Daily bump.
[official-gcc.git] / gcc / haifa-sched.c
blobe899746c9a68b880cc146f34a24a2e9db03dc8cb
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Instruction scheduling pass. This file, along with sched-deps.c,
23 contains the generic parts. The actual entry point for
24 the normal instruction scheduling pass is found in sched-rgn.c.
26 We compute insn priorities based on data dependencies. Flow
27 analysis only creates a fraction of the data-dependencies we must
28 observe: namely, only those dependencies which the combiner can be
29 expected to use. For this pass, we must therefore create the
30 remaining dependencies we need to observe: register dependencies,
31 memory dependencies, dependencies to keep function calls in order,
32 and the dependence between a conditional branch and the setting of
33 condition codes are all dealt with here.
35 The scheduler first traverses the data flow graph, starting with
36 the last instruction, and proceeding to the first, assigning values
37 to insn_priority as it goes. This sorts the instructions
38 topologically by data dependence.
40 Once priorities have been established, we order the insns using
41 list scheduling. This works as follows: starting with a list of
42 all the ready insns, and sorted according to priority number, we
43 schedule the insn from the end of the list by placing its
44 predecessors in the list according to their priority order. We
45 consider this insn scheduled by setting the pointer to the "end" of
46 the list to point to the previous insn. When an insn has no
47 predecessors, we either queue it until sufficient time has elapsed
48 or add it to the ready list. As the instructions are scheduled or
49 when stalls are introduced, the queue advances and dumps insns into
50 the ready list. When all insns down to the lowest priority have
51 been scheduled, the critical path of the basic block has been made
52 as short as possible. The remaining insns are then scheduled in
53 remaining slots.
55 The following list shows the order in which we want to break ties
56 among insns in the ready list:
58 1. choose insn with the longest path to end of bb, ties
59 broken by
60 2. choose insn with least contribution to register pressure,
61 ties broken by
62 3. prefer in-block upon interblock motion, ties broken by
63 4. prefer useful upon speculative motion, ties broken by
64 5. choose insn with largest control flow probability, ties
65 broken by
66 6. choose insn with the least dependences upon the previously
67 scheduled insn, or finally
68 7 choose the insn which has the most insns dependent on it.
69 8. choose insn with lowest UID.
71 Memory references complicate matters. Only if we can be certain
72 that memory references are not part of the data dependency graph
73 (via true, anti, or output dependence), can we move operations past
74 memory references. To first approximation, reads can be done
75 independently, while writes introduce dependencies. Better
76 approximations will yield fewer dependencies.
78 Before reload, an extended analysis of interblock data dependences
79 is required for interblock scheduling. This is performed in
80 compute_block_dependences ().
82 Dependencies set up by memory references are treated in exactly the
83 same way as other dependencies, by using insn backward dependences
84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
85 INSN_FORW_DEPS for the purpose of forward list scheduling.
87 Having optimized the critical path, we may have also unduly
88 extended the lifetimes of some registers. If an operation requires
89 that constants be loaded into registers, it is certainly desirable
90 to load those constants as early as necessary, but no earlier.
91 I.e., it will not do to load up a bunch of registers at the
92 beginning of a basic block only to use them at the end, if they
93 could be loaded later, since this may result in excessive register
94 utilization.
96 Note that since branches are never in basic blocks, but only end
97 basic blocks, this pass will not move branches. But that is ok,
98 since we can use GNU's delayed branch scheduling pass to take care
99 of this case.
101 Also note that no further optimizations based on algebraic
102 identities are performed, so this pass would be a good one to
103 perform instruction splitting, such as breaking up a multiply
104 instruction into shifts and adds where that is profitable.
106 Given the memory aliasing analysis that this pass should perform,
107 it should be possible to remove redundant stores to memory, and to
108 load values from registers instead of hitting memory.
110 Before reload, speculative insns are moved only if a 'proof' exists
111 that no exception will be caused by this, and if no live registers
112 exist that inhibit the motion (live registers constraints are not
113 represented by data dependence edges).
115 This pass must update information that subsequent passes expect to
116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
119 The information in the line number notes is carefully retained by
120 this pass. Notes that refer to the starting and ending of
121 exception regions are also carefully retained by this pass. All
122 other NOTE insns are grouped in their same relative order at the
123 beginning of basic blocks and regions that have been scheduled. */
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "tm.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "regs.h"
134 #include "hashtab.h"
135 #include "hash-set.h"
136 #include "vec.h"
137 #include "machmode.h"
138 #include "input.h"
139 #include "function.h"
140 #include "flags.h"
141 #include "insn-config.h"
142 #include "insn-attr.h"
143 #include "except.h"
144 #include "recog.h"
145 #include "dominance.h"
146 #include "cfg.h"
147 #include "cfgrtl.h"
148 #include "cfgbuild.h"
149 #include "predict.h"
150 #include "basic-block.h"
151 #include "sched-int.h"
152 #include "target.h"
153 #include "common/common-target.h"
154 #include "params.h"
155 #include "dbgcnt.h"
156 #include "cfgloop.h"
157 #include "ira.h"
158 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
159 #include "hash-table.h"
160 #include "dumpfile.h"
162 #ifdef INSN_SCHEDULING
164 /* True if we do register pressure relief through live-range
165 shrinkage. */
166 static bool live_range_shrinkage_p;
168 /* Switch on live range shrinkage. */
169 void
170 initialize_live_range_shrinkage (void)
172 live_range_shrinkage_p = true;
175 /* Switch off live range shrinkage. */
176 void
177 finish_live_range_shrinkage (void)
179 live_range_shrinkage_p = false;
182 /* issue_rate is the number of insns that can be scheduled in the same
183 machine cycle. It can be defined in the config/mach/mach.h file,
184 otherwise we set it to 1. */
186 int issue_rate;
188 /* This can be set to true by a backend if the scheduler should not
189 enable a DCE pass. */
190 bool sched_no_dce;
192 /* The current initiation interval used when modulo scheduling. */
193 static int modulo_ii;
195 /* The maximum number of stages we are prepared to handle. */
196 static int modulo_max_stages;
198 /* The number of insns that exist in each iteration of the loop. We use this
199 to detect when we've scheduled all insns from the first iteration. */
200 static int modulo_n_insns;
202 /* The current count of insns in the first iteration of the loop that have
203 already been scheduled. */
204 static int modulo_insns_scheduled;
206 /* The maximum uid of insns from the first iteration of the loop. */
207 static int modulo_iter0_max_uid;
209 /* The number of times we should attempt to backtrack when modulo scheduling.
210 Decreased each time we have to backtrack. */
211 static int modulo_backtracks_left;
213 /* The stage in which the last insn from the original loop was
214 scheduled. */
215 static int modulo_last_stage;
217 /* sched-verbose controls the amount of debugging output the
218 scheduler prints. It is controlled by -fsched-verbose=N:
219 N>0 and no -DSR : the output is directed to stderr.
220 N>=10 will direct the printouts to stderr (regardless of -dSR).
221 N=1: same as -dSR.
222 N=2: bb's probabilities, detailed ready list info, unit/insn info.
223 N=3: rtl at abort point, control-flow, regions info.
224 N=5: dependences info. */
226 int sched_verbose = 0;
228 /* Debugging file. All printouts are sent to dump, which is always set,
229 either to stderr, or to the dump listing file (-dRS). */
230 FILE *sched_dump = 0;
232 /* This is a placeholder for the scheduler parameters common
233 to all schedulers. */
234 struct common_sched_info_def *common_sched_info;
236 #define INSN_TICK(INSN) (HID (INSN)->tick)
237 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
238 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
239 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
240 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
241 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
242 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
243 /* Cached cost of the instruction. Use insn_cost to get cost of the
244 insn. -1 here means that the field is not initialized. */
245 #define INSN_COST(INSN) (HID (INSN)->cost)
247 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
248 then it should be recalculated from scratch. */
249 #define INVALID_TICK (-(max_insn_queue_index + 1))
250 /* The minimal value of the INSN_TICK of an instruction. */
251 #define MIN_TICK (-max_insn_queue_index)
253 /* Original order of insns in the ready list.
254 Used to keep order of normal insns while separating DEBUG_INSNs. */
255 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
257 /* The deciding reason for INSN's place in the ready list. */
258 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
260 /* List of important notes we must keep around. This is a pointer to the
261 last element in the list. */
262 rtx_insn *note_list;
264 static struct spec_info_def spec_info_var;
265 /* Description of the speculative part of the scheduling.
266 If NULL - no speculation. */
267 spec_info_t spec_info = NULL;
269 /* True, if recovery block was added during scheduling of current block.
270 Used to determine, if we need to fix INSN_TICKs. */
271 static bool haifa_recovery_bb_recently_added_p;
273 /* True, if recovery block was added during this scheduling pass.
274 Used to determine if we should have empty memory pools of dependencies
275 after finishing current region. */
276 bool haifa_recovery_bb_ever_added_p;
278 /* Counters of different types of speculative instructions. */
279 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
281 /* Array used in {unlink, restore}_bb_notes. */
282 static rtx_insn **bb_header = 0;
284 /* Basic block after which recovery blocks will be created. */
285 static basic_block before_recovery;
287 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
288 created it. */
289 basic_block after_recovery;
291 /* FALSE if we add bb to another region, so we don't need to initialize it. */
292 bool adding_bb_to_current_region_p = true;
294 /* Queues, etc. */
296 /* An instruction is ready to be scheduled when all insns preceding it
297 have already been scheduled. It is important to ensure that all
298 insns which use its result will not be executed until its result
299 has been computed. An insn is maintained in one of four structures:
301 (P) the "Pending" set of insns which cannot be scheduled until
302 their dependencies have been satisfied.
303 (Q) the "Queued" set of insns that can be scheduled when sufficient
304 time has passed.
305 (R) the "Ready" list of unscheduled, uncommitted insns.
306 (S) the "Scheduled" list of insns.
308 Initially, all insns are either "Pending" or "Ready" depending on
309 whether their dependencies are satisfied.
311 Insns move from the "Ready" list to the "Scheduled" list as they
312 are committed to the schedule. As this occurs, the insns in the
313 "Pending" list have their dependencies satisfied and move to either
314 the "Ready" list or the "Queued" set depending on whether
315 sufficient time has passed to make them ready. As time passes,
316 insns move from the "Queued" set to the "Ready" list.
318 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
319 unscheduled insns, i.e., those that are ready, queued, and pending.
320 The "Queued" set (Q) is implemented by the variable `insn_queue'.
321 The "Ready" list (R) is implemented by the variables `ready' and
322 `n_ready'.
323 The "Scheduled" list (S) is the new insn chain built by this pass.
325 The transition (R->S) is implemented in the scheduling loop in
326 `schedule_block' when the best insn to schedule is chosen.
327 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
328 insns move from the ready list to the scheduled list.
329 The transition (Q->R) is implemented in 'queue_to_insn' as time
330 passes or stalls are introduced. */
332 /* Implement a circular buffer to delay instructions until sufficient
333 time has passed. For the new pipeline description interface,
334 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
335 than maximal time of instruction execution computed by genattr.c on
336 the base maximal time of functional unit reservations and getting a
337 result. This is the longest time an insn may be queued. */
339 static rtx_insn_list **insn_queue;
340 static int q_ptr = 0;
341 static int q_size = 0;
342 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
343 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
345 #define QUEUE_SCHEDULED (-3)
346 #define QUEUE_NOWHERE (-2)
347 #define QUEUE_READY (-1)
348 /* QUEUE_SCHEDULED - INSN is scheduled.
349 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
350 queue or ready list.
351 QUEUE_READY - INSN is in ready list.
352 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
354 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
356 /* The following variable value refers for all current and future
357 reservations of the processor units. */
358 state_t curr_state;
360 /* The following variable value is size of memory representing all
361 current and future reservations of the processor units. */
362 size_t dfa_state_size;
364 /* The following array is used to find the best insn from ready when
365 the automaton pipeline interface is used. */
366 signed char *ready_try = NULL;
368 /* The ready list. */
369 struct ready_list ready = {NULL, 0, 0, 0, 0};
371 /* The pointer to the ready list (to be removed). */
372 static struct ready_list *readyp = &ready;
374 /* Scheduling clock. */
375 static int clock_var;
377 /* Clock at which the previous instruction was issued. */
378 static int last_clock_var;
380 /* Set to true if, when queuing a shadow insn, we discover that it would be
381 scheduled too late. */
382 static bool must_backtrack;
384 /* The following variable value is number of essential insns issued on
385 the current cycle. An insn is essential one if it changes the
386 processors state. */
387 int cycle_issued_insns;
389 /* This records the actual schedule. It is built up during the main phase
390 of schedule_block, and afterwards used to reorder the insns in the RTL. */
391 static vec<rtx_insn *> scheduled_insns;
393 static int may_trap_exp (const_rtx, int);
395 /* Nonzero iff the address is comprised from at most 1 register. */
396 #define CONST_BASED_ADDRESS_P(x) \
397 (REG_P (x) \
398 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
399 || (GET_CODE (x) == LO_SUM)) \
400 && (CONSTANT_P (XEXP (x, 0)) \
401 || CONSTANT_P (XEXP (x, 1)))))
403 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
404 as found by analyzing insn's expression. */
407 static int haifa_luid_for_non_insn (rtx x);
409 /* Haifa version of sched_info hooks common to all headers. */
410 const struct common_sched_info_def haifa_common_sched_info =
412 NULL, /* fix_recovery_cfg */
413 NULL, /* add_block */
414 NULL, /* estimate_number_of_insns */
415 haifa_luid_for_non_insn, /* luid_for_non_insn */
416 SCHED_PASS_UNKNOWN /* sched_pass_id */
419 /* Mapping from instruction UID to its Logical UID. */
420 vec<int> sched_luids = vNULL;
422 /* Next LUID to assign to an instruction. */
423 int sched_max_luid = 1;
425 /* Haifa Instruction Data. */
426 vec<haifa_insn_data_def> h_i_d = vNULL;
428 void (* sched_init_only_bb) (basic_block, basic_block);
430 /* Split block function. Different schedulers might use different functions
431 to handle their internal data consistent. */
432 basic_block (* sched_split_block) (basic_block, rtx);
434 /* Create empty basic block after the specified block. */
435 basic_block (* sched_create_empty_bb) (basic_block);
437 /* Return the number of cycles until INSN is expected to be ready.
438 Return zero if it already is. */
439 static int
440 insn_delay (rtx_insn *insn)
442 return MAX (INSN_TICK (insn) - clock_var, 0);
445 static int
446 may_trap_exp (const_rtx x, int is_store)
448 enum rtx_code code;
450 if (x == 0)
451 return TRAP_FREE;
452 code = GET_CODE (x);
453 if (is_store)
455 if (code == MEM && may_trap_p (x))
456 return TRAP_RISKY;
457 else
458 return TRAP_FREE;
460 if (code == MEM)
462 /* The insn uses memory: a volatile load. */
463 if (MEM_VOLATILE_P (x))
464 return IRISKY;
465 /* An exception-free load. */
466 if (!may_trap_p (x))
467 return IFREE;
468 /* A load with 1 base register, to be further checked. */
469 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
470 return PFREE_CANDIDATE;
471 /* No info on the load, to be further checked. */
472 return PRISKY_CANDIDATE;
474 else
476 const char *fmt;
477 int i, insn_class = TRAP_FREE;
479 /* Neither store nor load, check if it may cause a trap. */
480 if (may_trap_p (x))
481 return TRAP_RISKY;
482 /* Recursive step: walk the insn... */
483 fmt = GET_RTX_FORMAT (code);
484 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
486 if (fmt[i] == 'e')
488 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
489 insn_class = WORST_CLASS (insn_class, tmp_class);
491 else if (fmt[i] == 'E')
493 int j;
494 for (j = 0; j < XVECLEN (x, i); j++)
496 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
497 insn_class = WORST_CLASS (insn_class, tmp_class);
498 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
499 break;
502 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
503 break;
505 return insn_class;
509 /* Classifies rtx X of an insn for the purpose of verifying that X can be
510 executed speculatively (and consequently the insn can be moved
511 speculatively), by examining X, returning:
512 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
513 TRAP_FREE: non-load insn.
514 IFREE: load from a globally safe location.
515 IRISKY: volatile load.
516 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
517 being either PFREE or PRISKY. */
519 static int
520 haifa_classify_rtx (const_rtx x)
522 int tmp_class = TRAP_FREE;
523 int insn_class = TRAP_FREE;
524 enum rtx_code code;
526 if (GET_CODE (x) == PARALLEL)
528 int i, len = XVECLEN (x, 0);
530 for (i = len - 1; i >= 0; i--)
532 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
533 insn_class = WORST_CLASS (insn_class, tmp_class);
534 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
535 break;
538 else
540 code = GET_CODE (x);
541 switch (code)
543 case CLOBBER:
544 /* Test if it is a 'store'. */
545 tmp_class = may_trap_exp (XEXP (x, 0), 1);
546 break;
547 case SET:
548 /* Test if it is a store. */
549 tmp_class = may_trap_exp (SET_DEST (x), 1);
550 if (tmp_class == TRAP_RISKY)
551 break;
552 /* Test if it is a load. */
553 tmp_class =
554 WORST_CLASS (tmp_class,
555 may_trap_exp (SET_SRC (x), 0));
556 break;
557 case COND_EXEC:
558 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
559 if (tmp_class == TRAP_RISKY)
560 break;
561 tmp_class = WORST_CLASS (tmp_class,
562 may_trap_exp (COND_EXEC_TEST (x), 0));
563 break;
564 case TRAP_IF:
565 tmp_class = TRAP_RISKY;
566 break;
567 default:;
569 insn_class = tmp_class;
572 return insn_class;
576 haifa_classify_insn (const_rtx insn)
578 return haifa_classify_rtx (PATTERN (insn));
581 /* After the scheduler initialization function has been called, this function
582 can be called to enable modulo scheduling. II is the initiation interval
583 we should use, it affects the delays for delay_pairs that were recorded as
584 separated by a given number of stages.
586 MAX_STAGES provides us with a limit
587 after which we give up scheduling; the caller must have unrolled at least
588 as many copies of the loop body and recorded delay_pairs for them.
590 INSNS is the number of real (non-debug) insns in one iteration of
591 the loop. MAX_UID can be used to test whether an insn belongs to
592 the first iteration of the loop; all of them have a uid lower than
593 MAX_UID. */
594 void
595 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
597 modulo_ii = ii;
598 modulo_max_stages = max_stages;
599 modulo_n_insns = insns;
600 modulo_iter0_max_uid = max_uid;
601 modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
604 /* A structure to record a pair of insns where the first one is a real
605 insn that has delay slots, and the second is its delayed shadow.
606 I1 is scheduled normally and will emit an assembly instruction,
607 while I2 describes the side effect that takes place at the
608 transition between cycles CYCLES and (CYCLES + 1) after I1. */
609 struct delay_pair
611 struct delay_pair *next_same_i1;
612 rtx_insn *i1, *i2;
613 int cycles;
614 /* When doing modulo scheduling, we a delay_pair can also be used to
615 show that I1 and I2 are the same insn in a different stage. If that
616 is the case, STAGES will be nonzero. */
617 int stages;
620 /* Helpers for delay hashing. */
622 struct delay_i1_hasher : typed_noop_remove <delay_pair>
624 typedef delay_pair *value_type;
625 typedef void *compare_type;
626 static inline hashval_t hash (const delay_pair *);
627 static inline bool equal (const delay_pair *, const void *);
630 /* Returns a hash value for X, based on hashing just I1. */
632 inline hashval_t
633 delay_i1_hasher::hash (const delay_pair *x)
635 return htab_hash_pointer (x->i1);
638 /* Return true if I1 of pair X is the same as that of pair Y. */
640 inline bool
641 delay_i1_hasher::equal (const delay_pair *x, const void *y)
643 return x->i1 == y;
646 struct delay_i2_hasher : typed_free_remove <delay_pair>
648 typedef delay_pair *value_type;
649 typedef void *compare_type;
650 static inline hashval_t hash (const delay_pair *);
651 static inline bool equal (const delay_pair *, const void *);
654 /* Returns a hash value for X, based on hashing just I2. */
656 inline hashval_t
657 delay_i2_hasher::hash (const delay_pair *x)
659 return htab_hash_pointer (x->i2);
662 /* Return true if I2 of pair X is the same as that of pair Y. */
664 inline bool
665 delay_i2_hasher::equal (const delay_pair *x, const void *y)
667 return x->i2 == y;
670 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
671 indexed by I2. */
672 static hash_table<delay_i1_hasher> *delay_htab;
673 static hash_table<delay_i2_hasher> *delay_htab_i2;
675 /* Called through htab_traverse. Walk the hashtable using I2 as
676 index, and delete all elements involving an UID higher than
677 that pointed to by *DATA. */
679 haifa_htab_i2_traverse (delay_pair **slot, int *data)
681 int maxuid = *data;
682 struct delay_pair *p = *slot;
683 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
685 delay_htab_i2->clear_slot (slot);
687 return 1;
690 /* Called through htab_traverse. Walk the hashtable using I2 as
691 index, and delete all elements involving an UID higher than
692 that pointed to by *DATA. */
694 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
696 int maxuid = *data;
697 struct delay_pair *p, *first, **pprev;
699 if (INSN_UID ((*pslot)->i1) >= maxuid)
701 delay_htab->clear_slot (pslot);
702 return 1;
704 pprev = &first;
705 for (p = *pslot; p; p = p->next_same_i1)
707 if (INSN_UID (p->i2) < maxuid)
709 *pprev = p;
710 pprev = &p->next_same_i1;
713 *pprev = NULL;
714 if (first == NULL)
715 delay_htab->clear_slot (pslot);
716 else
717 *pslot = first;
718 return 1;
721 /* Discard all delay pairs which involve an insn with an UID higher
722 than MAX_UID. */
723 void
724 discard_delay_pairs_above (int max_uid)
726 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
727 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
730 /* This function can be called by a port just before it starts the final
731 scheduling pass. It records the fact that an instruction with delay
732 slots has been split into two insns, I1 and I2. The first one will be
733 scheduled normally and initiates the operation. The second one is a
734 shadow which must follow a specific number of cycles after I1; its only
735 purpose is to show the side effect that occurs at that cycle in the RTL.
736 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
737 while I2 retains the original insn type.
739 There are two ways in which the number of cycles can be specified,
740 involving the CYCLES and STAGES arguments to this function. If STAGES
741 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor
742 which is multiplied by MODULO_II to give the number of cycles. This is
743 only useful if the caller also calls set_modulo_params to enable modulo
744 scheduling. */
746 void
747 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
749 struct delay_pair *p = XNEW (struct delay_pair);
750 struct delay_pair **slot;
752 p->i1 = i1;
753 p->i2 = i2;
754 p->cycles = cycles;
755 p->stages = stages;
757 if (!delay_htab)
759 delay_htab = new hash_table<delay_i1_hasher> (10);
760 delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
762 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
763 p->next_same_i1 = *slot;
764 *slot = p;
765 slot = delay_htab_i2->find_slot (p, INSERT);
766 *slot = p;
769 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
770 and return the other insn if so. Return NULL otherwise. */
771 rtx_insn *
772 real_insn_for_shadow (rtx_insn *insn)
774 struct delay_pair *pair;
776 if (!delay_htab)
777 return NULL;
779 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
780 if (!pair || pair->stages > 0)
781 return NULL;
782 return pair->i1;
785 /* For a pair P of insns, return the fixed distance in cycles from the first
786 insn after which the second must be scheduled. */
787 static int
788 pair_delay (struct delay_pair *p)
790 if (p->stages == 0)
791 return p->cycles;
792 else
793 return p->stages * modulo_ii;
796 /* Given an insn INSN, add a dependence on its delayed shadow if it
797 has one. Also try to find situations where shadows depend on each other
798 and add dependencies to the real insns to limit the amount of backtracking
799 needed. */
800 void
801 add_delay_dependencies (rtx_insn *insn)
803 struct delay_pair *pair;
804 sd_iterator_def sd_it;
805 dep_t dep;
807 if (!delay_htab)
808 return;
810 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
811 if (!pair)
812 return;
813 add_dependence (insn, pair->i1, REG_DEP_ANTI);
814 if (pair->stages)
815 return;
817 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
819 rtx_insn *pro = DEP_PRO (dep);
820 struct delay_pair *other_pair
821 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
822 if (!other_pair || other_pair->stages)
823 continue;
824 if (pair_delay (other_pair) >= pair_delay (pair))
826 if (sched_verbose >= 4)
828 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
829 INSN_UID (other_pair->i1),
830 INSN_UID (pair->i1));
831 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
832 INSN_UID (pair->i1),
833 INSN_UID (pair->i2),
834 pair_delay (pair));
835 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
836 INSN_UID (other_pair->i1),
837 INSN_UID (other_pair->i2),
838 pair_delay (other_pair));
840 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
845 /* Forward declarations. */
847 static int priority (rtx_insn *);
848 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
849 static int rank_for_schedule (const void *, const void *);
850 static void swap_sort (rtx_insn **, int);
851 static void queue_insn (rtx_insn *, int, const char *);
852 static int schedule_insn (rtx_insn *);
853 static void adjust_priority (rtx_insn *);
854 static void advance_one_cycle (void);
855 static void extend_h_i_d (void);
858 /* Notes handling mechanism:
859 =========================
860 Generally, NOTES are saved before scheduling and restored after scheduling.
861 The scheduler distinguishes between two types of notes:
863 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
864 Before scheduling a region, a pointer to the note is added to the insn
865 that follows or precedes it. (This happens as part of the data dependence
866 computation). After scheduling an insn, the pointer contained in it is
867 used for regenerating the corresponding note (in reemit_notes).
869 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
870 these notes are put in a list (in rm_other_notes() and
871 unlink_other_notes ()). After scheduling the block, these notes are
872 inserted at the beginning of the block (in schedule_block()). */
874 static void ready_add (struct ready_list *, rtx_insn *, bool);
875 static rtx_insn *ready_remove_first (struct ready_list *);
876 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
878 static void queue_to_ready (struct ready_list *);
879 static int early_queue_to_ready (state_t, struct ready_list *);
881 /* The following functions are used to implement multi-pass scheduling
882 on the first cycle. */
883 static rtx_insn *ready_remove (struct ready_list *, int);
884 static void ready_remove_insn (rtx_insn *);
886 static void fix_inter_tick (rtx_insn *, rtx_insn *);
887 static int fix_tick_ready (rtx_insn *);
888 static void change_queue_index (rtx_insn *, int);
890 /* The following functions are used to implement scheduling of data/control
891 speculative instructions. */
893 static void extend_h_i_d (void);
894 static void init_h_i_d (rtx_insn *);
895 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
896 static void generate_recovery_code (rtx_insn *);
897 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
898 static void begin_speculative_block (rtx_insn *);
899 static void add_to_speculative_block (rtx_insn *);
900 static void init_before_recovery (basic_block *);
901 static void create_check_block_twin (rtx_insn *, bool);
902 static void fix_recovery_deps (basic_block);
903 static bool haifa_change_pattern (rtx_insn *, rtx);
904 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
905 static void restore_bb_notes (basic_block);
906 static void fix_jump_move (rtx_insn *);
907 static void move_block_after_check (rtx_insn *);
908 static void move_succs (vec<edge, va_gc> **, basic_block);
909 static void sched_remove_insn (rtx_insn *);
910 static void clear_priorities (rtx_insn *, rtx_vec_t *);
911 static void calc_priorities (rtx_vec_t);
912 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
914 #endif /* INSN_SCHEDULING */
916 /* Point to state used for the current scheduling pass. */
917 struct haifa_sched_info *current_sched_info;
919 #ifndef INSN_SCHEDULING
920 void
921 schedule_insns (void)
924 #else
926 /* Do register pressure sensitive insn scheduling if the flag is set
927 up. */
928 enum sched_pressure_algorithm sched_pressure;
930 /* Map regno -> its pressure class. The map defined only when
931 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */
932 enum reg_class *sched_regno_pressure_class;
934 /* The current register pressure. Only elements corresponding pressure
935 classes are defined. */
936 static int curr_reg_pressure[N_REG_CLASSES];
938 /* Saved value of the previous array. */
939 static int saved_reg_pressure[N_REG_CLASSES];
941 /* Register living at given scheduling point. */
942 static bitmap curr_reg_live;
944 /* Saved value of the previous array. */
945 static bitmap saved_reg_live;
947 /* Registers mentioned in the current region. */
948 static bitmap region_ref_regs;
950 /* Effective number of available registers of a given class (see comment
951 in sched_pressure_start_bb). */
952 static int sched_class_regs_num[N_REG_CLASSES];
953 /* Number of call_used_regs. This is a helper for calculating of
954 sched_class_regs_num. */
955 static int call_used_regs_num[N_REG_CLASSES];
957 /* Initiate register pressure relative info for scheduling the current
958 region. Currently it is only clearing register mentioned in the
959 current region. */
960 void
961 sched_init_region_reg_pressure_info (void)
963 bitmap_clear (region_ref_regs);
966 /* PRESSURE[CL] describes the pressure on register class CL. Update it
967 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
968 LIVE tracks the set of live registers; if it is null, assume that
969 every birth or death is genuine. */
970 static inline void
971 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
973 enum reg_class pressure_class;
975 pressure_class = sched_regno_pressure_class[regno];
976 if (regno >= FIRST_PSEUDO_REGISTER)
978 if (pressure_class != NO_REGS)
980 if (birth_p)
982 if (!live || bitmap_set_bit (live, regno))
983 pressure[pressure_class]
984 += (ira_reg_class_max_nregs
985 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
987 else
989 if (!live || bitmap_clear_bit (live, regno))
990 pressure[pressure_class]
991 -= (ira_reg_class_max_nregs
992 [pressure_class][PSEUDO_REGNO_MODE (regno)]);
996 else if (pressure_class != NO_REGS
997 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
999 if (birth_p)
1001 if (!live || bitmap_set_bit (live, regno))
1002 pressure[pressure_class]++;
1004 else
1006 if (!live || bitmap_clear_bit (live, regno))
1007 pressure[pressure_class]--;
1012 /* Initiate current register pressure related info from living
1013 registers given by LIVE. */
1014 static void
1015 initiate_reg_pressure_info (bitmap live)
1017 int i;
1018 unsigned int j;
1019 bitmap_iterator bi;
1021 for (i = 0; i < ira_pressure_classes_num; i++)
1022 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1023 bitmap_clear (curr_reg_live);
1024 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1025 if (sched_pressure == SCHED_PRESSURE_MODEL
1026 || current_nr_blocks == 1
1027 || bitmap_bit_p (region_ref_regs, j))
1028 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1031 /* Mark registers in X as mentioned in the current region. */
1032 static void
1033 setup_ref_regs (rtx x)
1035 int i, j, regno;
1036 const RTX_CODE code = GET_CODE (x);
1037 const char *fmt;
1039 if (REG_P (x))
1041 regno = REGNO (x);
1042 if (HARD_REGISTER_NUM_P (regno))
1043 bitmap_set_range (region_ref_regs, regno,
1044 hard_regno_nregs[regno][GET_MODE (x)]);
1045 else
1046 bitmap_set_bit (region_ref_regs, REGNO (x));
1047 return;
1049 fmt = GET_RTX_FORMAT (code);
1050 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1051 if (fmt[i] == 'e')
1052 setup_ref_regs (XEXP (x, i));
1053 else if (fmt[i] == 'E')
1055 for (j = 0; j < XVECLEN (x, i); j++)
1056 setup_ref_regs (XVECEXP (x, i, j));
1060 /* Initiate current register pressure related info at the start of
1061 basic block BB. */
1062 static void
1063 initiate_bb_reg_pressure_info (basic_block bb)
1065 unsigned int i ATTRIBUTE_UNUSED;
1066 rtx_insn *insn;
1068 if (current_nr_blocks > 1)
1069 FOR_BB_INSNS (bb, insn)
1070 if (NONDEBUG_INSN_P (insn))
1071 setup_ref_regs (PATTERN (insn));
1072 initiate_reg_pressure_info (df_get_live_in (bb));
1073 if (bb_has_eh_pred (bb))
1074 for (i = 0; ; ++i)
1076 unsigned int regno = EH_RETURN_DATA_REGNO (i);
1078 if (regno == INVALID_REGNUM)
1079 break;
1080 if (! bitmap_bit_p (df_get_live_in (bb), regno))
1081 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1082 regno, true);
1086 /* Save current register pressure related info. */
1087 static void
1088 save_reg_pressure (void)
1090 int i;
1092 for (i = 0; i < ira_pressure_classes_num; i++)
1093 saved_reg_pressure[ira_pressure_classes[i]]
1094 = curr_reg_pressure[ira_pressure_classes[i]];
1095 bitmap_copy (saved_reg_live, curr_reg_live);
1098 /* Restore saved register pressure related info. */
1099 static void
1100 restore_reg_pressure (void)
1102 int i;
1104 for (i = 0; i < ira_pressure_classes_num; i++)
1105 curr_reg_pressure[ira_pressure_classes[i]]
1106 = saved_reg_pressure[ira_pressure_classes[i]];
1107 bitmap_copy (curr_reg_live, saved_reg_live);
1110 /* Return TRUE if the register is dying after its USE. */
1111 static bool
1112 dying_use_p (struct reg_use_data *use)
1114 struct reg_use_data *next;
1116 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1117 if (NONDEBUG_INSN_P (next->insn)
1118 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1119 return false;
1120 return true;
1123 /* Print info about the current register pressure and its excess for
1124 each pressure class. */
1125 static void
1126 print_curr_reg_pressure (void)
1128 int i;
1129 enum reg_class cl;
1131 fprintf (sched_dump, ";;\t");
1132 for (i = 0; i < ira_pressure_classes_num; i++)
1134 cl = ira_pressure_classes[i];
1135 gcc_assert (curr_reg_pressure[cl] >= 0);
1136 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
1137 curr_reg_pressure[cl],
1138 curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1140 fprintf (sched_dump, "\n");
1143 /* Determine if INSN has a condition that is clobbered if a register
1144 in SET_REGS is modified. */
1145 static bool
1146 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1148 rtx pat = PATTERN (insn);
1149 gcc_assert (GET_CODE (pat) == COND_EXEC);
1150 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1152 sd_iterator_def sd_it;
1153 dep_t dep;
1154 haifa_change_pattern (insn, ORIG_PAT (insn));
1155 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1156 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1157 TODO_SPEC (insn) = HARD_DEP;
1158 if (sched_verbose >= 2)
1159 fprintf (sched_dump,
1160 ";;\t\tdequeue insn %s because of clobbered condition\n",
1161 (*current_sched_info->print_insn) (insn, 0));
1162 return true;
1165 return false;
1168 /* This function should be called after modifying the pattern of INSN,
1169 to update scheduler data structures as needed. */
1170 static void
1171 update_insn_after_change (rtx_insn *insn)
1173 sd_iterator_def sd_it;
1174 dep_t dep;
1176 dfa_clear_single_insn_cache (insn);
1178 sd_it = sd_iterator_start (insn,
1179 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1180 while (sd_iterator_cond (&sd_it, &dep))
1182 DEP_COST (dep) = UNKNOWN_DEP_COST;
1183 sd_iterator_next (&sd_it);
1186 /* Invalidate INSN_COST, so it'll be recalculated. */
1187 INSN_COST (insn) = -1;
1188 /* Invalidate INSN_TICK, so it'll be recalculated. */
1189 INSN_TICK (insn) = INVALID_TICK;
1191 /* Invalidate autoprefetch data entry. */
1192 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1193 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1194 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1195 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1199 /* Two VECs, one to hold dependencies for which pattern replacements
1200 need to be applied or restored at the start of the next cycle, and
1201 another to hold an integer that is either one, to apply the
1202 corresponding replacement, or zero to restore it. */
1203 static vec<dep_t> next_cycle_replace_deps;
1204 static vec<int> next_cycle_apply;
1206 static void apply_replacement (dep_t, bool);
1207 static void restore_pattern (dep_t, bool);
