,
3907 -- setting the flag to prevent recursion into this procedure.
3909 Set_No_Minimize_Eliminate
(N
);
3913 -- Right operand is a subtype name and the subtype has a predicate. We
3914 -- have to make sure the predicate is checked, and for that we need to
3915 -- use the standard N_In circuitry with appropriate types.
3918 pragma Assert
(Present
(Predicate_Function
(Etype
(Rop
))));
3920 -- If types are "right", just call Expand_N_In preventing recursion
3922 if Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(Rop
)) then
3923 Set_No_Minimize_Eliminate
(N
);
3928 elsif Is_RTE
(Etype
(Lop
), RE_Bignum
) then
3930 -- For X in T, we want to rewrite our node as
3933 -- Bnn : Result_Type;
3936 -- M : Mark_Id := SS_Mark;
3937 -- Lnn : Long_Long_Integer'Base
3943 -- if not Bignum_In_LLI_Range (Nnn) then
3946 -- Lnn := From_Bignum (Nnn);
3948 -- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3949 -- and then T'Base (Lnn) in T;
3958 -- A bit gruesome, but there doesn't seem to be a simpler way
3961 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
3962 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
3963 Lnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L', N
);
3964 Nnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'N', N
);
3965 T
: constant Entity_Id
:= Etype
(Rop
);
3966 TB
: constant Entity_Id
:= Base_Type
(T
);
3970 -- Mark the last membership operation to prevent recursion
3974 Left_Opnd
=> Convert_To
(TB
, New_Occurrence_Of
(Lnn
, Loc
)),
3975 Right_Opnd
=> New_Occurrence_Of
(T
, Loc
));
3976 Set_No_Minimize_Eliminate
(Nin
);
3978 -- Now decorate the block
3981 (Last
(Declarations
(Blk
)),
3982 Make_Object_Declaration
(Loc
,
3983 Defining_Identifier
=> Lnn
,
3984 Object_Definition
=> New_Occurrence_Of
(LLIB
, Loc
)));
3987 (Last
(Declarations
(Blk
)),
3988 Make_Object_Declaration
(Loc
,
3989 Defining_Identifier
=> Nnn
,
3990 Object_Definition
=>
3991 New_Occurrence_Of
(RTE
(RE_Bignum
), Loc
)));
3994 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
3996 Make_Assignment_Statement
(Loc
,
3997 Name
=> New_Occurrence_Of
(Nnn
, Loc
),
3998 Expression
=> Relocate_Node
(Lop
)),
4000 Make_Implicit_If_Statement
(N
,
4004 Make_Function_Call
(Loc
,
4007 (RTE
(RE_Bignum_In_LLI_Range
), Loc
),
4008 Parameter_Associations
=> New_List
(
4009 New_Occurrence_Of
(Nnn
, Loc
)))),
4011 Then_Statements
=> New_List
(
4012 Make_Assignment_Statement
(Loc
,
4013 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
4015 New_Occurrence_Of
(Standard_False
, Loc
))),
4017 Else_Statements
=> New_List
(
4018 Make_Assignment_Statement
(Loc
,
4019 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
4021 Make_Function_Call
(Loc
,
4023 New_Occurrence_Of
(RTE
(RE_From_Bignum
), Loc
),
4024 Parameter_Associations
=> New_List
(
4025 New_Occurrence_Of
(Nnn
, Loc
)))),
4027 Make_Assignment_Statement
(Loc
,
4028 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
4033 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
4038 Make_Attribute_Reference
(Loc
,
4039 Attribute_Name
=> Name_First
,
4041 New_Occurrence_Of
(TB
, Loc
))),
4045 Make_Attribute_Reference
(Loc
,
4046 Attribute_Name
=> Name_Last
,
4048 New_Occurrence_Of
(TB
, Loc
))))),
4050 Right_Opnd
=> Nin
))))));
4052 -- Now we can do the rewrite
4055 Make_Expression_With_Actions
(Loc
,
4056 Actions
=> New_List
(
4057 Make_Object_Declaration
(Loc
,
4058 Defining_Identifier
=> Bnn
,
4059 Object_Definition
=>
4060 New_Occurrence_Of
(Result_Type
, Loc
)),
4062 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
4063 Analyze_And_Resolve
(N
, Result_Type
);
4067 -- Not bignum case, but types don't match (this means we rewrote the
4068 -- left operand to be Long_Long_Integer).
4071 pragma Assert
(Base_Type
(Etype
(Lop
)) = LLIB
);
4073 -- We rewrite the membership test as (where T is the type with
4074 -- the predicate, i.e. the type of the right operand)
4076 -- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
4077 -- and then T'Base (Lop) in T
4080 T
: constant Entity_Id
:= Etype
(Rop
);
4081 TB
: constant Entity_Id
:= Base_Type
(T
);
4085 -- The last membership test is marked to prevent recursion
4089 Left_Opnd
=> Convert_To
(TB
, Duplicate_Subexpr
(Lop
)),
4090 Right_Opnd
=> New_Occurrence_Of
(T
, Loc
));
4091 Set_No_Minimize_Eliminate
(Nin
);
4093 -- Now do the rewrite
4104 Make_Attribute_Reference
(Loc
,
4105 Attribute_Name
=> Name_First
,
4106 Prefix
=> New_Occurrence_Of
(TB
, Loc
))),
4109 Make_Attribute_Reference
(Loc
,
4110 Attribute_Name
=> Name_Last
,
4111 Prefix
=> New_Occurrence_Of
(TB
, Loc
))))),
4112 Right_Opnd
=> Nin
));
4113 Set_Analyzed
(N
, False);
4114 Analyze_And_Resolve
(N
, Restype
);
4118 end Expand_Membership_Minimize_Eliminate_Overflow
;
4120 ------------------------
4121 -- Expand_N_Allocator --
4122 ------------------------
4124 procedure Expand_N_Allocator
(N
: Node_Id
) is
4125 Etyp
: constant Entity_Id
:= Etype
(Expression
(N
));
4126 Loc
: constant Source_Ptr
:= Sloc
(N
);
4127 PtrT
: constant Entity_Id
:= Etype
(N
);
4129 procedure Rewrite_Coextension
(N
: Node_Id
);
4130 -- Static coextensions have the same lifetime as the entity they
4131 -- constrain. Such occurrences can be rewritten as aliased objects
4132 -- and their unrestricted access used instead of the coextension.
4134 function Size_In_Storage_Elements
(E
: Entity_Id
) return Node_Id
;
4135 -- Given a constrained array type E, returns a node representing the
4136 -- code to compute the size in storage elements for the given type.
4137 -- This is done without using the attribute (which malfunctions for
4140 -------------------------
4141 -- Rewrite_Coextension --
4142 -------------------------
4144 procedure Rewrite_Coextension
(N
: Node_Id
) is
4145 Temp_Id
: constant Node_Id
:= Make_Temporary
(Loc
, 'C');
4146 Temp_Decl
: Node_Id
;
4150 -- Cnn : aliased Etyp;
4153 Make_Object_Declaration
(Loc
,
4154 Defining_Identifier
=> Temp_Id
,
4155 Aliased_Present
=> True,
4156 Object_Definition
=> New_Occurrence_Of
(Etyp
, Loc
));
4158 if Nkind
(Expression
(N
)) = N_Qualified_Expression
then
4159 Set_Expression
(Temp_Decl
, Expression
(Expression
(N
)));
4162 Insert_Action
(N
, Temp_Decl
);
4164 Make_Attribute_Reference
(Loc
,
4165 Prefix
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4166 Attribute_Name
=> Name_Unrestricted_Access
));
4168 Analyze_And_Resolve
(N
, PtrT
);
4169 end Rewrite_Coextension
;
4171 ------------------------------
4172 -- Size_In_Storage_Elements --
4173 ------------------------------
4175 function Size_In_Storage_Elements
(E
: Entity_Id
) return Node_Id
is
4177 -- Logically this just returns E'Max_Size_In_Storage_Elements.
4178 -- However, the reason for the existence of this function is
4179 -- to construct a test for sizes too large, which means near the
4180 -- 32-bit limit on a 32-bit machine, and precisely the trouble
4181 -- is that we get overflows when sizes are greater than 2**31.
4183 -- So what we end up doing for array types is to use the expression:
4185 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
4187 -- which avoids this problem. All this is a bit bogus, but it does
4188 -- mean we catch common cases of trying to allocate arrays that
4189 -- are too large, and which in the absence of a check results in
4190 -- undetected chaos ???
4192 -- Note in particular that this is a pessimistic estimate in the
4193 -- case of packed array types, where an array element might occupy
4194 -- just a fraction of a storage element???
4201 for J
in 1 .. Number_Dimensions
(E
) loop
4203 Make_Attribute_Reference
(Loc
,
4204 Prefix
=> New_Occurrence_Of
(E
, Loc
),
4205 Attribute_Name
=> Name_Length
,
4206 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, J
)));
4213 Make_Op_Multiply
(Loc
,
4220 Make_Op_Multiply
(Loc
,
4223 Make_Attribute_Reference
(Loc
,
4224 Prefix
=> New_Occurrence_Of
(Component_Type
(E
), Loc
),
4225 Attribute_Name
=> Name_Max_Size_In_Storage_Elements
));
4227 end Size_In_Storage_Elements
;
4231 Dtyp
: constant Entity_Id
:= Available_View
(Designated_Type
(PtrT
));
4235 Rel_Typ
: Entity_Id
;
4238 -- Start of processing for Expand_N_Allocator
4241 -- RM E.2.3(22). We enforce that the expected type of an allocator
4242 -- shall not be a remote access-to-class-wide-limited-private type
4244 -- Why is this being done at expansion time, seems clearly wrong ???
4246 Validate_Remote_Access_To_Class_Wide_Type
(N
);
4248 -- Processing for anonymous access-to-controlled types. These access
4249 -- types receive a special finalization master which appears in the
4250 -- declarations of the enclosing semantic unit. This expansion is done
4251 -- now to ensure that any additional types generated by this routine or
4252 -- Expand_Allocator_Expression inherit the proper type attributes.
4254 if (Ekind
(PtrT
) = E_Anonymous_Access_Type
4255 or else (Is_Itype
(PtrT
) and then No
(Finalization_Master
(PtrT
))))
4256 and then Needs_Finalization
(Dtyp
)
4258 -- Detect the allocation of an anonymous controlled object where the
4259 -- type of the context is named. For example:
4261 -- procedure Proc (Ptr : Named_Access_Typ);
4262 -- Proc (new Designated_Typ);
4264 -- Regardless of the anonymous-to-named access type conversion, the
4265 -- lifetime of the object must be associated with the named access
4266 -- type. Use the finalization-related attributes of this type.
4268 if Nkind_In
(Parent
(N
), N_Type_Conversion
,
4269 N_Unchecked_Type_Conversion
)
4270 and then Ekind_In
(Etype
(Parent
(N
)), E_Access_Subtype
,
4272 E_General_Access_Type
)
4274 Rel_Typ
:= Etype
(Parent
(N
));
4279 -- Anonymous access-to-controlled types allocate on the global pool.
4280 -- Do not set this attribute on .NET/JVM since those targets do not
4283 if No
(Associated_Storage_Pool
(PtrT
)) and then VM_Target
= No_VM
then
4284 if Present
(Rel_Typ
) then
4285 Set_Associated_Storage_Pool
(PtrT
,
4286 Associated_Storage_Pool
(Rel_Typ
));
4288 Set_Associated_Storage_Pool
(PtrT
,
4289 Get_Global_Pool_For_Access_Type
(PtrT
));
4293 -- The finalization master must be inserted and analyzed as part of
4294 -- the current semantic unit. Note that the master is updated when
4295 -- analysis changes current units.
4297 if Present
(Rel_Typ
) then
4298 Set_Finalization_Master
(PtrT
, Finalization_Master
(Rel_Typ
));
4300 Set_Finalization_Master
(PtrT
, Current_Anonymous_Master
);
4304 -- Set the storage pool and find the appropriate version of Allocate to
4305 -- call. Do not overwrite the storage pool if it is already set, which
4306 -- can happen for build-in-place function returns (see
4307 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
4309 if No
(Storage_Pool
(N
)) then
4310 Pool
:= Associated_Storage_Pool
(Root_Type
(PtrT
));
4312 if Present
(Pool
) then
4313 Set_Storage_Pool
(N
, Pool
);
4315 if Is_RTE
(Pool
, RE_SS_Pool
) then
4316 if VM_Target
= No_VM
then
4317 Set_Procedure_To_Call
(N
, RTE
(RE_SS_Allocate
));
4320 -- In the case of an allocator for a simple storage pool, locate
4321 -- and save a reference to the pool type's Allocate routine.
4323 elsif Present
(Get_Rep_Pragma
4324 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4327 Pool_Type
: constant Entity_Id
:= Base_Type
(Etype
(Pool
));
4328 Alloc_Op
: Entity_Id
;
4330 Alloc_Op
:= Get_Name_Entity_Id
(Name_Allocate
);
4331 while Present
(Alloc_Op
) loop
4332 if Scope
(Alloc_Op
) = Scope
(Pool_Type
)
4333 and then Present
(First_Formal
(Alloc_Op
))
4334 and then Etype
(First_Formal
(Alloc_Op
)) = Pool_Type
4336 Set_Procedure_To_Call
(N
, Alloc_Op
);
4339 Alloc_Op
:= Homonym
(Alloc_Op
);
4344 elsif Is_Class_Wide_Type
(Etype
(Pool
)) then
4345 Set_Procedure_To_Call
(N
, RTE
(RE_Allocate_Any
));
4348 Set_Procedure_To_Call
(N
,
4349 Find_Prim_Op
(Etype
(Pool
), Name_Allocate
));
4354 -- Under certain circumstances we can replace an allocator by an access
4355 -- to statically allocated storage. The conditions, as noted in AARM
4356 -- 3.10 (10c) are as follows:
4358 -- Size and initial value is known at compile time
4359 -- Access type is access-to-constant
4361 -- The allocator is not part of a constraint on a record component,
4362 -- because in that case the inserted actions are delayed until the
4363 -- record declaration is fully analyzed, which is too late for the
4364 -- analysis of the rewritten allocator.
4366 if Is_Access_Constant
(PtrT
)
4367 and then Nkind
(Expression
(N
)) = N_Qualified_Expression
4368 and then Compile_Time_Known_Value
(Expression
(Expression
(N
)))
4369 and then Size_Known_At_Compile_Time
4370 (Etype
(Expression
(Expression
(N
))))
4371 and then not Is_Record_Type
(Current_Scope
)
4373 -- Here we can do the optimization. For the allocator
4377 -- We insert an object declaration
4379 -- Tnn : aliased x := y;
4381 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4382 -- marked as requiring static allocation.
4384 Temp
:= Make_Temporary
(Loc
, 'T', Expression
(Expression
(N
)));
4385 Desig
:= Subtype_Mark
(Expression
(N
));
4387 -- If context is constrained, use constrained subtype directly,
4388 -- so that the constant is not labelled as having a nominally
4389 -- unconstrained subtype.
4391 if Entity
(Desig
) = Base_Type
(Dtyp
) then
4392 Desig
:= New_Occurrence_Of
(Dtyp
, Loc
);
4396 Make_Object_Declaration
(Loc
,
4397 Defining_Identifier
=> Temp
,
4398 Aliased_Present
=> True,
4399 Constant_Present
=> Is_Access_Constant
(PtrT
),
4400 Object_Definition
=> Desig
,
4401 Expression
=> Expression
(Expression
(N
))));
4404 Make_Attribute_Reference
(Loc
,
4405 Prefix
=> New_Occurrence_Of
(Temp
, Loc
),
4406 Attribute_Name
=> Name_Unrestricted_Access
));
4408 Analyze_And_Resolve
(N
, PtrT
);
4410 -- We set the variable as statically allocated, since we don't want
4411 -- it going on the stack of the current procedure!
4413 Set_Is_Statically_Allocated
(Temp
);
4417 -- Same if the allocator is an access discriminant for a local object:
4418 -- instead of an allocator we create a local value and constrain the
4419 -- enclosing object with the corresponding access attribute.
4421 if Is_Static_Coextension
(N
) then
4422 Rewrite_Coextension
(N
);
4426 -- Check for size too large, we do this because the back end misses
4427 -- proper checks here and can generate rubbish allocation calls when
4428 -- we are near the limit. We only do this for the 32-bit address case
4429 -- since that is from a practical point of view where we see a problem.
4431 if System_Address_Size
= 32
4432 and then not Storage_Checks_Suppressed
(PtrT
)
4433 and then not Storage_Checks_Suppressed
(Dtyp
)
4434 and then not Storage_Checks_Suppressed
(Etyp
)
4436 -- The check we want to generate should look like
4438 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4439 -- raise Storage_Error;
4442 -- where 3.5 gigabytes is a constant large enough to accommodate any
4443 -- reasonable request for. But we can't do it this way because at
4444 -- least at the moment we don't compute this attribute right, and
4445 -- can silently give wrong results when the result gets large. Since
4446 -- this is all about large results, that's bad, so instead we only
4447 -- apply the check for constrained arrays, and manually compute the
4448 -- value of the attribute ???
4450 if Is_Array_Type
(Etyp
) and then Is_Constrained
(Etyp
) then
4452 Make_Raise_Storage_Error
(Loc
,
4455 Left_Opnd
=> Size_In_Storage_Elements
(Etyp
),
4457 Make_Integer_Literal
(Loc
, Uint_7
* (Uint_2
** 29))),
4458 Reason
=> SE_Object_Too_Large
));
4462 -- Handle case of qualified expression (other than optimization above)
4463 -- First apply constraint checks, because the bounds or discriminants
4464 -- in the aggregate might not match the subtype mark in the allocator.
4466 if Nkind
(Expression
(N
)) = N_Qualified_Expression
then
4467 Apply_Constraint_Check
4468 (Expression
(Expression
(N
)), Etype
(Expression
(N
)));
4470 Expand_Allocator_Expression
(N
);
4474 -- If the allocator is for a type which requires initialization, and
4475 -- there is no initial value (i.e. operand is a subtype indication
4476 -- rather than a qualified expression), then we must generate a call to
4477 -- the initialization routine using an expressions action node:
4479 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
4481 -- Here ptr_T is the pointer type for the allocator, and T is the
4482 -- subtype of the allocator. A special case arises if the designated
4483 -- type of the access type is a task or contains tasks. In this case
4484 -- the call to Init (Temp.all ...) is replaced by code that ensures
4485 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
4486 -- for details). In addition, if the type T is a task T, then the
4487 -- first argument to Init must be converted to the task record type.
4490 T
: constant Entity_Id
:= Entity
(Expression
(N
));
4496 Init_Arg1
: Node_Id
;
4497 Temp_Decl
: Node_Id
;
4498 Temp_Type
: Entity_Id
;
4501 if No_Initialization
(N
) then
4503 -- Even though this might be a simple allocation, create a custom
4504 -- Allocate if the context requires it. Since .NET/JVM compilers
4505 -- do not support pools, this step is skipped.
4507 if VM_Target
= No_VM
4508 and then Present
(Finalization_Master
(PtrT
))
4510 Build_Allocate_Deallocate_Proc
4512 Is_Allocate
=> True);
4515 -- Case of no initialization procedure present
4517 elsif not Has_Non_Null_Base_Init_Proc
(T
) then
4519 -- Case of simple initialization required
4521 if Needs_Simple_Initialization
(T
) then
4522 Check_Restriction
(No_Default_Initialization
, N
);
4523 Rewrite
(Expression
(N
),
4524 Make_Qualified_Expression
(Loc
,
4525 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
4526 Expression
=> Get_Simple_Init_Val
(T
, N
)));
4528 Analyze_And_Resolve
(Expression
(Expression
(N
)), T
);
4529 Analyze_And_Resolve
(Expression
(N
), T
);
4530 Set_Paren_Count
(Expression
(Expression
(N
)), 1);
4531 Expand_N_Allocator
(N
);
4533 -- No initialization required
4539 -- Case of initialization procedure present, must be called
4542 Check_Restriction
(No_Default_Initialization
, N
);
4544 if not Restriction_Active
(No_Default_Initialization
) then
4545 Init
:= Base_Init_Proc
(T
);
4547 Temp
:= Make_Temporary
(Loc
, 'P');
4549 -- Construct argument list for the initialization routine call
4552 Make_Explicit_Dereference
(Loc
,
4554 New_Reference_To
(Temp
, Loc
));
4556 Set_Assignment_OK
(Init_Arg1
);
4559 -- The initialization procedure expects a specific type. if the
4560 -- context is access to class wide, indicate that the object
4561 -- being allocated has the right specific type.
4563 if Is_Class_Wide_Type
(Dtyp
) then
4564 Init_Arg1
:= Unchecked_Convert_To
(T
, Init_Arg1
);
4567 -- If designated type is a concurrent type or if it is private
4568 -- type whose definition is a concurrent type, the first
4569 -- argument in the Init routine has to be unchecked conversion
4570 -- to the corresponding record type. If the designated type is
4571 -- a derived type, also convert the argument to its root type.
4573 if Is_Concurrent_Type
(T
) then
4575 Unchecked_Convert_To
(
4576 Corresponding_Record_Type
(T
), Init_Arg1
);
4578 elsif Is_Private_Type
(T
)
4579 and then Present
(Full_View
(T
))
4580 and then Is_Concurrent_Type
(Full_View
(T
))
4583 Unchecked_Convert_To
4584 (Corresponding_Record_Type
(Full_View
(T
)), Init_Arg1
);
4586 elsif Etype
(First_Formal
(Init
)) /= Base_Type
(T
) then
4588 Ftyp
: constant Entity_Id
:= Etype
(First_Formal
(Init
));
4591 Init_Arg1
:= OK_Convert_To
(Etype
(Ftyp
), Init_Arg1
);
4592 Set_Etype
(Init_Arg1
, Ftyp
);
4596 Args
:= New_List
(Init_Arg1
);
4598 -- For the task case, pass the Master_Id of the access type as
4599 -- the value of the _Master parameter, and _Chain as the value
4600 -- of the _Chain parameter (_Chain will be defined as part of
4601 -- the generated code for the allocator).
4603 -- In Ada 2005, the context may be a function that returns an
4604 -- anonymous access type. In that case the Master_Id has been
4605 -- created when expanding the function declaration.
4607 if Has_Task
(T
) then
4608 if No
(Master_Id
(Base_Type
(PtrT
))) then
4610 -- The designated type was an incomplete type, and the
4611 -- access type did not get expanded. Salvage it now.
4613 if not Restriction_Active
(No_Task_Hierarchy
) then
4614 if Present
(Parent
(Base_Type
(PtrT
))) then
4615 Expand_N_Full_Type_Declaration
4616 (Parent
(Base_Type
(PtrT
)));
4618 -- The only other possibility is an itype. For this
4619 -- case, the master must exist in the context. This is
4620 -- the case when the allocator initializes an access
4621 -- component in an init-proc.
4624 pragma Assert
(Is_Itype
(PtrT
));
4625 Build_Master_Renaming
(PtrT
, N
);
4630 -- If the context of the allocator is a declaration or an
4631 -- assignment, we can generate a meaningful image for it,
4632 -- even though subsequent assignments might remove the
4633 -- connection between task and entity. We build this image
4634 -- when the left-hand side is a simple variable, a simple
4635 -- indexed assignment or a simple selected component.
4637 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
4639 Nam
: constant Node_Id
:= Name
(Parent
(N
));
4642 if Is_Entity_Name
(Nam
) then
4644 Build_Task_Image_Decls
4647 (Entity
(Nam
), Sloc
(Nam
)), T
);
4649 elsif Nkind_In
(Nam
, N_Indexed_Component
,
4650 N_Selected_Component
)
4651 and then Is_Entity_Name
(Prefix
(Nam
))
4654 Build_Task_Image_Decls
4655 (Loc
, Nam
, Etype
(Prefix
(Nam
)));
4657 Decls
:= Build_Task_Image_Decls
(Loc
, T
, T
);
4661 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
then
4663 Build_Task_Image_Decls
4664 (Loc
, Defining_Identifier
(Parent
(N
)), T
);
4667 Decls
:= Build_Task_Image_Decls
(Loc
, T
, T
);
4670 if Restriction_Active
(No_Task_Hierarchy
) then
4672 New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
));
4676 (Master_Id
(Base_Type
(Root_Type
(PtrT
))), Loc
));
4679 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
4681 Decl
:= Last
(Decls
);
4683 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
));
4685 -- Has_Task is false, Decls not used
4691 -- Add discriminants if discriminated type
4694 Dis
: Boolean := False;
4698 if Has_Discriminants
(T
) then
4702 elsif Is_Private_Type
(T
)
4703 and then Present
(Full_View
(T
))
4704 and then Has_Discriminants
(Full_View
(T
))
4707 Typ
:= Full_View
(T
);
4712 -- If the allocated object will be constrained by the
4713 -- default values for discriminants, then build a subtype
4714 -- with those defaults, and change the allocated subtype
4715 -- to that. Note that this happens in fewer cases in Ada
4718 if not Is_Constrained
(Typ
)
4719 and then Present
(Discriminant_Default_Value
4720 (First_Discriminant
(Typ
)))
4721 and then (Ada_Version
< Ada_2005
4723 Object_Type_Has_Constrained_Partial_View
4724 (Typ
, Current_Scope
))
4726 Typ
:= Build_Default_Subtype
(Typ
, N
);
4727 Set_Expression
(N
, New_Reference_To
(Typ
, Loc
));
4730 Discr
:= First_Elmt
(Discriminant_Constraint
(Typ
));
4731 while Present
(Discr
) loop
4732 Nod
:= Node
(Discr
);
4733 Append
(New_Copy_Tree
(Node
(Discr
)), Args
);
4735 -- AI-416: when the discriminant constraint is an
4736 -- anonymous access type make sure an accessibility
4737 -- check is inserted if necessary (3.10.2(22.q/2))
4739 if Ada_Version
>= Ada_2005
4741 Ekind
(Etype
(Nod
)) = E_Anonymous_Access_Type
4743 Apply_Accessibility_Check
4744 (Nod
, Typ
, Insert_Node
=> Nod
);
4752 -- We set the allocator as analyzed so that when we analyze
4753 -- the if expression node, we do not get an unwanted recursive
4754 -- expansion of the allocator expression.
4756 Set_Analyzed
(N
, True);
4757 Nod
:= Relocate_Node
(N
);
4759 -- Here is the transformation:
4760 -- input: new Ctrl_Typ
4761 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
4762 -- Ctrl_TypIP (Temp.all, ...);
4763 -- [Deep_]Initialize (Temp.all);
4765 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
4766 -- is the subtype of the allocator.
4769 Make_Object_Declaration
(Loc
,
4770 Defining_Identifier
=> Temp
,
4771 Constant_Present
=> True,
4772 Object_Definition
=> New_Reference_To
(Temp_Type
, Loc
),
4775 Set_Assignment_OK
(Temp_Decl
);
4776 Insert_Action
(N
, Temp_Decl
, Suppress
=> All_Checks
);
4778 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
4780 -- If the designated type is a task type or contains tasks,
4781 -- create block to activate created tasks, and insert
4782 -- declaration for Task_Image variable ahead of call.
4784 if Has_Task
(T
) then
4786 L
: constant List_Id
:= New_List
;
4789 Build_Task_Allocate_Block
(L
, Nod
, Args
);
4791 Insert_List_Before
(First
(Declarations
(Blk
)), Decls
);
4792 Insert_Actions
(N
, L
);
4797 Make_Procedure_Call_Statement
(Loc
,
4798 Name
=> New_Reference_To
(Init
, Loc
),
4799 Parameter_Associations
=> Args
));
4802 if Needs_Finalization
(T
) then
4805 -- [Deep_]Initialize (Init_Arg1);
4809 (Obj_Ref
=> New_Copy_Tree
(Init_Arg1
),
4812 if Present
(Finalization_Master
(PtrT
)) then
4814 -- Special processing for .NET/JVM, the allocated object
4815 -- is attached to the finalization master. Generate:
4817 -- Attach (<PtrT>FM, Root_Controlled_Ptr (Init_Arg1));
4819 -- Types derived from [Limited_]Controlled are the only
4820 -- ones considered since they have fields Prev and Next.
4822 if VM_Target
/= No_VM
then
4823 if Is_Controlled
(T
) then
4826 (Obj_Ref
=> New_Copy_Tree
(Init_Arg1
),
4830 -- Default case, generate:
4832 -- Set_Finalize_Address
4833 -- (<PtrT>FM, <T>FD'Unrestricted_Access);
4835 -- Do not generate this call in CodePeer mode, as TSS
4836 -- primitive Finalize_Address is not created in this
4839 elsif not CodePeer_Mode
then
4841 Make_Set_Finalize_Address_Call
4849 Rewrite
(N
, New_Reference_To
(Temp
, Loc
));
4850 Analyze_And_Resolve
(N
, PtrT
);
4855 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
4856 -- object that has been rewritten as a reference, we displace "this"
4857 -- to reference properly its secondary dispatch table.
4859 if Nkind
(N
) = N_Identifier
and then Is_Interface
(Dtyp
) then
4860 Displace_Allocator_Pointer
(N
);
4864 when RE_Not_Available
=>
4866 end Expand_N_Allocator
;
4868 -----------------------
4869 -- Expand_N_And_Then --
4870 -----------------------
4872 procedure Expand_N_And_Then
(N
: Node_Id
)
4873 renames Expand_Short_Circuit_Operator
;
4875 ------------------------------
4876 -- Expand_N_Case_Expression --
4877 ------------------------------
4879 procedure Expand_N_Case_Expression
(N
: Node_Id
) is
4880 Loc
: constant Source_Ptr
:= Sloc
(N
);
4881 Typ
: constant Entity_Id
:= Etype
(N
);
4892 -- Check for MINIMIZED/ELIMINATED overflow mode
4894 if Minimized_Eliminated_Overflow_Check
(N
) then
4895 Apply_Arithmetic_Overflow_Check
(N
);
4901 -- case X is when A => AX, when B => BX ...
4916 -- However, this expansion is wrong for limited types, and also
4917 -- wrong for unconstrained types (since the bounds may not be the
4918 -- same in all branches). Furthermore it involves an extra copy
4919 -- for large objects. So we take care of this by using the following
4920 -- modified expansion for non-elementary types:
4923 -- type Pnn is access all typ;
4927 -- T := AX'Unrestricted_Access;
4929 -- T := BX'Unrestricted_Access;
4935 Make_Case_Statement
(Loc
,
4936 Expression
=> Expression
(N
),
4937 Alternatives
=> New_List
);
4939 Actions
:= New_List
;
4943 if Is_Elementary_Type
(Typ
) then
4947 Pnn
:= Make_Temporary
(Loc
, 'P');
4949 Make_Full_Type_Declaration
(Loc
,
4950 Defining_Identifier
=> Pnn
,
4952 Make_Access_To_Object_Definition
(Loc
,
4953 All_Present
=> True,
4954 Subtype_Indication
=> New_Reference_To
(Typ
, Loc
))));
4958 Tnn
:= Make_Temporary
(Loc
, 'T');
4960 -- Create declaration for target of expression, and indicate that it
4961 -- does not require initialization.
4964 Make_Object_Declaration
(Loc
,
4965 Defining_Identifier
=> Tnn
,
4966 Object_Definition
=> New_Occurrence_Of
(Ttyp
, Loc
));
4967 Set_No_Initialization
(Decl
);
4968 Append_To
(Actions
, Decl
);
4970 -- Now process the alternatives
4972 Alt
:= First
(Alternatives
(N
));
4973 while Present
(Alt
) loop
4975 Aexp
: Node_Id
:= Expression
(Alt
);
4976 Aloc
: constant Source_Ptr
:= Sloc
(Aexp
);
4980 -- As described above, take Unrestricted_Access for case of non-
4981 -- scalar types, to avoid big copies, and special cases.
4983 if not Is_Elementary_Type
(Typ
) then
4985 Make_Attribute_Reference
(Aloc
,
4986 Prefix
=> Relocate_Node
(Aexp
),
4987 Attribute_Name
=> Name_Unrestricted_Access
);
4991 Make_Assignment_Statement
(Aloc
,
4992 Name
=> New_Occurrence_Of
(Tnn
, Loc
),
4993 Expression
=> Aexp
));
4995 -- Propagate declarations inserted in the node by Insert_Actions
4996 -- (for example, temporaries generated to remove side effects).
4997 -- These actions must remain attached to the alternative, given
4998 -- that they are generated by the corresponding expression.
5000 if Present
(Sinfo
.Actions
(Alt
)) then
5001 Prepend_List
(Sinfo
.Actions
(Alt
), Stats
);
5005 (Alternatives
(Cstmt
),
5006 Make_Case_Statement_Alternative
(Sloc
(Alt
),
5007 Discrete_Choices
=> Discrete_Choices
(Alt
),
5008 Statements
=> Stats
));
5014 Append_To
(Actions
, Cstmt
);
5016 -- Construct and return final expression with actions
5018 if Is_Elementary_Type
(Typ
) then
5019 Fexp
:= New_Occurrence_Of
(Tnn
, Loc
);
5022 Make_Explicit_Dereference
(Loc
,
5023 Prefix
=> New_Occurrence_Of
(Tnn
, Loc
));
5027 Make_Expression_With_Actions
(Loc
,
5029 Actions
=> Actions
));
5031 Analyze_And_Resolve
(N
, Typ
);
5032 end Expand_N_Case_Expression
;
5034 -----------------------------------
5035 -- Expand_N_Explicit_Dereference --
5036 -----------------------------------
5038 procedure Expand_N_Explicit_Dereference
(N
: Node_Id
) is
5040 -- Insert explicit dereference call for the checked storage pool case
5042 Insert_Dereference_Action
(Prefix
(N
));
5044 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
5045 -- we set the atomic sync flag.
5047 if Is_Atomic
(Etype
(N
))
5048 and then not Atomic_Synchronization_Disabled
(Etype
(N
))
5050 Activate_Atomic_Synchronization
(N
);
5052 end Expand_N_Explicit_Dereference
;
5054 --------------------------------------
5055 -- Expand_N_Expression_With_Actions --
5056 --------------------------------------
5058 procedure Expand_N_Expression_With_Actions
(N
: Node_Id
) is
5059 function Process_Action
(Act
: Node_Id
) return Traverse_Result
;
5060 -- Inspect and process a single action of an expression_with_actions for
5061 -- transient controlled objects. If such objects are found, the routine
5062 -- generates code to clean them up when the context of the expression is
5063 -- evaluated or elaborated.
