1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
36 The available functions are:
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
52 #include "coretypes.h"
55 #include "hard-reg-set.h"
64 #include "dominance.h"
66 #include "basic-block.h"
70 #include "diagnostic-core.h"
72 #include "hash-table.h"
76 /* Possible return values of iv_get_reaching_def. */
80 /* More than one reaching def, or reaching def that does not
84 /* The use is trivial invariant of the loop, i.e. is not changed
88 /* The use is reached by initial value and a value from the
89 previous iteration. */
92 /* The use has single dominating def. */
96 /* Information about a biv. */
100 unsigned regno
; /* The register of the biv. */
101 struct rtx_iv iv
; /* Value of the biv. */
104 static bool clean_slate
= true;
106 static unsigned int iv_ref_table_size
= 0;
108 /* Table of rtx_ivs indexed by the df_ref uid field. */
109 static struct rtx_iv
** iv_ref_table
;
111 /* Induction variable stored at the reference. */
112 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
113 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
115 /* The current loop. */
117 static struct loop
*current_loop
;
119 /* Hashtable helper. */
121 struct biv_entry_hasher
: typed_free_remove
<biv_entry
>
123 typedef biv_entry value_type
;
124 typedef rtx_def compare_type
;
125 static inline hashval_t
hash (const value_type
*);
126 static inline bool equal (const value_type
*, const compare_type
*);
129 /* Returns hash value for biv B. */
132 biv_entry_hasher::hash (const value_type
*b
)
137 /* Compares biv B and register R. */
140 biv_entry_hasher::equal (const value_type
*b
, const compare_type
*r
)
142 return b
->regno
== REGNO (r
);
145 /* Bivs of the current loop. */
147 static hash_table
<biv_entry_hasher
> *bivs
;
149 static bool iv_analyze_op (rtx_insn
*, rtx
, struct rtx_iv
*);
151 /* Return the RTX code corresponding to the IV extend code EXTEND. */
152 static inline enum rtx_code
153 iv_extend_to_rtx_code (enum iv_extend_code extend
)
161 case IV_UNKNOWN_EXTEND
:
167 /* Dumps information about IV to FILE. */
169 extern void dump_iv_info (FILE *, struct rtx_iv
*);
171 dump_iv_info (FILE *file
, struct rtx_iv
*iv
)
175 fprintf (file
, "not simple");
179 if (iv
->step
== const0_rtx
180 && !iv
->first_special
)
181 fprintf (file
, "invariant ");
183 print_rtl (file
, iv
->base
);
184 if (iv
->step
!= const0_rtx
)
186 fprintf (file
, " + ");
187 print_rtl (file
, iv
->step
);
188 fprintf (file
, " * iteration");
190 fprintf (file
, " (in %s)", GET_MODE_NAME (iv
->mode
));
192 if (iv
->mode
!= iv
->extend_mode
)
193 fprintf (file
, " %s to %s",
194 rtx_name
[iv_extend_to_rtx_code (iv
->extend
)],
195 GET_MODE_NAME (iv
->extend_mode
));
197 if (iv
->mult
!= const1_rtx
)
199 fprintf (file
, " * ");
200 print_rtl (file
, iv
->mult
);
202 if (iv
->delta
!= const0_rtx
)
204 fprintf (file
, " + ");
205 print_rtl (file
, iv
->delta
);
207 if (iv
->first_special
)
208 fprintf (file
, " (first special)");
211 /* Generates a subreg to get the least significant part of EXPR (in mode
212 INNER_MODE) to OUTER_MODE. */
215 lowpart_subreg (machine_mode outer_mode
, rtx expr
,
216 machine_mode inner_mode
)
218 return simplify_gen_subreg (outer_mode
, expr
, inner_mode
,
219 subreg_lowpart_offset (outer_mode
, inner_mode
));
223 check_iv_ref_table_size (void)
225 if (iv_ref_table_size
< DF_DEFS_TABLE_SIZE ())
227 unsigned int new_size
= DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
228 iv_ref_table
= XRESIZEVEC (struct rtx_iv
*, iv_ref_table
, new_size
);
229 memset (&iv_ref_table
[iv_ref_table_size
], 0,
230 (new_size
- iv_ref_table_size
) * sizeof (struct rtx_iv
*));
231 iv_ref_table_size
= new_size
;
236 /* Checks whether REG is a well-behaved register. */
239 simple_reg_p (rtx reg
)
243 if (GET_CODE (reg
) == SUBREG
)
245 if (!subreg_lowpart_p (reg
))
247 reg
= SUBREG_REG (reg
);
254 if (HARD_REGISTER_NUM_P (r
))
257 if (GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
263 /* Clears the information about ivs stored in df. */
268 unsigned i
, n_defs
= DF_DEFS_TABLE_SIZE ();
271 check_iv_ref_table_size ();
272 for (i
= 0; i
< n_defs
; i
++)
274 iv
= iv_ref_table
[i
];
278 iv_ref_table
[i
] = NULL
;
286 /* Prepare the data for an induction variable analysis of a LOOP. */
289 iv_analysis_loop_init (struct loop
*loop
)
293 /* Clear the information from the analysis of the previous loop. */
296 df_set_flags (DF_EQ_NOTES
+ DF_DEFER_INSN_RESCAN
);
297 bivs
= new hash_table
<biv_entry_hasher
> (10);
303 /* Get rid of the ud chains before processing the rescans. Then add
305 df_remove_problem (df_chain
);
306 df_process_deferred_rescans ();
307 df_set_flags (DF_RD_PRUNE_DEAD_DEFS
);
308 df_chain_add_problem (DF_UD_CHAIN
);
309 df_note_add_problem ();
310 df_analyze_loop (loop
);
312 df_dump_region (dump_file
);
314 check_iv_ref_table_size ();
317 /* Finds the definition of REG that dominates loop latch and stores
318 it to DEF. Returns false if there is not a single definition
319 dominating the latch. If REG has no definition in loop, DEF
320 is set to NULL and true is returned. */
323 latch_dominating_def (rtx reg
, df_ref
*def
)
325 df_ref single_rd
= NULL
, adef
;
326 unsigned regno
= REGNO (reg
);
327 struct df_rd_bb_info
*bb_info
= DF_RD_BB_INFO (current_loop
->latch
);
329 for (adef
= DF_REG_DEF_CHAIN (regno
); adef
; adef
= DF_REF_NEXT_REG (adef
))
331 if (!bitmap_bit_p (df
->blocks_to_analyze
, DF_REF_BBNO (adef
))
332 || !bitmap_bit_p (&bb_info
->out
, DF_REF_ID (adef
)))
335 /* More than one reaching definition. */
339 if (!just_once_each_iteration_p (current_loop
, DF_REF_BB (adef
)))
349 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
351 static enum iv_grd_result
352 iv_get_reaching_def (rtx_insn
*insn
, rtx reg
, df_ref
*def
)
355 basic_block def_bb
, use_bb
;
360 if (!simple_reg_p (reg
))
362 if (GET_CODE (reg
) == SUBREG
)
363 reg
= SUBREG_REG (reg
);
364 gcc_assert (REG_P (reg
));
366 use
= df_find_use (insn
, reg
);
367 gcc_assert (use
!= NULL
);
369 if (!DF_REF_CHAIN (use
))
370 return GRD_INVARIANT
;
372 /* More than one reaching def. */
373 if (DF_REF_CHAIN (use
)->next
)
376 adef
= DF_REF_CHAIN (use
)->ref
;
378 /* We do not handle setting only part of the register. */
379 if (DF_REF_FLAGS (adef
) & DF_REF_READ_WRITE
)
382 def_insn
= DF_REF_INSN (adef
);
383 def_bb
= DF_REF_BB (adef
);
384 use_bb
= BLOCK_FOR_INSN (insn
);
386 if (use_bb
== def_bb
)
387 dom_p
= (DF_INSN_LUID (def_insn
) < DF_INSN_LUID (insn
));
389 dom_p
= dominated_by_p (CDI_DOMINATORS
, use_bb
, def_bb
);
394 return GRD_SINGLE_DOM
;
397 /* The definition does not dominate the use. This is still OK if
398 this may be a use of a biv, i.e. if the def_bb dominates loop
400 if (just_once_each_iteration_p (current_loop
, def_bb
))
401 return GRD_MAYBE_BIV
;
406 /* Sets IV to invariant CST in MODE. Always returns true (just for
407 consistency with other iv manipulation functions that may fail). */
410 iv_constant (struct rtx_iv
*iv
, rtx cst
, machine_mode mode
)
412 if (mode
== VOIDmode
)
413 mode
= GET_MODE (cst
);
417 iv
->step
= const0_rtx
;
418 iv
->first_special
= false;
419 iv
->extend
= IV_UNKNOWN_EXTEND
;
420 iv
->extend_mode
= iv
->mode
;
421 iv
->delta
= const0_rtx
;
422 iv
->mult
= const1_rtx
;
427 /* Evaluates application of subreg to MODE on IV. */