1209 /* Look at the remaining dependencies for insn NEXT, and compute and return
1210 the TODO_SPEC value we should use for it. This is called after one of
1211 NEXT's dependencies has been resolved.
1212 We also perform pattern replacements for predication, and for broken
1213 replacement dependencies. The latter is only done if FOR_BACKTRACK is
1214 false. */
1216 static ds_t
1217 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1219 ds_t new_ds;
1220 sd_iterator_def sd_it;
1221 dep_t dep, modify_dep = NULL;
1222 int n_spec = 0;
1223 int n_control = 0;
1224 int n_replace = 0;
1225 bool first_p = true;
1227 if (sd_lists_empty_p (next, SD_LIST_BACK))
1228 /* NEXT has all its dependencies resolved. */
1229 return 0;
1231 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1232 return HARD_DEP;
1234 /* If NEXT is intended to sit adjacent to this instruction, we don't
1235 want to try to break any dependencies. Treat it as a HARD_DEP. */
1236 if (SCHED_GROUP_P (next))
1237 return HARD_DEP;
1239 /* Now we've got NEXT with speculative deps only.
1240 1. Look at the deps to see what we have to do.
1241 2. Check if we can do 'todo'. */
1242 new_ds = 0;
1244 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1246 rtx_insn *pro = DEP_PRO (dep);
1247 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1249 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1250 continue;
1252 if (ds)
1254 n_spec++;
1255 if (first_p)
1257 first_p = false;
1259 new_ds = ds;
1261 else
1262 new_ds = ds_merge (new_ds, ds);
1264 else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1266 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1268 n_control++;
1269 modify_dep = dep;
1271 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1273 else if (DEP_REPLACE (dep) != NULL)
1275 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1277 n_replace++;
1278 modify_dep = dep;
1280 DEP_STATUS (dep) &= ~DEP_CANCELLED;
1284 if (n_replace > 0 && n_control == 0 && n_spec == 0)
1286 if (!dbg_cnt (sched_breakdep))
1287 return HARD_DEP;
1288 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1290 struct dep_replacement *desc = DEP_REPLACE (dep);
1291 if (desc != NULL)
1293 if (desc->insn == next && !for_backtrack)
1295 gcc_assert (n_replace == 1);
1296 apply_replacement (dep, true);
1298 DEP_STATUS (dep) |= DEP_CANCELLED;
1301 return 0;
1304 else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1306 rtx_insn *pro, *other;
1307 rtx new_pat;
1308 rtx cond = NULL_RTX;
1309 bool success;
1310 rtx_insn *prev = NULL;
1311 int i;
1312 unsigned regno;
1314 if ((current_sched_info->flags & DO_PREDICATION) == 0
1315 || (ORIG_PAT (next) != NULL_RTX
1316 && PREDICATED_PAT (next) == NULL_RTX))
1317 return HARD_DEP;
1319 pro = DEP_PRO (modify_dep);
1320 other = real_insn_for_shadow (pro);
1321 if (other != NULL_RTX)
1322 pro = other;
1324 cond = sched_get_reverse_condition_uncached (pro);
1325 regno = REGNO (XEXP (cond, 0));
1327 /* Find the last scheduled insn that modifies the condition register.
1328 We can stop looking once we find the insn we depend on through the
1329 REG_DEP_CONTROL; if the condition register isn't modified after it,
1330 we know that it still has the right value. */
1331 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1332 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1334 HARD_REG_SET t;
1336 find_all_hard_reg_sets (prev, &t, true);
1337 if (TEST_HARD_REG_BIT (t, regno))
1338 return HARD_DEP;
1339 if (prev == pro)
1340 break;
1342 if (ORIG_PAT (next) == NULL_RTX)
1344 ORIG_PAT (next) = PATTERN (next);
1346 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1347 success = haifa_change_pattern (next, new_pat);
1348 if (!success)
1349 return HARD_DEP;
1350 PREDICATED_PAT (next) = new_pat;
1352 else if (PATTERN (next) != PREDICATED_PAT (next))
1354 bool success = haifa_change_pattern (next,
1355 PREDICATED_PAT (next));
1356 gcc_assert (success);
1358 DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1359 return DEP_CONTROL;
1362 if (PREDICATED_PAT (next) != NULL_RTX)
1364 int tick = INSN_TICK (next);
1365 bool success = haifa_change_pattern (next,
1366 ORIG_PAT (next));
1367 INSN_TICK (next) = tick;
1368 gcc_assert (success);
1371 /* We can't handle the case where there are both speculative and control
1372 dependencies, so we return HARD_DEP in such a case. Also fail if
1373 we have speculative dependencies with not enough points, or more than
1374 one control dependency. */
1375 if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1376 || (n_spec > 0
1377 /* Too few points? */
1378 && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1379 || n_control > 0
1380 || n_replace > 0)
1381 return HARD_DEP;
1383 return new_ds;
1386 /* Pointer to the last instruction scheduled. */
1387 static rtx_insn *last_scheduled_insn;
1389 /* Pointer to the last nondebug instruction scheduled within the
1390 block, or the prev_head of the scheduling block. Used by
1391 rank_for_schedule, so that insns independent of the last scheduled
1392 insn will be preferred over dependent instructions. */
1393 static rtx_insn *last_nondebug_scheduled_insn;
1395 /* Pointer that iterates through the list of unscheduled insns if we
1396 have a dbg_cnt enabled. It always points at an insn prior to the
1397 first unscheduled one. */
1398 static rtx_insn *nonscheduled_insns_begin;
1400 /* Compute cost of executing INSN.
1401 This is the number of cycles between instruction issue and
1402 instruction results. */
1404 insn_cost (rtx_insn *insn)
1406 int cost;
1408 if (sched_fusion)
1409 return 0;
1411 if (sel_sched_p ())
1413 if (recog_memoized (insn) < 0)
1414 return 0;
1416 cost = insn_default_latency (insn);
1417 if (cost < 0)
1418 cost = 0;
1420 return cost;
1423 cost = INSN_COST (insn);
1425 if (cost < 0)
1427 /* A USE insn, or something else we don't need to
1428 understand. We can't pass these directly to
1429 result_ready_cost or insn_default_latency because it will
1430 trigger a fatal error for unrecognizable insns. */
1431 if (recog_memoized (insn) < 0)
1433 INSN_COST (insn) = 0;
1434 return 0;
1436 else
1438 cost = insn_default_latency (insn);
1439 if (cost < 0)
1440 cost = 0;
1442 INSN_COST (insn) = cost;
1446 return cost;
1449 /* Compute cost of dependence LINK.
1450 This is the number of cycles between instruction issue and
1451 instruction results.
1452 ??? We also use this function to call recog_memoized on all insns. */
1454 dep_cost_1 (dep_t link, dw_t dw)
1456 rtx_insn *insn = DEP_PRO (link);
1457 rtx_insn *used = DEP_CON (link);
1458 int cost;
1460 if (DEP_COST (link) != UNKNOWN_DEP_COST)
1461 return DEP_COST (link);
1463 if (delay_htab)
1465 struct delay_pair *delay_entry;
1466 delay_entry
1467 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1468 if (delay_entry)
1470 if (delay_entry->i1 == insn)
1472 DEP_COST (link) = pair_delay (delay_entry);
1473 return DEP_COST (link);
1478 /* A USE insn should never require the value used to be computed.
1479 This allows the computation of a function's result and parameter
1480 values to overlap the return and call. We don't care about the
1481 dependence cost when only decreasing register pressure. */
1482 if (recog_memoized (used) < 0)
1484 cost = 0;
1485 recog_memoized (insn);
1487 else
1489 enum reg_note dep_type = DEP_TYPE (link);
1491 cost = insn_cost (insn);
1493 if (INSN_CODE (insn) >= 0)
1495 if (dep_type == REG_DEP_ANTI)
1496 cost = 0;
1497 else if (dep_type == REG_DEP_OUTPUT)
1499 cost = (insn_default_latency (insn)
1500 - insn_default_latency (used));
1501 if (cost <= 0)
1502 cost = 1;
1504 else if (bypass_p (insn))
1505 cost = insn_latency (insn, used);
1509 if (targetm.sched.adjust_cost_2)
1510 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1511 dw);
1512 else if (targetm.sched.adjust_cost != NULL)
1514 /* This variable is used for backward compatibility with the
1515 targets. */
1516 rtx_insn_list *dep_cost_rtx_link =
1517 alloc_INSN_LIST (NULL_RTX, NULL);
1519 /* Make it self-cycled, so that if some tries to walk over this
1520 incomplete list he/she will be caught in an endless loop. */
1521 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1523 /* Targets use only REG_NOTE_KIND of the link. */
1524 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1526 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1527 insn, cost);
1529 free_INSN_LIST_node (dep_cost_rtx_link);
1532 if (cost < 0)
1533 cost = 0;
1536 DEP_COST (link) = cost;
1537 return cost;
1540 /* Compute cost of dependence LINK.
1541 This is the number of cycles between instruction issue and
1542 instruction results. */
1544 dep_cost (dep_t link)
1546 return dep_cost_1 (link, 0);
1549 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1550 INSN_PRIORITY explicitly. */
1551 void
1552 increase_insn_priority (rtx_insn *insn, int amount)
1554 if (!sel_sched_p ())
1556 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
1557 if (INSN_PRIORITY_KNOWN (insn))
1558 INSN_PRIORITY (insn) += amount;
1560 else
1562 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1563 Use EXPR_PRIORITY instead. */
1564 sel_add_to_insn_priority (insn, amount);
1568 /* Return 'true' if DEP should be included in priority calculations. */
1569 static bool
1570 contributes_to_priority_p (dep_t dep)
1572 if (DEBUG_INSN_P (DEP_CON (dep))
1573 || DEBUG_INSN_P (DEP_PRO (dep)))
1574 return false;
1576 /* Critical path is meaningful in block boundaries only. */
1577 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1578 DEP_PRO (dep)))
1579 return false;
1581 if (DEP_REPLACE (dep) != NULL)
1582 return false;
1584 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1585 then speculative instructions will less likely be
1586 scheduled. That is because the priority of
1587 their producers will increase, and, thus, the
1588 producers will more likely be scheduled, thus,
1589 resolving the dependence. */
1590 if (sched_deps_info->generate_spec_deps
1591 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1592 && (DEP_STATUS (dep) & SPECULATIVE))
1593 return false;
1595 return true;
1598 /* Compute the number of nondebug deps in list LIST for INSN. */
1600 static int
1601 dep_list_size (rtx_insn *insn, sd_list_types_def list)
1603 sd_iterator_def sd_it;
1604 dep_t dep;
1605 int dbgcount = 0, nodbgcount = 0;
1607 if (!MAY_HAVE_DEBUG_INSNS)
1608 return sd_lists_size (insn, list);
1610 FOR_EACH_DEP (insn, list, sd_it, dep)
1612 if (DEBUG_INSN_P (DEP_CON (dep)))
1613 dbgcount++;
1614 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1615 nodbgcount++;
1618 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1620 return nodbgcount;
1623 bool sched_fusion;
1625 /* Compute the priority number for INSN. */
1626 static int
1627 priority (rtx_insn *insn)
1629 if (! INSN_P (insn))
1630 return 0;
1632 /* We should not be interested in priority of an already scheduled insn. */
1633 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1635 if (!INSN_PRIORITY_KNOWN (insn))
1637 int this_priority = -1;
1639 if (sched_fusion)
1641 int this_fusion_priority;
1643 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1644 &this_fusion_priority, &this_priority);
1645 INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1647 else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1648 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1649 some forward deps but all of them are ignored by
1650 contributes_to_priority hook. At the moment we set priority of
1651 such insn to 0. */
1652 this_priority = insn_cost (insn);
1653 else
1655 rtx_insn *prev_first, *twin;
1656 basic_block rec;
1658 /* For recovery check instructions we calculate priority slightly
1659 different than that of normal instructions. Instead of walking
1660 through INSN_FORW_DEPS (check) list, we walk through
1661 INSN_FORW_DEPS list of each instruction in the corresponding
1662 recovery block. */
1664 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1665 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1666 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1668 prev_first = PREV_INSN (insn);
1669 twin = insn;
1671 else
1673 prev_first = NEXT_INSN (BB_HEAD (rec));
1674 twin = PREV_INSN (BB_END (rec));
1679 sd_iterator_def sd_it;
1680 dep_t dep;
1682 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1684 rtx_insn *next;
1685 int next_priority;
1687 next = DEP_CON (dep);
1689 if (BLOCK_FOR_INSN (next) != rec)
1691 int cost;
1693 if (!contributes_to_priority_p (dep))
1694 continue;
1696 if (twin == insn)
1697 cost = dep_cost (dep);
1698 else
1700 struct _dep _dep1, *dep1 = &_dep1;
1702 init_dep (dep1, insn, next, REG_DEP_ANTI);
1704 cost = dep_cost (dep1);
1707 next_priority = cost + priority (next);
1709 if (next_priority > this_priority)
1710 this_priority = next_priority;
1714 twin = PREV_INSN (twin);
1716 while (twin != prev_first);
1719 if (this_priority < 0)
1721 gcc_assert (this_priority == -1);
1723 this_priority = insn_cost (insn);
1726 INSN_PRIORITY (insn) = this_priority;
1727 INSN_PRIORITY_STATUS (insn) = 1;
1730 return INSN_PRIORITY (insn);
1733 /* Macros and functions for keeping the priority queue sorted, and
1734 dealing with queuing and dequeuing of instructions. */
1736 /* For each pressure class CL, set DEATH[CL] to the number of registers
1737 in that class that die in INSN. */
1739 static void
1740 calculate_reg_deaths (rtx_insn *insn, int *death)
1742 int i;
1743 struct reg_use_data *use;
1745 for (i = 0; i < ira_pressure_classes_num; i++)
1746 death[ira_pressure_classes[i]] = 0;
1747 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1748 if (dying_use_p (use))
1749 mark_regno_birth_or_death (0, death, use->regno, true);
1752 /* Setup info about the current register pressure impact of scheduling
1753 INSN at the current scheduling point. */
1754 static void
1755 setup_insn_reg_pressure_info (rtx_insn *insn)
1757 int i, change, before, after, hard_regno;
1758 int excess_cost_change;
1759 machine_mode mode;
1760 enum reg_class cl;
1761 struct reg_pressure_data *pressure_info;
1762 int *max_reg_pressure;
1763 static int death[N_REG_CLASSES];
1765 gcc_checking_assert (!DEBUG_INSN_P (insn));
1767 excess_cost_change = 0;
1768 calculate_reg_deaths (insn, death);
1769 pressure_info = INSN_REG_PRESSURE (insn);
1770 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1771 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1772 for (i = 0; i < ira_pressure_classes_num; i++)
1774 cl = ira_pressure_classes[i];
1775 gcc_assert (curr_reg_pressure[cl] >= 0);
1776 change = (int) pressure_info[i].set_increase - death[cl];
1777 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1778 after = MAX (0, max_reg_pressure[i] + change
1779 - sched_class_regs_num[cl]);
1780 hard_regno = ira_class_hard_regs[cl][0];
1781 gcc_assert (hard_regno >= 0);
1782 mode = reg_raw_mode[hard_regno];
1783 excess_cost_change += ((after - before)
1784 * (ira_memory_move_cost[mode][cl][0]
1785 + ira_memory_move_cost[mode][cl][1]));
1787 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1790 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1791 It tries to make the scheduler take register pressure into account
1792 without introducing too many unnecessary stalls. It hooks into the
1793 main scheduling algorithm at several points:
1795 - Before scheduling starts, model_start_schedule constructs a
1796 "model schedule" for the current block. This model schedule is
1797 chosen solely to keep register pressure down. It does not take the
1798 target's pipeline or the original instruction order into account,
1799 except as a tie-breaker. It also doesn't work to a particular
1800 pressure limit.
1802 This model schedule gives us an idea of what pressure can be
1803 achieved for the block and gives us an example of a schedule that
1804 keeps to that pressure. It also makes the final schedule less
1805 dependent on the original instruction order. This is important
1806 because the original order can either be "wide" (many values live
1807 at once, such as in user-scheduled code) or "narrow" (few values
1808 live at once, such as after loop unrolling, where several
1809 iterations are executed sequentially).
1811 We do not apply this model schedule to the rtx stream. We simply
1812 record it in model_schedule. We also compute the maximum pressure,
1813 MP, that was seen during this schedule.
1815 - Instructions are added to the ready queue even if they require
1816 a stall. The length of the stall is instead computed as:
1818 MAX (INSN_TICK (INSN) - clock_var, 0)
1820 (= insn_delay). This allows rank_for_schedule to choose between
1821 introducing a deliberate stall or increasing pressure.
1823 - Before sorting the ready queue, model_set_excess_costs assigns
1824 a pressure-based cost to each ready instruction in the queue.
1825 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1826 (ECC for short) and is effectively measured in cycles.
1828 - rank_for_schedule ranks instructions based on:
1830 ECC (insn) + insn_delay (insn)
1832 then as:
1834 insn_delay (insn)
1836 So, for example, an instruction X1 with an ECC of 1 that can issue
1837 now will win over an instruction X0 with an ECC of zero that would
1838 introduce a stall of one cycle. However, an instruction X2 with an
1839 ECC of 2 that can issue now will lose to both X0 and X1.
1841 - When an instruction is scheduled, model_recompute updates the model
1842 schedule with the new pressures (some of which might now exceed the
1843 original maximum pressure MP). model_update_limit_points then searches
1844 for the new point of maximum pressure, if not already known. */
1846 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1847 from surrounding debug information. */
1848 #define MODEL_BAR \
1849 ";;\t\t+------------------------------------------------------\n"
1851 /* Information about the pressure on a particular register class at a
1852 particular point of the model schedule. */
1853 struct model_pressure_data {
1854 /* The pressure at this point of the model schedule, or -1 if the
1855 point is associated with an instruction that has already been
1856 scheduled. */
1857 int ref_pressure;
1859 /* The maximum pressure during or after this point of the model schedule. */
1860 int max_pressure;
1863 /* Per-instruction information that is used while building the model
1864 schedule. Here, "schedule" refers to the model schedule rather
1865 than the main schedule. */
1866 struct model_insn_info {
1867 /* The instruction itself. */
1868 rtx_insn *insn;
1870 /* If this instruction is in model_worklist, these fields link to the
1871 previous (higher-priority) and next (lower-priority) instructions
1872 in the list. */
1873 struct model_insn_info *prev;
1874 struct model_insn_info *next;
1876 /* While constructing the schedule, QUEUE_INDEX describes whether an
1877 instruction has already been added to the schedule (QUEUE_SCHEDULED),
1878 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1879 old_queue records the value that QUEUE_INDEX had before scheduling
1880 started, so that we can restore it once the schedule is complete. */
1881 int old_queue;
1883 /* The relative importance of an unscheduled instruction. Higher
1884 values indicate greater importance. */
1885 unsigned int model_priority;
1887 /* The length of the longest path of satisfied true dependencies
1888 that leads to this instruction. */
1889 unsigned int depth;
1891 /* The length of the longest path of dependencies of any kind
1892 that leads from this instruction. */
1893 unsigned int alap;
1895 /* The number of predecessor nodes that must still be scheduled. */
1896 int unscheduled_preds;
1899 /* Information about the pressure limit for a particular register class.
1900 This structure is used when applying a model schedule to the main
1901 schedule. */
1902 struct model_pressure_limit {
1903 /* The maximum register pressure seen in the original model schedule. */
1904 int orig_pressure;
1906 /* The maximum register pressure seen in the current model schedule
1907 (which excludes instructions that have already been scheduled). */
1908 int pressure;
1910 /* The point of the current model schedule at which PRESSURE is first
1911 reached. It is set to -1 if the value needs to be recomputed. */
1912 int point;
1915 /* Describes a particular way of measuring register pressure. */
1916 struct model_pressure_group {
1917 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */
1918 struct model_pressure_limit limits[N_REG_CLASSES];
1920 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1921 on register class ira_pressure_classes[PCI] at point POINT of the
1922 current model schedule. A POINT of model_num_insns describes the
1923 pressure at the end of the schedule. */
1924 struct model_pressure_data *model;
1927 /* Index POINT gives the instruction at point POINT of the model schedule.
1928 This array doesn't change during main scheduling. */
1929 static vec<rtx_insn *> model_schedule;
1931 /* The list of instructions in the model worklist, sorted in order of
1932 decreasing priority. */
1933 static struct model_insn_info *model_worklist;
1935 /* Index I describes the instruction with INSN_LUID I. */
1936 static struct model_insn_info *model_insns;
1938 /* The number of instructions in the model schedule. */
1939 static int model_num_insns;
1941 /* The index of the first instruction in model_schedule that hasn't yet been
1942 added to the main schedule, or model_num_insns if all of them have. */
1943 static int model_curr_point;
1945 /* Describes the pressure before each instruction in the model schedule. */
1946 static struct model_pressure_group model_before_pressure;
1948 /* The first unused model_priority value (as used in model_insn_info). */
1949 static unsigned int model_next_priority;
1952 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1953 at point POINT of the model schedule. */
1954 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1955 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1957 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1958 after point POINT of the model schedule. */
1959 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1960 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1962 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1963 of the model schedule. */
1964 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1965 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1967 /* Information about INSN that is used when creating the model schedule. */
1968 #define MODEL_INSN_INFO(INSN) \
1969 (&model_insns[INSN_LUID (INSN)])
1971 /* The instruction at point POINT of the model schedule. */
1972 #define MODEL_INSN(POINT) \
1973 (model_schedule[POINT])
1976 /* Return INSN's index in the model schedule, or model_num_insns if it
1977 doesn't belong to that schedule. */
1979 static int
1980 model_index (rtx_insn *insn)
1982 if (INSN_MODEL_INDEX (insn) == 0)
1983 return model_num_insns;
1984 return INSN_MODEL_INDEX (insn) - 1;
1987 /* Make sure that GROUP->limits is up-to-date for the current point
1988 of the model schedule. */
1990 static void
1991 model_update_limit_points_in_group (struct model_pressure_group *group)
1993 int pci, max_pressure, point;
1995 for (pci = 0; pci < ira_pressure_classes_num; pci++)
1997 /* We may have passed the final point at which the pressure in
1998 group->limits[pci].pressure was reached. Update the limit if so. */
1999 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
2000 group->limits[pci].pressure = max_pressure;
2002 /* Find the point at which MAX_PRESSURE is first reached. We need
2003 to search in three cases:
2005 - We've already moved past the previous pressure point.
2006 In this case we search forward from model_curr_point.
2008 - We scheduled the previous point of maximum pressure ahead of
2009 its position in the model schedule, but doing so didn't bring
2010 the pressure point earlier. In this case we search forward
2011 from that previous pressure point.
2013 - Scheduling an instruction early caused the maximum pressure
2014 to decrease. In this case we will have set the pressure
2015 point to -1, and we search forward from model_curr_point. */
2016 point = MAX (group->limits[pci].point, model_curr_point);
2017 while (point < model_num_insns
2018 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
2019 point++;
2020 group->limits[pci].point = point;
2022 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
2023 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
2027 /* Make sure that all register-pressure limits are up-to-date for the
2028 current position in the model schedule. */
2030 static void
2031 model_update_limit_points (void)
2033 model_update_limit_points_in_group (&model_before_pressure);
2036 /* Return the model_index of the last unscheduled use in chain USE
2037 outside of USE's instruction. Return -1 if there are no other uses,
2038 or model_num_insns if the register is live at the end of the block. */
2040 static int
2041 model_last_use_except (struct reg_use_data *use)
2043 struct reg_use_data *next;
2044 int last, index;
2046 last = -1;
2047 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2048 if (NONDEBUG_INSN_P (next->insn)
2049 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2051 index = model_index (next->insn);
2052 if (index == model_num_insns)
2053 return model_num_insns;
2054 if (last < index)
2055 last = index;
2057 return last;
2060 /* An instruction with model_index POINT has just been scheduled, and it
2061 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2062 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2063 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */
2065 static void
2066 model_start_update_pressure (struct model_pressure_group *group,
2067 int point, int pci, int delta)
2069 int next_max_pressure;
2071 if (point == model_num_insns)
2073 /* The instruction wasn't part of the model schedule; it was moved
2074 from a different block. Update the pressure for the end of
2075 the model schedule. */
2076 MODEL_REF_PRESSURE (group, point, pci) += delta;
2077 MODEL_MAX_PRESSURE (group, point, pci) += delta;
2079 else
2081 /* Record that this instruction has been scheduled. Nothing now
2082 changes between POINT and POINT + 1, so get the maximum pressure
2083 from the latter. If the maximum pressure decreases, the new
2084 pressure point may be before POINT. */
2085 MODEL_REF_PRESSURE (group, point, pci) = -1;
2086 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2087 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2089 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2090 if (group->limits[pci].point == point)
2091 group->limits[pci].point = -1;
2096 /* Record that scheduling a later instruction has changed the pressure
2097 at point POINT of the model schedule by DELTA (which might be 0).
2098 Update GROUP accordingly. Return nonzero if these changes might
2099 trigger changes to previous points as well. */
2101 static int
2102 model_update_pressure (struct model_pressure_group *group,
2103 int point, int pci, int delta)
2105 int ref_pressure, max_pressure, next_max_pressure;
2107 /* If POINT hasn't yet been scheduled, update its pressure. */
2108 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2109 if (ref_pressure >= 0 && delta != 0)
2111 ref_pressure += delta;
2112 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2114 /* Check whether the maximum pressure in the overall schedule
2115 has increased. (This means that the MODEL_MAX_PRESSURE of
2116 every point <= POINT will need to increase too; see below.) */
2117 if (group->limits[pci].pressure < ref_pressure)
2118 group->limits[pci].pressure = ref_pressure;
2120 /* If we are at maximum pressure, and the maximum pressure
2121 point was previously unknown or later than POINT,
2122 bring it forward. */
2123 if (group->limits[pci].pressure == ref_pressure
2124 && !IN_RANGE (group->limits[pci].point, 0, point))
2125 group->limits[pci].point = point;
2127 /* If POINT used to be the point of maximum pressure, but isn't
2128 any longer, we need to recalculate it using a forward walk. */
2129 if (group->limits[pci].pressure > ref_pressure
2130 && group->limits[pci].point == point)
2131 group->limits[pci].point = -1;
2134 /* Update the maximum pressure at POINT. Changes here might also
2135 affect the maximum pressure at POINT - 1. */
2136 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2137 max_pressure = MAX (ref_pressure, next_max_pressure);
2138 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2140 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2141 return 1;
2143 return 0;
2146 /* INSN has just been scheduled. Update the model schedule accordingly. */
2148 static void
2149 model_recompute (rtx_insn *insn)
2151 struct {
2152 int last_use;
2153 int regno;
2154 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2155 struct reg_use_data *use;
2156 struct reg_pressure_data *reg_pressure;
2157 int delta[N_REG_CLASSES];
2158 int pci, point, mix, new_last, cl, ref_pressure, queue;
2159 unsigned int i, num_uses, num_pending_births;
2160 bool print_p;
2162 /* The destinations of INSN were previously live from POINT onwards, but are
2163 now live from model_curr_point onwards. Set up DELTA accordingly. */
2164 point = model_index (insn);
2165 reg_pressure = INSN_REG_PRESSURE (insn);
2166 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2168 cl = ira_pressure_classes[pci];
2169 delta[cl] = reg_pressure[pci].set_increase;
2172 /* Record which registers previously died at POINT, but which now die
2173 before POINT. Adjust DELTA so that it represents the effect of
2174 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of
2175 registers that will be born in the range [model_curr_point, POINT). */
2176 num_uses = 0;
2177 num_pending_births = 0;
2178 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2180 new_last = model_last_use_except (use);
2181 if (new_last < point)
2183 gcc_assert (num_uses < ARRAY_SIZE (uses));
2184 uses[num_uses].last_use = new_last;
2185 uses[num_uses].regno = use->regno;
2186 /* This register is no longer live after POINT - 1. */
2187 mark_regno_birth_or_death (NULL, delta, use->regno, false);
2188 num_uses++;
2189 if (new_last >= 0)
2190 num_pending_births++;
2194 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2195 Also set each group pressure limit for POINT. */
2196 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2198 cl = ira_pressure_classes[pci];
2199 model_start_update_pressure (&model_before_pressure,
2200 point, pci, delta[cl]);
2203 /* Walk the model schedule backwards, starting immediately before POINT. */
2204 print_p = false;
2205 if (point != model_curr_point)
2208 point--;
2209 insn = MODEL_INSN (point);
2210 queue = QUEUE_INDEX (insn);
2212 if (queue != QUEUE_SCHEDULED)
2214 /* DELTA describes the effect of the move on the register pressure
2215 after POINT. Make it describe the effect on the pressure
2216 before POINT. */
2217 i = 0;
2218 while (i < num_uses)
2220 if (uses[i].last_use == point)
2222 /* This register is now live again. */
2223 mark_regno_birth_or_death (NULL, delta,
2224 uses[i].regno, true);
2226 /* Remove this use from the array. */
2227 uses[i] = uses[num_uses - 1];
2228 num_uses--;
2229 num_pending_births--;
2231 else
2232 i++;
2235 if (sched_verbose >= 5)
2237 if (!print_p)
2239 fprintf (sched_dump, MODEL_BAR);
2240 fprintf (sched_dump, ";;\t\t| New pressure for model"
2241 " schedule\n");
2242 fprintf (sched_dump, MODEL_BAR);
2243 print_p = true;
2246 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2247 point, INSN_UID (insn),
2248 str_pattern_slim (PATTERN (insn)));
2249 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2251 cl = ira_pressure_classes[pci];
2252 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2253 point, pci);
2254 fprintf (sched_dump, " %s:[%d->%d]",
2255 reg_class_names[ira_pressure_classes[pci]],
2256 ref_pressure, ref_pressure + delta[cl]);
2258 fprintf (sched_dump, "\n");
2262 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1
2263 might have changed as well. */
2264 mix = num_pending_births;
2265 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2267 cl = ira_pressure_classes[pci];
2268 mix |= delta[cl];
2269 mix |= model_update_pressure (&model_before_pressure,
2270 point, pci, delta[cl]);
2273 while (mix && point > model_curr_point);
2275 if (print_p)
2276 fprintf (sched_dump, MODEL_BAR);
2279 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2280 check whether the insn's pattern needs restoring. */
2281 static bool
2282 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2284 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2285 return false;
2287 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2289 gcc_assert (ORIG_PAT (next) != NULL_RTX);
2290 gcc_assert (next == DEP_CON (dep));
2292 else
2294 struct dep_replacement *desc = DEP_REPLACE (dep);
2295 if (desc->insn != next)
2297 gcc_assert (*desc->loc == desc->orig);
2298 return false;
2301 return true;
2304 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2305 pressure on CL from P to P'. We use this to calculate a "base ECC",
2306 baseECC (CL, X), for each pressure class CL and each instruction X.