5065 --------------------
5066 -- Process_Action --
5067 --------------------
5069 function Process_Action
(Act
: Node_Id
) return Traverse_Result
is
5071 if Nkind
(Act
) = N_Object_Declaration
5072 and then Is_Finalizable_Transient
(Act
, N
)
5074 Process_Transient_Object
(Act
, N
);
5077 -- Avoid processing temporary function results multiple times when
5078 -- dealing with nested expression_with_actions.
5080 elsif Nkind
(Act
) = N_Expression_With_Actions
then
5083 -- Do not process temporary function results in loops. This is done
5084 -- by Expand_N_Loop_Statement and Build_Finalizer.
5086 elsif Nkind
(Act
) = N_Loop_Statement
then
5093 procedure Process_Single_Action
is new Traverse_Proc
(Process_Action
);
5099 -- Start of processing for Expand_N_Expression_With_Actions
5102 Act
:= First
(Actions
(N
));
5103 while Present
(Act
) loop
5104 Process_Single_Action
(Act
);
5108 end Expand_N_Expression_With_Actions
;
5110 ----------------------------
5111 -- Expand_N_If_Expression --
5112 ----------------------------
5114 -- Deal with limited types and condition actions
5116 procedure Expand_N_If_Expression
(N
: Node_Id
) is
5117 procedure Process_Actions
(Actions
: List_Id
);
5118 -- Inspect and process a single action list of an if expression for
5119 -- transient controlled objects. If such objects are found, the routine
5120 -- generates code to clean them up when the context of the expression is
5121 -- evaluated or elaborated.
5123 ---------------------
5124 -- Process_Actions --
5125 ---------------------
5127 procedure Process_Actions
(Actions
: List_Id
) is
5131 Act
:= First
(Actions
);
5132 while Present
(Act
) loop
5133 if Nkind
(Act
) = N_Object_Declaration
5134 and then Is_Finalizable_Transient
(Act
, N
)
5136 Process_Transient_Object
(Act
, N
);
5141 end Process_Actions
;
5145 Loc
: constant Source_Ptr
:= Sloc
(N
);
5146 Cond
: constant Node_Id
:= First
(Expressions
(N
));
5147 Thenx
: constant Node_Id
:= Next
(Cond
);
5148 Elsex
: constant Node_Id
:= Next
(Thenx
);
5149 Typ
: constant Entity_Id
:= Etype
(N
);
5157 Ptr_Typ
: Entity_Id
;
5159 -- Start of processing for Expand_N_If_Expression
5162 -- Check for MINIMIZED/ELIMINATED overflow mode
5164 if Minimized_Eliminated_Overflow_Check
(N
) then
5165 Apply_Arithmetic_Overflow_Check
(N
);
5169 -- Fold at compile time if condition known. We have already folded
5170 -- static if expressions, but it is possible to fold any case in which
5171 -- the condition is known at compile time, even though the result is
5174 -- Note that we don't do the fold of such cases in Sem_Elab because
5175 -- it can cause infinite loops with the expander adding a conditional
5176 -- expression, and Sem_Elab circuitry removing it repeatedly.
5178 if Compile_Time_Known_Value
(Cond
) then
5179 if Is_True
(Expr_Value
(Cond
)) then
5181 Actions
:= Then_Actions
(N
);
5184 Actions
:= Else_Actions
(N
);
5189 if Present
(Actions
) then
5191 Make_Expression_With_Actions
(Loc
,
5192 Expression
=> Relocate_Node
(Expr
),
5193 Actions
=> Actions
));
5194 Analyze_And_Resolve
(N
, Typ
);
5196 Rewrite
(N
, Relocate_Node
(Expr
));
5199 -- Note that the result is never static (legitimate cases of static
5200 -- if expressions were folded in Sem_Eval).
5202 Set_Is_Static_Expression
(N
, False);
5206 -- If the type is limited or unconstrained, we expand as follows to
5207 -- avoid any possibility of improper copies.
5209 -- Note: it may be possible to avoid this special processing if the
5210 -- back end uses its own mechanisms for handling by-reference types ???
5212 -- type Ptr is access all Typ;
5216 -- Cnn := then-expr'Unrestricted_Access;
5219 -- Cnn := else-expr'Unrestricted_Access;
5222 -- and replace the if expression by a reference to Cnn.all.
5224 -- This special case can be skipped if the back end handles limited
5225 -- types properly and ensures that no incorrect copies are made.
5227 if Is_By_Reference_Type
(Typ
)
5228 and then not Back_End_Handles_Limited_Types
5230 -- When the "then" or "else" expressions involve controlled function
5231 -- calls, generated temporaries are chained on the corresponding list
5232 -- of actions. These temporaries need to be finalized after the if
5233 -- expression is evaluated.
5235 Process_Actions
(Then_Actions
(N
));
5236 Process_Actions
(Else_Actions
(N
));
5239 -- type Ann is access all Typ;
5241 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
5244 Make_Full_Type_Declaration
(Loc
,
5245 Defining_Identifier
=> Ptr_Typ
,
5247 Make_Access_To_Object_Definition
(Loc
,
5248 All_Present
=> True,
5249 Subtype_Indication
=> New_Reference_To
(Typ
, Loc
))));
5254 Cnn
:= Make_Temporary
(Loc
, 'C', N
);
5257 Make_Object_Declaration
(Loc
,
5258 Defining_Identifier
=> Cnn
,
5259 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
));
5263 -- Cnn := <Thenx>'Unrestricted_Access;
5265 -- Cnn := <Elsex>'Unrestricted_Access;
5269 Make_Implicit_If_Statement
(N
,
5270 Condition
=> Relocate_Node
(Cond
),
5271 Then_Statements
=> New_List
(
5272 Make_Assignment_Statement
(Sloc
(Thenx
),
5273 Name
=> New_Reference_To
(Cnn
, Sloc
(Thenx
)),
5275 Make_Attribute_Reference
(Loc
,
5276 Prefix
=> Relocate_Node
(Thenx
),
5277 Attribute_Name
=> Name_Unrestricted_Access
))),
5279 Else_Statements
=> New_List
(
5280 Make_Assignment_Statement
(Sloc
(Elsex
),
5281 Name
=> New_Reference_To
(Cnn
, Sloc
(Elsex
)),
5283 Make_Attribute_Reference
(Loc
,
5284 Prefix
=> Relocate_Node
(Elsex
),
5285 Attribute_Name
=> Name_Unrestricted_Access
))));
5288 Make_Explicit_Dereference
(Loc
,
5289 Prefix
=> New_Occurrence_Of
(Cnn
, Loc
));
5291 -- For other types, we only need to expand if there are other actions
5292 -- associated with either branch.
5294 elsif Present
(Then_Actions
(N
)) or else Present
(Else_Actions
(N
)) then
5296 -- We now wrap the actions into the appropriate expression
5298 if Present
(Then_Actions
(N
)) then
5300 Make_Expression_With_Actions
(Sloc
(Thenx
),
5301 Actions
=> Then_Actions
(N
),
5302 Expression
=> Relocate_Node
(Thenx
)));
5304 Set_Then_Actions
(N
, No_List
);
5305 Analyze_And_Resolve
(Thenx
, Typ
);
5308 if Present
(Else_Actions
(N
)) then
5310 Make_Expression_With_Actions
(Sloc
(Elsex
),
5311 Actions
=> Else_Actions
(N
),
5312 Expression
=> Relocate_Node
(Elsex
)));
5314 Set_Else_Actions
(N
, No_List
);
5315 Analyze_And_Resolve
(Elsex
, Typ
);
5320 -- If no actions then no expansion needed, gigi will handle it using the
5321 -- same approach as a C conditional expression.
5327 -- Fall through here for either the limited expansion, or the case of
5328 -- inserting actions for non-limited types. In both these cases, we must
5329 -- move the SLOC of the parent If statement to the newly created one and
5330 -- change it to the SLOC of the expression which, after expansion, will
5331 -- correspond to what is being evaluated.
5333 if Present
(Parent
(N
)) and then Nkind
(Parent
(N
)) = N_If_Statement
then
5334 Set_Sloc
(New_If
, Sloc
(Parent
(N
)));
5335 Set_Sloc
(Parent
(N
), Loc
);
5338 -- Make sure Then_Actions and Else_Actions are appropriately moved
5339 -- to the new if statement.
5341 if Present
(Then_Actions
(N
)) then
5343 (First
(Then_Statements
(New_If
)), Then_Actions
(N
));
5346 if Present
(Else_Actions
(N
)) then
5348 (First
(Else_Statements
(New_If
)), Else_Actions
(N
));
5351 Insert_Action
(N
, Decl
);
5352 Insert_Action
(N
, New_If
);
5354 Analyze_And_Resolve
(N
, Typ
);
5355 end Expand_N_If_Expression
;
5361 procedure Expand_N_In
(N
: Node_Id
) is
5362 Loc
: constant Source_Ptr
:= Sloc
(N
);
5363 Restyp
: constant Entity_Id
:= Etype
(N
);
5364 Lop
: constant Node_Id
:= Left_Opnd
(N
);
5365 Rop
: constant Node_Id
:= Right_Opnd
(N
);
5366 Static
: constant Boolean := Is_OK_Static_Expression
(N
);
5371 procedure Substitute_Valid_Check
;
5372 -- Replaces node N by Lop'Valid. This is done when we have an explicit
5373 -- test for the left operand being in range of its subtype.
5375 ----------------------------
5376 -- Substitute_Valid_Check --
5377 ----------------------------
5379 procedure Substitute_Valid_Check
is
5382 Make_Attribute_Reference
(Loc
,
5383 Prefix
=> Relocate_Node
(Lop
),
5384 Attribute_Name
=> Name_Valid
));
5386 Analyze_And_Resolve
(N
, Restyp
);
5388 -- Give warning unless overflow checking is MINIMIZED or ELIMINATED,
5389 -- in which case, this usage makes sense, and in any case, we have
5390 -- actually eliminated the danger of optimization above.
5392 if Overflow_Check_Mode
not in Minimized_Or_Eliminated
then
5394 ("??explicit membership test may be optimized away", N
);
5395 Error_Msg_N
-- CODEFIX
5396 ("\??use ''Valid attribute instead", N
);
5400 end Substitute_Valid_Check
;
5402 -- Start of processing for Expand_N_In
5405 -- If set membership case, expand with separate procedure
5407 if Present
(Alternatives
(N
)) then
5408 Expand_Set_Membership
(N
);
5412 -- Not set membership, proceed with expansion
5414 Ltyp
:= Etype
(Left_Opnd
(N
));
5415 Rtyp
:= Etype
(Right_Opnd
(N
));
5417 -- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
5418 -- type, then expand with a separate procedure. Note the use of the
5419 -- flag No_Minimize_Eliminate to prevent infinite recursion.
5421 if Overflow_Check_Mode
in Minimized_Or_Eliminated
5422 and then Is_Signed_Integer_Type
(Ltyp
)
5423 and then not No_Minimize_Eliminate
(N
)
5425 Expand_Membership_Minimize_Eliminate_Overflow
(N
);
5429 -- Check case of explicit test for an expression in range of its
5430 -- subtype. This is suspicious usage and we replace it with a 'Valid
5431 -- test and give a warning for scalar types.
5433 if Is_Scalar_Type
(Ltyp
)
5435 -- Only relevant for source comparisons
5437 and then Comes_From_Source
(N
)
5439 -- In floating-point this is a standard way to check for finite values
5440 -- and using 'Valid would typically be a pessimization.
5442 and then not Is_Floating_Point_Type
(Ltyp
)
5444 -- Don't give the message unless right operand is a type entity and
5445 -- the type of the left operand matches this type. Note that this
5446 -- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
5447 -- checks have changed the type of the left operand.
5449 and then Nkind
(Rop
) in N_Has_Entity
5450 and then Ltyp
= Entity
(Rop
)
5452 -- Skip in VM mode, where we have no sense of invalid values. The
5453 -- warning still seems relevant, but not important enough to worry.
5455 and then VM_Target
= No_VM
5457 -- Skip this for predicated types, where such expressions are a
5458 -- reasonable way of testing if something meets the predicate.
5460 and then not Present
(Predicate_Function
(Ltyp
))
5462 Substitute_Valid_Check
;
5466 -- Do validity check on operands
5468 if Validity_Checks_On
and Validity_Check_Operands
then
5469 Ensure_Valid
(Left_Opnd
(N
));
5470 Validity_Check_Range
(Right_Opnd
(N
));
5473 -- Case of explicit range
5475 if Nkind
(Rop
) = N_Range
then
5477 Lo
: constant Node_Id
:= Low_Bound
(Rop
);
5478 Hi
: constant Node_Id
:= High_Bound
(Rop
);
5480 Lo_Orig
: constant Node_Id
:= Original_Node
(Lo
);
5481 Hi_Orig
: constant Node_Id
:= Original_Node
(Hi
);
5483 Lcheck
: Compare_Result
;
5484 Ucheck
: Compare_Result
;
5486 Warn1
: constant Boolean :=
5487 Constant_Condition_Warnings
5488 and then Comes_From_Source
(N
)
5489 and then not In_Instance
;
5490 -- This must be true for any of the optimization warnings, we
5491 -- clearly want to give them only for source with the flag on. We
5492 -- also skip these warnings in an instance since it may be the
5493 -- case that different instantiations have different ranges.
5495 Warn2
: constant Boolean :=
5497 and then Nkind
(Original_Node
(Rop
)) = N_Range
5498 and then Is_Integer_Type
(Etype
(Lo
));
5499 -- For the case where only one bound warning is elided, we also
5500 -- insist on an explicit range and an integer type. The reason is
5501 -- that the use of enumeration ranges including an end point is
5502 -- common, as is the use of a subtype name, one of whose bounds is
5503 -- the same as the type of the expression.
5506 -- If test is explicit x'First .. x'Last, replace by valid check
5508 -- Could use some individual comments for this complex test ???
5510 if Is_Scalar_Type
(Ltyp
)
5512 -- And left operand is X'First where X matches left operand
5513 -- type (this eliminates cases of type mismatch, including
5514 -- the cases where ELIMINATED/MINIMIZED mode has changed the
5515 -- type of the left operand.
5517 and then Nkind
(Lo_Orig
) = N_Attribute_Reference
5518 and then Attribute_Name
(Lo_Orig
) = Name_First
5519 and then Nkind
(Prefix
(Lo_Orig
)) in N_Has_Entity
5520 and then Entity
(Prefix
(Lo_Orig
)) = Ltyp
5522 -- Same tests for right operand
5524 and then Nkind
(Hi_Orig
) = N_Attribute_Reference
5525 and then Attribute_Name
(Hi_Orig
) = Name_Last
5526 and then Nkind
(Prefix
(Hi_Orig
)) in N_Has_Entity
5527 and then Entity
(Prefix
(Hi_Orig
)) = Ltyp
5529 -- Relevant only for source cases
5531 and then Comes_From_Source
(N
)
5533 -- Omit for VM cases, where we don't have invalid values
5535 and then VM_Target
= No_VM
5537 Substitute_Valid_Check
;
5541 -- If bounds of type are known at compile time, and the end points
5542 -- are known at compile time and identical, this is another case
5543 -- for substituting a valid test. We only do this for discrete
5544 -- types, since it won't arise in practice for float types.
5546 if Comes_From_Source
(N
)
5547 and then Is_Discrete_Type
(Ltyp
)
5548 and then Compile_Time_Known_Value
(Type_High_Bound
(Ltyp
))
5549 and then Compile_Time_Known_Value
(Type_Low_Bound
(Ltyp
))
5550 and then Compile_Time_Known_Value
(Lo
)
5551 and then Compile_Time_Known_Value
(Hi
)
5552 and then Expr_Value
(Type_High_Bound
(Ltyp
)) = Expr_Value
(Hi
)
5553 and then Expr_Value
(Type_Low_Bound
(Ltyp
)) = Expr_Value
(Lo
)
5555 -- Kill warnings in instances, since they may be cases where we
5556 -- have a test in the generic that makes sense with some types
5557 -- and not with other types.
5559 and then not In_Instance
5561 Substitute_Valid_Check
;
5565 -- If we have an explicit range, do a bit of optimization based on
5566 -- range analysis (we may be able to kill one or both checks).
5568 Lcheck
:= Compile_Time_Compare
(Lop
, Lo
, Assume_Valid
=> False);
5569 Ucheck
:= Compile_Time_Compare
(Lop
, Hi
, Assume_Valid
=> False);
5571 -- If either check is known to fail, replace result by False since
5572 -- the other check does not matter. Preserve the static flag for
5573 -- legality checks, because we are constant-folding beyond RM 4.9.
5575 if Lcheck
= LT
or else Ucheck
= GT
then
5577 Error_Msg_N
("?c?range test optimized away", N
);
5578 Error_Msg_N
("\?c?value is known to be out of range", N
);
5581 Rewrite
(N
, New_Reference_To
(Standard_False
, Loc
));
5582 Analyze_And_Resolve
(N
, Restyp
);
5583 Set_Is_Static_Expression
(N
, Static
);
5586 -- If both checks are known to succeed, replace result by True,
5587 -- since we know we are in range.
5589 elsif Lcheck
in Compare_GE
and then Ucheck
in Compare_LE
then
5591 Error_Msg_N
("?c?range test optimized away", N
);
5592 Error_Msg_N
("\?c?value is known to be in range", N
);
5595 Rewrite
(N
, New_Reference_To
(Standard_True
, Loc
));
5596 Analyze_And_Resolve
(N
, Restyp
);
5597 Set_Is_Static_Expression
(N
, Static
);
5600 -- If lower bound check succeeds and upper bound check is not
5601 -- known to succeed or fail, then replace the range check with
5602 -- a comparison against the upper bound.
5604 elsif Lcheck
in Compare_GE
then
5605 if Warn2
and then not In_Instance
then
5606 Error_Msg_N
("??lower bound test optimized away", Lo
);
5607 Error_Msg_N
("\??value is known to be in range", Lo
);
5613 Right_Opnd
=> High_Bound
(Rop
)));
5614 Analyze_And_Resolve
(N
, Restyp
);
5617 -- If upper bound check succeeds and lower bound check is not
5618 -- known to succeed or fail, then replace the range check with
5619 -- a comparison against the lower bound.
5621 elsif Ucheck
in Compare_LE
then
5622 if Warn2
and then not In_Instance
then
5623 Error_Msg_N
("??upper bound test optimized away", Hi
);
5624 Error_Msg_N
("\??value is known to be in range", Hi
);
5630 Right_Opnd
=> Low_Bound
(Rop
)));
5631 Analyze_And_Resolve
(N
, Restyp
);
5635 -- We couldn't optimize away the range check, but there is one
5636 -- more issue. If we are checking constant conditionals, then we
5637 -- see if we can determine the outcome assuming everything is
5638 -- valid, and if so give an appropriate warning.
5640 if Warn1
and then not Assume_No_Invalid_Values
then
5641 Lcheck
:= Compile_Time_Compare
(Lop
, Lo
, Assume_Valid
=> True);
5642 Ucheck
:= Compile_Time_Compare
(Lop
, Hi
, Assume_Valid
=> True);
5644 -- Result is out of range for valid value
5646 if Lcheck
= LT
or else Ucheck
= GT
then
5648 ("?c?value can only be in range if it is invalid", N
);
5650 -- Result is in range for valid value
5652 elsif Lcheck
in Compare_GE
and then Ucheck
in Compare_LE
then
5654 ("?c?value can only be out of range if it is invalid", N
);
5656 -- Lower bound check succeeds if value is valid
5658 elsif Warn2
and then Lcheck
in Compare_GE
then
5660 ("?c?lower bound check only fails if it is invalid", Lo
);
5662 -- Upper bound check succeeds if value is valid
5664 elsif Warn2
and then Ucheck
in Compare_LE
then
5666 ("?c?upper bound check only fails for invalid values", Hi
);
5671 -- For all other cases of an explicit range, nothing to be done
5675 -- Here right operand is a subtype mark
5679 Typ
: Entity_Id
:= Etype
(Rop
);
5680 Is_Acc
: constant Boolean := Is_Access_Type
(Typ
);
5681 Cond
: Node_Id
:= Empty
;
5683 Obj
: Node_Id
:= Lop
;
5684 SCIL_Node
: Node_Id
;
5687 Remove_Side_Effects
(Obj
);
5689 -- For tagged type, do tagged membership operation
5691 if Is_Tagged_Type
(Typ
) then
5693 -- No expansion will be performed when VM_Target, as the VM
5694 -- back-ends will handle the membership tests directly (tags
5695 -- are not explicitly represented in Java objects, so the
5696 -- normal tagged membership expansion is not what we want).
5698 if Tagged_Type_Expansion
then
5699 Tagged_Membership
(N
, SCIL_Node
, New_N
);
5701 Analyze_And_Resolve
(N
, Restyp
);
5703 -- Update decoration of relocated node referenced by the
5706 if Generate_SCIL
and then Present
(SCIL_Node
) then
5707 Set_SCIL_Node
(N
, SCIL_Node
);
5713 -- If type is scalar type, rewrite as x in t'First .. t'Last.
5714 -- This reason we do this is that the bounds may have the wrong
5715 -- type if they come from the original type definition. Also this
5716 -- way we get all the processing above for an explicit range.
5718 -- Don't do this for predicated types, since in this case we
5719 -- want to check the predicate!
5721 elsif Is_Scalar_Type
(Typ
) then
5722 if No
(Predicate_Function
(Typ
)) then
5726 Make_Attribute_Reference
(Loc
,
5727 Attribute_Name
=> Name_First
,
5728 Prefix
=> New_Reference_To
(Typ
, Loc
)),
5731 Make_Attribute_Reference
(Loc
,
5732 Attribute_Name
=> Name_Last
,
5733 Prefix
=> New_Reference_To
(Typ
, Loc
))));
5734 Analyze_And_Resolve
(N
, Restyp
);
5739 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
5740 -- a membership test if the subtype mark denotes a constrained
5741 -- Unchecked_Union subtype and the expression lacks inferable
5744 elsif Is_Unchecked_Union
(Base_Type
(Typ
))
5745 and then Is_Constrained
(Typ
)
5746 and then not Has_Inferable_Discriminants
(Lop
)
5749 Make_Raise_Program_Error
(Loc
,
5750 Reason
=> PE_Unchecked_Union_Restriction
));
5752 -- Prevent Gigi from generating incorrect code by rewriting the
5753 -- test as False. What is this undocumented thing about ???
5755 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
5759 -- Here we have a non-scalar type
5762 Typ
:= Designated_Type
(Typ
);
5765 if not Is_Constrained
(Typ
) then
5766 Rewrite
(N
, New_Reference_To
(Standard_True
, Loc
));
5767 Analyze_And_Resolve
(N
, Restyp
);
5769 -- For the constrained array case, we have to check the subscripts
5770 -- for an exact match if the lengths are non-zero (the lengths
5771 -- must match in any case).
5773 elsif Is_Array_Type
(Typ
) then
5774 Check_Subscripts
: declare
5775 function Build_Attribute_Reference
5778 Dim
: Nat
) return Node_Id
;
5779 -- Build attribute reference E'Nam (Dim)
5781 -------------------------------
5782 -- Build_Attribute_Reference --
5783 -------------------------------
5785 function Build_Attribute_Reference
5788 Dim
: Nat
) return Node_Id
5792 Make_Attribute_Reference
(Loc
,
5794 Attribute_Name
=> Nam
,
5795 Expressions
=> New_List
(
5796 Make_Integer_Literal
(Loc
, Dim
)));
5797 end Build_Attribute_Reference
;
5799 -- Start of processing for Check_Subscripts
5802 for J
in 1 .. Number_Dimensions
(Typ
) loop
5803 Evolve_And_Then
(Cond
,
5806 Build_Attribute_Reference
5807 (Duplicate_Subexpr_No_Checks
(Obj
),
5810 Build_Attribute_Reference
5811 (New_Occurrence_Of
(Typ
, Loc
), Name_First
, J
)));
5813 Evolve_And_Then
(Cond
,
5816 Build_Attribute_Reference
5817 (Duplicate_Subexpr_No_Checks
(Obj
),
5820 Build_Attribute_Reference
5821 (New_Occurrence_Of
(Typ
, Loc
), Name_Last
, J
)));
5830 Right_Opnd
=> Make_Null
(Loc
)),
5831 Right_Opnd
=> Cond
);
5835 Analyze_And_Resolve
(N
, Restyp
);
5836 end Check_Subscripts
;
5838 -- These are the cases where constraint checks may be required,
5839 -- e.g. records with possible discriminants
5842 -- Expand the test into a series of discriminant comparisons.
5843 -- The expression that is built is the negation of the one that
5844 -- is used for checking discriminant constraints.
5846 Obj
:= Relocate_Node
(Left_Opnd
(N
));
5848 if Has_Discriminants
(Typ
) then
5849 Cond
:= Make_Op_Not
(Loc
,
5850 Right_Opnd
=> Build_Discriminant_Checks
(Obj
, Typ
));
5853 Cond
:= Make_Or_Else
(Loc
,
5857 Right_Opnd
=> Make_Null
(Loc
)),
5858 Right_Opnd
=> Cond
);
5862 Cond
:= New_Occurrence_Of
(Standard_True
, Loc
);
5866 Analyze_And_Resolve
(N
, Restyp
);
5869 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
5870 -- expression of an anonymous access type. This can involve an
5871 -- accessibility test and a tagged type membership test in the
5872 -- case of tagged designated types.
5874 if Ada_Version
>= Ada_2012
5876 and then Ekind
(Ltyp
) = E_Anonymous_Access_Type
5879 Expr_Entity
: Entity_Id
:= Empty
;
5881 Param_Level
: Node_Id
;
5882 Type_Level
: Node_Id
;
5885 if Is_Entity_Name
(Lop
) then
5886 Expr_Entity
:= Param_Entity
(Lop
);
5888 if not Present
(Expr_Entity
) then
5889 Expr_Entity
:= Entity
(Lop
);
5893 -- If a conversion of the anonymous access value to the
5894 -- tested type would be illegal, then the result is False.
5896 if not Valid_Conversion
5897 (Lop
, Rtyp
, Lop
, Report_Errs
=> False)
5899 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
5900 Analyze_And_Resolve
(N
, Restyp
);
5902 -- Apply an accessibility check if the access object has an
5903 -- associated access level and when the level of the type is
5904 -- less deep than the level of the access parameter. This
5905 -- only occur for access parameters and stand-alone objects
5906 -- of an anonymous access type.
5909 if Present
(Expr_Entity
)
5912 (Effective_Extra_Accessibility
(Expr_Entity
))
5913 and then UI_Gt
(Object_Access_Level
(Lop
),
5914 Type_Access_Level
(Rtyp
))
5918 (Effective_Extra_Accessibility
(Expr_Entity
), Loc
);
5921 Make_Integer_Literal
(Loc
, Type_Access_Level
(Rtyp
));
5923 -- Return True only if the accessibility level of the
5924 -- expression entity is not deeper than the level of
5925 -- the tested access type.
5929 Left_Opnd
=> Relocate_Node
(N
),
5930 Right_Opnd
=> Make_Op_Le
(Loc
,
5931 Left_Opnd
=> Param_Level
,
5932 Right_Opnd
=> Type_Level
)));
5934 Analyze_And_Resolve
(N
);
5937 -- If the designated type is tagged, do tagged membership
5940 -- *** NOTE: we have to check not null before doing the
5941 -- tagged membership test (but maybe that can be done
5942 -- inside Tagged_Membership?).
5944 if Is_Tagged_Type
(Typ
) then
5947 Left_Opnd
=> Relocate_Node
(N
),
5951 Right_Opnd
=> Make_Null
(Loc
))));
5953 -- No expansion will be performed when VM_Target, as
5954 -- the VM back-ends will handle the membership tests
5955 -- directly (tags are not explicitly represented in
5956 -- Java objects, so the normal tagged membership
5957 -- expansion is not what we want).
5959 if Tagged_Type_Expansion
then
5961 -- Note that we have to pass Original_Node, because
5962 -- the membership test might already have been
5963 -- rewritten by earlier parts of membership test.
5966 (Original_Node
(N
), SCIL_Node
, New_N
);
5968 -- Update decoration of relocated node referenced
5969 -- by the SCIL node.
5971 if Generate_SCIL
and then Present
(SCIL_Node
) then
5972 Set_SCIL_Node
(New_N
, SCIL_Node
);
5977 Left_Opnd
=> Relocate_Node
(N
),
5978 Right_Opnd
=> New_N
));
5980 Analyze_And_Resolve
(N
, Restyp
);
5989 -- At this point, we have done the processing required for the basic
5990 -- membership test, but not yet dealt with the predicate.
5994 -- If a predicate is present, then we do the predicate test, but we
5995 -- most certainly want to omit this if we are within the predicate
5996 -- function itself, since otherwise we have an infinite recursion!
5997 -- The check should also not be emitted when testing against a range
5998 -- (the check is only done when the right operand is a subtype; see
5999 -- RM12-4.5.2 (28.1/3-30/3)).
6002 PFunc
: constant Entity_Id
:= Predicate_Function
(Rtyp
);
6006 and then Current_Scope
/= PFunc
6007 and then Nkind
(Rop
) /= N_Range
6011 Left_Opnd
=> Relocate_Node
(N
),
6012 Right_Opnd
=> Make_Predicate_Call
(Rtyp
, Lop
, Mem
=> True)));
6014 -- Analyze new expression, mark left operand as analyzed to
6015 -- avoid infinite recursion adding predicate calls. Similarly,
6016 -- suppress further range checks on the call.
6018 Set_Analyzed
(Left_Opnd
(N
));
6019 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
6021 -- All done, skip attempt at compile time determination of result
6028 --------------------------------
6029 -- Expand_N_Indexed_Component --
6030 --------------------------------
6032 procedure Expand_N_Indexed_Component
(N
: Node_Id
) is
6033 Loc
: constant Source_Ptr
:= Sloc
(N
);
6034 Typ
: constant Entity_Id
:= Etype
(N
);
6035 P
: constant Node_Id
:= Prefix
(N
);
6036 T
: constant Entity_Id
:= Etype
(P
);
6040 -- A special optimization, if we have an indexed component that is
6041 -- selecting from a slice, then we can eliminate the slice, since, for
6042 -- example, x (i .. j)(k) is identical to x(k). The only difference is
6043 -- the range check required by the slice. The range check for the slice
6044 -- itself has already been generated. The range check for the
6045 -- subscripting operation is ensured by converting the subject to
6046 -- the subtype of the slice.
6048 -- This optimization not only generates better code, avoiding slice
6049 -- messing especially in the packed case, but more importantly bypasses
6050 -- some problems in handling this peculiar case, for example, the issue
6051 -- of dealing specially with object renamings.
6053 if Nkind
(P
) = N_Slice
then
6055 Make_Indexed_Component
(Loc
,
6056 Prefix
=> Prefix
(P
),
6057 Expressions
=> New_List
(
6059 (Etype
(First_Index
(Etype
(P
))),
6060 First
(Expressions
(N
))))));
6061 Analyze_And_Resolve
(N
, Typ
);
6065 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6066 -- function, then additional actuals must be passed.
6068 if Ada_Version
>= Ada_2005
6069 and then Is_Build_In_Place_Function_Call
(P
)
6071 Make_Build_In_Place_Call_In_Anonymous_Context
(P
);
6074 -- If the prefix is an access type, then we unconditionally rewrite if
6075 -- as an explicit dereference. This simplifies processing for several
6076 -- cases, including packed array cases and certain cases in which checks
6077 -- must be generated. We used to try to do this only when it was
6078 -- necessary, but it cleans up the code to do it all the time.
6080 if Is_Access_Type
(T
) then
6081 Insert_Explicit_Dereference
(P
);
6082 Analyze_And_Resolve
(P
, Designated_Type
(T
));
6083 Atp
:= Designated_Type
(T
);
6088 -- Generate index and validity checks
6090 Generate_Index_Checks
(N
);
6092 if Validity_Checks_On
and then Validity_Check_Subscripts
then
6093 Apply_Subscript_Validity_Checks
(N
);
6096 -- If selecting from an array with atomic components, and atomic sync
6097 -- is not suppressed for this array type, set atomic sync flag.
6099 if (Has_Atomic_Components
(Atp
)
6100 and then not Atomic_Synchronization_Disabled
(Atp
))
6101 or else (Is_Atomic
(Typ
)
6102 and then not Atomic_Synchronization_Disabled
(Typ
))
6104 Activate_Atomic_Synchronization
(N
);
6107 -- All done for the non-packed case
6109 if not Is_Packed
(Etype
(Prefix
(N
))) then
6113 -- For packed arrays that are not bit-packed (i.e. the case of an array
6114 -- with one or more index types with a non-contiguous enumeration type),
6115 -- we can always use the normal packed element get circuit.
6117 if not Is_Bit_Packed_Array
(Etype
(Prefix
(N
))) then
6118 Expand_Packed_Element_Reference
(N
);
6122 -- For a reference to a component of a bit packed array, we have to
6123 -- convert it to a reference to the corresponding Packed_Array_Type.
6124 -- We only want to do this for simple references, and not for:
6126 -- Left side of assignment, or prefix of left side of assignment, or
6127 -- prefix of the prefix, to handle packed arrays of packed arrays,
6128 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6130 -- Renaming objects in renaming associations
6131 -- This case is handled when a use of the renamed variable occurs
6133 -- Actual parameters for a procedure call
6134 -- This case is handled in Exp_Ch6.Expand_Actuals
6136 -- The second expression in a 'Read attribute reference
6138 -- The prefix of an address or bit or size attribute reference
6140 -- The following circuit detects these exceptions
6143 Child
: Node_Id
:= N
;
6144 Parnt
: Node_Id
:= Parent
(N
);
6148 if Nkind
(Parnt
) = N_Unchecked_Expression
then
6151 elsif Nkind_In
(Parnt
, N_Object_Renaming_Declaration
,
6152 N_Procedure_Call_Statement
)
6153 or else (Nkind
(Parnt
) = N_Parameter_Association
6155 Nkind
(Parent
(Parnt
)) = N_Procedure_Call_Statement
)
6159 elsif Nkind
(Parnt
) = N_Attribute_Reference
6160 and then Nam_In
(Attribute_Name
(Parnt
), Name_Address
,
6163 and then Prefix
(Parnt
) = Child
6167 elsif Nkind
(Parnt
) = N_Assignment_Statement
6168 and then Name
(Parnt
) = Child
6172 -- If the expression is an index of an indexed component, it must
6173 -- be expanded regardless of context.
