PR c/79855: add full stop to store merging param descriptions
[official-gcc.git] / gcc / ada / lib-xref.adb
blob4d9fe6919e4689ef3f865fa25f6fb253e62ce7a1
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- L I B . X R E F --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1998-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Csets; use Csets;
28 with Elists; use Elists;
29 with Errout; use Errout;
30 with Nlists; use Nlists;
31 with Opt; use Opt;
32 with Restrict; use Restrict;
33 with Rident; use Rident;
34 with Sem; use Sem;
35 with Sem_Aux; use Sem_Aux;
36 with Sem_Prag; use Sem_Prag;
37 with Sem_Util; use Sem_Util;
38 with Sem_Warn; use Sem_Warn;
39 with Sinfo; use Sinfo;
40 with Sinput; use Sinput;
41 with Snames; use Snames;
42 with Stringt; use Stringt;
43 with Stand; use Stand;
44 with Table; use Table;
46 with GNAT.Heap_Sort_G;
47 with GNAT.HTable;
49 package body Lib.Xref is
51 ------------------
52 -- Declarations --
53 ------------------
55 -- The Xref table is used to record references. The Loc field is set
56 -- to No_Location for a definition entry.
58 subtype Xref_Entry_Number is Int;
60 type Xref_Key is record
61 -- These are the components of Xref_Entry that participate in hash
62 -- lookups.
64 Ent : Entity_Id;
65 -- Entity referenced (E parameter to Generate_Reference)
67 Loc : Source_Ptr;
68 -- Location of reference (Original_Location (Sloc field of N parameter
69 -- to Generate_Reference)). Set to No_Location for the case of a
70 -- defining occurrence.
72 Typ : Character;
73 -- Reference type (Typ param to Generate_Reference)
75 Eun : Unit_Number_Type;
76 -- Unit number corresponding to Ent
78 Lun : Unit_Number_Type;
79 -- Unit number corresponding to Loc. Value is undefined and not
80 -- referenced if Loc is set to No_Location.
82 -- The following components are only used for SPARK cross-references
84 Ref_Scope : Entity_Id;
85 -- Entity of the closest subprogram or package enclosing the reference
87 Ent_Scope : Entity_Id;
88 -- Entity of the closest subprogram or package enclosing the definition,
89 -- which should be located in the same file as the definition itself.
90 end record;
92 type Xref_Entry is record
93 Key : Xref_Key;
95 Ent_Scope_File : Unit_Number_Type;
96 -- File for entity Ent_Scope
98 Def : Source_Ptr;
99 -- Original source location for entity being referenced. Note that these
100 -- values are used only during the output process, they are not set when
101 -- the entries are originally built. This is because private entities
102 -- can be swapped when the initial call is made.
104 HTable_Next : Xref_Entry_Number;
105 -- For use only by Static_HTable
106 end record;
108 package Xrefs is new Table.Table (
109 Table_Component_Type => Xref_Entry,
110 Table_Index_Type => Xref_Entry_Number,
111 Table_Low_Bound => 1,
112 Table_Initial => Alloc.Xrefs_Initial,
113 Table_Increment => Alloc.Xrefs_Increment,
114 Table_Name => "Xrefs");
116 --------------
117 -- Xref_Set --
118 --------------
120 -- We keep a set of xref entries, in order to avoid inserting duplicate
121 -- entries into the above Xrefs table. An entry is in Xref_Set if and only
122 -- if it is in Xrefs.
124 Num_Buckets : constant := 2**16;
126 subtype Header_Num is Integer range 0 .. Num_Buckets - 1;
127 type Null_Type is null record;
128 pragma Unreferenced (Null_Type);
130 function Hash (F : Xref_Entry_Number) return Header_Num;
132 function Equal (F1, F2 : Xref_Entry_Number) return Boolean;
134 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number);
136 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number;
138 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number;
140 pragma Inline (Hash, Equal, HT_Set_Next, HT_Next, Get_Key);
142 package Xref_Set is new GNAT.HTable.Static_HTable (
143 Header_Num,
144 Element => Xref_Entry,
145 Elmt_Ptr => Xref_Entry_Number,
146 Null_Ptr => 0,
147 Set_Next => HT_Set_Next,
148 Next => HT_Next,
149 Key => Xref_Entry_Number,
150 Get_Key => Get_Key,
151 Hash => Hash,
152 Equal => Equal);
154 -----------------------------
155 -- SPARK Xrefs Information --
156 -----------------------------
158 package body SPARK_Specific is separate;
160 ------------------------
161 -- Local Subprograms --
162 ------------------------
164 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type);
165 -- Add an entry to the tables of Xref_Entries, avoiding duplicates
167 procedure Generate_Prim_Op_References (Typ : Entity_Id);
168 -- For a tagged type, generate implicit references to its primitive
169 -- operations, for source navigation. This is done right before emitting
170 -- cross-reference information rather than at the freeze point of the type
171 -- in order to handle late bodies that are primitive operations.
173 function Lt (T1, T2 : Xref_Entry) return Boolean;
174 -- Order cross-references
176 ---------------
177 -- Add_Entry --
178 ---------------
180 procedure Add_Entry (Key : Xref_Key; Ent_Scope_File : Unit_Number_Type) is
181 begin
182 Xrefs.Increment_Last; -- tentative
183 Xrefs.Table (Xrefs.Last).Key := Key;
185 -- Set the entry in Xref_Set, and if newly set, keep the above
186 -- tentative increment.
188 if Xref_Set.Set_If_Not_Present (Xrefs.Last) then
189 Xrefs.Table (Xrefs.Last).Ent_Scope_File := Ent_Scope_File;
190 -- Leave Def and HTable_Next uninitialized
192 Set_Has_Xref_Entry (Key.Ent);
194 -- It was already in Xref_Set, so throw away the tentatively-added entry
196 else
197 Xrefs.Decrement_Last;
198 end if;
199 end Add_Entry;
201 -----------
202 -- Equal --
203 -----------
205 function Equal (F1, F2 : Xref_Entry_Number) return Boolean is
206 Result : constant Boolean :=
207 Xrefs.Table (F1).Key = Xrefs.Table (F2).Key;
208 begin
209 return Result;
210 end Equal;
212 -------------------------
213 -- Generate_Definition --
214 -------------------------
216 procedure Generate_Definition (E : Entity_Id) is
217 begin
218 pragma Assert (Nkind (E) in N_Entity);
220 -- Note that we do not test Xref_Entity_Letters here. It is too early
221 -- to do so, since we are often called before the entity is fully
222 -- constructed, so that the Ekind is still E_Void.
224 if Opt.Xref_Active
226 -- Definition must come from source
228 -- We make an exception for subprogram child units that have no spec.
229 -- For these we generate a subprogram declaration for library use,
230 -- and the corresponding entity does not come from source.
231 -- Nevertheless, all references will be attached to it and we have
232 -- to treat is as coming from user code.
234 and then (Comes_From_Source (E) or else Is_Child_Unit (E))
236 -- And must have a reasonable source location that is not
237 -- within an instance (all entities in instances are ignored)
239 and then Sloc (E) > No_Location
240 and then Instantiation_Location (Sloc (E)) = No_Location
242 -- And must be a non-internal name from the main source unit
244 and then In_Extended_Main_Source_Unit (E)
245 and then not Is_Internal_Name (Chars (E))
246 then
247 Add_Entry
248 ((Ent => E,
249 Loc => No_Location,
250 Typ => ' ',
251 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
252 Lun => No_Unit,
253 Ref_Scope => Empty,
254 Ent_Scope => Empty),
255 Ent_Scope_File => No_Unit);
257 if In_Inlined_Body then
258 Set_Referenced (E);
259 end if;
260 end if;
261 end Generate_Definition;
263 ---------------------------------
264 -- Generate_Operator_Reference --
265 ---------------------------------
267 procedure Generate_Operator_Reference
268 (N : Node_Id;
269 T : Entity_Id)
271 begin
272 if not In_Extended_Main_Source_Unit (N) then
273 return;
274 end if;
276 -- If the operator is not a Standard operator, then we generate a real
277 -- reference to the user defined operator.
279 if Sloc (Entity (N)) /= Standard_Location then
280 Generate_Reference (Entity (N), N);
282 -- A reference to an implicit inequality operator is also a reference
283 -- to the user-defined equality.
285 if Nkind (N) = N_Op_Ne
286 and then not Comes_From_Source (Entity (N))
287 and then Present (Corresponding_Equality (Entity (N)))
288 then
289 Generate_Reference (Corresponding_Equality (Entity (N)), N);
290 end if;
292 -- For the case of Standard operators, we mark the result type as
293 -- referenced. This ensures that in the case where we are using a
294 -- derived operator, we mark an entity of the unit that implicitly
295 -- defines this operator as used. Otherwise we may think that no entity
296 -- of the unit is used. The actual entity marked as referenced is the
297 -- first subtype, which is the relevant user defined entity.
299 -- Note: we only do this for operators that come from source. The
300 -- generated code sometimes reaches for entities that do not need to be
301 -- explicitly visible (for example, when we expand the code for
302 -- comparing two record objects, the fields of the record may not be
303 -- visible).
305 elsif Comes_From_Source (N) then
306 Set_Referenced (First_Subtype (T));
307 end if;
308 end Generate_Operator_Reference;
310 ---------------------------------
311 -- Generate_Prim_Op_References --
312 ---------------------------------
314 procedure Generate_Prim_Op_References (Typ : Entity_Id) is
315 Base_T : Entity_Id;
316 Prim : Elmt_Id;
317 Prim_List : Elist_Id;
319 begin
320 -- Handle subtypes of synchronized types
322 if Ekind (Typ) = E_Protected_Subtype
323 or else Ekind (Typ) = E_Task_Subtype
324 then
325 Base_T := Etype (Typ);
326 else
327 Base_T := Typ;
328 end if;
330 -- References to primitive operations are only relevant for tagged types
332 if not Is_Tagged_Type (Base_T)
333 or else Is_Class_Wide_Type (Base_T)
334 then
335 return;
336 end if;
338 -- Ada 2005 (AI-345): For synchronized types generate reference to the
339 -- wrapper that allow us to dispatch calls through their implemented
340 -- abstract interface types.
342 -- The check for Present here is to protect against previously reported
343 -- critical errors.
345 Prim_List := Primitive_Operations (Base_T);
347 if No (Prim_List) then
348 return;
349 end if;
351 Prim := First_Elmt (Prim_List);
352 while Present (Prim) loop
354 -- If the operation is derived, get the original for cross-reference
355 -- reference purposes (it is the original for which we want the xref
356 -- and for which the comes_from_source test must be performed).
