1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "tree-pass.h"
29 #include "gimple-pretty-print.h"
30 #include "fold-const.h"
33 #include "gimple-fold.h"
35 #include "tree-inline.h"
36 #include "gimple-iterator.h"
38 #include "tree-into-ssa.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-ssa-threadupdate.h"
43 #include "tree-ssa-scopedtables.h"
44 #include "tree-ssa-threadedge.h"
45 #include "tree-ssa-dom.h"
47 #include "tree-cfgcleanup.h"
49 #include "alloc-pool.h"
51 #include "vr-values.h"
52 #include "gimple-ssa-evrp-analyze.h"
54 /* This file implements optimizations on the dominator tree. */
56 /* Structure for recording edge equivalences.
58 Computing and storing the edge equivalences instead of creating
59 them on-demand can save significant amounts of time, particularly
60 for pathological cases involving switch statements.
62 These structures live for a single iteration of the dominator
63 optimizer in the edge's AUX field. At the end of an iteration we
64 free each of these structures. */
68 typedef std::pair
<tree
, tree
> equiv_pair
;
72 /* Record a simple LHS = RHS equivalence. This may trigger
73 calls to derive_equivalences. */
74 void record_simple_equiv (tree
, tree
);
76 /* If traversing this edge creates simple equivalences, we store
77 them as LHS/RHS pairs within this vector. */
78 vec
<equiv_pair
> simple_equivalences
;
80 /* Traversing an edge may also indicate one or more particular conditions
82 vec
<cond_equivalence
> cond_equivalences
;
85 /* Derive equivalences by walking the use-def chains. */
86 void derive_equivalences (tree
, tree
, int);
89 /* Track whether or not we have changed the control flow graph. */
90 static bool cfg_altered
;
92 /* Bitmap of blocks that have had EH statements cleaned. We should
93 remove their dead edges eventually. */
94 static bitmap need_eh_cleanup
;
95 static vec
<gimple
*> need_noreturn_fixup
;
97 /* Statistics for dominator optimizations. */
101 long num_exprs_considered
;
107 static struct opt_stats_d opt_stats
;
109 /* Local functions. */
110 static void record_equality (tree
, tree
, class const_and_copies
*);
111 static void record_equivalences_from_phis (basic_block
);
112 static void record_equivalences_from_incoming_edge (basic_block
,
113 class const_and_copies
*,
114 class avail_exprs_stack
*);
115 static void eliminate_redundant_computations (gimple_stmt_iterator
*,
116 class const_and_copies
*,
117 class avail_exprs_stack
*);
118 static void record_equivalences_from_stmt (gimple
*, int,
119 class avail_exprs_stack
*);
120 static void dump_dominator_optimization_stats (FILE *file
,
121 hash_table
<expr_elt_hasher
> *);
123 /* Constructor for EDGE_INFO. An EDGE_INFO instance is always
124 associated with an edge E. */
126 edge_info::edge_info (edge e
)
128 /* Free the old one associated with E, if it exists and
129 associate our new object with E. */
130 free_dom_edge_info (e
);
133 /* And initialize the embedded vectors. */
134 simple_equivalences
= vNULL
;
135 cond_equivalences
= vNULL
;
138 /* Destructor just needs to release the vectors. */
140 edge_info::~edge_info (void)
142 this->cond_equivalences
.release ();
143 this->simple_equivalences
.release ();
146 /* NAME is known to have the value VALUE, which must be a constant.
148 Walk through its use-def chain to see if there are other equivalences
149 we might be able to derive.
151 RECURSION_LIMIT controls how far back we recurse through the use-def
155 edge_info::derive_equivalences (tree name
, tree value
, int recursion_limit
)
157 if (TREE_CODE (name
) != SSA_NAME
|| TREE_CODE (value
) != INTEGER_CST
)
160 /* This records the equivalence for the toplevel object. Do
161 this before checking the recursion limit. */
162 simple_equivalences
.safe_push (equiv_pair (name
, value
));
164 /* Limit how far up the use-def chains we are willing to walk. */
165 if (recursion_limit
== 0)
168 /* We can walk up the use-def chains to potentially find more
170 gimple
*def_stmt
= SSA_NAME_DEF_STMT (name
);
171 if (is_gimple_assign (def_stmt
))
173 /* We know the result of DEF_STMT was zero. See if that allows
174 us to deduce anything about the SSA_NAMEs used on the RHS. */
175 enum tree_code code
= gimple_assign_rhs_code (def_stmt
);
179 if (integer_zerop (value
))
181 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
182 tree rhs2
= gimple_assign_rhs2 (def_stmt
);
184 value
= build_zero_cst (TREE_TYPE (rhs1
));
185 derive_equivalences (rhs1
, value
, recursion_limit
- 1);
186 value
= build_zero_cst (TREE_TYPE (rhs2
));
187 derive_equivalences (rhs2
, value
, recursion_limit
- 1);
191 /* We know the result of DEF_STMT was one. See if that allows
192 us to deduce anything about the SSA_NAMEs used on the RHS. */
194 if (!integer_zerop (value
))
196 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
197 tree rhs2
= gimple_assign_rhs2 (def_stmt
);
199 /* If either operand has a boolean range, then we
200 know its value must be one, otherwise we just know it
201 is nonzero. The former is clearly useful, I haven't
202 seen cases where the latter is helpful yet. */
203 if (TREE_CODE (rhs1
) == SSA_NAME
)
205 if (ssa_name_has_boolean_range (rhs1
))
207 value
= build_one_cst (TREE_TYPE (rhs1
));
208 derive_equivalences (rhs1
, value
, recursion_limit
- 1);
211 if (TREE_CODE (rhs2
) == SSA_NAME
)
213 if (ssa_name_has_boolean_range (rhs2
))
215 value
= build_one_cst (TREE_TYPE (rhs2
));
216 derive_equivalences (rhs2
, value
, recursion_limit
- 1);
222 /* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
223 set via a widening type conversion, then we may be able to record
224 additional equivalences. */
228 tree rhs
= gimple_assign_rhs1 (def_stmt
);
229 tree rhs_type
= TREE_TYPE (rhs
);
230 if (INTEGRAL_TYPE_P (rhs_type
)
231 && (TYPE_PRECISION (TREE_TYPE (name
))
232 >= TYPE_PRECISION (rhs_type
))
233 && int_fits_type_p (value
, rhs_type
))
234 derive_equivalences (rhs
,
235 fold_convert (rhs_type
, value
),
236 recursion_limit
- 1);
240 /* We can invert the operation of these codes trivially if
241 one of the RHS operands is a constant to produce a known
242 value for the other RHS operand. */
243 case POINTER_PLUS_EXPR
:
246 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
247 tree rhs2
= gimple_assign_rhs2 (def_stmt
);
249 /* If either argument is a constant, then we can compute
250 a constant value for the nonconstant argument. */
251 if (TREE_CODE (rhs1
) == INTEGER_CST
252 && TREE_CODE (rhs2
) == SSA_NAME
)
253 derive_equivalences (rhs2
,
254 fold_binary (MINUS_EXPR
, TREE_TYPE (rhs1
),
256 recursion_limit
- 1);
257 else if (TREE_CODE (rhs2
) == INTEGER_CST
258 && TREE_CODE (rhs1
) == SSA_NAME
)
259 derive_equivalences (rhs1
,
260 fold_binary (MINUS_EXPR
, TREE_TYPE (rhs1
),
262 recursion_limit
- 1);
266 /* If one of the operands is a constant, then we can compute
267 the value of the other operand. If both operands are
268 SSA_NAMEs, then they must be equal if the result is zero. */
271 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
272 tree rhs2
= gimple_assign_rhs2 (def_stmt
);
274 /* If either argument is a constant, then we can compute
275 a constant value for the nonconstant argument. */
276 if (TREE_CODE (rhs1
) == INTEGER_CST
277 && TREE_CODE (rhs2
) == SSA_NAME
)
278 derive_equivalences (rhs2
,
279 fold_binary (MINUS_EXPR
, TREE_TYPE (rhs1
),
281 recursion_limit
- 1);
282 else if (TREE_CODE (rhs2
) == INTEGER_CST
283 && TREE_CODE (rhs1
) == SSA_NAME
)
284 derive_equivalences (rhs1
,
285 fold_binary (PLUS_EXPR
, TREE_TYPE (rhs1
),
287 recursion_limit
- 1);
288 else if (integer_zerop (value
))
290 tree cond
= build2 (EQ_EXPR
, boolean_type_node
,
291 gimple_assign_rhs1 (def_stmt
),
292 gimple_assign_rhs2 (def_stmt
));
293 tree inverted
= invert_truthvalue (cond
);
294 record_conditions (&this->cond_equivalences
, cond
, inverted
);
303 if ((code
== EQ_EXPR
&& integer_onep (value
))
304 || (code
== NE_EXPR
&& integer_zerop (value
)))
306 tree rhs1
= gimple_assign_rhs1 (def_stmt
);
307 tree rhs2
= gimple_assign_rhs2 (def_stmt
);
309 /* If either argument is a constant, then record the
310 other argument as being the same as that constant.