430 iv_subreg (struct rtx_iv
*iv
, machine_mode mode
)
432 /* If iv is invariant, just calculate the new value. */
433 if (iv
->step
== const0_rtx
434 && !iv
->first_special
)
436 rtx val
= get_iv_value (iv
, const0_rtx
);
437 val
= lowpart_subreg (mode
, val
,
438 iv
->extend
== IV_UNKNOWN_EXTEND
439 ? iv
->mode
: iv
->extend_mode
);
442 iv
->extend
= IV_UNKNOWN_EXTEND
;
443 iv
->mode
= iv
->extend_mode
= mode
;
444 iv
->delta
= const0_rtx
;
445 iv
->mult
= const1_rtx
;
449 if (iv
->extend_mode
== mode
)
452 if (GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (iv
->mode
))
455 iv
->extend
= IV_UNKNOWN_EXTEND
;
458 iv
->base
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
459 simplify_gen_binary (MULT
, iv
->extend_mode
,
460 iv
->base
, iv
->mult
));
461 iv
->step
= simplify_gen_binary (MULT
, iv
->extend_mode
, iv
->step
, iv
->mult
);
462 iv
->mult
= const1_rtx
;
463 iv
->delta
= const0_rtx
;
464 iv
->first_special
= false;
469 /* Evaluates application of EXTEND to MODE on IV. */
472 iv_extend (struct rtx_iv
*iv
, enum iv_extend_code extend
, machine_mode mode
)
474 /* If iv is invariant, just calculate the new value. */
475 if (iv
->step
== const0_rtx
476 && !iv
->first_special
)
478 rtx val
= get_iv_value (iv
, const0_rtx
);
479 if (iv
->extend_mode
!= iv
->mode
480 && iv
->extend
!= IV_UNKNOWN_EXTEND
481 && iv
->extend
!= extend
)
482 val
= lowpart_subreg (iv
->mode
, val
, iv
->extend_mode
);
483 val
= simplify_gen_unary (iv_extend_to_rtx_code (extend
), mode
,
486 ? iv
->extend_mode
: iv
->mode
);
488 iv
->extend
= IV_UNKNOWN_EXTEND
;
489 iv
->mode
= iv
->extend_mode
= mode
;
490 iv
->delta
= const0_rtx
;
491 iv
->mult
= const1_rtx
;
495 if (mode
!= iv
->extend_mode
)
498 if (iv
->extend
!= IV_UNKNOWN_EXTEND
499 && iv
->extend
!= extend
)
507 /* Evaluates negation of IV. */
510 iv_neg (struct rtx_iv
*iv
)
512 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
514 iv
->base
= simplify_gen_unary (NEG
, iv
->extend_mode
,
515 iv
->base
, iv
->extend_mode
);
516 iv
->step
= simplify_gen_unary (NEG
, iv
->extend_mode
,
517 iv
->step
, iv
->extend_mode
);
521 iv
->delta
= simplify_gen_unary (NEG
, iv
->extend_mode
,
522 iv
->delta
, iv
->extend_mode
);
523 iv
->mult
= simplify_gen_unary (NEG
, iv
->extend_mode
,
524 iv
->mult
, iv
->extend_mode
);
530 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
533 iv_add (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
, enum rtx_code op
)
538 /* Extend the constant to extend_mode of the other operand if necessary. */
539 if (iv0
->extend
== IV_UNKNOWN_EXTEND
540 && iv0
->mode
== iv0
->extend_mode
541 && iv0
->step
== const0_rtx
542 && GET_MODE_SIZE (iv0
->extend_mode
) < GET_MODE_SIZE (iv1
->extend_mode
))
544 iv0
->extend_mode
= iv1
->extend_mode
;
545 iv0
->base
= simplify_gen_unary (ZERO_EXTEND
, iv0
->extend_mode
,
546 iv0
->base
, iv0
->mode
);
548 if (iv1
->extend
== IV_UNKNOWN_EXTEND
549 && iv1
->mode
== iv1
->extend_mode
550 && iv1
->step
== const0_rtx
551 && GET_MODE_SIZE (iv1
->extend_mode
) < GET_MODE_SIZE (iv0
->extend_mode
))
553 iv1
->extend_mode
= iv0
->extend_mode
;
554 iv1
->base
= simplify_gen_unary (ZERO_EXTEND
, iv1
->extend_mode
,
555 iv1
->base
, iv1
->mode
);
558 mode
= iv0
->extend_mode
;
559 if (mode
!= iv1
->extend_mode
)
562 if (iv0
->extend
== IV_UNKNOWN_EXTEND
563 && iv1
->extend
== IV_UNKNOWN_EXTEND
)
565 if (iv0
->mode
!= iv1
->mode
)
568 iv0
->base
= simplify_gen_binary (op
, mode
, iv0
->base
, iv1
->base
);
569 iv0
->step
= simplify_gen_binary (op
, mode
, iv0
->step
, iv1
->step
);
574 /* Handle addition of constant. */
575 if (iv1
->extend
== IV_UNKNOWN_EXTEND
577 && iv1
->step
== const0_rtx
)
579 iv0
->delta
= simplify_gen_binary (op
, mode
, iv0
->delta
, iv1
->base
);
583 if (iv0
->extend
== IV_UNKNOWN_EXTEND
585 && iv0
->step
== const0_rtx
)
593 iv0
->delta
= simplify_gen_binary (PLUS
, mode
, iv0
->delta
, arg
);
600 /* Evaluates multiplication of IV by constant CST. */
603 iv_mult (struct rtx_iv
*iv
, rtx mby
)
605 machine_mode mode
= iv
->extend_mode
;
607 if (GET_MODE (mby
) != VOIDmode
608 && GET_MODE (mby
) != mode
)
611 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
613 iv
->base
= simplify_gen_binary (MULT
, mode
, iv
->base
, mby
);
614 iv
->step
= simplify_gen_binary (MULT
, mode
, iv
->step
, mby
);
618 iv
->delta
= simplify_gen_binary (MULT
, mode
, iv
->delta
, mby
);
619 iv
->mult
= simplify_gen_binary (MULT
, mode
, iv
->mult
, mby
);
625 /* Evaluates shift of IV by constant CST. */
628 iv_shift (struct rtx_iv
*iv
, rtx mby
)
630 machine_mode mode
= iv
->extend_mode
;
632 if (GET_MODE (mby
) != VOIDmode
633 && GET_MODE (mby
) != mode
)
636 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
638 iv
->base
= simplify_gen_binary (ASHIFT
, mode
, iv
->base
, mby
);
639 iv
->step
= simplify_gen_binary (ASHIFT
, mode
, iv
->step
, mby
);
643 iv
->delta
= simplify_gen_binary (ASHIFT
, mode
, iv
->delta
, mby
);
644 iv
->mult
= simplify_gen_binary (ASHIFT
, mode
, iv
->mult
, mby
);
650 /* The recursive part of get_biv_step. Gets the value of the single value
651 defined by DEF wrto initial value of REG inside loop, in shape described
655 get_biv_step_1 (df_ref def
, rtx reg
,
656 rtx
*inner_step
, machine_mode
*inner_mode
,
657 enum iv_extend_code
*extend
, machine_mode outer_mode
,
660 rtx set
, rhs
, op0
= NULL_RTX
, op1
= NULL_RTX
;
661 rtx next
, nextr
, tmp
;
663 rtx_insn
*insn
= DF_REF_INSN (def
);
665 enum iv_grd_result res
;
667 set
= single_set (insn
);
671 rhs
= find_reg_equal_equiv_note (insn
);
677 code
= GET_CODE (rhs
);
690 if (code
== PLUS
&& CONSTANT_P (op0
))
692 tmp
= op0
; op0
= op1
; op1
= tmp
;
695 if (!simple_reg_p (op0
)
696 || !CONSTANT_P (op1
))
699 if (GET_MODE (rhs
) != outer_mode
)
701 /* ppc64 uses expressions like
703 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
705 this is equivalent to
707 (set x':DI (plus:DI y:DI 1))
708 (set x:SI (subreg:SI (x':DI)). */
709 if (GET_CODE (op0
) != SUBREG
)
711 if (GET_MODE (SUBREG_REG (op0
)) != outer_mode
)
720 if (GET_MODE (rhs
) != outer_mode
)
724 if (!simple_reg_p (op0
))
734 if (GET_CODE (next
) == SUBREG
)
736 if (!subreg_lowpart_p (next
))
739 nextr
= SUBREG_REG (next
);
740 if (GET_MODE (nextr
) != outer_mode
)
746 res
= iv_get_reaching_def (insn
, nextr
, &next_def
);
748 if (res
== GRD_INVALID
|| res
== GRD_INVARIANT
)
751 if (res
== GRD_MAYBE_BIV
)
753 if (!rtx_equal_p (nextr
, reg
))
756 *inner_step
= const0_rtx
;
757 *extend
= IV_UNKNOWN_EXTEND
;
758 *inner_mode
= outer_mode
;
759 *outer_step
= const0_rtx
;
761 else if (!get_biv_step_1 (next_def
, reg
,
762 inner_step
, inner_mode
, extend
, outer_mode
,
766 if (GET_CODE (next
) == SUBREG
)
768 machine_mode amode
= GET_MODE (next
);
770 if (GET_MODE_SIZE (amode
) > GET_MODE_SIZE (*inner_mode
))
774 *inner_step
= simplify_gen_binary (PLUS
, outer_mode
,
775 *inner_step
, *outer_step
);
776 *outer_step
= const0_rtx
;
777 *extend
= IV_UNKNOWN_EXTEND
;
788 if (*inner_mode
== outer_mode
789 /* See comment in previous switch. */
790 || GET_MODE (rhs
) != outer_mode
)
791 *inner_step
= simplify_gen_binary (code
, outer_mode
,
794 *outer_step
= simplify_gen_binary (code
, outer_mode
,
800 gcc_assert (GET_MODE (op0
) == *inner_mode
801 && *extend
== IV_UNKNOWN_EXTEND
802 && *outer_step
== const0_rtx
);