358 Generate_Reference
359 (Typ, Ultimate_Alias (Node (Prim)), 'p', Set_Ref => False);
360 Next_Elmt (Prim);
361 end loop;
362 end Generate_Prim_Op_References;
364 ------------------------
365 -- Generate_Reference --
366 ------------------------
368 procedure Generate_Reference
369 (E : Entity_Id;
370 N : Node_Id;
371 Typ : Character := 'r';
372 Set_Ref : Boolean := True;
373 Force : Boolean := False)
375 Actual_Typ : Character := Typ;
376 Call : Node_Id;
377 Def : Source_Ptr;
378 Ent : Entity_Id;
379 Ent_Scope : Entity_Id;
380 Formal : Entity_Id;
381 Kind : Entity_Kind;
382 Nod : Node_Id;
383 Ref : Source_Ptr;
384 Ref_Scope : Entity_Id;
386 function Get_Through_Renamings (E : Entity_Id) return Entity_Id;
387 -- Get the enclosing entity through renamings, which may come from
388 -- source or from the translation of generic instantiations.
390 function Is_On_LHS (Node : Node_Id) return Boolean;
391 -- Used to check if a node is on the left hand side of an assignment.
392 -- The following cases are handled:
394 -- Variable Node is a direct descendant of left hand side of an
395 -- assignment statement.
397 -- Prefix Of an indexed or selected component that is present in
398 -- a subtree rooted by an assignment statement. There is
399 -- no restriction of nesting of components, thus cases
400 -- such as A.B (C).D are handled properly. However a prefix
401 -- of a dereference (either implicit or explicit) is never
402 -- considered as on a LHS.
404 -- Out param Same as above cases, but OUT parameter
406 function OK_To_Set_Referenced return Boolean;
407 -- Returns True if the Referenced flag can be set. There are a few
408 -- exceptions where we do not want to set this flag, see body for
409 -- details of these exceptional cases.
411 ---------------------------
412 -- Get_Through_Renamings --
413 ---------------------------
415 function Get_Through_Renamings (E : Entity_Id) return Entity_Id is
416 Result : Entity_Id := E;
418 begin
419 while Present (Result)
420 and then Is_Object (Result)
421 and then Present (Renamed_Object (Result))
422 loop
423 Result := Get_Enclosing_Object (Renamed_Object (Result));
424 end loop;
426 return Result;
427 end Get_Through_Renamings;
429 ---------------
430 -- Is_On_LHS --
431 ---------------
433 -- ??? There are several routines here and there that perform a similar
434 -- (but subtly different) computation, which should be factored:
436 -- Sem_Util.Is_LHS
437 -- Sem_Util.May_Be_Lvalue
438 -- Sem_Util.Known_To_Be_Assigned
439 -- Exp_Ch2.Expand_Entry_Parameter.In_Assignment_Context
440 -- Exp_Smem.Is_Out_Actual
442 function Is_On_LHS (Node : Node_Id) return Boolean is
443 N : Node_Id;
444 P : Node_Id;
445 K : Node_Kind;
447 begin
448 -- Only identifiers are considered, is this necessary???
450 if Nkind (Node) /= N_Identifier then
451 return False;
452 end if;
454 -- Immediate return if appeared as OUT parameter
456 if Kind = E_Out_Parameter then
457 return True;
458 end if;
460 -- Search for assignment statement subtree root
462 N := Node;
463 loop
464 P := Parent (N);
465 K := Nkind (P);
467 if K = N_Assignment_Statement then
468 return Name (P) = N;
470 -- Check whether the parent is a component and the current node is
471 -- its prefix, but return False if the current node has an access
472 -- type, as in that case the selected or indexed component is an
473 -- implicit dereference, and the LHS is the designated object, not
474 -- the access object.
476 -- ??? case of a slice assignment?
478 elsif (K = N_Selected_Component or else K = N_Indexed_Component)
479 and then Prefix (P) = N
480 then
481 -- Check for access type. First a special test, In some cases
482 -- this is called too early (see comments in Find_Direct_Name),
483 -- at a point where the tree is not fully typed yet. In that
484 -- case we may lack an Etype for N, and we can't check the
485 -- Etype. For now, we always return False in such a case,
486 -- but this is clearly not right in all cases ???
488 if No (Etype (N)) then
489 return False;
491 elsif Is_Access_Type (Etype (N)) then
492 return False;
494 -- Access type case dealt with, keep going
496 else
497 N := P;
498 end if;
500 -- All other cases, definitely not on left side
502 else
503 return False;
504 end if;
505 end loop;
506 end Is_On_LHS;
508 ---------------------------
509 -- OK_To_Set_Referenced --
510 ---------------------------
512 function OK_To_Set_Referenced return Boolean is
513 P : Node_Id;
515 begin
516 -- A reference from a pragma Unreferenced or pragma Unmodified or
517 -- pragma Warnings does not cause the Referenced flag to be set.
518 -- This avoids silly warnings about things being referenced and
519 -- not assigned when the only reference is from the pragma.
521 if Nkind (N) = N_Identifier then
522 P := Parent (N);
524 if Nkind (P) = N_Pragma_Argument_Association then
525 P := Parent (P);
527 if Nkind (P) = N_Pragma then
528 if Nam_In (Pragma_Name_Unmapped (P),
529 Name_Warnings,
530 Name_Unmodified,
531 Name_Unreferenced)
532 then
533 return False;
534 end if;
535 end if;
537 -- A reference to a formal in a named parameter association does
538 -- not make the formal referenced. Formals that are unused in the
539 -- subprogram body are properly flagged as such, even if calls
540 -- elsewhere use named notation.
542 elsif Nkind (P) = N_Parameter_Association
543 and then N = Selector_Name (P)
544 then
545 return False;
546 end if;
547 end if;
549 return True;
550 end OK_To_Set_Referenced;
552 -- Start of processing for Generate_Reference
554 begin
555 pragma Assert (Nkind (E) in N_Entity);
556 Find_Actual (N, Formal, Call);
558 if Present (Formal) then
559 Kind := Ekind (Formal);
560 else
561 Kind := E_Void;
562 end if;
564 -- Check for obsolescent reference to package ASCII. GNAT treats this
565 -- element of annex J specially since in practice, programs make a lot
566 -- of use of this feature, so we don't include it in the set of features
567 -- diagnosed when Warn_On_Obsolescent_Features mode is set. However we
568 -- are required to note it as a violation of the RM defined restriction.
570 if E = Standard_ASCII then
571 Check_Restriction (No_Obsolescent_Features, N);
572 end if;
574 -- Check for reference to entity marked with Is_Obsolescent
576 -- Note that we always allow obsolescent references in the compiler
577 -- itself and the run time, since we assume that we know what we are
578 -- doing in such cases. For example the calls in Ada.Characters.Handling
579 -- to its own obsolescent subprograms are just fine.
581 -- In any case we only generate warnings if we are in the extended main
582 -- source unit, and the entity itself is not in the extended main source
583 -- unit, since we assume the source unit itself knows what is going on
584 -- (and for sure we do not want silly warnings, e.g. on the end line of
585 -- an obsolescent procedure body).
587 if Is_Obsolescent (E)
588 and then not GNAT_Mode
589 and then not In_Extended_Main_Source_Unit (E)
590 and then In_Extended_Main_Source_Unit (N)
591 then
592 Check_Restriction (No_Obsolescent_Features, N);
594 if Warn_On_Obsolescent_Feature then
595 Output_Obsolescent_Entity_Warnings (N, E);
596 end if;
597 end if;
599 -- Warn if reference to Ada 2005 entity not in Ada 2005 mode. We only
600 -- detect real explicit references (modifications and references).
602 if Comes_From_Source (N)
603 and then Is_Ada_2005_Only (E)
604 and then Ada_Version < Ada_2005
605 and then Warn_On_Ada_2005_Compatibility
606 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's')
607 then
608 Error_Msg_NE ("& is only defined in Ada 2005?y?", N, E);
609 end if;
611 -- Warn if reference to Ada 2012 entity not in Ada 2012 mode. We only
612 -- detect real explicit references (modifications and references).
614 if Comes_From_Source (N)
615 and then Is_Ada_2012_Only (E)
616 and then Ada_Version < Ada_2012
617 and then Warn_On_Ada_2012_Compatibility
618 and then (Typ = 'm' or else Typ = 'r')
619 then
620 Error_Msg_NE ("& is only defined in Ada 2012?y?", N, E);
621 end if;
623 -- Do not generate references if we are within a postcondition sub-
624 -- program, because the reference does not comes from source, and the
625 -- pre-analysis of the aspect has already created an entry for the ALI
626 -- file at the proper source location.
628 if Chars (Current_Scope) = Name_uPostconditions then
629 return;
630 end if;
632 -- Never collect references if not in main source unit. However, we omit
633 -- this test if Typ is 'e' or 'k', since these entries are structural,
634 -- and it is useful to have them in units that reference packages as
635 -- well as units that define packages. We also omit the test for the
636 -- case of 'p' since we want to include inherited primitive operations
637 -- from other packages.
639 -- We also omit this test is this is a body reference for a subprogram
640 -- instantiation. In this case the reference is to the generic body,
641 -- which clearly need not be in the main unit containing the instance.
642 -- For the same reason we accept an implicit reference generated for
643 -- a default in an instance.
645 -- We also set the referenced flag in a generic package that is not in
646 -- then main source unit, when the variable is of a formal private type,
647 -- to warn in the instance if the corresponding type is not a fully
648 -- initialized type.
650 if not In_Extended_Main_Source_Unit (N) then
651 if Typ = 'e' or else
652 Typ = 'I' or else
653 Typ = 'p' or else
654 Typ = 'i' or else
655 Typ = 'k'
656 or else (Typ = 'b' and then Is_Generic_Instance (E))
658 -- Allow the generation of references to reads, writes and calls
659 -- in SPARK mode when the related context comes from an instance.
661 or else
662 (GNATprove_Mode
663 and then In_Extended_Main_Code_Unit (N)
664 and then (Typ = 'm' or else Typ = 'r' or else Typ = 's'))
665 then
666 null;
668 elsif In_Instance_Body
669 and then In_Extended_Main_Code_Unit (N)
670 and then Is_Generic_Type (Etype (E))
671 then
672 Set_Referenced (E);
673 return;
675 elsif Inside_A_Generic
676 and then Is_Generic_Type (Etype (E))
677 then
678 Set_Referenced (E);
679 return;
681 else
682 return;
683 end if;
684 end if;
686 -- For reference type p, the entity must be in main source unit
688 if Typ = 'p' and then not In_Extended_Main_Source_Unit (E) then
689 return;
690 end if;
692 -- Unless the reference is forced, we ignore references where the
693 -- reference itself does not come from source.