6175 elsif Nkind
(Parnt
) = N_Indexed_Component
6176 and then Child
/= Prefix
(Parnt
)
6178 Expand_Packed_Element_Reference
(N
);
6181 elsif Nkind
(Parent
(Parnt
)) = N_Assignment_Statement
6182 and then Name
(Parent
(Parnt
)) = Parnt
6186 elsif Nkind
(Parnt
) = N_Attribute_Reference
6187 and then Attribute_Name
(Parnt
) = Name_Read
6188 and then Next
(First
(Expressions
(Parnt
))) = Child
6192 elsif Nkind_In
(Parnt
, N_Indexed_Component
, N_Selected_Component
)
6193 and then Prefix
(Parnt
) = Child
6198 Expand_Packed_Element_Reference
(N
);
6202 -- Keep looking up tree for unchecked expression, or if we are the
6203 -- prefix of a possible assignment left side.
6206 Parnt
:= Parent
(Child
);
6209 end Expand_N_Indexed_Component
;
6211 ---------------------
6212 -- Expand_N_Not_In --
6213 ---------------------
6215 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
6216 -- can be done. This avoids needing to duplicate this expansion code.
6218 procedure Expand_N_Not_In
(N
: Node_Id
) is
6219 Loc
: constant Source_Ptr
:= Sloc
(N
);
6220 Typ
: constant Entity_Id
:= Etype
(N
);
6221 Cfs
: constant Boolean := Comes_From_Source
(N
);
6228 Left_Opnd
=> Left_Opnd
(N
),
6229 Right_Opnd
=> Right_Opnd
(N
))));
6231 -- If this is a set membership, preserve list of alternatives
6233 Set_Alternatives
(Right_Opnd
(N
), Alternatives
(Original_Node
(N
)));
6235 -- We want this to appear as coming from source if original does (see
6236 -- transformations in Expand_N_In).
6238 Set_Comes_From_Source
(N
, Cfs
);
6239 Set_Comes_From_Source
(Right_Opnd
(N
), Cfs
);
6241 -- Now analyze transformed node
6243 Analyze_And_Resolve
(N
, Typ
);
6244 end Expand_N_Not_In
;
6250 -- The only replacement required is for the case of a null of a type that
6251 -- is an access to protected subprogram, or a subtype thereof. We represent
6252 -- such access values as a record, and so we must replace the occurrence of
6253 -- null by the equivalent record (with a null address and a null pointer in
6254 -- it), so that the backend creates the proper value.
6256 procedure Expand_N_Null
(N
: Node_Id
) is
6257 Loc
: constant Source_Ptr
:= Sloc
(N
);
6258 Typ
: constant Entity_Id
:= Base_Type
(Etype
(N
));
6262 if Is_Access_Protected_Subprogram_Type
(Typ
) then
6264 Make_Aggregate
(Loc
,
6265 Expressions
=> New_List
(
6266 New_Occurrence_Of
(RTE
(RE_Null_Address
), Loc
),
6270 Analyze_And_Resolve
(N
, Equivalent_Type
(Typ
));
6272 -- For subsequent semantic analysis, the node must retain its type.
6273 -- Gigi in any case replaces this type by the corresponding record
6274 -- type before processing the node.
6280 when RE_Not_Available
=>
6284 ---------------------
6285 -- Expand_N_Op_Abs --
6286 ---------------------
6288 procedure Expand_N_Op_Abs
(N
: Node_Id
) is
6289 Loc
: constant Source_Ptr
:= Sloc
(N
);
6290 Expr
: constant Node_Id
:= Right_Opnd
(N
);
6293 Unary_Op_Validity_Checks
(N
);
6295 -- Check for MINIMIZED/ELIMINATED overflow mode
6297 if Minimized_Eliminated_Overflow_Check
(N
) then
6298 Apply_Arithmetic_Overflow_Check
(N
);
6302 -- Deal with software overflow checking
6304 if not Backend_Overflow_Checks_On_Target
6305 and then Is_Signed_Integer_Type
(Etype
(N
))
6306 and then Do_Overflow_Check
(N
)
6308 -- The only case to worry about is when the argument is equal to the
6309 -- largest negative number, so what we do is to insert the check:
6311 -- [constraint_error when Expr = typ'Base'First]
6313 -- with the usual Duplicate_Subexpr use coding for expr
6316 Make_Raise_Constraint_Error
(Loc
,
6319 Left_Opnd
=> Duplicate_Subexpr
(Expr
),
6321 Make_Attribute_Reference
(Loc
,
6323 New_Occurrence_Of
(Base_Type
(Etype
(Expr
)), Loc
),
6324 Attribute_Name
=> Name_First
)),
6325 Reason
=> CE_Overflow_Check_Failed
));
6328 -- Vax floating-point types case
6330 if Vax_Float
(Etype
(N
)) then
6331 Expand_Vax_Arith
(N
);
6333 end Expand_N_Op_Abs
;
6335 ---------------------
6336 -- Expand_N_Op_Add --
6337 ---------------------
6339 procedure Expand_N_Op_Add
(N
: Node_Id
) is
6340 Typ
: constant Entity_Id
:= Etype
(N
);
6343 Binary_Op_Validity_Checks
(N
);
6345 -- Check for MINIMIZED/ELIMINATED overflow mode
6347 if Minimized_Eliminated_Overflow_Check
(N
) then
6348 Apply_Arithmetic_Overflow_Check
(N
);
6352 -- N + 0 = 0 + N = N for integer types
6354 if Is_Integer_Type
(Typ
) then
6355 if Compile_Time_Known_Value
(Right_Opnd
(N
))
6356 and then Expr_Value
(Right_Opnd
(N
)) = Uint_0
6358 Rewrite
(N
, Left_Opnd
(N
));
6361 elsif Compile_Time_Known_Value
(Left_Opnd
(N
))
6362 and then Expr_Value
(Left_Opnd
(N
)) = Uint_0
6364 Rewrite
(N
, Right_Opnd
(N
));
6369 -- Arithmetic overflow checks for signed integer/fixed point types
6371 if Is_Signed_Integer_Type
(Typ
) or else Is_Fixed_Point_Type
(Typ
) then
6372 Apply_Arithmetic_Overflow_Check
(N
);
6375 -- Vax floating-point types case
6377 elsif Vax_Float
(Typ
) then
6378 Expand_Vax_Arith
(N
);
6380 end Expand_N_Op_Add
;
6382 ---------------------
6383 -- Expand_N_Op_And --
6384 ---------------------
6386 procedure Expand_N_Op_And
(N
: Node_Id
) is
6387 Typ
: constant Entity_Id
:= Etype
(N
);
6390 Binary_Op_Validity_Checks
(N
);
6392 if Is_Array_Type
(Etype
(N
)) then
6393 Expand_Boolean_Operator
(N
);
6395 elsif Is_Boolean_Type
(Etype
(N
)) then
6396 Adjust_Condition
(Left_Opnd
(N
));
6397 Adjust_Condition
(Right_Opnd
(N
));
6398 Set_Etype
(N
, Standard_Boolean
);
6399 Adjust_Result_Type
(N
, Typ
);
6401 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
6402 Expand_Intrinsic_Call
(N
, Entity
(N
));
6405 end Expand_N_Op_And
;
6407 ------------------------
6408 -- Expand_N_Op_Concat --
6409 ------------------------
6411 procedure Expand_N_Op_Concat
(N
: Node_Id
) is
6413 -- List of operands to be concatenated
6416 -- Node which is to be replaced by the result of concatenating the nodes
6417 -- in the list Opnds.
6420 -- Ensure validity of both operands
6422 Binary_Op_Validity_Checks
(N
);
6424 -- If we are the left operand of a concatenation higher up the tree,
6425 -- then do nothing for now, since we want to deal with a series of
6426 -- concatenations as a unit.
6428 if Nkind
(Parent
(N
)) = N_Op_Concat
6429 and then N
= Left_Opnd
(Parent
(N
))
6434 -- We get here with a concatenation whose left operand may be a
6435 -- concatenation itself with a consistent type. We need to process
6436 -- these concatenation operands from left to right, which means
6437 -- from the deepest node in the tree to the highest node.
6440 while Nkind
(Left_Opnd
(Cnode
)) = N_Op_Concat
loop
6441 Cnode
:= Left_Opnd
(Cnode
);
6444 -- Now Cnode is the deepest concatenation, and its parents are the
6445 -- concatenation nodes above, so now we process bottom up, doing the
6448 -- The outer loop runs more than once if more than one concatenation
6449 -- type is involved.
6452 Opnds
:= New_List
(Left_Opnd
(Cnode
), Right_Opnd
(Cnode
));
6453 Set_Parent
(Opnds
, N
);
6455 -- The inner loop gathers concatenation operands
6457 Inner
: while Cnode
/= N
6458 and then Base_Type
(Etype
(Cnode
)) =
6459 Base_Type
(Etype
(Parent
(Cnode
)))
6461 Cnode
:= Parent
(Cnode
);
6462 Append
(Right_Opnd
(Cnode
), Opnds
);
6465 Expand_Concatenate
(Cnode
, Opnds
);
6467 exit Outer
when Cnode
= N
;
6468 Cnode
:= Parent
(Cnode
);
6470 end Expand_N_Op_Concat
;
6472 ------------------------
6473 -- Expand_N_Op_Divide --
6474 ------------------------
6476 procedure Expand_N_Op_Divide
(N
: Node_Id
) is
6477 Loc
: constant Source_Ptr
:= Sloc
(N
);
6478 Lopnd
: constant Node_Id
:= Left_Opnd
(N
);
6479 Ropnd
: constant Node_Id
:= Right_Opnd
(N
);
6480 Ltyp
: constant Entity_Id
:= Etype
(Lopnd
);
6481 Rtyp
: constant Entity_Id
:= Etype
(Ropnd
);
6482 Typ
: Entity_Id
:= Etype
(N
);
6483 Rknow
: constant Boolean := Is_Integer_Type
(Typ
)
6485 Compile_Time_Known_Value
(Ropnd
);
6489 Binary_Op_Validity_Checks
(N
);
6491 -- Check for MINIMIZED/ELIMINATED overflow mode
6493 if Minimized_Eliminated_Overflow_Check
(N
) then
6494 Apply_Arithmetic_Overflow_Check
(N
);
6498 -- Otherwise proceed with expansion of division
6501 Rval
:= Expr_Value
(Ropnd
);
6504 -- N / 1 = N for integer types
6506 if Rknow
and then Rval
= Uint_1
then
6511 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
6512 -- Is_Power_Of_2_For_Shift is set means that we know that our left
6513 -- operand is an unsigned integer, as required for this to work.
6515 if Nkind
(Ropnd
) = N_Op_Expon
6516 and then Is_Power_Of_2_For_Shift
(Ropnd
)
6518 -- We cannot do this transformation in configurable run time mode if we
6519 -- have 64-bit integers and long shifts are not available.
6521 and then (Esize
(Ltyp
) <= 32 or else Support_Long_Shifts_On_Target
)
6524 Make_Op_Shift_Right
(Loc
,
6527 Convert_To
(Standard_Natural
, Right_Opnd
(Ropnd
))));
6528 Analyze_And_Resolve
(N
, Typ
);
6532 -- Do required fixup of universal fixed operation
6534 if Typ
= Universal_Fixed
then
6535 Fixup_Universal_Fixed_Operation
(N
);
6539 -- Divisions with fixed-point results
6541 if Is_Fixed_Point_Type
(Typ
) then
6543 -- No special processing if Treat_Fixed_As_Integer is set, since
6544 -- from a semantic point of view such operations are simply integer
6545 -- operations and will be treated that way.
6547 if not Treat_Fixed_As_Integer
(N
) then
6548 if Is_Integer_Type
(Rtyp
) then
6549 Expand_Divide_Fixed_By_Integer_Giving_Fixed
(N
);
6551 Expand_Divide_Fixed_By_Fixed_Giving_Fixed
(N
);
6555 -- Other cases of division of fixed-point operands. Again we exclude the
6556 -- case where Treat_Fixed_As_Integer is set.
6558 elsif (Is_Fixed_Point_Type
(Ltyp
) or else Is_Fixed_Point_Type
(Rtyp
))
6559 and then not Treat_Fixed_As_Integer
(N
)
6561 if Is_Integer_Type
(Typ
) then
6562 Expand_Divide_Fixed_By_Fixed_Giving_Integer
(N
);
6564 pragma Assert
(Is_Floating_Point_Type
(Typ
));
6565 Expand_Divide_Fixed_By_Fixed_Giving_Float
(N
);
6568 -- Mixed-mode operations can appear in a non-static universal context,
6569 -- in which case the integer argument must be converted explicitly.
6571 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Rtyp
) then
6573 Convert_To
(Universal_Real
, Relocate_Node
(Ropnd
)));
6575 Analyze_And_Resolve
(Ropnd
, Universal_Real
);
6577 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Ltyp
) then
6579 Convert_To
(Universal_Real
, Relocate_Node
(Lopnd
)));
6581 Analyze_And_Resolve
(Lopnd
, Universal_Real
);
6583 -- Non-fixed point cases, do integer zero divide and overflow checks
6585 elsif Is_Integer_Type
(Typ
) then
6586 Apply_Divide_Checks
(N
);
6588 -- Deal with Vax_Float
6590 elsif Vax_Float
(Typ
) then
6591 Expand_Vax_Arith
(N
);
6594 end Expand_N_Op_Divide
;
6596 --------------------
6597 -- Expand_N_Op_Eq --
6598 --------------------
6600 procedure Expand_N_Op_Eq
(N
: Node_Id
) is
6601 Loc
: constant Source_Ptr
:= Sloc
(N
);
6602 Typ
: constant Entity_Id
:= Etype
(N
);
6603 Lhs
: constant Node_Id
:= Left_Opnd
(N
);
6604 Rhs
: constant Node_Id
:= Right_Opnd
(N
);
6605 Bodies
: constant List_Id
:= New_List
;
6606 A_Typ
: constant Entity_Id
:= Etype
(Lhs
);
6608 Typl
: Entity_Id
:= A_Typ
;
6609 Op_Name
: Entity_Id
;
6612 procedure Build_Equality_Call
(Eq
: Entity_Id
);
6613 -- If a constructed equality exists for the type or for its parent,
6614 -- build and analyze call, adding conversions if the operation is
6617 function Has_Unconstrained_UU_Component
(Typ
: Node_Id
) return Boolean;
6618 -- Determines whether a type has a subcomponent of an unconstrained
6619 -- Unchecked_Union subtype. Typ is a record type.
6621 -------------------------
6622 -- Build_Equality_Call --
6623 -------------------------
6625 procedure Build_Equality_Call
(Eq
: Entity_Id
) is
6626 Op_Type
: constant Entity_Id
:= Etype
(First_Formal
(Eq
));
6627 L_Exp
: Node_Id
:= Relocate_Node
(Lhs
);
6628 R_Exp
: Node_Id
:= Relocate_Node
(Rhs
);
6631 if Base_Type
(Op_Type
) /= Base_Type
(A_Typ
)
6632 and then not Is_Class_Wide_Type
(A_Typ
)
6634 L_Exp
:= OK_Convert_To
(Op_Type
, L_Exp
);
6635 R_Exp
:= OK_Convert_To
(Op_Type
, R_Exp
);
6638 -- If we have an Unchecked_Union, we need to add the inferred
6639 -- discriminant values as actuals in the function call. At this
6640 -- point, the expansion has determined that both operands have
6641 -- inferable discriminants.
6643 if Is_Unchecked_Union
(Op_Type
) then
6645 Lhs_Type
: constant Node_Id
:= Etype
(L_Exp
);
6646 Rhs_Type
: constant Node_Id
:= Etype
(R_Exp
);
6648 Lhs_Discr_Vals
: Elist_Id
;
6649 -- List of inferred discriminant values for left operand.
6651 Rhs_Discr_Vals
: Elist_Id
;
6652 -- List of inferred discriminant values for right operand.
6657 Lhs_Discr_Vals
:= New_Elmt_List
;
6658 Rhs_Discr_Vals
:= New_Elmt_List
;
6660 -- Per-object constrained selected components require special
6661 -- attention. If the enclosing scope of the component is an
6662 -- Unchecked_Union, we cannot reference its discriminants
6663 -- directly. This is why we use the extra parameters of the
6664 -- equality function of the enclosing Unchecked_Union.
6666 -- type UU_Type (Discr : Integer := 0) is
6669 -- pragma Unchecked_Union (UU_Type);
6671 -- 1. Unchecked_Union enclosing record:
6673 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
6675 -- Comp : UU_Type (Discr);
6677 -- end Enclosing_UU_Type;
6678 -- pragma Unchecked_Union (Enclosing_UU_Type);
6680 -- Obj1 : Enclosing_UU_Type;
6681 -- Obj2 : Enclosing_UU_Type (1);
6683 -- [. . .] Obj1 = Obj2 [. . .]
6687 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
6689 -- A and B are the formal parameters of the equality function
6690 -- of Enclosing_UU_Type. The function always has two extra
6691 -- formals to capture the inferred discriminant values for
6692 -- each discriminant of the type.
6694 -- 2. Non-Unchecked_Union enclosing record:
6697 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
6700 -- Comp : UU_Type (Discr);
6702 -- end Enclosing_Non_UU_Type;
6704 -- Obj1 : Enclosing_Non_UU_Type;
6705 -- Obj2 : Enclosing_Non_UU_Type (1);
6707 -- ... Obj1 = Obj2 ...
6711 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
6712 -- obj1.discr, obj2.discr)) then
6714 -- In this case we can directly reference the discriminants of
6715 -- the enclosing record.
6717 -- Process left operand of equality
6719 if Nkind
(Lhs
) = N_Selected_Component
6721 Has_Per_Object_Constraint
(Entity
(Selector_Name
(Lhs
)))
6723 -- If enclosing record is an Unchecked_Union, use formals
6724 -- corresponding to each discriminant. The name of the
6725 -- formal is that of the discriminant, with added suffix,
6726 -- see Exp_Ch3.Build_Record_Equality for details.
6728 if Is_Unchecked_Union
6729 (Scope
(Entity
(Selector_Name
(Lhs
))))
6733 (Scope
(Entity
(Selector_Name
(Lhs
))));
6734 while Present
(Discr
) loop
6736 Make_Identifier
(Loc
,
6737 Chars
=> New_External_Name
(Chars
(Discr
), 'A')),
6738 To
=> Lhs_Discr_Vals
);
6739 Next_Discriminant
(Discr
);
6742 -- If enclosing record is of a non-Unchecked_Union type, it
6743 -- is possible to reference its discriminants directly.
6746 Discr
:= First_Discriminant
(Lhs_Type
);
6747 while Present
(Discr
) loop
6749 Make_Selected_Component
(Loc
,
6750 Prefix
=> Prefix
(Lhs
),
6753 (Get_Discriminant_Value
(Discr
,
6755 Stored_Constraint
(Lhs_Type
)))),
6756 To
=> Lhs_Discr_Vals
);
6757 Next_Discriminant
(Discr
);
6761 -- Otherwise operand is on object with a constrained type.
6762 -- Infer the discriminant values from the constraint.
6766 Discr
:= First_Discriminant
(Lhs_Type
);
6767 while Present
(Discr
) loop
6770 (Get_Discriminant_Value
(Discr
,
6772 Stored_Constraint
(Lhs_Type
))),
6773 To
=> Lhs_Discr_Vals
);
6774 Next_Discriminant
(Discr
);
6778 -- Similar processing for right operand of equality
6780 if Nkind
(Rhs
) = N_Selected_Component
6782 Has_Per_Object_Constraint
(Entity
(Selector_Name
(Rhs
)))
6784 if Is_Unchecked_Union
6785 (Scope
(Entity
(Selector_Name
(Rhs
))))
6789 (Scope
(Entity
(Selector_Name
(Rhs
))));
6790 while Present
(Discr
) loop
6792 Make_Identifier
(Loc
,
6793 Chars
=> New_External_Name
(Chars
(Discr
), 'B')),
6794 To
=> Rhs_Discr_Vals
);
6795 Next_Discriminant
(Discr
);
6799 Discr
:= First_Discriminant
(Rhs_Type
);
6800 while Present
(Discr
) loop
6802 Make_Selected_Component
(Loc
,
6803 Prefix
=> Prefix
(Rhs
),
6805 New_Copy
(Get_Discriminant_Value
6808 Stored_Constraint
(Rhs_Type
)))),
6809 To
=> Rhs_Discr_Vals
);
6810 Next_Discriminant
(Discr
);
6815 Discr
:= First_Discriminant
(Rhs_Type
);
6816 while Present
(Discr
) loop
6818 New_Copy
(Get_Discriminant_Value
6821 Stored_Constraint
(Rhs_Type
))),
6822 To
=> Rhs_Discr_Vals
);
6823 Next_Discriminant
(Discr
);
6827 -- Now merge the list of discriminant values so that values
6828 -- of corresponding discriminants are adjacent.
6836 Params
:= New_List
(L_Exp
, R_Exp
);
6837 L_Elmt
:= First_Elmt
(Lhs_Discr_Vals
);
6838 R_Elmt
:= First_Elmt
(Rhs_Discr_Vals
);
6839 while Present
(L_Elmt
) loop
6840 Append_To
(Params
, Node
(L_Elmt
));
6841 Append_To
(Params
, Node
(R_Elmt
));
6847 Make_Function_Call
(Loc
,
6848 Name
=> New_Reference_To
(Eq
, Loc
),
6849 Parameter_Associations
=> Params
));
6853 -- Normal case, not an unchecked union
6857 Make_Function_Call
(Loc
,
6858 Name
=> New_Reference_To
(Eq
, Loc
),
6859 Parameter_Associations
=> New_List
(L_Exp
, R_Exp
)));
6862 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
6863 end Build_Equality_Call
;
6865 ------------------------------------
6866 -- Has_Unconstrained_UU_Component --
6867 ------------------------------------
6869 function Has_Unconstrained_UU_Component
6870 (Typ
: Node_Id
) return Boolean
6872 Tdef
: constant Node_Id
:=
6873 Type_Definition
(Declaration_Node
(Base_Type
(Typ
)));
6877 function Component_Is_Unconstrained_UU
6878 (Comp
: Node_Id
) return Boolean;
6879 -- Determines whether the subtype of the component is an
6880 -- unconstrained Unchecked_Union.
6882 function Variant_Is_Unconstrained_UU
6883 (Variant
: Node_Id
) return Boolean;
6884 -- Determines whether a component of the variant has an unconstrained
6885 -- Unchecked_Union subtype.
6887 -----------------------------------
6888 -- Component_Is_Unconstrained_UU --
6889 -----------------------------------
6891 function Component_Is_Unconstrained_UU
6892 (Comp
: Node_Id
) return Boolean
6895 if Nkind
(Comp
) /= N_Component_Declaration
then
6900 Sindic
: constant Node_Id
:=
6901 Subtype_Indication
(Component_Definition
(Comp
));
6904 -- Unconstrained nominal type. In the case of a constraint
6905 -- present, the node kind would have been N_Subtype_Indication.
6907 if Nkind
(Sindic
) = N_Identifier
then
6908 return Is_Unchecked_Union
(Base_Type
(Etype
(Sindic
)));
6913 end Component_Is_Unconstrained_UU
;
6915 ---------------------------------
6916 -- Variant_Is_Unconstrained_UU --
6917 ---------------------------------
6919 function Variant_Is_Unconstrained_UU
6920 (Variant
: Node_Id
) return Boolean
6922 Clist
: constant Node_Id
:= Component_List
(Variant
);
6925 if Is_Empty_List
(Component_Items
(Clist
)) then
6929 -- We only need to test one component
6932 Comp
: Node_Id
:= First
(Component_Items
(Clist
));
6935 while Present
(Comp
) loop
6936 if Component_Is_Unconstrained_UU
(Comp
) then
6944 -- None of the components withing the variant were of
6945 -- unconstrained Unchecked_Union type.
6948 end Variant_Is_Unconstrained_UU
;
6950 -- Start of processing for Has_Unconstrained_UU_Component
6953 if Null_Present
(Tdef
) then
6957 Clist
:= Component_List
(Tdef
);
6958 Vpart
:= Variant_Part
(Clist
);
6960 -- Inspect available components
6962 if Present
(Component_Items
(Clist
)) then
6964 Comp
: Node_Id
:= First
(Component_Items
(Clist
));
6967 while Present
(Comp
) loop
6969 -- One component is sufficient
6971 if Component_Is_Unconstrained_UU
(Comp
) then
6980 -- Inspect available components withing variants
6982 if Present
(Vpart
) then
6984 Variant
: Node_Id
:= First
(Variants
(Vpart
));
6987 while Present
(Variant
) loop
6989 -- One component within a variant is sufficient
6991 if Variant_Is_Unconstrained_UU
(Variant
) then
7000 -- Neither the available components, nor the components inside the
7001 -- variant parts were of an unconstrained Unchecked_Union subtype.
7004 end Has_Unconstrained_UU_Component
;
7006 -- Start of processing for Expand_N_Op_Eq
7009 Binary_Op_Validity_Checks
(N
);
7011 -- Deal with private types
7013 if Ekind
(Typl
) = E_Private_Type
then
7014 Typl
:= Underlying_Type
(Typl
);
7015 elsif Ekind
(Typl
) = E_Private_Subtype
then
7016 Typl
:= Underlying_Type
(Base_Type
(Typl
));
7021 -- It may happen in error situations that the underlying type is not
7022 -- set. The error will be detected later, here we just defend the
7029 Typl
:= Base_Type
(Typl
);
7031 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7032 -- means we no longer have a comparison operation, we are all done.
7034 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7036 if Nkind
(N
) /= N_Op_Eq
then
7040 -- Boolean types (requiring handling of non-standard case)
7042 if Is_Boolean_Type
(Typl
) then
7043 Adjust_Condition
(Left_Opnd
(N
));
7044 Adjust_Condition
(Right_Opnd
(N
));
7045 Set_Etype
(N
, Standard_Boolean
);
7046 Adjust_Result_Type
(N
, Typ
);
7050 elsif Is_Array_Type
(Typl
) then
7052 -- If we are doing full validity checking, and it is possible for the
7053 -- array elements to be invalid then expand out array comparisons to
7054 -- make sure that we check the array elements.
7056 if Validity_Check_Operands
7057 and then not Is_Known_Valid
(Component_Type
(Typl
))
7060 Save_Force_Validity_Checks
: constant Boolean :=
7061 Force_Validity_Checks
;
7063 Force_Validity_Checks
:= True;
7065 Expand_Array_Equality
7067 Relocate_Node
(Lhs
),
7068 Relocate_Node
(Rhs
),
7071 Insert_Actions
(N
, Bodies
);
7072 Analyze_And_Resolve
(N
, Standard_Boolean
);
7073 Force_Validity_Checks
:= Save_Force_Validity_Checks
;
7076 -- Packed case where both operands are known aligned
7078 elsif Is_Bit_Packed_Array
(Typl
)
7079 and then not Is_Possibly_Unaligned_Object
(Lhs
)
7080 and then not Is_Possibly_Unaligned_Object
(Rhs
)
7082 Expand_Packed_Eq
(N
);
7084 -- Where the component type is elementary we can use a block bit
7085 -- comparison (if supported on the target) exception in the case
7086 -- of floating-point (negative zero issues require element by
7087 -- element comparison), and atomic types (where we must be sure
7088 -- to load elements independently) and possibly unaligned arrays.
7090 elsif Is_Elementary_Type
(Component_Type
(Typl
))
7091 and then not Is_Floating_Point_Type
(Component_Type
(Typl
))
7092 and then not Is_Atomic
(Component_Type
(Typl
))
7093 and then not Is_Possibly_Unaligned_Object
(Lhs
)
7094 and then not Is_Possibly_Unaligned_Object
(Rhs
)
7095 and then Support_Composite_Compare_On_Target
7099 -- For composite and floating-point cases, expand equality loop to
7100 -- make sure of using proper comparisons for tagged types, and
7101 -- correctly handling the floating-point case.
7105 Expand_Array_Equality
7107 Relocate_Node
(Lhs
),
7108 Relocate_Node
(Rhs
),
7111 Insert_Actions
(N
, Bodies
, Suppress
=> All_Checks
);
7112 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7117 elsif Is_Record_Type
(Typl
) then
7119 -- For tagged types, use the primitive "="
7121 if Is_Tagged_Type
(Typl
) then
7123 -- No need to do anything else compiling under restriction
7124 -- No_Dispatching_Calls. During the semantic analysis we
7125 -- already notified such violation.
7127 if Restriction_Active
(No_Dispatching_Calls
) then
7131 -- If this is derived from an untagged private type completed with
7132 -- a tagged type, it does not have a full view, so we use the
7133 -- primitive operations of the private type. This check should no
7134 -- longer be necessary when these types get their full views???
7136 if Is_Private_Type
(A_Typ
)
7137 and then not Is_Tagged_Type
(A_Typ
)
7138 and then Is_Derived_Type
(A_Typ
)
7139 and then No
(Full_View
(A_Typ
))
7141 -- Search for equality operation, checking that the operands
7142 -- have the same type. Note that we must find a matching entry,
7143 -- or something is very wrong!
7145 Prim
:= First_Elmt
(Collect_Primitive_Operations
(A_Typ
));
7147 while Present
(Prim
) loop
7148 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7149 and then Etype
(First_Formal
(Node
(Prim
))) =
7150 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7152 Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7157 pragma Assert
(Present
(Prim
));
7158 Op_Name
:= Node
(Prim
);
7160 -- Find the type's predefined equality or an overriding
7161 -- user- defined equality. The reason for not simply calling
7162 -- Find_Prim_Op here is that there may be a user-defined
7163 -- overloaded equality op that precedes the equality that we want,
7164 -- so we have to explicitly search (e.g., there could be an
7165 -- equality with two different parameter types).
7168 if Is_Class_Wide_Type
(Typl
) then
7169 Typl
:= Root_Type
(Typl
);
7172 Prim
:= First_Elmt
(Primitive_Operations
(Typl
));
7173 while Present
(Prim
) loop
7174 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7175 and then Etype
(First_Formal
(Node
(Prim
))) =
7176 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7178 Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7183 pragma Assert
(Present
(Prim
));
7184 Op_Name
:= Node
(Prim
);
7187 Build_Equality_Call
(Op_Name
);
7189 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
7190 -- predefined equality operator for a type which has a subcomponent
7191 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
7193 elsif Has_Unconstrained_UU_Component
(Typl
) then
7195 Make_Raise_Program_Error
(Loc
,
7196 Reason
=> PE_Unchecked_Union_Restriction
));
7198 -- Prevent Gigi from generating incorrect code by rewriting the
7199 -- equality as a standard False. (is this documented somewhere???)
7202 New_Occurrence_Of
(Standard_False
, Loc
));
7204 elsif Is_Unchecked_Union
(Typl
) then
7206 -- If we can infer the discriminants of the operands, we make a
7207 -- call to the TSS equality function.
7209 if Has_Inferable_Discriminants
(Lhs
)
7211 Has_Inferable_Discriminants
(Rhs
)
7214 (TSS
(Root_Type
(Typl
), TSS_Composite_Equality
));
7217 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
7218 -- the predefined equality operator for an Unchecked_Union type
7219 -- if either of the operands lack inferable discriminants.
7222 Make_Raise_Program_Error
(Loc
,
7223 Reason
=> PE_Unchecked_Union_Restriction
));
7225 -- Prevent Gigi from generating incorrect code by rewriting
7226 -- the equality as a standard False (documented where???).
7229 New_Occurrence_Of
(Standard_False
, Loc
));
7233 -- If a type support function is present (for complex cases), use it
7235 elsif Present
(TSS
(Root_Type
(Typl
), TSS_Composite_Equality
)) then
7237 (TSS
(Root_Type
(Typl
), TSS_Composite_Equality
));
7239 -- When comparing two Bounded_Strings, use the primitive equality of
7240 -- the root Super_String type.
7242 elsif Is_Bounded_String
(Typl
) then
7244 First_Elmt
(Collect_Primitive_Operations
(Root_Type
(Typl
)));
7246 while Present
(Prim
) loop
7247 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7248 and then Etype
(First_Formal
(Node
(Prim
))) =
7249 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7250 and then Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7255 -- A Super_String type should always have a primitive equality
7257 pragma Assert
(Present
(Prim
));
7258 Build_Equality_Call
(Node
(Prim
));
7260 -- Otherwise expand the component by component equality. Note that
7261 -- we never use block-bit comparisons for records, because of the
7262 -- problems with gaps. The backend will often be able to recombine
7263 -- the separate comparisons that we generate here.
7266 Remove_Side_Effects
(Lhs
);
7267 Remove_Side_Effects
(Rhs
);
7269 Expand_Record_Equality
(N
, Typl
, Lhs
, Rhs
, Bodies
));
7271 Insert_Actions
(N
, Bodies
, Suppress
=> All_Checks
);
7272 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7276 -- Test if result is known at compile time
7278 Rewrite_Comparison
(N
);
7280 -- If we still have comparison for Vax_Float, process it
7282 if Vax_Float
(Typl
) and then Nkind
(N
) in N_Op_Compare
then
7283 Expand_Vax_Comparison
(N
);
7287 Optimize_Length_Comparison
(N
);
7290 -----------------------
7291 -- Expand_N_Op_Expon --
7292 -----------------------
7294 procedure Expand_N_Op_Expon
(N
: Node_Id
) is
7295 Loc
: constant Source_Ptr
:= Sloc
(N
);
7296 Typ
: constant Entity_Id
:= Etype
(N
);
7297 Rtyp
: constant Entity_Id
:= Root_Type
(Typ
);
7298 Base
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
7299 Bastyp
: constant Node_Id
:= Etype
(Base
);
7300 Exp
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
7301 Exptyp
: constant Entity_Id
:= Etype
(Exp
);
7302 Ovflo
: constant Boolean := Do_Overflow_Check
(N
);
7311 Binary_Op_Validity_Checks
(N
);
7313 -- CodePeer wants to see the unexpanded N_Op_Expon node
7315 if CodePeer_Mode
then
7319 -- If either operand is of a private type, then we have the use of an
7320 -- intrinsic operator, and we get rid of the privateness, by using root
7321 -- types of underlying types for the actual operation. Otherwise the
7322 -- private types will cause trouble if we expand multiplications or
7323 -- shifts etc. We also do this transformation if the result type is
7324 -- different from the base type.