804 *extend
= (code
== SIGN_EXTEND
) ? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
814 /* Gets the operation on register REG inside loop, in shape
816 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
818 If the operation cannot be described in this shape, return false.
819 LAST_DEF is the definition of REG that dominates loop latch. */
822 get_biv_step (df_ref last_def
, rtx reg
, rtx
*inner_step
,
823 machine_mode
*inner_mode
, enum iv_extend_code
*extend
,
824 machine_mode
*outer_mode
, rtx
*outer_step
)
826 *outer_mode
= GET_MODE (reg
);
828 if (!get_biv_step_1 (last_def
, reg
,
829 inner_step
, inner_mode
, extend
, *outer_mode
,
833 gcc_assert ((*inner_mode
== *outer_mode
) != (*extend
!= IV_UNKNOWN_EXTEND
));
834 gcc_assert (*inner_mode
!= *outer_mode
|| *outer_step
== const0_rtx
);
839 /* Records information that DEF is induction variable IV. */
842 record_iv (df_ref def
, struct rtx_iv
*iv
)
844 struct rtx_iv
*recorded_iv
= XNEW (struct rtx_iv
);
847 check_iv_ref_table_size ();
848 DF_REF_IV_SET (def
, recorded_iv
);
851 /* If DEF was already analyzed for bivness, store the description of the biv to
852 IV and return true. Otherwise return false. */
855 analyzed_for_bivness_p (rtx def
, struct rtx_iv
*iv
)
857 struct biv_entry
*biv
= bivs
->find_with_hash (def
, REGNO (def
));
867 record_biv (rtx def
, struct rtx_iv
*iv
)
869 struct biv_entry
*biv
= XNEW (struct biv_entry
);
870 biv_entry
**slot
= bivs
->find_slot_with_hash (def
, REGNO (def
), INSERT
);
872 biv
->regno
= REGNO (def
);
878 /* Determines whether DEF is a biv and if so, stores its description
882 iv_analyze_biv (rtx def
, struct rtx_iv
*iv
)
884 rtx inner_step
, outer_step
;
885 machine_mode inner_mode
, outer_mode
;
886 enum iv_extend_code extend
;
891 fprintf (dump_file
, "Analyzing ");
892 print_rtl (dump_file
, def
);
893 fprintf (dump_file
, " for bivness.\n");
898 if (!CONSTANT_P (def
))
901 return iv_constant (iv
, def
, VOIDmode
);
904 if (!latch_dominating_def (def
, &last_def
))
907 fprintf (dump_file
, " not simple.\n");
912 return iv_constant (iv
, def
, VOIDmode
);
914 if (analyzed_for_bivness_p (def
, iv
))
917 fprintf (dump_file
, " already analysed.\n");
918 return iv
->base
!= NULL_RTX
;
921 if (!get_biv_step (last_def
, def
, &inner_step
, &inner_mode
, &extend
,
922 &outer_mode
, &outer_step
))
928 /* Loop transforms base to es (base + inner_step) + outer_step,
929 where es means extend of subreg between inner_mode and outer_mode.
930 The corresponding induction variable is
932 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
934 iv
->base
= simplify_gen_binary (MINUS
, outer_mode
, def
, outer_step
);
935 iv
->step
= simplify_gen_binary (PLUS
, outer_mode
, inner_step
, outer_step
);
936 iv
->mode
= inner_mode
;
937 iv
->extend_mode
= outer_mode
;
939 iv
->mult
= const1_rtx
;
940 iv
->delta
= outer_step
;
941 iv
->first_special
= inner_mode
!= outer_mode
;
946 fprintf (dump_file
, " ");
947 dump_iv_info (dump_file
, iv
);
948 fprintf (dump_file
, "\n");
951 record_biv (def
, iv
);
952 return iv
->base
!= NULL_RTX
;
955 /* Analyzes expression RHS used at INSN and stores the result to *IV.
956 The mode of the induction variable is MODE. */
959 iv_analyze_expr (rtx_insn
*insn
, rtx rhs
, machine_mode mode
,
962 rtx mby
= NULL_RTX
, tmp
;
963 rtx op0
= NULL_RTX
, op1
= NULL_RTX
;
964 struct rtx_iv iv0
, iv1
;
965 enum rtx_code code
= GET_CODE (rhs
);
966 machine_mode omode
= mode
;
972 gcc_assert (GET_MODE (rhs
) == mode
|| GET_MODE (rhs
) == VOIDmode
);
978 if (!iv_analyze_op (insn
, rhs
, iv
))
981 if (iv
->mode
== VOIDmode
)
984 iv
->extend_mode
= mode
;
1000 omode
= GET_MODE (op0
);
1005 op0
= XEXP (rhs
, 0);
1006 op1
= XEXP (rhs
, 1);
1010 op0
= XEXP (rhs
, 0);
1011 mby
= XEXP (rhs
, 1);
1012 if (!CONSTANT_P (mby
))
1018 if (!CONSTANT_P (mby
))
1023 op0
= XEXP (rhs
, 0);
1024 mby
= XEXP (rhs
, 1);
1025 if (!CONSTANT_P (mby
))
1034 && !iv_analyze_expr (insn
, op0
, omode
, &iv0
))
1038 && !iv_analyze_expr (insn
, op1
, omode
, &iv1
))
1044 if (!iv_extend (&iv0
, IV_SIGN_EXTEND
, mode
))
1049 if (!iv_extend (&iv0
, IV_ZERO_EXTEND
, mode
))
1060 if (!iv_add (&iv0
, &iv1
, code
))
1065 if (!iv_mult (&iv0
, mby
))
1070 if (!iv_shift (&iv0
, mby
))
1079 return iv
->base
!= NULL_RTX
;
1082 /* Analyzes iv DEF and stores the result to *IV. */
1085 iv_analyze_def (df_ref def
, struct rtx_iv
*iv
)
1087 rtx_insn
*insn
= DF_REF_INSN (def
);
1088 rtx reg
= DF_REF_REG (def
);
1093 fprintf (dump_file
, "Analyzing def of ");
1094 print_rtl (dump_file
, reg
);
1095 fprintf (dump_file
, " in insn ");
1096 print_rtl_single (dump_file
, insn
);
1099 check_iv_ref_table_size ();
1100 if (DF_REF_IV (def
))
1103 fprintf (dump_file
, " already analysed.\n");
1104 *iv
= *DF_REF_IV (def
);
1105 return iv
->base
!= NULL_RTX
;
1108 iv
->mode
= VOIDmode
;
1109 iv
->base
= NULL_RTX
;
1110 iv
->step
= NULL_RTX
;
1115 set
= single_set (insn
);
1119 if (!REG_P (SET_DEST (set
)))
1122 gcc_assert (SET_DEST (set
) == reg
);
1123 rhs
= find_reg_equal_equiv_note (insn
);
1125 rhs
= XEXP (rhs
, 0);
1127 rhs
= SET_SRC (set
);
1129 iv_analyze_expr (insn
, rhs
, GET_MODE (reg
), iv
);
1130 record_iv (def
, iv
);
1134 print_rtl (dump_file
, reg
);
1135 fprintf (dump_file
, " in insn ");
1136 print_rtl_single (dump_file
, insn
);
1137 fprintf (dump_file
, " is ");
1138 dump_iv_info (dump_file
, iv
);
1139 fprintf (dump_file
, "\n");
1142 return iv
->base
!= NULL_RTX
;
1145 /* Analyzes operand OP of INSN and stores the result to *IV. */
1148 iv_analyze_op (rtx_insn
*insn
, rtx op
, struct rtx_iv
*iv
)
1151 enum iv_grd_result res
;
1155 fprintf (dump_file
, "Analyzing operand ");
1156 print_rtl (dump_file
, op
);
1157 fprintf (dump_file
, " of insn ");
1158 print_rtl_single (dump_file
, insn
);
1161 if (function_invariant_p (op
))
1162 res
= GRD_INVARIANT
;
1163 else if (GET_CODE (op
) == SUBREG
)
1165 if (!subreg_lowpart_p (op
))
1168 if (!iv_analyze_op (insn
, SUBREG_REG (op
), iv
))
1171 return iv_subreg (iv
, GET_MODE (op
));
1175 res
= iv_get_reaching_def (insn
, op
, &def
);
1176 if (res
== GRD_INVALID
)
1179 fprintf (dump_file
, " not simple.\n");
1184 if (res
== GRD_INVARIANT
)
1186 iv_constant (iv
, op
, VOIDmode
);
1190 fprintf (dump_file
, " ");
1191 dump_iv_info (dump_file
, iv
);
1192 fprintf (dump_file
, "\n");
1197 if (res
== GRD_MAYBE_BIV
)
1198 return iv_analyze_biv (op
, iv
);
1200 return iv_analyze_def (def
, iv
);
1203 /* Analyzes value VAL at INSN and stores the result to *IV. */
1206 iv_analyze (rtx_insn
*insn
, rtx val
, struct rtx_iv
*iv
)
1210 /* We must find the insn in that val is used, so that we get to UD chains.