2307 Supposing X changes the pressure on CL from P to P', and that the
2308 maximum pressure on CL in the current model schedule is MP', then:
2310 * if X occurs before or at the next point of maximum pressure in
2311 the model schedule and P' > MP', then:
2313 baseECC (CL, X) = model_spill_cost (CL, MP, P')
2315 The idea is that the pressure after scheduling a fixed set of
2316 instructions -- in this case, the set up to and including the
2317 next maximum pressure point -- is going to be the same regardless
2318 of the order; we simply want to keep the intermediate pressure
2319 under control. Thus X has a cost of zero unless scheduling it
2320 now would exceed MP'.
2322 If all increases in the set are by the same amount, no zero-cost
2323 instruction will ever cause the pressure to exceed MP'. However,
2324 if X is instead moved past an instruction X' with pressure in the
2325 range (MP' - (P' - P), MP'), the pressure at X' will increase
2326 beyond MP'. Since baseECC is very much a heuristic anyway,
2327 it doesn't seem worth the overhead of tracking cases like these.
2329 The cost of exceeding MP' is always based on the original maximum
2330 pressure MP. This is so that going 2 registers over the original
2331 limit has the same cost regardless of whether it comes from two
2332 separate +1 deltas or from a single +2 delta.
2334 * if X occurs after the next point of maximum pressure in the model
2335 schedule and P' > P, then:
2337 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2339 That is, if we move X forward across a point of maximum pressure,
2340 and if X increases the pressure by P' - P, then we conservatively
2341 assume that scheduling X next would increase the maximum pressure
2342 by P' - P. Again, the cost of doing this is based on the original
2343 maximum pressure MP, for the same reason as above.
2345 * if P' < P, P > MP, and X occurs at or after the next point of
2346 maximum pressure, then:
2348 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2350 That is, if we have already exceeded the original maximum pressure MP,
2351 and if X might reduce the maximum pressure again -- or at least push
2352 it further back, and thus allow more scheduling freedom -- it is given
2353 a negative cost to reflect the improvement.
2355 * otherwise,
2357 baseECC (CL, X) = 0
2359 In this case, X is not expected to affect the maximum pressure MP',
2360 so it has zero cost.
2362 We then create a combined value baseECC (X) that is the sum of
2363 baseECC (CL, X) for each pressure class CL.
2365 baseECC (X) could itself be used as the ECC value described above.
2366 However, this is often too conservative, in the sense that it
2367 tends to make high-priority instructions that increase pressure
2368 wait too long in cases where introducing a spill would be better.
2369 For this reason the final ECC is a priority-adjusted form of
2370 baseECC (X). Specifically, we calculate:
2372 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2373 baseP = MAX { P (X) | baseECC (X) <= 0 }
2375 Then:
2377 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2379 Thus an instruction's effect on pressure is ignored if it has a high
2380 enough priority relative to the ones that don't increase pressure.
2381 Negative values of baseECC (X) do not increase the priority of X
2382 itself, but they do make it harder for other instructions to
2383 increase the pressure further.
2385 This pressure cost is deliberately timid. The intention has been
2386 to choose a heuristic that rarely interferes with the normal list
2387 scheduler in cases where that scheduler would produce good code.
2388 We simply want to curb some of its worst excesses. */
2390 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2392 Here we use the very simplistic cost model that every register above
2393 sched_class_regs_num[CL] has a spill cost of 1. We could use other
2394 measures instead, such as one based on MEMORY_MOVE_COST. However:
2396 (1) In order for an instruction to be scheduled, the higher cost
2397 would need to be justified in a single saving of that many stalls.
2398 This is overly pessimistic, because the benefit of spilling is
2399 often to avoid a sequence of several short stalls rather than
2400 a single long one.
2402 (2) The cost is still arbitrary. Because we are not allocating
2403 registers during scheduling, we have no way of knowing for
2404 sure how many memory accesses will be required by each spill,
2405 where the spills will be placed within the block, or even
2406 which block(s) will contain the spills.
2408 So a higher cost than 1 is often too conservative in practice,
2409 forcing blocks to contain unnecessary stalls instead of spill code.
2410 The simple cost below seems to be the best compromise. It reduces
2411 the interference with the normal list scheduler, which helps make
2412 it more suitable for a default-on option. */
2414 static int
2415 model_spill_cost (int cl, int from, int to)
2417 from = MAX (from, sched_class_regs_num[cl]);
2418 return MAX (to, from) - from;
2421 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2422 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2423 P' = P + DELTA. */
2425 static int
2426 model_excess_group_cost (struct model_pressure_group *group,
2427 int point, int pci, int delta)
2429 int pressure, cl;
2431 cl = ira_pressure_classes[pci];
2432 if (delta < 0 && point >= group->limits[pci].point)
2434 pressure = MAX (group->limits[pci].orig_pressure,
2435 curr_reg_pressure[cl] + delta);
2436 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2439 if (delta > 0)
2441 if (point > group->limits[pci].point)
2442 pressure = group->limits[pci].pressure + delta;
2443 else
2444 pressure = curr_reg_pressure[cl] + delta;
2446 if (pressure > group->limits[pci].pressure)
2447 return model_spill_cost (cl, group->limits[pci].orig_pressure,
2448 pressure);
2451 return 0;
2454 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump
2455 if PRINT_P. */
2457 static int
2458 model_excess_cost (rtx_insn *insn, bool print_p)
2460 int point, pci, cl, cost, this_cost, delta;
2461 struct reg_pressure_data *insn_reg_pressure;
2462 int insn_death[N_REG_CLASSES];
2464 calculate_reg_deaths (insn, insn_death);
2465 point = model_index (insn);
2466 insn_reg_pressure = INSN_REG_PRESSURE (insn);
2467 cost = 0;
2469 if (print_p)
2470 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2471 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2473 /* Sum up the individual costs for each register class. */
2474 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2476 cl = ira_pressure_classes[pci];
2477 delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2478 this_cost = model_excess_group_cost (&model_before_pressure,
2479 point, pci, delta);
2480 cost += this_cost;
2481 if (print_p)
2482 fprintf (sched_dump, " %s:[%d base cost %d]",
2483 reg_class_names[cl], delta, this_cost);
2486 if (print_p)
2487 fprintf (sched_dump, "\n");
2489 return cost;
2492 /* Dump the next points of maximum pressure for GROUP. */
2494 static void
2495 model_dump_pressure_points (struct model_pressure_group *group)
2497 int pci, cl;
2499 fprintf (sched_dump, ";;\t\t| pressure points");
2500 for (pci = 0; pci < ira_pressure_classes_num; pci++)
2502 cl = ira_pressure_classes[pci];
2503 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2504 curr_reg_pressure[cl], group->limits[pci].pressure);
2505 if (group->limits[pci].point < model_num_insns)
2506 fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2507 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2508 else
2509 fprintf (sched_dump, "end]");
2511 fprintf (sched_dump, "\n");
2514 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */
2516 static void
2517 model_set_excess_costs (rtx_insn **insns, int count)
2519 int i, cost, priority_base, priority;
2520 bool print_p;
2522 /* Record the baseECC value for each instruction in the model schedule,
2523 except that negative costs are converted to zero ones now rather than
2524 later. Do not assign a cost to debug instructions, since they must
2525 not change code-generation decisions. Experiments suggest we also
2526 get better results by not assigning a cost to instructions from
2527 a different block.
2529 Set PRIORITY_BASE to baseP in the block comment above. This is the
2530 maximum priority of the "cheap" instructions, which should always
2531 include the next model instruction. */
2532 priority_base = 0;
2533 print_p = false;
2534 for (i = 0; i < count; i++)
2535 if (INSN_MODEL_INDEX (insns[i]))
2537 if (sched_verbose >= 6 && !print_p)
2539 fprintf (sched_dump, MODEL_BAR);
2540 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2541 model_dump_pressure_points (&model_before_pressure);
2542 fprintf (sched_dump, MODEL_BAR);
2543 print_p = true;
2545 cost = model_excess_cost (insns[i], print_p);
2546 if (cost <= 0)
2548 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2549 priority_base = MAX (priority_base, priority);
2550 cost = 0;
2552 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2554 if (print_p)
2555 fprintf (sched_dump, MODEL_BAR);
2557 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2558 instruction. */
2559 for (i = 0; i < count; i++)
2561 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2562 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2563 if (cost > 0 && priority > priority_base)
2565 cost += priority_base - priority;
2566 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2572 /* Enum of rank_for_schedule heuristic decisions. */
2573 enum rfs_decision {
2574 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2575 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2576 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2577 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2578 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2580 /* Corresponding strings for print outs. */
2581 static const char *rfs_str[RFS_N] = {
2582 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2583 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2584 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2585 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2586 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2588 /* Statistical breakdown of rank_for_schedule decisions. */
2589 typedef struct { unsigned stats[RFS_N]; } rank_for_schedule_stats_t;
2590 static rank_for_schedule_stats_t rank_for_schedule_stats;
2592 /* Return the result of comparing insns TMP and TMP2 and update
2593 Rank_For_Schedule statistics. */
2594 static int
2595 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2597 ++rank_for_schedule_stats.stats[decision];
2598 if (result < 0)
2599 INSN_LAST_RFS_WIN (tmp) = decision;
2600 else if (result > 0)
2601 INSN_LAST_RFS_WIN (tmp2) = decision;
2602 else
2603 gcc_unreachable ();
2604 return result;
2607 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2608 keeping normal insns in original order. */
2610 static int
2611 rank_for_schedule_debug (const void *x, const void *y)
2613 rtx_insn *tmp = *(rtx_insn * const *) y;
2614 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2616 /* Schedule debug insns as early as possible. */
2617 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2618 return -1;
2619 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2620 return 1;
2621 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2622 return INSN_LUID (tmp) - INSN_LUID (tmp2);
2623 else
2624 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2627 /* Returns a positive value if x is preferred; returns a negative value if
2628 y is preferred. Should never return 0, since that will make the sort
2629 unstable. */
2631 static int
2632 rank_for_schedule (const void *x, const void *y)
2634 rtx_insn *tmp = *(rtx_insn * const *) y;
2635 rtx_insn *tmp2 = *(rtx_insn * const *) x;
2636 int tmp_class, tmp2_class;
2637 int val, priority_val, info_val, diff;
2639 if (live_range_shrinkage_p)
2641 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2642 code. */
2643 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2644 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2645 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2646 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2647 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2648 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2649 /* Sort by INSN_LUID (original insn order), so that we make the
2650 sort stable. This minimizes instruction movement, thus
2651 minimizing sched's effect on debugging and cross-jumping. */
2652 return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2653 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2656 /* The insn in a schedule group should be issued the first. */
2657 if (flag_sched_group_heuristic &&
2658 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2659 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2660 tmp, tmp2);
2662 /* Make sure that priority of TMP and TMP2 are initialized. */
2663 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2665 if (sched_fusion)
2667 /* The instruction that has the same fusion priority as the last
2668 instruction is the instruction we picked next. If that is not
2669 the case, we sort ready list firstly by fusion priority, then
2670 by priority, and at last by INSN_LUID. */
2671 int a = INSN_FUSION_PRIORITY (tmp);
2672 int b = INSN_FUSION_PRIORITY (tmp2);
2673 int last = -1;
2675 if (last_nondebug_scheduled_insn
2676 && !NOTE_P (last_nondebug_scheduled_insn)
2677 && BLOCK_FOR_INSN (tmp)
2678 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2679 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2681 if (a != last && b != last)
2683 if (a == b)
2685 a = INSN_PRIORITY (tmp);
2686 b = INSN_PRIORITY (tmp2);
2688 if (a != b)
2689 return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2690 else
2691 return rfs_result (RFS_FUSION,
2692 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2694 else if (a == b)
2696 gcc_assert (last_nondebug_scheduled_insn
2697 && !NOTE_P (last_nondebug_scheduled_insn));
2698 last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2700 a = abs (INSN_PRIORITY (tmp) - last);
2701 b = abs (INSN_PRIORITY (tmp2) - last);
2702 if (a != b)
2703 return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2704 else
2705 return rfs_result (RFS_FUSION,
2706 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2708 else if (a == last)
2709 return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2710 else
2711 return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2714 if (sched_pressure != SCHED_PRESSURE_NONE)
2716 /* Prefer insn whose scheduling results in the smallest register
2717 pressure excess. */
2718 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2719 + insn_delay (tmp)
2720 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2721 - insn_delay (tmp2))))
2722 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2725 if (sched_pressure != SCHED_PRESSURE_NONE
2726 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2727 && INSN_TICK (tmp2) != INSN_TICK (tmp))
2729 diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2730 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2733 /* If we are doing backtracking in this schedule, prefer insns that
2734 have forward dependencies with negative cost against an insn that
2735 was already scheduled. */
2736 if (current_sched_info->flags & DO_BACKTRACKING)
2738 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2739 if (priority_val)
2740 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2743 /* Prefer insn with higher priority. */
2744 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2746 if (flag_sched_critical_path_heuristic && priority_val)
2747 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2749 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2751 int autopref = autopref_rank_for_schedule (tmp, tmp2);
2752 if (autopref != 0)
2753 return autopref;
2756 /* Prefer speculative insn with greater dependencies weakness. */
2757 if (flag_sched_spec_insn_heuristic && spec_info)
2759 ds_t ds1, ds2;
2760 dw_t dw1, dw2;
2761 int dw;
2763 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2764 if (ds1)
2765 dw1 = ds_weak (ds1);
2766 else
2767 dw1 = NO_DEP_WEAK;
2769 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2770 if (ds2)
2771 dw2 = ds_weak (ds2);
2772 else
2773 dw2 = NO_DEP_WEAK;
2775 dw = dw2 - dw1;
2776 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2777 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2780 info_val = (*current_sched_info->rank) (tmp, tmp2);
2781 if (flag_sched_rank_heuristic && info_val)
2782 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2784 /* Compare insns based on their relation to the last scheduled
2785 non-debug insn. */
2786 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2788 dep_t dep1;
2789 dep_t dep2;
2790 rtx_insn *last = last_nondebug_scheduled_insn;
2792 /* Classify the instructions into three classes:
2793 1) Data dependent on last schedule insn.
2794 2) Anti/Output dependent on last scheduled insn.
2795 3) Independent of last scheduled insn, or has latency of one.
2796 Choose the insn from the highest numbered class if different. */
2797 dep1 = sd_find_dep_between (last, tmp, true);
2799 if (dep1 == NULL || dep_cost (dep1) == 1)
2800 tmp_class = 3;
2801 else if (/* Data dependence. */
2802 DEP_TYPE (dep1) == REG_DEP_TRUE)
2803 tmp_class = 1;
2804 else
2805 tmp_class = 2;
2807 dep2 = sd_find_dep_between (last, tmp2, true);
2809 if (dep2 == NULL || dep_cost (dep2) == 1)
2810 tmp2_class = 3;
2811 else if (/* Data dependence. */
2812 DEP_TYPE (dep2) == REG_DEP_TRUE)
2813 tmp2_class = 1;
2814 else
2815 tmp2_class = 2;
2817 if ((val = tmp2_class - tmp_class))
2818 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2821 /* Prefer instructions that occur earlier in the model schedule. */
2822 if (sched_pressure == SCHED_PRESSURE_MODEL
2823 && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2825 diff = model_index (tmp) - model_index (tmp2);
2826 gcc_assert (diff != 0);
2827 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2830 /* Prefer the insn which has more later insns that depend on it.
2831 This gives the scheduler more freedom when scheduling later
2832 instructions at the expense of added register pressure. */
2834 val = (dep_list_size (tmp2, SD_LIST_FORW)
2835 - dep_list_size (tmp, SD_LIST_FORW));
2837 if (flag_sched_dep_count_heuristic && val != 0)
2838 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2840 /* If insns are equally good, sort by INSN_LUID (original insn order),
2841 so that we make the sort stable. This minimizes instruction movement,
2842 thus minimizing sched's effect on debugging and cross-jumping. */
2843 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2846 /* Resort the array A in which only element at index N may be out of order. */
2848 HAIFA_INLINE static void
2849 swap_sort (rtx_insn **a, int n)
2851 rtx_insn *insn = a[n - 1];
2852 int i = n - 2;
2854 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2856 a[i + 1] = a[i];
2857 i -= 1;
2859 a[i + 1] = insn;
2862 /* Add INSN to the insn queue so that it can be executed at least
2863 N_CYCLES after the currently executing insn. Preserve insns
2864 chain for debugging purposes. REASON will be printed in debugging
2865 output. */
2867 HAIFA_INLINE static void
2868 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2870 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2871 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2872 int new_tick;
2874 gcc_assert (n_cycles <= max_insn_queue_index);
2875 gcc_assert (!DEBUG_INSN_P (insn));
2877 insn_queue[next_q] = link;
2878 q_size += 1;
2880 if (sched_verbose >= 2)
2882 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2883 (*current_sched_info->print_insn) (insn, 0));
2885 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2888 QUEUE_INDEX (insn) = next_q;
2890 if (current_sched_info->flags & DO_BACKTRACKING)
2892 new_tick = clock_var + n_cycles;
2893 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2894 INSN_TICK (insn) = new_tick;
2896 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2897 && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2899 must_backtrack = true;
2900 if (sched_verbose >= 2)
2901 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2906 /* Remove INSN from queue. */
2907 static void
2908 queue_remove (rtx_insn *insn)
2910 gcc_assert (QUEUE_INDEX (insn) >= 0);
2911 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2912 q_size--;
2913 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2916 /* Return a pointer to the bottom of the ready list, i.e. the insn
2917 with the lowest priority. */
2919 rtx_insn **
2920 ready_lastpos (struct ready_list *ready)
2922 gcc_assert (ready->n_ready >= 1);
2923 return ready->vec + ready->first - ready->n_ready + 1;
2926 /* Add an element INSN to the ready list so that it ends up with the
2927 lowest/highest priority depending on FIRST_P. */
2929 HAIFA_INLINE static void
2930 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2932 if (!first_p)
2934 if (ready->first == ready->n_ready)
2936 memmove (ready->vec + ready->veclen - ready->n_ready,
2937 ready_lastpos (ready),
2938 ready->n_ready * sizeof (rtx));
2939 ready->first = ready->veclen - 1;
2941 ready->vec[ready->first - ready->n_ready] = insn;
2943 else
2945 if (ready->first == ready->veclen - 1)
2947 if (ready->n_ready)
2948 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
2949 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2950 ready_lastpos (ready),
2951 ready->n_ready * sizeof (rtx));
2952 ready->first = ready->veclen - 2;
2954 ready->vec[++(ready->first)] = insn;
2957 ready->n_ready++;
2958 if (DEBUG_INSN_P (insn))
2959 ready->n_debug++;
2961 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2962 QUEUE_INDEX (insn) = QUEUE_READY;
2964 if (INSN_EXACT_TICK (insn) != INVALID_TICK
2965 && INSN_EXACT_TICK (insn) < clock_var)
2967 must_backtrack = true;
2971 /* Remove the element with the highest priority from the ready list and
2972 return it. */
2974 HAIFA_INLINE static rtx_insn *
2975 ready_remove_first (struct ready_list *ready)
2977 rtx_insn *t;
2979 gcc_assert (ready->n_ready);
2980 t = ready->vec[ready->first--];
2981 ready->n_ready--;
2982 if (DEBUG_INSN_P (t))
2983 ready->n_debug--;
2984 /* If the queue becomes empty, reset it. */
2985 if (ready->n_ready == 0)
2986 ready->first = ready->veclen - 1;
2988 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2989 QUEUE_INDEX (t) = QUEUE_NOWHERE;
2991 return t;
2994 /* The following code implements multi-pass scheduling for the first
2995 cycle. In other words, we will try to choose ready insn which
2996 permits to start maximum number of insns on the same cycle. */
2998 /* Return a pointer to the element INDEX from the ready. INDEX for
2999 insn with the highest priority is 0, and the lowest priority has
3000 N_READY - 1. */
3002 rtx_insn *
3003 ready_element (struct ready_list *ready, int index)
3005 gcc_assert (ready->n_ready && index < ready->n_ready);
3007 return ready->vec[ready->first - index];
3010 /* Remove the element INDEX from the ready list and return it. INDEX
3011 for insn with the highest priority is 0, and the lowest priority
3012 has N_READY - 1. */
3014 HAIFA_INLINE static rtx_insn *
3015 ready_remove (struct ready_list *ready, int index)
3017 rtx_insn *t;
3018 int i;
3020 if (index == 0)
3021 return ready_remove_first (ready);
3022 gcc_assert (ready->n_ready && index < ready->n_ready);
3023 t = ready->vec[ready->first - index];
3024 ready->n_ready--;
3025 if (DEBUG_INSN_P (t))
3026 ready->n_debug--;
3027 for (i = index; i < ready->n_ready; i++)
3028 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3029 QUEUE_INDEX (t) = QUEUE_NOWHERE;
3030 return t;
3033 /* Remove INSN from the ready list. */
3034 static void
3035 ready_remove_insn (rtx_insn *insn)
3037 int i;
3039 for (i = 0; i < readyp->n_ready; i++)
3040 if (ready_element (readyp, i) == insn)
3042 ready_remove (readyp, i);
3043 return;
3045 gcc_unreachable ();
3048 /* Calculate difference of two statistics set WAS and NOW.
3049 Result returned in WAS. */
3050 static void
3051 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3052 const rank_for_schedule_stats_t *now)
3054 for (int i = 0; i < RFS_N; ++i)
3055 was->stats[i] = now->stats[i] - was->stats[i];
3058 /* Print rank_for_schedule statistics. */
3059 static void
3060 print_rank_for_schedule_stats (const char *prefix,
3061 const rank_for_schedule_stats_t *stats,
3062 struct ready_list *ready)
3064 for (int i = 0; i < RFS_N; ++i)
3065 if (stats->stats[i])
3067 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3069 if (ready != NULL)
3070 /* Print out insns that won due to RFS_<I>. */
3072 rtx_insn **p = ready_lastpos (ready);
3074 fprintf (sched_dump, ":");
3075 /* Start with 1 since least-priority insn didn't have any wins. */
3076 for (int j = 1; j < ready->n_ready; ++j)
3077 if (INSN_LAST_RFS_WIN (p[j]) == i)
3078 fprintf (sched_dump, " %s",
3079 (*current_sched_info->print_insn) (p[j], 0));
3081 fprintf (sched_dump, "\n");
3085 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end
3086 of array. */
3087 static void
3088 ready_sort_debug (struct ready_list *ready)
3090 int i;
3091 rtx_insn **first = ready_lastpos (ready);
3093 for (i = 0; i < ready->n_ready; ++i)
3094 if (!DEBUG_INSN_P (first[i]))
3095 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3097 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3100 /* Sort non-debug insns in the ready list READY by ascending priority.
3101 Assumes that all debug insns are separated from the real insns. */
3102 static void
3103 ready_sort_real (struct ready_list *ready)
3105 int i;
3106 rtx_insn **first = ready_lastpos (ready);
3107 int n_ready_real = ready->n_ready - ready->n_debug;
3109 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3110 for (i = 0; i < n_ready_real; ++i)
3111 setup_insn_reg_pressure_info (first[i]);
3112 else if (sched_pressure == SCHED_PRESSURE_MODEL
3113 && model_curr_point < model_num_insns)
3114 model_set_excess_costs (first, n_ready_real);
3116 rank_for_schedule_stats_t stats1;
3117 if (sched_verbose >= 4)
3118 stats1 = rank_for_schedule_stats;
3120 if (n_ready_real == 2)
3121 swap_sort (first, n_ready_real);
3122 else if (n_ready_real > 2)
3123 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3125 if (sched_verbose >= 4)
3127 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3128 print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3132 /* Sort the ready list READY by ascending priority. */
3133 static void
3134 ready_sort (struct ready_list *ready)
3136 if (ready->n_debug > 0)
3137 ready_sort_debug (ready);
3138 else
3139 ready_sort_real (ready);
3142 /* PREV is an insn that is ready to execute. Adjust its priority if that
3143 will help shorten or lengthen register lifetimes as appropriate. Also
3144 provide a hook for the target to tweak itself. */
3146 HAIFA_INLINE static void
3147 adjust_priority (rtx_insn *prev)
3149 /* ??? There used to be code here to try and estimate how an insn
3150 affected register lifetimes, but it did it by looking at REG_DEAD
3151 notes, which we removed in schedule_region. Nor did it try to
3152 take into account register pressure or anything useful like that.
3154 Revisit when we have a machine model to work with and not before. */
3156 if (targetm.sched.adjust_priority)
3157 INSN_PRIORITY (prev) =
3158 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3161 /* Advance DFA state STATE on one cycle. */
3162 void
3163 advance_state (state_t state)
3165 if (targetm.sched.dfa_pre_advance_cycle)
3166 targetm.sched.dfa_pre_advance_cycle ();
3168 if (targetm.sched.dfa_pre_cycle_insn)
3169 state_transition (state,
3170 targetm.sched.dfa_pre_cycle_insn ());
3172 state_transition (state, NULL);
3174 if (targetm.sched.dfa_post_cycle_insn)
3175 state_transition (state,
3176 targetm.sched.dfa_post_cycle_insn ());
3178 if (targetm.sched.dfa_post_advance_cycle)
3179 targetm.sched.dfa_post_advance_cycle ();
3182 /* Advance time on one cycle. */
3183 HAIFA_INLINE static void
3184 advance_one_cycle (void)
3186 advance_state (curr_state);
3187 if (sched_verbose >= 4)
3188 fprintf (sched_dump, ";;\tAdvance the current state.\n");
3191 /* Update register pressure after scheduling INSN. */
3192 static void
3193 update_register_pressure (rtx_insn *insn)
3195 struct reg_use_data *use;
3196 struct reg_set_data *set;
3198 gcc_checking_assert (!DEBUG_INSN_P (insn));
3200 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3201 if (dying_use_p (use))
3202 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3203 use->regno, false);
3204 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3205 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3206 set->regno, true);
3209 /* Set up or update (if UPDATE_P) max register pressure (see its
3210 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3211 after insn AFTER. */
3212 static void
3213 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3215 int i, p;
3216 bool eq_p;
3217 rtx_insn *insn;
3218 static int max_reg_pressure[N_REG_CLASSES];
3220 save_reg_pressure ();
3221 for (i = 0; i < ira_pressure_classes_num; i++)
3222 max_reg_pressure[ira_pressure_classes[i]]
3223 = curr_reg_pressure[ira_pressure_classes[i]];
3224 for (insn = NEXT_INSN (after);
3225 insn != NULL_RTX && ! BARRIER_P (insn)
3226 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3227 insn = NEXT_INSN (insn))
3228 if (NONDEBUG_INSN_P (insn))
3230 eq_p = true;
3231 for (i = 0; i < ira_pressure_classes_num; i++)
3233 p = max_reg_pressure[ira_pressure_classes[i]];
3234 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3236 eq_p = false;
3237 INSN_MAX_REG_PRESSURE (insn)[i]
3238 = max_reg_pressure[ira_pressure_classes[i]];
3241 if (update_p && eq_p)
3242 break;
3243 update_register_pressure (insn);
3244 for (i = 0; i < ira_pressure_classes_num; i++)
3245 if (max_reg_pressure[ira_pressure_classes[i]]
3246 < curr_reg_pressure[ira_pressure_classes[i]])
3247 max_reg_pressure[ira_pressure_classes[i]]
3248 = curr_reg_pressure[ira_pressure_classes[i]];
3250 restore_reg_pressure ();
3253 /* Update the current register pressure after scheduling INSN. Update
3254 also max register pressure for unscheduled insns of the current
3255 BB. */
3256 static void
3257 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3259 int i;
3260 int before[N_REG_CLASSES];
3262 for (i = 0; i < ira_pressure_classes_num; i++)
3263 before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3264 update_register_pressure (insn);
3265 for (i = 0; i < ira_pressure_classes_num; i++)
3266 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3267 break;
3268 if (i < ira_pressure_classes_num)
3269 setup_insn_max_reg_pressure (insn, true);
3272 /* Set up register pressure at the beginning of basic block BB whose
3273 insns starting after insn AFTER. Set up also max register pressure
3274 for all insns of the basic block. */
3275 void
3276 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3278 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3279 initiate_bb_reg_pressure_info (bb);
3280 setup_insn_max_reg_pressure (after, false);
3283 /* If doing predication while scheduling, verify whether INSN, which
3284 has just been scheduled, clobbers the conditions of any
3285 instructions that must be predicated in order to break their
3286 dependencies. If so, remove them from the queues so that they will
3287 only be scheduled once their control dependency is resolved. */
3289 static void
3290 check_clobbered_conditions (rtx_insn *insn)
3292 HARD_REG_SET t;
3293 int i;
3295 if ((current_sched_info->flags & DO_PREDICATION) == 0)
3296 return;
3298 find_all_hard_reg_sets (insn, &t, true);
3300 restart:
3301 for (i = 0; i < ready.n_ready; i++)
3303 rtx_insn *x = ready_element (&ready, i);
3304 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3306 ready_remove_insn (x);
3307 goto restart;
3310 for (i = 0; i <= max_insn_queue_index; i++)
3312 rtx_insn_list *link;
3313 int q = NEXT_Q_AFTER (q_ptr, i);
3315 restart_queue:
3316 for (link = insn_queue[q]; link; link = link->next ())
3318 rtx_insn *x = link->insn ();
3319 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3321 queue_remove (x);
3322 goto restart_queue;
3328 /* Return (in order):
3330 - positive if INSN adversely affects the pressure on one
3331 register class
3333 - negative if INSN reduces the pressure on one register class
3335 - 0 if INSN doesn't affect the pressure on any register class. */
3337 static int
3338 model_classify_pressure (struct model_insn_info *insn)
3340 struct reg_pressure_data *reg_pressure;
3341 int death[N_REG_CLASSES];
3342 int pci, cl, sum;
3344 calculate_reg_deaths (insn->insn, death);
3345 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3346 sum = 0;
3347 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3349 cl = ira_pressure_classes[pci];
3350 if (death[cl] < reg_pressure[pci].set_increase)
3351 return 1;
3352 sum += reg_pressure[pci].set_increase - death[cl];
3354 return sum;
3357 /* Return true if INSN1 should come before INSN2 in the model schedule. */
3359 static int
3360 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3362 unsigned int height1, height2;
3363 unsigned int priority1, priority2;
3365 /* Prefer instructions with a higher model priority. */
3366 if (insn1->model_priority != insn2->model_priority)
3367 return insn1->model_priority > insn2->model_priority;
3369 /* Combine the length of the longest path of satisfied true dependencies
3370 that leads to each instruction (depth) with the length of the longest
3371 path of any dependencies that leads from the instruction (alap).