7326 if Is_Private_Type
(Etype
(Base
))
7327 or else Is_Private_Type
(Typ
)
7328 or else Is_Private_Type
(Exptyp
)
7329 or else Rtyp
/= Root_Type
(Bastyp
)
7332 Bt
: constant Entity_Id
:= Root_Type
(Underlying_Type
(Bastyp
));
7333 Et
: constant Entity_Id
:= Root_Type
(Underlying_Type
(Exptyp
));
7337 Unchecked_Convert_To
(Typ
,
7339 Left_Opnd
=> Unchecked_Convert_To
(Bt
, Base
),
7340 Right_Opnd
=> Unchecked_Convert_To
(Et
, Exp
))));
7341 Analyze_And_Resolve
(N
, Typ
);
7346 -- Check for MINIMIZED/ELIMINATED overflow mode
7348 if Minimized_Eliminated_Overflow_Check
(N
) then
7349 Apply_Arithmetic_Overflow_Check
(N
);
7353 -- Test for case of known right argument where we can replace the
7354 -- exponentiation by an equivalent expression using multiplication.
7356 if Compile_Time_Known_Value
(Exp
) then
7357 Expv
:= Expr_Value
(Exp
);
7359 -- We only fold small non-negative exponents. You might think we
7360 -- could fold small negative exponents for the real case, but we
7361 -- can't because we are required to raise Constraint_Error for
7362 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
7363 -- See ACVC test C4A012B.
7365 if Expv
>= 0 and then Expv
<= 4 then
7367 -- X ** 0 = 1 (or 1.0)
7371 -- Call Remove_Side_Effects to ensure that any side effects
7372 -- in the ignored left operand (in particular function calls
7373 -- to user defined functions) are properly executed.
7375 Remove_Side_Effects
(Base
);
7377 if Ekind
(Typ
) in Integer_Kind
then
7378 Xnode
:= Make_Integer_Literal
(Loc
, Intval
=> 1);
7380 Xnode
:= Make_Real_Literal
(Loc
, Ureal_1
);
7392 Make_Op_Multiply
(Loc
,
7393 Left_Opnd
=> Duplicate_Subexpr
(Base
),
7394 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
));
7396 -- X ** 3 = X * X * X
7400 Make_Op_Multiply
(Loc
,
7402 Make_Op_Multiply
(Loc
,
7403 Left_Opnd
=> Duplicate_Subexpr
(Base
),
7404 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
)),
7405 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
));
7410 -- En : constant base'type := base * base;
7415 pragma Assert
(Expv
= 4);
7416 Temp
:= Make_Temporary
(Loc
, 'E', Base
);
7419 Make_Expression_With_Actions
(Loc
,
7420 Actions
=> New_List
(
7421 Make_Object_Declaration
(Loc
,
7422 Defining_Identifier
=> Temp
,
7423 Constant_Present
=> True,
7424 Object_Definition
=> New_Reference_To
(Typ
, Loc
),
7426 Make_Op_Multiply
(Loc
,
7428 Duplicate_Subexpr
(Base
),
7430 Duplicate_Subexpr_No_Checks
(Base
)))),
7433 Make_Op_Multiply
(Loc
,
7434 Left_Opnd
=> New_Reference_To
(Temp
, Loc
),
7435 Right_Opnd
=> New_Reference_To
(Temp
, Loc
)));
7439 Analyze_And_Resolve
(N
, Typ
);
7444 -- Case of (2 ** expression) appearing as an argument of an integer
7445 -- multiplication, or as the right argument of a division of a non-
7446 -- negative integer. In such cases we leave the node untouched, setting
7447 -- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
7448 -- of the higher level node converts it into a shift.
7450 -- Another case is 2 ** N in any other context. We simply convert
7451 -- this to 1 * 2 ** N, and then the above transformation applies.
7453 -- Note: this transformation is not applicable for a modular type with
7454 -- a non-binary modulus in the multiplication case, since we get a wrong
7455 -- result if the shift causes an overflow before the modular reduction.
7457 if Nkind
(Base
) = N_Integer_Literal
7458 and then Intval
(Base
) = 2
7459 and then Is_Integer_Type
(Root_Type
(Exptyp
))
7460 and then Esize
(Root_Type
(Exptyp
)) <= Esize
(Standard_Integer
)
7461 and then Is_Unsigned_Type
(Exptyp
)
7464 -- First the multiply and divide cases
7466 if Nkind_In
(Parent
(N
), N_Op_Divide
, N_Op_Multiply
) then
7468 P
: constant Node_Id
:= Parent
(N
);
7469 L
: constant Node_Id
:= Left_Opnd
(P
);
7470 R
: constant Node_Id
:= Right_Opnd
(P
);
7473 if (Nkind
(P
) = N_Op_Multiply
7474 and then not Non_Binary_Modulus
(Typ
)
7476 ((Is_Integer_Type
(Etype
(L
)) and then R
= N
)
7478 (Is_Integer_Type
(Etype
(R
)) and then L
= N
))
7479 and then not Do_Overflow_Check
(P
))
7481 (Nkind
(P
) = N_Op_Divide
7482 and then Is_Integer_Type
(Etype
(L
))
7483 and then Is_Unsigned_Type
(Etype
(L
))
7485 and then not Do_Overflow_Check
(P
))
7487 Set_Is_Power_Of_2_For_Shift
(N
);
7492 -- Now the other cases
7494 elsif not Non_Binary_Modulus
(Typ
) then
7496 Make_Op_Multiply
(Loc
,
7497 Left_Opnd
=> Make_Integer_Literal
(Loc
, 1),
7498 Right_Opnd
=> Relocate_Node
(N
)));
7499 Analyze_And_Resolve
(N
, Typ
);
7504 -- Fall through if exponentiation must be done using a runtime routine
7506 -- First deal with modular case
7508 if Is_Modular_Integer_Type
(Rtyp
) then
7510 -- Non-binary case, we call the special exponentiation routine for
7511 -- the non-binary case, converting the argument to Long_Long_Integer
7512 -- and passing the modulus value. Then the result is converted back
7513 -- to the base type.
7515 if Non_Binary_Modulus
(Rtyp
) then
7518 Make_Function_Call
(Loc
,
7519 Name
=> New_Reference_To
(RTE
(RE_Exp_Modular
), Loc
),
7520 Parameter_Associations
=> New_List
(
7521 Convert_To
(Standard_Integer
, Base
),
7522 Make_Integer_Literal
(Loc
, Modulus
(Rtyp
)),
7525 -- Binary case, in this case, we call one of two routines, either the
7526 -- unsigned integer case, or the unsigned long long integer case,
7527 -- with a final "and" operation to do the required mod.
7530 if UI_To_Int
(Esize
(Rtyp
)) <= Standard_Integer_Size
then
7531 Ent
:= RTE
(RE_Exp_Unsigned
);
7533 Ent
:= RTE
(RE_Exp_Long_Long_Unsigned
);
7540 Make_Function_Call
(Loc
,
7541 Name
=> New_Reference_To
(Ent
, Loc
),
7542 Parameter_Associations
=> New_List
(
7543 Convert_To
(Etype
(First_Formal
(Ent
)), Base
),
7546 Make_Integer_Literal
(Loc
, Modulus
(Rtyp
) - 1))));
7550 -- Common exit point for modular type case
7552 Analyze_And_Resolve
(N
, Typ
);
7555 -- Signed integer cases, done using either Integer or Long_Long_Integer.
7556 -- It is not worth having routines for Short_[Short_]Integer, since for
7557 -- most machines it would not help, and it would generate more code that
7558 -- might need certification when a certified run time is required.
7560 -- In the integer cases, we have two routines, one for when overflow
7561 -- checks are required, and one when they are not required, since there
7562 -- is a real gain in omitting checks on many machines.
7564 elsif Rtyp
= Base_Type
(Standard_Long_Long_Integer
)
7565 or else (Rtyp
= Base_Type
(Standard_Long_Integer
)
7567 Esize
(Standard_Long_Integer
) > Esize
(Standard_Integer
))
7568 or else Rtyp
= Universal_Integer
7570 Etyp
:= Standard_Long_Long_Integer
;
7573 Rent
:= RE_Exp_Long_Long_Integer
;
7575 Rent
:= RE_Exn_Long_Long_Integer
;
7578 elsif Is_Signed_Integer_Type
(Rtyp
) then
7579 Etyp
:= Standard_Integer
;
7582 Rent
:= RE_Exp_Integer
;
7584 Rent
:= RE_Exn_Integer
;
7587 -- Floating-point cases, always done using Long_Long_Float. We do not
7588 -- need separate routines for the overflow case here, since in the case
7589 -- of floating-point, we generate infinities anyway as a rule (either
7590 -- that or we automatically trap overflow), and if there is an infinity
7591 -- generated and a range check is required, the check will fail anyway.
7594 pragma Assert
(Is_Floating_Point_Type
(Rtyp
));
7595 Etyp
:= Standard_Long_Long_Float
;
7596 Rent
:= RE_Exn_Long_Long_Float
;
7599 -- Common processing for integer cases and floating-point cases.
7600 -- If we are in the right type, we can call runtime routine directly
7603 and then Rtyp
/= Universal_Integer
7604 and then Rtyp
/= Universal_Real
7607 Make_Function_Call
(Loc
,
7608 Name
=> New_Reference_To
(RTE
(Rent
), Loc
),
7609 Parameter_Associations
=> New_List
(Base
, Exp
)));
7611 -- Otherwise we have to introduce conversions (conversions are also
7612 -- required in the universal cases, since the runtime routine is
7613 -- typed using one of the standard types).
7618 Make_Function_Call
(Loc
,
7619 Name
=> New_Reference_To
(RTE
(Rent
), Loc
),
7620 Parameter_Associations
=> New_List
(
7621 Convert_To
(Etyp
, Base
),
7625 Analyze_And_Resolve
(N
, Typ
);
7629 when RE_Not_Available
=>
7631 end Expand_N_Op_Expon
;
7633 --------------------
7634 -- Expand_N_Op_Ge --
7635 --------------------
7637 procedure Expand_N_Op_Ge
(N
: Node_Id
) is
7638 Typ
: constant Entity_Id
:= Etype
(N
);
7639 Op1
: constant Node_Id
:= Left_Opnd
(N
);
7640 Op2
: constant Node_Id
:= Right_Opnd
(N
);
7641 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
7644 Binary_Op_Validity_Checks
(N
);
7646 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7647 -- means we no longer have a comparison operation, we are all done.
7649 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7651 if Nkind
(N
) /= N_Op_Ge
then
7657 if Is_Array_Type
(Typ1
) then
7658 Expand_Array_Comparison
(N
);
7662 -- Deal with boolean operands
7664 if Is_Boolean_Type
(Typ1
) then
7665 Adjust_Condition
(Op1
);
7666 Adjust_Condition
(Op2
);
7667 Set_Etype
(N
, Standard_Boolean
);
7668 Adjust_Result_Type
(N
, Typ
);
7671 Rewrite_Comparison
(N
);
7673 -- If we still have comparison, and Vax_Float type, process it
7675 if Vax_Float
(Typ1
) and then Nkind
(N
) in N_Op_Compare
then
7676 Expand_Vax_Comparison
(N
);
7680 Optimize_Length_Comparison
(N
);
7683 --------------------
7684 -- Expand_N_Op_Gt --
7685 --------------------
7687 procedure Expand_N_Op_Gt
(N
: Node_Id
) is
7688 Typ
: constant Entity_Id
:= Etype
(N
);
7689 Op1
: constant Node_Id
:= Left_Opnd
(N
);
7690 Op2
: constant Node_Id
:= Right_Opnd
(N
);
7691 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
7694 Binary_Op_Validity_Checks
(N
);
7696 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7697 -- means we no longer have a comparison operation, we are all done.
7699 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7701 if Nkind
(N
) /= N_Op_Gt
then
7705 -- Deal with array type operands
7707 if Is_Array_Type
(Typ1
) then
7708 Expand_Array_Comparison
(N
);
7712 -- Deal with boolean type operands
7714 if Is_Boolean_Type
(Typ1
) then
7715 Adjust_Condition
(Op1
);
7716 Adjust_Condition
(Op2
);
7717 Set_Etype
(N
, Standard_Boolean
);
7718 Adjust_Result_Type
(N
, Typ
);
7721 Rewrite_Comparison
(N
);
7723 -- If we still have comparison, and Vax_Float type, process it
7725 if Vax_Float
(Typ1
) and then Nkind
(N
) in N_Op_Compare
then
7726 Expand_Vax_Comparison
(N
);
7730 Optimize_Length_Comparison
(N
);
7733 --------------------
7734 -- Expand_N_Op_Le --
7735 --------------------
7737 procedure Expand_N_Op_Le
(N
: Node_Id
) is
7738 Typ
: constant Entity_Id
:= Etype
(N
);
7739 Op1
: constant Node_Id
:= Left_Opnd
(N
);
7740 Op2
: constant Node_Id
:= Right_Opnd
(N
);
7741 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
7744 Binary_Op_Validity_Checks
(N
);
7746 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7747 -- means we no longer have a comparison operation, we are all done.
7749 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7751 if Nkind
(N
) /= N_Op_Le
then
7755 -- Deal with array type operands
7757 if Is_Array_Type
(Typ1
) then
7758 Expand_Array_Comparison
(N
);
7762 -- Deal with Boolean type operands
7764 if Is_Boolean_Type
(Typ1
) then
7765 Adjust_Condition
(Op1
);
7766 Adjust_Condition
(Op2
);
7767 Set_Etype
(N
, Standard_Boolean
);
7768 Adjust_Result_Type
(N
, Typ
);
7771 Rewrite_Comparison
(N
);
7773 -- If we still have comparison, and Vax_Float type, process it
7775 if Vax_Float
(Typ1
) and then Nkind
(N
) in N_Op_Compare
then
7776 Expand_Vax_Comparison
(N
);
7780 Optimize_Length_Comparison
(N
);
7783 --------------------
7784 -- Expand_N_Op_Lt --
7785 --------------------
7787 procedure Expand_N_Op_Lt
(N
: Node_Id
) is
7788 Typ
: constant Entity_Id
:= Etype
(N
);
7789 Op1
: constant Node_Id
:= Left_Opnd
(N
);
7790 Op2
: constant Node_Id
:= Right_Opnd
(N
);
7791 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
7794 Binary_Op_Validity_Checks
(N
);
7796 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7797 -- means we no longer have a comparison operation, we are all done.
7799 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7801 if Nkind
(N
) /= N_Op_Lt
then
7805 -- Deal with array type operands
7807 if Is_Array_Type
(Typ1
) then
7808 Expand_Array_Comparison
(N
);
7812 -- Deal with Boolean type operands
7814 if Is_Boolean_Type
(Typ1
) then
7815 Adjust_Condition
(Op1
);
7816 Adjust_Condition
(Op2
);
7817 Set_Etype
(N
, Standard_Boolean
);
7818 Adjust_Result_Type
(N
, Typ
);
7821 Rewrite_Comparison
(N
);
7823 -- If we still have comparison, and Vax_Float type, process it
7825 if Vax_Float
(Typ1
) and then Nkind
(N
) in N_Op_Compare
then
7826 Expand_Vax_Comparison
(N
);
7830 Optimize_Length_Comparison
(N
);
7833 -----------------------
7834 -- Expand_N_Op_Minus --
7835 -----------------------
7837 procedure Expand_N_Op_Minus
(N
: Node_Id
) is
7838 Loc
: constant Source_Ptr
:= Sloc
(N
);
7839 Typ
: constant Entity_Id
:= Etype
(N
);
7842 Unary_Op_Validity_Checks
(N
);
7844 -- Check for MINIMIZED/ELIMINATED overflow mode
7846 if Minimized_Eliminated_Overflow_Check
(N
) then
7847 Apply_Arithmetic_Overflow_Check
(N
);
7851 if not Backend_Overflow_Checks_On_Target
7852 and then Is_Signed_Integer_Type
(Etype
(N
))
7853 and then Do_Overflow_Check
(N
)
7855 -- Software overflow checking expands -expr into (0 - expr)
7858 Make_Op_Subtract
(Loc
,
7859 Left_Opnd
=> Make_Integer_Literal
(Loc
, 0),
7860 Right_Opnd
=> Right_Opnd
(N
)));
7862 Analyze_And_Resolve
(N
, Typ
);
7864 -- Vax floating-point types case
7866 elsif Vax_Float
(Etype
(N
)) then
7867 Expand_Vax_Arith
(N
);
7869 end Expand_N_Op_Minus
;
7871 ---------------------
7872 -- Expand_N_Op_Mod --
7873 ---------------------
7875 procedure Expand_N_Op_Mod
(N
: Node_Id
) is
7876 Loc
: constant Source_Ptr
:= Sloc
(N
);
7877 Typ
: constant Entity_Id
:= Etype
(N
);
7878 DDC
: constant Boolean := Do_Division_Check
(N
);
7891 pragma Warnings
(Off
, Lhi
);
7894 Binary_Op_Validity_Checks
(N
);
7896 -- Check for MINIMIZED/ELIMINATED overflow mode
7898 if Minimized_Eliminated_Overflow_Check
(N
) then
7899 Apply_Arithmetic_Overflow_Check
(N
);
7903 if Is_Integer_Type
(Etype
(N
)) then
7904 Apply_Divide_Checks
(N
);
7906 -- All done if we don't have a MOD any more, which can happen as a
7907 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
7909 if Nkind
(N
) /= N_Op_Mod
then
7914 -- Proceed with expansion of mod operator
7916 Left
:= Left_Opnd
(N
);
7917 Right
:= Right_Opnd
(N
);
7919 Determine_Range
(Right
, ROK
, Rlo
, Rhi
, Assume_Valid
=> True);
7920 Determine_Range
(Left
, LOK
, Llo
, Lhi
, Assume_Valid
=> True);
7922 -- Convert mod to rem if operands are known non-negative. We do this
7923 -- since it is quite likely that this will improve the quality of code,
7924 -- (the operation now corresponds to the hardware remainder), and it
7925 -- does not seem likely that it could be harmful.
7927 if LOK
and then Llo
>= 0 and then ROK
and then Rlo
>= 0 then
7929 Make_Op_Rem
(Sloc
(N
),
7930 Left_Opnd
=> Left_Opnd
(N
),
7931 Right_Opnd
=> Right_Opnd
(N
)));
7933 -- Instead of reanalyzing the node we do the analysis manually. This
7934 -- avoids anomalies when the replacement is done in an instance and
7935 -- is epsilon more efficient.
7937 Set_Entity
(N
, Standard_Entity
(S_Op_Rem
));
7939 Set_Do_Division_Check
(N
, DDC
);
7940 Expand_N_Op_Rem
(N
);
7943 -- Otherwise, normal mod processing
7946 -- Apply optimization x mod 1 = 0. We don't really need that with
7947 -- gcc, but it is useful with other back ends (e.g. AAMP), and is
7948 -- certainly harmless.
7950 if Is_Integer_Type
(Etype
(N
))
7951 and then Compile_Time_Known_Value
(Right
)
7952 and then Expr_Value
(Right
) = Uint_1
7954 -- Call Remove_Side_Effects to ensure that any side effects in
7955 -- the ignored left operand (in particular function calls to
7956 -- user defined functions) are properly executed.
7958 Remove_Side_Effects
(Left
);
7960 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
7961 Analyze_And_Resolve
(N
, Typ
);
7965 -- Deal with annoying case of largest negative number remainder
7966 -- minus one. Gigi may not handle this case correctly, because
7967 -- on some targets, the mod value is computed using a divide
7968 -- instruction which gives an overflow trap for this case.
7970 -- It would be a bit more efficient to figure out which targets
7971 -- this is really needed for, but in practice it is reasonable
7972 -- to do the following special check in all cases, since it means
7973 -- we get a clearer message, and also the overhead is minimal given
7974 -- that division is expensive in any case.
7976 -- In fact the check is quite easy, if the right operand is -1, then
7977 -- the mod value is always 0, and we can just ignore the left operand
7978 -- completely in this case.
7980 -- This only applies if we still have a mod operator. Skip if we
7981 -- have already rewritten this (e.g. in the case of eliminated
7982 -- overflow checks which have driven us into bignum mode).
7984 if Nkind
(N
) = N_Op_Mod
then
7986 -- The operand type may be private (e.g. in the expansion of an
7987 -- intrinsic operation) so we must use the underlying type to get
7988 -- the bounds, and convert the literals explicitly.
7992 (Type_Low_Bound
(Base_Type
(Underlying_Type
(Etype
(Left
)))));
7994 if ((not ROK
) or else (Rlo
<= (-1) and then (-1) <= Rhi
))
7995 and then ((not LOK
) or else (Llo
= LLB
))
7998 Make_If_Expression
(Loc
,
7999 Expressions
=> New_List
(
8001 Left_Opnd
=> Duplicate_Subexpr
(Right
),
8003 Unchecked_Convert_To
(Typ
,
8004 Make_Integer_Literal
(Loc
, -1))),
8005 Unchecked_Convert_To
(Typ
,
8006 Make_Integer_Literal
(Loc
, Uint_0
)),
8007 Relocate_Node
(N
))));
8009 Set_Analyzed
(Next
(Next
(First
(Expressions
(N
)))));
8010 Analyze_And_Resolve
(N
, Typ
);
8014 end Expand_N_Op_Mod
;
8016 --------------------------
8017 -- Expand_N_Op_Multiply --
8018 --------------------------
8020 procedure Expand_N_Op_Multiply
(N
: Node_Id
) is
8021 Loc
: constant Source_Ptr
:= Sloc
(N
);
8022 Lop
: constant Node_Id
:= Left_Opnd
(N
);
8023 Rop
: constant Node_Id
:= Right_Opnd
(N
);
8025 Lp2
: constant Boolean :=
8026 Nkind
(Lop
) = N_Op_Expon
and then Is_Power_Of_2_For_Shift
(Lop
);
8027 Rp2
: constant Boolean :=
8028 Nkind
(Rop
) = N_Op_Expon
and then Is_Power_Of_2_For_Shift
(Rop
);
8030 Ltyp
: constant Entity_Id
:= Etype
(Lop
);
8031 Rtyp
: constant Entity_Id
:= Etype
(Rop
);
8032 Typ
: Entity_Id
:= Etype
(N
);
8035 Binary_Op_Validity_Checks
(N
);
8037 -- Check for MINIMIZED/ELIMINATED overflow mode
8039 if Minimized_Eliminated_Overflow_Check
(N
) then
8040 Apply_Arithmetic_Overflow_Check
(N
);
8044 -- Special optimizations for integer types
8046 if Is_Integer_Type
(Typ
) then
8048 -- N * 0 = 0 for integer types
8050 if Compile_Time_Known_Value
(Rop
)
8051 and then Expr_Value
(Rop
) = Uint_0
8053 -- Call Remove_Side_Effects to ensure that any side effects in
8054 -- the ignored left operand (in particular function calls to
8055 -- user defined functions) are properly executed.
8057 Remove_Side_Effects
(Lop
);
8059 Rewrite
(N
, Make_Integer_Literal
(Loc
, Uint_0
));
8060 Analyze_And_Resolve
(N
, Typ
);
8064 -- Similar handling for 0 * N = 0
8066 if Compile_Time_Known_Value
(Lop
)
8067 and then Expr_Value
(Lop
) = Uint_0
8069 Remove_Side_Effects
(Rop
);
8070 Rewrite
(N
, Make_Integer_Literal
(Loc
, Uint_0
));
8071 Analyze_And_Resolve
(N
, Typ
);
8075 -- N * 1 = 1 * N = N for integer types
8077 -- This optimisation is not done if we are going to
8078 -- rewrite the product 1 * 2 ** N to a shift.
8080 if Compile_Time_Known_Value
(Rop
)
8081 and then Expr_Value
(Rop
) = Uint_1
8087 elsif Compile_Time_Known_Value
(Lop
)
8088 and then Expr_Value
(Lop
) = Uint_1
8096 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
8097 -- Is_Power_Of_2_For_Shift is set means that we know that our left
8098 -- operand is an integer, as required for this to work.
8103 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
8107 Left_Opnd
=> Make_Integer_Literal
(Loc
, 2),
8110 Left_Opnd
=> Right_Opnd
(Lop
),
8111 Right_Opnd
=> Right_Opnd
(Rop
))));
8112 Analyze_And_Resolve
(N
, Typ
);
8116 -- If the result is modular, perform the reduction of the result
8119 if Is_Modular_Integer_Type
(Typ
)
8120 and then not Non_Binary_Modulus
(Typ
)
8125 Make_Op_Shift_Left
(Loc
,
8128 Convert_To
(Standard_Natural
, Right_Opnd
(Rop
))),
8130 Make_Integer_Literal
(Loc
, Modulus
(Typ
) - 1)));
8134 Make_Op_Shift_Left
(Loc
,
8137 Convert_To
(Standard_Natural
, Right_Opnd
(Rop
))));
8140 Analyze_And_Resolve
(N
, Typ
);
8144 -- Same processing for the operands the other way round
8147 if Is_Modular_Integer_Type
(Typ
)
8148 and then not Non_Binary_Modulus
(Typ
)
8153 Make_Op_Shift_Left
(Loc
,
8156 Convert_To
(Standard_Natural
, Right_Opnd
(Lop
))),
8158 Make_Integer_Literal
(Loc
, Modulus
(Typ
) - 1)));
8162 Make_Op_Shift_Left
(Loc
,
8165 Convert_To
(Standard_Natural
, Right_Opnd
(Lop
))));
8168 Analyze_And_Resolve
(N
, Typ
);
8172 -- Do required fixup of universal fixed operation
8174 if Typ
= Universal_Fixed
then
8175 Fixup_Universal_Fixed_Operation
(N
);
8179 -- Multiplications with fixed-point results
8181 if Is_Fixed_Point_Type
(Typ
) then
8183 -- No special processing if Treat_Fixed_As_Integer is set, since from
8184 -- a semantic point of view such operations are simply integer
8185 -- operations and will be treated that way.
8187 if not Treat_Fixed_As_Integer
(N
) then
8189 -- Case of fixed * integer => fixed
8191 if Is_Integer_Type
(Rtyp
) then
8192 Expand_Multiply_Fixed_By_Integer_Giving_Fixed
(N
);
8194 -- Case of integer * fixed => fixed
8196 elsif Is_Integer_Type
(Ltyp
) then
8197 Expand_Multiply_Integer_By_Fixed_Giving_Fixed
(N
);
8199 -- Case of fixed * fixed => fixed
8202 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
(N
);
8206 -- Other cases of multiplication of fixed-point operands. Again we
8207 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
8209 elsif (Is_Fixed_Point_Type
(Ltyp
) or else Is_Fixed_Point_Type
(Rtyp
))
8210 and then not Treat_Fixed_As_Integer
(N
)
8212 if Is_Integer_Type
(Typ
) then
8213 Expand_Multiply_Fixed_By_Fixed_Giving_Integer
(N
);
8215 pragma Assert
(Is_Floating_Point_Type
(Typ
));
8216 Expand_Multiply_Fixed_By_Fixed_Giving_Float
(N
);
8219 -- Mixed-mode operations can appear in a non-static universal context,
8220 -- in which case the integer argument must be converted explicitly.
8222 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Rtyp
) then
8223 Rewrite
(Rop
, Convert_To
(Universal_Real
, Relocate_Node
(Rop
)));
8224 Analyze_And_Resolve
(Rop
, Universal_Real
);
8226 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Ltyp
) then
8227 Rewrite
(Lop
, Convert_To
(Universal_Real
, Relocate_Node
(Lop
)));
8228 Analyze_And_Resolve
(Lop
, Universal_Real
);
8230 -- Non-fixed point cases, check software overflow checking required
8232 elsif Is_Signed_Integer_Type
(Etype
(N
)) then
8233 Apply_Arithmetic_Overflow_Check
(N
);
8235 -- Deal with VAX float case
8237 elsif Vax_Float
(Typ
) then
8238 Expand_Vax_Arith
(N
);
8241 end Expand_N_Op_Multiply
;
8243 --------------------
8244 -- Expand_N_Op_Ne --
8245 --------------------
8247 procedure Expand_N_Op_Ne
(N
: Node_Id
) is
8248 Typ
: constant Entity_Id
:= Etype
(Left_Opnd
(N
));
8251 -- Case of elementary type with standard operator
8253 if Is_Elementary_Type
(Typ
)
8254 and then Sloc
(Entity
(N
)) = Standard_Location
8256 Binary_Op_Validity_Checks
(N
);
8258 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
8259 -- means we no longer have a /= operation, we are all done.
8261 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8263 if Nkind
(N
) /= N_Op_Ne
then
8267 -- Boolean types (requiring handling of non-standard case)
8269 if Is_Boolean_Type
(Typ
) then
8270 Adjust_Condition
(Left_Opnd
(N
));
8271 Adjust_Condition
(Right_Opnd
(N
));
8272 Set_Etype
(N
, Standard_Boolean
);
8273 Adjust_Result_Type
(N
, Typ
);
8276 Rewrite_Comparison
(N
);
8278 -- If we still have comparison for Vax_Float, process it
8280 if Vax_Float
(Typ
) and then Nkind
(N
) in N_Op_Compare
then
8281 Expand_Vax_Comparison
(N
);
8285 -- For all cases other than elementary types, we rewrite node as the
8286 -- negation of an equality operation, and reanalyze. The equality to be
8287 -- used is defined in the same scope and has the same signature. This
8288 -- signature must be set explicitly since in an instance it may not have
8289 -- the same visibility as in the generic unit. This avoids duplicating
8290 -- or factoring the complex code for record/array equality tests etc.
8294 Loc
: constant Source_Ptr
:= Sloc
(N
);
8296 Ne
: constant Entity_Id
:= Entity
(N
);
8299 Binary_Op_Validity_Checks
(N
);
8305 Left_Opnd
=> Left_Opnd
(N
),
8306 Right_Opnd
=> Right_Opnd
(N
)));
8307 Set_Paren_Count
(Right_Opnd
(Neg
), 1);
8309 if Scope
(Ne
) /= Standard_Standard
then
8310 Set_Entity
(Right_Opnd
(Neg
), Corresponding_Equality
(Ne
));
8313 -- For navigation purposes, we want to treat the inequality as an
8314 -- implicit reference to the corresponding equality. Preserve the
8315 -- Comes_From_ source flag to generate proper Xref entries.
8317 Preserve_Comes_From_Source
(Neg
, N
);
8318 Preserve_Comes_From_Source
(Right_Opnd
(Neg
), N
);
8320 Analyze_And_Resolve
(N
, Standard_Boolean
);
8324 Optimize_Length_Comparison
(N
);
8327 ---------------------
8328 -- Expand_N_Op_Not --
8329 ---------------------
8331 -- If the argument is other than a Boolean array type, there is no special
8332 -- expansion required, except for VMS operations on signed integers.
8334 -- For the packed case, we call the special routine in Exp_Pakd, except
8335 -- that if the component size is greater than one, we use the standard
8336 -- routine generating a gruesome loop (it is so peculiar to have packed
8337 -- arrays with non-standard Boolean representations anyway, so it does not
8338 -- matter that we do not handle this case efficiently).
8340 -- For the unpacked case (and for the special packed case where we have non
8341 -- standard Booleans, as discussed above), we generate and insert into the
8342 -- tree the following function definition:
8344 -- function Nnnn (A : arr) is
8347 -- for J in a'range loop
8348 -- B (J) := not A (J);
8353 -- Here arr is the actual subtype of the parameter (and hence always
8354 -- constrained). Then we replace the not with a call to this function.
8356 procedure Expand_N_Op_Not
(N
: Node_Id
) is
8357 Loc
: constant Source_Ptr
:= Sloc
(N
);
8358 Typ
: constant Entity_Id
:= Etype
(N
);
8367 Func_Name
: Entity_Id
;
8368 Loop_Statement
: Node_Id
;
8371 Unary_Op_Validity_Checks
(N
);
8373 -- For boolean operand, deal with non-standard booleans
8375 if Is_Boolean_Type
(Typ
) then
8376 Adjust_Condition
(Right_Opnd
(N
));
8377 Set_Etype
(N
, Standard_Boolean
);
8378 Adjust_Result_Type
(N
, Typ
);
8382 -- For the VMS "not" on signed integer types, use conversion to and from
8383 -- a predefined modular type.
8385 if Is_VMS_Operator
(Entity
(N
)) then
8391 -- If this is a derived type, retrieve original VMS type so that
8392 -- the proper sized type is used for intermediate values.
8394 if Is_Derived_Type
(Typ
) then
8395 Rtyp
:= First_Subtype
(Etype
(Typ
));
8400 -- The proper unsigned type must have a size compatible with the
8401 -- operand, to prevent misalignment.
8403 if RM_Size
(Rtyp
) <= 8 then
8404 Utyp
:= RTE
(RE_Unsigned_8
);
8406 elsif RM_Size
(Rtyp
) <= 16 then
8407 Utyp
:= RTE
(RE_Unsigned_16
);
8409 elsif RM_Size
(Rtyp
) = RM_Size
(Standard_Unsigned
) then
8410 Utyp
:= RTE
(RE_Unsigned_32
);
8413 Utyp
:= RTE
(RE_Long_Long_Unsigned
);
8417 Unchecked_Convert_To
(Typ
,
8419 Unchecked_Convert_To
(Utyp
, Right_Opnd
(N
)))));
8420 Analyze_And_Resolve
(N
, Typ
);
8425 -- Only array types need any other processing
8427 if not Is_Array_Type
(Typ
) then
8431 -- Case of array operand. If bit packed with a component size of 1,
8432 -- handle it in Exp_Pakd if the operand is known to be aligned.