312 If neither operand is a constant, then we have a
313 conditional name == name equivalence. */
314 if (TREE_CODE (rhs1
) == INTEGER_CST
)
315 derive_equivalences (rhs2
, rhs1
, recursion_limit
- 1);
316 else if (TREE_CODE (rhs2
) == INTEGER_CST
)
317 derive_equivalences (rhs1
, rhs2
, recursion_limit
- 1);
321 tree cond
= build2 (code
, boolean_type_node
,
322 gimple_assign_rhs1 (def_stmt
),
323 gimple_assign_rhs2 (def_stmt
));
324 tree inverted
= invert_truthvalue (cond
);
325 if (integer_zerop (value
))
326 std::swap (cond
, inverted
);
327 record_conditions (&this->cond_equivalences
, cond
, inverted
);
332 /* For BIT_NOT and NEGATE, we can just apply the operation to the
333 VALUE to get the new equivalence. It will always be a constant
334 so we can recurse. */
338 tree rhs
= gimple_assign_rhs1 (def_stmt
);
339 tree res
= fold_build1 (code
, TREE_TYPE (rhs
), value
);
340 derive_equivalences (rhs
, res
, recursion_limit
- 1);
346 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
348 tree cond
= build2 (code
, boolean_type_node
,
349 gimple_assign_rhs1 (def_stmt
),
350 gimple_assign_rhs2 (def_stmt
));
351 tree inverted
= invert_truthvalue (cond
);
352 if (integer_zerop (value
))
353 std::swap (cond
, inverted
);
354 record_conditions (&this->cond_equivalences
, cond
, inverted
);
364 edge_info::record_simple_equiv (tree lhs
, tree rhs
)
366 /* If the RHS is a constant, then we may be able to derive
367 further equivalences. Else just record the name = name
369 if (TREE_CODE (rhs
) == INTEGER_CST
)
370 derive_equivalences (lhs
, rhs
, 4);
372 simple_equivalences
.safe_push (equiv_pair (lhs
, rhs
));
375 /* Free the edge_info data attached to E, if it exists. */
378 free_dom_edge_info (edge e
)
380 class edge_info
*edge_info
= (struct edge_info
*)e
->aux
;
386 /* Free all EDGE_INFO structures associated with edges in the CFG.
387 If a particular edge can be threaded, copy the redirection
388 target from the EDGE_INFO structure into the edge's AUX field
389 as required by code to update the CFG and SSA graph for
393 free_all_edge_infos (void)
399 FOR_EACH_BB_FN (bb
, cfun
)
401 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
403 free_dom_edge_info (e
);
409 /* We have finished optimizing BB, record any information implied by
410 taking a specific outgoing edge from BB. */
413 record_edge_info (basic_block bb
)
415 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
416 class edge_info
*edge_info
;
418 if (! gsi_end_p (gsi
))
420 gimple
*stmt
= gsi_stmt (gsi
);
421 location_t loc
= gimple_location (stmt
);
423 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
425 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
426 tree index
= gimple_switch_index (switch_stmt
);
428 if (TREE_CODE (index
) == SSA_NAME
)
431 int n_labels
= gimple_switch_num_labels (switch_stmt
);
432 tree
*info
= XCNEWVEC (tree
, last_basic_block_for_fn (cfun
));
436 for (i
= 0; i
< n_labels
; i
++)
438 tree label
= gimple_switch_label (switch_stmt
, i
);
439 basic_block target_bb
440 = label_to_block (cfun
, CASE_LABEL (label
));
441 if (CASE_HIGH (label
)
443 || info
[target_bb
->index
])
444 info
[target_bb
->index
] = error_mark_node
;
446 info
[target_bb
->index
] = label
;
449 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
451 basic_block target_bb
= e
->dest
;
452 tree label
= info
[target_bb
->index
];
454 if (label
!= NULL
&& label
!= error_mark_node
)
456 tree x
= fold_convert_loc (loc
, TREE_TYPE (index
),
458 edge_info
= new class edge_info (e
);
459 edge_info
->record_simple_equiv (index
, x
);
466 /* A COND_EXPR may create equivalences too. */
467 if (gimple_code (stmt
) == GIMPLE_COND
)
472 tree op0
= gimple_cond_lhs (stmt
);
473 tree op1
= gimple_cond_rhs (stmt
);
474 enum tree_code code
= gimple_cond_code (stmt
);
476 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
478 /* Special case comparing booleans against a constant as we
479 know the value of OP0 on both arms of the branch. i.e., we
480 can record an equivalence for OP0 rather than COND.
482 However, don't do this if the constant isn't zero or one.
483 Such conditionals will get optimized more thoroughly during
485 if ((code
== EQ_EXPR
|| code
== NE_EXPR
)
486 && TREE_CODE (op0
) == SSA_NAME
487 && ssa_name_has_boolean_range (op0
)
488 && is_gimple_min_invariant (op1
)
489 && (integer_zerop (op1
) || integer_onep (op1
)))
491 tree true_val
= constant_boolean_node (true, TREE_TYPE (op0
));
492 tree false_val
= constant_boolean_node (false, TREE_TYPE (op0
));
496 edge_info
= new class edge_info (true_edge
);
497 edge_info
->record_simple_equiv (op0
,
499 ? false_val
: true_val
));
500 edge_info
= new class edge_info (false_edge
);
501 edge_info
->record_simple_equiv (op0
,
503 ? true_val
: false_val
));
507 edge_info
= new class edge_info (true_edge
);
508 edge_info
->record_simple_equiv (op0
,
510 ? true_val
: false_val
));
511 edge_info
= new class edge_info (false_edge
);
512 edge_info
->record_simple_equiv (op0
,
514 ? false_val
: true_val
));
517 /* This can show up in the IL as a result of copy propagation
518 it will eventually be canonicalized, but we have to cope
519 with this case within the pass. */
520 else if (is_gimple_min_invariant (op0
)
521 && TREE_CODE (op1
) == SSA_NAME
)
523 tree cond
= build2 (code
, boolean_type_node
, op0
, op1
);
524 tree inverted
= invert_truthvalue_loc (loc
, cond
);
525 bool can_infer_simple_equiv
526 = !(HONOR_SIGNED_ZEROS (op0
)
527 && real_zerop (op0
));
528 struct edge_info
*edge_info
;
530 edge_info
= new class edge_info (true_edge
);
531 record_conditions (&edge_info
->cond_equivalences
, cond
, inverted
);
533 if (can_infer_simple_equiv
&& code
== EQ_EXPR
)
534 edge_info
->record_simple_equiv (op1
, op0
);
536 edge_info
= new class edge_info (false_edge
);
537 record_conditions (&edge_info
->cond_equivalences
, inverted
, cond
);
539 if (can_infer_simple_equiv
&& TREE_CODE (inverted
) == EQ_EXPR
)
540 edge_info
->record_simple_equiv (op1
, op0
);
543 else if (TREE_CODE (op0
) == SSA_NAME
544 && (TREE_CODE (op1
) == SSA_NAME
545 || is_gimple_min_invariant (op1
)))
547 tree cond
= build2 (code
, boolean_type_node
, op0
, op1
);
548 tree inverted
= invert_truthvalue_loc (loc
, cond
);
549 bool can_infer_simple_equiv
550 = !(HONOR_SIGNED_ZEROS (op1
)
551 && (TREE_CODE (op1
) == SSA_NAME
|| real_zerop (op1
)));
552 struct edge_info
*edge_info
;
554 edge_info
= new class edge_info (true_edge
);
555 record_conditions (&edge_info
->cond_equivalences
, cond
, inverted
);
557 if (can_infer_simple_equiv
&& code
== EQ_EXPR
)
558 edge_info
->record_simple_equiv (op0
, op1
);
560 edge_info
= new class edge_info (false_edge
);
561 record_conditions (&edge_info
->cond_equivalences
, inverted
, cond
);
563 if (can_infer_simple_equiv
&& TREE_CODE (inverted
) == EQ_EXPR
)
564 edge_info
->record_simple_equiv (op0
, op1
);
571 class dom_opt_dom_walker
: public dom_walker
574 dom_opt_dom_walker (cdi_direction direction
,
575 class const_and_copies
*const_and_copies
,
576 class avail_exprs_stack
*avail_exprs_stack
,
578 : dom_walker (direction
, REACHABLE_BLOCKS
),
579 m_const_and_copies (const_and_copies
),
580 m_avail_exprs_stack (avail_exprs_stack
),
581 m_dummy_cond (dummy_cond
) { }
583 virtual edge
before_dom_children (basic_block
);
584 virtual void after_dom_children (basic_block
);
588 /* Unwindable equivalences, both const/copy and expression varieties. */
589 class const_and_copies
*m_const_and_copies
;
590 class avail_exprs_stack
*m_avail_exprs_stack
;
593 class evrp_range_analyzer evrp_range_analyzer
;
595 /* Dummy condition to avoid creating lots of throw away statements. */
598 /* Optimize a single statement within a basic block using the
599 various tables mantained by DOM. Returns the taken edge if
600 the statement is a conditional with a statically determined
602 edge
optimize_stmt (basic_block
, gimple_stmt_iterator
);
605 /* Jump threading, redundancy elimination and const/copy propagation.