695 if not Force and then not Comes_From_Source (N) then
696 return;
697 end if;
699 -- Deal with setting entity as referenced, unless suppressed. Note that
700 -- we still do Set_Referenced on entities that do not come from source.
701 -- This situation arises when we have a source reference to a derived
702 -- operation, where the derived operation itself does not come from
703 -- source, but we still want to mark it as referenced, since we really
704 -- are referencing an entity in the corresponding package (this avoids
705 -- wrong complaints that the package contains no referenced entities).
707 if Set_Ref then
709 -- Assignable object appearing on left side of assignment or as
710 -- an out parameter.
712 if Is_Assignable (E)
713 and then Is_On_LHS (N)
714 and then Ekind (E) /= E_In_Out_Parameter
715 then
716 -- For objects that are renamings, just set as simply referenced
717 -- we do not try to do assignment type tracking in this case.
719 if Present (Renamed_Object (E)) then
720 Set_Referenced (E);
722 -- Out parameter case
724 elsif Kind = E_Out_Parameter then
726 -- If warning mode for all out parameters is set, or this is
727 -- the only warning parameter, then we want to mark this for
728 -- later warning logic by setting Referenced_As_Out_Parameter
730 if Warn_On_Modified_As_Out_Parameter (Formal) then
731 Set_Referenced_As_Out_Parameter (E, True);
732 Set_Referenced_As_LHS (E, False);
734 -- For OUT parameter not covered by the above cases, we simply
735 -- regard it as a normal reference (in this case we do not
736 -- want any of the warning machinery for out parameters).
738 else
739 Set_Referenced (E);
740 end if;
742 -- For the left hand of an assignment case, we do nothing here.
743 -- The processing for Analyze_Assignment_Statement will set the
744 -- Referenced_As_LHS flag.
746 else
747 null;
748 end if;
750 -- Check for a reference in a pragma that should not count as a
751 -- making the variable referenced for warning purposes.
753 elsif Is_Non_Significant_Pragma_Reference (N) then
754 null;
756 -- A reference in an attribute definition clause does not count as a
757 -- reference except for the case of Address. The reason that 'Address
758 -- is an exception is that it creates an alias through which the
759 -- variable may be referenced.
761 elsif Nkind (Parent (N)) = N_Attribute_Definition_Clause
762 and then Chars (Parent (N)) /= Name_Address
763 and then N = Name (Parent (N))
764 then
765 null;
767 -- Constant completion does not count as a reference
769 elsif Typ = 'c'
770 and then Ekind (E) = E_Constant
771 then
772 null;
774 -- Record representation clause does not count as a reference
776 elsif Nkind (N) = N_Identifier
777 and then Nkind (Parent (N)) = N_Record_Representation_Clause
778 then
779 null;
781 -- Discriminants do not need to produce a reference to record type
783 elsif Typ = 'd'
784 and then Nkind (Parent (N)) = N_Discriminant_Specification
785 then
786 null;
788 -- All other cases
790 else
791 -- Special processing for IN OUT parameters, where we have an
792 -- implicit assignment to a simple variable.
794 if Kind = E_In_Out_Parameter
795 and then Is_Assignable (E)
796 then
797 -- For sure this counts as a normal read reference
799 Set_Referenced (E);
800 Set_Last_Assignment (E, Empty);
802 -- We count it as being referenced as an out parameter if the
803 -- option is set to warn on all out parameters, except that we
804 -- have a special exclusion for an intrinsic subprogram, which
805 -- is most likely an instantiation of Unchecked_Deallocation
806 -- which we do not want to consider as an assignment since it
807 -- generates false positives. We also exclude the case of an
808 -- IN OUT parameter if the name of the procedure is Free,
809 -- since we suspect similar semantics.
811 if Warn_On_All_Unread_Out_Parameters
812 and then Is_Entity_Name (Name (Call))
813 and then not Is_Intrinsic_Subprogram (Entity (Name (Call)))
814 and then Chars (Name (Call)) /= Name_Free
815 then
816 Set_Referenced_As_Out_Parameter (E, True);
817 Set_Referenced_As_LHS (E, False);
818 end if;
820 -- Don't count a recursive reference within a subprogram as a
821 -- reference (that allows detection of a recursive subprogram
822 -- whose only references are recursive calls as unreferenced).
824 elsif Is_Subprogram (E)
825 and then E = Nearest_Dynamic_Scope (Current_Scope)
826 then
827 null;
829 -- Any other occurrence counts as referencing the entity
831 elsif OK_To_Set_Referenced then
832 Set_Referenced (E);
834 -- If variable, this is an OK reference after an assignment
835 -- so we can clear the Last_Assignment indication.
837 if Is_Assignable (E) then
838 Set_Last_Assignment (E, Empty);
839 end if;
840 end if;
841 end if;
843 -- Check for pragma Unreferenced given and reference is within
844 -- this source unit (occasion for possible warning to be issued).
845 -- Note that the entity may be marked as unreferenced by pragma
846 -- Unused.
848 if Has_Unreferenced (E)
849 and then In_Same_Extended_Unit (E, N)
850 then
851 -- A reference as a named parameter in a call does not count
852 -- as a violation of pragma Unreferenced for this purpose...
854 if Nkind (N) = N_Identifier
855 and then Nkind (Parent (N)) = N_Parameter_Association
856 and then Selector_Name (Parent (N)) = N
857 then
858 null;
860 -- ... Neither does a reference to a variable on the left side
861 -- of an assignment.
863 elsif Is_On_LHS (N) then
864 null;
866 -- No warning if the reference is in a call that does not come
867 -- from source (e.g. a call to a controlled type primitive).
869 elsif not Comes_From_Source (Parent (N))
870 and then Nkind (Parent (N)) = N_Procedure_Call_Statement
871 then
872 null;
874 -- For entry formals, we want to place the warning message on the
875 -- corresponding entity in the accept statement. The current scope
876 -- is the body of the accept, so we find the formal whose name
877 -- matches that of the entry formal (there is no link between the
878 -- two entities, and the one in the accept statement is only used
879 -- for conformance checking).
881 elsif Ekind (Scope (E)) = E_Entry then
882 declare
883 BE : Entity_Id;
885 begin
886 BE := First_Entity (Current_Scope);
887 while Present (BE) loop
888 if Chars (BE) = Chars (E) then
889 if Has_Pragma_Unused (E) then
890 Error_Msg_NE -- CODEFIX
891 ("??pragma Unused given for&!", N, BE);
892 else
893 Error_Msg_NE -- CODEFIX
894 ("??pragma Unreferenced given for&!", N, BE);
895 end if;
896 exit;
897 end if;
899 Next_Entity (BE);
900 end loop;
901 end;
903 -- Here we issue the warning, since this is a real reference
905 elsif Has_Pragma_Unused (E) then
906 Error_Msg_NE -- CODEFIX
907 ("??pragma Unused given for&!", N, E);
908 else
909 Error_Msg_NE -- CODEFIX
910 ("??pragma Unreferenced given for&!", N, E);
911 end if;
912 end if;
914 -- If this is a subprogram instance, mark as well the internal
915 -- subprogram in the wrapper package, which may be a visible
916 -- compilation unit.
918 if Is_Overloadable (E)
919 and then Is_Generic_Instance (E)
920 and then Present (Alias (E))
921 then
922 Set_Referenced (Alias (E));
923 end if;
924 end if;
926 -- Generate reference if all conditions are met:
929 -- Cross referencing must be active
931 Opt.Xref_Active
933 -- The entity must be one for which we collect references
935 and then Xref_Entity_Letters (Ekind (E)) /= ' '
937 -- Both Sloc values must be set to something sensible
939 and then Sloc (E) > No_Location
940 and then Sloc (N) > No_Location
942 -- Ignore references from within an instance. The only exceptions to
943 -- this are default subprograms, for which we generate an implicit
944 -- reference and compilations in SPARK mode.
946 and then
947 (Instantiation_Location (Sloc (N)) = No_Location
948 or else Typ = 'i'
949 or else GNATprove_Mode)
951 -- Ignore dummy references
953 and then Typ /= ' '
954 then
955 if Nkind_In (N, N_Identifier,
956 N_Defining_Identifier,
957 N_Defining_Operator_Symbol,
958 N_Operator_Symbol,
959 N_Defining_Character_Literal)
960 or else Nkind (N) in N_Op
961 or else (Nkind (N) = N_Character_Literal
962 and then Sloc (Entity (N)) /= Standard_Location)
963 then
964 Nod := N;
966 elsif Nkind_In (N, N_Expanded_Name, N_Selected_Component) then
967 Nod := Selector_Name (N);
969 else
970 return;
971 end if;
973 -- Normal case of source entity comes from source
975 if Comes_From_Source (E) then
976 Ent := E;
978 -- Because a declaration may be generated for a subprogram body
979 -- without declaration in GNATprove mode, for inlining, some
980 -- parameters may end up being marked as not coming from source
981 -- although they are. Take these into account specially.
983 elsif GNATprove_Mode and then Ekind (E) in Formal_Kind then
984 Ent := E;
986 -- Entity does not come from source, but is a derived subprogram and
987 -- the derived subprogram comes from source (after one or more
988 -- derivations) in which case the reference is to parent subprogram.
990 elsif Is_Overloadable (E)
991 and then Present (Alias (E))
992 then
993 Ent := Alias (E);
994 while not Comes_From_Source (Ent) loop
995 if No (Alias (Ent)) then
996 return;
997 end if;
999 Ent := Alias (Ent);
1000 end loop;
1002 -- The internally created defining entity for a child subprogram
1003 -- that has no previous spec has valid references.
1005 elsif Is_Overloadable (E)
1006 and then Is_Child_Unit (E)
1007 then
1008 Ent := E;
1010 -- Ditto for the formals of such a subprogram
1012 elsif Is_Overloadable (Scope (E))
1013 and then Is_Child_Unit (Scope (E))
1014 then
1015 Ent := E;
1017 -- Record components of discriminated subtypes or derived types must
1018 -- be treated as references to the original component.
1020 elsif Ekind (E) = E_Component
1021 and then Comes_From_Source (Original_Record_Component (E))
1022 then
1023 Ent := Original_Record_Component (E);
1025 -- If this is an expanded reference to a discriminant, recover the
1026 -- original discriminant, which gets the reference.