8434 if Is_Bit_Packed_Array
(Typ
)
8435 and then Component_Size
(Typ
) = 1
8436 and then not Is_Possibly_Unaligned_Object
(Right_Opnd
(N
))
8438 Expand_Packed_Not
(N
);
8442 -- Case of array operand which is not bit-packed. If the context is
8443 -- a safe assignment, call in-place operation, If context is a larger
8444 -- boolean expression in the context of a safe assignment, expansion is
8445 -- done by enclosing operation.
8447 Opnd
:= Relocate_Node
(Right_Opnd
(N
));
8448 Convert_To_Actual_Subtype
(Opnd
);
8449 Arr
:= Etype
(Opnd
);
8450 Ensure_Defined
(Arr
, N
);
8451 Silly_Boolean_Array_Not_Test
(N
, Arr
);
8453 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
8454 if Safe_In_Place_Array_Op
(Name
(Parent
(N
)), N
, Empty
) then
8455 Build_Boolean_Array_Proc_Call
(Parent
(N
), Opnd
, Empty
);
8458 -- Special case the negation of a binary operation
8460 elsif Nkind_In
(Opnd
, N_Op_And
, N_Op_Or
, N_Op_Xor
)
8461 and then Safe_In_Place_Array_Op
8462 (Name
(Parent
(N
)), Left_Opnd
(Opnd
), Right_Opnd
(Opnd
))
8464 Build_Boolean_Array_Proc_Call
(Parent
(N
), Opnd
, Empty
);
8468 elsif Nkind
(Parent
(N
)) in N_Binary_Op
8469 and then Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
8472 Op1
: constant Node_Id
:= Left_Opnd
(Parent
(N
));
8473 Op2
: constant Node_Id
:= Right_Opnd
(Parent
(N
));
8474 Lhs
: constant Node_Id
:= Name
(Parent
(Parent
(N
)));
8477 if Safe_In_Place_Array_Op
(Lhs
, Op1
, Op2
) then
8479 -- (not A) op (not B) can be reduced to a single call
8481 if N
= Op1
and then Nkind
(Op2
) = N_Op_Not
then
8484 elsif N
= Op2
and then Nkind
(Op1
) = N_Op_Not
then
8487 -- A xor (not B) can also be special-cased
8489 elsif N
= Op2
and then Nkind
(Parent
(N
)) = N_Op_Xor
then
8496 A
:= Make_Defining_Identifier
(Loc
, Name_uA
);
8497 B
:= Make_Defining_Identifier
(Loc
, Name_uB
);
8498 J
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
8501 Make_Indexed_Component
(Loc
,
8502 Prefix
=> New_Reference_To
(A
, Loc
),
8503 Expressions
=> New_List
(New_Reference_To
(J
, Loc
)));
8506 Make_Indexed_Component
(Loc
,
8507 Prefix
=> New_Reference_To
(B
, Loc
),
8508 Expressions
=> New_List
(New_Reference_To
(J
, Loc
)));
8511 Make_Implicit_Loop_Statement
(N
,
8512 Identifier
=> Empty
,
8515 Make_Iteration_Scheme
(Loc
,
8516 Loop_Parameter_Specification
=>
8517 Make_Loop_Parameter_Specification
(Loc
,
8518 Defining_Identifier
=> J
,
8519 Discrete_Subtype_Definition
=>
8520 Make_Attribute_Reference
(Loc
,
8521 Prefix
=> Make_Identifier
(Loc
, Chars
(A
)),
8522 Attribute_Name
=> Name_Range
))),
8524 Statements
=> New_List
(
8525 Make_Assignment_Statement
(Loc
,
8527 Expression
=> Make_Op_Not
(Loc
, A_J
))));
8529 Func_Name
:= Make_Temporary
(Loc
, 'N');
8530 Set_Is_Inlined
(Func_Name
);
8533 Make_Subprogram_Body
(Loc
,
8535 Make_Function_Specification
(Loc
,
8536 Defining_Unit_Name
=> Func_Name
,
8537 Parameter_Specifications
=> New_List
(
8538 Make_Parameter_Specification
(Loc
,
8539 Defining_Identifier
=> A
,
8540 Parameter_Type
=> New_Reference_To
(Typ
, Loc
))),
8541 Result_Definition
=> New_Reference_To
(Typ
, Loc
)),
8543 Declarations
=> New_List
(
8544 Make_Object_Declaration
(Loc
,
8545 Defining_Identifier
=> B
,
8546 Object_Definition
=> New_Reference_To
(Arr
, Loc
))),
8548 Handled_Statement_Sequence
=>
8549 Make_Handled_Sequence_Of_Statements
(Loc
,
8550 Statements
=> New_List
(
8552 Make_Simple_Return_Statement
(Loc
,
8553 Expression
=> Make_Identifier
(Loc
, Chars
(B
)))))));
8556 Make_Function_Call
(Loc
,
8557 Name
=> New_Reference_To
(Func_Name
, Loc
),
8558 Parameter_Associations
=> New_List
(Opnd
)));
8560 Analyze_And_Resolve
(N
, Typ
);
8561 end Expand_N_Op_Not
;
8563 --------------------
8564 -- Expand_N_Op_Or --
8565 --------------------
8567 procedure Expand_N_Op_Or
(N
: Node_Id
) is
8568 Typ
: constant Entity_Id
:= Etype
(N
);
8571 Binary_Op_Validity_Checks
(N
);
8573 if Is_Array_Type
(Etype
(N
)) then
8574 Expand_Boolean_Operator
(N
);
8576 elsif Is_Boolean_Type
(Etype
(N
)) then
8577 Adjust_Condition
(Left_Opnd
(N
));
8578 Adjust_Condition
(Right_Opnd
(N
));
8579 Set_Etype
(N
, Standard_Boolean
);
8580 Adjust_Result_Type
(N
, Typ
);
8582 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
8583 Expand_Intrinsic_Call
(N
, Entity
(N
));
8588 ----------------------
8589 -- Expand_N_Op_Plus --
8590 ----------------------
8592 procedure Expand_N_Op_Plus
(N
: Node_Id
) is
8594 Unary_Op_Validity_Checks
(N
);
8596 -- Check for MINIMIZED/ELIMINATED overflow mode
8598 if Minimized_Eliminated_Overflow_Check
(N
) then
8599 Apply_Arithmetic_Overflow_Check
(N
);
8602 end Expand_N_Op_Plus
;
8604 ---------------------
8605 -- Expand_N_Op_Rem --
8606 ---------------------
8608 procedure Expand_N_Op_Rem
(N
: Node_Id
) is
8609 Loc
: constant Source_Ptr
:= Sloc
(N
);
8610 Typ
: constant Entity_Id
:= Etype
(N
);
8621 -- Set if corresponding operand can be negative
8623 pragma Unreferenced
(Hi
);
8626 Binary_Op_Validity_Checks
(N
);
8628 -- Check for MINIMIZED/ELIMINATED overflow mode
8630 if Minimized_Eliminated_Overflow_Check
(N
) then
8631 Apply_Arithmetic_Overflow_Check
(N
);
8635 if Is_Integer_Type
(Etype
(N
)) then
8636 Apply_Divide_Checks
(N
);
8638 -- All done if we don't have a REM any more, which can happen as a
8639 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8641 if Nkind
(N
) /= N_Op_Rem
then
8646 -- Proceed with expansion of REM
8648 Left
:= Left_Opnd
(N
);
8649 Right
:= Right_Opnd
(N
);
8651 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
8652 -- but it is useful with other back ends (e.g. AAMP), and is certainly
8655 if Is_Integer_Type
(Etype
(N
))
8656 and then Compile_Time_Known_Value
(Right
)
8657 and then Expr_Value
(Right
) = Uint_1
8659 -- Call Remove_Side_Effects to ensure that any side effects in the
8660 -- ignored left operand (in particular function calls to user defined
8661 -- functions) are properly executed.
8663 Remove_Side_Effects
(Left
);
8665 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
8666 Analyze_And_Resolve
(N
, Typ
);
8670 -- Deal with annoying case of largest negative number remainder minus
8671 -- one. Gigi may not handle this case correctly, because on some
8672 -- targets, the mod value is computed using a divide instruction
8673 -- which gives an overflow trap for this case.
8675 -- It would be a bit more efficient to figure out which targets this
8676 -- is really needed for, but in practice it is reasonable to do the
8677 -- following special check in all cases, since it means we get a clearer
8678 -- message, and also the overhead is minimal given that division is
8679 -- expensive in any case.
8681 -- In fact the check is quite easy, if the right operand is -1, then
8682 -- the remainder is always 0, and we can just ignore the left operand
8683 -- completely in this case.
8685 Determine_Range
(Right
, OK
, Lo
, Hi
, Assume_Valid
=> True);
8686 Lneg
:= (not OK
) or else Lo
< 0;
8688 Determine_Range
(Left
, OK
, Lo
, Hi
, Assume_Valid
=> True);
8689 Rneg
:= (not OK
) or else Lo
< 0;
8691 -- We won't mess with trying to find out if the left operand can really
8692 -- be the largest negative number (that's a pain in the case of private
8693 -- types and this is really marginal). We will just assume that we need
8694 -- the test if the left operand can be negative at all.
8696 if Lneg
and Rneg
then
8698 Make_If_Expression
(Loc
,
8699 Expressions
=> New_List
(
8701 Left_Opnd
=> Duplicate_Subexpr
(Right
),
8703 Unchecked_Convert_To
(Typ
, Make_Integer_Literal
(Loc
, -1))),
8705 Unchecked_Convert_To
(Typ
,
8706 Make_Integer_Literal
(Loc
, Uint_0
)),
8708 Relocate_Node
(N
))));
8710 Set_Analyzed
(Next
(Next
(First
(Expressions
(N
)))));
8711 Analyze_And_Resolve
(N
, Typ
);
8713 end Expand_N_Op_Rem
;
8715 -----------------------------
8716 -- Expand_N_Op_Rotate_Left --
8717 -----------------------------
8719 procedure Expand_N_Op_Rotate_Left
(N
: Node_Id
) is
8721 Binary_Op_Validity_Checks
(N
);
8722 end Expand_N_Op_Rotate_Left
;
8724 ------------------------------
8725 -- Expand_N_Op_Rotate_Right --
8726 ------------------------------
8728 procedure Expand_N_Op_Rotate_Right
(N
: Node_Id
) is
8730 Binary_Op_Validity_Checks
(N
);
8731 end Expand_N_Op_Rotate_Right
;
8733 ----------------------------
8734 -- Expand_N_Op_Shift_Left --
8735 ----------------------------
8737 procedure Expand_N_Op_Shift_Left
(N
: Node_Id
) is
8739 Binary_Op_Validity_Checks
(N
);
8740 end Expand_N_Op_Shift_Left
;
8742 -----------------------------
8743 -- Expand_N_Op_Shift_Right --
8744 -----------------------------
8746 procedure Expand_N_Op_Shift_Right
(N
: Node_Id
) is
8748 Binary_Op_Validity_Checks
(N
);
8749 end Expand_N_Op_Shift_Right
;
8751 ----------------------------------------
8752 -- Expand_N_Op_Shift_Right_Arithmetic --
8753 ----------------------------------------
8755 procedure Expand_N_Op_Shift_Right_Arithmetic
(N
: Node_Id
) is
8757 Binary_Op_Validity_Checks
(N
);
8758 end Expand_N_Op_Shift_Right_Arithmetic
;
8760 --------------------------
8761 -- Expand_N_Op_Subtract --
8762 --------------------------
8764 procedure Expand_N_Op_Subtract
(N
: Node_Id
) is
8765 Typ
: constant Entity_Id
:= Etype
(N
);
8768 Binary_Op_Validity_Checks
(N
);
8770 -- Check for MINIMIZED/ELIMINATED overflow mode
8772 if Minimized_Eliminated_Overflow_Check
(N
) then
8773 Apply_Arithmetic_Overflow_Check
(N
);
8777 -- N - 0 = N for integer types
8779 if Is_Integer_Type
(Typ
)
8780 and then Compile_Time_Known_Value
(Right_Opnd
(N
))
8781 and then Expr_Value
(Right_Opnd
(N
)) = 0
8783 Rewrite
(N
, Left_Opnd
(N
));
8787 -- Arithmetic overflow checks for signed integer/fixed point types
8789 if Is_Signed_Integer_Type
(Typ
) or else Is_Fixed_Point_Type
(Typ
) then
8790 Apply_Arithmetic_Overflow_Check
(N
);
8792 -- VAX floating-point types case
8794 elsif Vax_Float
(Typ
) then
8795 Expand_Vax_Arith
(N
);
8797 end Expand_N_Op_Subtract
;
8799 ---------------------
8800 -- Expand_N_Op_Xor --
8801 ---------------------
8803 procedure Expand_N_Op_Xor
(N
: Node_Id
) is
8804 Typ
: constant Entity_Id
:= Etype
(N
);
8807 Binary_Op_Validity_Checks
(N
);
8809 if Is_Array_Type
(Etype
(N
)) then
8810 Expand_Boolean_Operator
(N
);
8812 elsif Is_Boolean_Type
(Etype
(N
)) then
8813 Adjust_Condition
(Left_Opnd
(N
));
8814 Adjust_Condition
(Right_Opnd
(N
));
8815 Set_Etype
(N
, Standard_Boolean
);
8816 Adjust_Result_Type
(N
, Typ
);
8818 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
8819 Expand_Intrinsic_Call
(N
, Entity
(N
));
8822 end Expand_N_Op_Xor
;
8824 ----------------------
8825 -- Expand_N_Or_Else --
8826 ----------------------
8828 procedure Expand_N_Or_Else
(N
: Node_Id
)
8829 renames Expand_Short_Circuit_Operator
;
8831 -----------------------------------
8832 -- Expand_N_Qualified_Expression --
8833 -----------------------------------
8835 procedure Expand_N_Qualified_Expression
(N
: Node_Id
) is
8836 Operand
: constant Node_Id
:= Expression
(N
);
8837 Target_Type
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
8840 -- Do validity check if validity checking operands
8842 if Validity_Checks_On
and Validity_Check_Operands
then
8843 Ensure_Valid
(Operand
);
8846 -- Apply possible constraint check
8848 Apply_Constraint_Check
(Operand
, Target_Type
, No_Sliding
=> True);
8850 if Do_Range_Check
(Operand
) then
8851 Set_Do_Range_Check
(Operand
, False);
8852 Generate_Range_Check
(Operand
, Target_Type
, CE_Range_Check_Failed
);
8854 end Expand_N_Qualified_Expression
;
8856 ------------------------------------
8857 -- Expand_N_Quantified_Expression --
8858 ------------------------------------
8862 -- for all X in range => Cond
8867 -- for X in range loop
8874 -- Similarly, an existentially quantified expression:
8876 -- for some X in range => Cond
8881 -- for X in range loop
8888 -- In both cases, the iteration may be over a container in which case it is
8889 -- given by an iterator specification, not a loop parameter specification.
8891 procedure Expand_N_Quantified_Expression
(N
: Node_Id
) is
8892 Actions
: constant List_Id
:= New_List
;
8893 For_All
: constant Boolean := All_Present
(N
);
8894 Iter_Spec
: constant Node_Id
:= Iterator_Specification
(N
);
8895 Loc
: constant Source_Ptr
:= Sloc
(N
);
8896 Loop_Spec
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
8903 -- Create the declaration of the flag which tracks the status of the
8904 -- quantified expression. Generate:
8906 -- Flag : Boolean := (True | False);
8908 Flag
:= Make_Temporary
(Loc
, 'T', N
);
8911 Make_Object_Declaration
(Loc
,
8912 Defining_Identifier
=> Flag
,
8913 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
8915 New_Occurrence_Of
(Boolean_Literals
(For_All
), Loc
)));
8917 -- Construct the circuitry which tracks the status of the quantified
8918 -- expression. Generate:
8920 -- if [not] Cond then
8921 -- Flag := (False | True);
8925 Cond
:= Relocate_Node
(Condition
(N
));
8928 Cond
:= Make_Op_Not
(Loc
, Cond
);
8932 Make_Implicit_If_Statement
(N
,
8934 Then_Statements
=> New_List
(
8935 Make_Assignment_Statement
(Loc
,
8936 Name
=> New_Occurrence_Of
(Flag
, Loc
),
8938 New_Occurrence_Of
(Boolean_Literals
(not For_All
), Loc
)),
8939 Make_Exit_Statement
(Loc
))));
8941 -- Build the loop equivalent of the quantified expression
8943 if Present
(Iter_Spec
) then
8945 Make_Iteration_Scheme
(Loc
,
8946 Iterator_Specification
=> Iter_Spec
);
8949 Make_Iteration_Scheme
(Loc
,
8950 Loop_Parameter_Specification
=> Loop_Spec
);
8954 Make_Loop_Statement
(Loc
,
8955 Iteration_Scheme
=> Scheme
,
8956 Statements
=> Stmts
,
8957 End_Label
=> Empty
));
8959 -- Transform the quantified expression
8962 Make_Expression_With_Actions
(Loc
,
8963 Expression
=> New_Occurrence_Of
(Flag
, Loc
),
8964 Actions
=> Actions
));
8965 Analyze_And_Resolve
(N
, Standard_Boolean
);
8966 end Expand_N_Quantified_Expression
;
8968 ---------------------------------
8969 -- Expand_N_Selected_Component --
8970 ---------------------------------
8972 procedure Expand_N_Selected_Component
(N
: Node_Id
) is
8973 Loc
: constant Source_Ptr
:= Sloc
(N
);
8974 Par
: constant Node_Id
:= Parent
(N
);
8975 P
: constant Node_Id
:= Prefix
(N
);
8976 S
: constant Node_Id
:= Selector_Name
(N
);
8977 Ptyp
: Entity_Id
:= Underlying_Type
(Etype
(P
));
8983 function In_Left_Hand_Side
(Comp
: Node_Id
) return Boolean;
8984 -- Gigi needs a temporary for prefixes that depend on a discriminant,
8985 -- unless the context of an assignment can provide size information.
8986 -- Don't we have a general routine that does this???
8988 function Is_Subtype_Declaration
return Boolean;
8989 -- The replacement of a discriminant reference by its value is required
8990 -- if this is part of the initialization of an temporary generated by a
8991 -- change of representation. This shows up as the construction of a
8992 -- discriminant constraint for a subtype declared at the same point as
8993 -- the entity in the prefix of the selected component. We recognize this
8994 -- case when the context of the reference is:
8995 -- subtype ST is T(Obj.D);
8996 -- where the entity for Obj comes from source, and ST has the same sloc.
8998 -----------------------
8999 -- In_Left_Hand_Side --
9000 -----------------------
9002 function In_Left_Hand_Side
(Comp
: Node_Id
) return Boolean is
9004 return (Nkind
(Parent
(Comp
)) = N_Assignment_Statement
9005 and then Comp
= Name
(Parent
(Comp
)))
9006 or else (Present
(Parent
(Comp
))
9007 and then Nkind
(Parent
(Comp
)) in N_Subexpr
9008 and then In_Left_Hand_Side
(Parent
(Comp
)));
9009 end In_Left_Hand_Side
;
9011 -----------------------------
9012 -- Is_Subtype_Declaration --
9013 -----------------------------
9015 function Is_Subtype_Declaration
return Boolean is
9016 Par
: constant Node_Id
:= Parent
(N
);
9019 Nkind
(Par
) = N_Index_Or_Discriminant_Constraint
9020 and then Nkind
(Parent
(Parent
(Par
))) = N_Subtype_Declaration
9021 and then Comes_From_Source
(Entity
(Prefix
(N
)))
9022 and then Sloc
(Par
) = Sloc
(Entity
(Prefix
(N
)));
9023 end Is_Subtype_Declaration
;
9025 -- Start of processing for Expand_N_Selected_Component
9028 -- Insert explicit dereference if required
9030 if Is_Access_Type
(Ptyp
) then
9032 -- First set prefix type to proper access type, in case it currently
9033 -- has a private (non-access) view of this type.
9035 Set_Etype
(P
, Ptyp
);
9037 Insert_Explicit_Dereference
(P
);
9038 Analyze_And_Resolve
(P
, Designated_Type
(Ptyp
));
9040 if Ekind
(Etype
(P
)) = E_Private_Subtype
9041 and then Is_For_Access_Subtype
(Etype
(P
))
9043 Set_Etype
(P
, Base_Type
(Etype
(P
)));
9049 -- Deal with discriminant check required
9051 if Do_Discriminant_Check
(N
) then
9052 if Present
(Discriminant_Checking_Func
9053 (Original_Record_Component
(Entity
(S
))))
9055 -- Present the discriminant checking function to the backend, so
9056 -- that it can inline the call to the function.
9059 (Discriminant_Checking_Func
9060 (Original_Record_Component
(Entity
(S
))));
9062 -- Now reset the flag and generate the call
9064 Set_Do_Discriminant_Check
(N
, False);
9065 Generate_Discriminant_Check
(N
);
9067 -- In the case of Unchecked_Union, no discriminant checking is
9068 -- actually performed.
9071 Set_Do_Discriminant_Check
(N
, False);
9075 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9076 -- function, then additional actuals must be passed.
9078 if Ada_Version
>= Ada_2005
9079 and then Is_Build_In_Place_Function_Call
(P
)
9081 Make_Build_In_Place_Call_In_Anonymous_Context
(P
);
9084 -- Gigi cannot handle unchecked conversions that are the prefix of a
9085 -- selected component with discriminants. This must be checked during
9086 -- expansion, because during analysis the type of the selector is not
9087 -- known at the point the prefix is analyzed. If the conversion is the
9088 -- target of an assignment, then we cannot force the evaluation.
9090 if Nkind
(Prefix
(N
)) = N_Unchecked_Type_Conversion
9091 and then Has_Discriminants
(Etype
(N
))
9092 and then not In_Left_Hand_Side
(N
)
9094 Force_Evaluation
(Prefix
(N
));
9097 -- Remaining processing applies only if selector is a discriminant
9099 if Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
then
9101 -- If the selector is a discriminant of a constrained record type,
9102 -- we may be able to rewrite the expression with the actual value
9103 -- of the discriminant, a useful optimization in some cases.
9105 if Is_Record_Type
(Ptyp
)
9106 and then Has_Discriminants
(Ptyp
)
9107 and then Is_Constrained
(Ptyp
)
9109 -- Do this optimization for discrete types only, and not for
9110 -- access types (access discriminants get us into trouble!)
9112 if not Is_Discrete_Type
(Etype
(N
)) then
9115 -- Don't do this on the left hand of an assignment statement.
9116 -- Normally one would think that references like this would not
9117 -- occur, but they do in generated code, and mean that we really
9118 -- do want to assign the discriminant!
9120 elsif Nkind
(Par
) = N_Assignment_Statement
9121 and then Name
(Par
) = N
9125 -- Don't do this optimization for the prefix of an attribute or
9126 -- the name of an object renaming declaration since these are
9127 -- contexts where we do not want the value anyway.
9129 elsif (Nkind
(Par
) = N_Attribute_Reference
9130 and then Prefix
(Par
) = N
)
9131 or else Is_Renamed_Object
(N
)
9135 -- Don't do this optimization if we are within the code for a
9136 -- discriminant check, since the whole point of such a check may
9137 -- be to verify the condition on which the code below depends!
9139 elsif Is_In_Discriminant_Check
(N
) then
9142 -- Green light to see if we can do the optimization. There is
9143 -- still one condition that inhibits the optimization below but
9144 -- now is the time to check the particular discriminant.
9147 -- Loop through discriminants to find the matching discriminant
9148 -- constraint to see if we can copy it.
9150 Disc
:= First_Discriminant
(Ptyp
);
9151 Dcon
:= First_Elmt
(Discriminant_Constraint
(Ptyp
));
9152 Discr_Loop
: while Present
(Dcon
) loop
9153 Dval
:= Node
(Dcon
);
9155 -- Check if this is the matching discriminant and if the
9156 -- discriminant value is simple enough to make sense to
9157 -- copy. We don't want to copy complex expressions, and
9158 -- indeed to do so can cause trouble (before we put in
9159 -- this guard, a discriminant expression containing an
9160 -- AND THEN was copied, causing problems for coverage
9163 -- However, if the reference is part of the initialization
9164 -- code generated for an object declaration, we must use
9165 -- the discriminant value from the subtype constraint,
9166 -- because the selected component may be a reference to the
9167 -- object being initialized, whose discriminant is not yet
9168 -- set. This only happens in complex cases involving changes
9169 -- or representation.
9171 if Disc
= Entity
(Selector_Name
(N
))
9172 and then (Is_Entity_Name
(Dval
)
9173 or else Compile_Time_Known_Value
(Dval
)
9174 or else Is_Subtype_Declaration
)
9176 -- Here we have the matching discriminant. Check for
9177 -- the case of a discriminant of a component that is
9178 -- constrained by an outer discriminant, which cannot
9179 -- be optimized away.
9181 if Denotes_Discriminant
9182 (Dval
, Check_Concurrent
=> True)
9186 elsif Nkind
(Original_Node
(Dval
)) = N_Selected_Component
9188 Denotes_Discriminant
9189 (Selector_Name
(Original_Node
(Dval
)), True)
9193 -- Do not retrieve value if constraint is not static. It
9194 -- is generally not useful, and the constraint may be a
9195 -- rewritten outer discriminant in which case it is in
9198 elsif Is_Entity_Name
(Dval
)
9200 Nkind
(Parent
(Entity
(Dval
))) = N_Object_Declaration
9201 and then Present
(Expression
(Parent
(Entity
(Dval
))))
9203 Is_Static_Expression
9204 (Expression
(Parent
(Entity
(Dval
))))
9208 -- In the context of a case statement, the expression may
9209 -- have the base type of the discriminant, and we need to
9210 -- preserve the constraint to avoid spurious errors on
9213 elsif Nkind
(Parent
(N
)) = N_Case_Statement
9214 and then Etype
(Dval
) /= Etype
(Disc
)
9217 Make_Qualified_Expression
(Loc
,
9219 New_Occurrence_Of
(Etype
(Disc
), Loc
),
9221 New_Copy_Tree
(Dval
)));
9222 Analyze_And_Resolve
(N
, Etype
(Disc
));
9224 -- In case that comes out as a static expression,
9225 -- reset it (a selected component is never static).
9227 Set_Is_Static_Expression
(N
, False);
9230 -- Otherwise we can just copy the constraint, but the
9231 -- result is certainly not static! In some cases the
9232 -- discriminant constraint has been analyzed in the
9233 -- context of the original subtype indication, but for
9234 -- itypes the constraint might not have been analyzed
9235 -- yet, and this must be done now.
9238 Rewrite
(N
, New_Copy_Tree
(Dval
));
9239 Analyze_And_Resolve
(N
);
9240 Set_Is_Static_Expression
(N
, False);
9246 Next_Discriminant
(Disc
);
9247 end loop Discr_Loop
;
9249 -- Note: the above loop should always find a matching
9250 -- discriminant, but if it does not, we just missed an
9251 -- optimization due to some glitch (perhaps a previous
9252 -- error), so ignore.
9257 -- The only remaining processing is in the case of a discriminant of
9258 -- a concurrent object, where we rewrite the prefix to denote the
9259 -- corresponding record type. If the type is derived and has renamed
9260 -- discriminants, use corresponding discriminant, which is the one
9261 -- that appears in the corresponding record.
9263 if not Is_Concurrent_Type
(Ptyp
) then
9267 Disc
:= Entity
(Selector_Name
(N
));
9269 if Is_Derived_Type
(Ptyp
)
9270 and then Present
(Corresponding_Discriminant
(Disc
))
9272 Disc
:= Corresponding_Discriminant
(Disc
);
9276 Make_Selected_Component
(Loc
,
9278 Unchecked_Convert_To
(Corresponding_Record_Type
(Ptyp
),
9280 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Disc
)));
9286 -- Set Atomic_Sync_Required if necessary for atomic component
9288 if Nkind
(N
) = N_Selected_Component
then
9290 E
: constant Entity_Id
:= Entity
(Selector_Name
(N
));
9294 -- If component is atomic, but type is not, setting depends on
9295 -- disable/enable state for the component.
9297 if Is_Atomic
(E
) and then not Is_Atomic
(Etype
(E
)) then
9298 Set
:= not Atomic_Synchronization_Disabled
(E
);
9300 -- If component is not atomic, but its type is atomic, setting
9301 -- depends on disable/enable state for the type.
9303 elsif not Is_Atomic
(E
) and then Is_Atomic
(Etype
(E
)) then
9304 Set
:= not Atomic_Synchronization_Disabled
(Etype
(E
));
9306 -- If both component and type are atomic, we disable if either
9307 -- component or its type have sync disabled.
9309 elsif Is_Atomic
(E
) and then Is_Atomic
(Etype
(E
)) then
9310 Set
:= (not Atomic_Synchronization_Disabled
(E
))
9312 (not Atomic_Synchronization_Disabled
(Etype
(E
)));
9318 -- Set flag if required
9321 Activate_Atomic_Synchronization
(N
);
9325 end Expand_N_Selected_Component
;
9327 --------------------
9328 -- Expand_N_Slice --
9329 --------------------
9331 procedure Expand_N_Slice
(N
: Node_Id
) is
9332 Loc
: constant Source_Ptr
:= Sloc
(N
);
9333 Typ
: constant Entity_Id
:= Etype
(N
);
9334 Pfx
: constant Node_Id
:= Prefix
(N
);
9335 Ptp
: Entity_Id
:= Etype
(Pfx
);
9337 function Is_Procedure_Actual
(N
: Node_Id
) return Boolean;
9338 -- Check whether the argument is an actual for a procedure call, in
9339 -- which case the expansion of a bit-packed slice is deferred until the
9340 -- call itself is expanded. The reason this is required is that we might
9341 -- have an IN OUT or OUT parameter, and the copy out is essential, and
9342 -- that copy out would be missed if we created a temporary here in
9343 -- Expand_N_Slice. Note that we don't bother to test specifically for an
9344 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
9345 -- is harmless to defer expansion in the IN case, since the call
9346 -- processing will still generate the appropriate copy in operation,
9347 -- which will take care of the slice.
9349 procedure Make_Temporary_For_Slice
;
9350 -- Create a named variable for the value of the slice, in cases where
9351 -- the back-end cannot handle it properly, e.g. when packed types or
9352 -- unaligned slices are involved.
9354 -------------------------
9355 -- Is_Procedure_Actual --
9356 -------------------------
9358 function Is_Procedure_Actual
(N
: Node_Id
) return Boolean is
9359 Par
: Node_Id
:= Parent
(N
);
9363 -- If our parent is a procedure call we can return
9365 if Nkind
(Par
) = N_Procedure_Call_Statement
then
9368 -- If our parent is a type conversion, keep climbing the tree,
9369 -- since a type conversion can be a procedure actual. Also keep
9370 -- climbing if parameter association or a qualified expression,
9371 -- since these are additional cases that do can appear on
9372 -- procedure actuals.
9374 elsif Nkind_In
(Par
, N_Type_Conversion
,
9375 N_Parameter_Association
,
9376 N_Qualified_Expression
)
9378 Par
:= Parent
(Par
);
9380 -- Any other case is not what we are looking for
9386 end Is_Procedure_Actual
;
9388 ------------------------------
9389 -- Make_Temporary_For_Slice --
9390 ------------------------------
9392 procedure Make_Temporary_For_Slice
is
9394 Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
9398 Make_Object_Declaration
(Loc
,
9399 Defining_Identifier
=> Ent
,
9400 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
9402 Set_No_Initialization
(Decl
);
9404 Insert_Actions
(N
, New_List
(
9406 Make_Assignment_Statement
(Loc
,
9407 Name
=> New_Occurrence_Of
(Ent
, Loc
),
9408 Expression
=> Relocate_Node
(N
))));
9410 Rewrite
(N
, New_Occurrence_Of
(Ent
, Loc
));
9411 Analyze_And_Resolve
(N
, Typ
);
9412 end Make_Temporary_For_Slice
;
9414 -- Start of processing for Expand_N_Slice
9417 -- Special handling for access types
9419 if Is_Access_Type
(Ptp
) then
9421 Ptp
:= Designated_Type
(Ptp
);
9424 Make_Explicit_Dereference
(Sloc
(N
),
9425 Prefix
=> Relocate_Node
(Pfx
)));
9427 Analyze_And_Resolve
(Pfx
, Ptp
);
9430 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9431 -- function, then additional actuals must be passed.
9433 if Ada_Version
>= Ada_2005
9434 and then Is_Build_In_Place_Function_Call
(Pfx
)
9436 Make_Build_In_Place_Call_In_Anonymous_Context
(Pfx
);
9439 -- The remaining case to be handled is packed slices. We can leave
9440 -- packed slices as they are in the following situations:
9442 -- 1. Right or left side of an assignment (we can handle this
9443 -- situation correctly in the assignment statement expansion).
9445 -- 2. Prefix of indexed component (the slide is optimized away in this
9446 -- case, see the start of Expand_N_Slice.)
9448 -- 3. Object renaming declaration, since we want the name of the
9449 -- slice, not the value.
9451 -- 4. Argument to procedure call, since copy-in/copy-out handling may
9452 -- be required, and this is handled in the expansion of call
9455 -- 5. Prefix of an address attribute (this is an error which is caught
9456 -- elsewhere, and the expansion would interfere with generating the
9459 if not Is_Packed
(Typ
) then
9461 -- Apply transformation for actuals of a function call, where
9462 -- Expand_Actuals is not used.
9464 if Nkind
(Parent
(N
)) = N_Function_Call
9465 and then Is_Possibly_Unaligned_Slice
(N
)
9467 Make_Temporary_For_Slice
;
9470 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
9471 or else (Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
9472 and then Parent
(N
) = Name
(Parent
(Parent
(N
))))
9476 elsif Nkind
(Parent
(N
)) = N_Indexed_Component
9477 or else Is_Renamed_Object
(N
)
9478 or else Is_Procedure_Actual
(N
)
9482 elsif Nkind
(Parent
(N
)) = N_Attribute_Reference
9483 and then Attribute_Name
(Parent
(N
)) = Name_Address
9488 Make_Temporary_For_Slice
;
9492 ------------------------------
9493 -- Expand_N_Type_Conversion --
9494 ------------------------------
9496 procedure Expand_N_Type_Conversion
(N
: Node_Id
) is
9497 Loc
: constant Source_Ptr
:= Sloc
(N
);
9498 Operand
: constant Node_Id
:= Expression
(N
);
9499 Target_Type
: constant Entity_Id
:= Etype
(N
);
9500 Operand_Type
: Entity_Id
:= Etype
(Operand
);
9502 procedure Handle_Changed_Representation
;
9503 -- This is called in the case of record and array type conversions to
9504 -- see if there is a change of representation to be handled. Change of
9505 -- representation is actually handled at the assignment statement level,
9506 -- and what this procedure does is rewrite node N conversion as an
9507 -- assignment to temporary. If there is no change of representation,
9508 -- then the conversion node is unchanged.