3372 Prefer instructions with the greatest combined length. If the combined
3373 lengths are equal, prefer instructions with the greatest depth.
3375 The idea is that, if we have a set S of "equal" instructions that each
3376 have ALAP value X, and we pick one such instruction I, any true-dependent
3377 successors of I that have ALAP value X - 1 should be preferred over S.
3378 This encourages the schedule to be "narrow" rather than "wide".
3379 However, if I is a low-priority instruction that we decided to
3380 schedule because of its model_classify_pressure, and if there
3381 is a set of higher-priority instructions T, the aforementioned
3382 successors of I should not have the edge over T. */
3383 height1 = insn1->depth + insn1->alap;
3384 height2 = insn2->depth + insn2->alap;
3385 if (height1 != height2)
3386 return height1 > height2;
3387 if (insn1->depth != insn2->depth)
3388 return insn1->depth > insn2->depth;
3390 /* We have no real preference between INSN1 an INSN2 as far as attempts
3391 to reduce pressure go. Prefer instructions with higher priorities. */
3392 priority1 = INSN_PRIORITY (insn1->insn);
3393 priority2 = INSN_PRIORITY (insn2->insn);
3394 if (priority1 != priority2)
3395 return priority1 > priority2;
3397 /* Use the original rtl sequence as a tie-breaker. */
3398 return insn1 < insn2;
3401 /* Add INSN to the model worklist immediately after PREV. Add it to the
3402 beginning of the list if PREV is null. */
3404 static void
3405 model_add_to_worklist_at (struct model_insn_info *insn,
3406 struct model_insn_info *prev)
3408 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3409 QUEUE_INDEX (insn->insn) = QUEUE_READY;
3411 insn->prev = prev;
3412 if (prev)
3414 insn->next = prev->next;
3415 prev->next = insn;
3417 else
3419 insn->next = model_worklist;
3420 model_worklist = insn;
3422 if (insn->next)
3423 insn->next->prev = insn;
3426 /* Remove INSN from the model worklist. */
3428 static void
3429 model_remove_from_worklist (struct model_insn_info *insn)
3431 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3432 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3434 if (insn->prev)
3435 insn->prev->next = insn->next;
3436 else
3437 model_worklist = insn->next;
3438 if (insn->next)
3439 insn->next->prev = insn->prev;
3442 /* Add INSN to the model worklist. Start looking for a suitable position
3443 between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3444 insns either side. A null PREV indicates the beginning of the list and
3445 a null NEXT indicates the end. */
3447 static void
3448 model_add_to_worklist (struct model_insn_info *insn,
3449 struct model_insn_info *prev,
3450 struct model_insn_info *next)
3452 int count;
3454 count = MAX_SCHED_READY_INSNS;
3455 if (count > 0 && prev && model_order_p (insn, prev))
3458 count--;
3459 prev = prev->prev;
3461 while (count > 0 && prev && model_order_p (insn, prev));
3462 else
3463 while (count > 0 && next && model_order_p (next, insn))
3465 count--;
3466 prev = next;
3467 next = next->next;
3469 model_add_to_worklist_at (insn, prev);
3472 /* INSN may now have a higher priority (in the model_order_p sense)
3473 than before. Move it up the worklist if necessary. */
3475 static void
3476 model_promote_insn (struct model_insn_info *insn)
3478 struct model_insn_info *prev;
3479 int count;
3481 prev = insn->prev;
3482 count = MAX_SCHED_READY_INSNS;
3483 while (count > 0 && prev && model_order_p (insn, prev))
3485 count--;
3486 prev = prev->prev;
3488 if (prev != insn->prev)
3490 model_remove_from_worklist (insn);
3491 model_add_to_worklist_at (insn, prev);
3495 /* Add INSN to the end of the model schedule. */
3497 static void
3498 model_add_to_schedule (rtx_insn *insn)
3500 unsigned int point;
3502 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3503 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3505 point = model_schedule.length ();
3506 model_schedule.quick_push (insn);
3507 INSN_MODEL_INDEX (insn) = point + 1;
3510 /* Analyze the instructions that are to be scheduled, setting up
3511 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready
3512 instructions to model_worklist. */
3514 static void
3515 model_analyze_insns (void)
3517 rtx_insn *start, *end, *iter;
3518 sd_iterator_def sd_it;
3519 dep_t dep;
3520 struct model_insn_info *insn, *con;
3522 model_num_insns = 0;
3523 start = PREV_INSN (current_sched_info->next_tail);
3524 end = current_sched_info->prev_head;
3525 for (iter = start; iter != end; iter = PREV_INSN (iter))
3526 if (NONDEBUG_INSN_P (iter))
3528 insn = MODEL_INSN_INFO (iter);
3529 insn->insn = iter;
3530 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3532 con = MODEL_INSN_INFO (DEP_CON (dep));
3533 if (con->insn && insn->alap < con->alap + 1)
3534 insn->alap = con->alap + 1;
3537 insn->old_queue = QUEUE_INDEX (iter);
3538 QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3540 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3541 if (insn->unscheduled_preds == 0)
3542 model_add_to_worklist (insn, NULL, model_worklist);
3544 model_num_insns++;
3548 /* The global state describes the register pressure at the start of the
3549 model schedule. Initialize GROUP accordingly. */
3551 static void
3552 model_init_pressure_group (struct model_pressure_group *group)
3554 int pci, cl;
3556 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3558 cl = ira_pressure_classes[pci];
3559 group->limits[pci].pressure = curr_reg_pressure[cl];
3560 group->limits[pci].point = 0;
3562 /* Use index model_num_insns to record the state after the last
3563 instruction in the model schedule. */
3564 group->model = XNEWVEC (struct model_pressure_data,
3565 (model_num_insns + 1) * ira_pressure_classes_num);
3568 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3569 Update the maximum pressure for the whole schedule. */
3571 static void
3572 model_record_pressure (struct model_pressure_group *group,
3573 int point, int pci, int pressure)
3575 MODEL_REF_PRESSURE (group, point, pci) = pressure;
3576 if (group->limits[pci].pressure < pressure)
3578 group->limits[pci].pressure = pressure;
3579 group->limits[pci].point = point;
3583 /* INSN has just been added to the end of the model schedule. Record its
3584 register-pressure information. */
3586 static void
3587 model_record_pressures (struct model_insn_info *insn)
3589 struct reg_pressure_data *reg_pressure;
3590 int point, pci, cl, delta;
3591 int death[N_REG_CLASSES];
3593 point = model_index (insn->insn);
3594 if (sched_verbose >= 2)
3596 if (point == 0)
3598 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3599 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3601 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3602 point, INSN_UID (insn->insn), insn->model_priority,
3603 insn->depth + insn->alap, insn->depth,
3604 INSN_PRIORITY (insn->insn),
3605 str_pattern_slim (PATTERN (insn->insn)));
3607 calculate_reg_deaths (insn->insn, death);
3608 reg_pressure = INSN_REG_PRESSURE (insn->insn);
3609 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3611 cl = ira_pressure_classes[pci];
3612 delta = reg_pressure[pci].set_increase - death[cl];
3613 if (sched_verbose >= 2)
3614 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3615 curr_reg_pressure[cl], delta);
3616 model_record_pressure (&model_before_pressure, point, pci,
3617 curr_reg_pressure[cl]);
3619 if (sched_verbose >= 2)
3620 fprintf (sched_dump, "\n");
3623 /* All instructions have been added to the model schedule. Record the
3624 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */
3626 static void
3627 model_record_final_pressures (struct model_pressure_group *group)
3629 int point, pci, max_pressure, ref_pressure, cl;
3631 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3633 /* Record the final pressure for this class. */
3634 cl = ira_pressure_classes[pci];
3635 point = model_num_insns;
3636 ref_pressure = curr_reg_pressure[cl];
3637 model_record_pressure (group, point, pci, ref_pressure);
3639 /* Record the original maximum pressure. */
3640 group->limits[pci].orig_pressure = group->limits[pci].pressure;
3642 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */
3643 max_pressure = ref_pressure;
3644 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3645 while (point > 0)
3647 point--;
3648 ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3649 max_pressure = MAX (max_pressure, ref_pressure);
3650 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3655 /* Update all successors of INSN, given that INSN has just been scheduled. */
3657 static void
3658 model_add_successors_to_worklist (struct model_insn_info *insn)
3660 sd_iterator_def sd_it;
3661 struct model_insn_info *con;
3662 dep_t dep;
3664 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3666 con = MODEL_INSN_INFO (DEP_CON (dep));
3667 /* Ignore debug instructions, and instructions from other blocks. */
3668 if (con->insn)
3670 con->unscheduled_preds--;
3672 /* Update the depth field of each true-dependent successor.
3673 Increasing the depth gives them a higher priority than
3674 before. */
3675 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3677 con->depth = insn->depth + 1;
3678 if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3679 model_promote_insn (con);
3682 /* If this is a true dependency, or if there are no remaining
3683 dependencies for CON (meaning that CON only had non-true
3684 dependencies), make sure that CON is on the worklist.
3685 We don't bother otherwise because it would tend to fill the
3686 worklist with a lot of low-priority instructions that are not
3687 yet ready to issue. */
3688 if ((con->depth > 0 || con->unscheduled_preds == 0)
3689 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3690 model_add_to_worklist (con, insn, insn->next);
3695 /* Give INSN a higher priority than any current instruction, then give
3696 unscheduled predecessors of INSN a higher priority still. If any of
3697 those predecessors are not on the model worklist, do the same for its
3698 predecessors, and so on. */
3700 static void
3701 model_promote_predecessors (struct model_insn_info *insn)
3703 struct model_insn_info *pro, *first;
3704 sd_iterator_def sd_it;
3705 dep_t dep;
3707 if (sched_verbose >= 7)
3708 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3709 INSN_UID (insn->insn), model_next_priority);
3710 insn->model_priority = model_next_priority++;
3711 model_remove_from_worklist (insn);
3712 model_add_to_worklist_at (insn, NULL);
3714 first = NULL;
3715 for (;;)
3717 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3719 pro = MODEL_INSN_INFO (DEP_PRO (dep));
3720 /* The first test is to ignore debug instructions, and instructions
3721 from other blocks. */
3722 if (pro->insn
3723 && pro->model_priority != model_next_priority
3724 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3726 pro->model_priority = model_next_priority;
3727 if (sched_verbose >= 7)
3728 fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3729 if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3731 /* PRO is already in the worklist, but it now has
3732 a higher priority than before. Move it at the
3733 appropriate place. */
3734 model_remove_from_worklist (pro);
3735 model_add_to_worklist (pro, NULL, model_worklist);
3737 else
3739 /* PRO isn't in the worklist. Recursively process
3740 its predecessors until we find one that is. */
3741 pro->next = first;
3742 first = pro;
3746 if (!first)
3747 break;
3748 insn = first;
3749 first = insn->next;
3751 if (sched_verbose >= 7)
3752 fprintf (sched_dump, " = %d\n", model_next_priority);
3753 model_next_priority++;
3756 /* Pick one instruction from model_worklist and process it. */
3758 static void
3759 model_choose_insn (void)
3761 struct model_insn_info *insn, *fallback;
3762 int count;
3764 if (sched_verbose >= 7)
3766 fprintf (sched_dump, ";;\t+--- worklist:\n");
3767 insn = model_worklist;
3768 count = MAX_SCHED_READY_INSNS;
3769 while (count > 0 && insn)
3771 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n",
3772 INSN_UID (insn->insn), insn->model_priority,
3773 insn->depth + insn->alap, insn->depth,
3774 INSN_PRIORITY (insn->insn));
3775 count--;
3776 insn = insn->next;
3780 /* Look for a ready instruction whose model_classify_priority is zero
3781 or negative, picking the highest-priority one. Adding such an
3782 instruction to the schedule now should do no harm, and may actually
3783 do some good.
3785 Failing that, see whether there is an instruction with the highest
3786 extant model_priority that is not yet ready, but which would reduce
3787 pressure if it became ready. This is designed to catch cases like:
3789 (set (mem (reg R1)) (reg R2))
3791 where the instruction is the last remaining use of R1 and where the
3792 value of R2 is not yet available (or vice versa). The death of R1
3793 means that this instruction already reduces pressure. It is of
3794 course possible that the computation of R2 involves other registers
3795 that are hard to kill, but such cases are rare enough for this
3796 heuristic to be a win in general.
3798 Failing that, just pick the highest-priority instruction in the
3799 worklist. */
3800 count = MAX_SCHED_READY_INSNS;
3801 insn = model_worklist;
3802 fallback = 0;
3803 for (;;)
3805 if (count == 0 || !insn)
3807 insn = fallback ? fallback : model_worklist;
3808 break;
3810 if (insn->unscheduled_preds)
3812 if (model_worklist->model_priority == insn->model_priority
3813 && !fallback
3814 && model_classify_pressure (insn) < 0)
3815 fallback = insn;
3817 else
3819 if (model_classify_pressure (insn) <= 0)
3820 break;
3822 count--;
3823 insn = insn->next;
3826 if (sched_verbose >= 7 && insn != model_worklist)
3828 if (insn->unscheduled_preds)
3829 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3830 INSN_UID (insn->insn));
3831 else
3832 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3833 INSN_UID (insn->insn));
3835 if (insn->unscheduled_preds)
3836 /* INSN isn't yet ready to issue. Give all its predecessors the
3837 highest priority. */
3838 model_promote_predecessors (insn);
3839 else
3841 /* INSN is ready. Add it to the end of model_schedule and
3842 process its successors. */
3843 model_add_successors_to_worklist (insn);
3844 model_remove_from_worklist (insn);
3845 model_add_to_schedule (insn->insn);
3846 model_record_pressures (insn);
3847 update_register_pressure (insn->insn);
3851 /* Restore all QUEUE_INDEXs to the values that they had before
3852 model_start_schedule was called. */
3854 static void
3855 model_reset_queue_indices (void)
3857 unsigned int i;
3858 rtx_insn *insn;
3860 FOR_EACH_VEC_ELT (model_schedule, i, insn)
3861 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3864 /* We have calculated the model schedule and spill costs. Print a summary
3865 to sched_dump. */
3867 static void
3868 model_dump_pressure_summary (void)
3870 int pci, cl;
3872 fprintf (sched_dump, ";; Pressure summary:");
3873 for (pci = 0; pci < ira_pressure_classes_num; pci++)
3875 cl = ira_pressure_classes[pci];
3876 fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3877 model_before_pressure.limits[pci].pressure);
3879 fprintf (sched_dump, "\n\n");
3882 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3883 scheduling region. */
3885 static void
3886 model_start_schedule (basic_block bb)
3888 model_next_priority = 1;
3889 model_schedule.create (sched_max_luid);
3890 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3892 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3893 initiate_reg_pressure_info (df_get_live_in (bb));
3895 model_analyze_insns ();
3896 model_init_pressure_group (&model_before_pressure);
3897 while (model_worklist)
3898 model_choose_insn ();
3899 gcc_assert (model_num_insns == (int) model_schedule.length ());
3900 if (sched_verbose >= 2)
3901 fprintf (sched_dump, "\n");
3903 model_record_final_pressures (&model_before_pressure);
3904 model_reset_queue_indices ();
3906 XDELETEVEC (model_insns);
3908 model_curr_point = 0;
3909 initiate_reg_pressure_info (df_get_live_in (bb));
3910 if (sched_verbose >= 1)
3911 model_dump_pressure_summary ();
3914 /* Free the information associated with GROUP. */
3916 static void
3917 model_finalize_pressure_group (struct model_pressure_group *group)
3919 XDELETEVEC (group->model);
3922 /* Free the information created by model_start_schedule. */
3924 static void
3925 model_end_schedule (void)
3927 model_finalize_pressure_group (&model_before_pressure);
3928 model_schedule.release ();
3931 /* Prepare reg pressure scheduling for basic block BB. */
3932 static void
3933 sched_pressure_start_bb (basic_block bb)
3935 /* Set the number of available registers for each class taking into account
3936 relative probability of current basic block versus function prologue and
3937 epilogue.
3938 * If the basic block executes much more often than the prologue/epilogue
3939 (e.g., inside a hot loop), then cost of spill in the prologue is close to
3940 nil, so the effective number of available registers is
3941 (ira_class_hard_regs_num[cl] - 0).
3942 * If the basic block executes as often as the prologue/epilogue,
3943 then spill in the block is as costly as in the prologue, so the effective
3944 number of available registers is
3945 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]).
3946 Note that all-else-equal, we prefer to spill in the prologue, since that
3947 allows "extra" registers for other basic blocks of the function.
3948 * If the basic block is on the cold path of the function and executes
3949 rarely, then we should always prefer to spill in the block, rather than
3950 in the prologue/epilogue. The effective number of available register is
3951 (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]). */
3953 int i;
3954 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3955 int bb_freq = bb->frequency;
3957 if (bb_freq == 0)
3959 if (entry_freq == 0)
3960 entry_freq = bb_freq = 1;
3962 if (bb_freq < entry_freq)
3963 bb_freq = entry_freq;
3965 for (i = 0; i < ira_pressure_classes_num; ++i)
3967 enum reg_class cl = ira_pressure_classes[i];
3968 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl];
3969 sched_class_regs_num[cl]
3970 -= (call_used_regs_num[cl] * entry_freq) / bb_freq;
3974 if (sched_pressure == SCHED_PRESSURE_MODEL)
3975 model_start_schedule (bb);
3978 /* A structure that holds local state for the loop in schedule_block. */
3979 struct sched_block_state
3981 /* True if no real insns have been scheduled in the current cycle. */
3982 bool first_cycle_insn_p;
3983 /* True if a shadow insn has been scheduled in the current cycle, which
3984 means that no more normal insns can be issued. */
3985 bool shadows_only_p;
3986 /* True if we're winding down a modulo schedule, which means that we only
3987 issue insns with INSN_EXACT_TICK set. */
3988 bool modulo_epilogue;
3989 /* Initialized with the machine's issue rate every cycle, and updated
3990 by calls to the variable_issue hook. */
3991 int can_issue_more;
3994 /* INSN is the "currently executing insn". Launch each insn which was
3995 waiting on INSN. READY is the ready list which contains the insns
3996 that are ready to fire. CLOCK is the current cycle. The function
3997 returns necessary cycle advance after issuing the insn (it is not
3998 zero for insns in a schedule group). */
4000 static int
4001 schedule_insn (rtx_insn *insn)
4003 sd_iterator_def sd_it;
4004 dep_t dep;
4005 int i;
4006 int advance = 0;
4008 if (sched_verbose >= 1)
4010 struct reg_pressure_data *pressure_info;
4011 fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
4012 clock_var, (*current_sched_info->print_insn) (insn, 1),
4013 str_pattern_slim (PATTERN (insn)));
4015 if (recog_memoized (insn) < 0)
4016 fprintf (sched_dump, "nothing");
4017 else
4018 print_reservation (sched_dump, insn);
4019 pressure_info = INSN_REG_PRESSURE (insn);
4020 if (pressure_info != NULL)
4022 fputc (':', sched_dump);
4023 for (i = 0; i < ira_pressure_classes_num; i++)
4024 fprintf (sched_dump, "%s%s%+d(%d)",
4025 scheduled_insns.length () > 1
4026 && INSN_LUID (insn)
4027 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
4028 reg_class_names[ira_pressure_classes[i]],
4029 pressure_info[i].set_increase, pressure_info[i].change);
4031 if (sched_pressure == SCHED_PRESSURE_MODEL
4032 && model_curr_point < model_num_insns
4033 && model_index (insn) == model_curr_point)
4034 fprintf (sched_dump, ":model %d", model_curr_point);
4035 fputc ('\n', sched_dump);
4038 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4039 update_reg_and_insn_max_reg_pressure (insn);
4041 /* Scheduling instruction should have all its dependencies resolved and
4042 should have been removed from the ready list. */
4043 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4045 /* Reset debug insns invalidated by moving this insn. */
4046 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4047 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4048 sd_iterator_cond (&sd_it, &dep);)
4050 rtx_insn *dbg = DEP_PRO (dep);
4051 struct reg_use_data *use, *next;
4053 if (DEP_STATUS (dep) & DEP_CANCELLED)
4055 sd_iterator_next (&sd_it);
4056 continue;
4059 gcc_assert (DEBUG_INSN_P (dbg));
4061 if (sched_verbose >= 6)
4062 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4063 INSN_UID (dbg));
4065 /* ??? Rather than resetting the debug insn, we might be able
4066 to emit a debug temp before the just-scheduled insn, but
4067 this would involve checking that the expression at the
4068 point of the debug insn is equivalent to the expression
4069 before the just-scheduled insn. They might not be: the
4070 expression in the debug insn may depend on other insns not
4071 yet scheduled that set MEMs, REGs or even other debug
4072 insns. It's not clear that attempting to preserve debug
4073 information in these cases is worth the effort, given how
4074 uncommon these resets are and the likelihood that the debug
4075 temps introduced won't survive the schedule change. */
4076 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4077 df_insn_rescan (dbg);
4079 /* Unknown location doesn't use any registers. */
4080 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4082 struct reg_use_data *prev = use;
4084 /* Remove use from the cyclic next_regno_use chain first. */
4085 while (prev->next_regno_use != use)
4086 prev = prev->next_regno_use;
4087 prev->next_regno_use = use->next_regno_use;
4088 next = use->next_insn_use;
4089 free (use);
4091 INSN_REG_USE_LIST (dbg) = NULL;
4093 /* We delete rather than resolve these deps, otherwise we
4094 crash in sched_free_deps(), because forward deps are
4095 expected to be released before backward deps. */
4096 sd_delete_dep (sd_it);
4099 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4100 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4102 if (sched_pressure == SCHED_PRESSURE_MODEL
4103 && model_curr_point < model_num_insns
4104 && NONDEBUG_INSN_P (insn))
4106 if (model_index (insn) == model_curr_point)
4108 model_curr_point++;
4109 while (model_curr_point < model_num_insns
4110 && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4111 == QUEUE_SCHEDULED));
4112 else
4113 model_recompute (insn);
4114 model_update_limit_points ();
4115 update_register_pressure (insn);
4116 if (sched_verbose >= 2)
4117 print_curr_reg_pressure ();
4120 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4121 if (INSN_TICK (insn) > clock_var)
4122 /* INSN has been prematurely moved from the queue to the ready list.
4123 This is possible only if following flags are set. */
4124 gcc_assert (flag_sched_stalled_insns || sched_fusion);
4126 /* ??? Probably, if INSN is scheduled prematurely, we should leave
4127 INSN_TICK untouched. This is a machine-dependent issue, actually. */
4128 INSN_TICK (insn) = clock_var;
4130 check_clobbered_conditions (insn);
4132 /* Update dependent instructions. First, see if by scheduling this insn
4133 now we broke a dependence in a way that requires us to change another
4134 insn. */
4135 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4136 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4138 struct dep_replacement *desc = DEP_REPLACE (dep);
4139 rtx_insn *pro = DEP_PRO (dep);
4140 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4141 && desc != NULL && desc->insn == pro)
4142 apply_replacement (dep, false);
4145 /* Go through and resolve forward dependencies. */
4146 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4147 sd_iterator_cond (&sd_it, &dep);)
4149 rtx_insn *next = DEP_CON (dep);
4150 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4152 /* Resolve the dependence between INSN and NEXT.
4153 sd_resolve_dep () moves current dep to another list thus
4154 advancing the iterator. */
4155 sd_resolve_dep (sd_it);
4157 if (cancelled)
4159 if (must_restore_pattern_p (next, dep))
4160 restore_pattern (dep, false);
4161 continue;
4164 /* Don't bother trying to mark next as ready if insn is a debug
4165 insn. If insn is the last hard dependency, it will have
4166 already been discounted. */
4167 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4168 continue;
4170 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4172 int effective_cost;
4174 effective_cost = try_ready (next);
4176 if (effective_cost >= 0
4177 && SCHED_GROUP_P (next)
4178 && advance < effective_cost)
4179 advance = effective_cost;
4181 else
4182 /* Check always has only one forward dependence (to the first insn in
4183 the recovery block), therefore, this will be executed only once. */
4185 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4186 fix_recovery_deps (RECOVERY_BLOCK (insn));
4190 /* Annotate the instruction with issue information -- TImode
4191 indicates that the instruction is expected not to be able
4192 to issue on the same cycle as the previous insn. A machine
4193 may use this information to decide how the instruction should
4194 be aligned. */
4195 if (issue_rate > 1
4196 && GET_CODE (PATTERN (insn)) != USE
4197 && GET_CODE (PATTERN (insn)) != CLOBBER
4198 && !DEBUG_INSN_P (insn))
4200 if (reload_completed)
4201 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4202 last_clock_var = clock_var;
4205 if (nonscheduled_insns_begin != NULL_RTX)
4206 /* Indicate to debug counters that INSN is scheduled. */
4207 nonscheduled_insns_begin = insn;
4209 return advance;
4212 /* Functions for handling of notes. */
4214 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
4215 void
4216 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4218 rtx_insn *from_start;
4220 /* It's easy when have nothing to concat. */
4221 if (from_end == NULL)
4222 return;
4224 /* It's also easy when destination is empty. */
4225 if (*to_endp == NULL)
4227 *to_endp = from_end;
4228 return;
4231 from_start = from_end;
4232 while (PREV_INSN (from_start) != NULL)
4233 from_start = PREV_INSN (from_start);
4235 SET_PREV_INSN (from_start) = *to_endp;
4236 SET_NEXT_INSN (*to_endp) = from_start;
4237 *to_endp = from_end;
4240 /* Delete notes between HEAD and TAIL and put them in the chain
4241 of notes ended by NOTE_LIST. */
4242 void
4243 remove_notes (rtx_insn *head, rtx_insn *tail)
4245 rtx_insn *next_tail, *insn, *next;
4247 note_list = 0;
4248 if (head == tail && !INSN_P (head))
4249 return;
4251 next_tail = NEXT_INSN (tail);
4252 for (insn = head; insn != next_tail; insn = next)
4254 next = NEXT_INSN (insn);
4255 if (!NOTE_P (insn))
4256 continue;
4258 switch (NOTE_KIND (insn))
4260 case NOTE_INSN_BASIC_BLOCK:
4261 continue;
4263 case NOTE_INSN_EPILOGUE_BEG:
4264 if (insn != tail)
4266 remove_insn (insn);
4267 add_reg_note (next, REG_SAVE_NOTE,
4268 GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4269 break;
4271 /* FALLTHRU */
4273 default:
4274 remove_insn (insn);
4276 /* Add the note to list that ends at NOTE_LIST. */
4277 SET_PREV_INSN (insn) = note_list;
4278 SET_NEXT_INSN (insn) = NULL_RTX;
4279 if (note_list)
4280 SET_NEXT_INSN (note_list) = insn;
4281 note_list = insn;
4282 break;
4285 gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4289 /* A structure to record enough data to allow us to backtrack the scheduler to
4290 a previous state. */
4291 struct haifa_saved_data
4293 /* Next entry on the list. */
4294 struct haifa_saved_data *next;
4296 /* Backtracking is associated with scheduling insns that have delay slots.