1028 elsif Ekind (E) = E_In_Parameter
1029 and then Present (Discriminal_Link (E))
1030 then
1031 Ent := Discriminal_Link (E);
1032 Set_Referenced (Ent);
1034 -- Ignore reference to any other entity that is not from source
1036 else
1037 return;
1038 end if;
1040 -- In SPARK mode, consider the underlying entity renamed instead of
1041 -- the renaming, which is needed to compute a valid set of effects
1042 -- (reads, writes) for the enclosing subprogram.
1044 if GNATprove_Mode then
1045 Ent := Get_Through_Renamings (Ent);
1047 -- If no enclosing object, then it could be a reference to any
1048 -- location not tracked individually, like heap-allocated data.
1049 -- Conservatively approximate this possibility by generating a
1050 -- dereference, and return.
1052 if No (Ent) then
1053 if Actual_Typ = 'w' then
1054 SPARK_Specific.Generate_Dereference (Nod, 'r');
1055 SPARK_Specific.Generate_Dereference (Nod, 'w');
1056 else
1057 SPARK_Specific.Generate_Dereference (Nod, 'r');
1058 end if;
1060 return;
1061 end if;
1062 end if;
1064 -- Record reference to entity
1066 if Actual_Typ = 'p'
1067 and then Is_Subprogram (Nod)
1068 and then Present (Overridden_Operation (Nod))
1069 then
1070 Actual_Typ := 'P';
1071 end if;
1073 -- Comment needed here for special SPARK code ???
1075 if GNATprove_Mode then
1076 Ref := Sloc (Nod);
1077 Def := Sloc (Ent);
1079 Ref_Scope :=
1080 SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Nod);
1081 Ent_Scope :=
1082 SPARK_Specific.Enclosing_Subprogram_Or_Library_Package (Ent);
1084 -- Since we are reaching through renamings in SPARK mode, we may
1085 -- end up with standard constants. Ignore those.
1087 if Sloc (Ent_Scope) <= Standard_Location
1088 or else Def <= Standard_Location
1089 then
1090 return;
1091 end if;
1093 Add_Entry
1094 ((Ent => Ent,
1095 Loc => Ref,
1096 Typ => Actual_Typ,
1097 Eun => Get_Top_Level_Code_Unit (Def),
1098 Lun => Get_Top_Level_Code_Unit (Ref),
1099 Ref_Scope => Ref_Scope,
1100 Ent_Scope => Ent_Scope),
1101 Ent_Scope_File => Get_Top_Level_Code_Unit (Ent));
1103 else
1104 Ref := Original_Location (Sloc (Nod));
1105 Def := Original_Location (Sloc (Ent));
1107 -- If this is an operator symbol, skip the initial quote for
1108 -- navigation purposes. This is not done for the end label,
1109 -- where we want the actual position after the closing quote.
1111 if Typ = 't' then
1112 null;
1114 elsif Nkind (N) = N_Defining_Operator_Symbol
1115 or else Nkind (Nod) = N_Operator_Symbol
1116 then
1117 Ref := Ref + 1;
1118 end if;
1120 Add_Entry
1121 ((Ent => Ent,
1122 Loc => Ref,
1123 Typ => Actual_Typ,
1124 Eun => Get_Source_Unit (Def),
1125 Lun => Get_Source_Unit (Ref),
1126 Ref_Scope => Empty,
1127 Ent_Scope => Empty),
1128 Ent_Scope_File => No_Unit);
1130 -- Generate reference to the first private entity
1132 if Typ = 'e'
1133 and then Comes_From_Source (E)
1134 and then Nkind (Ent) = N_Defining_Identifier
1135 and then (Is_Package_Or_Generic_Package (Ent)
1136 or else Is_Concurrent_Type (Ent))
1137 and then Present (First_Private_Entity (E))
1138 and then In_Extended_Main_Source_Unit (N)
1139 then
1140 -- Handle case in which the full-view and partial-view of the
1141 -- first private entity are swapped.
1143 declare
1144 First_Private : Entity_Id := First_Private_Entity (E);
1146 begin
1147 if Is_Private_Type (First_Private)
1148 and then Present (Full_View (First_Private))
1149 then
1150 First_Private := Full_View (First_Private);
1151 end if;
1153 Add_Entry
1154 ((Ent => Ent,
1155 Loc => Sloc (First_Private),
1156 Typ => 'E',
1157 Eun => Get_Source_Unit (Def),
1158 Lun => Get_Source_Unit (Ref),
1159 Ref_Scope => Empty,
1160 Ent_Scope => Empty),
1161 Ent_Scope_File => No_Unit);
1162 end;
1163 end if;
1164 end if;
1165 end if;
1166 end Generate_Reference;
1168 -----------------------------------
1169 -- Generate_Reference_To_Formals --
1170 -----------------------------------
1172 procedure Generate_Reference_To_Formals (E : Entity_Id) is
1173 Formal : Entity_Id;
1175 begin
1176 if Is_Generic_Subprogram (E) then
1177 Formal := First_Entity (E);
1179 while Present (Formal)
1180 and then not Is_Formal (Formal)
1181 loop
1182 Next_Entity (Formal);
1183 end loop;
1185 elsif Ekind (E) in Access_Subprogram_Kind then
1186 Formal := First_Formal (Designated_Type (E));
1188 else
1189 Formal := First_Formal (E);
1190 end if;
1192 while Present (Formal) loop
1193 if Ekind (Formal) = E_In_Parameter then
1195 if Nkind (Parameter_Type (Parent (Formal))) = N_Access_Definition
1196 then
1197 Generate_Reference (E, Formal, '^', False);
1198 else
1199 Generate_Reference (E, Formal, '>', False);
1200 end if;
1202 elsif Ekind (Formal) = E_In_Out_Parameter then
1203 Generate_Reference (E, Formal, '=', False);
1205 else
1206 Generate_Reference (E, Formal, '<', False);
1207 end if;
1209 Next_Formal (Formal);
1210 end loop;
1211 end Generate_Reference_To_Formals;
1213 -------------------------------------------
1214 -- Generate_Reference_To_Generic_Formals --
1215 -------------------------------------------
1217 procedure Generate_Reference_To_Generic_Formals (E : Entity_Id) is
1218 Formal : Entity_Id;
1220 begin
1221 Formal := First_Entity (E);
1222 while Present (Formal) loop
1223 if Comes_From_Source (Formal) then
1224 Generate_Reference (E, Formal, 'z', False);
1225 end if;
1227 Next_Entity (Formal);
1228 end loop;
1229 end Generate_Reference_To_Generic_Formals;
1231 -------------
1232 -- Get_Key --
1233 -------------
1235 function Get_Key (E : Xref_Entry_Number) return Xref_Entry_Number is
1236 begin
1237 return E;
1238 end Get_Key;
1240 ----------------------------
1241 -- Has_Deferred_Reference --
1242 ----------------------------
1244 function Has_Deferred_Reference (Ent : Entity_Id) return Boolean is
1245 begin
1246 for J in Deferred_References.First .. Deferred_References.Last loop
1247 if Deferred_References.Table (J).E = Ent then
1248 return True;
1249 end if;
1250 end loop;
1252 return False;
1253 end Has_Deferred_Reference;
1255 ----------
1256 -- Hash --
1257 ----------
1259 function Hash (F : Xref_Entry_Number) return Header_Num is
1260 -- It is unlikely to have two references to the same entity at the same
1261 -- source location, so the hash function depends only on the Ent and Loc
1262 -- fields.
1264 XE : Xref_Entry renames Xrefs.Table (F);
1265 type M is mod 2**32;
1267 H : constant M := M (XE.Key.Ent) + 2 ** 7 * M (abs XE.Key.Loc);
1268 -- It would be more natural to write:
1270 -- H : constant M := M'Mod (XE.Key.Ent) + 2**7 * M'Mod (XE.Key.Loc);
1272 -- But we can't use M'Mod, because it prevents bootstrapping with older
1273 -- compilers. Loc can be negative, so we do "abs" before converting.
1274 -- One day this can be cleaned up ???
1276 begin
1277 return Header_Num (H mod Num_Buckets);
1278 end Hash;
1280 -----------------
1281 -- HT_Set_Next --
1282 -----------------
1284 procedure HT_Set_Next (E : Xref_Entry_Number; Next : Xref_Entry_Number) is
1285 begin
1286 Xrefs.Table (E).HTable_Next := Next;
1287 end HT_Set_Next;
1289 -------------
1290 -- HT_Next --
1291 -------------
1293 function HT_Next (E : Xref_Entry_Number) return Xref_Entry_Number is
1294 begin
1295 return Xrefs.Table (E).HTable_Next;
1296 end HT_Next;
1298 ----------------
1299 -- Initialize --
1300 ----------------
1302 procedure Initialize is
1303 begin
1304 Xrefs.Init;
1305 end Initialize;
1307 --------
1308 -- Lt --
1309 --------
1311 function Lt (T1, T2 : Xref_Entry) return Boolean is
1312 begin
1313 -- First test: if entity is in different unit, sort by unit
1315 if T1.Key.Eun /= T2.Key.Eun then
1316 return Dependency_Num (T1.Key.Eun) < Dependency_Num (T2.Key.Eun);
1318 -- Second test: within same unit, sort by entity Sloc
1320 elsif T1.Def /= T2.Def then
1321 return T1.Def < T2.Def;
1323 -- Third test: sort definitions ahead of references
1325 elsif T1.Key.Loc = No_Location then
1326 return True;
1328 elsif T2.Key.Loc = No_Location then
1329 return False;
1331 -- Fourth test: for same entity, sort by reference location unit
1333 elsif T1.Key.Lun /= T2.Key.Lun then
1334 return Dependency_Num (T1.Key.Lun) < Dependency_Num (T2.Key.Lun);
1336 -- Fifth test: order of location within referencing unit
1338 elsif T1.Key.Loc /= T2.Key.Loc then
1339 return T1.Key.Loc < T2.Key.Loc;
1341 -- Finally, for two locations at the same address, we prefer
1342 -- the one that does NOT have the type 'r' so that a modification
1343 -- or extension takes preference, when there are more than one
1344 -- reference at the same location. As a result, in the case of
1345 -- entities that are in-out actuals, the read reference follows
1346 -- the modify reference.