9510 procedure Raise_Accessibility_Error
;
9511 -- Called when we know that an accessibility check will fail. Rewrites
9512 -- node N to an appropriate raise statement and outputs warning msgs.
9513 -- The Etype of the raise node is set to Target_Type.
9515 procedure Real_Range_Check
;
9516 -- Handles generation of range check for real target value
9518 function Has_Extra_Accessibility
(Id
: Entity_Id
) return Boolean;
9519 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
9520 -- evaluates to True.
9522 -----------------------------------
9523 -- Handle_Changed_Representation --
9524 -----------------------------------
9526 procedure Handle_Changed_Representation
is
9535 -- Nothing else to do if no change of representation
9537 if Same_Representation
(Operand_Type
, Target_Type
) then
9540 -- The real change of representation work is done by the assignment
9541 -- statement processing. So if this type conversion is appearing as
9542 -- the expression of an assignment statement, nothing needs to be
9543 -- done to the conversion.
9545 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
then
9548 -- Otherwise we need to generate a temporary variable, and do the
9549 -- change of representation assignment into that temporary variable.
9550 -- The conversion is then replaced by a reference to this variable.
9555 -- If type is unconstrained we have to add a constraint, copied
9556 -- from the actual value of the left hand side.
9558 if not Is_Constrained
(Target_Type
) then
9559 if Has_Discriminants
(Operand_Type
) then
9560 Disc
:= First_Discriminant
(Operand_Type
);
9562 if Disc
/= First_Stored_Discriminant
(Operand_Type
) then
9563 Disc
:= First_Stored_Discriminant
(Operand_Type
);
9567 while Present
(Disc
) loop
9569 Make_Selected_Component
(Loc
,
9571 Duplicate_Subexpr_Move_Checks
(Operand
),
9573 Make_Identifier
(Loc
, Chars
(Disc
))));
9574 Next_Discriminant
(Disc
);
9577 elsif Is_Array_Type
(Operand_Type
) then
9578 N_Ix
:= First_Index
(Target_Type
);
9581 for J
in 1 .. Number_Dimensions
(Operand_Type
) loop
9583 -- We convert the bounds explicitly. We use an unchecked
9584 -- conversion because bounds checks are done elsewhere.
9589 Unchecked_Convert_To
(Etype
(N_Ix
),
9590 Make_Attribute_Reference
(Loc
,
9592 Duplicate_Subexpr_No_Checks
9593 (Operand
, Name_Req
=> True),
9594 Attribute_Name
=> Name_First
,
9595 Expressions
=> New_List
(
9596 Make_Integer_Literal
(Loc
, J
)))),
9599 Unchecked_Convert_To
(Etype
(N_Ix
),
9600 Make_Attribute_Reference
(Loc
,
9602 Duplicate_Subexpr_No_Checks
9603 (Operand
, Name_Req
=> True),
9604 Attribute_Name
=> Name_Last
,
9605 Expressions
=> New_List
(
9606 Make_Integer_Literal
(Loc
, J
))))));
9613 Odef
:= New_Occurrence_Of
(Target_Type
, Loc
);
9615 if Present
(Cons
) then
9617 Make_Subtype_Indication
(Loc
,
9618 Subtype_Mark
=> Odef
,
9620 Make_Index_Or_Discriminant_Constraint
(Loc
,
9621 Constraints
=> Cons
));
9624 Temp
:= Make_Temporary
(Loc
, 'C');
9626 Make_Object_Declaration
(Loc
,
9627 Defining_Identifier
=> Temp
,
9628 Object_Definition
=> Odef
);
9630 Set_No_Initialization
(Decl
, True);
9632 -- Insert required actions. It is essential to suppress checks
9633 -- since we have suppressed default initialization, which means
9634 -- that the variable we create may have no discriminants.
9639 Make_Assignment_Statement
(Loc
,
9640 Name
=> New_Occurrence_Of
(Temp
, Loc
),
9641 Expression
=> Relocate_Node
(N
))),
9642 Suppress
=> All_Checks
);
9644 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
9647 end Handle_Changed_Representation
;
9649 -------------------------------
9650 -- Raise_Accessibility_Error --
9651 -------------------------------
9653 procedure Raise_Accessibility_Error
is
9656 Make_Raise_Program_Error
(Sloc
(N
),
9657 Reason
=> PE_Accessibility_Check_Failed
));
9658 Set_Etype
(N
, Target_Type
);
9661 ("??accessibility check failure", N
);
9663 ("\??& will be raised at run time", N
, Standard_Program_Error
);
9664 end Raise_Accessibility_Error
;
9666 ----------------------
9667 -- Real_Range_Check --
9668 ----------------------
9670 -- Case of conversions to floating-point or fixed-point. If range checks
9671 -- are enabled and the target type has a range constraint, we convert:
9677 -- Tnn : typ'Base := typ'Base (x);
9678 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
9681 -- This is necessary when there is a conversion of integer to float or
9682 -- to fixed-point to ensure that the correct checks are made. It is not
9683 -- necessary for float to float where it is enough to simply set the
9684 -- Do_Range_Check flag.
9686 procedure Real_Range_Check
is
9687 Btyp
: constant Entity_Id
:= Base_Type
(Target_Type
);
9688 Lo
: constant Node_Id
:= Type_Low_Bound
(Target_Type
);
9689 Hi
: constant Node_Id
:= Type_High_Bound
(Target_Type
);
9690 Xtyp
: constant Entity_Id
:= Etype
(Operand
);
9695 -- Nothing to do if conversion was rewritten
9697 if Nkind
(N
) /= N_Type_Conversion
then
9701 -- Nothing to do if range checks suppressed, or target has the same
9702 -- range as the base type (or is the base type).
9704 if Range_Checks_Suppressed
(Target_Type
)
9705 or else (Lo
= Type_Low_Bound
(Btyp
)
9707 Hi
= Type_High_Bound
(Btyp
))
9712 -- Nothing to do if expression is an entity on which checks have been
9715 if Is_Entity_Name
(Operand
)
9716 and then Range_Checks_Suppressed
(Entity
(Operand
))
9721 -- Nothing to do if bounds are all static and we can tell that the
9722 -- expression is within the bounds of the target. Note that if the
9723 -- operand is of an unconstrained floating-point type, then we do
9724 -- not trust it to be in range (might be infinite)
9727 S_Lo
: constant Node_Id
:= Type_Low_Bound
(Xtyp
);
9728 S_Hi
: constant Node_Id
:= Type_High_Bound
(Xtyp
);
9731 if (not Is_Floating_Point_Type
(Xtyp
)
9732 or else Is_Constrained
(Xtyp
))
9733 and then Compile_Time_Known_Value
(S_Lo
)
9734 and then Compile_Time_Known_Value
(S_Hi
)
9735 and then Compile_Time_Known_Value
(Hi
)
9736 and then Compile_Time_Known_Value
(Lo
)
9739 D_Lov
: constant Ureal
:= Expr_Value_R
(Lo
);
9740 D_Hiv
: constant Ureal
:= Expr_Value_R
(Hi
);
9745 if Is_Real_Type
(Xtyp
) then
9746 S_Lov
:= Expr_Value_R
(S_Lo
);
9747 S_Hiv
:= Expr_Value_R
(S_Hi
);
9749 S_Lov
:= UR_From_Uint
(Expr_Value
(S_Lo
));
9750 S_Hiv
:= UR_From_Uint
(Expr_Value
(S_Hi
));
9754 and then S_Lov
>= D_Lov
9755 and then S_Hiv
<= D_Hiv
9757 Set_Do_Range_Check
(Operand
, False);
9764 -- For float to float conversions, we are done
9766 if Is_Floating_Point_Type
(Xtyp
)
9768 Is_Floating_Point_Type
(Btyp
)
9773 -- Otherwise rewrite the conversion as described above
9775 Conv
:= Relocate_Node
(N
);
9776 Rewrite
(Subtype_Mark
(Conv
), New_Occurrence_Of
(Btyp
, Loc
));
9777 Set_Etype
(Conv
, Btyp
);
9779 -- Enable overflow except for case of integer to float conversions,
9780 -- where it is never required, since we can never have overflow in
9783 if not Is_Integer_Type
(Etype
(Operand
)) then
9784 Enable_Overflow_Check
(Conv
);
9787 Tnn
:= Make_Temporary
(Loc
, 'T', Conv
);
9789 Insert_Actions
(N
, New_List
(
9790 Make_Object_Declaration
(Loc
,
9791 Defining_Identifier
=> Tnn
,
9792 Object_Definition
=> New_Occurrence_Of
(Btyp
, Loc
),
9793 Constant_Present
=> True,
9794 Expression
=> Conv
),
9796 Make_Raise_Constraint_Error
(Loc
,
9801 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
9803 Make_Attribute_Reference
(Loc
,
9804 Attribute_Name
=> Name_First
,
9806 New_Occurrence_Of
(Target_Type
, Loc
))),
9810 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
9812 Make_Attribute_Reference
(Loc
,
9813 Attribute_Name
=> Name_Last
,
9815 New_Occurrence_Of
(Target_Type
, Loc
)))),
9816 Reason
=> CE_Range_Check_Failed
)));
9818 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
9819 Analyze_And_Resolve
(N
, Btyp
);
9820 end Real_Range_Check
;
9822 -----------------------------
9823 -- Has_Extra_Accessibility --
9824 -----------------------------
9826 -- Returns true for a formal of an anonymous access type or for
9827 -- an Ada 2012-style stand-alone object of an anonymous access type.
9829 function Has_Extra_Accessibility
(Id
: Entity_Id
) return Boolean is
9831 if Is_Formal
(Id
) or else Ekind_In
(Id
, E_Constant
, E_Variable
) then
9832 return Present
(Effective_Extra_Accessibility
(Id
));
9836 end Has_Extra_Accessibility
;
9838 -- Start of processing for Expand_N_Type_Conversion
9841 -- First remove check marks put by the semantic analysis on the type
9842 -- conversion between array types. We need these checks, and they will
9843 -- be generated by this expansion routine, but we do not depend on these
9844 -- flags being set, and since we do intend to expand the checks in the
9845 -- front end, we don't want them on the tree passed to the back end.
9847 if Is_Array_Type
(Target_Type
) then
9848 if Is_Constrained
(Target_Type
) then
9849 Set_Do_Length_Check
(N
, False);
9851 Set_Do_Range_Check
(Operand
, False);
9855 -- Nothing at all to do if conversion is to the identical type so remove
9856 -- the conversion completely, it is useless, except that it may carry
9857 -- an Assignment_OK attribute, which must be propagated to the operand.
9859 if Operand_Type
= Target_Type
then
9860 if Assignment_OK
(N
) then
9861 Set_Assignment_OK
(Operand
);
9864 Rewrite
(N
, Relocate_Node
(Operand
));
9868 -- Nothing to do if this is the second argument of read. This is a
9869 -- "backwards" conversion that will be handled by the specialized code
9870 -- in attribute processing.
9872 if Nkind
(Parent
(N
)) = N_Attribute_Reference
9873 and then Attribute_Name
(Parent
(N
)) = Name_Read
9874 and then Next
(First
(Expressions
(Parent
(N
)))) = N
9879 -- Check for case of converting to a type that has an invariant
9880 -- associated with it. This required an invariant check. We convert
9886 -- do invariant_check (typ (expr)) in typ (expr);
9888 -- using Duplicate_Subexpr to avoid multiple side effects
9890 -- Note: the Comes_From_Source check, and then the resetting of this
9891 -- flag prevents what would otherwise be an infinite recursion.
9893 if Has_Invariants
(Target_Type
)
9894 and then Present
(Invariant_Procedure
(Target_Type
))
9895 and then Comes_From_Source
(N
)
9897 Set_Comes_From_Source
(N
, False);
9899 Make_Expression_With_Actions
(Loc
,
9900 Actions
=> New_List
(
9901 Make_Invariant_Call
(Duplicate_Subexpr
(N
))),
9902 Expression
=> Duplicate_Subexpr_No_Checks
(N
)));
9903 Analyze_And_Resolve
(N
, Target_Type
);
9907 -- Here if we may need to expand conversion
9909 -- If the operand of the type conversion is an arithmetic operation on
9910 -- signed integers, and the based type of the signed integer type in
9911 -- question is smaller than Standard.Integer, we promote both of the
9912 -- operands to type Integer.
9914 -- For example, if we have
9916 -- target-type (opnd1 + opnd2)
9918 -- and opnd1 and opnd2 are of type short integer, then we rewrite
9921 -- target-type (integer(opnd1) + integer(opnd2))
9923 -- We do this because we are always allowed to compute in a larger type
9924 -- if we do the right thing with the result, and in this case we are
9925 -- going to do a conversion which will do an appropriate check to make
9926 -- sure that things are in range of the target type in any case. This
9927 -- avoids some unnecessary intermediate overflows.
9929 -- We might consider a similar transformation in the case where the
9930 -- target is a real type or a 64-bit integer type, and the operand
9931 -- is an arithmetic operation using a 32-bit integer type. However,
9932 -- we do not bother with this case, because it could cause significant
9933 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
9934 -- much cheaper, but we don't want different behavior on 32-bit and
9935 -- 64-bit machines. Note that the exclusion of the 64-bit case also
9936 -- handles the configurable run-time cases where 64-bit arithmetic
9937 -- may simply be unavailable.
9939 -- Note: this circuit is partially redundant with respect to the circuit
9940 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
9941 -- the processing here. Also we still need the Checks circuit, since we
9942 -- have to be sure not to generate junk overflow checks in the first
9943 -- place, since it would be trick to remove them here!
9945 if Integer_Promotion_Possible
(N
) then
9947 -- All conditions met, go ahead with transformation
9955 Make_Type_Conversion
(Loc
,
9956 Subtype_Mark
=> New_Reference_To
(Standard_Integer
, Loc
),
9957 Expression
=> Relocate_Node
(Right_Opnd
(Operand
)));
9959 Opnd
:= New_Op_Node
(Nkind
(Operand
), Loc
);
9960 Set_Right_Opnd
(Opnd
, R
);
9962 if Nkind
(Operand
) in N_Binary_Op
then
9964 Make_Type_Conversion
(Loc
,
9965 Subtype_Mark
=> New_Reference_To
(Standard_Integer
, Loc
),
9966 Expression
=> Relocate_Node
(Left_Opnd
(Operand
)));
9968 Set_Left_Opnd
(Opnd
, L
);
9972 Make_Type_Conversion
(Loc
,
9973 Subtype_Mark
=> Relocate_Node
(Subtype_Mark
(N
)),
9974 Expression
=> Opnd
));
9976 Analyze_And_Resolve
(N
, Target_Type
);
9981 -- Do validity check if validity checking operands
9983 if Validity_Checks_On
and Validity_Check_Operands
then
9984 Ensure_Valid
(Operand
);
9987 -- Special case of converting from non-standard boolean type
9989 if Is_Boolean_Type
(Operand_Type
)
9990 and then (Nonzero_Is_True
(Operand_Type
))
9992 Adjust_Condition
(Operand
);
9993 Set_Etype
(Operand
, Standard_Boolean
);
9994 Operand_Type
:= Standard_Boolean
;
9997 -- Case of converting to an access type
9999 if Is_Access_Type
(Target_Type
) then
10001 -- Apply an accessibility check when the conversion operand is an
10002 -- access parameter (or a renaming thereof), unless conversion was
10003 -- expanded from an Unchecked_ or Unrestricted_Access attribute.
10004 -- Note that other checks may still need to be applied below (such
10005 -- as tagged type checks).
10007 if Is_Entity_Name
(Operand
)
10008 and then Has_Extra_Accessibility
(Entity
(Operand
))
10009 and then Ekind
(Etype
(Operand
)) = E_Anonymous_Access_Type
10010 and then (Nkind
(Original_Node
(N
)) /= N_Attribute_Reference
10011 or else Attribute_Name
(Original_Node
(N
)) = Name_Access
)
10013 Apply_Accessibility_Check
10014 (Operand
, Target_Type
, Insert_Node
=> Operand
);
10016 -- If the level of the operand type is statically deeper than the
10017 -- level of the target type, then force Program_Error. Note that this
10018 -- can only occur for cases where the attribute is within the body of
10019 -- an instantiation (otherwise the conversion will already have been
10020 -- rejected as illegal). Note: warnings are issued by the analyzer
10021 -- for the instance cases.
10023 elsif In_Instance_Body
10024 and then Type_Access_Level
(Operand_Type
) >
10025 Type_Access_Level
(Target_Type
)
10027 Raise_Accessibility_Error
;
10029 -- When the operand is a selected access discriminant the check needs
10030 -- to be made against the level of the object denoted by the prefix
10031 -- of the selected name. Force Program_Error for this case as well
10032 -- (this accessibility violation can only happen if within the body
10033 -- of an instantiation).
10035 elsif In_Instance_Body
10036 and then Ekind
(Operand_Type
) = E_Anonymous_Access_Type
10037 and then Nkind
(Operand
) = N_Selected_Component
10038 and then Object_Access_Level
(Operand
) >
10039 Type_Access_Level
(Target_Type
)
10041 Raise_Accessibility_Error
;
10046 -- Case of conversions of tagged types and access to tagged types
10048 -- When needed, that is to say when the expression is class-wide, Add
10049 -- runtime a tag check for (strict) downward conversion by using the
10050 -- membership test, generating:
10052 -- [constraint_error when Operand not in Target_Type'Class]
10054 -- or in the access type case
10056 -- [constraint_error
10057 -- when Operand /= null
10058 -- and then Operand.all not in
10059 -- Designated_Type (Target_Type)'Class]
10061 if (Is_Access_Type
(Target_Type
)
10062 and then Is_Tagged_Type
(Designated_Type
(Target_Type
)))
10063 or else Is_Tagged_Type
(Target_Type
)
10065 -- Do not do any expansion in the access type case if the parent is a
10066 -- renaming, since this is an error situation which will be caught by
10067 -- Sem_Ch8, and the expansion can interfere with this error check.
10069 if Is_Access_Type
(Target_Type
) and then Is_Renamed_Object
(N
) then
10073 -- Otherwise, proceed with processing tagged conversion
10075 Tagged_Conversion
: declare
10076 Actual_Op_Typ
: Entity_Id
;
10077 Actual_Targ_Typ
: Entity_Id
;
10078 Make_Conversion
: Boolean := False;
10079 Root_Op_Typ
: Entity_Id
;
10081 procedure Make_Tag_Check
(Targ_Typ
: Entity_Id
);
10082 -- Create a membership check to test whether Operand is a member
10083 -- of Targ_Typ. If the original Target_Type is an access, include
10084 -- a test for null value. The check is inserted at N.
10086 --------------------
10087 -- Make_Tag_Check --
10088 --------------------
10090 procedure Make_Tag_Check
(Targ_Typ
: Entity_Id
) is
10095 -- [Constraint_Error
10096 -- when Operand /= null
10097 -- and then Operand.all not in Targ_Typ]
10099 if Is_Access_Type
(Target_Type
) then
10101 Make_And_Then
(Loc
,
10104 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Operand
),
10105 Right_Opnd
=> Make_Null
(Loc
)),
10110 Make_Explicit_Dereference
(Loc
,
10111 Prefix
=> Duplicate_Subexpr_No_Checks
(Operand
)),
10112 Right_Opnd
=> New_Reference_To
(Targ_Typ
, Loc
)));
10115 -- [Constraint_Error when Operand not in Targ_Typ]
10120 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Operand
),
10121 Right_Opnd
=> New_Reference_To
(Targ_Typ
, Loc
));
10125 Make_Raise_Constraint_Error
(Loc
,
10127 Reason
=> CE_Tag_Check_Failed
));
10128 end Make_Tag_Check
;
10130 -- Start of processing for Tagged_Conversion
10133 -- Handle entities from the limited view
10135 if Is_Access_Type
(Operand_Type
) then
10137 Available_View
(Designated_Type
(Operand_Type
));
10139 Actual_Op_Typ
:= Operand_Type
;
10142 if Is_Access_Type
(Target_Type
) then
10144 Available_View
(Designated_Type
(Target_Type
));
10146 Actual_Targ_Typ
:= Target_Type
;
10149 Root_Op_Typ
:= Root_Type
(Actual_Op_Typ
);
10151 -- Ada 2005 (AI-251): Handle interface type conversion
10153 if Is_Interface
(Actual_Op_Typ
) then
10154 Expand_Interface_Conversion
(N
);
10158 if not Tag_Checks_Suppressed
(Actual_Targ_Typ
) then
10160 -- Create a runtime tag check for a downward class-wide type
10163 if Is_Class_Wide_Type
(Actual_Op_Typ
)
10164 and then Actual_Op_Typ
/= Actual_Targ_Typ
10165 and then Root_Op_Typ
/= Actual_Targ_Typ
10166 and then Is_Ancestor
(Root_Op_Typ
, Actual_Targ_Typ
,
10167 Use_Full_View
=> True)
10169 Make_Tag_Check
(Class_Wide_Type
(Actual_Targ_Typ
));
10170 Make_Conversion
:= True;
10173 -- AI05-0073: If the result subtype of the function is defined
10174 -- by an access_definition designating a specific tagged type
10175 -- T, a check is made that the result value is null or the tag
10176 -- of the object designated by the result value identifies T.
10177 -- Constraint_Error is raised if this check fails.
10179 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
then
10182 Func_Typ
: Entity_Id
;
10185 -- Climb scope stack looking for the enclosing function
10187 Func
:= Current_Scope
;
10188 while Present
(Func
)
10189 and then Ekind
(Func
) /= E_Function
10191 Func
:= Scope
(Func
);
10194 -- The function's return subtype must be defined using
10195 -- an access definition.
10197 if Nkind
(Result_Definition
(Parent
(Func
))) =
10198 N_Access_Definition
10200 Func_Typ
:= Directly_Designated_Type
(Etype
(Func
));
10202 -- The return subtype denotes a specific tagged type,
10203 -- in other words, a non class-wide type.
10205 if Is_Tagged_Type
(Func_Typ
)
10206 and then not Is_Class_Wide_Type
(Func_Typ
)
10208 Make_Tag_Check
(Actual_Targ_Typ
);
10209 Make_Conversion
:= True;
10215 -- We have generated a tag check for either a class-wide type
10216 -- conversion or for AI05-0073.
10218 if Make_Conversion
then
10223 Make_Unchecked_Type_Conversion
(Loc
,
10224 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
10225 Expression
=> Relocate_Node
(Expression
(N
)));
10227 Analyze_And_Resolve
(N
, Target_Type
);
10231 end Tagged_Conversion
;
10233 -- Case of other access type conversions
10235 elsif Is_Access_Type
(Target_Type
) then
10236 Apply_Constraint_Check
(Operand
, Target_Type
);
10238 -- Case of conversions from a fixed-point type
10240 -- These conversions require special expansion and processing, found in
10241 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
10242 -- since from a semantic point of view, these are simple integer
10243 -- conversions, which do not need further processing.
10245 elsif Is_Fixed_Point_Type
(Operand_Type
)
10246 and then not Conversion_OK
(N
)
10248 -- We should never see universal fixed at this case, since the
10249 -- expansion of the constituent divide or multiply should have
10250 -- eliminated the explicit mention of universal fixed.
10252 pragma Assert
(Operand_Type
/= Universal_Fixed
);
10254 -- Check for special case of the conversion to universal real that
10255 -- occurs as a result of the use of a round attribute. In this case,
10256 -- the real type for the conversion is taken from the target type of
10257 -- the Round attribute and the result must be marked as rounded.
10259 if Target_Type
= Universal_Real
10260 and then Nkind
(Parent
(N
)) = N_Attribute_Reference
10261 and then Attribute_Name
(Parent
(N
)) = Name_Round
10263 Set_Rounded_Result
(N
);
10264 Set_Etype
(N
, Etype
(Parent
(N
)));
10267 -- Otherwise do correct fixed-conversion, but skip these if the
10268 -- Conversion_OK flag is set, because from a semantic point of view
10269 -- these are simple integer conversions needing no further processing
10270 -- (the backend will simply treat them as integers).
10272 if not Conversion_OK
(N
) then
10273 if Is_Fixed_Point_Type
(Etype
(N
)) then
10274 Expand_Convert_Fixed_To_Fixed
(N
);
10277 elsif Is_Integer_Type
(Etype
(N
)) then
10278 Expand_Convert_Fixed_To_Integer
(N
);
10281 pragma Assert
(Is_Floating_Point_Type
(Etype
(N
)));
10282 Expand_Convert_Fixed_To_Float
(N
);
10287 -- Case of conversions to a fixed-point type
10289 -- These conversions require special expansion and processing, found in
10290 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
10291 -- since from a semantic point of view, these are simple integer
10292 -- conversions, which do not need further processing.
10294 elsif Is_Fixed_Point_Type
(Target_Type
)
10295 and then not Conversion_OK
(N
)
10297 if Is_Integer_Type
(Operand_Type
) then
10298 Expand_Convert_Integer_To_Fixed
(N
);
10301 pragma Assert
(Is_Floating_Point_Type
(Operand_Type
));
10302 Expand_Convert_Float_To_Fixed
(N
);
10306 -- Case of float-to-integer conversions
10308 -- We also handle float-to-fixed conversions with Conversion_OK set
10309 -- since semantically the fixed-point target is treated as though it
10310 -- were an integer in such cases.
10312 elsif Is_Floating_Point_Type
(Operand_Type
)
10314 (Is_Integer_Type
(Target_Type
)
10316 (Is_Fixed_Point_Type
(Target_Type
) and then Conversion_OK
(N
)))
10318 -- One more check here, gcc is still not able to do conversions of
10319 -- this type with proper overflow checking, and so gigi is doing an
10320 -- approximation of what is required by doing floating-point compares
10321 -- with the end-point. But that can lose precision in some cases, and
10322 -- give a wrong result. Converting the operand to Universal_Real is
10323 -- helpful, but still does not catch all cases with 64-bit integers
10324 -- on targets with only 64-bit floats.
10326 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
10327 -- Can this code be removed ???
10329 if Do_Range_Check
(Operand
) then
10331 Make_Type_Conversion
(Loc
,
10333 New_Occurrence_Of
(Universal_Real
, Loc
),
10335 Relocate_Node
(Operand
)));
10337 Set_Etype
(Operand
, Universal_Real
);
10338 Enable_Range_Check
(Operand
);
10339 Set_Do_Range_Check
(Expression
(Operand
), False);
10342 -- Case of array conversions
10344 -- Expansion of array conversions, add required length/range checks but
10345 -- only do this if there is no change of representation. For handling of
10346 -- this case, see Handle_Changed_Representation.
10348 elsif Is_Array_Type
(Target_Type
) then
10349 if Is_Constrained
(Target_Type
) then
10350 Apply_Length_Check
(Operand
, Target_Type
);
10352 Apply_Range_Check
(Operand
, Target_Type
);
10355 Handle_Changed_Representation
;
10357 -- Case of conversions of discriminated types
10359 -- Add required discriminant checks if target is constrained. Again this
10360 -- change is skipped if we have a change of representation.
10362 elsif Has_Discriminants
(Target_Type
)
10363 and then Is_Constrained
(Target_Type
)
10365 Apply_Discriminant_Check
(Operand
, Target_Type
);
10366 Handle_Changed_Representation
;
10368 -- Case of all other record conversions. The only processing required
10369 -- is to check for a change of representation requiring the special
10370 -- assignment processing.
10372 elsif Is_Record_Type
(Target_Type
) then
10374 -- Ada 2005 (AI-216): Program_Error is raised when converting from
10375 -- a derived Unchecked_Union type to an unconstrained type that is
10376 -- not Unchecked_Union if the operand lacks inferable discriminants.
10378 if Is_Derived_Type
(Operand_Type
)
10379 and then Is_Unchecked_Union
(Base_Type
(Operand_Type
))
10380 and then not Is_Constrained
(Target_Type
)
10381 and then not Is_Unchecked_Union
(Base_Type
(Target_Type
))
10382 and then not Has_Inferable_Discriminants
(Operand
)
10384 -- To prevent Gigi from generating illegal code, we generate a
10385 -- Program_Error node, but we give it the target type of the
10386 -- conversion (is this requirement documented somewhere ???)
10389 PE
: constant Node_Id
:= Make_Raise_Program_Error
(Loc
,
10390 Reason
=> PE_Unchecked_Union_Restriction
);
10393 Set_Etype
(PE
, Target_Type
);
10398 Handle_Changed_Representation
;
10401 -- Case of conversions of enumeration types
10403 elsif Is_Enumeration_Type
(Target_Type
) then
10405 -- Special processing is required if there is a change of
10406 -- representation (from enumeration representation clauses).
10408 if not Same_Representation
(Target_Type
, Operand_Type
) then
10410 -- Convert: x(y) to x'val (ytyp'val (y))
10413 Make_Attribute_Reference
(Loc
,
10414 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
10415 Attribute_Name
=> Name_Val
,
10416 Expressions
=> New_List
(
10417 Make_Attribute_Reference
(Loc
,
10418 Prefix
=> New_Occurrence_Of
(Operand_Type
, Loc
),
10419 Attribute_Name
=> Name_Pos
,
10420 Expressions
=> New_List
(Operand
)))));
10422 Analyze_And_Resolve
(N
, Target_Type
);
10425 -- Case of conversions to floating-point
10427 elsif Is_Floating_Point_Type
(Target_Type
) then
10431 -- At this stage, either the conversion node has been transformed into
10432 -- some other equivalent expression, or left as a conversion that can be
10433 -- handled by Gigi, in the following cases:
10435 -- Conversions with no change of representation or type
10437 -- Numeric conversions involving integer, floating- and fixed-point
10438 -- values. Fixed-point values are allowed only if Conversion_OK is
10439 -- set, i.e. if the fixed-point values are to be treated as integers.
10441 -- No other conversions should be passed to Gigi
10443 -- Check: are these rules stated in sinfo??? if so, why restate here???
10445 -- The only remaining step is to generate a range check if we still have
10446 -- a type conversion at this stage and Do_Range_Check is set. For now we
10447 -- do this only for conversions of discrete types.
10449 if Nkind
(N
) = N_Type_Conversion
10450 and then Is_Discrete_Type
(Etype
(N
))
10453 Expr
: constant Node_Id
:= Expression
(N
);
10458 if Do_Range_Check
(Expr
)
10459 and then Is_Discrete_Type
(Etype
(Expr
))
10461 Set_Do_Range_Check
(Expr
, False);
10463 -- Before we do a range check, we have to deal with treating a
10464 -- fixed-point operand as an integer. The way we do this is
10465 -- simply to do an unchecked conversion to an appropriate
10466 -- integer type large enough to hold the result.
10468 -- This code is not active yet, because we are only dealing
10469 -- with discrete types so far ???
10471 if Nkind
(Expr
) in N_Has_Treat_Fixed_As_Integer
10472 and then Treat_Fixed_As_Integer
(Expr
)
10474 Ftyp
:= Base_Type
(Etype
(Expr
));
10476 if Esize
(Ftyp
) >= Esize
(Standard_Integer
) then
10477 Ityp
:= Standard_Long_Long_Integer
;
10479 Ityp
:= Standard_Integer
;
10482 Rewrite
(Expr
, Unchecked_Convert_To
(Ityp
, Expr
));
10485 -- Reset overflow flag, since the range check will include
10486 -- dealing with possible overflow, and generate the check. If
10487 -- Address is either a source type or target type, suppress
10488 -- range check to avoid typing anomalies when it is a visible
10491 Set_Do_Overflow_Check
(N
, False);
10492 if not Is_Descendent_Of_Address
(Etype
(Expr
))
10493 and then not Is_Descendent_Of_Address
(Target_Type
)
10495 Generate_Range_Check
10496 (Expr
, Target_Type
, CE_Range_Check_Failed
);
10502 -- Final step, if the result is a type conversion involving Vax_Float
10503 -- types, then it is subject for further special processing.
10505 if Nkind
(N
) = N_Type_Conversion
10506 and then (Vax_Float
(Operand_Type
) or else Vax_Float
(Target_Type
))
10508 Expand_Vax_Conversion
(N
);
10512 -- Here at end of processing
10515 -- Apply predicate check if required. Note that we can't just call
10516 -- Apply_Predicate_Check here, because the type looks right after
10517 -- the conversion and it would omit the check. The Comes_From_Source
10518 -- guard is necessary to prevent infinite recursions when we generate
10519 -- internal conversions for the purpose of checking predicates.
10521 if Present
(Predicate_Function
(Target_Type
))
10522 and then Target_Type
/= Operand_Type
10523 and then Comes_From_Source
(N
)
10526 New_Expr
: constant Node_Id
:= Duplicate_Subexpr
(N
);
10529 -- Avoid infinite recursion on the subsequent expansion of
10530 -- of the copy of the original type conversion.
10532 Set_Comes_From_Source
(New_Expr
, False);
10533 Insert_Action
(N
, Make_Predicate_Check
(Target_Type
, New_Expr
));
10536 end Expand_N_Type_Conversion
;
10538 -----------------------------------
10539 -- Expand_N_Unchecked_Expression --
10540 -----------------------------------
10542 -- Remove the unchecked expression node from the tree. Its job was simply
10543 -- to make sure that its constituent expression was handled with checks
10544 -- off, and now that that is done, we can remove it from the tree, and
10545 -- indeed must, since Gigi does not expect to see these nodes.
10547 procedure Expand_N_Unchecked_Expression
(N
: Node_Id
) is
10548 Exp
: constant Node_Id
:= Expression
(N
);
10550 Set_Assignment_OK
(Exp
, Assignment_OK
(N
) or else Assignment_OK
(Exp
));
10552 end Expand_N_Unchecked_Expression
;
10554 ----------------------------------------
10555 -- Expand_N_Unchecked_Type_Conversion --
10556 ----------------------------------------
10558 -- If this cannot be handled by Gigi and we haven't already made a
10559 -- temporary for it, do it now.