4297 DELAY_PAIR points to the structure that contains the insns involved, and
4298 the number of cycles between them. */
4299 struct delay_pair *delay_pair;
4301 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */
4302 void *fe_saved_data;
4303 /* Data used by the backend. */
4304 void *be_saved_data;
4306 /* Copies of global state. */
4307 int clock_var, last_clock_var;
4308 struct ready_list ready;
4309 state_t curr_state;
4311 rtx_insn *last_scheduled_insn;
4312 rtx_insn *last_nondebug_scheduled_insn;
4313 rtx_insn *nonscheduled_insns_begin;
4314 int cycle_issued_insns;
4316 /* Copies of state used in the inner loop of schedule_block. */
4317 struct sched_block_state sched_block;
4319 /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4320 to 0 when restoring. */
4321 int q_size;
4322 rtx_insn_list **insn_queue;
4324 /* Describe pattern replacements that occurred since this backtrack point
4325 was queued. */
4326 vec<dep_t> replacement_deps;
4327 vec<int> replace_apply;
4329 /* A copy of the next-cycle replacement vectors at the time of the backtrack
4330 point. */
4331 vec<dep_t> next_cycle_deps;
4332 vec<int> next_cycle_apply;
4335 /* A record, in reverse order, of all scheduled insns which have delay slots
4336 and may require backtracking. */
4337 static struct haifa_saved_data *backtrack_queue;
4339 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4340 to SET_P. */
4341 static void
4342 mark_backtrack_feeds (rtx_insn *insn, int set_p)
4344 sd_iterator_def sd_it;
4345 dep_t dep;
4346 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4348 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4352 /* Save the current scheduler state so that we can backtrack to it
4353 later if necessary. PAIR gives the insns that make it necessary to
4354 save this point. SCHED_BLOCK is the local state of schedule_block
4355 that need to be saved. */
4356 static void
4357 save_backtrack_point (struct delay_pair *pair,
4358 struct sched_block_state sched_block)
4360 int i;
4361 struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4363 save->curr_state = xmalloc (dfa_state_size);
4364 memcpy (save->curr_state, curr_state, dfa_state_size);
4366 save->ready.first = ready.first;
4367 save->ready.n_ready = ready.n_ready;
4368 save->ready.n_debug = ready.n_debug;
4369 save->ready.veclen = ready.veclen;
4370 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4371 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4373 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4374 save->q_size = q_size;
4375 for (i = 0; i <= max_insn_queue_index; i++)
4377 int q = NEXT_Q_AFTER (q_ptr, i);
4378 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4381 save->clock_var = clock_var;
4382 save->last_clock_var = last_clock_var;
4383 save->cycle_issued_insns = cycle_issued_insns;
4384 save->last_scheduled_insn = last_scheduled_insn;
4385 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4386 save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4388 save->sched_block = sched_block;
4390 save->replacement_deps.create (0);
4391 save->replace_apply.create (0);
4392 save->next_cycle_deps = next_cycle_replace_deps.copy ();
4393 save->next_cycle_apply = next_cycle_apply.copy ();
4395 if (current_sched_info->save_state)
4396 save->fe_saved_data = (*current_sched_info->save_state) ();
4398 if (targetm.sched.alloc_sched_context)
4400 save->be_saved_data = targetm.sched.alloc_sched_context ();
4401 targetm.sched.init_sched_context (save->be_saved_data, false);
4403 else
4404 save->be_saved_data = NULL;
4406 save->delay_pair = pair;
4408 save->next = backtrack_queue;
4409 backtrack_queue = save;
4411 while (pair)
4413 mark_backtrack_feeds (pair->i2, 1);
4414 INSN_TICK (pair->i2) = INVALID_TICK;
4415 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4416 SHADOW_P (pair->i2) = pair->stages == 0;
4417 pair = pair->next_same_i1;
4421 /* Walk the ready list and all queues. If any insns have unresolved backwards
4422 dependencies, these must be cancelled deps, broken by predication. Set or
4423 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */
4425 static void
4426 toggle_cancelled_flags (bool set)
4428 int i;
4429 sd_iterator_def sd_it;
4430 dep_t dep;
4432 if (ready.n_ready > 0)
4434 rtx_insn **first = ready_lastpos (&ready);
4435 for (i = 0; i < ready.n_ready; i++)
4436 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4437 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4439 if (set)
4440 DEP_STATUS (dep) |= DEP_CANCELLED;
4441 else
4442 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4445 for (i = 0; i <= max_insn_queue_index; i++)
4447 int q = NEXT_Q_AFTER (q_ptr, i);
4448 rtx_insn_list *link;
4449 for (link = insn_queue[q]; link; link = link->next ())
4451 rtx_insn *insn = link->insn ();
4452 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4453 if (!DEBUG_INSN_P (DEP_PRO (dep)))
4455 if (set)
4456 DEP_STATUS (dep) |= DEP_CANCELLED;
4457 else
4458 DEP_STATUS (dep) &= ~DEP_CANCELLED;
4464 /* Undo the replacements that have occurred after backtrack point SAVE
4465 was placed. */
4466 static void
4467 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4469 while (!save->replacement_deps.is_empty ())
4471 dep_t dep = save->replacement_deps.pop ();
4472 int apply_p = save->replace_apply.pop ();
4474 if (apply_p)
4475 restore_pattern (dep, true);
4476 else
4477 apply_replacement (dep, true);
4479 save->replacement_deps.release ();
4480 save->replace_apply.release ();
4483 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4484 Restore their dependencies to an unresolved state, and mark them as
4485 queued nowhere. */
4487 static void
4488 unschedule_insns_until (rtx_insn *insn)
4490 auto_vec<rtx_insn *> recompute_vec;
4492 /* Make two passes over the insns to be unscheduled. First, we clear out
4493 dependencies and other trivial bookkeeping. */
4494 for (;;)
4496 rtx_insn *last;
4497 sd_iterator_def sd_it;
4498 dep_t dep;
4500 last = scheduled_insns.pop ();
4502 /* This will be changed by restore_backtrack_point if the insn is in
4503 any queue. */
4504 QUEUE_INDEX (last) = QUEUE_NOWHERE;
4505 if (last != insn)
4506 INSN_TICK (last) = INVALID_TICK;
4508 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4509 modulo_insns_scheduled--;
4511 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4512 sd_iterator_cond (&sd_it, &dep);)
4514 rtx_insn *con = DEP_CON (dep);
4515 sd_unresolve_dep (sd_it);
4516 if (!MUST_RECOMPUTE_SPEC_P (con))
4518 MUST_RECOMPUTE_SPEC_P (con) = 1;
4519 recompute_vec.safe_push (con);
4523 if (last == insn)
4524 break;
4527 /* A second pass, to update ready and speculation status for insns
4528 depending on the unscheduled ones. The first pass must have
4529 popped the scheduled_insns vector up to the point where we
4530 restart scheduling, as recompute_todo_spec requires it to be
4531 up-to-date. */
4532 while (!recompute_vec.is_empty ())
4534 rtx_insn *con;
4536 con = recompute_vec.pop ();
4537 MUST_RECOMPUTE_SPEC_P (con) = 0;
4538 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4540 TODO_SPEC (con) = HARD_DEP;
4541 INSN_TICK (con) = INVALID_TICK;
4542 if (PREDICATED_PAT (con) != NULL_RTX)
4543 haifa_change_pattern (con, ORIG_PAT (con));
4545 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4546 TODO_SPEC (con) = recompute_todo_spec (con, true);
4550 /* Restore scheduler state from the topmost entry on the backtracking queue.
4551 PSCHED_BLOCK_P points to the local data of schedule_block that we must
4552 overwrite with the saved data.
4553 The caller must already have called unschedule_insns_until. */
4555 static void
4556 restore_last_backtrack_point (struct sched_block_state *psched_block)
4558 int i;
4559 struct haifa_saved_data *save = backtrack_queue;
4561 backtrack_queue = save->next;
4563 if (current_sched_info->restore_state)
4564 (*current_sched_info->restore_state) (save->fe_saved_data);
4566 if (targetm.sched.alloc_sched_context)
4568 targetm.sched.set_sched_context (save->be_saved_data);
4569 targetm.sched.free_sched_context (save->be_saved_data);
4572 /* Do this first since it clobbers INSN_TICK of the involved
4573 instructions. */
4574 undo_replacements_for_backtrack (save);
4576 /* Clear the QUEUE_INDEX of everything in the ready list or one
4577 of the queues. */
4578 if (ready.n_ready > 0)
4580 rtx_insn **first = ready_lastpos (&ready);
4581 for (i = 0; i < ready.n_ready; i++)
4583 rtx_insn *insn = first[i];
4584 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4585 INSN_TICK (insn) = INVALID_TICK;
4588 for (i = 0; i <= max_insn_queue_index; i++)
4590 int q = NEXT_Q_AFTER (q_ptr, i);
4592 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4594 rtx_insn *x = link->insn ();
4595 QUEUE_INDEX (x) = QUEUE_NOWHERE;
4596 INSN_TICK (x) = INVALID_TICK;
4598 free_INSN_LIST_list (&insn_queue[q]);
4601 free (ready.vec);
4602 ready = save->ready;
4604 if (ready.n_ready > 0)
4606 rtx_insn **first = ready_lastpos (&ready);
4607 for (i = 0; i < ready.n_ready; i++)
4609 rtx_insn *insn = first[i];
4610 QUEUE_INDEX (insn) = QUEUE_READY;
4611 TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4612 INSN_TICK (insn) = save->clock_var;
4616 q_ptr = 0;
4617 q_size = save->q_size;
4618 for (i = 0; i <= max_insn_queue_index; i++)
4620 int q = NEXT_Q_AFTER (q_ptr, i);
4622 insn_queue[q] = save->insn_queue[q];
4624 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4626 rtx_insn *x = link->insn ();
4627 QUEUE_INDEX (x) = i;
4628 TODO_SPEC (x) = recompute_todo_spec (x, true);
4629 INSN_TICK (x) = save->clock_var + i;
4632 free (save->insn_queue);
4634 toggle_cancelled_flags (true);
4636 clock_var = save->clock_var;
4637 last_clock_var = save->last_clock_var;
4638 cycle_issued_insns = save->cycle_issued_insns;
4639 last_scheduled_insn = save->last_scheduled_insn;
4640 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4641 nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4643 *psched_block = save->sched_block;
4645 memcpy (curr_state, save->curr_state, dfa_state_size);
4646 free (save->curr_state);
4648 mark_backtrack_feeds (save->delay_pair->i2, 0);
4650 gcc_assert (next_cycle_replace_deps.is_empty ());
4651 next_cycle_replace_deps = save->next_cycle_deps.copy ();
4652 next_cycle_apply = save->next_cycle_apply.copy ();
4654 free (save);
4656 for (save = backtrack_queue; save; save = save->next)
4658 mark_backtrack_feeds (save->delay_pair->i2, 1);
4662 /* Discard all data associated with the topmost entry in the backtrack
4663 queue. If RESET_TICK is false, we just want to free the data. If true,
4664 we are doing this because we discovered a reason to backtrack. In the
4665 latter case, also reset the INSN_TICK for the shadow insn. */
4666 static void
4667 free_topmost_backtrack_point (bool reset_tick)
4669 struct haifa_saved_data *save = backtrack_queue;
4670 int i;
4672 backtrack_queue = save->next;
4674 if (reset_tick)
4676 struct delay_pair *pair = save->delay_pair;
4677 while (pair)
4679 INSN_TICK (pair->i2) = INVALID_TICK;
4680 INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4681 pair = pair->next_same_i1;
4683 undo_replacements_for_backtrack (save);
4685 else
4687 save->replacement_deps.release ();
4688 save->replace_apply.release ();
4691 if (targetm.sched.free_sched_context)
4692 targetm.sched.free_sched_context (save->be_saved_data);
4693 if (current_sched_info->restore_state)
4694 free (save->fe_saved_data);
4695 for (i = 0; i <= max_insn_queue_index; i++)
4696 free_INSN_LIST_list (&save->insn_queue[i]);
4697 free (save->insn_queue);
4698 free (save->curr_state);
4699 free (save->ready.vec);
4700 free (save);
4703 /* Free the entire backtrack queue. */
4704 static void
4705 free_backtrack_queue (void)
4707 while (backtrack_queue)
4708 free_topmost_backtrack_point (false);
4711 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we
4712 may have to postpone the replacement until the start of the next cycle,
4713 at which point we will be called again with IMMEDIATELY true. This is
4714 only done for machines which have instruction packets with explicit
4715 parallelism however. */
4716 static void
4717 apply_replacement (dep_t dep, bool immediately)
4719 struct dep_replacement *desc = DEP_REPLACE (dep);
4720 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4722 next_cycle_replace_deps.safe_push (dep);
4723 next_cycle_apply.safe_push (1);
4725 else
4727 bool success;
4729 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4730 return;
4732 if (sched_verbose >= 5)
4733 fprintf (sched_dump, "applying replacement for insn %d\n",
4734 INSN_UID (desc->insn));
4736 success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4737 gcc_assert (success);
4739 update_insn_after_change (desc->insn);
4740 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4741 fix_tick_ready (desc->insn);
4743 if (backtrack_queue != NULL)
4745 backtrack_queue->replacement_deps.safe_push (dep);
4746 backtrack_queue->replace_apply.safe_push (1);
4751 /* We have determined that a pattern involved in DEP must be restored.
4752 If IMMEDIATELY is false, we may have to postpone the replacement
4753 until the start of the next cycle, at which point we will be called
4754 again with IMMEDIATELY true. */
4755 static void
4756 restore_pattern (dep_t dep, bool immediately)
4758 rtx_insn *next = DEP_CON (dep);
4759 int tick = INSN_TICK (next);
4761 /* If we already scheduled the insn, the modified version is
4762 correct. */
4763 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4764 return;
4766 if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4768 next_cycle_replace_deps.safe_push (dep);
4769 next_cycle_apply.safe_push (0);
4770 return;
4774 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4776 if (sched_verbose >= 5)
4777 fprintf (sched_dump, "restoring pattern for insn %d\n",
4778 INSN_UID (next));
4779 haifa_change_pattern (next, ORIG_PAT (next));
4781 else
4783 struct dep_replacement *desc = DEP_REPLACE (dep);
4784 bool success;
4786 if (sched_verbose >= 5)
4787 fprintf (sched_dump, "restoring pattern for insn %d\n",
4788 INSN_UID (desc->insn));
4789 tick = INSN_TICK (desc->insn);
4791 success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4792 gcc_assert (success);
4793 update_insn_after_change (desc->insn);
4794 if (backtrack_queue != NULL)
4796 backtrack_queue->replacement_deps.safe_push (dep);
4797 backtrack_queue->replace_apply.safe_push (0);
4800 INSN_TICK (next) = tick;
4801 if (TODO_SPEC (next) == DEP_POSTPONED)
4802 return;
4804 if (sd_lists_empty_p (next, SD_LIST_BACK))
4805 TODO_SPEC (next) = 0;
4806 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4807 TODO_SPEC (next) = HARD_DEP;
4810 /* Perform pattern replacements that were queued up until the next
4811 cycle. */
4812 static void
4813 perform_replacements_new_cycle (void)
4815 int i;
4816 dep_t dep;
4817 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4819 int apply_p = next_cycle_apply[i];
4820 if (apply_p)
4821 apply_replacement (dep, true);
4822 else
4823 restore_pattern (dep, true);
4825 next_cycle_replace_deps.truncate (0);
4826 next_cycle_apply.truncate (0);
4829 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of
4830 instructions we've previously encountered, a set bit prevents
4831 recursion. BUDGET is a limit on how far ahead we look, it is
4832 reduced on recursive calls. Return true if we produced a good
4833 estimate, or false if we exceeded the budget. */
4834 static bool
4835 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4837 sd_iterator_def sd_it;
4838 dep_t dep;
4839 int earliest = INSN_TICK (insn);
4841 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4843 rtx_insn *pro = DEP_PRO (dep);
4844 int t;
4846 if (DEP_STATUS (dep) & DEP_CANCELLED)
4847 continue;
4849 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4850 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4851 else
4853 int cost = dep_cost (dep);
4854 if (cost >= budget)
4855 return false;
4856 if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4858 if (!estimate_insn_tick (processed, pro, budget - cost))
4859 return false;
4861 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4862 t = INSN_TICK_ESTIMATE (pro) + cost;
4863 if (earliest == INVALID_TICK || t > earliest)
4864 earliest = t;
4867 bitmap_set_bit (processed, INSN_LUID (insn));
4868 INSN_TICK_ESTIMATE (insn) = earliest;
4869 return true;
4872 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4873 infinite resources) the cycle in which the delayed shadow can be issued.
4874 Return the number of cycles that must pass before the real insn can be
4875 issued in order to meet this constraint. */
4876 static int
4877 estimate_shadow_tick (struct delay_pair *p)
4879 bitmap_head processed;
4880 int t;
4881 bool cutoff;
4882 bitmap_initialize (&processed, 0);
4884 cutoff = !estimate_insn_tick (&processed, p->i2,
4885 max_insn_queue_index + pair_delay (p));
4886 bitmap_clear (&processed);
4887 if (cutoff)
4888 return max_insn_queue_index;
4889 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4890 if (t > 0)
4891 return t;
4892 return 0;
4895 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4896 recursively resolve all its forward dependencies. */
4897 static void
4898 resolve_dependencies (rtx_insn *insn)
4900 sd_iterator_def sd_it;
4901 dep_t dep;
4903 /* Don't use sd_lists_empty_p; it ignores debug insns. */
4904 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4905 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4906 return;
4908 if (sched_verbose >= 4)
4909 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4911 if (QUEUE_INDEX (insn) >= 0)
4912 queue_remove (insn);
4914 scheduled_insns.safe_push (insn);
4916 /* Update dependent instructions. */
4917 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4918 sd_iterator_cond (&sd_it, &dep);)
4920 rtx_insn *next = DEP_CON (dep);
4922 if (sched_verbose >= 4)
4923 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4924 INSN_UID (next));
4926 /* Resolve the dependence between INSN and NEXT.
4927 sd_resolve_dep () moves current dep to another list thus
4928 advancing the iterator. */
4929 sd_resolve_dep (sd_it);
4931 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4933 resolve_dependencies (next);
4935 else
4936 /* Check always has only one forward dependence (to the first insn in
4937 the recovery block), therefore, this will be executed only once. */
4939 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4945 /* Return the head and tail pointers of ebb starting at BEG and ending
4946 at END. */
4947 void
4948 get_ebb_head_tail (basic_block beg, basic_block end,
4949 rtx_insn **headp, rtx_insn **tailp)
4951 rtx_insn *beg_head = BB_HEAD (beg);
4952 rtx_insn * beg_tail = BB_END (beg);
4953 rtx_insn * end_head = BB_HEAD (end);
4954 rtx_insn * end_tail = BB_END (end);
4956 /* Don't include any notes or labels at the beginning of the BEG
4957 basic block, or notes at the end of the END basic blocks. */
4959 if (LABEL_P (beg_head))
4960 beg_head = NEXT_INSN (beg_head);
4962 while (beg_head != beg_tail)
4963 if (NOTE_P (beg_head))
4964 beg_head = NEXT_INSN (beg_head);
4965 else if (DEBUG_INSN_P (beg_head))
4967 rtx_insn * note, *next;
4969 for (note = NEXT_INSN (beg_head);
4970 note != beg_tail;
4971 note = next)
4973 next = NEXT_INSN (note);
4974 if (NOTE_P (note))
4976 if (sched_verbose >= 9)
4977 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4979 reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4981 if (BLOCK_FOR_INSN (note) != beg)
4982 df_insn_change_bb (note, beg);
4984 else if (!DEBUG_INSN_P (note))
4985 break;
4988 break;
4990 else
4991 break;
4993 *headp = beg_head;
4995 if (beg == end)
4996 end_head = beg_head;
4997 else if (LABEL_P (end_head))
4998 end_head = NEXT_INSN (end_head);
5000 while (end_head != end_tail)
5001 if (NOTE_P (end_tail))
5002 end_tail = PREV_INSN (end_tail);
5003 else if (DEBUG_INSN_P (end_tail))
5005 rtx_insn * note, *prev;
5007 for (note = PREV_INSN (end_tail);
5008 note != end_head;
5009 note = prev)
5011 prev = PREV_INSN (note);
5012 if (NOTE_P (note))
5014 if (sched_verbose >= 9)
5015 fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
5017 reorder_insns_nobb (note, note, end_tail);
5019 if (end_tail == BB_END (end))
5020 BB_END (end) = note;
5022 if (BLOCK_FOR_INSN (note) != end)
5023 df_insn_change_bb (note, end);
5025 else if (!DEBUG_INSN_P (note))
5026 break;
5029 break;
5031 else
5032 break;
5034 *tailp = end_tail;
5037 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
5040 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5042 while (head != NEXT_INSN (tail))
5044 if (!NOTE_P (head) && !LABEL_P (head))
5045 return 0;
5046 head = NEXT_INSN (head);
5048 return 1;
5051 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5052 previously found among the insns. Insert them just before HEAD. */
5053 rtx_insn *
5054 restore_other_notes (rtx_insn *head, basic_block head_bb)
5056 if (note_list != 0)
5058 rtx_insn *note_head = note_list;
5060 if (head)
5061 head_bb = BLOCK_FOR_INSN (head);
5062 else
5063 head = NEXT_INSN (bb_note (head_bb));
5065 while (PREV_INSN (note_head))
5067 set_block_for_insn (note_head, head_bb);
5068 note_head = PREV_INSN (note_head);
5070 /* In the above cycle we've missed this note. */
5071 set_block_for_insn (note_head, head_bb);
5073 SET_PREV_INSN (note_head) = PREV_INSN (head);
5074 SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5075 SET_PREV_INSN (head) = note_list;
5076 SET_NEXT_INSN (note_list) = head;
5078 if (BLOCK_FOR_INSN (head) != head_bb)
5079 BB_END (head_bb) = note_list;
5081 head = note_head;
5084 return head;
5087 /* When we know we are going to discard the schedule due to a failed attempt
5088 at modulo scheduling, undo all replacements. */
5089 static void
5090 undo_all_replacements (void)
5092 rtx_insn *insn;
5093 int i;
5095 FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5097 sd_iterator_def sd_it;
5098 dep_t dep;
5100 /* See if we must undo a replacement. */
5101 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5102 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5104 struct dep_replacement *desc = DEP_REPLACE (dep);
5105 if (desc != NULL)
5106 validate_change (desc->insn, desc->loc, desc->orig, 0);
5111 /* Return first non-scheduled insn in the current scheduling block.
5112 This is mostly used for debug-counter purposes. */
5113 static rtx_insn *
5114 first_nonscheduled_insn (void)
5116 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5117 ? nonscheduled_insns_begin
5118 : current_sched_info->prev_head);
5122 insn = next_nonnote_nondebug_insn (insn);
5124 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5126 return insn;
5129 /* Move insns that became ready to fire from queue to ready list. */
5131 static void
5132 queue_to_ready (struct ready_list *ready)
5134 rtx_insn *insn;
5135 rtx_insn_list *link;
5136 rtx_insn *skip_insn;
5138 q_ptr = NEXT_Q (q_ptr);
5140 if (dbg_cnt (sched_insn) == false)
5141 /* If debug counter is activated do not requeue the first
5142 nonscheduled insn. */
5143 skip_insn = first_nonscheduled_insn ();
5144 else
5145 skip_insn = NULL;
5147 /* Add all pending insns that can be scheduled without stalls to the
5148 ready list. */
5149 for (link = insn_queue[q_ptr]; link; link = link->next ())
5151 insn = link->insn ();
5152 q_size -= 1;
5154 if (sched_verbose >= 2)
5155 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5156 (*current_sched_info->print_insn) (insn, 0));
5158 /* If the ready list is full, delay the insn for 1 cycle.
5159 See the comment in schedule_block for the rationale. */
5160 if (!reload_completed
5161 && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5162 || (sched_pressure == SCHED_PRESSURE_MODEL
5163 /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5164 instructions too. */
5165 && model_index (insn) > (model_curr_point
5166 + MAX_SCHED_READY_INSNS)))
5167 && !(sched_pressure == SCHED_PRESSURE_MODEL
5168 && model_curr_point < model_num_insns
5169 /* Always allow the next model instruction to issue. */
5170 && model_index (insn) == model_curr_point)
5171 && !SCHED_GROUP_P (insn)
5172 && insn != skip_insn)
5174 if (sched_verbose >= 2)
5175 fprintf (sched_dump, "keeping in queue, ready full\n");
5176 queue_insn (insn, 1, "ready full");
5178 else
5180 ready_add (ready, insn, false);
5181 if (sched_verbose >= 2)
5182 fprintf (sched_dump, "moving to ready without stalls\n");
5185 free_INSN_LIST_list (&insn_queue[q_ptr]);
5187 /* If there are no ready insns, stall until one is ready and add all
5188 of the pending insns at that point to the ready list. */
5189 if (ready->n_ready == 0)
5191 int stalls;
5193 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5195 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5197 for (; link; link = link->next ())
5199 insn = link->insn ();
5200 q_size -= 1;
5202 if (sched_verbose >= 2)
5203 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5204 (*current_sched_info->print_insn) (insn, 0));
5206 ready_add (ready, insn, false);
5207 if (sched_verbose >= 2)
5208 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5210 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5212 advance_one_cycle ();
5214 break;
5217 advance_one_cycle ();
5220 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5221 clock_var += stalls;
5222 if (sched_verbose >= 2)
5223 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5224 stalls, clock_var);
5228 /* Used by early_queue_to_ready. Determines whether it is "ok" to
5229 prematurely move INSN from the queue to the ready list. Currently,
5230 if a target defines the hook 'is_costly_dependence', this function
5231 uses the hook to check whether there exist any dependences which are
5232 considered costly by the target, between INSN and other insns that
5233 have already been scheduled. Dependences are checked up to Y cycles
5234 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5235 controlling this value.
5236 (Other considerations could be taken into account instead (or in
5237 addition) depending on user flags and target hooks. */
5239 static bool
5240 ok_for_early_queue_removal (rtx_insn *insn)
5242 if (targetm.sched.is_costly_dependence)
5244 int n_cycles;
5245 int i = scheduled_insns.length ();
5246 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5248 while (i-- > 0)
5250 int cost;
5252 rtx_insn *prev_insn = scheduled_insns[i];
5254 if (!NOTE_P (prev_insn))
5256 dep_t dep;
5258 dep = sd_find_dep_between (prev_insn, insn, true);
5260 if (dep != NULL)
5262 cost = dep_cost (dep);
5264 if (targetm.sched.is_costly_dependence (dep, cost,
5265 flag_sched_stalled_insns_dep - n_cycles))
5266 return false;
5270 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5271 break;
5274 if (i == 0)
5275 break;
5279 return true;
5283 /* Remove insns from the queue, before they become "ready" with respect
5284 to FU latency considerations. */
5286 static int
5287 early_queue_to_ready (state_t state, struct ready_list *ready)
5289 rtx_insn *insn;
5290 rtx_insn_list *link;
5291 rtx_insn_list *next_link;
5292 rtx_insn_list *prev_link;
5293 bool move_to_ready;
5294 int cost;
5295 state_t temp_state = alloca (dfa_state_size);
5296 int stalls;
5297 int insns_removed = 0;
5300 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5301 function:
5303 X == 0: There is no limit on how many queued insns can be removed
5304 prematurely. (flag_sched_stalled_insns = -1).
5306 X >= 1: Only X queued insns can be removed prematurely in each
5307 invocation. (flag_sched_stalled_insns = X).
5309 Otherwise: Early queue removal is disabled.
5310 (flag_sched_stalled_insns = 0)
5313 if (! flag_sched_stalled_insns)
5314 return 0;
5316 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5318 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5320 if (sched_verbose > 6)
5321 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5323 prev_link = 0;
5324 while (link)
5326 next_link = link->next ();
5327 insn = link->insn ();
5328 if (insn && sched_verbose > 6)
5329 print_rtl_single (sched_dump, insn);
5331 memcpy (temp_state, state, dfa_state_size);
5332 if (recog_memoized (insn) < 0)
5333 /* non-negative to indicate that it's not ready
5334 to avoid infinite Q->R->Q->R... */
5335 cost = 0;
5336 else
5337 cost = state_transition (temp_state, insn);
5339 if (sched_verbose >= 6)
5340 fprintf (sched_dump, "transition cost = %d\n", cost);
5342 move_to_ready = false;
5343 if (cost < 0)
5345 move_to_ready = ok_for_early_queue_removal (insn);
5346 if (move_to_ready == true)
5348 /* move from Q to R */
5349 q_size -= 1;
5350 ready_add (ready, insn, false);
5352 if (prev_link)
5353 XEXP (prev_link, 1) = next_link;
5354 else
5355 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5357 free_INSN_LIST_node (link);
5359 if (sched_verbose >= 2)
5360 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5361 (*current_sched_info->print_insn) (insn, 0));
5363 insns_removed++;
5364 if (insns_removed == flag_sched_stalled_insns)
5365 /* Remove no more than flag_sched_stalled_insns insns
5366 from Q at a time. */
5367 return insns_removed;
5371 if (move_to_ready == false)
5372 prev_link = link;
5374 link = next_link;
5375 } /* while link */
5376 } /* if link */
5378 } /* for stalls.. */
5380 return insns_removed;
5384 /* Print the ready list for debugging purposes.
5385 If READY_TRY is non-zero then only print insns that max_issue
5386 will consider. */
5387 static void
5388 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5390 rtx_insn **p;
5391 int i;
5393 if (ready->n_ready == 0)
5395 fprintf (sched_dump, "\n");
5396 return;
5399 p = ready_lastpos (ready);
5400 for (i = 0; i < ready->n_ready; i++)
5402 if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5403 continue;
5405 fprintf (sched_dump, " %s:%d",
5406 (*current_sched_info->print_insn) (p[i], 0),
5407 INSN_LUID (p[i]));
5408 if (sched_pressure != SCHED_PRESSURE_NONE)
5409 fprintf (sched_dump, "(cost=%d",
5410 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5411 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5412 if (INSN_TICK (p[i]) > clock_var)
5413 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5414 if (sched_pressure == SCHED_PRESSURE_MODEL)
5415 fprintf (sched_dump, ":idx=%d",
5416 model_index (p[i]));
5417 if (sched_pressure != SCHED_PRESSURE_NONE)
5418 fprintf (sched_dump, ")");
5420 fprintf (sched_dump, "\n");
5423 /* Print the ready list. Callable from debugger. */
5424 static void
5425 debug_ready_list (struct ready_list *ready)
5427 debug_ready_list_1 (ready, NULL);
5430 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5431 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5432 replaces the epilogue note in the correct basic block. */
5433 void
5434 reemit_notes (rtx_insn *insn)
5436 rtx note;
5437 rtx_insn *last = insn;
5439 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5441 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5443 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5445 last = emit_note_before (note_type, last);
5446 remove_note (insn, note);
5451 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
5452 static void
5453 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5455 if (PREV_INSN (insn) != last)
5457 basic_block bb;
5458 rtx_insn *note;
5459 int jump_p = 0;
5461 bb = BLOCK_FOR_INSN (insn);
5463 /* BB_HEAD is either LABEL or NOTE. */
5464 gcc_assert (BB_HEAD (bb) != insn);
5466 if (BB_END (bb) == insn)
5467 /* If this is last instruction in BB, move end marker one
5468 instruction up. */
5470 /* Jumps are always placed at the end of basic block. */
5471 jump_p = control_flow_insn_p (insn);
5473 gcc_assert (!jump_p
5474 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5475 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5476 || (common_sched_info->sched_pass_id
5477 == SCHED_EBB_PASS));
5479 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5481 BB_END (bb) = PREV_INSN (insn);
5484 gcc_assert (BB_END (bb) != last);
5486 if (jump_p)
5487 /* We move the block note along with jump. */
5489 gcc_assert (nt);
5491 note = NEXT_INSN (insn);
5492 while (NOTE_NOT_BB_P (note) && note != nt)
5493 note = NEXT_INSN (note);
5495 if (note != nt
5496 && (LABEL_P (note)
5497 || BARRIER_P (note)))
5498 note = NEXT_INSN (note);
5500 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5502 else
5503 note = insn;
5505 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5506 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5508 SET_NEXT_INSN (note) = NEXT_INSN (last);
5509 SET_PREV_INSN (NEXT_INSN (last)) = note;
5511 SET_NEXT_INSN (last) = insn;
5512 SET_PREV_INSN (insn) = last;
5514 bb = BLOCK_FOR_INSN (last);
5516 if (jump_p)
5518 fix_jump_move (insn);
5520 if (BLOCK_FOR_INSN (insn) != bb)
5521 move_block_after_check (insn);
5523 gcc_assert (BB_END (bb) == last);
5526 df_insn_change_bb (insn, bb);
5528 /* Update BB_END, if needed. */
5529 if (BB_END (bb) == last)
5530 BB_END (bb) = insn;
5533 SCHED_GROUP_P (insn) = 0;
5536 /* Return true if scheduling INSN will finish current clock cycle. */
5537 static bool
5538 insn_finishes_cycle_p (rtx_insn *insn)
5540 if (SCHED_GROUP_P (insn))
5541 /* After issuing INSN, rest of the sched_group will be forced to issue
5542 in order. Don't make any plans for the rest of cycle. */
5543 return true;
5545 /* Finishing the block will, apparently, finish the cycle. */
5546 if (current_sched_info->insn_finishes_block_p
5547 && current_sched_info->insn_finishes_block_p (insn))
5548 return true;
5550 return false;
5553 /* Functions to model cache auto-prefetcher.
5555 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5556 memory prefetches if it sees instructions with consequitive memory accesses
5557 in the instruction stream. Details of such hardware units are not published,
5558 so we can only guess what exactly is going on there.
5559 In the scheduler, we model abstract auto-prefetcher. If there are memory
5560 insns in the ready list (or the queue) that have same memory base, but
5561 different offsets, then we delay the insns with larger offsets until insns
5562 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5563 is "1", then we look at the ready list; if it is N>1, then we also look
5564 through N-1 queue entries.
5565 If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5566 among its heuristics.
5567 Param value of "-1" disables modelling of the auto-prefetcher. */
5569 /* Initialize autoprefetcher model data for INSN. */
5570 static void
5571 autopref_multipass_init (const rtx_insn *insn, int write)
5573 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5575 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5576 data->base = NULL_RTX;
5577 data->offset = 0;
5578 /* Set insn entry initialized, but not relevant for auto-prefetcher. */
5579 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5581 rtx set = single_set (insn);
5582 if (set == NULL_RTX)
5583 return;
5585 rtx mem = write ? SET_DEST (set) : SET_SRC (set);
5586 if (!MEM_P (mem))
5587 return;
5589 struct address_info info;
5590 decompose_mem_address (&info, mem);
5592 /* TODO: Currently only (base+const) addressing is supported. */
5593 if (info.base == NULL || !REG_P (*info.base)
5594 || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5595 return;
5597 /* This insn is relevant for auto-prefetcher. */
5598 data->base = *info.base;
5599 data->offset = info.disp ? INTVAL (*info.disp) : 0;
5600 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5603 /* Helper function for rank_for_schedule sorting. */
5604 static int
5605 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5607 for (int write = 0; write < 2; ++write)
5609 autopref_multipass_data_t data1
5610 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5611 autopref_multipass_data_t data2
5612 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5614 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5615 autopref_multipass_init (insn1, write);
5616 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5617 continue;
5619 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5620 autopref_multipass_init (insn2, write);
5621 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5622 continue;
5624 if (!rtx_equal_p (data1->base, data2->base))
5625 continue;
5627 return data1->offset - data2->offset;
5630 return 0;
5633 /* True if header of debug dump was printed. */
5634 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5636 /* Helper for autopref_multipass_dfa_lookahead_guard.