607 This pass may expose new symbols that need to be renamed into SSA. For
608 every new symbol exposed, its corresponding bit will be set in
613 const pass_data pass_data_dominator
=
615 GIMPLE_PASS
, /* type */
617 OPTGROUP_NONE
, /* optinfo_flags */
618 TV_TREE_SSA_DOMINATOR_OPTS
, /* tv_id */
619 ( PROP_cfg
| PROP_ssa
), /* properties_required */
620 0, /* properties_provided */
621 0, /* properties_destroyed */
622 0, /* todo_flags_start */
623 ( TODO_cleanup_cfg
| TODO_update_ssa
), /* todo_flags_finish */
626 class pass_dominator
: public gimple_opt_pass
629 pass_dominator (gcc::context
*ctxt
)
630 : gimple_opt_pass (pass_data_dominator
, ctxt
),
631 may_peel_loop_headers_p (false)
634 /* opt_pass methods: */
635 opt_pass
* clone () { return new pass_dominator (m_ctxt
); }
636 void set_pass_param (unsigned int n
, bool param
)
639 may_peel_loop_headers_p
= param
;
641 virtual bool gate (function
*) { return flag_tree_dom
!= 0; }
642 virtual unsigned int execute (function
*);
645 /* This flag is used to prevent loops from being peeled repeatedly in jump
646 threading; it will be removed once we preserve loop structures throughout
647 the compilation -- we will be able to mark the affected loops directly in
648 jump threading, and avoid peeling them next time. */
649 bool may_peel_loop_headers_p
;
650 }; // class pass_dominator
653 pass_dominator::execute (function
*fun
)
655 memset (&opt_stats
, 0, sizeof (opt_stats
));
657 /* Create our hash tables. */
658 hash_table
<expr_elt_hasher
> *avail_exprs
659 = new hash_table
<expr_elt_hasher
> (1024);
660 class avail_exprs_stack
*avail_exprs_stack
661 = new class avail_exprs_stack (avail_exprs
);
662 class const_and_copies
*const_and_copies
= new class const_and_copies ();
663 need_eh_cleanup
= BITMAP_ALLOC (NULL
);
664 need_noreturn_fixup
.create (0);
666 calculate_dominance_info (CDI_DOMINATORS
);
669 /* We need to know loop structures in order to avoid destroying them
670 in jump threading. Note that we still can e.g. thread through loop
671 headers to an exit edge, or through loop header to the loop body, assuming
672 that we update the loop info.
674 TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
675 to several overly conservative bail-outs in jump threading, case
676 gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
677 missing. We should improve jump threading in future then
678 LOOPS_HAVE_PREHEADERS won't be needed here. */
679 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
| LOOPS_HAVE_SIMPLE_LATCHES
);
681 /* Initialize the value-handle array. */
682 threadedge_initialize_values ();
684 /* We need accurate information regarding back edges in the CFG
685 for jump threading; this may include back edges that are not part of
687 mark_dfs_back_edges ();
689 /* We want to create the edge info structures before the dominator walk
690 so that they'll be in place for the jump threader, particularly when
691 threading through a join block.
693 The conditions will be lazily updated with global equivalences as
694 we reach them during the dominator walk. */
696 FOR_EACH_BB_FN (bb
, fun
)
697 record_edge_info (bb
);
699 gcond
*dummy_cond
= gimple_build_cond (NE_EXPR
, integer_zero_node
,
700 integer_zero_node
, NULL
, NULL
);
702 /* Recursively walk the dominator tree optimizing statements. */
703 dom_opt_dom_walker
walker (CDI_DOMINATORS
, const_and_copies
,
704 avail_exprs_stack
, dummy_cond
);
705 walker
.walk (fun
->cfg
->x_entry_block_ptr
);
707 /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
708 edge. When found, remove jump threads which contain any outgoing
709 edge from the affected block. */
712 FOR_EACH_BB_FN (bb
, fun
)
717 /* First see if there are any edges without EDGE_EXECUTABLE
720 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
722 if ((e
->flags
& EDGE_EXECUTABLE
) == 0)
729 /* If there were any such edges found, then remove jump threads
730 containing any edge leaving BB. */
732 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
733 remove_jump_threads_including (e
);
738 gimple_stmt_iterator gsi
;
740 FOR_EACH_BB_FN (bb
, fun
)
742 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
743 update_stmt_if_modified (gsi_stmt (gsi
));
747 /* If we exposed any new variables, go ahead and put them into
748 SSA form now, before we handle jump threading. This simplifies
749 interactions between rewriting of _DECL nodes into SSA form
750 and rewriting SSA_NAME nodes into SSA form after block
751 duplication and CFG manipulation. */
752 update_ssa (TODO_update_ssa
);
754 free_all_edge_infos ();
756 /* Thread jumps, creating duplicate blocks as needed. */
757 cfg_altered
|= thread_through_all_blocks (may_peel_loop_headers_p
);
760 free_dominance_info (CDI_DOMINATORS
);
762 /* Removal of statements may make some EH edges dead. Purge
763 such edges from the CFG as needed. */
764 if (!bitmap_empty_p (need_eh_cleanup
))
769 /* Jump threading may have created forwarder blocks from blocks
770 needing EH cleanup; the new successor of these blocks, which
771 has inherited from the original block, needs the cleanup.
772 Don't clear bits in the bitmap, as that can break the bitmap
774 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup
, 0, i
, bi
)
776 basic_block bb
= BASIC_BLOCK_FOR_FN (fun
, i
);
779 while (single_succ_p (bb
)
780 && (single_succ_edge (bb
)->flags
781 & (EDGE_EH
|EDGE_DFS_BACK
)) == 0)
782 bb
= single_succ (bb
);
783 if (bb
== EXIT_BLOCK_PTR_FOR_FN (fun
))
785 if ((unsigned) bb
->index
!= i
)
786 bitmap_set_bit (need_eh_cleanup
, bb
->index
);
789 gimple_purge_all_dead_eh_edges (need_eh_cleanup
);
790 bitmap_clear (need_eh_cleanup
);
793 /* Fixup stmts that became noreturn calls. This may require splitting
794 blocks and thus isn't possible during the dominator walk or before
795 jump threading finished. Do this in reverse order so we don't
796 inadvertedly remove a stmt we want to fixup by visiting a dominating
797 now noreturn call first. */
798 while (!need_noreturn_fixup
.is_empty ())
800 gimple
*stmt
= need_noreturn_fixup
.pop ();
801 if (dump_file
&& dump_flags
& TDF_DETAILS
)
803 fprintf (dump_file
, "Fixing up noreturn call ");
804 print_gimple_stmt (dump_file
, stmt
, 0);
805 fprintf (dump_file
, "\n");
807 fixup_noreturn_call (stmt
);
810 statistics_counter_event (fun
, "Redundant expressions eliminated",
812 statistics_counter_event (fun
, "Constants propagated",
813 opt_stats
.num_const_prop
);
814 statistics_counter_event (fun
, "Copies propagated",
815 opt_stats
.num_copy_prop
);
817 /* Debugging dumps. */
818 if (dump_file
&& (dump_flags
& TDF_STATS
))
819 dump_dominator_optimization_stats (dump_file
, avail_exprs
);
821 loop_optimizer_finalize ();
823 /* Delete our main hashtable. */
827 /* Free asserted bitmaps and stacks. */
828 BITMAP_FREE (need_eh_cleanup
);
829 need_noreturn_fixup
.release ();
830 delete avail_exprs_stack
;
831 delete const_and_copies
;
833 /* Free the value-handle array. */
834 threadedge_finalize_values ();
842 make_pass_dominator (gcc::context
*ctxt
)
844 return new pass_dominator (ctxt
);
847 /* A hack until we remove threading from tree-vrp.c and bring the
848 simplification routine into the dom_opt_dom_walker class. */