1211 Since the function is sometimes called on result of get_condition,
1212 this does not necessarily have to be directly INSN; scan also the
1214 if (simple_reg_p (val
))
1216 if (GET_CODE (val
) == SUBREG
)
1217 reg
= SUBREG_REG (val
);
1221 while (!df_find_use (insn
, reg
))
1222 insn
= NEXT_INSN (insn
);
1225 return iv_analyze_op (insn
, val
, iv
);
1228 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1231 iv_analyze_result (rtx_insn
*insn
, rtx def
, struct rtx_iv
*iv
)
1235 adef
= df_find_def (insn
, def
);
1239 return iv_analyze_def (adef
, iv
);
1242 /* Checks whether definition of register REG in INSN is a basic induction
1243 variable. IV analysis must have been initialized (via a call to
1244 iv_analysis_loop_init) for this function to produce a result. */
1247 biv_p (rtx_insn
*insn
, rtx reg
)
1250 df_ref def
, last_def
;
1252 if (!simple_reg_p (reg
))
1255 def
= df_find_def (insn
, reg
);
1256 gcc_assert (def
!= NULL
);
1257 if (!latch_dominating_def (reg
, &last_def
))
1259 if (last_def
!= def
)
1262 if (!iv_analyze_biv (reg
, &iv
))
1265 return iv
.step
!= const0_rtx
;
1268 /* Calculates value of IV at ITERATION-th iteration. */
1271 get_iv_value (struct rtx_iv
*iv
, rtx iteration
)
1275 /* We would need to generate some if_then_else patterns, and so far
1276 it is not needed anywhere. */
1277 gcc_assert (!iv
->first_special
);
1279 if (iv
->step
!= const0_rtx
&& iteration
!= const0_rtx
)
1280 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->base
,
1281 simplify_gen_binary (MULT
, iv
->extend_mode
,
1282 iv
->step
, iteration
));
1286 if (iv
->extend_mode
== iv
->mode
)
1289 val
= lowpart_subreg (iv
->mode
, val
, iv
->extend_mode
);
1291 if (iv
->extend
== IV_UNKNOWN_EXTEND
)
1294 val
= simplify_gen_unary (iv_extend_to_rtx_code (iv
->extend
),
1295 iv
->extend_mode
, val
, iv
->mode
);
1296 val
= simplify_gen_binary (PLUS
, iv
->extend_mode
, iv
->delta
,
1297 simplify_gen_binary (MULT
, iv
->extend_mode
,
1303 /* Free the data for an induction variable analysis. */
1306 iv_analysis_done (void)
1312 df_finish_pass (true);
1315 free (iv_ref_table
);
1316 iv_ref_table
= NULL
;
1317 iv_ref_table_size
= 0;
1321 /* Computes inverse to X modulo (1 << MOD). */
1324 inverse (uint64_t x
, int mod
)
1327 ((uint64_t) 1 << (mod
- 1) << 1) - 1;
1331 for (i
= 0; i
< mod
- 1; i
++)
1333 rslt
= (rslt
* x
) & mask
;
1340 /* Checks whether any register in X is in set ALT. */
1343 altered_reg_used (const_rtx x
, bitmap alt
)
1345 subrtx_iterator::array_type array
;
1346 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
1348 const_rtx x
= *iter
;
1349 if (REG_P (x
) && REGNO_REG_SET_P (alt
, REGNO (x
)))
1355 /* Marks registers altered by EXPR in set ALT. */
1358 mark_altered (rtx expr
, const_rtx by ATTRIBUTE_UNUSED
, void *alt
)
1360 if (GET_CODE (expr
) == SUBREG
)
1361 expr
= SUBREG_REG (expr
);
1365 SET_REGNO_REG_SET ((bitmap
) alt
, REGNO (expr
));
1368 /* Checks whether RHS is simple enough to process. */
1371 simple_rhs_p (rtx rhs
)
1375 if (function_invariant_p (rhs
)
1376 || (REG_P (rhs
) && !HARD_REGISTER_P (rhs
)))
1379 switch (GET_CODE (rhs
))
1384 op0
= XEXP (rhs
, 0);
1385 op1
= XEXP (rhs
, 1);
1386 /* Allow reg OP const and reg OP reg. */
1387 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
))
1388 && !function_invariant_p (op0
))
1390 if (!(REG_P (op1
) && !HARD_REGISTER_P (op1
))
1391 && !function_invariant_p (op1
))
1400 op0
= XEXP (rhs
, 0);
1401 op1
= XEXP (rhs
, 1);
1402 /* Allow reg OP const. */
1403 if (!(REG_P (op0
) && !HARD_REGISTER_P (op0
)))
1405 if (!function_invariant_p (op1
))
1415 /* If REGNO has a single definition, return its known value, otherwise return
1419 find_single_def_src (unsigned int regno
)
1427 adef
= DF_REG_DEF_CHAIN (regno
);
1428 if (adef
== NULL
|| DF_REF_NEXT_REG (adef
) != NULL
1429 || DF_REF_IS_ARTIFICIAL (adef
))
1432 set
= single_set (DF_REF_INSN (adef
));
1433 if (set
== NULL
|| !REG_P (SET_DEST (set
))
1434 || REGNO (SET_DEST (set
)) != regno
)
1437 note
= find_reg_equal_equiv_note (DF_REF_INSN (adef
));
1439 if (note
&& function_invariant_p (XEXP (note
, 0)))
1441 src
= XEXP (note
, 0);
1444 src
= SET_SRC (set
);
1448 regno
= REGNO (src
);
1453 if (!function_invariant_p (src
))
1459 /* If any registers in *EXPR that have a single definition, try to replace
1460 them with the known-equivalent values. */
1463 replace_single_def_regs (rtx
*expr
)
1465 subrtx_var_iterator::array_type array
;
1467 FOR_EACH_SUBRTX_VAR (iter
, array
, *expr
, NONCONST
)
1471 if (rtx new_x
= find_single_def_src (REGNO (x
)))
1473 *expr
= simplify_replace_rtx (*expr
, x
, new_x
);
1479 /* A subroutine of simplify_using_initial_values, this function examines INSN
1480 to see if it contains a suitable set that we can use to make a replacement.
1481 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1482 the set; return false otherwise. */
1485 suitable_set_for_replacement (rtx_insn
*insn
, rtx
*dest
, rtx
*src
)
1487 rtx set
= single_set (insn
);
1488 rtx lhs
= NULL_RTX
, rhs
;
1493 lhs
= SET_DEST (set
);
1497 rhs
= find_reg_equal_equiv_note (insn
);
1499 rhs
= XEXP (rhs
, 0);
1501 rhs
= SET_SRC (set
);
1503 if (!simple_rhs_p (rhs
))
1511 /* Using the data returned by suitable_set_for_replacement, replace DEST
1512 with SRC in *EXPR and return the new expression. Also call
1513 replace_single_def_regs if the replacement changed something. */
1515 replace_in_expr (rtx
*expr
, rtx dest
, rtx src
)
1518 *expr
= simplify_replace_rtx (*expr
, dest
, src
);
1521 replace_single_def_regs (expr
);
1524 /* Checks whether A implies B. */
1527 implies_p (rtx a
, rtx b
)
1529 rtx op0
, op1
, opb0
, opb1
, r
;
1532 if (rtx_equal_p (a
, b
))
1535 if (GET_CODE (a
) == EQ
)
1541 || (GET_CODE (op0
) == SUBREG
1542 && REG_P (SUBREG_REG (op0
))))
1544 r
= simplify_replace_rtx (b
, op0
, op1
);
1545 if (r
== const_true_rtx
)
1550 || (GET_CODE (op1
) == SUBREG
1551 && REG_P (SUBREG_REG (op1
))))
1553 r
= simplify_replace_rtx (b
, op1
, op0
);
1554 if (r
== const_true_rtx
)
1559 if (b
== const_true_rtx
)
1562 if ((GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMM_COMPARE
1563 && GET_RTX_CLASS (GET_CODE (a
)) != RTX_COMPARE
)
1564 || (GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMM_COMPARE
1565 && GET_RTX_CLASS (GET_CODE (b
)) != RTX_COMPARE
))
1573 mode
= GET_MODE (op0
);
1574 if (mode
!= GET_MODE (opb0
))
1576 else if (mode
== VOIDmode
)
1578 mode
= GET_MODE (op1
);
1579 if (mode
!= GET_MODE (opb1
))
1583 /* A < B implies A + 1 <= B. */
1584 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == LT
)
1585 && (GET_CODE (b
) == GE
|| GET_CODE (b
) == LE
))
1588 if (GET_CODE (a
) == GT
)
1595 if (GET_CODE (b
) == GE
)
1602 if (SCALAR_INT_MODE_P (mode
)
1603 && rtx_equal_p (op1
, opb1
)
1604 && simplify_gen_binary (MINUS
, mode
, opb0
, op0
) == const1_rtx
)
1609 /* A < B or A > B imply A != B. TODO: Likewise
1610 A + n < B implies A != B + n if neither wraps. */
1611 if (GET_CODE (b
) == NE
1612 && (GET_CODE (a
) == GT
|| GET_CODE (a
) == GTU
1613 || GET_CODE (a
) == LT
|| GET_CODE (a
) == LTU
))
1615 if (rtx_equal_p (op0
, opb0
)
1616 && rtx_equal_p (op1
, opb1
))
1620 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1621 if (GET_CODE (a
) == NE
1622 && op1
== const0_rtx
)
1624 if ((GET_CODE (b
) == GTU
1625 && opb1
== const0_rtx
)
1626 || (GET_CODE (b
) == GEU
1627 && opb1
== const1_rtx
))
1628 return rtx_equal_p (op0
, opb0
);
1631 /* A != N is equivalent to A - (N + 1) <u -1. */
1632 if (GET_CODE (a
) == NE
1633 && CONST_INT_P (op1
)
1634 && GET_CODE (b
) == LTU
1635 && opb1
== constm1_rtx
1636 && GET_CODE (opb0
) == PLUS
1637 && CONST_INT_P (XEXP (opb0
, 1))
1638 /* Avoid overflows. */
1639 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1640 != ((unsigned HOST_WIDE_INT
)1
1641 << (HOST_BITS_PER_WIDE_INT
- 1)) - 1)
1642 && INTVAL (XEXP (opb0
, 1)) + 1 == -INTVAL (op1
))
1643 return rtx_equal_p (op0
, XEXP (opb0
, 0));
1645 /* Likewise, A != N implies A - N > 0. */
1646 if (GET_CODE (a
) == NE
1647 && CONST_INT_P (op1
))
1649 if (GET_CODE (b
) == GTU
1650 && GET_CODE (opb0
) == PLUS
1651 && opb1
== const0_rtx
1652 && CONST_INT_P (XEXP (opb0
, 1))
1653 /* Avoid overflows. */
1654 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1655 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1656 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1657 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1658 if (GET_CODE (b
) == GEU
1659 && GET_CODE (opb0
) == PLUS
1660 && opb1
== const1_rtx
1661 && CONST_INT_P (XEXP (opb0
, 1))
1662 /* Avoid overflows. */
1663 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (opb0
, 1))
1664 != ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
1665 && rtx_equal_p (XEXP (opb0
, 0), op0
))
1666 return INTVAL (op1
) == -INTVAL (XEXP (opb0
, 1));
1669 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1670 if ((GET_CODE (a
) == GT
|| GET_CODE (a
) == GE
)
1671 && CONST_INT_P (op1
)
1672 && ((GET_CODE (a
) == GT
&& op1
== constm1_rtx
)
1673 || INTVAL (op1
) >= 0)
1674 && GET_CODE (b
) == LTU
1675 && CONST_INT_P (opb1
)
1676 && rtx_equal_p (op0
, opb0
))
1677 return INTVAL (opb1
) < 0;
1682 /* Canonicalizes COND so that
1684 (1) Ensure that operands are ordered according to
1685 swap_commutative_operands_p.