5637 Return "1" if INSN1 should be delayed in favor of INSN2. */
5638 static int
5639 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5640 const rtx_insn *insn2, int write)
5642 autopref_multipass_data_t data1
5643 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5644 autopref_multipass_data_t data2
5645 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5647 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5648 autopref_multipass_init (insn2, write);
5649 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5650 return 0;
5652 if (rtx_equal_p (data1->base, data2->base)
5653 && data1->offset > data2->offset)
5655 if (sched_verbose >= 2)
5657 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5659 fprintf (sched_dump,
5660 ";;\t\tnot trying in max_issue due to autoprefetch "
5661 "model: ");
5662 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5665 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5668 return 1;
5671 return 0;
5674 /* General note:
5676 We could have also hooked autoprefetcher model into
5677 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5678 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5679 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5680 unblocked). We don't bother about this yet because target of interest
5681 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */
5683 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5684 Return "1" if INSN1 should not be considered in max_issue due to
5685 auto-prefetcher considerations. */
5687 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5689 int r = 0;
5691 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5692 return 0;
5694 if (sched_verbose >= 2 && ready_index == 0)
5695 autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5697 for (int write = 0; write < 2; ++write)
5699 autopref_multipass_data_t data1
5700 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5702 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5703 autopref_multipass_init (insn1, write);
5704 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5705 continue;
5707 if (ready_index == 0
5708 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5709 /* We allow only a single delay on priviledged instructions.
5710 Doing otherwise would cause infinite loop. */
5712 if (sched_verbose >= 2)
5714 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5716 fprintf (sched_dump,
5717 ";;\t\tnot trying in max_issue due to autoprefetch "
5718 "model: ");
5719 autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5722 fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5724 continue;
5727 for (int i2 = 0; i2 < ready.n_ready; ++i2)
5729 rtx_insn *insn2 = get_ready_element (i2);
5730 if (insn1 == insn2)
5731 continue;
5732 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5733 if (r)
5735 if (ready_index == 0)
5737 r = -1;
5738 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5740 goto finish;
5744 if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5745 continue;
5747 /* Everything from the current queue slot should have been moved to
5748 the ready list. */
5749 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5751 int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5752 if (n_stalls > max_insn_queue_index)
5753 n_stalls = max_insn_queue_index;
5755 for (int stalls = 1; stalls <= n_stalls; ++stalls)
5757 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5758 link != NULL_RTX;
5759 link = link->next ())
5761 rtx_insn *insn2 = link->insn ();
5762 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5763 write);
5764 if (r)
5766 /* Queue INSN1 until INSN2 can issue. */
5767 r = -stalls;
5768 if (ready_index == 0)
5769 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5770 goto finish;
5776 finish:
5777 if (sched_verbose >= 2
5778 && autopref_multipass_dfa_lookahead_guard_started_dump_p
5779 && (ready_index == ready.n_ready - 1 || r < 0))
5780 /* This does not /always/ trigger. We don't output EOL if the last
5781 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5782 called. We can live with this. */
5783 fprintf (sched_dump, "\n");
5785 return r;
5788 /* Define type for target data used in multipass scheduling. */
5789 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5790 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5791 #endif
5792 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5794 /* The following structure describe an entry of the stack of choices. */
5795 struct choice_entry
5797 /* Ordinal number of the issued insn in the ready queue. */
5798 int index;
5799 /* The number of the rest insns whose issues we should try. */
5800 int rest;
5801 /* The number of issued essential insns. */
5802 int n;
5803 /* State after issuing the insn. */
5804 state_t state;
5805 /* Target-specific data. */
5806 first_cycle_multipass_data_t target_data;
5809 /* The following array is used to implement a stack of choices used in
5810 function max_issue. */
5811 static struct choice_entry *choice_stack;
5813 /* This holds the value of the target dfa_lookahead hook. */
5814 int dfa_lookahead;
5816 /* The following variable value is maximal number of tries of issuing
5817 insns for the first cycle multipass insn scheduling. We define
5818 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
5819 need this constraint if all real insns (with non-negative codes)
5820 had reservations because in this case the algorithm complexity is
5821 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
5822 might be incomplete and such insn might occur. For such
5823 descriptions, the complexity of algorithm (without the constraint)
5824 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
5825 static int max_lookahead_tries;
5827 /* The following function returns maximal (or close to maximal) number
5828 of insns which can be issued on the same cycle and one of which
5829 insns is insns with the best rank (the first insn in READY). To
5830 make this function tries different samples of ready insns. READY
5831 is current queue `ready'. Global array READY_TRY reflects what
5832 insns are already issued in this try. The function stops immediately,
5833 if it reached the such a solution, that all instruction can be issued.
5834 INDEX will contain index of the best insn in READY. The following
5835 function is used only for first cycle multipass scheduling.
5837 PRIVILEGED_N >= 0
5839 This function expects recognized insns only. All USEs,
5840 CLOBBERs, etc must be filtered elsewhere. */
5842 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5843 bool first_cycle_insn_p, int *index)
5845 int n, i, all, n_ready, best, delay, tries_num;
5846 int more_issue;
5847 struct choice_entry *top;
5848 rtx_insn *insn;
5850 if (sched_fusion)
5851 return 0;
5853 n_ready = ready->n_ready;
5854 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5855 && privileged_n <= n_ready);
5857 /* Init MAX_LOOKAHEAD_TRIES. */
5858 if (max_lookahead_tries == 0)
5860 max_lookahead_tries = 100;
5861 for (i = 0; i < issue_rate; i++)
5862 max_lookahead_tries *= dfa_lookahead;
5865 /* Init max_points. */
5866 more_issue = issue_rate - cycle_issued_insns;
5867 gcc_assert (more_issue >= 0);
5869 /* The number of the issued insns in the best solution. */
5870 best = 0;
5872 top = choice_stack;
5874 /* Set initial state of the search. */
5875 memcpy (top->state, state, dfa_state_size);
5876 top->rest = dfa_lookahead;
5877 top->n = 0;
5878 if (targetm.sched.first_cycle_multipass_begin)
5879 targetm.sched.first_cycle_multipass_begin (&top->target_data,
5880 ready_try, n_ready,
5881 first_cycle_insn_p);
5883 /* Count the number of the insns to search among. */
5884 for (all = i = 0; i < n_ready; i++)
5885 if (!ready_try [i])
5886 all++;
5888 if (sched_verbose >= 2)
5890 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5891 debug_ready_list_1 (ready, ready_try);
5894 /* I is the index of the insn to try next. */
5895 i = 0;
5896 tries_num = 0;
5897 for (;;)
5899 if (/* If we've reached a dead end or searched enough of what we have
5900 been asked... */
5901 top->rest == 0
5902 /* or have nothing else to try... */
5903 || i >= n_ready
5904 /* or should not issue more. */
5905 || top->n >= more_issue)
5907 /* ??? (... || i == n_ready). */
5908 gcc_assert (i <= n_ready);
5910 /* We should not issue more than issue_rate instructions. */
5911 gcc_assert (top->n <= more_issue);
5913 if (top == choice_stack)
5914 break;
5916 if (best < top - choice_stack)
5918 if (privileged_n)
5920 n = privileged_n;
5921 /* Try to find issued privileged insn. */
5922 while (n && !ready_try[--n])
5926 if (/* If all insns are equally good... */
5927 privileged_n == 0
5928 /* Or a privileged insn will be issued. */
5929 || ready_try[n])
5930 /* Then we have a solution. */
5932 best = top - choice_stack;
5933 /* This is the index of the insn issued first in this
5934 solution. */
5935 *index = choice_stack [1].index;
5936 if (top->n == more_issue || best == all)
5937 break;
5941 /* Set ready-list index to point to the last insn
5942 ('i++' below will advance it to the next insn). */
5943 i = top->index;
5945 /* Backtrack. */
5946 ready_try [i] = 0;
5948 if (targetm.sched.first_cycle_multipass_backtrack)
5949 targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5950 ready_try, n_ready);
5952 top--;
5953 memcpy (state, top->state, dfa_state_size);
5955 else if (!ready_try [i])
5957 tries_num++;
5958 if (tries_num > max_lookahead_tries)
5959 break;
5960 insn = ready_element (ready, i);
5961 delay = state_transition (state, insn);
5962 if (delay < 0)
5964 if (state_dead_lock_p (state)
5965 || insn_finishes_cycle_p (insn))
5966 /* We won't issue any more instructions in the next
5967 choice_state. */
5968 top->rest = 0;
5969 else
5970 top->rest--;
5972 n = top->n;
5973 if (memcmp (top->state, state, dfa_state_size) != 0)
5974 n++;
5976 /* Advance to the next choice_entry. */
5977 top++;
5978 /* Initialize it. */
5979 top->rest = dfa_lookahead;
5980 top->index = i;
5981 top->n = n;
5982 memcpy (top->state, state, dfa_state_size);
5983 ready_try [i] = 1;
5985 if (targetm.sched.first_cycle_multipass_issue)
5986 targetm.sched.first_cycle_multipass_issue (&top->target_data,
5987 ready_try, n_ready,
5988 insn,
5989 &((top - 1)
5990 ->target_data));
5992 i = -1;
5996 /* Increase ready-list index. */
5997 i++;
6000 if (targetm.sched.first_cycle_multipass_end)
6001 targetm.sched.first_cycle_multipass_end (best != 0
6002 ? &choice_stack[1].target_data
6003 : NULL);
6005 /* Restore the original state of the DFA. */
6006 memcpy (state, choice_stack->state, dfa_state_size);
6008 return best;
6011 /* The following function chooses insn from READY and modifies
6012 READY. The following function is used only for first
6013 cycle multipass scheduling.
6014 Return:
6015 -1 if cycle should be advanced,
6016 0 if INSN_PTR is set to point to the desirable insn,
6017 1 if choose_ready () should be restarted without advancing the cycle. */
6018 static int
6019 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6020 rtx_insn **insn_ptr)
6022 if (dbg_cnt (sched_insn) == false)
6024 if (nonscheduled_insns_begin == NULL_RTX)
6025 nonscheduled_insns_begin = current_sched_info->prev_head;
6027 rtx_insn *insn = first_nonscheduled_insn ();
6029 if (QUEUE_INDEX (insn) == QUEUE_READY)
6030 /* INSN is in the ready_list. */
6032 ready_remove_insn (insn);
6033 *insn_ptr = insn;
6034 return 0;
6037 /* INSN is in the queue. Advance cycle to move it to the ready list. */
6038 gcc_assert (QUEUE_INDEX (insn) >= 0);
6039 return -1;
6042 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6043 || DEBUG_INSN_P (ready_element (ready, 0)))
6045 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6046 *insn_ptr = ready_remove_first_dispatch (ready);
6047 else
6048 *insn_ptr = ready_remove_first (ready);
6050 return 0;
6052 else
6054 /* Try to choose the best insn. */
6055 int index = 0, i;
6056 rtx_insn *insn;
6058 insn = ready_element (ready, 0);
6059 if (INSN_CODE (insn) < 0)
6061 *insn_ptr = ready_remove_first (ready);
6062 return 0;
6065 /* Filter the search space. */
6066 for (i = 0; i < ready->n_ready; i++)
6068 ready_try[i] = 0;
6070 insn = ready_element (ready, i);
6072 /* If this insn is recognizable we should have already
6073 recognized it earlier.
6074 ??? Not very clear where this is supposed to be done.
6075 See dep_cost_1. */
6076 gcc_checking_assert (INSN_CODE (insn) >= 0
6077 || recog_memoized (insn) < 0);
6078 if (INSN_CODE (insn) < 0)
6080 /* Non-recognized insns at position 0 are handled above. */
6081 gcc_assert (i > 0);
6082 ready_try[i] = 1;
6083 continue;
6086 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6088 ready_try[i]
6089 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6090 (insn, i));
6092 if (ready_try[i] < 0)
6093 /* Queue instruction for several cycles.
6094 We need to restart choose_ready as we have changed
6095 the ready list. */
6097 change_queue_index (insn, -ready_try[i]);
6098 return 1;
6101 /* Make sure that we didn't end up with 0'th insn filtered out.
6102 Don't be tempted to make life easier for backends and just
6103 requeue 0'th insn if (ready_try[0] == 0) and restart
6104 choose_ready. Backends should be very considerate about
6105 requeueing instructions -- especially the highest priority
6106 one at position 0. */
6107 gcc_assert (ready_try[i] == 0 || i > 0);
6108 if (ready_try[i])
6109 continue;
6112 gcc_assert (ready_try[i] == 0);
6113 /* INSN made it through the scrutiny of filters! */
6116 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6118 *insn_ptr = ready_remove_first (ready);
6119 if (sched_verbose >= 4)
6120 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6121 (*current_sched_info->print_insn) (*insn_ptr, 0));
6122 return 0;
6124 else
6126 if (sched_verbose >= 4)
6127 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6128 (*current_sched_info->print_insn)
6129 (ready_element (ready, index), 0));
6131 *insn_ptr = ready_remove (ready, index);
6132 return 0;
6137 /* This function is called when we have successfully scheduled a
6138 block. It uses the schedule stored in the scheduled_insns vector
6139 to rearrange the RTL. PREV_HEAD is used as the anchor to which we
6140 append the scheduled insns; TAIL is the insn after the scheduled
6141 block. TARGET_BB is the argument passed to schedule_block. */
6143 static void
6144 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6146 unsigned int i;
6147 rtx_insn *insn;
6149 last_scheduled_insn = prev_head;
6150 for (i = 0;
6151 scheduled_insns.iterate (i, &insn);
6152 i++)
6154 if (control_flow_insn_p (last_scheduled_insn)
6155 || current_sched_info->advance_target_bb (*target_bb, insn))
6157 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6159 if (sched_verbose)
6161 rtx_insn *x;
6163 x = next_real_insn (last_scheduled_insn);
6164 gcc_assert (x);
6165 dump_new_block_header (1, *target_bb, x, tail);
6168 last_scheduled_insn = bb_note (*target_bb);
6171 if (current_sched_info->begin_move_insn)
6172 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6173 move_insn (insn, last_scheduled_insn,
6174 current_sched_info->next_tail);
6175 if (!DEBUG_INSN_P (insn))
6176 reemit_notes (insn);
6177 last_scheduled_insn = insn;
6180 scheduled_insns.truncate (0);
6183 /* Examine all insns on the ready list and queue those which can't be
6184 issued in this cycle. TEMP_STATE is temporary scheduler state we
6185 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns
6186 have been issued for the current cycle, which means it is valid to
6187 issue an asm statement.
6189 If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6190 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true,
6191 we only leave insns which have an INSN_EXACT_TICK. */
6193 static void
6194 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6195 bool shadows_only_p, bool modulo_epilogue_p)
6197 int i, pass;
6198 bool sched_group_found = false;
6199 int min_cost_group = 1;
6201 if (sched_fusion)
6202 return;
6204 for (i = 0; i < ready.n_ready; i++)
6206 rtx_insn *insn = ready_element (&ready, i);
6207 if (SCHED_GROUP_P (insn))
6209 sched_group_found = true;
6210 break;
6214 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6215 such an insn first and note its cost, then schedule all other insns
6216 for one cycle later. */
6217 for (pass = sched_group_found ? 0 : 1; pass < 2; )
6219 int n = ready.n_ready;
6220 for (i = 0; i < n; i++)
6222 rtx_insn *insn = ready_element (&ready, i);
6223 int cost = 0;
6224 const char *reason = "resource conflict";
6226 if (DEBUG_INSN_P (insn))
6227 continue;
6229 if (sched_group_found && !SCHED_GROUP_P (insn))
6231 if (pass == 0)
6232 continue;
6233 cost = min_cost_group;
6234 reason = "not in sched group";
6236 else if (modulo_epilogue_p
6237 && INSN_EXACT_TICK (insn) == INVALID_TICK)
6239 cost = max_insn_queue_index;
6240 reason = "not an epilogue insn";
6242 else if (shadows_only_p && !SHADOW_P (insn))
6244 cost = 1;
6245 reason = "not a shadow";
6247 else if (recog_memoized (insn) < 0)
6249 if (!first_cycle_insn_p
6250 && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6251 || asm_noperands (PATTERN (insn)) >= 0))
6252 cost = 1;
6253 reason = "asm";
6255 else if (sched_pressure != SCHED_PRESSURE_NONE)
6257 if (sched_pressure == SCHED_PRESSURE_MODEL
6258 && INSN_TICK (insn) <= clock_var)
6260 memcpy (temp_state, curr_state, dfa_state_size);
6261 if (state_transition (temp_state, insn) >= 0)
6262 INSN_TICK (insn) = clock_var + 1;
6264 cost = 0;
6266 else
6268 int delay_cost = 0;
6270 if (delay_htab)
6272 struct delay_pair *delay_entry;
6273 delay_entry
6274 = delay_htab->find_with_hash (insn,
6275 htab_hash_pointer (insn));
6276 while (delay_entry && delay_cost == 0)
6278 delay_cost = estimate_shadow_tick (delay_entry);
6279 if (delay_cost > max_insn_queue_index)
6280 delay_cost = max_insn_queue_index;
6281 delay_entry = delay_entry->next_same_i1;
6285 memcpy (temp_state, curr_state, dfa_state_size);
6286 cost = state_transition (temp_state, insn);
6287 if (cost < 0)
6288 cost = 0;
6289 else if (cost == 0)
6290 cost = 1;
6291 if (cost < delay_cost)
6293 cost = delay_cost;
6294 reason = "shadow tick";
6297 if (cost >= 1)
6299 if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6300 min_cost_group = cost;
6301 ready_remove (&ready, i);
6302 /* Normally we'd want to queue INSN for COST cycles. However,
6303 if SCHED_GROUP_P is set, then we must ensure that nothing
6304 else comes between INSN and its predecessor. If there is
6305 some other insn ready to fire on the next cycle, then that
6306 invariant would be broken.
6308 So when SCHED_GROUP_P is set, just queue this insn for a
6309 single cycle. */
6310 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6311 if (i + 1 < n)
6312 break;
6315 if (i == n)
6316 pass++;
6320 /* Called when we detect that the schedule is impossible. We examine the
6321 backtrack queue to find the earliest insn that caused this condition. */
6323 static struct haifa_saved_data *
6324 verify_shadows (void)
6326 struct haifa_saved_data *save, *earliest_fail = NULL;
6327 for (save = backtrack_queue; save; save = save->next)
6329 int t;
6330 struct delay_pair *pair = save->delay_pair;
6331 rtx_insn *i1 = pair->i1;
6333 for (; pair; pair = pair->next_same_i1)
6335 rtx_insn *i2 = pair->i2;
6337 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6338 continue;
6340 t = INSN_TICK (i1) + pair_delay (pair);
6341 if (t < clock_var)
6343 if (sched_verbose >= 2)
6344 fprintf (sched_dump,
6345 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6346 ", not ready\n",
6347 INSN_UID (pair->i1), INSN_UID (pair->i2),
6348 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6349 earliest_fail = save;
6350 break;
6352 if (QUEUE_INDEX (i2) >= 0)
6354 int queued_for = INSN_TICK (i2);
6356 if (t < queued_for)
6358 if (sched_verbose >= 2)
6359 fprintf (sched_dump,
6360 ";;\t\tfailed delay requirements for %d/%d"
6361 " (%d->%d), queued too late\n",
6362 INSN_UID (pair->i1), INSN_UID (pair->i2),
6363 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6364 earliest_fail = save;
6365 break;
6371 return earliest_fail;
6374 /* Print instructions together with useful scheduling information between
6375 HEAD and TAIL (inclusive). */
6376 static void
6377 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6379 fprintf (sched_dump, ";;\t| insn | prio |\n");
6381 rtx_insn *next_tail = NEXT_INSN (tail);
6382 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6384 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6385 const char *pattern = (NOTE_P (insn)
6386 ? "note"
6387 : str_pattern_slim (PATTERN (insn)));
6389 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6390 INSN_UID (insn), priority, pattern);
6392 if (sched_verbose >= 4)
6394 if (NOTE_P (insn) || recog_memoized (insn) < 0)
6395 fprintf (sched_dump, "nothing");
6396 else
6397 print_reservation (sched_dump, insn);
6399 fprintf (sched_dump, "\n");
6403 /* Use forward list scheduling to rearrange insns of block pointed to by
6404 TARGET_BB, possibly bringing insns from subsequent blocks in the same
6405 region. */
6407 bool
6408 schedule_block (basic_block *target_bb, state_t init_state)
6410 int i;
6411 bool success = modulo_ii == 0;
6412 struct sched_block_state ls;
6413 state_t temp_state = NULL; /* It is used for multipass scheduling. */
6414 int sort_p, advance, start_clock_var;
6416 /* Head/tail info for this block. */
6417 rtx_insn *prev_head = current_sched_info->prev_head;
6418 rtx_insn *next_tail = current_sched_info->next_tail;
6419 rtx_insn *head = NEXT_INSN (prev_head);
6420 rtx_insn *tail = PREV_INSN (next_tail);
6422 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6423 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6424 find_modifiable_mems (head, tail);
6426 /* We used to have code to avoid getting parameters moved from hard
6427 argument registers into pseudos.
6429 However, it was removed when it proved to be of marginal benefit
6430 and caused problems because schedule_block and compute_forward_dependences
6431 had different notions of what the "head" insn was. */
6433 gcc_assert (head != tail || INSN_P (head));
6435 haifa_recovery_bb_recently_added_p = false;
6437 backtrack_queue = NULL;
6439 /* Debug info. */
6440 if (sched_verbose)
6442 dump_new_block_header (0, *target_bb, head, tail);
6444 if (sched_verbose >= 2)
6446 dump_insn_stream (head, tail);
6447 memset (&rank_for_schedule_stats, 0,
6448 sizeof (rank_for_schedule_stats));
6452 if (init_state == NULL)
6453 state_reset (curr_state);
6454 else
6455 memcpy (curr_state, init_state, dfa_state_size);
6457 /* Clear the ready list. */
6458 ready.first = ready.veclen - 1;
6459 ready.n_ready = 0;
6460 ready.n_debug = 0;
6462 /* It is used for first cycle multipass scheduling. */
6463 temp_state = alloca (dfa_state_size);
6465 if (targetm.sched.init)
6466 targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6468 /* We start inserting insns after PREV_HEAD. */
6469 last_scheduled_insn = prev_head;
6470 last_nondebug_scheduled_insn = NULL;
6471 nonscheduled_insns_begin = NULL;
6473 gcc_assert ((NOTE_P (last_scheduled_insn)
6474 || DEBUG_INSN_P (last_scheduled_insn))
6475 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6477 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
6478 queue. */
6479 q_ptr = 0;
6480 q_size = 0;
6482 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6483 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6485 /* Start just before the beginning of time. */
6486 clock_var = -1;
6488 /* We need queue and ready lists and clock_var be initialized
6489 in try_ready () (which is called through init_ready_list ()). */
6490 (*current_sched_info->init_ready_list) ();
6492 if (sched_pressure)
6493 sched_pressure_start_bb (*target_bb);
6495 /* The algorithm is O(n^2) in the number of ready insns at any given
6496 time in the worst case. Before reload we are more likely to have
6497 big lists so truncate them to a reasonable size. */
6498 if (!reload_completed
6499 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6501 ready_sort_debug (&ready);
6502 ready_sort_real (&ready);
6504 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6505 If there are debug insns, we know they're first. */
6506 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6507 if (!SCHED_GROUP_P (ready_element (&ready, i)))
6508 break;
6510 if (sched_verbose >= 2)
6512 fprintf (sched_dump,
6513 ";;\t\tReady list on entry: %d insns: ", ready.n_ready);
6514 debug_ready_list (&ready);
6515 fprintf (sched_dump,
6516 ";;\t\t before reload => truncated to %d insns\n", i);
6519 /* Delay all insns past it for 1 cycle. If debug counter is
6520 activated make an exception for the insn right after
6521 nonscheduled_insns_begin. */
6523 rtx_insn *skip_insn;
6525 if (dbg_cnt (sched_insn) == false)
6526 skip_insn = first_nonscheduled_insn ();
6527 else
6528 skip_insn = NULL;
6530 while (i < ready.n_ready)
6532 rtx_insn *insn;
6534 insn = ready_remove (&ready, i);
6536 if (insn != skip_insn)
6537 queue_insn (insn, 1, "list truncated");
6539 if (skip_insn)
6540 ready_add (&ready, skip_insn, true);
6544 /* Now we can restore basic block notes and maintain precise cfg. */
6545 restore_bb_notes (*target_bb);
6547 last_clock_var = -1;
6549 advance = 0;
6551 gcc_assert (scheduled_insns.length () == 0);
6552 sort_p = TRUE;
6553 must_backtrack = false;
6554 modulo_insns_scheduled = 0;
6556 ls.modulo_epilogue = false;
6557 ls.first_cycle_insn_p = true;
6559 /* Loop until all the insns in BB are scheduled. */
6560 while ((*current_sched_info->schedule_more_p) ())
6562 perform_replacements_new_cycle ();
6565 start_clock_var = clock_var;
6567 clock_var++;
6569 advance_one_cycle ();
6571 /* Add to the ready list all pending insns that can be issued now.
6572 If there are no ready insns, increment clock until one
6573 is ready and add all pending insns at that point to the ready
6574 list. */
6575 queue_to_ready (&ready);
6577 gcc_assert (ready.n_ready);
6579 if (sched_verbose >= 2)
6581 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6582 debug_ready_list (&ready);
6584 advance -= clock_var - start_clock_var;
6586 while (advance > 0);
6588 if (ls.modulo_epilogue)
6590 int stage = clock_var / modulo_ii;
6591 if (stage > modulo_last_stage * 2 + 2)
6593 if (sched_verbose >= 2)
6594 fprintf (sched_dump,
6595 ";;\t\tmodulo scheduled succeeded at II %d\n",
6596 modulo_ii);
6597 success = true;
6598 goto end_schedule;
6601 else if (modulo_ii > 0)
6603 int stage = clock_var / modulo_ii;
6604 if (stage > modulo_max_stages)
6606 if (sched_verbose >= 2)
6607 fprintf (sched_dump,
6608 ";;\t\tfailing schedule due to excessive stages\n");
6609 goto end_schedule;
6611 if (modulo_n_insns == modulo_insns_scheduled
6612 && stage > modulo_last_stage)
6614 if (sched_verbose >= 2)
6615 fprintf (sched_dump,
6616 ";;\t\tfound kernel after %d stages, II %d\n",
6617 stage, modulo_ii);
6618 ls.modulo_epilogue = true;
6622 prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6623 if (ready.n_ready == 0)
6624 continue;
6625 if (must_backtrack)
6626 goto do_backtrack;
6628 ls.shadows_only_p = false;
6629 cycle_issued_insns = 0;
6630 ls.can_issue_more = issue_rate;
6631 for (;;)
6633 rtx_insn *insn;
6634 int cost;
6635 bool asm_p;
6637 if (sort_p && ready.n_ready > 0)
6639 /* Sort the ready list based on priority. This must be
6640 done every iteration through the loop, as schedule_insn
6641 may have readied additional insns that will not be
6642 sorted correctly. */
6643 ready_sort (&ready);
6645 if (sched_verbose >= 2)
6647 fprintf (sched_dump,
6648 ";;\t\tReady list after ready_sort: ");
6649 debug_ready_list (&ready);
6653 /* We don't want md sched reorder to even see debug isns, so put
6654 them out right away. */
6655 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6656 && (*current_sched_info->schedule_more_p) ())
6658 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6660 rtx_insn *insn = ready_remove_first (&ready);
6661 gcc_assert (DEBUG_INSN_P (insn));
6662 (*current_sched_info->begin_schedule_ready) (insn);
6663 scheduled_insns.safe_push (insn);
6664 last_scheduled_insn = insn;
6665 advance = schedule_insn (insn);
6666 gcc_assert (advance == 0);
6667 if (ready.n_ready > 0)
6668 ready_sort (&ready);
6672 if (ls.first_cycle_insn_p && !ready.n_ready)
6673 break;
6675 resume_after_backtrack:
6676 /* Allow the target to reorder the list, typically for
6677 better instruction bundling. */
6678 if (sort_p
6679 && (ready.n_ready == 0
6680 || !SCHED_GROUP_P (ready_element (&ready, 0))))
6682 if (ls.first_cycle_insn_p && targetm.sched.reorder)
6683 ls.can_issue_more
6684 = targetm.sched.reorder (sched_dump, sched_verbose,
6685 ready_lastpos (&ready),
6686 &ready.n_ready, clock_var);
6687 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6688 ls.can_issue_more
6689 = targetm.sched.reorder2 (sched_dump, sched_verbose,
6690 ready.n_ready
6691 ? ready_lastpos (&ready) : NULL,
6692 &ready.n_ready, clock_var);
6695 restart_choose_ready:
6696 if (sched_verbose >= 2)
6698 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
6699 clock_var);
6700 debug_ready_list (&ready);
6701 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6702 print_curr_reg_pressure ();
6705 if (ready.n_ready == 0
6706 && ls.can_issue_more
6707 && reload_completed)
6709 /* Allow scheduling insns directly from the queue in case
6710 there's nothing better to do (ready list is empty) but
6711 there are still vacant dispatch slots in the current cycle. */
6712 if (sched_verbose >= 6)
6713 fprintf (sched_dump,";;\t\tSecond chance\n");
6714 memcpy (temp_state, curr_state, dfa_state_size);
6715 if (early_queue_to_ready (temp_state, &ready))
6716 ready_sort (&ready);
6719 if (ready.n_ready == 0
6720 || !ls.can_issue_more
6721 || state_dead_lock_p (curr_state)
6722 || !(*current_sched_info->schedule_more_p) ())
6723 break;
6725 /* Select and remove the insn from the ready list. */
6726 if (sort_p)
6728 int res;
6730 insn = NULL;
6731 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6733 if (res < 0)
6734 /* Finish cycle. */
6735 break;
6736 if (res > 0)
6737 goto restart_choose_ready;
6739 gcc_assert (insn != NULL_RTX);
6741 else
6742 insn = ready_remove_first (&ready);
6744 if (sched_pressure != SCHED_PRESSURE_NONE
6745 && INSN_TICK (insn) > clock_var)
6747 ready_add (&ready, insn, true);
6748 advance = 1;
6749 break;
6752 if (targetm.sched.dfa_new_cycle
6753 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6754 insn, last_clock_var,
6755 clock_var, &sort_p))
6756 /* SORT_P is used by the target to override sorting
6757 of the ready list. This is needed when the target
6758 has modified its internal structures expecting that
6759 the insn will be issued next. As we need the insn
6760 to have the highest priority (so it will be returned by
6761 the ready_remove_first call above), we invoke
6762 ready_add (&ready, insn, true).