849 static class vr_values
*x_vr_values
;
851 /* A trivial wrapper so that we can present the generic jump
852 threading code with a simple API for simplifying statements. */
854 simplify_stmt_for_jump_threading (gimple
*stmt
,
855 gimple
*within_stmt ATTRIBUTE_UNUSED
,
856 class avail_exprs_stack
*avail_exprs_stack
,
857 basic_block bb ATTRIBUTE_UNUSED
)
859 /* First query our hash table to see if the the expression is available
860 there. A non-NULL return value will be either a constant or another
862 tree cached_lhs
= avail_exprs_stack
->lookup_avail_expr (stmt
, false, true);
866 /* If the hash table query failed, query VRP information. This is
867 essentially the same as tree-vrp's simplification routine. The
868 copy in tree-vrp is scheduled for removal in gcc-9. */
869 if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
872 = x_vr_values
->vrp_evaluate_conditional (gimple_cond_code (cond_stmt
),
873 gimple_cond_lhs (cond_stmt
),
874 gimple_cond_rhs (cond_stmt
),
879 if (gswitch
*switch_stmt
= dyn_cast
<gswitch
*> (stmt
))
881 tree op
= gimple_switch_index (switch_stmt
);
882 if (TREE_CODE (op
) != SSA_NAME
)
885 value_range
*vr
= x_vr_values
->get_value_range (op
);
886 if (vr
->undefined_p ()
888 || vr
->symbolic_p ())
891 if (vr
->kind () == VR_RANGE
)
895 find_case_label_range (switch_stmt
, vr
->min (), vr
->max (), &i
, &j
);
899 tree label
= gimple_switch_label (switch_stmt
, i
);
902 if (CASE_HIGH (label
) != NULL_TREE
903 ? (tree_int_cst_compare (CASE_LOW (label
), vr
->min ()) <= 0
904 && tree_int_cst_compare (CASE_HIGH (label
), vr
->max ()) >= 0)
905 : (vr
->singleton_p (&singleton
)
906 && tree_int_cst_equal (CASE_LOW (label
), singleton
)))
910 return gimple_switch_label (switch_stmt
, 0);
914 if (vr
->kind () == VR_ANTI_RANGE
)
916 unsigned n
= gimple_switch_num_labels (switch_stmt
);
917 tree min_label
= gimple_switch_label (switch_stmt
, 1);
918 tree max_label
= gimple_switch_label (switch_stmt
, n
- 1);
920 /* The default label will be taken only if the anti-range of the
921 operand is entirely outside the bounds of all the (non-default)
923 if (tree_int_cst_compare (vr
->min (), CASE_LOW (min_label
)) <= 0
924 && (CASE_HIGH (max_label
) != NULL_TREE
925 ? tree_int_cst_compare (vr
->max (), CASE_HIGH (max_label
)) >= 0
926 : tree_int_cst_compare (vr
->max (), CASE_LOW (max_label
)) >= 0))
927 return gimple_switch_label (switch_stmt
, 0);
932 if (gassign
*assign_stmt
= dyn_cast
<gassign
*> (stmt
))
934 tree lhs
= gimple_assign_lhs (assign_stmt
);
935 if (TREE_CODE (lhs
) == SSA_NAME
936 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
937 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
938 && stmt_interesting_for_vrp (stmt
))
943 x_vr_values
->extract_range_from_stmt (stmt
, &dummy_e
,
944 &dummy_tree
, &new_vr
);
946 if (new_vr
.singleton_p (&singleton
))
953 /* Valueize hook for gimple_fold_stmt_to_constant_1. */
956 dom_valueize (tree t
)
958 if (TREE_CODE (t
) == SSA_NAME
)
960 tree tem
= SSA_NAME_VALUE (t
);
967 /* We have just found an equivalence for LHS on an edge E.
968 Look backwards to other uses of LHS and see if we can derive
969 additional equivalences that are valid on edge E. */
971 back_propagate_equivalences (tree lhs
, edge e
,
972 class const_and_copies
*const_and_copies
)
975 imm_use_iterator iter
;
977 basic_block dest
= e
->dest
;
979 /* Iterate over the uses of LHS to see if any dominate E->dest.
980 If so, they may create useful equivalences too.
982 ??? If the code gets re-organized to a worklist to catch more
983 indirect opportunities and it is made to handle PHIs then this
984 should only consider use_stmts in basic-blocks we have already visited. */
985 FOR_EACH_IMM_USE_FAST (use_p
, iter
, lhs
)
987 gimple
*use_stmt
= USE_STMT (use_p
);
989 /* Often the use is in DEST, which we trivially know we can't use.
990 This is cheaper than the dominator set tests below. */
991 if (dest
== gimple_bb (use_stmt
))
994 /* Filter out statements that can never produce a useful
996 tree lhs2
= gimple_get_lhs (use_stmt
);
997 if (!lhs2
|| TREE_CODE (lhs2
) != SSA_NAME
)
1000 /* Profiling has shown the domination tests here can be fairly
1001 expensive. We get significant improvements by building the
1002 set of blocks that dominate BB. We can then just test
1003 for set membership below.
1005 We also initialize the set lazily since often the only uses
1006 are going to be in the same block as DEST. */
1009 domby
= BITMAP_ALLOC (NULL
);
1010 basic_block bb
= get_immediate_dominator (CDI_DOMINATORS
, dest
);
1013 bitmap_set_bit (domby
, bb
->index
);
1014 bb
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
1018 /* This tests if USE_STMT does not dominate DEST. */
1019 if (!bitmap_bit_p (domby
, gimple_bb (use_stmt
)->index
))
1022 /* At this point USE_STMT dominates DEST and may result in a
1023 useful equivalence. Try to simplify its RHS to a constant
1025 tree res
= gimple_fold_stmt_to_constant_1 (use_stmt
, dom_valueize
,
1026 no_follow_ssa_edges
);
1027 if (res
&& (TREE_CODE (res
) == SSA_NAME
|| is_gimple_min_invariant (res
)))
1028 record_equality (lhs2
, res
, const_and_copies
);
1032 BITMAP_FREE (domby
);
1035 /* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
1036 by traversing edge E (which are cached in E->aux).
1038 Callers are responsible for managing the unwinding markers. */
1040 record_temporary_equivalences (edge e
,
1041 class const_and_copies
*const_and_copies
,
1042 class avail_exprs_stack
*avail_exprs_stack
)
1045 class edge_info
*edge_info
= (class edge_info
*) e
->aux
;
1047 /* If we have info associated with this edge, record it into
1048 our equivalence tables. */
1051 cond_equivalence
*eq
;
1052 /* If we have 0 = COND or 1 = COND equivalences, record them
1053 into our expression hash tables. */
1054 for (i
= 0; edge_info
->cond_equivalences
.iterate (i
, &eq
); ++i
)
1055 avail_exprs_stack
->record_cond (eq
);
1057 edge_info::equiv_pair
*seq
;
1058 for (i
= 0; edge_info
->simple_equivalences
.iterate (i
, &seq
); ++i
)
1060 tree lhs
= seq
->first
;
1061 if (!lhs
|| TREE_CODE (lhs
) != SSA_NAME
)
1064 /* Record the simple NAME = VALUE equivalence. */
1065 tree rhs
= seq
->second
;
1067 /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is
1068 cheaper to compute than the other, then set up the equivalence
1069 such that we replace the expensive one with the cheap one.
1071 If they are the same cost to compute, then do not record
1073 if (TREE_CODE (lhs
) == SSA_NAME
&& TREE_CODE (rhs
) == SSA_NAME
)
1075 gimple
*rhs_def
= SSA_NAME_DEF_STMT (rhs
);
1076 int rhs_cost
= estimate_num_insns (rhs_def
, &eni_size_weights
);
1078 gimple
*lhs_def
= SSA_NAME_DEF_STMT (lhs
);
1079 int lhs_cost
= estimate_num_insns (lhs_def
, &eni_size_weights
);
1081 if (rhs_cost
> lhs_cost
)
1082 record_equality (rhs
, lhs
, const_and_copies
);
1083 else if (rhs_cost
< lhs_cost
)
1084 record_equality (lhs
, rhs
, const_and_copies
);
1087 record_equality (lhs
, rhs
, const_and_copies
);
1090 /* Any equivalence found for LHS may result in additional
1091 equivalences for other uses of LHS that we have already
1093 back_propagate_equivalences (lhs
, e
, const_and_copies
);
1098 /* PHI nodes can create equivalences too.