10561 procedure Expand_N_Unchecked_Type_Conversion
(N
: Node_Id
) is
10562 Target_Type
: constant Entity_Id
:= Etype
(N
);
10563 Operand
: constant Node_Id
:= Expression
(N
);
10564 Operand_Type
: constant Entity_Id
:= Etype
(Operand
);
10567 -- Nothing at all to do if conversion is to the identical type so remove
10568 -- the conversion completely, it is useless, except that it may carry
10569 -- an Assignment_OK indication which must be propagated to the operand.
10571 if Operand_Type
= Target_Type
then
10573 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
10575 if Assignment_OK
(N
) then
10576 Set_Assignment_OK
(Operand
);
10579 Rewrite
(N
, Relocate_Node
(Operand
));
10583 -- If we have a conversion of a compile time known value to a target
10584 -- type and the value is in range of the target type, then we can simply
10585 -- replace the construct by an integer literal of the correct type. We
10586 -- only apply this to integer types being converted. Possibly it may
10587 -- apply in other cases, but it is too much trouble to worry about.
10589 -- Note that we do not do this transformation if the Kill_Range_Check
10590 -- flag is set, since then the value may be outside the expected range.
10591 -- This happens in the Normalize_Scalars case.
10593 -- We also skip this if either the target or operand type is biased
10594 -- because in this case, the unchecked conversion is supposed to
10595 -- preserve the bit pattern, not the integer value.
10597 if Is_Integer_Type
(Target_Type
)
10598 and then not Has_Biased_Representation
(Target_Type
)
10599 and then Is_Integer_Type
(Operand_Type
)
10600 and then not Has_Biased_Representation
(Operand_Type
)
10601 and then Compile_Time_Known_Value
(Operand
)
10602 and then not Kill_Range_Check
(N
)
10605 Val
: constant Uint
:= Expr_Value
(Operand
);
10608 if Compile_Time_Known_Value
(Type_Low_Bound
(Target_Type
))
10610 Compile_Time_Known_Value
(Type_High_Bound
(Target_Type
))
10612 Val
>= Expr_Value
(Type_Low_Bound
(Target_Type
))
10614 Val
<= Expr_Value
(Type_High_Bound
(Target_Type
))
10616 Rewrite
(N
, Make_Integer_Literal
(Sloc
(N
), Val
));
10618 -- If Address is the target type, just set the type to avoid a
10619 -- spurious type error on the literal when Address is a visible
10622 if Is_Descendent_Of_Address
(Target_Type
) then
10623 Set_Etype
(N
, Target_Type
);
10625 Analyze_And_Resolve
(N
, Target_Type
);
10633 -- Nothing to do if conversion is safe
10635 if Safe_Unchecked_Type_Conversion
(N
) then
10639 -- Otherwise force evaluation unless Assignment_OK flag is set (this
10640 -- flag indicates ??? More comments needed here)
10642 if Assignment_OK
(N
) then
10645 Force_Evaluation
(N
);
10647 end Expand_N_Unchecked_Type_Conversion
;
10649 ----------------------------
10650 -- Expand_Record_Equality --
10651 ----------------------------
10653 -- For non-variant records, Equality is expanded when needed into:
10655 -- and then Lhs.Discr1 = Rhs.Discr1
10657 -- and then Lhs.Discrn = Rhs.Discrn
10658 -- and then Lhs.Cmp1 = Rhs.Cmp1
10660 -- and then Lhs.Cmpn = Rhs.Cmpn
10662 -- The expression is folded by the back-end for adjacent fields. This
10663 -- function is called for tagged record in only one occasion: for imple-
10664 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
10665 -- otherwise the primitive "=" is used directly.
10667 function Expand_Record_Equality
10672 Bodies
: List_Id
) return Node_Id
10674 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
10679 First_Time
: Boolean := True;
10681 function Element_To_Compare
(C
: Entity_Id
) return Entity_Id
;
10682 -- Return the next discriminant or component to compare, starting with
10683 -- C, skipping inherited components.
10685 ------------------------
10686 -- Element_To_Compare --
10687 ------------------------
10689 function Element_To_Compare
(C
: Entity_Id
) return Entity_Id
is
10695 -- Exit loop when the next element to be compared is found, or
10696 -- there is no more such element.
10698 exit when No
(Comp
);
10700 exit when Ekind_In
(Comp
, E_Discriminant
, E_Component
)
10703 -- Skip inherited components
10705 -- Note: for a tagged type, we always generate the "=" primitive
10706 -- for the base type (not on the first subtype), so the test for
10707 -- Comp /= Original_Record_Component (Comp) is True for
10708 -- inherited components only.
10710 (Is_Tagged_Type
(Typ
)
10711 and then Comp
/= Original_Record_Component
(Comp
))
10715 or else Chars
(Comp
) = Name_uTag
10717 -- The .NET/JVM version of type Root_Controlled contains two
10718 -- fields which should not be considered part of the object. To
10719 -- achieve proper equiality between two controlled objects on
10720 -- .NET/JVM, skip _Parent whenever it has type Root_Controlled.
10722 or else (Chars
(Comp
) = Name_uParent
10723 and then VM_Target
/= No_VM
10724 and then Etype
(Comp
) = RTE
(RE_Root_Controlled
))
10726 -- Skip interface elements (secondary tags???)
10728 or else Is_Interface
(Etype
(Comp
)));
10730 Next_Entity
(Comp
);
10734 end Element_To_Compare
;
10736 -- Start of processing for Expand_Record_Equality
10739 -- Generates the following code: (assuming that Typ has one Discr and
10740 -- component C2 is also a record)
10743 -- and then Lhs.Discr1 = Rhs.Discr1
10744 -- and then Lhs.C1 = Rhs.C1
10745 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
10747 -- and then Lhs.Cmpn = Rhs.Cmpn
10749 Result
:= New_Reference_To
(Standard_True
, Loc
);
10750 C
:= Element_To_Compare
(First_Entity
(Typ
));
10751 while Present
(C
) loop
10759 First_Time
:= False;
10763 New_Lhs
:= New_Copy_Tree
(Lhs
);
10764 New_Rhs
:= New_Copy_Tree
(Rhs
);
10768 Expand_Composite_Equality
(Nod
, Etype
(C
),
10770 Make_Selected_Component
(Loc
,
10772 Selector_Name
=> New_Reference_To
(C
, Loc
)),
10774 Make_Selected_Component
(Loc
,
10776 Selector_Name
=> New_Reference_To
(C
, Loc
)),
10779 -- If some (sub)component is an unchecked_union, the whole
10780 -- operation will raise program error.
10782 if Nkind
(Check
) = N_Raise_Program_Error
then
10784 Set_Etype
(Result
, Standard_Boolean
);
10788 Make_And_Then
(Loc
,
10789 Left_Opnd
=> Result
,
10790 Right_Opnd
=> Check
);
10794 C
:= Element_To_Compare
(Next_Entity
(C
));
10798 end Expand_Record_Equality
;
10800 ---------------------------
10801 -- Expand_Set_Membership --
10802 ---------------------------
10804 procedure Expand_Set_Membership
(N
: Node_Id
) is
10805 Lop
: constant Node_Id
:= Left_Opnd
(N
);
10809 function Make_Cond
(Alt
: Node_Id
) return Node_Id
;
10810 -- If the alternative is a subtype mark, create a simple membership
10811 -- test. Otherwise create an equality test for it.
10817 function Make_Cond
(Alt
: Node_Id
) return Node_Id
is
10819 L
: constant Node_Id
:= New_Copy
(Lop
);
10820 R
: constant Node_Id
:= Relocate_Node
(Alt
);
10823 if (Is_Entity_Name
(Alt
) and then Is_Type
(Entity
(Alt
)))
10824 or else Nkind
(Alt
) = N_Range
10827 Make_In
(Sloc
(Alt
),
10832 Make_Op_Eq
(Sloc
(Alt
),
10840 -- Start of processing for Expand_Set_Membership
10843 Remove_Side_Effects
(Lop
);
10845 Alt
:= Last
(Alternatives
(N
));
10846 Res
:= Make_Cond
(Alt
);
10849 while Present
(Alt
) loop
10851 Make_Or_Else
(Sloc
(Alt
),
10852 Left_Opnd
=> Make_Cond
(Alt
),
10853 Right_Opnd
=> Res
);
10858 Analyze_And_Resolve
(N
, Standard_Boolean
);
10859 end Expand_Set_Membership
;
10861 -----------------------------------
10862 -- Expand_Short_Circuit_Operator --
10863 -----------------------------------
10865 -- Deal with special expansion if actions are present for the right operand
10866 -- and deal with optimizing case of arguments being True or False. We also
10867 -- deal with the special case of non-standard boolean values.
10869 procedure Expand_Short_Circuit_Operator
(N
: Node_Id
) is
10870 Loc
: constant Source_Ptr
:= Sloc
(N
);
10871 Typ
: constant Entity_Id
:= Etype
(N
);
10872 Left
: constant Node_Id
:= Left_Opnd
(N
);
10873 Right
: constant Node_Id
:= Right_Opnd
(N
);
10874 LocR
: constant Source_Ptr
:= Sloc
(Right
);
10877 Shortcut_Value
: constant Boolean := Nkind
(N
) = N_Or_Else
;
10878 Shortcut_Ent
: constant Entity_Id
:= Boolean_Literals
(Shortcut_Value
);
10879 -- If Left = Shortcut_Value then Right need not be evaluated
10882 -- Deal with non-standard booleans
10884 if Is_Boolean_Type
(Typ
) then
10885 Adjust_Condition
(Left
);
10886 Adjust_Condition
(Right
);
10887 Set_Etype
(N
, Standard_Boolean
);
10890 -- Check for cases where left argument is known to be True or False
10892 if Compile_Time_Known_Value
(Left
) then
10894 -- Mark SCO for left condition as compile time known
10896 if Generate_SCO
and then Comes_From_Source
(Left
) then
10897 Set_SCO_Condition
(Left
, Expr_Value_E
(Left
) = Standard_True
);
10900 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
10901 -- Any actions associated with Right will be executed unconditionally
10902 -- and can thus be inserted into the tree unconditionally.
10904 if Expr_Value_E
(Left
) /= Shortcut_Ent
then
10905 if Present
(Actions
(N
)) then
10906 Insert_Actions
(N
, Actions
(N
));
10909 Rewrite
(N
, Right
);
10911 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
10912 -- In this case we can forget the actions associated with Right,
10913 -- since they will never be executed.
10916 Kill_Dead_Code
(Right
);
10917 Kill_Dead_Code
(Actions
(N
));
10918 Rewrite
(N
, New_Occurrence_Of
(Shortcut_Ent
, Loc
));
10921 Adjust_Result_Type
(N
, Typ
);
10925 -- If Actions are present for the right operand, we have to do some
10926 -- special processing. We can't just let these actions filter back into
10927 -- code preceding the short circuit (which is what would have happened
10928 -- if we had not trapped them in the short-circuit form), since they
10929 -- must only be executed if the right operand of the short circuit is
10930 -- executed and not otherwise.
10932 if Present
(Actions
(N
)) then
10933 Actlist
:= Actions
(N
);
10935 -- We now use an Expression_With_Actions node for the right operand
10936 -- of the short-circuit form. Note that this solves the traceability
10937 -- problems for coverage analysis.
10940 Make_Expression_With_Actions
(LocR
,
10941 Expression
=> Relocate_Node
(Right
),
10942 Actions
=> Actlist
));
10943 Set_Actions
(N
, No_List
);
10944 Analyze_And_Resolve
(Right
, Standard_Boolean
);
10946 Adjust_Result_Type
(N
, Typ
);
10950 -- No actions present, check for cases of right argument True/False
10952 if Compile_Time_Known_Value
(Right
) then
10954 -- Mark SCO for left condition as compile time known
10956 if Generate_SCO
and then Comes_From_Source
(Right
) then
10957 Set_SCO_Condition
(Right
, Expr_Value_E
(Right
) = Standard_True
);
10960 -- Change (Left and then True), (Left or else False) to Left.
10961 -- Note that we know there are no actions associated with the right
10962 -- operand, since we just checked for this case above.
10964 if Expr_Value_E
(Right
) /= Shortcut_Ent
then
10967 -- Change (Left and then False), (Left or else True) to Right,
10968 -- making sure to preserve any side effects associated with the Left
10972 Remove_Side_Effects
(Left
);
10973 Rewrite
(N
, New_Occurrence_Of
(Shortcut_Ent
, Loc
));
10977 Adjust_Result_Type
(N
, Typ
);
10978 end Expand_Short_Circuit_Operator
;
10980 -------------------------------------
10981 -- Fixup_Universal_Fixed_Operation --
10982 -------------------------------------
10984 procedure Fixup_Universal_Fixed_Operation
(N
: Node_Id
) is
10985 Conv
: constant Node_Id
:= Parent
(N
);
10988 -- We must have a type conversion immediately above us
10990 pragma Assert
(Nkind
(Conv
) = N_Type_Conversion
);
10992 -- Normally the type conversion gives our target type. The exception
10993 -- occurs in the case of the Round attribute, where the conversion
10994 -- will be to universal real, and our real type comes from the Round
10995 -- attribute (as well as an indication that we must round the result)
10997 if Nkind
(Parent
(Conv
)) = N_Attribute_Reference
10998 and then Attribute_Name
(Parent
(Conv
)) = Name_Round
11000 Set_Etype
(N
, Etype
(Parent
(Conv
)));
11001 Set_Rounded_Result
(N
);
11003 -- Normal case where type comes from conversion above us
11006 Set_Etype
(N
, Etype
(Conv
));
11008 end Fixup_Universal_Fixed_Operation
;
11010 ---------------------------------
11011 -- Has_Inferable_Discriminants --
11012 ---------------------------------
11014 function Has_Inferable_Discriminants
(N
: Node_Id
) return Boolean is
11016 function Prefix_Is_Formal_Parameter
(N
: Node_Id
) return Boolean;
11017 -- Determines whether the left-most prefix of a selected component is a
11018 -- formal parameter in a subprogram. Assumes N is a selected component.
11020 --------------------------------
11021 -- Prefix_Is_Formal_Parameter --
11022 --------------------------------
11024 function Prefix_Is_Formal_Parameter
(N
: Node_Id
) return Boolean is
11025 Sel_Comp
: Node_Id
;
11028 -- Move to the left-most prefix by climbing up the tree
11031 while Present
(Parent
(Sel_Comp
))
11032 and then Nkind
(Parent
(Sel_Comp
)) = N_Selected_Component
11034 Sel_Comp
:= Parent
(Sel_Comp
);
11037 return Ekind
(Entity
(Prefix
(Sel_Comp
))) in Formal_Kind
;
11038 end Prefix_Is_Formal_Parameter
;
11040 -- Start of processing for Has_Inferable_Discriminants
11043 -- For selected components, the subtype of the selector must be a
11044 -- constrained Unchecked_Union. If the component is subject to a
11045 -- per-object constraint, then the enclosing object must have inferable
11048 if Nkind
(N
) = N_Selected_Component
then
11049 if Has_Per_Object_Constraint
(Entity
(Selector_Name
(N
))) then
11051 -- A small hack. If we have a per-object constrained selected
11052 -- component of a formal parameter, return True since we do not
11053 -- know the actual parameter association yet.
11055 if Prefix_Is_Formal_Parameter
(N
) then
11058 -- Otherwise, check the enclosing object and the selector
11061 return Has_Inferable_Discriminants
(Prefix
(N
))
11062 and then Has_Inferable_Discriminants
(Selector_Name
(N
));
11065 -- The call to Has_Inferable_Discriminants will determine whether
11066 -- the selector has a constrained Unchecked_Union nominal type.
11069 return Has_Inferable_Discriminants
(Selector_Name
(N
));
11072 -- A qualified expression has inferable discriminants if its subtype
11073 -- mark is a constrained Unchecked_Union subtype.
11075 elsif Nkind
(N
) = N_Qualified_Expression
then
11076 return Is_Unchecked_Union
(Etype
(Subtype_Mark
(N
)))
11077 and then Is_Constrained
(Etype
(Subtype_Mark
(N
)));
11079 -- For all other names, it is sufficient to have a constrained
11080 -- Unchecked_Union nominal subtype.
11083 return Is_Unchecked_Union
(Base_Type
(Etype
(N
)))
11084 and then Is_Constrained
(Etype
(N
));
11086 end Has_Inferable_Discriminants
;
11088 -------------------------------
11089 -- Insert_Dereference_Action --
11090 -------------------------------
11092 procedure Insert_Dereference_Action
(N
: Node_Id
) is
11094 function Is_Checked_Storage_Pool
(P
: Entity_Id
) return Boolean;
11095 -- Return true if type of P is derived from Checked_Pool;
11097 -----------------------------
11098 -- Is_Checked_Storage_Pool --
11099 -----------------------------
11101 function Is_Checked_Storage_Pool
(P
: Entity_Id
) return Boolean is
11110 while T
/= Etype
(T
) loop
11111 if Is_RTE
(T
, RE_Checked_Pool
) then
11119 end Is_Checked_Storage_Pool
;
11123 Typ
: constant Entity_Id
:= Etype
(N
);
11124 Desig
: constant Entity_Id
:= Available_View
(Designated_Type
(Typ
));
11125 Loc
: constant Source_Ptr
:= Sloc
(N
);
11126 Pool
: constant Entity_Id
:= Associated_Storage_Pool
(Typ
);
11127 Pnod
: constant Node_Id
:= Parent
(N
);
11135 -- Start of processing for Insert_Dereference_Action
11138 pragma Assert
(Nkind
(Pnod
) = N_Explicit_Dereference
);
11140 -- Do not re-expand a dereference which has already been processed by
11143 if Has_Dereference_Action
(Pnod
) then
11146 -- Do not perform this type of expansion for internally-generated
11149 elsif not Comes_From_Source
(Original_Node
(Pnod
)) then
11152 -- A dereference action is only applicable to objects which have been
11153 -- allocated on a checked pool.
11155 elsif not Is_Checked_Storage_Pool
(Pool
) then
11159 -- Extract the address of the dereferenced object. Generate:
11161 -- Addr : System.Address := <N>'Pool_Address;
11163 Addr
:= Make_Temporary
(Loc
, 'P');
11166 Make_Object_Declaration
(Loc
,
11167 Defining_Identifier
=> Addr
,
11168 Object_Definition
=>
11169 New_Reference_To
(RTE
(RE_Address
), Loc
),
11171 Make_Attribute_Reference
(Loc
,
11172 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
),
11173 Attribute_Name
=> Name_Pool_Address
)));
11175 -- Calculate the size of the dereferenced object. Generate:
11177 -- Size : Storage_Count := <N>.all'Size / Storage_Unit;
11180 Make_Explicit_Dereference
(Loc
,
11181 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
11182 Set_Has_Dereference_Action
(Deref
);
11184 Size
:= Make_Temporary
(Loc
, 'S');
11187 Make_Object_Declaration
(Loc
,
11188 Defining_Identifier
=> Size
,
11190 Object_Definition
=>
11191 New_Reference_To
(RTE
(RE_Storage_Count
), Loc
),
11194 Make_Op_Divide
(Loc
,
11196 Make_Attribute_Reference
(Loc
,
11198 Attribute_Name
=> Name_Size
),
11200 Make_Integer_Literal
(Loc
, System_Storage_Unit
))));
11202 -- Calculate the alignment of the dereferenced object. Generate:
11203 -- Alig : constant Storage_Count := <N>.all'Alignment;
11206 Make_Explicit_Dereference
(Loc
,
11207 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
11208 Set_Has_Dereference_Action
(Deref
);
11210 Alig
:= Make_Temporary
(Loc
, 'A');
11213 Make_Object_Declaration
(Loc
,
11214 Defining_Identifier
=> Alig
,
11215 Object_Definition
=>
11216 New_Reference_To
(RTE
(RE_Storage_Count
), Loc
),
11218 Make_Attribute_Reference
(Loc
,
11220 Attribute_Name
=> Name_Alignment
)));
11222 -- A dereference of a controlled object requires special processing. The
11223 -- finalization machinery requests additional space from the underlying
11224 -- pool to allocate and hide two pointers. As a result, a checked pool
11225 -- may mark the wrong memory as valid. Since checked pools do not have
11226 -- knowledge of hidden pointers, we have to bring the two pointers back
11227 -- in view in order to restore the original state of the object.
11229 if Needs_Finalization
(Desig
) then
11231 -- Adjust the address and size of the dereferenced object. Generate:
11232 -- Adjust_Controlled_Dereference (Addr, Size, Alig);
11235 Make_Procedure_Call_Statement
(Loc
,
11237 New_Reference_To
(RTE
(RE_Adjust_Controlled_Dereference
), Loc
),
11238 Parameter_Associations
=> New_List
(
11239 New_Reference_To
(Addr
, Loc
),
11240 New_Reference_To
(Size
, Loc
),
11241 New_Reference_To
(Alig
, Loc
)));
11243 -- Class-wide types complicate things because we cannot determine
11244 -- statically whether the actual object is truly controlled. We must
11245 -- generate a runtime check to detect this property. Generate:
11247 -- if Needs_Finalization (<N>.all'Tag) then
11251 if Is_Class_Wide_Type
(Desig
) then
11253 Make_Explicit_Dereference
(Loc
,
11254 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
11255 Set_Has_Dereference_Action
(Deref
);
11258 Make_Implicit_If_Statement
(N
,
11260 Make_Function_Call
(Loc
,
11262 New_Reference_To
(RTE
(RE_Needs_Finalization
), Loc
),
11263 Parameter_Associations
=> New_List
(
11264 Make_Attribute_Reference
(Loc
,
11266 Attribute_Name
=> Name_Tag
))),
11267 Then_Statements
=> New_List
(Stmt
));
11270 Insert_Action
(N
, Stmt
);
11274 -- Dereference (Pool, Addr, Size, Alig);
11277 Make_Procedure_Call_Statement
(Loc
,
11280 (Find_Prim_Op
(Etype
(Pool
), Name_Dereference
), Loc
),
11281 Parameter_Associations
=> New_List
(
11282 New_Reference_To
(Pool
, Loc
),
11283 New_Reference_To
(Addr
, Loc
),
11284 New_Reference_To
(Size
, Loc
),
11285 New_Reference_To
(Alig
, Loc
))));
11287 -- Mark the explicit dereference as processed to avoid potential
11288 -- infinite expansion.
11290 Set_Has_Dereference_Action
(Pnod
);
11293 when RE_Not_Available
=>
11295 end Insert_Dereference_Action
;
11297 --------------------------------
11298 -- Integer_Promotion_Possible --
11299 --------------------------------
11301 function Integer_Promotion_Possible
(N
: Node_Id
) return Boolean is
11302 Operand
: constant Node_Id
:= Expression
(N
);
11303 Operand_Type
: constant Entity_Id
:= Etype
(Operand
);
11304 Root_Operand_Type
: constant Entity_Id
:= Root_Type
(Operand_Type
);
11307 pragma Assert
(Nkind
(N
) = N_Type_Conversion
);
11311 -- We only do the transformation for source constructs. We assume
11312 -- that the expander knows what it is doing when it generates code.
11314 Comes_From_Source
(N
)
11316 -- If the operand type is Short_Integer or Short_Short_Integer,
11317 -- then we will promote to Integer, which is available on all
11318 -- targets, and is sufficient to ensure no intermediate overflow.
11319 -- Furthermore it is likely to be as efficient or more efficient
11320 -- than using the smaller type for the computation so we do this
11321 -- unconditionally.
11324 (Root_Operand_Type
= Base_Type
(Standard_Short_Integer
)
11326 Root_Operand_Type
= Base_Type
(Standard_Short_Short_Integer
))
11328 -- Test for interesting operation, which includes addition,
11329 -- division, exponentiation, multiplication, subtraction, absolute
11330 -- value and unary negation. Unary "+" is omitted since it is a
11331 -- no-op and thus can't overflow.
11333 and then Nkind_In
(Operand
, N_Op_Abs
,
11340 end Integer_Promotion_Possible
;
11342 ------------------------------
11343 -- Make_Array_Comparison_Op --
11344 ------------------------------
11346 -- This is a hand-coded expansion of the following generic function:
11349 -- type elem is (<>);
11350 -- type index is (<>);
11351 -- type a is array (index range <>) of elem;
11353 -- function Gnnn (X : a; Y: a) return boolean is
11354 -- J : index := Y'first;
11357 -- if X'length = 0 then
11360 -- elsif Y'length = 0 then
11364 -- for I in X'range loop
11365 -- if X (I) = Y (J) then
11366 -- if J = Y'last then
11369 -- J := index'succ (J);
11373 -- return X (I) > Y (J);
11377 -- return X'length > Y'length;
11381 -- Note that since we are essentially doing this expansion by hand, we
11382 -- do not need to generate an actual or formal generic part, just the
11383 -- instantiated function itself.
11385 function Make_Array_Comparison_Op
11387 Nod
: Node_Id
) return Node_Id
11389 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
11391 X
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uX
);
11392 Y
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uY
);
11393 I
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uI
);
11394 J
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
11396 Index
: constant Entity_Id
:= Base_Type
(Etype
(First_Index
(Typ
)));
11398 Loop_Statement
: Node_Id
;
11399 Loop_Body
: Node_Id
;
11401 Inner_If
: Node_Id
;
11402 Final_Expr
: Node_Id
;
11403 Func_Body
: Node_Id
;
11404 Func_Name
: Entity_Id
;
11410 -- if J = Y'last then
11413 -- J := index'succ (J);
11417 Make_Implicit_If_Statement
(Nod
,
11420 Left_Opnd
=> New_Reference_To
(J
, Loc
),
11422 Make_Attribute_Reference
(Loc
,
11423 Prefix
=> New_Reference_To
(Y
, Loc
),
11424 Attribute_Name
=> Name_Last
)),
11426 Then_Statements
=> New_List
(
11427 Make_Exit_Statement
(Loc
)),
11431 Make_Assignment_Statement
(Loc
,
11432 Name
=> New_Reference_To
(J
, Loc
),
11434 Make_Attribute_Reference
(Loc
,
11435 Prefix
=> New_Reference_To
(Index
, Loc
),
11436 Attribute_Name
=> Name_Succ
,
11437 Expressions
=> New_List
(New_Reference_To
(J
, Loc
))))));
11439 -- if X (I) = Y (J) then
11442 -- return X (I) > Y (J);
11446 Make_Implicit_If_Statement
(Nod
,
11450 Make_Indexed_Component
(Loc
,
11451 Prefix
=> New_Reference_To
(X
, Loc
),
11452 Expressions
=> New_List
(New_Reference_To
(I
, Loc
))),
11455 Make_Indexed_Component
(Loc
,
11456 Prefix
=> New_Reference_To
(Y
, Loc
),
11457 Expressions
=> New_List
(New_Reference_To
(J
, Loc
)))),
11459 Then_Statements
=> New_List
(Inner_If
),
11461 Else_Statements
=> New_List
(
11462 Make_Simple_Return_Statement
(Loc
,
11466 Make_Indexed_Component
(Loc
,
11467 Prefix
=> New_Reference_To
(X
, Loc
),
11468 Expressions
=> New_List
(New_Reference_To
(I
, Loc
))),
11471 Make_Indexed_Component
(Loc
,
11472 Prefix
=> New_Reference_To
(Y
, Loc
),
11473 Expressions
=> New_List
(
11474 New_Reference_To
(J
, Loc
)))))));
11476 -- for I in X'range loop
11481 Make_Implicit_Loop_Statement
(Nod
,
11482 Identifier
=> Empty
,
11484 Iteration_Scheme
=>
11485 Make_Iteration_Scheme
(Loc
,
11486 Loop_Parameter_Specification
=>
11487 Make_Loop_Parameter_Specification
(Loc
,
11488 Defining_Identifier
=> I
,
11489 Discrete_Subtype_Definition
=>
11490 Make_Attribute_Reference
(Loc
,
11491 Prefix
=> New_Reference_To
(X
, Loc
),
11492 Attribute_Name
=> Name_Range
))),
11494 Statements
=> New_List
(Loop_Body
));
11496 -- if X'length = 0 then
11498 -- elsif Y'length = 0 then
11501 -- for ... loop ... end loop;
11502 -- return X'length > Y'length;
11506 Make_Attribute_Reference
(Loc
,
11507 Prefix
=> New_Reference_To
(X
, Loc
),
11508 Attribute_Name
=> Name_Length
);
11511 Make_Attribute_Reference
(Loc
,
11512 Prefix
=> New_Reference_To
(Y
, Loc
),
11513 Attribute_Name
=> Name_Length
);
11517 Left_Opnd
=> Length1
,
11518 Right_Opnd
=> Length2
);
11521 Make_Implicit_If_Statement
(Nod
,
11525 Make_Attribute_Reference
(Loc
,
11526 Prefix
=> New_Reference_To
(X
, Loc
),
11527 Attribute_Name
=> Name_Length
),
11529 Make_Integer_Literal
(Loc
, 0)),
11533 Make_Simple_Return_Statement
(Loc
,
11534 Expression
=> New_Reference_To
(Standard_False
, Loc
))),
11536 Elsif_Parts
=> New_List
(
11537 Make_Elsif_Part
(Loc
,
11541 Make_Attribute_Reference
(Loc
,
11542 Prefix
=> New_Reference_To
(Y
, Loc
),
11543 Attribute_Name
=> Name_Length
),
11545 Make_Integer_Literal
(Loc
, 0)),
11549 Make_Simple_Return_Statement
(Loc
,
11550 Expression
=> New_Reference_To
(Standard_True
, Loc
))))),
11552 Else_Statements
=> New_List
(
11554 Make_Simple_Return_Statement
(Loc
,
11555 Expression
=> Final_Expr
)));
11559 Formals
:= New_List
(
11560 Make_Parameter_Specification
(Loc
,
11561 Defining_Identifier
=> X
,
11562 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)),
11564 Make_Parameter_Specification
(Loc
,
11565 Defining_Identifier
=> Y
,
11566 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)));
11568 -- function Gnnn (...) return boolean is
11569 -- J : index := Y'first;
11574 Func_Name
:= Make_Temporary
(Loc
, 'G');
11577 Make_Subprogram_Body
(Loc
,
11579 Make_Function_Specification
(Loc
,
11580 Defining_Unit_Name
=> Func_Name
,
11581 Parameter_Specifications
=> Formals
,
11582 Result_Definition
=> New_Reference_To
(Standard_Boolean
, Loc
)),
11584 Declarations
=> New_List
(
11585 Make_Object_Declaration
(Loc
,
11586 Defining_Identifier
=> J
,
11587 Object_Definition
=> New_Reference_To
(Index
, Loc
),
11589 Make_Attribute_Reference
(Loc
,
11590 Prefix
=> New_Reference_To
(Y
, Loc
),
11591 Attribute_Name
=> Name_First
))),
11593 Handled_Statement_Sequence
=>
11594 Make_Handled_Sequence_Of_Statements
(Loc
,
11595 Statements
=> New_List
(If_Stat
)));
11598 end Make_Array_Comparison_Op
;
11600 ---------------------------
11601 -- Make_Boolean_Array_Op --
11602 ---------------------------
11604 -- For logical operations on boolean arrays, expand in line the following,
11605 -- replacing 'and' with 'or' or 'xor' where needed:
11607 -- function Annn (A : typ; B: typ) return typ is
11610 -- for J in A'range loop
11611 -- C (J) := A (J) op B (J);
11616 -- Here typ is the boolean array type
11618 function Make_Boolean_Array_Op
11620 N
: Node_Id
) return Node_Id
11622 Loc
: constant Source_Ptr
:= Sloc
(N
);
11624 A
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uA
);
11625 B
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uB
);
11626 C
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uC
);
11627 J
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
11635 Func_Name
: Entity_Id
;
11636 Func_Body
: Node_Id
;
11637 Loop_Statement
: Node_Id
;
11641 Make_Indexed_Component
(Loc
,
11642 Prefix
=> New_Reference_To
(A
, Loc
),
11643 Expressions
=> New_List
(New_Reference_To
(J
, Loc
)));
11646 Make_Indexed_Component
(Loc
,
11647 Prefix
=> New_Reference_To
(B
, Loc
),
11648 Expressions
=> New_List
(New_Reference_To
(J
, Loc
)));
11651 Make_Indexed_Component
(Loc
,
11652 Prefix
=> New_Reference_To
(C
, Loc
),
11653 Expressions
=> New_List
(New_Reference_To
(J
, Loc
)));
11655 if Nkind
(N
) = N_Op_And
then
11659 Right_Opnd
=> B_J
);
11661 elsif Nkind
(N
) = N_Op_Or
then
11665 Right_Opnd
=> B_J
);
11671 Right_Opnd
=> B_J
);
11675 Make_Implicit_Loop_Statement
(N
,
11676 Identifier
=> Empty
,
11678 Iteration_Scheme
=>
11679 Make_Iteration_Scheme
(Loc
,
11680 Loop_Parameter_Specification
=>
11681 Make_Loop_Parameter_Specification
(Loc
,
11682 Defining_Identifier
=> J
,
11683 Discrete_Subtype_Definition
=>
11684 Make_Attribute_Reference
(Loc
,
11685 Prefix
=> New_Reference_To
(A
, Loc
),
11686 Attribute_Name
=> Name_Range
))),
11688 Statements
=> New_List
(
11689 Make_Assignment_Statement
(Loc
,
11691 Expression
=> Op
)));
11693 Formals
:= New_List
(
11694 Make_Parameter_Specification
(Loc
,
11695 Defining_Identifier
=> A
,
11696 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)),
11698 Make_Parameter_Specification
(Loc
,
11699 Defining_Identifier
=> B
,
11700 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)));
11702 Func_Name
:= Make_Temporary
(Loc
, 'A');
11703 Set_Is_Inlined
(Func_Name
);
11706 Make_Subprogram_Body
(Loc
,
11708 Make_Function_Specification
(Loc
,
11709 Defining_Unit_Name
=> Func_Name
,
11710 Parameter_Specifications
=> Formals
,
11711 Result_Definition
=> New_Reference_To
(Typ
, Loc
)),
11713 Declarations
=> New_List
(
11714 Make_Object_Declaration
(Loc
,
11715 Defining_Identifier
=> C
,
11716 Object_Definition
=> New_Reference_To
(Typ
, Loc
))),
11718 Handled_Statement_Sequence
=>
11719 Make_Handled_Sequence_Of_Statements
(Loc
,
11720 Statements
=> New_List
(
11722 Make_Simple_Return_Statement
(Loc
,
11723 Expression
=> New_Reference_To
(C
, Loc
)))));
11726 end Make_Boolean_Array_Op
;
11728 -----------------------------------------
11729 -- Minimized_Eliminated_Overflow_Check --
11730 -----------------------------------------
11732 function Minimized_Eliminated_Overflow_Check
(N
: Node_Id
) return Boolean is
11735 Is_Signed_Integer_Type
(Etype
(N
))
11736 and then Overflow_Check_Mode
in Minimized_Or_Eliminated
;
11737 end Minimized_Eliminated_Overflow_Check
;
11739 --------------------------------
11740 -- Optimize_Length_Comparison --
11741 --------------------------------
11743 procedure Optimize_Length_Comparison
(N
: Node_Id
) is
11744 Loc
: constant Source_Ptr
:= Sloc
(N
);
11745 Typ
: constant Entity_Id
:= Etype
(N
);
11750 -- First and Last attribute reference nodes, which end up as left and
11751 -- right operands of the optimized result.