6763 But, still, there is one issue: INSN can be later
6764 discarded by scheduler's front end through
6765 current_sched_info->can_schedule_ready_p, hence, won't
6766 be issued next. */
6768 ready_add (&ready, insn, true);
6769 break;
6772 sort_p = TRUE;
6774 if (current_sched_info->can_schedule_ready_p
6775 && ! (*current_sched_info->can_schedule_ready_p) (insn))
6776 /* We normally get here only if we don't want to move
6777 insn from the split block. */
6779 TODO_SPEC (insn) = DEP_POSTPONED;
6780 goto restart_choose_ready;
6783 if (delay_htab)
6785 /* If this insn is the first part of a delay-slot pair, record a
6786 backtrack point. */
6787 struct delay_pair *delay_entry;
6788 delay_entry
6789 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6790 if (delay_entry)
6792 save_backtrack_point (delay_entry, ls);
6793 if (sched_verbose >= 2)
6794 fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6798 /* DECISION is made. */
6800 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6802 modulo_insns_scheduled++;
6803 modulo_last_stage = clock_var / modulo_ii;
6805 if (TODO_SPEC (insn) & SPECULATIVE)
6806 generate_recovery_code (insn);
6808 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6809 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6811 /* Update counters, etc in the scheduler's front end. */
6812 (*current_sched_info->begin_schedule_ready) (insn);
6813 scheduled_insns.safe_push (insn);
6814 gcc_assert (NONDEBUG_INSN_P (insn));
6815 last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6817 if (recog_memoized (insn) >= 0)
6819 memcpy (temp_state, curr_state, dfa_state_size);
6820 cost = state_transition (curr_state, insn);
6821 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6822 gcc_assert (cost < 0);
6823 if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6824 cycle_issued_insns++;
6825 asm_p = false;
6827 else
6828 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6829 || asm_noperands (PATTERN (insn)) >= 0);
6831 if (targetm.sched.variable_issue)
6832 ls.can_issue_more =
6833 targetm.sched.variable_issue (sched_dump, sched_verbose,
6834 insn, ls.can_issue_more);
6835 /* A naked CLOBBER or USE generates no instruction, so do
6836 not count them against the issue rate. */
6837 else if (GET_CODE (PATTERN (insn)) != USE
6838 && GET_CODE (PATTERN (insn)) != CLOBBER)
6839 ls.can_issue_more--;
6840 advance = schedule_insn (insn);
6842 if (SHADOW_P (insn))
6843 ls.shadows_only_p = true;
6845 /* After issuing an asm insn we should start a new cycle. */
6846 if (advance == 0 && asm_p)
6847 advance = 1;
6849 if (must_backtrack)
6850 break;
6852 if (advance != 0)
6853 break;
6855 ls.first_cycle_insn_p = false;
6856 if (ready.n_ready > 0)
6857 prune_ready_list (temp_state, false, ls.shadows_only_p,
6858 ls.modulo_epilogue);
6861 do_backtrack:
6862 if (!must_backtrack)
6863 for (i = 0; i < ready.n_ready; i++)
6865 rtx_insn *insn = ready_element (&ready, i);
6866 if (INSN_EXACT_TICK (insn) == clock_var)
6868 must_backtrack = true;
6869 clock_var++;
6870 break;
6873 if (must_backtrack && modulo_ii > 0)
6875 if (modulo_backtracks_left == 0)
6876 goto end_schedule;
6877 modulo_backtracks_left--;
6879 while (must_backtrack)
6881 struct haifa_saved_data *failed;
6882 rtx_insn *failed_insn;
6884 must_backtrack = false;
6885 failed = verify_shadows ();
6886 gcc_assert (failed);
6888 failed_insn = failed->delay_pair->i1;
6889 /* Clear these queues. */
6890 perform_replacements_new_cycle ();
6891 toggle_cancelled_flags (false);
6892 unschedule_insns_until (failed_insn);
6893 while (failed != backtrack_queue)
6894 free_topmost_backtrack_point (true);
6895 restore_last_backtrack_point (&ls);
6896 if (sched_verbose >= 2)
6897 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6898 /* Delay by at least a cycle. This could cause additional
6899 backtracking. */
6900 queue_insn (failed_insn, 1, "backtracked");
6901 advance = 0;
6902 if (must_backtrack)
6903 continue;
6904 if (ready.n_ready > 0)
6905 goto resume_after_backtrack;
6906 else
6908 if (clock_var == 0 && ls.first_cycle_insn_p)
6909 goto end_schedule;
6910 advance = 1;
6911 break;
6914 ls.first_cycle_insn_p = true;
6916 if (ls.modulo_epilogue)
6917 success = true;
6918 end_schedule:
6919 if (!ls.first_cycle_insn_p || advance)
6920 advance_one_cycle ();
6921 perform_replacements_new_cycle ();
6922 if (modulo_ii > 0)
6924 /* Once again, debug insn suckiness: they can be on the ready list
6925 even if they have unresolved dependencies. To make our view
6926 of the world consistent, remove such "ready" insns. */
6927 restart_debug_insn_loop:
6928 for (i = ready.n_ready - 1; i >= 0; i--)
6930 rtx_insn *x;
6932 x = ready_element (&ready, i);
6933 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6934 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6936 ready_remove (&ready, i);
6937 goto restart_debug_insn_loop;
6940 for (i = ready.n_ready - 1; i >= 0; i--)
6942 rtx_insn *x;
6944 x = ready_element (&ready, i);
6945 resolve_dependencies (x);
6947 for (i = 0; i <= max_insn_queue_index; i++)
6949 rtx_insn_list *link;
6950 while ((link = insn_queue[i]) != NULL)
6952 rtx_insn *x = link->insn ();
6953 insn_queue[i] = link->next ();
6954 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6955 free_INSN_LIST_node (link);
6956 resolve_dependencies (x);
6961 if (!success)
6962 undo_all_replacements ();
6964 /* Debug info. */
6965 if (sched_verbose)
6967 fprintf (sched_dump, ";;\tReady list (final): ");
6968 debug_ready_list (&ready);
6971 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6972 /* Sanity check -- queue must be empty now. Meaningless if region has
6973 multiple bbs. */
6974 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6975 else if (modulo_ii == 0)
6977 /* We must maintain QUEUE_INDEX between blocks in region. */
6978 for (i = ready.n_ready - 1; i >= 0; i--)
6980 rtx_insn *x;
6982 x = ready_element (&ready, i);
6983 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6984 TODO_SPEC (x) = HARD_DEP;
6987 if (q_size)
6988 for (i = 0; i <= max_insn_queue_index; i++)
6990 rtx_insn_list *link;
6991 for (link = insn_queue[i]; link; link = link->next ())
6993 rtx_insn *x;
6995 x = link->insn ();
6996 QUEUE_INDEX (x) = QUEUE_NOWHERE;
6997 TODO_SPEC (x) = HARD_DEP;
6999 free_INSN_LIST_list (&insn_queue[i]);
7003 if (sched_pressure == SCHED_PRESSURE_MODEL)
7004 model_end_schedule ();
7006 if (success)
7008 commit_schedule (prev_head, tail, target_bb);
7009 if (sched_verbose)
7010 fprintf (sched_dump, ";; total time = %d\n", clock_var);
7012 else
7013 last_scheduled_insn = tail;
7015 scheduled_insns.truncate (0);
7017 if (!current_sched_info->queue_must_finish_empty
7018 || haifa_recovery_bb_recently_added_p)
7020 /* INSN_TICK (minimum clock tick at which the insn becomes
7021 ready) may be not correct for the insn in the subsequent
7022 blocks of the region. We should use a correct value of
7023 `clock_var' or modify INSN_TICK. It is better to keep
7024 clock_var value equal to 0 at the start of a basic block.
7025 Therefore we modify INSN_TICK here. */
7026 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7029 if (targetm.sched.finish)
7031 targetm.sched.finish (sched_dump, sched_verbose);
7032 /* Target might have added some instructions to the scheduled block
7033 in its md_finish () hook. These new insns don't have any data
7034 initialized and to identify them we extend h_i_d so that they'll
7035 get zero luids. */
7036 sched_extend_luids ();
7039 /* Update head/tail boundaries. */
7040 head = NEXT_INSN (prev_head);
7041 tail = last_scheduled_insn;
7043 if (sched_verbose)
7045 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n",
7046 INSN_UID (head), INSN_UID (tail));
7048 if (sched_verbose >= 2)
7050 dump_insn_stream (head, tail);
7051 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7052 NULL);
7055 fprintf (sched_dump, "\n");
7058 head = restore_other_notes (head, NULL);
7060 current_sched_info->head = head;
7061 current_sched_info->tail = tail;
7063 free_backtrack_queue ();
7065 return success;
7068 /* Set_priorities: compute priority of each insn in the block. */
7071 set_priorities (rtx_insn *head, rtx_insn *tail)
7073 rtx_insn *insn;
7074 int n_insn;
7075 int sched_max_insns_priority =
7076 current_sched_info->sched_max_insns_priority;
7077 rtx_insn *prev_head;
7079 if (head == tail && ! INSN_P (head))
7080 gcc_unreachable ();
7082 n_insn = 0;
7084 prev_head = PREV_INSN (head);
7085 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7087 if (!INSN_P (insn))
7088 continue;
7090 n_insn++;
7091 (void) priority (insn);
7093 gcc_assert (INSN_PRIORITY_KNOWN (insn));
7095 sched_max_insns_priority = MAX (sched_max_insns_priority,
7096 INSN_PRIORITY (insn));
7099 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7101 return n_insn;
7104 /* Set dump and sched_verbose for the desired debugging output. If no
7105 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
7106 For -fsched-verbose=N, N>=10, print everything to stderr. */
7107 void
7108 setup_sched_dump (void)
7110 sched_verbose = sched_verbose_param;
7111 if (sched_verbose_param == 0 && dump_file)
7112 sched_verbose = 1;
7113 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
7114 ? stderr : dump_file);
7117 /* Allocate data for register pressure sensitive scheduling. */
7118 static void
7119 alloc_global_sched_pressure_data (void)
7121 if (sched_pressure != SCHED_PRESSURE_NONE)
7123 int i, max_regno = max_reg_num ();
7125 if (sched_dump != NULL)
7126 /* We need info about pseudos for rtl dumps about pseudo
7127 classes and costs. */
7128 regstat_init_n_sets_and_refs ();
7129 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7130 sched_regno_pressure_class
7131 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7132 for (i = 0; i < max_regno; i++)
7133 sched_regno_pressure_class[i]
7134 = (i < FIRST_PSEUDO_REGISTER
7135 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7136 : ira_pressure_class_translate[reg_allocno_class (i)]);
7137 curr_reg_live = BITMAP_ALLOC (NULL);
7138 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7140 saved_reg_live = BITMAP_ALLOC (NULL);
7141 region_ref_regs = BITMAP_ALLOC (NULL);
7144 /* Calculate number of CALL_USED_REGS in register classes that
7145 we calculate register pressure for. */
7146 for (int c = 0; c < ira_pressure_classes_num; ++c)
7148 enum reg_class cl = ira_pressure_classes[c];
7150 call_used_regs_num[cl] = 0;
7152 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7153 if (call_used_regs[ira_class_hard_regs[cl][i]])
7154 ++call_used_regs_num[cl];
7159 /* Free data for register pressure sensitive scheduling. Also called
7160 from schedule_region when stopping sched-pressure early. */
7161 void
7162 free_global_sched_pressure_data (void)
7164 if (sched_pressure != SCHED_PRESSURE_NONE)
7166 if (regstat_n_sets_and_refs != NULL)
7167 regstat_free_n_sets_and_refs ();
7168 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7170 BITMAP_FREE (region_ref_regs);
7171 BITMAP_FREE (saved_reg_live);
7173 BITMAP_FREE (curr_reg_live);
7174 free (sched_regno_pressure_class);
7178 /* Initialize some global state for the scheduler. This function works
7179 with the common data shared between all the schedulers. It is called
7180 from the scheduler specific initialization routine. */
7182 void
7183 sched_init (void)
7185 /* Disable speculative loads in their presence if cc0 defined. */
7186 if (HAVE_cc0)
7187 flag_schedule_speculative_load = 0;
7189 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7190 targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7192 if (live_range_shrinkage_p)
7193 sched_pressure = SCHED_PRESSURE_WEIGHTED;
7194 else if (flag_sched_pressure
7195 && !reload_completed
7196 && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7197 sched_pressure = ((enum sched_pressure_algorithm)
7198 PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7199 else
7200 sched_pressure = SCHED_PRESSURE_NONE;
7202 if (sched_pressure != SCHED_PRESSURE_NONE)
7203 ira_setup_eliminable_regset ();
7205 /* Initialize SPEC_INFO. */
7206 if (targetm.sched.set_sched_flags)
7208 spec_info = &spec_info_var;
7209 targetm.sched.set_sched_flags (spec_info);
7211 if (spec_info->mask != 0)
7213 spec_info->data_weakness_cutoff =
7214 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7215 spec_info->control_weakness_cutoff =
7216 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7217 * REG_BR_PROB_BASE) / 100;
7219 else
7220 /* So we won't read anything accidentally. */
7221 spec_info = NULL;
7224 else
7225 /* So we won't read anything accidentally. */
7226 spec_info = 0;
7228 /* Initialize issue_rate. */
7229 if (targetm.sched.issue_rate)
7230 issue_rate = targetm.sched.issue_rate ();
7231 else
7232 issue_rate = 1;
7234 if (targetm.sched.first_cycle_multipass_dfa_lookahead
7235 /* Don't use max_issue with reg_pressure scheduling. Multipass
7236 scheduling and reg_pressure scheduling undo each other's decisions. */
7237 && sched_pressure == SCHED_PRESSURE_NONE)
7238 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7239 else
7240 dfa_lookahead = 0;
7242 /* Set to "0" so that we recalculate. */
7243 max_lookahead_tries = 0;
7245 if (targetm.sched.init_dfa_pre_cycle_insn)
7246 targetm.sched.init_dfa_pre_cycle_insn ();
7248 if (targetm.sched.init_dfa_post_cycle_insn)
7249 targetm.sched.init_dfa_post_cycle_insn ();
7251 dfa_start ();
7252 dfa_state_size = state_size ();
7254 init_alias_analysis ();
7256 if (!sched_no_dce)
7257 df_set_flags (DF_LR_RUN_DCE);
7258 df_note_add_problem ();
7260 /* More problems needed for interloop dep calculation in SMS. */
7261 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7263 df_rd_add_problem ();
7264 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7267 df_analyze ();
7269 /* Do not run DCE after reload, as this can kill nops inserted
7270 by bundling. */
7271 if (reload_completed)
7272 df_clear_flags (DF_LR_RUN_DCE);
7274 regstat_compute_calls_crossed ();
7276 if (targetm.sched.init_global)
7277 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7279 alloc_global_sched_pressure_data ();
7281 curr_state = xmalloc (dfa_state_size);
7284 static void haifa_init_only_bb (basic_block, basic_block);
7286 /* Initialize data structures specific to the Haifa scheduler. */
7287 void
7288 haifa_sched_init (void)
7290 setup_sched_dump ();
7291 sched_init ();
7293 scheduled_insns.create (0);
7295 if (spec_info != NULL)
7297 sched_deps_info->use_deps_list = 1;
7298 sched_deps_info->generate_spec_deps = 1;
7301 /* Initialize luids, dependency caches, target and h_i_d for the
7302 whole function. */
7304 bb_vec_t bbs;
7305 bbs.create (n_basic_blocks_for_fn (cfun));
7306 basic_block bb;
7308 sched_init_bbs ();
7310 FOR_EACH_BB_FN (bb, cfun)
7311 bbs.quick_push (bb);
7312 sched_init_luids (bbs);
7313 sched_deps_init (true);
7314 sched_extend_target ();
7315 haifa_init_h_i_d (bbs);
7317 bbs.release ();
7320 sched_init_only_bb = haifa_init_only_bb;
7321 sched_split_block = sched_split_block_1;
7322 sched_create_empty_bb = sched_create_empty_bb_1;
7323 haifa_recovery_bb_ever_added_p = false;
7325 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7326 before_recovery = 0;
7327 after_recovery = 0;
7329 modulo_ii = 0;
7332 /* Finish work with the data specific to the Haifa scheduler. */
7333 void
7334 haifa_sched_finish (void)
7336 sched_create_empty_bb = NULL;
7337 sched_split_block = NULL;
7338 sched_init_only_bb = NULL;
7340 if (spec_info && spec_info->dump)
7342 char c = reload_completed ? 'a' : 'b';
7344 fprintf (spec_info->dump,
7345 ";; %s:\n", current_function_name ());
7347 fprintf (spec_info->dump,
7348 ";; Procedure %cr-begin-data-spec motions == %d\n",
7349 c, nr_begin_data);
7350 fprintf (spec_info->dump,
7351 ";; Procedure %cr-be-in-data-spec motions == %d\n",
7352 c, nr_be_in_data);
7353 fprintf (spec_info->dump,
7354 ";; Procedure %cr-begin-control-spec motions == %d\n",
7355 c, nr_begin_control);
7356 fprintf (spec_info->dump,
7357 ";; Procedure %cr-be-in-control-spec motions == %d\n",
7358 c, nr_be_in_control);
7361 scheduled_insns.release ();
7363 /* Finalize h_i_d, dependency caches, and luids for the whole
7364 function. Target will be finalized in md_global_finish (). */
7365 sched_deps_finish ();
7366 sched_finish_luids ();
7367 current_sched_info = NULL;
7368 sched_finish ();
7371 /* Free global data used during insn scheduling. This function works with
7372 the common data shared between the schedulers. */
7374 void
7375 sched_finish (void)
7377 haifa_finish_h_i_d ();
7378 free_global_sched_pressure_data ();
7379 free (curr_state);
7381 if (targetm.sched.finish_global)
7382 targetm.sched.finish_global (sched_dump, sched_verbose);
7384 end_alias_analysis ();
7386 regstat_free_calls_crossed ();
7388 dfa_finish ();
7391 /* Free all delay_pair structures that were recorded. */
7392 void
7393 free_delay_pairs (void)
7395 if (delay_htab)
7397 delay_htab->empty ();
7398 delay_htab_i2->empty ();
7402 /* Fix INSN_TICKs of the instructions in the current block as well as
7403 INSN_TICKs of their dependents.
7404 HEAD and TAIL are the begin and the end of the current scheduled block. */
7405 static void
7406 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7408 /* Set of instructions with corrected INSN_TICK. */
7409 bitmap_head processed;
7410 /* ??? It is doubtful if we should assume that cycle advance happens on
7411 basic block boundaries. Basically insns that are unconditionally ready
7412 on the start of the block are more preferable then those which have
7413 a one cycle dependency over insn from the previous block. */
7414 int next_clock = clock_var + 1;
7416 bitmap_initialize (&processed, 0);
7418 /* Iterates over scheduled instructions and fix their INSN_TICKs and
7419 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7420 across different blocks. */
7421 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7423 if (INSN_P (head))
7425 int tick;
7426 sd_iterator_def sd_it;
7427 dep_t dep;
7429 tick = INSN_TICK (head);
7430 gcc_assert (tick >= MIN_TICK);
7432 /* Fix INSN_TICK of instruction from just scheduled block. */
7433 if (bitmap_set_bit (&processed, INSN_LUID (head)))
7435 tick -= next_clock;
7437 if (tick < MIN_TICK)
7438 tick = MIN_TICK;
7440 INSN_TICK (head) = tick;
7443 if (DEBUG_INSN_P (head))
7444 continue;
7446 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7448 rtx_insn *next;
7450 next = DEP_CON (dep);
7451 tick = INSN_TICK (next);
7453 if (tick != INVALID_TICK
7454 /* If NEXT has its INSN_TICK calculated, fix it.
7455 If not - it will be properly calculated from
7456 scratch later in fix_tick_ready. */
7457 && bitmap_set_bit (&processed, INSN_LUID (next)))
7459 tick -= next_clock;
7461 if (tick < MIN_TICK)
7462 tick = MIN_TICK;
7464 if (tick > INTER_TICK (next))
7465 INTER_TICK (next) = tick;
7466 else
7467 tick = INTER_TICK (next);
7469 INSN_TICK (next) = tick;
7474 bitmap_clear (&processed);
7477 /* Check if NEXT is ready to be added to the ready or queue list.
7478 If "yes", add it to the proper list.
7479 Returns:
7480 -1 - is not ready yet,
7481 0 - added to the ready list,
7482 0 < N - queued for N cycles. */
7484 try_ready (rtx_insn *next)
7486 ds_t old_ts, new_ts;
7488 old_ts = TODO_SPEC (next);
7490 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7491 && (old_ts == HARD_DEP
7492 || old_ts == DEP_POSTPONED
7493 || (old_ts & SPECULATIVE)
7494 || old_ts == DEP_CONTROL));
7496 new_ts = recompute_todo_spec (next, false);
7498 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7499 gcc_assert (new_ts == old_ts
7500 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
7501 else if (current_sched_info->new_ready)
7502 new_ts = current_sched_info->new_ready (next, new_ts);
7504 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7505 have its original pattern or changed (speculative) one. This is due
7506 to changing ebb in region scheduling.
7507 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7508 has speculative pattern.
7510 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7511 control-speculative NEXT could have been discarded by sched-rgn.c
7512 (the same case as when discarded by can_schedule_ready_p ()). */
7514 if ((new_ts & SPECULATIVE)
7515 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7516 need to change anything. */
7517 && new_ts != old_ts)
7519 int res;
7520 rtx new_pat;
7522 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7524 res = haifa_speculate_insn (next, new_ts, &new_pat);
7526 switch (res)
7528 case -1:
7529 /* It would be nice to change DEP_STATUS of all dependences,
7530 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7531 so we won't reanalyze anything. */
7532 new_ts = HARD_DEP;
7533 break;
7535 case 0:
7536 /* We follow the rule, that every speculative insn
7537 has non-null ORIG_PAT. */
7538 if (!ORIG_PAT (next))
7539 ORIG_PAT (next) = PATTERN (next);
7540 break;
7542 case 1:
7543 if (!ORIG_PAT (next))
7544 /* If we gonna to overwrite the original pattern of insn,
7545 save it. */
7546 ORIG_PAT (next) = PATTERN (next);
7548 res = haifa_change_pattern (next, new_pat);
7549 gcc_assert (res);
7550 break;
7552 default:
7553 gcc_unreachable ();
7557 /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7558 either correct (new_ts & SPECULATIVE),
7559 or we simply don't care (new_ts & HARD_DEP). */
7561 gcc_assert (!ORIG_PAT (next)
7562 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7564 TODO_SPEC (next) = new_ts;
7566 if (new_ts & (HARD_DEP | DEP_POSTPONED))
7568 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7569 control-speculative NEXT could have been discarded by sched-rgn.c
7570 (the same case as when discarded by can_schedule_ready_p ()). */
7571 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7573 change_queue_index (next, QUEUE_NOWHERE);
7575 return -1;
7577 else if (!(new_ts & BEGIN_SPEC)
7578 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7579 && !IS_SPECULATION_CHECK_P (next))
7580 /* We should change pattern of every previously speculative
7581 instruction - and we determine if NEXT was speculative by using
7582 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
7583 pat too, so skip them. */
7585 bool success = haifa_change_pattern (next, ORIG_PAT (next));
7586 gcc_assert (success);
7587 ORIG_PAT (next) = 0;
7590 if (sched_verbose >= 2)
7592 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7593 (*current_sched_info->print_insn) (next, 0));
7595 if (spec_info && spec_info->dump)
7597 if (new_ts & BEGIN_DATA)
7598 fprintf (spec_info->dump, "; data-spec;");
7599 if (new_ts & BEGIN_CONTROL)
7600 fprintf (spec_info->dump, "; control-spec;");
7601 if (new_ts & BE_IN_CONTROL)
7602 fprintf (spec_info->dump, "; in-control-spec;");
7604 if (TODO_SPEC (next) & DEP_CONTROL)
7605 fprintf (sched_dump, " predicated");
7606 fprintf (sched_dump, "\n");
7609 adjust_priority (next);
7611 return fix_tick_ready (next);
7614 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
7615 static int
7616 fix_tick_ready (rtx_insn *next)
7618 int tick, delay;
7620 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7622 int full_p;
7623 sd_iterator_def sd_it;
7624 dep_t dep;
7626 tick = INSN_TICK (next);
7627 /* if tick is not equal to INVALID_TICK, then update
7628 INSN_TICK of NEXT with the most recent resolved dependence
7629 cost. Otherwise, recalculate from scratch. */
7630 full_p = (tick == INVALID_TICK);
7632 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7634 rtx_insn *pro = DEP_PRO (dep);
7635 int tick1;
7637 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7639 tick1 = INSN_TICK (pro) + dep_cost (dep);
7640 if (tick1 > tick)
7641 tick = tick1;
7643 if (!full_p)
7644 break;
7647 else
7648 tick = -1;
7650 INSN_TICK (next) = tick;
7652 delay = tick - clock_var;
7653 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7654 delay = QUEUE_READY;
7656 change_queue_index (next, delay);
7658 return delay;
7661 /* Move NEXT to the proper queue list with (DELAY >= 1),
7662 or add it to the ready list (DELAY == QUEUE_READY),
7663 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
7664 static void
7665 change_queue_index (rtx_insn *next, int delay)
7667 int i = QUEUE_INDEX (next);
7669 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7670 && delay != 0);
7671 gcc_assert (i != QUEUE_SCHEDULED);
7673 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7674 || (delay < 0 && delay == i))
7675 /* We have nothing to do. */
7676 return;
7678 /* Remove NEXT from wherever it is now. */
7679 if (i == QUEUE_READY)
7680 ready_remove_insn (next);
7681 else if (i >= 0)
7682 queue_remove (next);
7684 /* Add it to the proper place. */
7685 if (delay == QUEUE_READY)
7686 ready_add (readyp, next, false);
7687 else if (delay >= 1)
7688 queue_insn (next, delay, "change queue index");
7690 if (sched_verbose >= 2)
7692 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7693 (*current_sched_info->print_insn) (next, 0));
7695 if (delay == QUEUE_READY)
7696 fprintf (sched_dump, " into ready\n");
7697 else if (delay >= 1)
7698 fprintf (sched_dump, " into queue with cost=%d\n", delay);
7699 else
7700 fprintf (sched_dump, " removed from ready or queue lists\n");
7704 static int sched_ready_n_insns = -1;
7706 /* Initialize per region data structures. */
7707 void
7708 sched_extend_ready_list (int new_sched_ready_n_insns)
7710 int i;
7712 if (sched_ready_n_insns == -1)
7713 /* At the first call we need to initialize one more choice_stack
7714 entry. */
7716 i = 0;
7717 sched_ready_n_insns = 0;
7718 scheduled_insns.reserve (new_sched_ready_n_insns);
7720 else
7721 i = sched_ready_n_insns + 1;
7723 ready.veclen = new_sched_ready_n_insns + issue_rate;
7724 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7726 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7728 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7729 sched_ready_n_insns,
7730 sizeof (*ready_try));
7732 /* We allocate +1 element to save initial state in the choice_stack[0]
7733 entry. */
7734 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7735 new_sched_ready_n_insns + 1);
7737 for (; i <= new_sched_ready_n_insns; i++)
7739 choice_stack[i].state = xmalloc (dfa_state_size);
7741 if (targetm.sched.first_cycle_multipass_init)
7742 targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7743 .target_data));
7746 sched_ready_n_insns = new_sched_ready_n_insns;
7749 /* Free per region data structures. */
7750 void
7751 sched_finish_ready_list (void)
7753 int i;
7755 free (ready.vec);
7756 ready.vec = NULL;
7757 ready.veclen = 0;
7759 free (ready_try);
7760 ready_try = NULL;
7762 for (i = 0; i <= sched_ready_n_insns; i++)
7764 if (targetm.sched.first_cycle_multipass_fini)
7765 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7766 .target_data));
7768 free (choice_stack [i].state);
7770 free (choice_stack);
7771 choice_stack = NULL;
7773 sched_ready_n_insns = -1;
7776 static int
7777 haifa_luid_for_non_insn (rtx x)
7779 gcc_assert (NOTE_P (x) || LABEL_P (x));
7781 return 0;
7784 /* Generates recovery code for INSN. */
7785 static void
7786 generate_recovery_code (rtx_insn *insn)
7788 if (TODO_SPEC (insn) & BEGIN_SPEC)
7789 begin_speculative_block (insn);
7791 /* Here we have insn with no dependencies to
7792 instructions other then CHECK_SPEC ones. */
7794 if (TODO_SPEC (insn) & BE_IN_SPEC)
7795 add_to_speculative_block (insn);
7798 /* Helper function.
7799 Tries to add speculative dependencies of type FS between instructions
7800 in deps_list L and TWIN. */
7801 static void
7802 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
7804 sd_iterator_def sd_it;
7805 dep_t dep;
7807 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7809 ds_t ds;
7810 rtx_insn *consumer;
7812 consumer = DEP_CON (dep);
7814 ds = DEP_STATUS (dep);
7816 if (/* If we want to create speculative dep. */
7818 /* And we can do that because this is a true dep. */
7819 && (ds & DEP_TYPES) == DEP_TRUE)
7821 gcc_assert (!(ds & BE_IN_SPEC));
7823 if (/* If this dep can be overcome with 'begin speculation'. */
7824 ds & BEGIN_SPEC)
7825 /* Then we have a choice: keep the dep 'begin speculative'
7826 or transform it into 'be in speculative'. */
7828 if (/* In try_ready we assert that if insn once became ready
7829 it can be removed from the ready (or queue) list only
7830 due to backend decision. Hence we can't let the
7831 probability of the speculative dep to decrease. */
7832 ds_weak (ds) <= ds_weak (fs))
7834 ds_t new_ds;
7836 new_ds = (ds & ~BEGIN_SPEC) | fs;
7838 if (/* consumer can 'be in speculative'. */
7839 sched_insn_is_legitimate_for_speculation_p (consumer,
7840 new_ds))
7841 /* Transform it to be in speculative. */
7842 ds = new_ds;
7845 else
7846 /* Mark the dep as 'be in speculative'. */
7847 ds |= fs;
7851 dep_def _new_dep, *new_dep = &_new_dep;
7853 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7854 sd_add_dep (new_dep, false);
7859 /* Generates recovery code for BEGIN speculative INSN. */
7860 static void
7861 begin_speculative_block (rtx_insn *insn)
7863 if (TODO_SPEC (insn) & BEGIN_DATA)
7864 nr_begin_data++;
7865 if (TODO_SPEC (insn) & BEGIN_CONTROL)
7866 nr_begin_control++;
7868 create_check_block_twin (insn, false);
7870 TODO_SPEC (insn) &= ~BEGIN_SPEC;
7873 static void haifa_init_insn (rtx_insn *);
7875 /* Generates recovery code for BE_IN speculative INSN. */
7876 static void
7877 add_to_speculative_block (rtx_insn *insn)
7879 ds_t ts;
7880 sd_iterator_def sd_it;
7881 dep_t dep;
7882 rtx_insn_list *twins = NULL;
7883 rtx_vec_t priorities_roots;
7885 ts = TODO_SPEC (insn);
7886 gcc_assert (!(ts & ~BE_IN_SPEC));
7888 if (ts & BE_IN_DATA)
7889 nr_be_in_data++;
7890 if (ts & BE_IN_CONTROL)
7891 nr_be_in_control++;
7893 TODO_SPEC (insn) &= ~BE_IN_SPEC;
7894 gcc_assert (!TODO_SPEC (insn));
7896 DONE_SPEC (insn) |= ts;
7898 /* First we convert all simple checks to branchy. */
7899 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7900 sd_iterator_cond (&sd_it, &dep);)
7902 rtx_insn *check = DEP_PRO (dep);
7904 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7906 create_check_block_twin (check, true);
7908 /* Restart search. */
7909 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7911 else
7912 /* Continue search. */
7913 sd_iterator_next (&sd_it);
7916 priorities_roots.create (0);
7917 clear_priorities (insn, &priorities_roots);
7919 while (1)
7921 rtx_insn *check, *twin;
7922 basic_block rec;
7924 /* Get the first backward dependency of INSN. */
7925 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7926 if (!sd_iterator_cond (&sd_it, &dep))
7927 /* INSN has no backward dependencies left. */
7928 break;
7930 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7931 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7932 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7934 check = DEP_PRO (dep);
7936 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7937 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7939 rec = BLOCK_FOR_INSN (check);
7941 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7942 haifa_init_insn (twin);
7944 sd_copy_back_deps (twin, insn, true);
7946 if (sched_verbose && spec_info->dump)
7947 /* INSN_BB (insn) isn't determined for twin insns yet.