1100 Ignoring any alternatives which are the same as the result, if
1101 all the alternatives are equal, then the PHI node creates an
1105 record_equivalences_from_phis (basic_block bb
)
1109 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); )
1111 gphi
*phi
= gsi
.phi ();
1113 /* We might eliminate the PHI, so advance GSI now. */
1116 tree lhs
= gimple_phi_result (phi
);
1120 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1122 tree t
= gimple_phi_arg_def (phi
, i
);
1124 /* Ignore alternatives which are the same as our LHS. Since
1125 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1126 can simply compare pointers. */
1130 /* If the associated edge is not marked as executable, then it
1132 if ((gimple_phi_arg_edge (phi
, i
)->flags
& EDGE_EXECUTABLE
) == 0)
1135 t
= dom_valueize (t
);
1137 /* If T is an SSA_NAME and its associated edge is a backedge,
1138 then quit as we can not utilize this equivalence. */
1139 if (TREE_CODE (t
) == SSA_NAME
1140 && (gimple_phi_arg_edge (phi
, i
)->flags
& EDGE_DFS_BACK
))
1143 /* If we have not processed an alternative yet, then set
1144 RHS to this alternative. */
1147 /* If we have processed an alternative (stored in RHS), then
1148 see if it is equal to this one. If it isn't, then stop
1150 else if (! operand_equal_for_phi_arg_p (rhs
, t
))
1154 /* If we had no interesting alternatives, then all the RHS alternatives
1155 must have been the same as LHS. */
1159 /* If we managed to iterate through each PHI alternative without
1160 breaking out of the loop, then we have a PHI which may create
1161 a useful equivalence. We do not need to record unwind data for
1162 this, since this is a true assignment and not an equivalence
1163 inferred from a comparison. All uses of this ssa name are dominated
1164 by this assignment, so unwinding just costs time and space. */
1165 if (i
== gimple_phi_num_args (phi
))
1167 if (may_propagate_copy (lhs
, rhs
))
1168 set_ssa_name_value (lhs
, rhs
);
1169 else if (virtual_operand_p (lhs
))
1172 imm_use_iterator iter
;
1173 use_operand_p use_p
;
1174 /* For virtual operands we have to propagate into all uses as
1175 otherwise we will create overlapping life-ranges. */
1176 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
1177 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1178 SET_USE (use_p
, rhs
);
1179 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
1180 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs
) = 1;
1181 gimple_stmt_iterator tmp_gsi
= gsi_for_stmt (phi
);
1182 remove_phi_node (&tmp_gsi
, true);
1188 /* Record any equivalences created by the incoming edge to BB into
1189 CONST_AND_COPIES and AVAIL_EXPRS_STACK. If BB has more than one
1190 incoming edge, then no equivalence is created. */
1193 record_equivalences_from_incoming_edge (basic_block bb
,
1194 class const_and_copies
*const_and_copies
,
1195 class avail_exprs_stack
*avail_exprs_stack
)
1200 /* If our parent block ended with a control statement, then we may be
1201 able to record some equivalences based on which outgoing edge from
1202 the parent was followed. */
1203 parent
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
1205 e
= single_pred_edge_ignoring_loop_edges (bb
, true);
1207 /* If we had a single incoming edge from our parent block, then enter
1208 any data associated with the edge into our tables. */
1209 if (e
&& e
->src
== parent
)
1210 record_temporary_equivalences (e
, const_and_copies
, avail_exprs_stack
);
1213 /* Dump statistics for the hash table HTAB. */
1216 htab_statistics (FILE *file
, const hash_table
<expr_elt_hasher
> &htab
)
1218 fprintf (file
, "size %ld, %ld elements, %f collision/search ratio\n",
1219 (long) htab
.size (),
1220 (long) htab
.elements (),
1221 htab
.collisions ());
1224 /* Dump SSA statistics on FILE. */
1227 dump_dominator_optimization_stats (FILE *file
,
1228 hash_table
<expr_elt_hasher
> *avail_exprs
)
1230 fprintf (file
, "Total number of statements: %6ld\n\n",
1231 opt_stats
.num_stmts
);
1232 fprintf (file
, "Exprs considered for dominator optimizations: %6ld\n",
1233 opt_stats
.num_exprs_considered
);
1235 fprintf (file
, "\nHash table statistics:\n");
1237 fprintf (file
, " avail_exprs: ");
1238 htab_statistics (file
, *avail_exprs
);
1242 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1243 This constrains the cases in which we may treat this as assignment. */
1246 record_equality (tree x
, tree y
, class const_and_copies
*const_and_copies
)
1248 tree prev_x
= NULL
, prev_y
= NULL
;
1250 if (tree_swap_operands_p (x
, y
))
1253 /* Most of the time tree_swap_operands_p does what we want. But there
1254 are cases where we know one operand is better for copy propagation than
1255 the other. Given no other code cares about ordering of equality
1256 comparison operators for that purpose, we just handle the special cases
1258 if (TREE_CODE (x
) == SSA_NAME
&& TREE_CODE (y
) == SSA_NAME
)
1260 /* If one operand is a single use operand, then make it
1261 X. This will preserve its single use properly and if this
1262 conditional is eliminated, the computation of X can be
1263 eliminated as well. */
1264 if (has_single_use (y
) && ! has_single_use (x
))
1267 if (TREE_CODE (x
) == SSA_NAME
)
1268 prev_x
= SSA_NAME_VALUE (x
);
1269 if (TREE_CODE (y
) == SSA_NAME
)
1270 prev_y
= SSA_NAME_VALUE (y
);
1272 /* If one of the previous values is invariant, or invariant in more loops
1273 (by depth), then use that.
1274 Otherwise it doesn't matter which value we choose, just so
1275 long as we canonicalize on one value. */
1276 if (is_gimple_min_invariant (y
))
1278 else if (is_gimple_min_invariant (x
))
1279 prev_x
= x
, x
= y
, y
= prev_x
, prev_x
= prev_y
;
1280 else if (prev_x
&& is_gimple_min_invariant (prev_x
))
1281 x
= y
, y
= prev_x
, prev_x
= prev_y
;
1285 /* After the swapping, we must have one SSA_NAME. */
1286 if (TREE_CODE (x
) != SSA_NAME
)
1289 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1290 variable compared against zero. If we're honoring signed zeros,
1291 then we cannot record this value unless we know that the value is
1293 if (HONOR_SIGNED_ZEROS (x
)
1294 && (TREE_CODE (y
) != REAL_CST
1295 || real_equal (&dconst0
, &TREE_REAL_CST (y
))))
1298 const_and_copies
->record_const_or_copy (x
, y
, prev_x
);
1301 /* Returns true when STMT is a simple iv increment. It detects the
1302 following situation:
1304 i_1 = phi (..., i_k)
1306 i_j = i_{j-1} for each j : 2 <= j <= k-1
1308 i_k = i_{k-1} +/- ... */
1311 simple_iv_increment_p (gimple
*stmt
)
1313 enum tree_code code
;
1318 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
1321 lhs
= gimple_assign_lhs (stmt
);
1322 if (TREE_CODE (lhs
) != SSA_NAME
)
1325 code
= gimple_assign_rhs_code (stmt
);
1326 if (code
!= PLUS_EXPR
1327 && code
!= MINUS_EXPR
1328 && code
!= POINTER_PLUS_EXPR
)
1331 preinc
= gimple_assign_rhs1 (stmt
);
1332 if (TREE_CODE (preinc
) != SSA_NAME
)
1335 phi
= SSA_NAME_DEF_STMT (preinc
);
1336 while (gimple_code (phi
) != GIMPLE_PHI
)
1338 /* Follow trivial copies, but not the DEF used in a back edge,
1339 so that we don't prevent coalescing. */
1340 if (!gimple_assign_ssa_name_copy_p (phi
))
1342 preinc
= gimple_assign_rhs1 (phi
);
1343 phi
= SSA_NAME_DEF_STMT (preinc
);
1346 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1347 if (gimple_phi_arg_def (phi
, i
) == lhs
)
1353 /* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
1354 successors of BB. */
1357 cprop_into_successor_phis (basic_block bb
,
1358 class const_and_copies
*const_and_copies
)
1363 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1368 /* If this is an abnormal edge, then we do not want to copy propagate
1369 into the PHI alternative associated with this edge. */
1370 if (e
->flags
& EDGE_ABNORMAL
)
1373 gsi
= gsi_start_phis (e
->dest
);
1374 if (gsi_end_p (gsi
))
1377 /* We may have an equivalence associated with this edge. While
1378 we can not propagate it into non-dominated blocks, we can
1379 propagate them into PHIs in non-dominated blocks. */
1381 /* Push the unwind marker so we can reset the const and copies
1382 table back to its original state after processing this edge. */
1383 const_and_copies
->push_marker ();
1385 /* Extract and record any simple NAME = VALUE equivalences.