1686 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1687 for GE, GEU, and LEU. */
1690 canon_condition (rtx cond
)
1697 code
= GET_CODE (cond
);
1698 op0
= XEXP (cond
, 0);
1699 op1
= XEXP (cond
, 1);
1701 if (swap_commutative_operands_p (op0
, op1
))
1703 code
= swap_condition (code
);
1709 mode
= GET_MODE (op0
);
1710 if (mode
== VOIDmode
)
1711 mode
= GET_MODE (op1
);
1712 gcc_assert (mode
!= VOIDmode
);
1714 if (CONST_INT_P (op1
)
1715 && GET_MODE_CLASS (mode
) != MODE_CC
1716 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
1718 HOST_WIDE_INT const_val
= INTVAL (op1
);
1719 unsigned HOST_WIDE_INT uconst_val
= const_val
;
1720 unsigned HOST_WIDE_INT max_val
1721 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (mode
);
1726 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
1727 code
= LT
, op1
= gen_int_mode (const_val
+ 1, GET_MODE (op0
));
1730 /* When cross-compiling, const_val might be sign-extended from
1731 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1733 if ((HOST_WIDE_INT
) (const_val
& max_val
)
1734 != (((HOST_WIDE_INT
) 1
1735 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
1736 code
= GT
, op1
= gen_int_mode (const_val
- 1, mode
);
1740 if (uconst_val
< max_val
)
1741 code
= LTU
, op1
= gen_int_mode (uconst_val
+ 1, mode
);
1745 if (uconst_val
!= 0)
1746 code
= GTU
, op1
= gen_int_mode (uconst_val
- 1, mode
);
1754 if (op0
!= XEXP (cond
, 0)
1755 || op1
!= XEXP (cond
, 1)
1756 || code
!= GET_CODE (cond
)
1757 || GET_MODE (cond
) != SImode
)
1758 cond
= gen_rtx_fmt_ee (code
, SImode
, op0
, op1
);
1763 /* Reverses CONDition; returns NULL if we cannot. */
1766 reversed_condition (rtx cond
)
1768 enum rtx_code reversed
;
1769 reversed
= reversed_comparison_code (cond
, NULL
);
1770 if (reversed
== UNKNOWN
)
1773 return gen_rtx_fmt_ee (reversed
,
1774 GET_MODE (cond
), XEXP (cond
, 0),
1778 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1779 set of altered regs. */
1782 simplify_using_condition (rtx cond
, rtx
*expr
, regset altered
)
1784 rtx rev
, reve
, exp
= *expr
;
1786 /* If some register gets altered later, we do not really speak about its
1787 value at the time of comparison. */
1788 if (altered
&& altered_reg_used (cond
, altered
))
1791 if (GET_CODE (cond
) == EQ
1792 && REG_P (XEXP (cond
, 0)) && CONSTANT_P (XEXP (cond
, 1)))
1794 *expr
= simplify_replace_rtx (*expr
, XEXP (cond
, 0), XEXP (cond
, 1));
1798 if (!COMPARISON_P (exp
))
1801 rev
= reversed_condition (cond
);
1802 reve
= reversed_condition (exp
);
1804 cond
= canon_condition (cond
);
1805 exp
= canon_condition (exp
);
1807 rev
= canon_condition (rev
);
1809 reve
= canon_condition (reve
);
1811 if (rtx_equal_p (exp
, cond
))
1813 *expr
= const_true_rtx
;
1817 if (rev
&& rtx_equal_p (exp
, rev
))
1823 if (implies_p (cond
, exp
))
1825 *expr
= const_true_rtx
;
1829 if (reve
&& implies_p (cond
, reve
))
1835 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1837 if (rev
&& implies_p (exp
, rev
))
1843 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1844 if (rev
&& reve
&& implies_p (reve
, rev
))
1846 *expr
= const_true_rtx
;
1850 /* We would like to have some other tests here. TODO. */
1855 /* Use relationship between A and *B to eventually eliminate *B.
1856 OP is the operation we consider. */
1859 eliminate_implied_condition (enum rtx_code op
, rtx a
, rtx
*b
)
1864 /* If A implies *B, we may replace *B by true. */
1865 if (implies_p (a
, *b
))
1866 *b
= const_true_rtx
;
1870 /* If *B implies A, we may replace *B by false. */
1871 if (implies_p (*b
, a
))
1880 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1881 operation we consider. */
1884 eliminate_implied_conditions (enum rtx_code op
, rtx
*head
, rtx tail
)
1888 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1889 eliminate_implied_condition (op
, *head
, &XEXP (elt
, 0));
1890 for (elt
= tail
; elt
; elt
= XEXP (elt
, 1))
1891 eliminate_implied_condition (op
, XEXP (elt
, 0), head
);
1894 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1895 is a list, its elements are assumed to be combined using OP. */
1898 simplify_using_initial_values (struct loop
*loop
, enum rtx_code op
, rtx
*expr
)
1900 bool expression_valid
;
1901 rtx head
, tail
, last_valid_expr
;
1902 rtx_expr_list
*cond_list
;
1905 regset altered
, this_altered
;
1911 if (CONSTANT_P (*expr
))
1914 if (GET_CODE (*expr
) == EXPR_LIST
)
1916 head
= XEXP (*expr
, 0);
1917 tail
= XEXP (*expr
, 1);
1919 eliminate_implied_conditions (op
, &head
, tail
);
1924 neutral
= const_true_rtx
;
1929 neutral
= const0_rtx
;
1930 aggr
= const_true_rtx
;
1937 simplify_using_initial_values (loop
, UNKNOWN
, &head
);
1940 XEXP (*expr
, 0) = aggr
;
1941 XEXP (*expr
, 1) = NULL_RTX
;
1944 else if (head
== neutral
)
1947 simplify_using_initial_values (loop
, op
, expr
);
1950 simplify_using_initial_values (loop
, op
, &tail
);
1952 if (tail
&& XEXP (tail
, 0) == aggr
)
1958 XEXP (*expr
, 0) = head
;
1959 XEXP (*expr
, 1) = tail
;
1963 gcc_assert (op
== UNKNOWN
);
1965 replace_single_def_regs (expr
);
1966 if (CONSTANT_P (*expr
))
1969 e
= loop_preheader_edge (loop
);
1970 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1973 altered
= ALLOC_REG_SET (®_obstack
);
1974 this_altered
= ALLOC_REG_SET (®_obstack
);
1976 expression_valid
= true;
1977 last_valid_expr
= *expr
;
1981 insn
= BB_END (e
->src
);
1982 if (any_condjump_p (insn
))
1984 rtx cond
= get_condition (BB_END (e
->src
), NULL
, false, true);
1986 if (cond
&& (e
->flags
& EDGE_FALLTHRU
))
1987 cond
= reversed_condition (cond
);
1991 simplify_using_condition (cond
, expr
, altered
);
1995 if (CONSTANT_P (*expr
))
1997 for (note
= cond_list
; note
; note
= XEXP (note
, 1))
1999 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
2000 if (CONSTANT_P (*expr
))
2004 cond_list
= alloc_EXPR_LIST (0, cond
, cond_list
);
2008 FOR_BB_INSNS_REVERSE (e
->src
, insn
)
2016 CLEAR_REG_SET (this_altered
);
2017 note_stores (PATTERN (insn
), mark_altered
, this_altered
);
2020 /* Kill all call clobbered registers. */
2022 hard_reg_set_iterator hrsi
;
2023 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
,
2025 SET_REGNO_REG_SET (this_altered
, i
);
2028 if (suitable_set_for_replacement (insn
, &dest
, &src
))
2030 rtx_expr_list
**pnote
, **pnote_next
;
2032 replace_in_expr (expr
, dest
, src
);
2033 if (CONSTANT_P (*expr
))
2036 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
2039 rtx old_cond
= XEXP (note
, 0);
2041 pnote_next
= (rtx_expr_list
**)&XEXP (note
, 1);
2042 replace_in_expr (&XEXP (note
, 0), dest
, src
);
2044 /* We can no longer use a condition that has been simplified
2045 to a constant, and simplify_using_condition will abort if
2047 if (CONSTANT_P (XEXP (note
, 0)))
2049 *pnote
= *pnote_next
;
2051 free_EXPR_LIST_node (note
);
2053 /* Retry simplifications with this condition if either the
2054 expression or the condition changed. */
2055 else if (old_cond
!= XEXP (note
, 0) || old
!= *expr
)
2056 simplify_using_condition (XEXP (note
, 0), expr
, altered
);
2061 rtx_expr_list
**pnote
, **pnote_next
;
2063 /* If we did not use this insn to make a replacement, any overlap
2064 between stores in this insn and our expression will cause the
2065 expression to become invalid. */
2066 if (altered_reg_used (*expr
, this_altered
))
2069 /* Likewise for the conditions. */
2070 for (pnote
= &cond_list
; *pnote
; pnote
= pnote_next
)
2073 rtx old_cond
= XEXP (note
, 0);
2075 pnote_next
= (rtx_expr_list
**)&XEXP (note
, 1);
2076 if (altered_reg_used (old_cond
, this_altered
))
2078 *pnote
= *pnote_next
;
2080 free_EXPR_LIST_node (note
);
2085 if (CONSTANT_P (*expr
))
2088 IOR_REG_SET (altered
, this_altered
);
2090 /* If the expression now contains regs that have been altered, we
2091 can't return it to the caller. However, it is still valid for
2092 further simplification, so keep searching to see if we can
2093 eventually turn it into a constant. */
2094 if (altered_reg_used (*expr
, altered
))
2095 expression_valid
= false;
2096 if (expression_valid
)
2097 last_valid_expr
= *expr
;
2100 if (!single_pred_p (e
->src
)
2101 || single_pred (e
->src
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2103 e
= single_pred_edge (e
->src
);
2107 free_EXPR_LIST_list (&cond_list
);
2108 if (!CONSTANT_P (*expr
))
2109 *expr
= last_valid_expr
;
2110 FREE_REG_SET (altered
);
2111 FREE_REG_SET (this_altered
);
2114 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2115 that IV occurs as left operands of comparison COND and its signedness