11754 -- True for comparison operand of zero
11757 -- Comparison operand, set only if Is_Zero is false
11760 -- Entity whose length is being compared
11763 -- Integer_Literal node for length attribute expression, or Empty
11764 -- if there is no such expression present.
11767 -- Type of array index to which 'Length is applied
11769 Op
: Node_Kind
:= Nkind
(N
);
11770 -- Kind of comparison operator, gets flipped if operands backwards
11772 function Is_Optimizable
(N
: Node_Id
) return Boolean;
11773 -- Tests N to see if it is an optimizable comparison value (defined as
11774 -- constant zero or one, or something else where the value is known to
11775 -- be positive and in the range of 32-bits, and where the corresponding
11776 -- Length value is also known to be 32-bits. If result is true, sets
11777 -- Is_Zero, Ityp, and Comp accordingly.
11779 function Is_Entity_Length
(N
: Node_Id
) return Boolean;
11780 -- Tests if N is a length attribute applied to a simple entity. If so,
11781 -- returns True, and sets Ent to the entity, and Index to the integer
11782 -- literal provided as an attribute expression, or to Empty if none.
11783 -- Also returns True if the expression is a generated type conversion
11784 -- whose expression is of the desired form. This latter case arises
11785 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
11786 -- to check for being in range, which is not needed in this context.
11787 -- Returns False if neither condition holds.
11789 function Prepare_64
(N
: Node_Id
) return Node_Id
;
11790 -- Given a discrete expression, returns a Long_Long_Integer typed
11791 -- expression representing the underlying value of the expression.
11792 -- This is done with an unchecked conversion to the result type. We
11793 -- use unchecked conversion to handle the enumeration type case.
11795 ----------------------
11796 -- Is_Entity_Length --
11797 ----------------------
11799 function Is_Entity_Length
(N
: Node_Id
) return Boolean is
11801 if Nkind
(N
) = N_Attribute_Reference
11802 and then Attribute_Name
(N
) = Name_Length
11803 and then Is_Entity_Name
(Prefix
(N
))
11805 Ent
:= Entity
(Prefix
(N
));
11807 if Present
(Expressions
(N
)) then
11808 Index
:= First
(Expressions
(N
));
11815 elsif Nkind
(N
) = N_Type_Conversion
11816 and then not Comes_From_Source
(N
)
11818 return Is_Entity_Length
(Expression
(N
));
11823 end Is_Entity_Length
;
11825 --------------------
11826 -- Is_Optimizable --
11827 --------------------
11829 function Is_Optimizable
(N
: Node_Id
) return Boolean is
11837 if Compile_Time_Known_Value
(N
) then
11838 Val
:= Expr_Value
(N
);
11840 if Val
= Uint_0
then
11845 elsif Val
= Uint_1
then
11852 -- Here we have to make sure of being within 32-bits
11854 Determine_Range
(N
, OK
, Lo
, Hi
, Assume_Valid
=> True);
11857 or else Lo
< Uint_1
11858 or else Hi
> UI_From_Int
(Int
'Last)
11863 -- Comparison value was within range, so now we must check the index
11864 -- value to make sure it is also within 32-bits.
11866 Indx
:= First_Index
(Etype
(Ent
));
11868 if Present
(Index
) then
11869 for J
in 2 .. UI_To_Int
(Intval
(Index
)) loop
11874 Ityp
:= Etype
(Indx
);
11876 if Esize
(Ityp
) > 32 then
11883 end Is_Optimizable
;
11889 function Prepare_64
(N
: Node_Id
) return Node_Id
is
11891 return Unchecked_Convert_To
(Standard_Long_Long_Integer
, N
);
11894 -- Start of processing for Optimize_Length_Comparison
11897 -- Nothing to do if not a comparison
11899 if Op
not in N_Op_Compare
then
11903 -- Nothing to do if special -gnatd.P debug flag set
11905 if Debug_Flag_Dot_PP
then
11909 -- Ent'Length op 0/1
11911 if Is_Entity_Length
(Left_Opnd
(N
))
11912 and then Is_Optimizable
(Right_Opnd
(N
))
11916 -- 0/1 op Ent'Length
11918 elsif Is_Entity_Length
(Right_Opnd
(N
))
11919 and then Is_Optimizable
(Left_Opnd
(N
))
11921 -- Flip comparison to opposite sense
11924 when N_Op_Lt
=> Op
:= N_Op_Gt
;
11925 when N_Op_Le
=> Op
:= N_Op_Ge
;
11926 when N_Op_Gt
=> Op
:= N_Op_Lt
;
11927 when N_Op_Ge
=> Op
:= N_Op_Le
;
11928 when others => null;
11931 -- Else optimization not possible
11937 -- Fall through if we will do the optimization
11939 -- Cases to handle:
11941 -- X'Length = 0 => X'First > X'Last
11942 -- X'Length = 1 => X'First = X'Last
11943 -- X'Length = n => X'First + (n - 1) = X'Last
11945 -- X'Length /= 0 => X'First <= X'Last
11946 -- X'Length /= 1 => X'First /= X'Last
11947 -- X'Length /= n => X'First + (n - 1) /= X'Last
11949 -- X'Length >= 0 => always true, warn
11950 -- X'Length >= 1 => X'First <= X'Last
11951 -- X'Length >= n => X'First + (n - 1) <= X'Last
11953 -- X'Length > 0 => X'First <= X'Last
11954 -- X'Length > 1 => X'First < X'Last
11955 -- X'Length > n => X'First + (n - 1) < X'Last
11957 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
11958 -- X'Length <= 1 => X'First >= X'Last
11959 -- X'Length <= n => X'First + (n - 1) >= X'Last
11961 -- X'Length < 0 => always false (warn)
11962 -- X'Length < 1 => X'First > X'Last
11963 -- X'Length < n => X'First + (n - 1) > X'Last
11965 -- Note: for the cases of n (not constant 0,1), we require that the
11966 -- corresponding index type be integer or shorter (i.e. not 64-bit),
11967 -- and the same for the comparison value. Then we do the comparison
11968 -- using 64-bit arithmetic (actually long long integer), so that we
11969 -- cannot have overflow intefering with the result.
11971 -- First deal with warning cases
11980 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Loc
)));
11981 Analyze_And_Resolve
(N
, Typ
);
11982 Warn_On_Known_Condition
(N
);
11989 Convert_To
(Typ
, New_Occurrence_Of
(Standard_False
, Loc
)));
11990 Analyze_And_Resolve
(N
, Typ
);
11991 Warn_On_Known_Condition
(N
);
11995 if Constant_Condition_Warnings
11996 and then Comes_From_Source
(Original_Node
(N
))
11998 Error_Msg_N
("could replace by ""'=""?c?", N
);
12008 -- Build the First reference we will use
12011 Make_Attribute_Reference
(Loc
,
12012 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
12013 Attribute_Name
=> Name_First
);
12015 if Present
(Index
) then
12016 Set_Expressions
(Left
, New_List
(New_Copy
(Index
)));
12019 -- If general value case, then do the addition of (n - 1), and
12020 -- also add the needed conversions to type Long_Long_Integer.
12022 if Present
(Comp
) then
12025 Left_Opnd
=> Prepare_64
(Left
),
12027 Make_Op_Subtract
(Loc
,
12028 Left_Opnd
=> Prepare_64
(Comp
),
12029 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)));
12032 -- Build the Last reference we will use
12035 Make_Attribute_Reference
(Loc
,
12036 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
12037 Attribute_Name
=> Name_Last
);
12039 if Present
(Index
) then
12040 Set_Expressions
(Right
, New_List
(New_Copy
(Index
)));
12043 -- If general operand, convert Last reference to Long_Long_Integer
12045 if Present
(Comp
) then
12046 Right
:= Prepare_64
(Right
);
12049 -- Check for cases to optimize
12051 -- X'Length = 0 => X'First > X'Last
12052 -- X'Length < 1 => X'First > X'Last
12053 -- X'Length < n => X'First + (n - 1) > X'Last
12055 if (Is_Zero
and then Op
= N_Op_Eq
)
12056 or else (not Is_Zero
and then Op
= N_Op_Lt
)
12061 Right_Opnd
=> Right
);
12063 -- X'Length = 1 => X'First = X'Last
12064 -- X'Length = n => X'First + (n - 1) = X'Last
12066 elsif not Is_Zero
and then Op
= N_Op_Eq
then
12070 Right_Opnd
=> Right
);
12072 -- X'Length /= 0 => X'First <= X'Last
12073 -- X'Length > 0 => X'First <= X'Last
12075 elsif Is_Zero
and (Op
= N_Op_Ne
or else Op
= N_Op_Gt
) then
12079 Right_Opnd
=> Right
);
12081 -- X'Length /= 1 => X'First /= X'Last
12082 -- X'Length /= n => X'First + (n - 1) /= X'Last
12084 elsif not Is_Zero
and then Op
= N_Op_Ne
then
12088 Right_Opnd
=> Right
);
12090 -- X'Length >= 1 => X'First <= X'Last
12091 -- X'Length >= n => X'First + (n - 1) <= X'Last
12093 elsif not Is_Zero
and then Op
= N_Op_Ge
then
12097 Right_Opnd
=> Right
);
12099 -- X'Length > 1 => X'First < X'Last
12100 -- X'Length > n => X'First + (n = 1) < X'Last
12102 elsif not Is_Zero
and then Op
= N_Op_Gt
then
12106 Right_Opnd
=> Right
);
12108 -- X'Length <= 1 => X'First >= X'Last
12109 -- X'Length <= n => X'First + (n - 1) >= X'Last
12111 elsif not Is_Zero
and then Op
= N_Op_Le
then
12115 Right_Opnd
=> Right
);
12117 -- Should not happen at this stage
12120 raise Program_Error
;
12123 -- Rewrite and finish up
12125 Rewrite
(N
, Result
);
12126 Analyze_And_Resolve
(N
, Typ
);
12128 end Optimize_Length_Comparison
;
12130 ------------------------------
12131 -- Process_Transient_Object --
12132 ------------------------------
12134 procedure Process_Transient_Object
12136 Rel_Node
: Node_Id
)
12138 Hook_Context
: Node_Id
;
12139 -- Node on which to insert the hook pointer (as an action)
12141 Finalization_Context
: Node_Id
;
12142 -- Node after which to insert finalization actions
12144 Finalize_Always
: Boolean;
12145 -- If False, call to finalizer includes a test of whether the
12146 -- hook pointer is null.
12148 procedure Find_Enclosing_Contexts
(N
: Node_Id
);
12149 -- Find the logical context where N appears, and initializae
12150 -- Hook_Context and Finalization_Context accordingly. Also
12151 -- sets Finalize_Always.
12153 -----------------------------
12154 -- Find_Enclosing_Contexts --
12155 -----------------------------
12157 procedure Find_Enclosing_Contexts
(N
: Node_Id
) is
12161 Wrapped_Node
: Node_Id
;
12162 -- Note: if we are in a transient scope, we want to reuse it as
12163 -- the context for actions insertion, if possible. But if N is itself
12164 -- part of the stored actions for the current transient scope,
12165 -- then we need to insert at the appropriate (inner) location in
12166 -- the not as an action on Node_To_Be_Wrapped.
12168 In_Cond_Expr
: constant Boolean := Within_Case_Or_If_Expression
(N
);
12171 -- When the node is inside a case/if expression, the lifetime of any
12172 -- temporary controlled object is extended. Find a suitable insertion
12173 -- node by locating the topmost case or if expressions.
12175 if In_Cond_Expr
then
12178 while Present
(Par
) loop
12179 if Nkind_In
(Original_Node
(Par
), N_Case_Expression
,
12184 -- Prevent the search from going too far
12186 elsif Is_Body_Or_Package_Declaration
(Par
) then
12190 Par
:= Parent
(Par
);
12193 -- The topmost case or if expression is now recovered, but it may
12194 -- still not be the correct place to add generated code. Climb to
12195 -- find a parent that is part of a declarative or statement list.
12198 while Present
(Par
) loop
12199 if Is_List_Member
(Par
)
12200 and then not Nkind_In
(Par
, N_Component_Association
,
12201 N_Discriminant_Association
,
12202 N_Parameter_Association
,
12203 N_Pragma_Argument_Association
)
12205 Hook_Context
:= Par
;
12206 goto Hook_Context_Found
;
12208 -- Prevent the search from going too far
12210 elsif Is_Body_Or_Package_Declaration
(Par
) then
12214 Par
:= Parent
(Par
);
12217 Hook_Context
:= Par
;
12218 goto Hook_Context_Found
;
12222 while Present
(Par
) loop
12224 -- Keep climbing past various operators
12226 if Nkind
(Parent
(Par
)) in N_Op
12227 or else Nkind_In
(Parent
(Par
), N_And_Then
, N_Or_Else
)
12229 Par
:= Parent
(Par
);
12237 -- The node may be located in a pragma in which case return the
12240 -- pragma Precondition (... and then Ctrl_Func_Call ...);
12242 -- Similar case occurs when the node is related to an object
12243 -- declaration or assignment:
12245 -- Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...;
12247 -- Another case to consider is when the node is part of a return
12250 -- return ... and then Ctrl_Func_Call ...;
12252 -- Another case is when the node acts as a formal in a procedure
12255 -- Proc (... and then Ctrl_Func_Call ...);
12257 if Scope_Is_Transient
then
12258 Wrapped_Node
:= Node_To_Be_Wrapped
;
12260 Wrapped_Node
:= Empty
;
12263 while Present
(Par
) loop
12264 if Par
= Wrapped_Node
12266 Nkind_In
(Par
, N_Assignment_Statement
,
12267 N_Object_Declaration
,
12269 N_Procedure_Call_Statement
,
12270 N_Simple_Return_Statement
)
12272 Hook_Context
:= Par
;
12273 goto Hook_Context_Found
;
12275 -- Prevent the search from going too far
12277 elsif Is_Body_Or_Package_Declaration
(Par
) then
12281 Par
:= Parent
(Par
);
12284 -- Return the topmost short circuit operator
12286 Hook_Context
:= Top
;
12289 <<Hook_Context_Found
>>
12291 -- Special case for Boolean EWAs: capture expression in a temporary,
12292 -- whose declaration will serve as the context around which to insert
12293 -- finalization code. The finalization thus remains local to the
12294 -- specific condition being evaluated.
12296 if Is_Boolean_Type
(Etype
(N
)) then
12298 -- In this case, the finalization context is chosen so that
12299 -- we know at finalization point that the hook pointer is
12300 -- never null, so no need for a test, we can call the finalizer
12301 -- unconditionally, except in the case where the object is
12302 -- created in a specific branch of a conditional expression.
12307 Nkind_In
(Original_Node
(N
), N_Case_Expression
,
12311 Loc
: constant Source_Ptr
:= Sloc
(N
);
12312 Temp
: constant Entity_Id
:= Make_Temporary
(Loc
, 'E', N
);
12314 Append_To
(Actions
(N
),
12315 Make_Object_Declaration
(Loc
,
12316 Defining_Identifier
=> Temp
,
12317 Constant_Present
=> True,
12318 Object_Definition
=>
12319 New_Occurrence_Of
(Etype
(N
), Loc
),
12320 Expression
=> Expression
(N
)));
12321 Finalization_Context
:= Last
(Actions
(N
));
12323 Analyze
(Last
(Actions
(N
)));
12325 Set_Expression
(N
, New_Occurrence_Of
(Temp
, Loc
));
12326 Analyze
(Expression
(N
));
12330 Finalize_Always
:= False;
12331 Finalization_Context
:= Hook_Context
;
12333 end Find_Enclosing_Contexts
;
12337 Loc
: constant Source_Ptr
:= Sloc
(Decl
);
12338 Obj_Id
: constant Entity_Id
:= Defining_Identifier
(Decl
);
12339 Obj_Typ
: constant Node_Id
:= Etype
(Obj_Id
);
12340 Desig_Typ
: Entity_Id
;
12342 Fin_Stmts
: List_Id
;
12343 Ptr_Id
: Entity_Id
;
12344 Temp_Id
: Entity_Id
;
12346 -- Start of processing for Process_Transient_Object
12349 Find_Enclosing_Contexts
(Rel_Node
);
12351 -- Step 1: Create the access type which provides a reference to the
12352 -- transient controlled object.
12354 if Is_Access_Type
(Obj_Typ
) then
12355 Desig_Typ
:= Directly_Designated_Type
(Obj_Typ
);
12357 Desig_Typ
:= Obj_Typ
;
12360 Desig_Typ
:= Base_Type
(Desig_Typ
);
12363 -- Ann : access [all] <Desig_Typ>;
12365 Ptr_Id
:= Make_Temporary
(Loc
, 'A');
12367 Insert_Action
(Hook_Context
,
12368 Make_Full_Type_Declaration
(Loc
,
12369 Defining_Identifier
=> Ptr_Id
,
12371 Make_Access_To_Object_Definition
(Loc
,
12372 All_Present
=> Ekind
(Obj_Typ
) = E_General_Access_Type
,
12373 Subtype_Indication
=> New_Reference_To
(Desig_Typ
, Loc
))));
12375 -- Step 2: Create a temporary which acts as a hook to the transient
12376 -- controlled object. Generate:
12378 -- Temp : Ptr_Id := null;
12380 Temp_Id
:= Make_Temporary
(Loc
, 'T');
12382 Insert_Action
(Hook_Context
,
12383 Make_Object_Declaration
(Loc
,
12384 Defining_Identifier
=> Temp_Id
,
12385 Object_Definition
=> New_Reference_To
(Ptr_Id
, Loc
)));
12387 -- Mark the temporary as created for the purposes of exporting the
12388 -- transient controlled object out of the expression_with_action or if
12389 -- expression. This signals the machinery in Build_Finalizer to treat
12390 -- this case specially.
12392 Set_Status_Flag_Or_Transient_Decl
(Temp_Id
, Decl
);
12394 -- Step 3: Hook the transient object to the temporary
12396 -- This must be inserted right after the object declaration, so that
12397 -- the assignment is executed if, and only if, the object is actually
12398 -- created (whereas the declaration of the hook pointer, and the
12399 -- finalization call, may be inserted at an outer level, and may
12400 -- remain unused for some executions, if the actual creation of
12401 -- the object is conditional).
12403 -- The use of unchecked conversion / unrestricted access is needed to
12404 -- avoid an accessibility violation. Note that the finalization code is
12405 -- structured in such a way that the "hook" is processed only when it
12406 -- points to an existing object.
12408 if Is_Access_Type
(Obj_Typ
) then
12409 Expr
:= Unchecked_Convert_To
(Ptr_Id
, New_Reference_To
(Obj_Id
, Loc
));
12412 Make_Attribute_Reference
(Loc
,
12413 Prefix
=> New_Reference_To
(Obj_Id
, Loc
),
12414 Attribute_Name
=> Name_Unrestricted_Access
);
12418 -- Temp := Ptr_Id (Obj_Id);
12420 -- Temp := Obj_Id'Unrestricted_Access;
12422 Insert_After_And_Analyze
(Decl
,
12423 Make_Assignment_Statement
(Loc
,
12424 Name
=> New_Reference_To
(Temp_Id
, Loc
),
12425 Expression
=> Expr
));
12427 -- Step 4: Finalize the transient controlled object after the context
12428 -- has been evaluated/elaborated. Generate:
12430 -- if Temp /= null then
12431 -- [Deep_]Finalize (Temp.all);
12435 -- When the node is part of a return statement, there is no need to
12436 -- insert a finalization call, as the general finalization mechanism
12437 -- (see Build_Finalizer) would take care of the transient controlled
12438 -- object on subprogram exit. Note that it would also be impossible to
12439 -- insert the finalization code after the return statement as this will
12440 -- render it unreachable.
12442 if Nkind
(Finalization_Context
) /= N_Simple_Return_Statement
then
12443 Fin_Stmts
:= New_List
(
12446 Make_Explicit_Dereference
(Loc
,
12447 Prefix
=> New_Reference_To
(Temp_Id
, Loc
)),
12450 Make_Assignment_Statement
(Loc
,
12451 Name
=> New_Reference_To
(Temp_Id
, Loc
),
12452 Expression
=> Make_Null
(Loc
)));
12454 if not Finalize_Always
then
12455 Fin_Stmts
:= New_List
(
12456 Make_Implicit_If_Statement
(Decl
,
12459 Left_Opnd
=> New_Reference_To
(Temp_Id
, Loc
),
12460 Right_Opnd
=> Make_Null
(Loc
)),
12461 Then_Statements
=> Fin_Stmts
));
12464 Insert_Actions_After
(Finalization_Context
, Fin_Stmts
);
12466 end Process_Transient_Object
;
12468 ------------------------
12469 -- Rewrite_Comparison --
12470 ------------------------
12472 procedure Rewrite_Comparison
(N
: Node_Id
) is
12473 Warning_Generated
: Boolean := False;
12474 -- Set to True if first pass with Assume_Valid generates a warning in
12475 -- which case we skip the second pass to avoid warning overloaded.
12478 -- Set to Standard_True or Standard_False
12481 if Nkind
(N
) = N_Type_Conversion
then
12482 Rewrite_Comparison
(Expression
(N
));
12485 elsif Nkind
(N
) not in N_Op_Compare
then
12489 -- Now start looking at the comparison in detail. We potentially go
12490 -- through this loop twice. The first time, Assume_Valid is set False
12491 -- in the call to Compile_Time_Compare. If this call results in a
12492 -- clear result of always True or Always False, that's decisive and
12493 -- we are done. Otherwise we repeat the processing with Assume_Valid
12494 -- set to True to generate additional warnings. We can skip that step
12495 -- if Constant_Condition_Warnings is False.
12497 for AV
in False .. True loop
12499 Typ
: constant Entity_Id
:= Etype
(N
);
12500 Op1
: constant Node_Id
:= Left_Opnd
(N
);
12501 Op2
: constant Node_Id
:= Right_Opnd
(N
);
12503 Res
: constant Compare_Result
:=
12504 Compile_Time_Compare
(Op1
, Op2
, Assume_Valid
=> AV
);
12505 -- Res indicates if compare outcome can be compile time determined
12507 True_Result
: Boolean;
12508 False_Result
: Boolean;
12511 case N_Op_Compare
(Nkind
(N
)) is
12513 True_Result
:= Res
= EQ
;
12514 False_Result
:= Res
= LT
or else Res
= GT
or else Res
= NE
;
12517 True_Result
:= Res
in Compare_GE
;
12518 False_Result
:= Res
= LT
;
12521 and then Constant_Condition_Warnings
12522 and then Comes_From_Source
(Original_Node
(N
))
12523 and then Nkind
(Original_Node
(N
)) = N_Op_Ge
12524 and then not In_Instance
12525 and then Is_Integer_Type
(Etype
(Left_Opnd
(N
)))
12526 and then not Has_Warnings_Off
(Etype
(Left_Opnd
(N
)))
12529 ("can never be greater than, could replace by ""'=""?c?",
12531 Warning_Generated
:= True;
12535 True_Result
:= Res
= GT
;
12536 False_Result
:= Res
in Compare_LE
;
12539 True_Result
:= Res
= LT
;
12540 False_Result
:= Res
in Compare_GE
;
12543 True_Result
:= Res
in Compare_LE
;
12544 False_Result
:= Res
= GT
;
12547 and then Constant_Condition_Warnings
12548 and then Comes_From_Source
(Original_Node
(N
))
12549 and then Nkind
(Original_Node
(N
)) = N_Op_Le
12550 and then not In_Instance
12551 and then Is_Integer_Type
(Etype
(Left_Opnd
(N
)))
12552 and then not Has_Warnings_Off
(Etype
(Left_Opnd
(N
)))
12555 ("can never be less than, could replace by ""'=""?c?", N
);
12556 Warning_Generated
:= True;
12560 True_Result
:= Res
= NE
or else Res
= GT
or else Res
= LT
;
12561 False_Result
:= Res
= EQ
;
12564 -- If this is the first iteration, then we actually convert the
12565 -- comparison into True or False, if the result is certain.
12568 if True_Result
or False_Result
then
12569 Result
:= Boolean_Literals
(True_Result
);
12572 New_Occurrence_Of
(Result
, Sloc
(N
))));
12573 Analyze_And_Resolve
(N
, Typ
);
12574 Warn_On_Known_Condition
(N
);
12578 -- If this is the second iteration (AV = True), and the original
12579 -- node comes from source and we are not in an instance, then give
12580 -- a warning if we know result would be True or False. Note: we
12581 -- know Constant_Condition_Warnings is set if we get here.
12583 elsif Comes_From_Source
(Original_Node
(N
))
12584 and then not In_Instance
12586 if True_Result
then
12588 ("condition can only be False if invalid values present??",
12590 elsif False_Result
then
12592 ("condition can only be True if invalid values present??",
12598 -- Skip second iteration if not warning on constant conditions or
12599 -- if the first iteration already generated a warning of some kind or
12600 -- if we are in any case assuming all values are valid (so that the
12601 -- first iteration took care of the valid case).
12603 exit when not Constant_Condition_Warnings
;
12604 exit when Warning_Generated
;
12605 exit when Assume_No_Invalid_Values
;
12607 end Rewrite_Comparison
;
12609 ----------------------------
12610 -- Safe_In_Place_Array_Op --
12611 ----------------------------
12613 function Safe_In_Place_Array_Op
12616 Op2
: Node_Id
) return Boolean
12618 Target
: Entity_Id
;
12620 function Is_Safe_Operand
(Op
: Node_Id
) return Boolean;
12621 -- Operand is safe if it cannot overlap part of the target of the
12622 -- operation. If the operand and the target are identical, the operand
12623 -- is safe. The operand can be empty in the case of negation.
12625 function Is_Unaliased
(N
: Node_Id
) return Boolean;
12626 -- Check that N is a stand-alone entity
12632 function Is_Unaliased
(N
: Node_Id
) return Boolean is
12636 and then No
(Address_Clause
(Entity
(N
)))
12637 and then No
(Renamed_Object
(Entity
(N
)));
12640 ---------------------
12641 -- Is_Safe_Operand --
12642 ---------------------
12644 function Is_Safe_Operand
(Op
: Node_Id
) return Boolean is
12649 elsif Is_Entity_Name
(Op
) then
12650 return Is_Unaliased
(Op
);
12652 elsif Nkind_In
(Op
, N_Indexed_Component
, N_Selected_Component
) then
12653 return Is_Unaliased
(Prefix
(Op
));
12655 elsif Nkind
(Op
) = N_Slice
then
12657 Is_Unaliased
(Prefix
(Op
))
12658 and then Entity
(Prefix
(Op
)) /= Target
;
12660 elsif Nkind
(Op
) = N_Op_Not
then
12661 return Is_Safe_Operand
(Right_Opnd
(Op
));
12666 end Is_Safe_Operand
;
12668 -- Start of processing for Safe_In_Place_Array_Op
12671 -- Skip this processing if the component size is different from system
12672 -- storage unit (since at least for NOT this would cause problems).
12674 if Component_Size
(Etype
(Lhs
)) /= System_Storage_Unit
then
12677 -- Cannot do in place stuff on VM_Target since cannot pass addresses
12679 elsif VM_Target
/= No_VM
then
12682 -- Cannot do in place stuff if non-standard Boolean representation
12684 elsif Has_Non_Standard_Rep
(Component_Type
(Etype
(Lhs
))) then
12687 elsif not Is_Unaliased
(Lhs
) then
12691 Target
:= Entity
(Lhs
);
12692 return Is_Safe_Operand
(Op1
) and then Is_Safe_Operand
(Op2
);
12694 end Safe_In_Place_Array_Op
;
12696 -----------------------
12697 -- Tagged_Membership --
12698 -----------------------
12700 -- There are two different cases to consider depending on whether the right
12701 -- operand is a class-wide type or not. If not we just compare the actual
12702 -- tag of the left expr to the target type tag:
12704 -- Left_Expr.Tag = Right_Type'Tag;
12706 -- If it is a class-wide type we use the RT function CW_Membership which is
12707 -- usually implemented by looking in the ancestor tables contained in the
12708 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
12710 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
12711 -- function IW_Membership which is usually implemented by looking in the
12712 -- table of abstract interface types plus the ancestor table contained in
12713 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
12715 procedure Tagged_Membership
12717 SCIL_Node
: out Node_Id
;
12718 Result
: out Node_Id
)
12720 Left
: constant Node_Id
:= Left_Opnd
(N
);
12721 Right
: constant Node_Id
:= Right_Opnd
(N
);
12722 Loc
: constant Source_Ptr
:= Sloc
(N
);
12724 Full_R_Typ
: Entity_Id
;
12725 Left_Type
: Entity_Id
;
12726 New_Node
: Node_Id
;
12727 Right_Type
: Entity_Id
;
12731 SCIL_Node
:= Empty
;
12733 -- Handle entities from the limited view
12735 Left_Type
:= Available_View
(Etype
(Left
));
12736 Right_Type
:= Available_View
(Etype
(Right
));
12738 -- In the case where the type is an access type, the test is applied
12739 -- using the designated types (needed in Ada 2012 for implicit anonymous
12740 -- access conversions, for AI05-0149).
12742 if Is_Access_Type
(Right_Type
) then
12743 Left_Type
:= Designated_Type
(Left_Type
);
12744 Right_Type
:= Designated_Type
(Right_Type
);
12747 if Is_Class_Wide_Type
(Left_Type
) then
12748 Left_Type
:= Root_Type
(Left_Type
);
12751 if Is_Class_Wide_Type
(Right_Type
) then
12752 Full_R_Typ
:= Underlying_Type
(Root_Type
(Right_Type
));
12754 Full_R_Typ
:= Underlying_Type
(Right_Type
);
12758 Make_Selected_Component
(Loc
,
12759 Prefix
=> Relocate_Node
(Left
),
12761 New_Reference_To
(First_Tag_Component
(Left_Type
), Loc
));
12763 if Is_Class_Wide_Type
(Right_Type
) then
12765 -- No need to issue a run-time check if we statically know that the
12766 -- result of this membership test is always true. For example,
12767 -- considering the following declarations:
12769 -- type Iface is interface;
12770 -- type T is tagged null record;
12771 -- type DT is new T and Iface with null record;
12776 -- These membership tests are always true:
12779 -- Obj2 in T'Class;
12780 -- Obj2 in Iface'Class;
12782 -- We do not need to handle cases where the membership is illegal.
12785 -- Obj1 in DT'Class; -- Compile time error
12786 -- Obj1 in Iface'Class; -- Compile time error
12788 if not Is_Class_Wide_Type
(Left_Type
)
12789 and then (Is_Ancestor
(Etype
(Right_Type
), Left_Type
,
12790 Use_Full_View
=> True)
12791 or else (Is_Interface
(Etype
(Right_Type
))
12792 and then Interface_Present_In_Ancestor
12794 Iface
=> Etype
(Right_Type
))))
12796 Result
:= New_Reference_To
(Standard_True
, Loc
);
12800 -- Ada 2005 (AI-251): Class-wide applied to interfaces
12802 if Is_Interface
(Etype
(Class_Wide_Type
(Right_Type
)))
12804 -- Support to: "Iface_CW_Typ in Typ'Class"
12806 or else Is_Interface
(Left_Type
)
12808 -- Issue error if IW_Membership operation not available in a
12809 -- configurable run time setting.
12811 if not RTE_Available
(RE_IW_Membership
) then
12813 ("dynamic membership test on interface types", N
);
12819 Make_Function_Call
(Loc
,
12820 Name
=> New_Occurrence_Of
(RTE
(RE_IW_Membership
), Loc
),
12821 Parameter_Associations
=> New_List
(
12822 Make_Attribute_Reference
(Loc
,
12824 Attribute_Name
=> Name_Address
),
12826 Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))),
12829 -- Ada 95: Normal case
12832 Build_CW_Membership
(Loc
,
12833 Obj_Tag_Node
=> Obj_Tag
,
12836 Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))), Loc
),
12838 New_Node
=> New_Node
);
12840 -- Generate the SCIL node for this class-wide membership test.
12841 -- Done here because the previous call to Build_CW_Membership
12842 -- relocates Obj_Tag.
12844 if Generate_SCIL
then
12845 SCIL_Node
:= Make_SCIL_Membership_Test
(Sloc
(N
));
12846 Set_SCIL_Entity
(SCIL_Node
, Etype
(Right_Type
));
12847 Set_SCIL_Tag_Value
(SCIL_Node
, Obj_Tag
);
12850 Result
:= New_Node
;
12853 -- Right_Type is not a class-wide type
12856 -- No need to check the tag of the object if Right_Typ is abstract
12858 if Is_Abstract_Type
(Right_Type
) then
12859 Result
:= New_Reference_To
(Standard_False
, Loc
);
12864 Left_Opnd
=> Obj_Tag
,
12867 (Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))), Loc
));
12870 end Tagged_Membership
;
12872 ------------------------------
12873 -- Unary_Op_Validity_Checks --
12874 ------------------------------
12876 procedure Unary_Op_Validity_Checks
(N
: Node_Id
) is
12878 if Validity_Checks_On
and Validity_Check_Operands
then
12879 Ensure_Valid
(Right_Opnd
(N
));
12881 end Unary_Op_Validity_Checks
;