1387 Don't bother with [01] = COND equivalences, they're not useful
1389 class edge_info
*edge_info
= (class edge_info
*) e
->aux
;
1393 edge_info::equiv_pair
*seq
;
1394 for (int i
= 0; edge_info
->simple_equivalences
.iterate (i
, &seq
); ++i
)
1396 tree lhs
= seq
->first
;
1397 tree rhs
= seq
->second
;
1399 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
)
1400 const_and_copies
->record_const_or_copy (lhs
, rhs
);
1406 for ( ; !gsi_end_p (gsi
); gsi_next (&gsi
))
1409 use_operand_p orig_p
;
1411 gphi
*phi
= gsi
.phi ();
1413 /* The alternative may be associated with a constant, so verify
1414 it is an SSA_NAME before doing anything with it. */
1415 orig_p
= gimple_phi_arg_imm_use_ptr (phi
, indx
);
1416 orig_val
= get_use_from_ptr (orig_p
);
1417 if (TREE_CODE (orig_val
) != SSA_NAME
)
1420 /* If we have *ORIG_P in our constant/copy table, then replace
1421 ORIG_P with its value in our constant/copy table. */
1422 new_val
= SSA_NAME_VALUE (orig_val
);
1424 && new_val
!= orig_val
1425 && may_propagate_copy (orig_val
, new_val
))
1426 propagate_value (orig_p
, new_val
);
1429 const_and_copies
->pop_to_marker ();
1434 dom_opt_dom_walker::before_dom_children (basic_block bb
)
1436 gimple_stmt_iterator gsi
;
1438 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1439 fprintf (dump_file
, "\n\nOptimizing block #%d\n\n", bb
->index
);
1441 evrp_range_analyzer
.enter (bb
);
1443 /* Push a marker on the stacks of local information so that we know how
1444 far to unwind when we finalize this block. */
1445 m_avail_exprs_stack
->push_marker ();
1446 m_const_and_copies
->push_marker ();
1448 record_equivalences_from_incoming_edge (bb
, m_const_and_copies
,
1449 m_avail_exprs_stack
);
1451 /* PHI nodes can create equivalences too. */
1452 record_equivalences_from_phis (bb
);
1454 /* Create equivalences from redundant PHIs. PHIs are only truly
1455 redundant when they exist in the same block, so push another
1456 marker and unwind right afterwards. */
1457 m_avail_exprs_stack
->push_marker ();
1458 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1459 eliminate_redundant_computations (&gsi
, m_const_and_copies
,
1460 m_avail_exprs_stack
);
1461 m_avail_exprs_stack
->pop_to_marker ();
1463 edge taken_edge
= NULL
;
1464 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1466 evrp_range_analyzer
.record_ranges_from_stmt (gsi_stmt (gsi
), false);
1467 taken_edge
= this->optimize_stmt (bb
, gsi
);
1470 /* Now prepare to process dominated blocks. */
1471 record_edge_info (bb
);
1472 cprop_into_successor_phis (bb
, m_const_and_copies
);
1473 if (taken_edge
&& !dbg_cnt (dom_unreachable_edges
))
1479 /* We have finished processing the dominator children of BB, perform
1480 any finalization actions in preparation for leaving this node in
1481 the dominator tree. */
1484 dom_opt_dom_walker::after_dom_children (basic_block bb
)
1486 x_vr_values
= evrp_range_analyzer
.get_vr_values ();
1487 thread_outgoing_edges (bb
, m_dummy_cond
, m_const_and_copies
,
1488 m_avail_exprs_stack
,
1489 &evrp_range_analyzer
,
1490 simplify_stmt_for_jump_threading
);
1493 /* These remove expressions local to BB from the tables. */
1494 m_avail_exprs_stack
->pop_to_marker ();
1495 m_const_and_copies
->pop_to_marker ();
1496 evrp_range_analyzer
.leave (bb
);
1499 /* Search for redundant computations in STMT. If any are found, then
1500 replace them with the variable holding the result of the computation.
1502 If safe, record this expression into AVAIL_EXPRS_STACK and
1503 CONST_AND_COPIES. */
1506 eliminate_redundant_computations (gimple_stmt_iterator
* gsi
,
1507 class const_and_copies
*const_and_copies
,
1508 class avail_exprs_stack
*avail_exprs_stack
)
1514 bool assigns_var_p
= false;
1516 gimple
*stmt
= gsi_stmt (*gsi
);
1518 if (gimple_code (stmt
) == GIMPLE_PHI
)
1519 def
= gimple_phi_result (stmt
);
1521 def
= gimple_get_lhs (stmt
);
1523 /* Certain expressions on the RHS can be optimized away, but can not
1524 themselves be entered into the hash tables. */
1526 || TREE_CODE (def
) != SSA_NAME
1527 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
)
1528 || gimple_vdef (stmt
)
1529 /* Do not record equivalences for increments of ivs. This would create
1530 overlapping live ranges for a very questionable gain. */
1531 || simple_iv_increment_p (stmt
))
1534 /* Check if the expression has been computed before. */
1535 cached_lhs
= avail_exprs_stack
->lookup_avail_expr (stmt
, insert
, true);
1537 opt_stats
.num_exprs_considered
++;
1539 /* Get the type of the expression we are trying to optimize. */
1540 if (is_gimple_assign (stmt
))
1542 expr_type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1543 assigns_var_p
= true;
1545 else if (gimple_code (stmt
) == GIMPLE_COND
)
1546 expr_type
= boolean_type_node
;
1547 else if (is_gimple_call (stmt
))
1549 gcc_assert (gimple_call_lhs (stmt
));
1550 expr_type
= TREE_TYPE (gimple_call_lhs (stmt
));
1551 assigns_var_p
= true;
1553 else if (gswitch
*swtch_stmt
= dyn_cast
<gswitch
*> (stmt
))
1554 expr_type
= TREE_TYPE (gimple_switch_index (swtch_stmt
));
1555 else if (gimple_code (stmt
) == GIMPLE_PHI
)
1556 /* We can't propagate into a phi, so the logic below doesn't apply.
1557 Instead record an equivalence between the cached LHS and the
1558 PHI result of this statement, provided they are in the same block.
1559 This should be sufficient to kill the redundant phi. */
1561 if (def
&& cached_lhs
)
1562 const_and_copies
->record_const_or_copy (def
, cached_lhs
);
1571 /* It is safe to ignore types here since we have already done
1572 type checking in the hashing and equality routines. In fact
1573 type checking here merely gets in the way of constant
1574 propagation. Also, make sure that it is safe to propagate
1575 CACHED_LHS into the expression in STMT. */
1576 if ((TREE_CODE (cached_lhs
) != SSA_NAME
1578 || useless_type_conversion_p (expr_type
, TREE_TYPE (cached_lhs
))))
1579 || may_propagate_copy_into_stmt (stmt
, cached_lhs
))
1581 gcc_checking_assert (TREE_CODE (cached_lhs
) == SSA_NAME
1582 || is_gimple_min_invariant (cached_lhs
));
1584 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1586 fprintf (dump_file
, " Replaced redundant expr '");
1587 print_gimple_expr (dump_file
, stmt
, 0, dump_flags
);
1588 fprintf (dump_file
, "' with '");
1589 print_generic_expr (dump_file
, cached_lhs
, dump_flags
);
1590 fprintf (dump_file
, "'\n");
1596 && !useless_type_conversion_p (expr_type
, TREE_TYPE (cached_lhs
)))
1597 cached_lhs
= fold_convert (expr_type
, cached_lhs
);
1599 propagate_tree_value_into_stmt (gsi
, cached_lhs
);
1601 /* Since it is always necessary to mark the result as modified,
1602 perhaps we should move this into propagate_tree_value_into_stmt
1604 gimple_set_modified (gsi_stmt (*gsi
), true);
1608 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1609 the available expressions table or the const_and_copies table.
1610 Detect and record those equivalences into AVAIL_EXPRS_STACK.
1612 We handle only very simple copy equivalences here. The heavy
1613 lifing is done by eliminate_redundant_computations. */
1616 record_equivalences_from_stmt (gimple
*stmt
, int may_optimize_p
,
1617 class avail_exprs_stack
*avail_exprs_stack
)
1620 enum tree_code lhs_code
;
1622 gcc_assert (is_gimple_assign (stmt
));
1624 lhs
= gimple_assign_lhs (stmt
);
1625 lhs_code
= TREE_CODE (lhs
);
1627 if (lhs_code
== SSA_NAME
1628 && gimple_assign_single_p (stmt
))
1630 tree rhs
= gimple_assign_rhs1 (stmt
);
1632 /* If the RHS of the assignment is a constant or another variable that
1633 may be propagated, register it in the CONST_AND_COPIES table. We
1634 do not need to record unwind data for this, since this is a true
1635 assignment and not an equivalence inferred from a comparison. All
1636 uses of this ssa name are dominated by this assignment, so unwinding
1637 just costs time and space. */
1639 && (TREE_CODE (rhs
) == SSA_NAME
1640 || is_gimple_min_invariant (rhs
)))
1642 rhs
= dom_valueize (rhs
);
1644 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1646 fprintf (dump_file
, "==== ASGN ");
1647 print_generic_expr (dump_file
, lhs
);
1648 fprintf (dump_file
, " = ");
1649 print_generic_expr (dump_file
, rhs
);
1650 fprintf (dump_file
, "\n");
1653 set_ssa_name_value (lhs
, rhs
);
1657 /* Make sure we can propagate &x + CST. */
1658 if (lhs_code
== SSA_NAME
1659 && gimple_assign_rhs_code (stmt
) == POINTER_PLUS_EXPR
1660 && TREE_CODE (gimple_assign_rhs1 (stmt
)) == ADDR_EXPR
1661 && TREE_CODE (gimple_assign_rhs2 (stmt
)) == INTEGER_CST
)
1663 tree op0
= gimple_assign_rhs1 (stmt
);
1664 tree op1
= gimple_assign_rhs2 (stmt
);
1666 = build_fold_addr_expr (fold_build2 (MEM_REF
,
1667 TREE_TYPE (TREE_TYPE (op0
)),
1669 fold_convert (ptr_type_node
,
1671 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1673 fprintf (dump_file
, "==== ASGN ");
1674 print_generic_expr (dump_file
, lhs
);
1675 fprintf (dump_file
, " = ");
1676 print_generic_expr (dump_file
, new_rhs
);
1677 fprintf (dump_file
, "\n");
1680 set_ssa_name_value (lhs
, new_rhs
);
1683 /* A memory store, even an aliased store, creates a useful
1684 equivalence. By exchanging the LHS and RHS, creating suitable
1685 vops and recording the result in the available expression table,
1686 we may be able to expose more redundant loads. */
1687 if (!gimple_has_volatile_ops (stmt
)
1688 && gimple_references_memory_p (stmt
)
1689 && gimple_assign_single_p (stmt
)
1690 && (TREE_CODE (gimple_assign_rhs1 (stmt
)) == SSA_NAME
1691 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
1692 && !is_gimple_reg (lhs
))
1694 tree rhs
= gimple_assign_rhs1 (stmt
);
1697 /* Build a new statement with the RHS and LHS exchanged. */
1698 if (TREE_CODE (rhs
) == SSA_NAME
)
1700 /* NOTE tuples. The call to gimple_build_assign below replaced
1701 a call to build_gimple_modify_stmt, which did not set the
1702 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
1703 may cause an SSA validation failure, as the LHS may be a
1704 default-initialized name and should have no definition. I'm
1705 a bit dubious of this, as the artificial statement that we
1706 generate here may in fact be ill-formed, but it is simply
1707 used as an internal device in this pass, and never becomes
1709 gimple
*defstmt
= SSA_NAME_DEF_STMT (rhs
);
1710 new_stmt
= gimple_build_assign (rhs
, lhs
);
1711 SSA_NAME_DEF_STMT (rhs
) = defstmt
;
1714 new_stmt
= gimple_build_assign (rhs
, lhs
);
1716 gimple_set_vuse (new_stmt
, gimple_vdef (stmt
));
1718 /* Finally enter the statement into the available expression
1720 avail_exprs_stack
->lookup_avail_expr (new_stmt
, true, true);
1724 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
1725 CONST_AND_COPIES. */
1728 cprop_operand (gimple
*stmt
, use_operand_p op_p
, vr_values
*vr_values
)
1731 tree op
= USE_FROM_PTR (op_p
);
1733 /* If the operand has a known constant value or it is known to be a
1734 copy of some other variable, use the value or copy stored in
1735 CONST_AND_COPIES. */
1736 val
= SSA_NAME_VALUE (op
);
1738 val
= vr_values
->op_with_constant_singleton_value_range (op
);
1740 if (val
&& val
!= op
)
1742 /* Do not replace hard register operands in asm statements. */
1743 if (gimple_code (stmt
) == GIMPLE_ASM
1744 && !may_propagate_copy_into_asm (op
))
1747 /* Certain operands are not allowed to be copy propagated due
1748 to their interaction with exception handling and some GCC
1750 if (!may_propagate_copy (op
, val
))
1753 /* Do not propagate copies into BIVs.