2116 is SIGNED_P to DESC. */
2119 shorten_into_mode (struct rtx_iv
*iv
, machine_mode mode
,
2120 enum rtx_code cond
, bool signed_p
, struct niter_desc
*desc
)
2122 rtx mmin
, mmax
, cond_over
, cond_under
;
2124 get_mode_bounds (mode
, signed_p
, iv
->extend_mode
, &mmin
, &mmax
);
2125 cond_under
= simplify_gen_relational (LT
, SImode
, iv
->extend_mode
,
2127 cond_over
= simplify_gen_relational (GT
, SImode
, iv
->extend_mode
,
2136 if (cond_under
!= const0_rtx
)
2138 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2139 if (cond_over
!= const0_rtx
)
2140 desc
->noloop_assumptions
=
2141 alloc_EXPR_LIST (0, cond_over
, desc
->noloop_assumptions
);
2148 if (cond_over
!= const0_rtx
)
2150 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2151 if (cond_under
!= const0_rtx
)
2152 desc
->noloop_assumptions
=
2153 alloc_EXPR_LIST (0, cond_under
, desc
->noloop_assumptions
);
2157 if (cond_over
!= const0_rtx
)
2159 alloc_EXPR_LIST (0, cond_over
, desc
->infinite
);
2160 if (cond_under
!= const0_rtx
)
2162 alloc_EXPR_LIST (0, cond_under
, desc
->infinite
);
2170 iv
->extend
= signed_p
? IV_SIGN_EXTEND
: IV_ZERO_EXTEND
;
2173 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2174 subregs of the same mode if possible (sometimes it is necessary to add
2175 some assumptions to DESC). */
2178 canonicalize_iv_subregs (struct rtx_iv
*iv0
, struct rtx_iv
*iv1
,
2179 enum rtx_code cond
, struct niter_desc
*desc
)
2181 machine_mode comp_mode
;
2184 /* If the ivs behave specially in the first iteration, or are
2185 added/multiplied after extending, we ignore them. */
2186 if (iv0
->first_special
|| iv0
->mult
!= const1_rtx
|| iv0
->delta
!= const0_rtx
)
2188 if (iv1
->first_special
|| iv1
->mult
!= const1_rtx
|| iv1
->delta
!= const0_rtx
)
2191 /* If there is some extend, it must match signedness of the comparison. */
2196 if (iv0
->extend
== IV_ZERO_EXTEND
2197 || iv1
->extend
== IV_ZERO_EXTEND
)
2204 if (iv0
->extend
== IV_SIGN_EXTEND
2205 || iv1
->extend
== IV_SIGN_EXTEND
)
2211 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
2212 && iv1
->extend
!= IV_UNKNOWN_EXTEND
2213 && iv0
->extend
!= iv1
->extend
)
2217 if (iv0
->extend
!= IV_UNKNOWN_EXTEND
)
2218 signed_p
= iv0
->extend
== IV_SIGN_EXTEND
;
2219 if (iv1
->extend
!= IV_UNKNOWN_EXTEND
)
2220 signed_p
= iv1
->extend
== IV_SIGN_EXTEND
;
2227 /* Values of both variables should be computed in the same mode. These
2228 might indeed be different, if we have comparison like
2230 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2232 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2233 in different modes. This does not seem impossible to handle, but
2234 it hardly ever occurs in practice.
2236 The only exception is the case when one of operands is invariant.
2237 For example pentium 3 generates comparisons like
2238 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2239 definitely do not want this prevent the optimization. */
2240 comp_mode
= iv0
->extend_mode
;
2241 if (GET_MODE_BITSIZE (comp_mode
) < GET_MODE_BITSIZE (iv1
->extend_mode
))
2242 comp_mode
= iv1
->extend_mode
;
2244 if (iv0
->extend_mode
!= comp_mode
)
2246 if (iv0
->mode
!= iv0
->extend_mode
2247 || iv0
->step
!= const0_rtx
)
2250 iv0
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2251 comp_mode
, iv0
->base
, iv0
->mode
);
2252 iv0
->extend_mode
= comp_mode
;
2255 if (iv1
->extend_mode
!= comp_mode
)
2257 if (iv1
->mode
!= iv1
->extend_mode
2258 || iv1
->step
!= const0_rtx
)
2261 iv1
->base
= simplify_gen_unary (signed_p
? SIGN_EXTEND
: ZERO_EXTEND
,
2262 comp_mode
, iv1
->base
, iv1
->mode
);
2263 iv1
->extend_mode
= comp_mode
;
2266 /* Check that both ivs belong to a range of a single mode. If one of the
2267 operands is an invariant, we may need to shorten it into the common
2269 if (iv0
->mode
== iv0
->extend_mode
2270 && iv0
->step
== const0_rtx
2271 && iv0
->mode
!= iv1
->mode
)
2272 shorten_into_mode (iv0
, iv1
->mode
, cond
, signed_p
, desc
);
2274 if (iv1
->mode
== iv1
->extend_mode
2275 && iv1
->step
== const0_rtx
2276 && iv0
->mode
!= iv1
->mode
)
2277 shorten_into_mode (iv1
, iv0
->mode
, swap_condition (cond
), signed_p
, desc
);
2279 if (iv0
->mode
!= iv1
->mode
)
2282 desc
->mode
= iv0
->mode
;
2283 desc
->signed_p
= signed_p
;
2288 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2289 result. This function is called from iv_number_of_iterations with
2290 a number of fields in DESC already filled in. OLD_NITER is the original
2291 expression for the number of iterations, before we tried to simplify it. */
2294 determine_max_iter (struct loop
*loop
, struct niter_desc
*desc
, rtx old_niter
)
2296 rtx niter
= desc
->niter_expr
;
2297 rtx mmin
, mmax
, cmp
;
2299 uint64_t andmax
= 0;
2301 /* We used to look for constant operand 0 of AND,
2302 but canonicalization should always make this impossible. */
2303 gcc_checking_assert (GET_CODE (niter
) != AND
2304 || !CONST_INT_P (XEXP (niter
, 0)));
2306 if (GET_CODE (niter
) == AND
2307 && CONST_INT_P (XEXP (niter
, 1)))
2309 andmax
= UINTVAL (XEXP (niter
, 1));
2310 niter
= XEXP (niter
, 0);
2313 get_mode_bounds (desc
->mode
, desc
->signed_p
, desc
->mode
, &mmin
, &mmax
);
2314 nmax
= UINTVAL (mmax
) - UINTVAL (mmin
);
2316 if (GET_CODE (niter
) == UDIV
)
2318 if (!CONST_INT_P (XEXP (niter
, 1)))
2320 inc
= INTVAL (XEXP (niter
, 1));
2321 niter
= XEXP (niter
, 0);
2326 /* We could use a binary search here, but for now improving the upper
2327 bound by just one eliminates one important corner case. */
2328 cmp
= simplify_gen_relational (desc
->signed_p
? LT
: LTU
, VOIDmode
,
2329 desc
->mode
, old_niter
, mmax
);
2330 simplify_using_initial_values (loop
, UNKNOWN
, &cmp
);
2331 if (cmp
== const_true_rtx
)
2336 fprintf (dump_file
, ";; improved upper bound by one.\n");
2340 nmax
= MIN (nmax
, andmax
);
2342 fprintf (dump_file
, ";; Determined upper bound %"PRId64
".\n",
2347 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2348 the result into DESC. Very similar to determine_number_of_iterations
2349 (basically its rtl version), complicated by things like subregs. */
2352 iv_number_of_iterations (struct loop
*loop
, rtx_insn
*insn
, rtx condition
,
2353 struct niter_desc
*desc
)
2355 rtx op0
, op1
, delta
, step
, bound
, may_xform
, tmp
, tmp0
, tmp1
;
2356 struct rtx_iv iv0
, iv1
, tmp_iv
;
2357 rtx assumption
, may_not_xform
;
2359 machine_mode mode
, comp_mode
;
2360 rtx mmin
, mmax
, mode_mmin
, mode_mmax
;
2361 uint64_t s
, size
, d
, inv
, max
;
2362 int64_t up
, down
, inc
, step_val
;
2363 int was_sharp
= false;
2367 /* The meaning of these assumptions is this:
2369 then the rest of information does not have to be valid
2370 if noloop_assumptions then the loop does not roll
2371 if infinite then this exit is never used */
2373 desc
->assumptions
= NULL_RTX
;
2374 desc
->noloop_assumptions
= NULL_RTX
;
2375 desc
->infinite
= NULL_RTX
;
2376 desc
->simple_p
= true;
2378 desc
->const_iter
= false;
2379 desc
->niter_expr
= NULL_RTX
;
2381 cond
= GET_CODE (condition
);
2382 gcc_assert (COMPARISON_P (condition
));
2384 mode
= GET_MODE (XEXP (condition
, 0));
2385 if (mode
== VOIDmode
)
2386 mode
= GET_MODE (XEXP (condition
, 1));
2387 /* The constant comparisons should be folded. */
2388 gcc_assert (mode
!= VOIDmode
);
2390 /* We only handle integers or pointers. */
2391 if (GET_MODE_CLASS (mode
) != MODE_INT
2392 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
2395 op0
= XEXP (condition
, 0);
2396 if (!iv_analyze (insn
, op0
, &iv0
))
2398 if (iv0
.extend_mode
== VOIDmode
)
2399 iv0
.mode
= iv0
.extend_mode
= mode
;
2401 op1
= XEXP (condition
, 1);
2402 if (!iv_analyze (insn
, op1
, &iv1
))
2404 if (iv1
.extend_mode
== VOIDmode
)
2405 iv1
.mode
= iv1
.extend_mode
= mode
;
2407 if (GET_MODE_BITSIZE (iv0
.extend_mode
) > HOST_BITS_PER_WIDE_INT
2408 || GET_MODE_BITSIZE (iv1
.extend_mode
) > HOST_BITS_PER_WIDE_INT
)
2411 /* Check condition and normalize it. */
2419 tmp_iv
= iv0
; iv0
= iv1
; iv1
= tmp_iv
;
2420 cond
= swap_condition (cond
);
2432 /* Handle extends. This is relatively nontrivial, so we only try in some
2433 easy cases, when we can canonicalize the ivs (possibly by adding some
2434 assumptions) to shape subreg (base + i * step). This function also fills
2435 in desc->mode and desc->signed_p. */
2437 if (!canonicalize_iv_subregs (&iv0
, &iv1
, cond
, desc
))
2440 comp_mode
= iv0
.extend_mode
;
2442 size
= GET_MODE_PRECISION (mode
);
2443 get_mode_bounds (mode
, (cond
== LE
|| cond
== LT
), comp_mode
, &mmin