1348 else
1349 return T2.Key.Typ = 'r';
1350 end if;
1351 end Lt;
1353 -----------------------
1354 -- Output_References --
1355 -----------------------
1357 procedure Output_References is
1359 procedure Get_Type_Reference
1360 (Ent : Entity_Id;
1361 Tref : out Entity_Id;
1362 Left : out Character;
1363 Right : out Character);
1364 -- Given an Entity_Id Ent, determines whether a type reference is
1365 -- required. If so, Tref is set to the entity for the type reference
1366 -- and Left and Right are set to the left/right brackets to be output
1367 -- for the reference. If no type reference is required, then Tref is
1368 -- set to Empty, and Left/Right are set to space.
1370 procedure Output_Import_Export_Info (Ent : Entity_Id);
1371 -- Output language and external name information for an interfaced
1372 -- entity, using the format <language, external_name>.
1374 ------------------------
1375 -- Get_Type_Reference --
1376 ------------------------
1378 procedure Get_Type_Reference
1379 (Ent : Entity_Id;
1380 Tref : out Entity_Id;
1381 Left : out Character;
1382 Right : out Character)
1384 Sav : Entity_Id;
1386 begin
1387 -- See if we have a type reference
1389 Tref := Ent;
1390 Left := '{';
1391 Right := '}';
1393 loop
1394 Sav := Tref;
1396 -- Processing for types
1398 if Is_Type (Tref) then
1400 -- Case of base type
1402 if Base_Type (Tref) = Tref then
1404 -- If derived, then get first subtype
1406 if Tref /= Etype (Tref) then
1407 Tref := First_Subtype (Etype (Tref));
1409 -- Set brackets for derived type, but don't override
1410 -- pointer case since the fact that something is a
1411 -- pointer is more important.
1413 if Left /= '(' then
1414 Left := '<';
1415 Right := '>';
1416 end if;
1418 -- If the completion of a private type is itself a derived
1419 -- type, we need the parent of the full view.
1421 elsif Is_Private_Type (Tref)
1422 and then Present (Full_View (Tref))
1423 and then Etype (Full_View (Tref)) /= Full_View (Tref)
1424 then
1425 Tref := Etype (Full_View (Tref));
1427 if Left /= '(' then
1428 Left := '<';
1429 Right := '>';
1430 end if;
1432 -- If non-derived pointer, get directly designated type.
1433 -- If the type has a full view, all references are on the
1434 -- partial view that is seen first.
1436 elsif Is_Access_Type (Tref) then
1437 Tref := Directly_Designated_Type (Tref);
1438 Left := '(';
1439 Right := ')';
1441 elsif Is_Private_Type (Tref)
1442 and then Present (Full_View (Tref))
1443 then
1444 if Is_Access_Type (Full_View (Tref)) then
1445 Tref := Directly_Designated_Type (Full_View (Tref));
1446 Left := '(';
1447 Right := ')';
1449 -- If the full view is an array type, we also retrieve
1450 -- the corresponding component type, because the ali
1451 -- entry already indicates that this is an array.
1453 elsif Is_Array_Type (Full_View (Tref)) then
1454 Tref := Component_Type (Full_View (Tref));
1455 Left := '(';
1456 Right := ')';
1457 end if;
1459 -- If non-derived array, get component type. Skip component
1460 -- type for case of String or Wide_String, saves worthwhile
1461 -- space.
1463 elsif Is_Array_Type (Tref)
1464 and then Tref /= Standard_String
1465 and then Tref /= Standard_Wide_String
1466 then
1467 Tref := Component_Type (Tref);
1468 Left := '(';
1469 Right := ')';
1471 -- For other non-derived base types, nothing
1473 else
1474 exit;
1475 end if;
1477 -- For a subtype, go to ancestor subtype
1479 else
1480 Tref := Ancestor_Subtype (Tref);
1482 -- If no ancestor subtype, go to base type
1484 if No (Tref) then
1485 Tref := Base_Type (Sav);
1486 end if;
1487 end if;
1489 -- For objects, functions, enum literals, just get type from
1490 -- Etype field.
1492 elsif Is_Object (Tref)
1493 or else Ekind (Tref) = E_Enumeration_Literal
1494 or else Ekind (Tref) = E_Function
1495 or else Ekind (Tref) = E_Operator
1496 then
1497 Tref := Etype (Tref);
1499 -- Another special case: an object of a classwide type
1500 -- initialized with a tag-indeterminate call gets a subtype
1501 -- of the classwide type during expansion. See if the original
1502 -- type in the declaration is named, and return it instead
1503 -- of going to the root type. The expression may be a class-
1504 -- wide function call whose result is on the secondary stack,
1505 -- which forces the declaration to be rewritten as a renaming,
1506 -- so examine the source declaration.
1508 if Ekind (Tref) = E_Class_Wide_Subtype then
1509 declare
1510 Decl : constant Node_Id := Original_Node (Parent (Ent));
1511 begin
1512 if Nkind (Decl) = N_Object_Declaration
1513 and then Is_Entity_Name
1514 (Original_Node (Object_Definition (Decl)))
1515 then
1516 Tref :=
1517 Entity (Original_Node (Object_Definition (Decl)));
1518 end if;
1519 end;
1521 -- For a function that returns a class-wide type, Tref is
1522 -- already correct.
1524 elsif Is_Overloadable (Ent)
1525 and then Is_Class_Wide_Type (Tref)
1526 then
1527 return;
1528 end if;
1530 -- For anything else, exit
1532 else
1533 exit;
1534 end if;
1536 -- Exit if no type reference, or we are stuck in some loop trying
1537 -- to find the type reference, or if the type is standard void
1538 -- type (the latter is an implementation artifact that should not
1539 -- show up in the generated cross-references).
1541 exit when No (Tref)
1542 or else Tref = Sav
1543 or else Tref = Standard_Void_Type;
1545 -- If we have a usable type reference, return, otherwise keep
1546 -- looking for something useful (we are looking for something
1547 -- that either comes from source or standard)
1549 if Sloc (Tref) = Standard_Location
1550 or else Comes_From_Source (Tref)
1551 then
1552 -- If the reference is a subtype created for a generic actual,
1553 -- go actual directly, the inner subtype is not user visible.
1555 if Nkind (Parent (Tref)) = N_Subtype_Declaration
1556 and then not Comes_From_Source (Parent (Tref))
1557 and then
1558 (Is_Wrapper_Package (Scope (Tref))
1559 or else Is_Generic_Instance (Scope (Tref)))
1560 then
1561 Tref := First_Subtype (Base_Type (Tref));
1562 end if;
1564 return;
1565 end if;
1566 end loop;
1568 -- If we fall through the loop, no type reference
1570 Tref := Empty;
1571 Left := ' ';
1572 Right := ' ';
1573 end Get_Type_Reference;
1575 -------------------------------
1576 -- Output_Import_Export_Info --
1577 -------------------------------
1579 procedure Output_Import_Export_Info (Ent : Entity_Id) is
1580 Language_Name : Name_Id;
1581 Conv : constant Convention_Id := Convention (Ent);
1583 begin
1584 -- Generate language name from convention
1586 if Conv = Convention_C then
1587 Language_Name := Name_C;
1589 elsif Conv = Convention_CPP then
1590 Language_Name := Name_CPP;
1592 elsif Conv = Convention_Ada then
1593 Language_Name := Name_Ada;
1595 else
1596 -- For the moment we ignore all other cases ???
1598 return;
1599 end if;
1601 Write_Info_Char ('<');
1602 Get_Unqualified_Name_String (Language_Name);
1604 for J in 1 .. Name_Len loop
1605 Write_Info_Char (Name_Buffer (J));
1606 end loop;
1608 if Present (Interface_Name (Ent)) then
1609 Write_Info_Char (',');
1610 String_To_Name_Buffer (Strval (Interface_Name (Ent)));
1612 for J in 1 .. Name_Len loop
1613 Write_Info_Char (Name_Buffer (J));
1614 end loop;
1615 end if;
1617 Write_Info_Char ('>');
1618 end Output_Import_Export_Info;
1620 -- Start of processing for Output_References
1622 begin
1623 -- First we add references to the primitive operations of tagged types
1624 -- declared in the main unit.
1626 Handle_Prim_Ops : declare
1627 Ent : Entity_Id;
1629 begin
1630 for J in 1 .. Xrefs.Last loop
1631 Ent := Xrefs.Table (J).Key.Ent;
1633 if Is_Type (Ent)
1634 and then Is_Tagged_Type (Ent)
1635 and then Is_Base_Type (Ent)
1636 and then In_Extended_Main_Source_Unit (Ent)
1637 then
1638 Generate_Prim_Op_References (Ent);
1639 end if;
1640 end loop;
1641 end Handle_Prim_Ops;
1643 -- Before we go ahead and output the references we have a problem
1644 -- that needs dealing with. So far we have captured things that are
1645 -- definitely referenced by the main unit, or defined in the main
1646 -- unit. That's because we don't want to clutter up the ali file
1647 -- for this unit with definition lines for entities in other units
1648 -- that are not referenced.
1650 -- But there is a glitch. We may reference an entity in another unit,
1651 -- and it may have a type reference to an entity that is not directly
1652 -- referenced in the main unit, which may mean that there is no xref
1653 -- entry for this entity yet in the list of references.
1655 -- If we don't do something about this, we will end with an orphan type
1656 -- reference, i.e. it will point to an entity that does not appear
1657 -- within the generated references in the ali file. That is not good for
1658 -- tools using the xref information.
1660 -- To fix this, we go through the references adding definition entries
1661 -- for any unreferenced entities that can be referenced in a type
1662 -- reference. There is a recursion problem here, and that is dealt with
1663 -- by making sure that this traversal also traverses any entries that
1664 -- get added by the traversal.
1666 Handle_Orphan_Type_References : declare
1667 J : Nat;
1668 Tref : Entity_Id;
1669 Ent : Entity_Id;
1671 L, R : Character;
1672 pragma Warnings (Off, L);
1673 pragma Warnings (Off, R);
1675 procedure New_Entry (E : Entity_Id);
1676 -- Make an additional entry into the Xref table for a type entity
1677 -- that is related to the current entity (parent, type ancestor,
1678 -- progenitor, etc.).
1680 ----------------
1681 -- New_Entry --
1682 ----------------
1684 procedure New_Entry (E : Entity_Id) is
1685 begin
1686 pragma Assert (Present (E));
1688 if not Has_Xref_Entry (Implementation_Base_Type (E))
1689 and then Sloc (E) > No_Location
1690 then
1691 Add_Entry
1692 ((Ent => E,
1693 Loc => No_Location,
1694 Typ => Character'First,
1695 Eun => Get_Source_Unit (Original_Location (Sloc (E))),
1696 Lun => No_Unit,
1697 Ref_Scope => Empty,
1698 Ent_Scope => Empty),
1699 Ent_Scope_File => No_Unit);
1700 end if;
1701 end New_Entry;
1703 -- Start of processing for Handle_Orphan_Type_References
1705 begin
1706 -- Note that this is not a for loop for a very good reason. The
1707 -- processing of items in the table can add new items to the table,
1708 -- and they must be processed as well.