1754 See PR23821 and PR62217 for how this can disturb IV and
1755 number of iteration analysis. */
1756 if (TREE_CODE (val
) != INTEGER_CST
)
1758 gimple
*def
= SSA_NAME_DEF_STMT (op
);
1759 if (gimple_code (def
) == GIMPLE_PHI
1760 && gimple_bb (def
)->loop_father
->header
== gimple_bb (def
))
1765 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1767 fprintf (dump_file
, " Replaced '");
1768 print_generic_expr (dump_file
, op
, dump_flags
);
1769 fprintf (dump_file
, "' with %s '",
1770 (TREE_CODE (val
) != SSA_NAME
? "constant" : "variable"));
1771 print_generic_expr (dump_file
, val
, dump_flags
);
1772 fprintf (dump_file
, "'\n");
1775 if (TREE_CODE (val
) != SSA_NAME
)
1776 opt_stats
.num_const_prop
++;
1778 opt_stats
.num_copy_prop
++;
1780 propagate_value (op_p
, val
);
1782 /* And note that we modified this statement. This is now
1783 safe, even if we changed virtual operands since we will
1784 rescan the statement and rewrite its operands again. */
1785 gimple_set_modified (stmt
, true);
1789 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1790 known value for that SSA_NAME (or NULL if no value is known).
1792 Propagate values from CONST_AND_COPIES into the uses, vuses and
1793 vdef_ops of STMT. */
1796 cprop_into_stmt (gimple
*stmt
, vr_values
*vr_values
)
1800 tree last_copy_propagated_op
= NULL
;
1802 FOR_EACH_SSA_USE_OPERAND (op_p
, stmt
, iter
, SSA_OP_USE
)
1804 tree old_op
= USE_FROM_PTR (op_p
);
1806 /* If we have A = B and B = A in the copy propagation tables
1807 (due to an equality comparison), avoid substituting B for A
1808 then A for B in the trivially discovered cases. This allows
1809 optimization of statements were A and B appear as input
1811 if (old_op
!= last_copy_propagated_op
)
1813 cprop_operand (stmt
, op_p
, vr_values
);
1815 tree new_op
= USE_FROM_PTR (op_p
);
1816 if (new_op
!= old_op
&& TREE_CODE (new_op
) == SSA_NAME
)
1817 last_copy_propagated_op
= new_op
;
1822 /* If STMT contains a relational test, try to convert it into an
1823 equality test if there is only a single value which can ever
1826 For example, if the expression hash table contains:
1830 And we have a test within statement of i >= 1, then we can safely
1831 rewrite the test as i == 1 since there only a single value where
1834 This is similar to code in VRP. */
1837 test_for_singularity (gimple
*stmt
, gcond
*dummy_cond
,
1838 avail_exprs_stack
*avail_exprs_stack
)
1840 /* We want to support gimple conditionals as well as assignments
1841 where the RHS contains a conditional. */
1842 if (is_gimple_assign (stmt
) || gimple_code (stmt
) == GIMPLE_COND
)
1844 enum tree_code code
= ERROR_MARK
;
1847 /* Extract the condition of interest from both forms we support. */
1848 if (is_gimple_assign (stmt
))
1850 code
= gimple_assign_rhs_code (stmt
);
1851 lhs
= gimple_assign_rhs1 (stmt
);
1852 rhs
= gimple_assign_rhs2 (stmt
);
1854 else if (gimple_code (stmt
) == GIMPLE_COND
)
1856 code
= gimple_cond_code (as_a
<gcond
*> (stmt
));
1857 lhs
= gimple_cond_lhs (as_a
<gcond
*> (stmt
));
1858 rhs
= gimple_cond_rhs (as_a
<gcond
*> (stmt
));
1861 /* We're looking for a relational test using LE/GE. Also note we can
1862 canonicalize LT/GT tests against constants into LE/GT tests. */
1863 if (code
== LE_EXPR
|| code
== GE_EXPR
1864 || ((code
== LT_EXPR
|| code
== GT_EXPR
)
1865 && TREE_CODE (rhs
) == INTEGER_CST
))
1867 /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR. */
1868 if (code
== LT_EXPR
)
1869 rhs
= fold_build2 (MINUS_EXPR
, TREE_TYPE (rhs
),
1870 rhs
, build_int_cst (TREE_TYPE (rhs
), 1));
1872 if (code
== GT_EXPR
)
1873 rhs
= fold_build2 (PLUS_EXPR
, TREE_TYPE (rhs
),
1874 rhs
, build_int_cst (TREE_TYPE (rhs
), 1));
1876 /* Determine the code we want to check for in the hash table. */
1877 enum tree_code test_code
;
1878 if (code
== GE_EXPR
|| code
== GT_EXPR
)
1879 test_code
= LE_EXPR
;
1881 test_code
= GE_EXPR
;
1883 /* Update the dummy statement so we can query the hash tables. */
1884 gimple_cond_set_code (dummy_cond
, test_code
);
1885 gimple_cond_set_lhs (dummy_cond
, lhs
);
1886 gimple_cond_set_rhs (dummy_cond
, rhs
);
1888 = avail_exprs_stack
->lookup_avail_expr (dummy_cond
, false, false);
1890 /* If the lookup returned 1 (true), then the expression we
1891 queried was in the hash table. As a result there is only
1892 one value that makes the original conditional true. Update
1893 STMT accordingly. */
1894 if (cached_lhs
&& integer_onep (cached_lhs
))
1896 if (is_gimple_assign (stmt
))
1898 gimple_assign_set_rhs_code (stmt
, EQ_EXPR
);
1899 gimple_assign_set_rhs2 (stmt
, rhs
);
1900 gimple_set_modified (stmt
, true);
1904 gimple_set_modified (stmt
, true);
1905 gimple_cond_set_code (as_a
<gcond
*> (stmt
), EQ_EXPR
);
1906 gimple_cond_set_rhs (as_a
<gcond
*> (stmt
), rhs
);
1907 gimple_set_modified (stmt
, true);
1914 /* Optimize the statement in block BB pointed to by iterator SI.
1916 We try to perform some simplistic global redundancy elimination and
1917 constant propagation:
1919 1- To detect global redundancy, we keep track of expressions that have
1920 been computed in this block and its dominators. If we find that the
1921 same expression is computed more than once, we eliminate repeated
1922 computations by using the target of the first one.
1924 2- Constant values and copy assignments. This is used to do very
1925 simplistic constant and copy propagation. When a constant or copy
1926 assignment is found, we map the value on the RHS of the assignment to
1927 the variable in the LHS in the CONST_AND_COPIES table.