7948 So we can't use current_sched_info->print_insn. */
7949 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7950 INSN_UID (twin), rec->index);
7952 twins = alloc_INSN_LIST (twin, twins);
7954 /* Add dependences between TWIN and all appropriate
7955 instructions from REC. */
7956 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7958 rtx_insn *pro = DEP_PRO (dep);
7960 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7962 /* INSN might have dependencies from the instructions from
7963 several recovery blocks. At this iteration we process those
7964 producers that reside in REC. */
7965 if (BLOCK_FOR_INSN (pro) == rec)
7967 dep_def _new_dep, *new_dep = &_new_dep;
7969 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7970 sd_add_dep (new_dep, false);
7974 process_insn_forw_deps_be_in_spec (insn, twin, ts);
7976 /* Remove all dependencies between INSN and insns in REC. */
7977 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7978 sd_iterator_cond (&sd_it, &dep);)
7980 rtx_insn *pro = DEP_PRO (dep);
7982 if (BLOCK_FOR_INSN (pro) == rec)
7983 sd_delete_dep (sd_it);
7984 else
7985 sd_iterator_next (&sd_it);
7989 /* We couldn't have added the dependencies between INSN and TWINS earlier
7990 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
7991 while (twins)
7993 rtx_insn *twin;
7994 rtx_insn_list *next_node;
7996 twin = twins->insn ();
7999 dep_def _new_dep, *new_dep = &_new_dep;
8001 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8002 sd_add_dep (new_dep, false);
8005 next_node = twins->next ();
8006 free_INSN_LIST_node (twins);
8007 twins = next_node;
8010 calc_priorities (priorities_roots);
8011 priorities_roots.release ();
8014 /* Extends and fills with zeros (only the new part) array pointed to by P. */
8015 void *
8016 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8018 gcc_assert (new_nmemb >= old_nmemb);
8019 p = XRESIZEVAR (void, p, new_nmemb * size);
8020 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8021 return p;
8024 /* Helper function.
8025 Find fallthru edge from PRED. */
8026 edge
8027 find_fallthru_edge_from (basic_block pred)
8029 edge e;
8030 basic_block succ;
8032 succ = pred->next_bb;
8033 gcc_assert (succ->prev_bb == pred);
8035 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8037 e = find_fallthru_edge (pred->succs);
8039 if (e)
8041 gcc_assert (e->dest == succ);
8042 return e;
8045 else
8047 e = find_fallthru_edge (succ->preds);
8049 if (e)
8051 gcc_assert (e->src == pred);
8052 return e;
8056 return NULL;
8059 /* Extend per basic block data structures. */
8060 static void
8061 sched_extend_bb (void)
8063 /* The following is done to keep current_sched_info->next_tail non null. */
8064 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8065 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8066 if (NEXT_INSN (end) == 0
8067 || (!NOTE_P (insn)
8068 && !LABEL_P (insn)
8069 /* Don't emit a NOTE if it would end up before a BARRIER. */
8070 && !BARRIER_P (NEXT_INSN (end))))
8072 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8073 /* Make note appear outside BB. */
8074 set_block_for_insn (note, NULL);
8075 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8079 /* Init per basic block data structures. */
8080 void
8081 sched_init_bbs (void)
8083 sched_extend_bb ();
8086 /* Initialize BEFORE_RECOVERY variable. */
8087 static void
8088 init_before_recovery (basic_block *before_recovery_ptr)
8090 basic_block last;
8091 edge e;
8093 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8094 e = find_fallthru_edge_from (last);
8096 if (e)
8098 /* We create two basic blocks:
8099 1. Single instruction block is inserted right after E->SRC
8100 and has jump to
8101 2. Empty block right before EXIT_BLOCK.
8102 Between these two blocks recovery blocks will be emitted. */
8104 basic_block single, empty;
8105 rtx_insn *x;
8106 rtx label;
8108 /* If the fallthrough edge to exit we've found is from the block we've
8109 created before, don't do anything more. */
8110 if (last == after_recovery)
8111 return;
8113 adding_bb_to_current_region_p = false;
8115 single = sched_create_empty_bb (last);
8116 empty = sched_create_empty_bb (single);
8118 /* Add new blocks to the root loop. */
8119 if (current_loops != NULL)
8121 add_bb_to_loop (single, (*current_loops->larray)[0]);
8122 add_bb_to_loop (empty, (*current_loops->larray)[0]);
8125 single->count = last->count;
8126 empty->count = last->count;
8127 single->frequency = last->frequency;
8128 empty->frequency = last->frequency;
8129 BB_COPY_PARTITION (single, last);
8130 BB_COPY_PARTITION (empty, last);
8132 redirect_edge_succ (e, single);
8133 make_single_succ_edge (single, empty, 0);
8134 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8135 EDGE_FALLTHRU);
8137 label = block_label (empty);
8138 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
8139 JUMP_LABEL (x) = label;
8140 LABEL_NUSES (label)++;
8141 haifa_init_insn (x);
8143 emit_barrier_after (x);
8145 sched_init_only_bb (empty, NULL);
8146 sched_init_only_bb (single, NULL);
8147 sched_extend_bb ();
8149 adding_bb_to_current_region_p = true;
8150 before_recovery = single;
8151 after_recovery = empty;
8153 if (before_recovery_ptr)
8154 *before_recovery_ptr = before_recovery;
8156 if (sched_verbose >= 2 && spec_info->dump)
8157 fprintf (spec_info->dump,
8158 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8159 last->index, single->index, empty->index);
8161 else
8162 before_recovery = last;
8165 /* Returns new recovery block. */
8166 basic_block
8167 sched_create_recovery_block (basic_block *before_recovery_ptr)
8169 rtx label;
8170 rtx_insn *barrier;
8171 basic_block rec;
8173 haifa_recovery_bb_recently_added_p = true;
8174 haifa_recovery_bb_ever_added_p = true;
8176 init_before_recovery (before_recovery_ptr);
8178 barrier = get_last_bb_insn (before_recovery);
8179 gcc_assert (BARRIER_P (barrier));
8181 label = emit_label_after (gen_label_rtx (), barrier);
8183 rec = create_basic_block (label, label, before_recovery);
8185 /* A recovery block always ends with an unconditional jump. */
8186 emit_barrier_after (BB_END (rec));
8188 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8189 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8191 if (sched_verbose && spec_info->dump)
8192 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8193 rec->index);
8195 return rec;
8198 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8199 and emit necessary jumps. */
8200 void
8201 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8202 basic_block second_bb)
8204 rtx label;
8205 rtx jump;
8206 int edge_flags;
8208 /* This is fixing of incoming edge. */
8209 /* ??? Which other flags should be specified? */
8210 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8211 /* Partition type is the same, if it is "unpartitioned". */
8212 edge_flags = EDGE_CROSSING;
8213 else
8214 edge_flags = 0;
8216 make_edge (first_bb, rec, edge_flags);
8217 label = block_label (second_bb);
8218 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
8219 JUMP_LABEL (jump) = label;
8220 LABEL_NUSES (label)++;
8222 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8223 /* Partition type is the same, if it is "unpartitioned". */
8225 /* Rewritten from cfgrtl.c. */
8226 if (flag_reorder_blocks_and_partition
8227 && targetm_common.have_named_sections)
8229 /* We don't need the same note for the check because
8230 any_condjump_p (check) == true. */
8231 CROSSING_JUMP_P (jump) = 1;
8233 edge_flags = EDGE_CROSSING;
8235 else
8236 edge_flags = 0;
8238 make_single_succ_edge (rec, second_bb, edge_flags);
8239 if (dom_info_available_p (CDI_DOMINATORS))
8240 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8243 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
8244 INSN is a simple check, that should be converted to branchy one. */
8245 static void
8246 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8248 basic_block rec;
8249 rtx_insn *label, *check, *twin;
8250 rtx check_pat;
8251 ds_t fs;
8252 sd_iterator_def sd_it;
8253 dep_t dep;
8254 dep_def _new_dep, *new_dep = &_new_dep;
8255 ds_t todo_spec;
8257 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8259 if (!mutate_p)
8260 todo_spec = TODO_SPEC (insn);
8261 else
8263 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8264 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8266 todo_spec = CHECK_SPEC (insn);
8269 todo_spec &= SPECULATIVE;
8271 /* Create recovery block. */
8272 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8274 rec = sched_create_recovery_block (NULL);
8275 label = BB_HEAD (rec);
8277 else
8279 rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8280 label = NULL;
8283 /* Emit CHECK. */
8284 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8286 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8288 /* To have mem_reg alive at the beginning of second_bb,
8289 we emit check BEFORE insn, so insn after splitting
8290 insn will be at the beginning of second_bb, which will
8291 provide us with the correct life information. */
8292 check = emit_jump_insn_before (check_pat, insn);
8293 JUMP_LABEL (check) = label;
8294 LABEL_NUSES (label)++;
8296 else
8297 check = emit_insn_before (check_pat, insn);
8299 /* Extend data structures. */
8300 haifa_init_insn (check);
8302 /* CHECK is being added to current region. Extend ready list. */
8303 gcc_assert (sched_ready_n_insns != -1);
8304 sched_extend_ready_list (sched_ready_n_insns + 1);
8306 if (current_sched_info->add_remove_insn)
8307 current_sched_info->add_remove_insn (insn, 0);
8309 RECOVERY_BLOCK (check) = rec;
8311 if (sched_verbose && spec_info->dump)
8312 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8313 (*current_sched_info->print_insn) (check, 0));
8315 gcc_assert (ORIG_PAT (insn));
8317 /* Initialize TWIN (twin is a duplicate of original instruction
8318 in the recovery block). */
8319 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8321 sd_iterator_def sd_it;
8322 dep_t dep;
8324 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8325 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8327 struct _dep _dep2, *dep2 = &_dep2;
8329 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8331 sd_add_dep (dep2, true);
8334 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8335 haifa_init_insn (twin);
8337 if (sched_verbose && spec_info->dump)
8338 /* INSN_BB (insn) isn't determined for twin insns yet.
8339 So we can't use current_sched_info->print_insn. */
8340 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8341 INSN_UID (twin), rec->index);
8343 else
8345 ORIG_PAT (check) = ORIG_PAT (insn);
8346 HAS_INTERNAL_DEP (check) = 1;
8347 twin = check;
8348 /* ??? We probably should change all OUTPUT dependencies to
8349 (TRUE | OUTPUT). */
8352 /* Copy all resolved back dependencies of INSN to TWIN. This will
8353 provide correct value for INSN_TICK (TWIN). */
8354 sd_copy_back_deps (twin, insn, true);
8356 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8357 /* In case of branchy check, fix CFG. */
8359 basic_block first_bb, second_bb;
8360 rtx_insn *jump;
8362 first_bb = BLOCK_FOR_INSN (check);
8363 second_bb = sched_split_block (first_bb, check);
8365 sched_create_recovery_edges (first_bb, rec, second_bb);
8367 sched_init_only_bb (second_bb, first_bb);
8368 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8370 jump = BB_END (rec);
8371 haifa_init_insn (jump);
8374 /* Move backward dependences from INSN to CHECK and
8375 move forward dependences from INSN to TWIN. */
8377 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
8378 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8380 rtx_insn *pro = DEP_PRO (dep);
8381 ds_t ds;
8383 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8384 check --TRUE--> producer ??? or ANTI ???
8385 twin --TRUE--> producer
8386 twin --ANTI--> check
8388 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8389 check --ANTI--> producer
8390 twin --ANTI--> producer
8391 twin --ANTI--> check
8393 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8394 check ~~TRUE~~> producer
8395 twin ~~TRUE~~> producer
8396 twin --ANTI--> check */
8398 ds = DEP_STATUS (dep);
8400 if (ds & BEGIN_SPEC)
8402 gcc_assert (!mutate_p);
8403 ds &= ~BEGIN_SPEC;
8406 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8407 sd_add_dep (new_dep, false);
8409 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8411 DEP_CON (new_dep) = twin;
8412 sd_add_dep (new_dep, false);
8416 /* Second, remove backward dependencies of INSN. */
8417 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8418 sd_iterator_cond (&sd_it, &dep);)
8420 if ((DEP_STATUS (dep) & BEGIN_SPEC)
8421 || mutate_p)
8422 /* We can delete this dep because we overcome it with
8423 BEGIN_SPECULATION. */
8424 sd_delete_dep (sd_it);
8425 else
8426 sd_iterator_next (&sd_it);
8429 /* Future Speculations. Determine what BE_IN speculations will be like. */
8430 fs = 0;
8432 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8433 here. */
8435 gcc_assert (!DONE_SPEC (insn));
8437 if (!mutate_p)
8439 ds_t ts = TODO_SPEC (insn);
8441 DONE_SPEC (insn) = ts & BEGIN_SPEC;
8442 CHECK_SPEC (check) = ts & BEGIN_SPEC;
8444 /* Luckiness of future speculations solely depends upon initial
8445 BEGIN speculation. */
8446 if (ts & BEGIN_DATA)
8447 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8448 if (ts & BEGIN_CONTROL)
8449 fs = set_dep_weak (fs, BE_IN_CONTROL,
8450 get_dep_weak (ts, BEGIN_CONTROL));
8452 else
8453 CHECK_SPEC (check) = CHECK_SPEC (insn);
8455 /* Future speculations: call the helper. */
8456 process_insn_forw_deps_be_in_spec (insn, twin, fs);
8458 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8460 /* Which types of dependencies should we use here is,
8461 generally, machine-dependent question... But, for now,
8462 it is not. */
8464 if (!mutate_p)
8466 init_dep (new_dep, insn, check, REG_DEP_TRUE);
8467 sd_add_dep (new_dep, false);
8469 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8470 sd_add_dep (new_dep, false);
8472 else
8474 if (spec_info->dump)
8475 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8476 (*current_sched_info->print_insn) (insn, 0));
8478 /* Remove all dependencies of the INSN. */
8480 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8481 | SD_LIST_BACK
8482 | SD_LIST_RES_BACK));
8483 while (sd_iterator_cond (&sd_it, &dep))
8484 sd_delete_dep (sd_it);
8487 /* If former check (INSN) already was moved to the ready (or queue)
8488 list, add new check (CHECK) there too. */
8489 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8490 try_ready (check);
8492 /* Remove old check from instruction stream and free its
8493 data. */
8494 sched_remove_insn (insn);
8497 init_dep (new_dep, check, twin, REG_DEP_ANTI);
8498 sd_add_dep (new_dep, false);
8500 else
8502 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8503 sd_add_dep (new_dep, false);
8506 if (!mutate_p)
8507 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
8508 because it'll be done later in add_to_speculative_block. */
8510 rtx_vec_t priorities_roots = rtx_vec_t ();
8512 clear_priorities (twin, &priorities_roots);
8513 calc_priorities (priorities_roots);
8514 priorities_roots.release ();
8518 /* Removes dependency between instructions in the recovery block REC
8519 and usual region instructions. It keeps inner dependences so it
8520 won't be necessary to recompute them. */
8521 static void
8522 fix_recovery_deps (basic_block rec)
8524 rtx_insn *note, *insn, *jump;
8525 rtx_insn_list *ready_list = 0;
8526 bitmap_head in_ready;
8527 rtx_insn_list *link;
8529 bitmap_initialize (&in_ready, 0);
8531 /* NOTE - a basic block note. */
8532 note = NEXT_INSN (BB_HEAD (rec));
8533 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8534 insn = BB_END (rec);
8535 gcc_assert (JUMP_P (insn));
8536 insn = PREV_INSN (insn);
8540 sd_iterator_def sd_it;
8541 dep_t dep;
8543 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8544 sd_iterator_cond (&sd_it, &dep);)
8546 rtx_insn *consumer = DEP_CON (dep);
8548 if (BLOCK_FOR_INSN (consumer) != rec)
8550 sd_delete_dep (sd_it);
8552 if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8553 ready_list = alloc_INSN_LIST (consumer, ready_list);
8555 else
8557 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8559 sd_iterator_next (&sd_it);
8563 insn = PREV_INSN (insn);
8565 while (insn != note);
8567 bitmap_clear (&in_ready);
8569 /* Try to add instructions to the ready or queue list. */
8570 for (link = ready_list; link; link = link->next ())
8571 try_ready (link->insn ());
8572 free_INSN_LIST_list (&ready_list);
8574 /* Fixing jump's dependences. */
8575 insn = BB_HEAD (rec);
8576 jump = BB_END (rec);
8578 gcc_assert (LABEL_P (insn));
8579 insn = NEXT_INSN (insn);
8581 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8582 add_jump_dependencies (insn, jump);
8585 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
8586 instruction data. */
8587 static bool
8588 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8590 int t;
8592 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8593 if (!t)
8594 return false;
8596 update_insn_after_change (insn);
8597 return true;
8600 /* -1 - can't speculate,
8601 0 - for speculation with REQUEST mode it is OK to use
8602 current instruction pattern,
8603 1 - need to change pattern for *NEW_PAT to be speculative. */
8605 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8607 gcc_assert (current_sched_info->flags & DO_SPECULATION
8608 && (request & SPECULATIVE)
8609 && sched_insn_is_legitimate_for_speculation_p (insn, request));
8611 if ((request & spec_info->mask) != request)
8612 return -1;
8614 if (request & BE_IN_SPEC
8615 && !(request & BEGIN_SPEC))
8616 return 0;
8618 return targetm.sched.speculate_insn (insn, request, new_pat);
8621 static int
8622 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8624 gcc_assert (sched_deps_info->generate_spec_deps
8625 && !IS_SPECULATION_CHECK_P (insn));
8627 if (HAS_INTERNAL_DEP (insn)
8628 || SCHED_GROUP_P (insn))
8629 return -1;
8631 return sched_speculate_insn (insn, request, new_pat);
8634 /* Print some information about block BB, which starts with HEAD and
8635 ends with TAIL, before scheduling it.
8636 I is zero, if scheduler is about to start with the fresh ebb. */
8637 static void
8638 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8640 if (!i)
8641 fprintf (sched_dump,
8642 ";; ======================================================\n");
8643 else
8644 fprintf (sched_dump,
8645 ";; =====================ADVANCING TO=====================\n");
8646 fprintf (sched_dump,
8647 ";; -- basic block %d from %d to %d -- %s reload\n",
8648 bb->index, INSN_UID (head), INSN_UID (tail),
8649 (reload_completed ? "after" : "before"));
8650 fprintf (sched_dump,
8651 ";; ======================================================\n");
8652 fprintf (sched_dump, "\n");
8655 /* Unlink basic block notes and labels and saves them, so they
8656 can be easily restored. We unlink basic block notes in EBB to
8657 provide back-compatibility with the previous code, as target backends
8658 assume, that there'll be only instructions between
8659 current_sched_info->{head and tail}. We restore these notes as soon
8660 as we can.
8661 FIRST (LAST) is the first (last) basic block in the ebb.
8662 NB: In usual case (FIRST == LAST) nothing is really done. */
8663 void
8664 unlink_bb_notes (basic_block first, basic_block last)
8666 /* We DON'T unlink basic block notes of the first block in the ebb. */
8667 if (first == last)
8668 return;
8670 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8672 /* Make a sentinel. */
8673 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8674 bb_header[last->next_bb->index] = 0;
8676 first = first->next_bb;
8679 rtx_insn *prev, *label, *note, *next;
8681 label = BB_HEAD (last);
8682 if (LABEL_P (label))
8683 note = NEXT_INSN (label);
8684 else
8685 note = label;
8686 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8688 prev = PREV_INSN (label);
8689 next = NEXT_INSN (note);
8690 gcc_assert (prev && next);
8692 SET_NEXT_INSN (prev) = next;
8693 SET_PREV_INSN (next) = prev;
8695 bb_header[last->index] = label;
8697 if (last == first)
8698 break;
8700 last = last->prev_bb;
8702 while (1);
8705 /* Restore basic block notes.
8706 FIRST is the first basic block in the ebb. */
8707 static void
8708 restore_bb_notes (basic_block first)
8710 if (!bb_header)
8711 return;
8713 /* We DON'T unlink basic block notes of the first block in the ebb. */
8714 first = first->next_bb;
8715 /* Remember: FIRST is actually a second basic block in the ebb. */
8717 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8718 && bb_header[first->index])
8720 rtx_insn *prev, *label, *note, *next;
8722 label = bb_header[first->index];
8723 prev = PREV_INSN (label);
8724 next = NEXT_INSN (prev);
8726 if (LABEL_P (label))
8727 note = NEXT_INSN (label);
8728 else
8729 note = label;
8730 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8732 bb_header[first->index] = 0;
8734 SET_NEXT_INSN (prev) = label;
8735 SET_NEXT_INSN (note) = next;
8736 SET_PREV_INSN (next) = note;
8738 first = first->next_bb;
8741 free (bb_header);
8742 bb_header = 0;
8745 /* Helper function.
8746 Fix CFG after both in- and inter-block movement of
8747 control_flow_insn_p JUMP. */
8748 static void
8749 fix_jump_move (rtx_insn *jump)
8751 basic_block bb, jump_bb, jump_bb_next;
8753 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8754 jump_bb = BLOCK_FOR_INSN (jump);
8755 jump_bb_next = jump_bb->next_bb;
8757 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8758 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8760 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8761 /* if jump_bb_next is not empty. */
8762 BB_END (jump_bb) = BB_END (jump_bb_next);
8764 if (BB_END (bb) != PREV_INSN (jump))
8765 /* Then there are instruction after jump that should be placed
8766 to jump_bb_next. */
8767 BB_END (jump_bb_next) = BB_END (bb);
8768 else
8769 /* Otherwise jump_bb_next is empty. */
8770 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8772 /* To make assertion in move_insn happy. */
8773 BB_END (bb) = PREV_INSN (jump);
8775 update_bb_for_insn (jump_bb_next);
8778 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
8779 static void
8780 move_block_after_check (rtx_insn *jump)
8782 basic_block bb, jump_bb, jump_bb_next;
8783 vec<edge, va_gc> *t;
8785 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8786 jump_bb = BLOCK_FOR_INSN (jump);
8787 jump_bb_next = jump_bb->next_bb;
8789 update_bb_for_insn (jump_bb);
8791 gcc_assert (IS_SPECULATION_CHECK_P (jump)
8792 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8794 unlink_block (jump_bb_next);
8795 link_block (jump_bb_next, bb);
8797 t = bb->succs;
8798 bb->succs = 0;
8799 move_succs (&(jump_bb->succs), bb);
8800 move_succs (&(jump_bb_next->succs), jump_bb);
8801 move_succs (&t, jump_bb_next);
8803 df_mark_solutions_dirty ();
8805 common_sched_info->fix_recovery_cfg
8806 (bb->index, jump_bb->index, jump_bb_next->index);
8809 /* Helper function for move_block_after_check.
8810 This functions attaches edge vector pointed to by SUCCSP to
8811 block TO. */
8812 static void
8813 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8815 edge e;
8816 edge_iterator ei;
8818 gcc_assert (to->succs == 0);
8820 to->succs = *succsp;
8822 FOR_EACH_EDGE (e, ei, to->succs)
8823 e->src = to;
8825 *succsp = 0;
8828 /* Remove INSN from the instruction stream.
8829 INSN should have any dependencies. */
8830 static void
8831 sched_remove_insn (rtx_insn *insn)
8833 sd_finish_insn (insn);
8835 change_queue_index (insn, QUEUE_NOWHERE);
8836 current_sched_info->add_remove_insn (insn, 1);
8837 delete_insn (insn);
8840 /* Clear priorities of all instructions, that are forward dependent on INSN.
8841 Store in vector pointed to by ROOTS_PTR insns on which priority () should
8842 be invoked to initialize all cleared priorities. */
8843 static void
8844 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8846 sd_iterator_def sd_it;
8847 dep_t dep;
8848 bool insn_is_root_p = true;
8850 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8852 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8854 rtx_insn *pro = DEP_PRO (dep);
8856 if (INSN_PRIORITY_STATUS (pro) >= 0
8857 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8859 /* If DEP doesn't contribute to priority then INSN itself should
8860 be added to priority roots. */
8861 if (contributes_to_priority_p (dep))
8862 insn_is_root_p = false;
8864 INSN_PRIORITY_STATUS (pro) = -1;
8865 clear_priorities (pro, roots_ptr);
8869 if (insn_is_root_p)
8870 roots_ptr->safe_push (insn);
8873 /* Recompute priorities of instructions, whose priorities might have been
8874 changed. ROOTS is a vector of instructions whose priority computation will
8875 trigger initialization of all cleared priorities. */
8876 static void
8877 calc_priorities (rtx_vec_t roots)
8879 int i;
8880 rtx_insn *insn;
8882 FOR_EACH_VEC_ELT (roots, i, insn)
8883 priority (insn);
8887 /* Add dependences between JUMP and other instructions in the recovery
8888 block. INSN is the first insn the recovery block. */
8889 static void
8890 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8894 insn = NEXT_INSN (insn);
8895 if (insn == jump)
8896 break;
8898 if (dep_list_size (insn, SD_LIST_FORW) == 0)
8900 dep_def _new_dep, *new_dep = &_new_dep;
8902 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8903 sd_add_dep (new_dep, false);
8906 while (1);
8908 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8911 /* Extend data structures for logical insn UID. */
8912 void
8913 sched_extend_luids (void)
8915 int new_luids_max_uid = get_max_uid () + 1;
8917 sched_luids.safe_grow_cleared (new_luids_max_uid);
8920 /* Initialize LUID for INSN. */
8921 void
8922 sched_init_insn_luid (rtx_insn *insn)
8924 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8925 int luid;
8927 if (i >= 0)
8929 luid = sched_max_luid;
8930 sched_max_luid += i;
8932 else
8933 luid = -1;
8935 SET_INSN_LUID (insn, luid);
8938 /* Initialize luids for BBS.
8939 The hook common_sched_info->luid_for_non_insn () is used to determine
8940 if notes, labels, etc. need luids. */
8941 void
8942 sched_init_luids (bb_vec_t bbs)
8944 int i;
8945 basic_block bb;
8947 sched_extend_luids ();
8948 FOR_EACH_VEC_ELT (bbs, i, bb)
8950 rtx_insn *insn;
8952 FOR_BB_INSNS (bb, insn)
8953 sched_init_insn_luid (insn);
8957 /* Free LUIDs. */
8958 void
8959 sched_finish_luids (void)
8961 sched_luids.release ();
8962 sched_max_luid = 1;
8965 /* Return logical uid of INSN. Helpful while debugging. */
8967 insn_luid (rtx_insn *insn)
8969 return INSN_LUID (insn);
8972 /* Extend per insn data in the target. */
8973 void
8974 sched_extend_target (void)
8976 if (targetm.sched.h_i_d_extended)
8977 targetm.sched.h_i_d_extended ();
8980 /* Extend global scheduler structures (those, that live across calls to
8981 schedule_block) to include information about just emitted INSN. */
8982 static void
8983 extend_h_i_d (void)
8985 int reserve = (get_max_uid () + 1 - h_i_d.length ());
8986 if (reserve > 0
8987 && ! h_i_d.space (reserve))
8989 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8990 sched_extend_target ();
8994 /* Initialize h_i_d entry of the INSN with default values.
8995 Values, that are not explicitly initialized here, hold zero. */
8996 static void
8997 init_h_i_d (rtx_insn *insn)
8999 if (INSN_LUID (insn) > 0)
9001 INSN_COST (insn) = -1;
9002 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9003 INSN_TICK (insn) = INVALID_TICK;
9004 INSN_EXACT_TICK (insn) = INVALID_TICK;
9005 INTER_TICK (insn) = INVALID_TICK;
9006 TODO_SPEC (insn) = HARD_DEP;
9007 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9008 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9009 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9010 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9014 /* Initialize haifa_insn_data for BBS. */
9015 void
9016 haifa_init_h_i_d (bb_vec_t bbs)
9018 int i;
9019 basic_block bb;
9021 extend_h_i_d ();
9022 FOR_EACH_VEC_ELT (bbs, i, bb)
9024 rtx_insn *insn;
9026 FOR_BB_INSNS (bb, insn)
9027 init_h_i_d (insn);
9031 /* Finalize haifa_insn_data. */
9032 void
9033 haifa_finish_h_i_d (void)
9035 int i;
9036 haifa_insn_data_t data;
9037 struct reg_use_data *use, *next;
9039 FOR_EACH_VEC_ELT (h_i_d, i, data)
9041 free (data->max_reg_pressure);
9042 free (data->reg_pressure);
9043 for (use = data->reg_use_list; use != NULL; use = next)
9045 next = use->next_insn_use;
9046 free (use);
9049 h_i_d.release ();
9052 /* Init data for the new insn INSN. */
9053 static void
9054 haifa_init_insn (rtx_insn *insn)
9056 gcc_assert (insn != NULL);
9058 sched_extend_luids ();
9059 sched_init_insn_luid (insn);
9060 sched_extend_target ();
9061 sched_deps_init (false);
9062 extend_h_i_d ();
9063 init_h_i_d (insn);
9065 if (adding_bb_to_current_region_p)
9067 sd_init_insn (insn);
9069 /* Extend dependency caches by one element. */
9070 extend_dependency_caches (1, false);
9072 if (sched_pressure != SCHED_PRESSURE_NONE)
9073 init_insn_reg_pressure_info (insn);
9076 /* Init data for the new basic block BB which comes after AFTER. */
9077 static void
9078 haifa_init_only_bb (basic_block bb, basic_block after)
9080 gcc_assert (bb != NULL);
9082 sched_init_bbs ();
9084 if (common_sched_info->add_block)
9085 /* This changes only data structures of the front-end. */
9086 common_sched_info->add_block (bb, after);
9089 /* A generic version of sched_split_block (). */
9090 basic_block
9091 sched_split_block_1 (basic_block first_bb, rtx after)
9093 edge e;
9095 e = split_block (first_bb, after);
9096 gcc_assert (e->src == first_bb);
9098 /* sched_split_block emits note if *check == BB_END. Probably it
9099 is better to rip that note off. */
9101 return e->dest;
9104 /* A generic version of sched_create_empty_bb (). */
9105 basic_block
9106 sched_create_empty_bb_1 (basic_block after)
9108 return create_empty_bb (after);
9111 /* Insert PAT as an INSN into the schedule and update the necessary data
9112 structures to account for it. */
9113 rtx_insn *
9114 sched_emit_insn (rtx pat)
9116 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9117 haifa_init_insn (insn);
9119 if (current_sched_info->add_remove_insn)
9120 current_sched_info->add_remove_insn (insn, 0);
9122 (*current_sched_info->begin_schedule_ready) (insn);
9123 scheduled_insns.safe_push (insn);
9125 last_scheduled_insn = insn;
9126 return insn;
9129 /* This function returns a candidate satisfying dispatch constraints from
9130 the ready list. */
9132 static rtx_insn *
9133 ready_remove_first_dispatch (struct ready_list *ready)
9135 int i;
9136 rtx_insn *insn = ready_element (ready, 0);
9138 if (ready->n_ready == 1
9139 || !INSN_P (insn)
9140 || INSN_CODE (insn) < 0
9141 || !active_insn_p (insn)
9142 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9143 return ready_remove_first (ready);
9145 for (i = 1; i < ready->n_ready; i++)
9147 insn = ready_element (ready, i);
9149 if (!INSN_P (insn)
9150 || INSN_CODE (insn) < 0
9151 || !active_insn_p (insn))
9152 continue;
9154 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9156 /* Return ith element of ready. */
9157 insn = ready_remove (ready, i);
9158 return insn;
9162 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9163 return ready_remove_first (ready);
9165 for (i = 1; i < ready->n_ready; i++)
9167 insn = ready_element (ready, i);
9169 if (!INSN_P (insn)
9170 || INSN_CODE (insn) < 0
9171 || !active_insn_p (insn))
9172 continue;
9174 /* Return i-th element of ready. */
9175 if (targetm.sched.dispatch (insn, IS_CMP))
9176 return ready_remove (ready, i);
9179 return ready_remove_first (ready);
9182 /* Get number of ready insn in the ready list. */
9185 number_in_ready (void)
9187 return ready.n_ready;
9190 /* Get number of ready's in the ready list. */
9192 rtx_insn *
9193 get_ready_element (int i)
9195 return ready_element (&ready, i);
9198 #endif /* INSN_SCHEDULING */