1710 J := 1;
1711 while J <= Xrefs.Last loop
1712 Ent := Xrefs.Table (J).Key.Ent;
1714 -- Do not generate reference information for an ignored Ghost
1715 -- entity because neither the entity nor its references will
1716 -- appear in the final tree.
1718 if Is_Ignored_Ghost_Entity (Ent) then
1719 goto Orphan_Continue;
1720 end if;
1722 Get_Type_Reference (Ent, Tref, L, R);
1724 if Present (Tref)
1725 and then not Has_Xref_Entry (Tref)
1726 and then Sloc (Tref) > No_Location
1727 then
1728 New_Entry (Tref);
1730 if Is_Record_Type (Ent)
1731 and then Present (Interfaces (Ent))
1732 then
1733 -- Add an entry for each one of the given interfaces
1734 -- implemented by type Ent.
1736 declare
1737 Elmt : Elmt_Id := First_Elmt (Interfaces (Ent));
1738 begin
1739 while Present (Elmt) loop
1740 New_Entry (Node (Elmt));
1741 Next_Elmt (Elmt);
1742 end loop;
1743 end;
1744 end if;
1745 end if;
1747 -- Collect inherited primitive operations that may be declared in
1748 -- another unit and have no visible reference in the current one.
1750 if Is_Type (Ent)
1751 and then Is_Tagged_Type (Ent)
1752 and then Is_Derived_Type (Ent)
1753 and then Is_Base_Type (Ent)
1754 and then In_Extended_Main_Source_Unit (Ent)
1755 then
1756 declare
1757 Op_List : constant Elist_Id := Primitive_Operations (Ent);
1758 Op : Elmt_Id;
1759 Prim : Entity_Id;
1761 function Parent_Op (E : Entity_Id) return Entity_Id;
1762 -- Find original operation, which may be inherited through
1763 -- several derivations.
1765 function Parent_Op (E : Entity_Id) return Entity_Id is
1766 Orig_Op : constant Entity_Id := Alias (E);
1768 begin
1769 if No (Orig_Op) then
1770 return Empty;
1772 elsif not Comes_From_Source (E)
1773 and then not Has_Xref_Entry (Orig_Op)
1774 and then Comes_From_Source (Orig_Op)
1775 then
1776 return Orig_Op;
1777 else
1778 return Parent_Op (Orig_Op);
1779 end if;
1780 end Parent_Op;
1782 begin
1783 Op := First_Elmt (Op_List);
1784 while Present (Op) loop
1785 Prim := Parent_Op (Node (Op));
1787 if Present (Prim) then
1788 Add_Entry
1789 ((Ent => Prim,
1790 Loc => No_Location,
1791 Typ => Character'First,
1792 Eun => Get_Source_Unit (Sloc (Prim)),
1793 Lun => No_Unit,
1794 Ref_Scope => Empty,
1795 Ent_Scope => Empty),
1796 Ent_Scope_File => No_Unit);
1797 end if;
1799 Next_Elmt (Op);
1800 end loop;
1801 end;
1802 end if;
1804 <<Orphan_Continue>>
1805 J := J + 1;
1806 end loop;
1807 end Handle_Orphan_Type_References;
1809 -- Now we have all the references, including those for any embedded type
1810 -- references, so we can sort them, and output them.
1812 Output_Refs : declare
1813 Nrefs : constant Nat := Xrefs.Last;
1814 -- Number of references in table
1816 Rnums : array (0 .. Nrefs) of Nat;
1817 -- This array contains numbers of references in the Xrefs table.
1818 -- This list is sorted in output order. The extra 0'th entry is
1819 -- convenient for the call to sort. When we sort the table, we
1820 -- move the entries in Rnums around, but we do not move the
1821 -- original table entries.
1823 Curxu : Unit_Number_Type;
1824 -- Current xref unit
1826 Curru : Unit_Number_Type;
1827 -- Current reference unit for one entity
1829 Curent : Entity_Id;
1830 -- Current entity
1832 Curnam : String (1 .. Name_Buffer'Length);
1833 Curlen : Natural;
1834 -- Simple name and length of current entity
1836 Curdef : Source_Ptr;
1837 -- Original source location for current entity
1839 Crloc : Source_Ptr;
1840 -- Current reference location
1842 Ctyp : Character;
1843 -- Entity type character
1845 Prevt : Character;
1846 -- reference kind of previous reference
1848 Tref : Entity_Id;
1849 -- Type reference
1851 Rref : Node_Id;
1852 -- Renaming reference
1854 Trunit : Unit_Number_Type;
1855 -- Unit number for type reference
1857 function Lt (Op1, Op2 : Natural) return Boolean;
1858 -- Comparison function for Sort call
1860 function Name_Change (X : Entity_Id) return Boolean;
1861 -- Determines if entity X has a different simple name from Curent
1863 procedure Move (From : Natural; To : Natural);
1864 -- Move procedure for Sort call
1866 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
1868 --------
1869 -- Lt --
1870 --------
1872 function Lt (Op1, Op2 : Natural) return Boolean is
1873 T1 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op1)));
1874 T2 : Xref_Entry renames Xrefs.Table (Rnums (Nat (Op2)));
1876 begin
1877 return Lt (T1, T2);
1878 end Lt;
1880 ----------
1881 -- Move --
1882 ----------
1884 procedure Move (From : Natural; To : Natural) is
1885 begin
1886 Rnums (Nat (To)) := Rnums (Nat (From));
1887 end Move;
1889 -----------------
1890 -- Name_Change --
1891 -----------------
1893 -- Why a string comparison here??? Why not compare Name_Id values???
1895 function Name_Change (X : Entity_Id) return Boolean is
1896 begin
1897 Get_Unqualified_Name_String (Chars (X));
1899 if Name_Len /= Curlen then
1900 return True;
1901 else
1902 return Name_Buffer (1 .. Curlen) /= Curnam (1 .. Curlen);
1903 end if;
1904 end Name_Change;
1906 -- Start of processing for Output_Refs
1908 begin
1909 -- Capture the definition Sloc values. We delay doing this till now,
1910 -- since at the time the reference or definition is made, private
1911 -- types may be swapped, and the Sloc value may be incorrect. We
1912 -- also set up the pointer vector for the sort.
1914 -- For user-defined operators we need to skip the initial quote and
1915 -- point to the first character of the name, for navigation purposes.
1917 for J in 1 .. Nrefs loop
1918 declare
1919 E : constant Entity_Id := Xrefs.Table (J).Key.Ent;
1920 Loc : constant Source_Ptr := Original_Location (Sloc (E));
1922 begin
1923 Rnums (J) := J;
1925 if Nkind (E) = N_Defining_Operator_Symbol then
1926 Xrefs.Table (J).Def := Loc + 1;
1927 else
1928 Xrefs.Table (J).Def := Loc;
1929 end if;
1930 end;
1931 end loop;
1933 -- Sort the references
1935 Sorting.Sort (Integer (Nrefs));
1937 -- Initialize loop through references
1939 Curxu := No_Unit;
1940 Curent := Empty;
1941 Curdef := No_Location;
1942 Curru := No_Unit;
1943 Crloc := No_Location;
1944 Prevt := 'm';
1946 -- Loop to output references
1948 for Refno in 1 .. Nrefs loop
1949 Output_One_Ref : declare
1950 Ent : Entity_Id;
1952 XE : Xref_Entry renames Xrefs.Table (Rnums (Refno));
1953 -- The current entry to be accessed
1955 Left : Character;
1956 Right : Character;
1957 -- Used for {} or <> or () for type reference
1959 procedure Check_Type_Reference
1960 (Ent : Entity_Id;
1961 List_Interface : Boolean;
1962 Is_Component : Boolean := False);
1963 -- Find whether there is a meaningful type reference for
1964 -- Ent, and display it accordingly. If List_Interface is
1965 -- true, then Ent is a progenitor interface of the current
1966 -- type entity being listed. In that case list it as is,
1967 -- without looking for a type reference for it. Flag is also
1968 -- used for index types of an array type, where the caller
1969 -- supplies the intended type reference. Is_Component serves
1970 -- the same purpose, to display the component type of a
1971 -- derived array type, for which only the parent type has
1972 -- ben displayed so far.
1974 procedure Output_Instantiation_Refs (Loc : Source_Ptr);
1975 -- Recursive procedure to output instantiation references for
1976 -- the given source ptr in [file|line[...]] form. No output
1977 -- if the given location is not a generic template reference.
1979 procedure Output_Overridden_Op (Old_E : Entity_Id);
1980 -- For a subprogram that is overriding, display information
1981 -- about the inherited operation that it overrides.
1983 --------------------------
1984 -- Check_Type_Reference --
1985 --------------------------
1987 procedure Check_Type_Reference
1988 (Ent : Entity_Id;
1989 List_Interface : Boolean;
1990 Is_Component : Boolean := False)
1992 begin
1993 if List_Interface then
1995 -- This is a progenitor interface of the type for which
1996 -- xref information is being generated.
1998 Tref := Ent;
1999 Left := '<';
2000 Right := '>';
2002 -- The following is not documented in lib-xref.ads ???
2004 elsif Is_Component then
2005 Tref := Ent;
2006 Left := '(';
2007 Right := ')';
2009 else
2010 Get_Type_Reference (Ent, Tref, Left, Right);
2011 end if;
2013 if Present (Tref) then
2015 -- Case of standard entity, output name
2017 if Sloc (Tref) = Standard_Location then
2018 Write_Info_Char (Left);
2019 Write_Info_Name (Chars (Tref));
2020 Write_Info_Char (Right);
2022 -- Case of source entity, output location
2024 else
2025 Write_Info_Char (Left);
2026 Trunit := Get_Source_Unit (Sloc (Tref));
2028 if Trunit /= Curxu then
2029 Write_Info_Nat (Dependency_Num (Trunit));
2030 Write_Info_Char ('|');
2031 end if;
2033 Write_Info_Nat
2034 (Int (Get_Logical_Line_Number (Sloc (Tref))));
2036 declare
2037 Ent : Entity_Id;
2038 Ctyp : Character;
2040 begin
2041 Ent := Tref;
2042 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2044 if Ctyp = '+'
2045 and then Present (Full_View (Ent))
2046 then
2047 Ent := Underlying_Type (Ent);
2049 if Present (Ent) then
2050 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2051 end if;
2052 end if;
2054 Write_Info_Char (Ctyp);
2055 end;
2057 Write_Info_Nat
2058 (Int (Get_Column_Number (Sloc (Tref))));
2060 -- If the type comes from an instantiation, add the
2061 -- corresponding info.