, &mmax
);
2444 mode_mmin
= lowpart_subreg (mode
, mmin
, comp_mode
);
2445 mode_mmax
= lowpart_subreg (mode
, mmax
, comp_mode
);
2447 if (!CONST_INT_P (iv0
.step
) || !CONST_INT_P (iv1
.step
))
2450 /* We can take care of the case of two induction variables chasing each other
2451 if the test is NE. I have never seen a loop using it, but still it is
2453 if (iv0
.step
!= const0_rtx
&& iv1
.step
!= const0_rtx
)
2458 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2459 iv1
.step
= const0_rtx
;
2462 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2463 iv1
.step
= lowpart_subreg (mode
, iv1
.step
, comp_mode
);
2465 /* This is either infinite loop or the one that ends immediately, depending
2466 on initial values. Unswitching should remove this kind of conditions. */
2467 if (iv0
.step
== const0_rtx
&& iv1
.step
== const0_rtx
)
2472 if (iv0
.step
== const0_rtx
)
2473 step_val
= -INTVAL (iv1
.step
);
2475 step_val
= INTVAL (iv0
.step
);
2477 /* Ignore loops of while (i-- < 10) type. */
2481 step_is_pow2
= !(step_val
& (step_val
- 1));
2485 /* We do not care about whether the step is power of two in this
2487 step_is_pow2
= false;
2491 /* Some more condition normalization. We must record some assumptions
2492 due to overflows. */
2497 /* We want to take care only of non-sharp relationals; this is easy,
2498 as in cases the overflow would make the transformation unsafe
2499 the loop does not roll. Seemingly it would make more sense to want
2500 to take care of sharp relationals instead, as NE is more similar to
2501 them, but the problem is that here the transformation would be more
2502 difficult due to possibly infinite loops. */
2503 if (iv0
.step
== const0_rtx
)
2505 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2506 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2508 if (assumption
== const_true_rtx
)
2509 goto zero_iter_simplify
;
2510 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2511 iv0
.base
, const1_rtx
);
2515 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2516 assumption
= simplify_gen_relational (EQ
, SImode
, mode
, tmp
,
2518 if (assumption
== const_true_rtx
)
2519 goto zero_iter_simplify
;
2520 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
,
2521 iv1
.base
, constm1_rtx
);
2524 if (assumption
!= const0_rtx
)
2525 desc
->noloop_assumptions
=
2526 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2527 cond
= (cond
== LT
) ? LE
: LEU
;
2529 /* It will be useful to be able to tell the difference once more in
2530 LE -> NE reduction. */
2536 /* Take care of trivially infinite loops. */
2539 if (iv0
.step
== const0_rtx
)
2541 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2542 if (rtx_equal_p (tmp
, mode_mmin
))
2545 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2546 /* Fill in the remaining fields somehow. */
2547 goto zero_iter_simplify
;
2552 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2553 if (rtx_equal_p (tmp
, mode_mmax
))
2556 alloc_EXPR_LIST (0, const_true_rtx
, NULL_RTX
);
2557 /* Fill in the remaining fields somehow. */
2558 goto zero_iter_simplify
;
2563 /* If we can we want to take care of NE conditions instead of size
2564 comparisons, as they are much more friendly (most importantly
2565 this takes care of special handling of loops with step 1). We can
2566 do it if we first check that upper bound is greater or equal to
2567 lower bound, their difference is constant c modulo step and that
2568 there is not an overflow. */
2571 if (iv0
.step
== const0_rtx
)
2572 step
= simplify_gen_unary (NEG
, comp_mode
, iv1
.step
, comp_mode
);
2575 step
= lowpart_subreg (mode
, step
, comp_mode
);
2576 delta
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2577 delta
= lowpart_subreg (mode
, delta
, comp_mode
);
2578 delta
= simplify_gen_binary (UMOD
, mode
, delta
, step
);
2579 may_xform
= const0_rtx
;
2580 may_not_xform
= const_true_rtx
;
2582 if (CONST_INT_P (delta
))
2584 if (was_sharp
&& INTVAL (delta
) == INTVAL (step
) - 1)
2586 /* A special case. We have transformed condition of type
2587 for (i = 0; i < 4; i += 4)
2589 for (i = 0; i <= 3; i += 4)
2590 obviously if the test for overflow during that transformation
2591 passed, we cannot overflow here. Most importantly any
2592 loop with sharp end condition and step 1 falls into this
2593 category, so handling this case specially is definitely
2594 worth the troubles. */
2595 may_xform
= const_true_rtx
;
2597 else if (iv0
.step
== const0_rtx
)
2599 bound
= simplify_gen_binary (PLUS
, comp_mode
, mmin
, step
);
2600 bound
= simplify_gen_binary (MINUS
, comp_mode
, bound
, delta
);
2601 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2602 tmp
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2603 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2605 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2611 bound
= simplify_gen_binary (MINUS
, comp_mode
, mmax
, step
);
2612 bound
= simplify_gen_binary (PLUS
, comp_mode
, bound
, delta
);
2613 bound
= lowpart_subreg (mode
, bound
, comp_mode
);
2614 tmp
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2615 may_xform
= simplify_gen_relational (cond
, SImode
, mode
,
2617 may_not_xform
= simplify_gen_relational (reverse_condition (cond
),
2623 if (may_xform
!= const0_rtx
)
2625 /* We perform the transformation always provided that it is not
2626 completely senseless. This is OK, as we would need this assumption
2627 to determine the number of iterations anyway. */
2628 if (may_xform
!= const_true_rtx
)
2630 /* If the step is a power of two and the final value we have
2631 computed overflows, the cycle is infinite. Otherwise it
2632 is nontrivial to compute the number of iterations. */
2634 desc
->infinite
= alloc_EXPR_LIST (0, may_not_xform
,
2637 desc
->assumptions
= alloc_EXPR_LIST (0, may_xform
,
2641 /* We are going to lose some information about upper bound on
2642 number of iterations in this step, so record the information
2644 inc
= INTVAL (iv0
.step
) - INTVAL (iv1
.step
);
2645 if (CONST_INT_P (iv1
.base
))
2646 up
= INTVAL (iv1
.base
);
2648 up
= INTVAL (mode_mmax
) - inc
;
2649 down
= INTVAL (CONST_INT_P (iv0
.base
)
2652 max
= (uint64_t) (up
- down
) / inc
+ 1;
2654 && !desc
->assumptions
)
2655 record_niter_bound (loop
, max
, false, true);
2657 if (iv0
.step
== const0_rtx
)
2659 iv0
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, delta
);
2660 iv0
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.base
, step
);
2664 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, delta
);
2665 iv1
.base
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, step
);
2668 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2669 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2670 assumption
= simplify_gen_relational (reverse_condition (cond
),
2671 SImode
, mode
, tmp0
, tmp1
);
2672 if (assumption
== const_true_rtx
)
2673 goto zero_iter_simplify
;
2674 else if (assumption
!= const0_rtx
)
2675 desc
->noloop_assumptions
=
2676 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2681 /* Count the number of iterations. */
2684 /* Everything we do here is just arithmetics modulo size of mode. This
2685 makes us able to do more involved computations of number of iterations
2686 than in other cases. First transform the condition into shape
2687 s * i <> c, with s positive. */
2688 iv1
.base
= simplify_gen_binary (MINUS
, comp_mode
, iv1
.base
, iv0
.base
);
2689 iv0
.base
= const0_rtx
;
2690 iv0
.step
= simplify_gen_binary (MINUS
, comp_mode
, iv0
.step
, iv1
.step
);
2691 iv1
.step
= const0_rtx
;
2692 if (INTVAL (iv0
.step
) < 0)
2694 iv0
.step
= simplify_gen_unary (NEG
, comp_mode
, iv0
.step
, comp_mode
);
2695 iv1
.base
= simplify_gen_unary (NEG
, comp_mode
, iv1
.base
, comp_mode
);
2697 iv0
.step
= lowpart_subreg (mode
, iv0
.step
, comp_mode
);
2699 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2700 is infinite. Otherwise, the number of iterations is
2701 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2702 s
= INTVAL (iv0
.step
); d
= 1;
2709 bound
= GEN_INT (((uint64_t) 1 << (size
- 1 ) << 1) - 1);
2711 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2712 tmp
= simplify_gen_binary (UMOD
, mode
, tmp1
, gen_int_mode (d
, mode
));
2713 assumption
= simplify_gen_relational (NE
, SImode
, mode
, tmp
, const0_rtx
);
2714 desc
->infinite
= alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2716 tmp
= simplify_gen_binary (UDIV
, mode
, tmp1
, gen_int_mode (d
, mode
));
2717 inv
= inverse (s
, size