1929 3- Very simple redundant store elimination is performed.
1931 4- We can simpify a condition to a constant or from a relational
1932 condition to an equality condition. */
1935 dom_opt_dom_walker::optimize_stmt (basic_block bb
, gimple_stmt_iterator si
)
1937 gimple
*stmt
, *old_stmt
;
1938 bool may_optimize_p
;
1939 bool modified_p
= false;
1943 old_stmt
= stmt
= gsi_stmt (si
);
1944 was_noreturn
= is_gimple_call (stmt
) && gimple_call_noreturn_p (stmt
);
1946 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1948 fprintf (dump_file
, "Optimizing statement ");
1949 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1952 update_stmt_if_modified (stmt
);
1953 opt_stats
.num_stmts
++;
1955 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
1956 cprop_into_stmt (stmt
, evrp_range_analyzer
.get_vr_values ());
1958 /* If the statement has been modified with constant replacements,
1959 fold its RHS before checking for redundant computations. */
1960 if (gimple_modified_p (stmt
))
1964 /* Try to fold the statement making sure that STMT is kept
1966 if (fold_stmt (&si
))
1968 stmt
= gsi_stmt (si
);
1969 gimple_set_modified (stmt
, true);
1971 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1973 fprintf (dump_file
, " Folded to: ");
1974 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1978 /* We only need to consider cases that can yield a gimple operand. */
1979 if (gimple_assign_single_p (stmt
))
1980 rhs
= gimple_assign_rhs1 (stmt
);
1981 else if (gimple_code (stmt
) == GIMPLE_GOTO
)
1982 rhs
= gimple_goto_dest (stmt
);
1983 else if (gswitch
*swtch_stmt
= dyn_cast
<gswitch
*> (stmt
))
1984 /* This should never be an ADDR_EXPR. */
1985 rhs
= gimple_switch_index (swtch_stmt
);
1987 if (rhs
&& TREE_CODE (rhs
) == ADDR_EXPR
)
1988 recompute_tree_invariant_for_addr_expr (rhs
);
1990 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
1991 even if fold_stmt updated the stmt already and thus cleared
1992 gimple_modified_p flag on it. */
1996 /* Check for redundant computations. Do this optimization only
1997 for assignments that have no volatile ops and conditionals. */
1998 may_optimize_p
= (!gimple_has_side_effects (stmt
)
1999 && (is_gimple_assign (stmt
)
2000 || (is_gimple_call (stmt
)
2001 && gimple_call_lhs (stmt
) != NULL_TREE
)
2002 || gimple_code (stmt
) == GIMPLE_COND
2003 || gimple_code (stmt
) == GIMPLE_SWITCH
));
2007 if (gimple_code (stmt
) == GIMPLE_CALL
)
2009 /* Resolve __builtin_constant_p. If it hasn't been
2010 folded to integer_one_node by now, it's fairly
2011 certain that the value simply isn't constant. */
2012 tree callee
= gimple_call_fndecl (stmt
);
2014 && fndecl_built_in_p (callee
, BUILT_IN_CONSTANT_P
))
2016 propagate_tree_value_into_stmt (&si
, integer_zero_node
);
2017 stmt
= gsi_stmt (si
);
2021 if (gimple_code (stmt
) == GIMPLE_COND
)
2023 tree lhs
= gimple_cond_lhs (stmt
);
2024 tree rhs
= gimple_cond_rhs (stmt
);
2026 /* If the LHS has a range [0..1] and the RHS has a range ~[0..1],
2027 then this conditional is computable at compile time. We can just
2028 shove either 0 or 1 into the LHS, mark the statement as modified
2029 and all the right things will just happen below.
2031 Note this would apply to any case where LHS has a range
2032 narrower than its type implies and RHS is outside that
2033 narrower range. Future work. */
2034 if (TREE_CODE (lhs
) == SSA_NAME
2035 && ssa_name_has_boolean_range (lhs
)
2036 && TREE_CODE (rhs
) == INTEGER_CST
2037 && ! (integer_zerop (rhs
) || integer_onep (rhs
)))
2039 gimple_cond_set_lhs (as_a
<gcond
*> (stmt
),
2040 fold_convert (TREE_TYPE (lhs
),
2041 integer_zero_node
));
2042 gimple_set_modified (stmt
, true);
2044 else if (TREE_CODE (lhs
) == SSA_NAME
)
2046 /* Exploiting EVRP data is not yet fully integrated into DOM
2047 but we need to do something for this case to avoid regressing
2048 udr4.f90 and new1.C which have unexecutable blocks with
2049 undefined behavior that get diagnosed if they're left in the
2050 IL because we've attached range information to new
2052 update_stmt_if_modified (stmt
);
2053 edge taken_edge
= NULL
;
2054 evrp_range_analyzer
.vrp_visit_cond_stmt (as_a
<gcond
*> (stmt
),
2058 if (taken_edge
->flags
& EDGE_TRUE_VALUE
)
2059 gimple_cond_make_true (as_a
<gcond
*> (stmt
));
2060 else if (taken_edge
->flags
& EDGE_FALSE_VALUE
)
2061 gimple_cond_make_false (as_a
<gcond
*> (stmt
));
2064 gimple_set_modified (stmt
, true);
2072 update_stmt_if_modified (stmt
);
2073 eliminate_redundant_computations (&si
, m_const_and_copies
,
2074 m_avail_exprs_stack
);
2075 stmt
= gsi_stmt (si
);
2077 /* Perform simple redundant store elimination. */
2078 if (gimple_assign_single_p (stmt
)
2079 && TREE_CODE (gimple_assign_lhs (stmt
)) != SSA_NAME
)
2081 tree lhs
= gimple_assign_lhs (stmt
);
2082 tree rhs
= gimple_assign_rhs1 (stmt
);
2085 rhs
= dom_valueize (rhs
);
2086 /* Build a new statement with the RHS and LHS exchanged. */
2087 if (TREE_CODE (rhs
) == SSA_NAME
)
2089 gimple
*defstmt
= SSA_NAME_DEF_STMT (rhs
);
2090 new_stmt
= gimple_build_assign (rhs
, lhs
);
2091 SSA_NAME_DEF_STMT (rhs
) = defstmt
;
2094 new_stmt
= gimple_build_assign (rhs
, lhs
);
2095 gimple_set_vuse (new_stmt
, gimple_vuse (stmt
));
2096 cached_lhs
= m_avail_exprs_stack
->lookup_avail_expr (new_stmt
, false,
2098 if (cached_lhs
&& operand_equal_p (rhs
, cached_lhs
, 0))
2100 basic_block bb
= gimple_bb (stmt
);
2101 unlink_stmt_vdef (stmt
);
2102 if (gsi_remove (&si
, true))
2104 bitmap_set_bit (need_eh_cleanup
, bb
->index
);
2105 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2106 fprintf (dump_file
, " Flagged to clear EH edges.\n");
2108 release_defs (stmt
);
2113 /* If this statement was not redundant, we may still be able to simplify
2114 it, which may in turn allow other part of DOM or other passes to do
2116 test_for_singularity (stmt
, m_dummy_cond
, m_avail_exprs_stack
);
2119 /* Record any additional equivalences created by this statement. */
2120 if (is_gimple_assign (stmt
))
2121 record_equivalences_from_stmt (stmt
, may_optimize_p
, m_avail_exprs_stack
);
2123 /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may
2124 know where it goes. */
2125 if (gimple_modified_p (stmt
) || modified_p
)
2129 if (gimple_code (stmt
) == GIMPLE_COND
)
2130 val
= fold_binary_loc (gimple_location (stmt
),
2131 gimple_cond_code (stmt
), boolean_type_node
,
2132 gimple_cond_lhs (stmt
),
2133 gimple_cond_rhs (stmt
));
2134 else if (gswitch
*swtch_stmt
= dyn_cast
<gswitch
*> (stmt
))
2135 val
= gimple_switch_index (swtch_stmt
);
2137 if (val
&& TREE_CODE (val
) == INTEGER_CST
)
2139 retval
= find_taken_edge (bb
, val
);
2142 /* Fix the condition to be either true or false. */
2143 if (gimple_code (stmt
) == GIMPLE_COND
)
2145 if (integer_zerop (val
))
2146 gimple_cond_make_false (as_a
<gcond
*> (stmt
));
2147 else if (integer_onep (val
))
2148 gimple_cond_make_true (as_a
<gcond
*> (stmt
));
2152 gimple_set_modified (stmt
, true);
2155 /* Further simplifications may be possible. */
2160 update_stmt_if_modified (stmt
);
2162 /* If we simplified a statement in such a way as to be shown that it
2163 cannot trap, update the eh information and the cfg to match. */
2164 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
2166 bitmap_set_bit (need_eh_cleanup
, bb
->index
);
2167 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2168 fprintf (dump_file
, " Flagged to clear EH edges.\n");
2172 && is_gimple_call (stmt
) && gimple_call_noreturn_p (stmt
))
2173 need_noreturn_fixup
.safe_push (stmt
);