2063 Output_Instantiation_Refs (Sloc (Tref));
2064 Write_Info_Char (Right);
2065 end if;
2066 end if;
2067 end Check_Type_Reference;
2069 -------------------------------
2070 -- Output_Instantiation_Refs --
2071 -------------------------------
2073 procedure Output_Instantiation_Refs (Loc : Source_Ptr) is
2074 Iloc : constant Source_Ptr := Instantiation_Location (Loc);
2075 Lun : Unit_Number_Type;
2076 Cu : constant Unit_Number_Type := Curru;
2078 begin
2079 -- Nothing to do if this is not an instantiation
2081 if Iloc = No_Location then
2082 return;
2083 end if;
2085 -- Output instantiation reference
2087 Write_Info_Char ('[');
2088 Lun := Get_Source_Unit (Iloc);
2090 if Lun /= Curru then
2091 Curru := Lun;
2092 Write_Info_Nat (Dependency_Num (Curru));
2093 Write_Info_Char ('|');
2094 end if;
2096 Write_Info_Nat (Int (Get_Logical_Line_Number (Iloc)));
2098 -- Recursive call to get nested instantiations
2100 Output_Instantiation_Refs (Iloc);
2102 -- Output final ] after call to get proper nesting
2104 Write_Info_Char (']');
2105 Curru := Cu;
2106 return;
2107 end Output_Instantiation_Refs;
2109 --------------------------
2110 -- Output_Overridden_Op --
2111 --------------------------
2113 procedure Output_Overridden_Op (Old_E : Entity_Id) is
2114 Op : Entity_Id;
2116 begin
2117 -- The overridden operation has an implicit declaration
2118 -- at the point of derivation. What we want to display
2119 -- is the original operation, which has the actual body
2120 -- (or abstract declaration) that is being overridden.
2121 -- The overridden operation is not always set, e.g. when
2122 -- it is a predefined operator.
2124 if No (Old_E) then
2125 return;
2127 -- Follow alias chain if one is present
2129 elsif Present (Alias (Old_E)) then
2131 -- The subprogram may have been implicitly inherited
2132 -- through several levels of derivation, so find the
2133 -- ultimate (source) ancestor.
2135 Op := Ultimate_Alias (Old_E);
2137 -- Normal case of no alias present. We omit generated
2138 -- primitives like tagged equality, that have no source
2139 -- representation.
2141 else
2142 Op := Old_E;
2143 end if;
2145 if Present (Op)
2146 and then Sloc (Op) /= Standard_Location
2147 and then Comes_From_Source (Op)
2148 then
2149 declare
2150 Loc : constant Source_Ptr := Sloc (Op);
2151 Par_Unit : constant Unit_Number_Type :=
2152 Get_Source_Unit (Loc);
2154 begin
2155 Write_Info_Char ('<');
2157 if Par_Unit /= Curxu then
2158 Write_Info_Nat (Dependency_Num (Par_Unit));
2159 Write_Info_Char ('|');
2160 end if;
2162 Write_Info_Nat (Int (Get_Logical_Line_Number (Loc)));
2163 Write_Info_Char ('p');
2164 Write_Info_Nat (Int (Get_Column_Number (Loc)));
2165 Write_Info_Char ('>');
2166 end;
2167 end if;
2168 end Output_Overridden_Op;
2170 -- Start of processing for Output_One_Ref
2172 begin
2173 Ent := XE.Key.Ent;
2175 -- Do not generate reference information for an ignored Ghost
2176 -- entity because neither the entity nor its references will
2177 -- appear in the final tree.
2179 if Is_Ignored_Ghost_Entity (Ent) then
2180 goto Continue;
2181 end if;
2183 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2185 -- Skip reference if it is the only reference to an entity,
2186 -- and it is an END line reference, and the entity is not in
2187 -- the current extended source. This prevents junk entries
2188 -- consisting only of packages with END lines, where no
2189 -- entity from the package is actually referenced.
2191 if XE.Key.Typ = 'e'
2192 and then Ent /= Curent
2193 and then (Refno = Nrefs
2194 or else
2195 Ent /= Xrefs.Table (Rnums (Refno + 1)).Key.Ent)
2196 and then not In_Extended_Main_Source_Unit (Ent)
2197 then
2198 goto Continue;
2199 end if;
2201 -- For private type, get full view type
2203 if Ctyp = '+'
2204 and then Present (Full_View (XE.Key.Ent))
2205 then
2206 Ent := Underlying_Type (Ent);
2208 if Present (Ent) then
2209 Ctyp := Xref_Entity_Letters (Ekind (Ent));
2210 end if;
2211 end if;
2213 -- Special exception for Boolean
2215 if Ctyp = 'E' and then Is_Boolean_Type (Ent) then
2216 Ctyp := 'B';
2217 end if;
2219 -- For variable reference, get corresponding type
2221 if Ctyp = '*' then
2222 Ent := Etype (XE.Key.Ent);
2223 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2225 -- If variable is private type, get full view type
2227 if Ctyp = '+'
2228 and then Present (Full_View (Etype (XE.Key.Ent)))
2229 then
2230 Ent := Underlying_Type (Etype (XE.Key.Ent));
2232 if Present (Ent) then
2233 Ctyp := Fold_Lower (Xref_Entity_Letters (Ekind (Ent)));
2234 end if;
2236 elsif Is_Generic_Type (Ent) then
2238 -- If the type of the entity is a generic private type,
2239 -- there is no usable full view, so retain the indication
2240 -- that this is an object.
2242 Ctyp := '*';
2243 end if;
2245 -- Special handling for access parameters and objects and
2246 -- components of an anonymous access type.
2248 if Ekind_In (Etype (XE.Key.Ent),
2249 E_Anonymous_Access_Type,
2250 E_Anonymous_Access_Subprogram_Type,
2251 E_Anonymous_Access_Protected_Subprogram_Type)
2252 then
2253 if Is_Formal (XE.Key.Ent)
2254 or else
2255 Ekind_In
2256 (XE.Key.Ent, E_Variable, E_Constant, E_Component)
2257 then
2258 Ctyp := 'p';
2259 end if;
2261 -- Special handling for Boolean
2263 elsif Ctyp = 'e' and then Is_Boolean_Type (Ent) then
2264 Ctyp := 'b';
2265 end if;
2266 end if;
2268 -- Special handling for abstract types and operations
2270 if Is_Overloadable (XE.Key.Ent)
2271 and then Is_Abstract_Subprogram (XE.Key.Ent)
2272 then
2273 if Ctyp = 'U' then
2274 Ctyp := 'x'; -- Abstract procedure
2276 elsif Ctyp = 'V' then
2277 Ctyp := 'y'; -- Abstract function
2278 end if;
2280 elsif Is_Type (XE.Key.Ent)
2281 and then Is_Abstract_Type (XE.Key.Ent)
2282 then
2283 if Is_Interface (XE.Key.Ent) then
2284 Ctyp := 'h';
2286 elsif Ctyp = 'R' then
2287 Ctyp := 'H'; -- Abstract type
2288 end if;
2289 end if;
2291 -- Only output reference if interesting type of entity
2293 if Ctyp = ' '
2295 -- Suppress references to object definitions, used for local
2296 -- references.
2298 or else XE.Key.Typ = 'D'
2299 or else XE.Key.Typ = 'I'
2301 -- Suppress self references, except for bodies that act as
2302 -- specs.
2304 or else (XE.Key.Loc = XE.Def
2305 and then
2306 (XE.Key.Typ /= 'b'
2307 or else not Is_Subprogram (XE.Key.Ent)))
2309 -- Also suppress definitions of body formals (we only
2310 -- treat these as references, and the references were
2311 -- separately recorded).
2313 or else (Is_Formal (XE.Key.Ent)
2314 and then Present (Spec_Entity (XE.Key.Ent)))
2315 then
2316 null;
2318 else
2319 -- Start new Xref section if new xref unit
2321 if XE.Key.Eun /= Curxu then
2322 if Write_Info_Col > 1 then
2323 Write_Info_EOL;
2324 end if;
2326 Curxu := XE.Key.Eun;
2328 Write_Info_Initiate ('X');
2329 Write_Info_Char (' ');
2330 Write_Info_Nat (Dependency_Num (XE.Key.Eun));
2331 Write_Info_Char (' ');
2332 Write_Info_Name
2333 (Reference_Name (Source_Index (XE.Key.Eun)));
2334 end if;
2336 -- Start new Entity line if new entity. Note that we
2337 -- consider two entities the same if they have the same
2338 -- name and source location. This causes entities in
2339 -- instantiations to be treated as though they referred
2340 -- to the template.
2342 if No (Curent)
2343 or else
2344 (XE.Key.Ent /= Curent
2345 and then
2346 (Name_Change (XE.Key.Ent) or else XE.Def /= Curdef))
2347 then
2348 Curent := XE.Key.Ent;
2349 Curdef := XE.Def;
2351 Get_Unqualified_Name_String (Chars (XE.Key.Ent));
2352 Curlen := Name_Len;
2353 Curnam (1 .. Curlen) := Name_Buffer (1 .. Curlen);
2355 if Write_Info_Col > 1 then
2356 Write_Info_EOL;
2357 end if;
2359 -- Write column number information
2361 Write_Info_Nat (Int (Get_Logical_Line_Number (XE.Def)));
2362 Write_Info_Char (Ctyp);
2363 Write_Info_Nat (Int (Get_Column_Number (XE.Def)));
2365 -- Write level information
2367 Write_Level_Info : declare
2368 function Is_Visible_Generic_Entity
2369 (E : Entity_Id) return Boolean;
2370 -- Check whether E is declared in the visible part
2371 -- of a generic package. For source navigation
2372 -- purposes, treat this as a visible entity.
2374 function Is_Private_Record_Component
2375 (E : Entity_Id) return Boolean;
2376 -- Check whether E is a non-inherited component of a
2377 -- private extension. Even if the enclosing record is
2378 -- public, we want to treat the component as private
2379 -- for navigation purposes.
2381 ---------------------------------
2382 -- Is_Private_Record_Component --
2383 ---------------------------------
2385 function Is_Private_Record_Component
2386 (E : Entity_Id) return Boolean
2388 S : constant Entity_Id := Scope (E);
2389 begin
2390 return
2391 Ekind (E) = E_Component
2392 and then Nkind (Declaration_Node (S)) =
2393 N_Private_Extension_Declaration
2394 and then Original_Record_Component (E) = E;
2395 end Is_Private_Record_Component;
2397 -------------------------------
2398 -- Is_Visible_Generic_Entity --
2399 -------------------------------
2401 function Is_Visible_Generic_Entity
2402 (E : Entity_Id) return Boolean
2404 Par : Node_Id;
2406 begin
2407 -- The Present check here is an error defense
2409 if Present (Scope (E))
2410 and then Ekind (Scope (E)) /= E_Generic_Package
2411 then
2412 return False;
2413 end if;
2415 Par := Parent (E);
2416 while Present (Par) loop
2418 Nkind (Par) = N_Generic_Package_Declaration
2419 then
2420 -- Entity is a generic formal
2422 return False;
2424 elsif
2425 Nkind (Parent (Par)) = N_Package_Specification
2426 then
2427 return
2428 Is_List_Member (Par)
2429 and then List_Containing (Par) =
2430 Visible_Declarations (Parent (Par));
2431 else
2432 Par := Parent (Par);
2433 end if;
2434 end loop;
2436 return False;
2437 end Is_Visible_Generic_Entity;
2439 -- Start of processing for Write_Level_Info
2441 begin
2442 if Is_Hidden (Curent)
2443 or else Is_Private_Record_Component (Curent)
2444 then
2445 Write_Info_Char (' ');
2447 elsif
2448 Is_Public (Curent)
2449 or else Is_Visible_Generic_Entity (Curent)
2450 then
2451 Write_Info_Char ('*');
2453 else
2454 Write_Info_Char (' ');
2455 end if;
2456 end Write_Level_Info;
2458 -- Output entity name. We use the occurrence from the
2459 -- actual source program at the definition point.
2461 declare
2462 Ent_Name : constant String :=
2463 Exact_Source_Name (Sloc (XE.Key.Ent));
2464 begin
2465 for C in Ent_Name'Range loop
2466 Write_Info_Char (Ent_Name (C));
2467 end loop;
2468 end;
2470 -- See if we have a renaming reference
2472 if Is_Object (XE.Key.Ent)
2473 and then Present (Renamed_Object (XE.Key.Ent))
2474 then
2475 Rref := Renamed_Object (XE.Key.Ent);
2477 elsif Is_Overloadable (XE.Key.Ent)
2478 and then Nkind (Parent (Declaration_Node (XE.Key.Ent)))
2479 = N_Subprogram_Renaming_Declaration
2480 then
2481 Rref := Name (Parent (Declaration_Node (XE.Key.Ent)));
2483 elsif Ekind (XE.Key.Ent) = E_Package
2484 and then Nkind (Declaration_Node (XE.Key.Ent)) =
2485 N_Package_Renaming_Declaration
2486 then
2487 Rref := Name (Declaration_Node (XE.Key.Ent));
2489 else
2490 Rref := Empty;
2491 end if;
2493 if Present (Rref) then
2494 if Nkind (Rref) = N_Expanded_Name then
2495 Rref := Selector_Name (Rref);
2496 end if;
2498 if Nkind (Rref) = N_Identifier
2499 or else Nkind (Rref) = N_Operator_Symbol
2500 then
2501 null;
2503 -- For renamed array components, use the array name
2504 -- for the renamed entity, which reflect the fact that
2505 -- in general the whole array is aliased.
2507 elsif Nkind (Rref) = N_Indexed_Component then
2508 if Nkind (Prefix (Rref)) = N_Identifier then
2509 Rref := Prefix (Rref);
2510 elsif Nkind (Prefix (Rref)) = N_Expanded_Name then
2511 Rref := Selector_Name (Prefix (Rref));
2512 else
2513 Rref := Empty;
2514 end if;
2516 else
2517 Rref := Empty;
2518 end if;
2519 end if;
2521 -- Write out renaming reference if we have one
2523 if Present (Rref) then
2524 Write_Info_Char ('=');
2525 Write_Info_Nat
2526 (Int (Get_Logical_Line_Number (Sloc (Rref))));
2527 Write_Info_Char (':');
2528 Write_Info_Nat
2529 (Int (Get_Column_Number (Sloc (Rref))));
2530 end if;
2532 -- Indicate that the entity is in the unit of the current
2533 -- xref section.
2535 Curru := Curxu;
2537 -- Write out information about generic parent, if entity
2538 -- is an instance.
2540 if Is_Generic_Instance (XE.Key.Ent) then
2541 declare
2542 Gen_Par : constant Entity_Id :=
2543 Generic_Parent
2544 (Specification
2545 (Unit_Declaration_Node
2546 (XE.Key.Ent)));
2547 Loc : constant Source_Ptr := Sloc (Gen_Par);
2548 Gen_U : constant Unit_Number_Type :=
2549 Get_Source_Unit (Loc);
2551 begin
2552 Write_Info_Char ('[');
2554 if Curru /= Gen_U then
2555 Write_Info_Nat (Dependency_Num (Gen_U));
2556 Write_Info_Char ('|');
2557 end if;
2559 Write_Info_Nat
2560 (Int (Get_Logical_Line_Number (Loc)));
2561 Write_Info_Char (']');
2562 end;
2563 end if;
2565 -- See if we have a type reference and if so output
2567 Check_Type_Reference (XE.Key.Ent, False);
2569 -- Additional information for types with progenitors,
2570 -- including synchronized tagged types.
2572 declare
2573 Typ : constant Entity_Id := XE.Key.Ent;
2574 Elmt : Elmt_Id;
2576 begin
2577 if Is_Record_Type (Typ)
2578 and then Present (Interfaces (Typ))
2579 then
2580 Elmt := First_Elmt (Interfaces (Typ));
2582 elsif Is_Concurrent_Type (Typ)
2583 and then Present (Corresponding_Record_Type (Typ))
2584 and then Present (
2585 Interfaces (Corresponding_Record_Type (Typ)))
2586 then
2587 Elmt :=
2588 First_Elmt (
2589 Interfaces (Corresponding_Record_Type (Typ)));
2591 else
2592 Elmt := No_Elmt;
2593 end if;
2595 while Present (Elmt) loop
2596 Check_Type_Reference (Node (Elmt), True);
2597 Next_Elmt (Elmt);
2598 end loop;
2599 end;
2601 -- For array types, list index types as well. (This is
2602 -- not C, indexes have distinct types).
2604 if Is_Array_Type (XE.Key.Ent) then
2605 declare
2606 A_Typ : constant Entity_Id := XE.Key.Ent;
2607 Indx : Node_Id;
2609 begin
2610 -- If this is a derived array type, we have
2611 -- output the parent type, so add the component
2612 -- type now.
2614 if Is_Derived_Type (A_Typ) then
2615 Check_Type_Reference
2616 (Component_Type (A_Typ), False, True);
2617 end if;
2619 -- Add references to index types.
2621 Indx := First_Index (XE.Key.Ent);
2622 while Present (Indx) loop
2623 Check_Type_Reference
2624 (First_Subtype (Etype (Indx)), True);
2625 Next_Index (Indx);
2626 end loop;
2627 end;
2628 end if;
2630 -- If the entity is an overriding operation, write info
2631 -- on operation that was overridden.
2633 if Is_Subprogram (XE.Key.Ent)
2634 and then Present (Overridden_Operation (XE.Key.Ent))
2635 then
2636 Output_Overridden_Op
2637 (Overridden_Operation (XE.Key.Ent));
2638 end if;
2640 -- End of processing for entity output
2642 Crloc := No_Location;
2643 end if;
2645 -- Output the reference if it is not as the same location
2646 -- as the previous one, or it is a read-reference that
2647 -- indicates that the entity is an in-out actual in a call.
2649 if XE.Key.Loc /= No_Location
2650 and then
2651 (XE.Key.Loc /= Crloc
2652 or else (Prevt = 'm' and then XE.Key.Typ = 'r'))
2653 then
2654 Crloc := XE.Key.Loc;
2655 Prevt := XE.Key.Typ;
2657 -- Start continuation if line full, else blank
2659 if Write_Info_Col > 72 then
2660 Write_Info_EOL;
2661 Write_Info_Initiate ('.');
2662 end if;
2664 Write_Info_Char (' ');
2666 -- Output file number if changed
2668 if XE.Key.Lun /= Curru then
2669 Curru := XE.Key.Lun;
2670 Write_Info_Nat (Dependency_Num (Curru));
2671 Write_Info_Char ('|');
2672 end if;
2674 Write_Info_Nat
2675 (Int (Get_Logical_Line_Number (XE.Key.Loc)));
2676 Write_Info_Char (XE.Key.Typ);
2678 if Is_Overloadable (XE.Key.Ent) then
2679 if (Is_Imported (XE.Key.Ent) and then XE.Key.Typ = 'b')
2680 or else
2681 (Is_Exported (XE.Key.Ent) and then XE.Key.Typ = 'i')
2682 then
2683 Output_Import_Export_Info (XE.Key.Ent);
2684 end if;
2685 end if;
2687 Write_Info_Nat (Int (Get_Column_Number (XE.Key.Loc)));
2689 Output_Instantiation_Refs (Sloc (XE.Key.Ent));
2690 end if;
2691 end if;
2692 end Output_One_Ref;
2694 <<Continue>>
2695 null;
2696 end loop;
2698 Write_Info_EOL;
2699 end Output_Refs;
2700 end Output_References;
2702 ---------------------------------
2703 -- Process_Deferred_References --
2704 ---------------------------------
2706 procedure Process_Deferred_References is
2707 begin
2708 for J in Deferred_References.First .. Deferred_References.Last loop
2709 declare
2710 D : Deferred_Reference_Entry renames Deferred_References.Table (J);
2712 begin
2713 case Is_LHS (D.N) is
2714 when Yes =>
2715 Generate_Reference (D.E, D.N, 'm');
2717 when No =>
2718 Generate_Reference (D.E, D.N, 'r');
2720 -- Not clear if Unknown can occur at this stage, but if it
2721 -- does we will treat it as a normal reference.
2723 when Unknown =>
2724 Generate_Reference (D.E, D.N, 'r');
2725 end case;
2726 end;
2727 end loop;
2729 -- Clear processed entries from table
2731 Deferred_References.Init;
2732 end Process_Deferred_References;
2734 -- Start of elaboration for Lib.Xref
2736 begin
2737 -- Reset is necessary because Elmt_Ptr does not default to Null_Ptr,
2738 -- because it's not an access type.
2740 Xref_Set.Reset;
2741 end Lib.Xref;