);
2718 tmp
= simplify_gen_binary (MULT
, mode
, tmp
, gen_int_mode (inv
, mode
));
2719 desc
->niter_expr
= simplify_gen_binary (AND
, mode
, tmp
, bound
);
2723 if (iv1
.step
== const0_rtx
)
2724 /* Condition in shape a + s * i <= b
2725 We must know that b + s does not overflow and a <= b + s and then we
2726 can compute number of iterations as (b + s - a) / s. (It might
2727 seem that we in fact could be more clever about testing the b + s
2728 overflow condition using some information about b - a mod s,
2729 but it was already taken into account during LE -> NE transform). */
2732 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2733 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2735 bound
= simplify_gen_binary (MINUS
, mode
, mode_mmax
,
2736 lowpart_subreg (mode
, step
,
2742 /* If s is power of 2, we know that the loop is infinite if
2743 a % s <= b % s and b + s overflows. */
2744 assumption
= simplify_gen_relational (reverse_condition (cond
),
2748 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2749 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2750 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2751 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2753 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2757 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2760 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2763 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv1
.base
, iv0
.step
);
2764 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2765 assumption
= simplify_gen_relational (reverse_condition (cond
),
2766 SImode
, mode
, tmp0
, tmp
);
2768 delta
= simplify_gen_binary (PLUS
, mode
, tmp1
, step
);
2769 delta
= simplify_gen_binary (MINUS
, mode
, delta
, tmp0
);
2773 /* Condition in shape a <= b - s * i
2774 We must know that a - s does not overflow and a - s <= b and then
2775 we can again compute number of iterations as (b - (a - s)) / s. */
2776 step
= simplify_gen_unary (NEG
, mode
, iv1
.step
, mode
);
2777 tmp0
= lowpart_subreg (mode
, iv0
.base
, comp_mode
);
2778 tmp1
= lowpart_subreg (mode
, iv1
.base
, comp_mode
);
2780 bound
= simplify_gen_binary (PLUS
, mode
, mode_mmin
,
2781 lowpart_subreg (mode
, step
, comp_mode
));
2786 /* If s is power of 2, we know that the loop is infinite if
2787 a % s <= b % s and a - s overflows. */
2788 assumption
= simplify_gen_relational (reverse_condition (cond
),
2792 t0
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp0
), step
);
2793 t1
= simplify_gen_binary (UMOD
, mode
, copy_rtx (tmp1
), step
);
2794 tmp
= simplify_gen_relational (cond
, SImode
, mode
, t0
, t1
);
2795 assumption
= simplify_gen_binary (AND
, SImode
, assumption
, tmp
);
2797 alloc_EXPR_LIST (0, assumption
, desc
->infinite
);
2801 assumption
= simplify_gen_relational (cond
, SImode
, mode
,
2804 alloc_EXPR_LIST (0, assumption
, desc
->assumptions
);
2807 tmp
= simplify_gen_binary (PLUS
, comp_mode
, iv0
.base
, iv1
.step
);
2808 tmp
= lowpart_subreg (mode
, tmp
, comp_mode
);
2809 assumption
= simplify_gen_relational (reverse_condition (cond
),
2812 delta
= simplify_gen_binary (MINUS
, mode
, tmp0
, step
);
2813 delta
= simplify_gen_binary (MINUS
, mode
, tmp1
, delta
);
2815 if (assumption
== const_true_rtx
)
2816 goto zero_iter_simplify
;
2817 else if (assumption
!= const0_rtx
)
2818 desc
->noloop_assumptions
=
2819 alloc_EXPR_LIST (0, assumption
, desc
->noloop_assumptions
);
2820 delta
= simplify_gen_binary (UDIV
, mode
, delta
, step
);
2821 desc
->niter_expr
= delta
;
2824 old_niter
= desc
->niter_expr
;
2826 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2827 if (desc
->assumptions
2828 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2830 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2831 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2832 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2834 /* Rerun the simplification. Consider code (created by copying loop headers)
2846 The first pass determines that i = 0, the second pass uses it to eliminate
2847 noloop assumption. */
2849 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2850 if (desc
->assumptions
2851 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2853 simplify_using_initial_values (loop
, IOR
, &desc
->noloop_assumptions
);
2854 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2855 simplify_using_initial_values (loop
, UNKNOWN
, &desc
->niter_expr
);
2857 if (desc
->noloop_assumptions
2858 && XEXP (desc
->noloop_assumptions
, 0) == const_true_rtx
)
2861 if (CONST_INT_P (desc
->niter_expr
))
2863 uint64_t val
= INTVAL (desc
->niter_expr
);
2865 desc
->const_iter
= true;
2866 desc
->niter
= val
& GET_MODE_MASK (desc
->mode
);
2868 && !desc
->assumptions
)
2869 record_niter_bound (loop
, desc
->niter
, false, true);
2873 max
= determine_max_iter (loop
, desc
, old_niter
);
2875 goto zero_iter_simplify
;
2877 && !desc
->assumptions
)
2878 record_niter_bound (loop
, max
, false, true);
2880 /* simplify_using_initial_values does a copy propagation on the registers
2881 in the expression for the number of iterations. This prolongs life
2882 ranges of registers and increases register pressure, and usually
2883 brings no gain (and if it happens to do, the cse pass will take care
2884 of it anyway). So prevent this behavior, unless it enabled us to
2885 derive that the number of iterations is a constant. */
2886 desc
->niter_expr
= old_niter
;
2892 /* Simplify the assumptions. */
2893 simplify_using_initial_values (loop
, AND
, &desc
->assumptions
);
2894 if (desc
->assumptions
2895 && XEXP (desc
->assumptions
, 0) == const0_rtx
)
2897 simplify_using_initial_values (loop
, IOR
, &desc
->infinite
);
2901 desc
->const_iter
= true;
2903 record_niter_bound (loop
, 0, true, true);
2904 desc
->noloop_assumptions
= NULL_RTX
;
2905 desc
->niter_expr
= const0_rtx
;
2909 desc
->simple_p
= false;
2913 /* Checks whether E is a simple exit from LOOP and stores its description
2917 check_simple_exit (struct loop
*loop
, edge e
, struct niter_desc
*desc
)
2919 basic_block exit_bb
;
2925 desc
->simple_p
= false;
2927 /* It must belong directly to the loop. */
2928 if (exit_bb
->loop_father
!= loop
)
2931 /* It must be tested (at least) once during any iteration. */
2932 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit_bb
))
2935 /* It must end in a simple conditional jump. */
2936 if (!any_condjump_p (BB_END (exit_bb
)))
2939 ein
= EDGE_SUCC (exit_bb
, 0);
2941 ein
= EDGE_SUCC (exit_bb
, 1);
2944 desc
->in_edge
= ein
;
2946 /* Test whether the condition is suitable. */
2947 if (!(condition
= get_condition (BB_END (ein
->src
), &at
, false, false)))
2950 if (ein
->flags
& EDGE_FALLTHRU
)
2952 condition
= reversed_condition (condition
);
2957 /* Check that we are able to determine number of iterations and fill
2958 in information about it. */
2959 iv_number_of_iterations (loop
, at
, condition
, desc
);
2962 /* Finds a simple exit of LOOP and stores its description into DESC. */
2965 find_simple_exit (struct loop
*loop
, struct niter_desc
*desc
)
2970 struct niter_desc act
;
2974 desc
->simple_p
= false;
2975 body
= get_loop_body (loop
);
2977 for (i
= 0; i
< loop
->num_nodes
; i
++)
2979 FOR_EACH_EDGE (e
, ei
, body
[i
]->succs
)
2981 if (flow_bb_inside_loop_p (loop
, e
->dest
))
2984 check_simple_exit (loop
, e
, &act
);
2992 /* Prefer constant iterations; the less the better. */
2994 || (desc
->const_iter
&& act
.niter
>= desc
->niter
))
2997 /* Also if the actual exit may be infinite, while the old one
2998 not, prefer the old one. */
2999 if (act
.infinite
&& !desc
->infinite
)
3011 fprintf (dump_file
, "Loop %d is simple:\n", loop
->num
);
3012 fprintf (dump_file
, " simple exit %d -> %d\n",
3013 desc
->out_edge
->src
->index
,
3014 desc
->out_edge
->dest
->index
);
3015 if (desc
->assumptions
)
3017 fprintf (dump_file
, " assumptions: ");
3018 print_rtl (dump_file
, desc
->assumptions
);
3019 fprintf (dump_file
, "\n");
3021 if (desc
->noloop_assumptions
)
3023 fprintf (dump_file
, " does not roll if: ");
3024 print_rtl (dump_file
, desc
->noloop_assumptions
);
3025 fprintf (dump_file
, "\n");
3029 fprintf (dump_file
, " infinite if: ");
3030 print_rtl (dump_file
, desc
->infinite
);
3031 fprintf (dump_file
, "\n");
3034 fprintf (dump_file
, " number of iterations: ");
3035 print_rtl (dump_file
, desc
->niter_expr
);
3036 fprintf (dump_file
, "\n");
3038 fprintf (dump_file
, " upper bound: %li\n",
3039 (long)get_max_loop_iterations_int (loop
));
3040 fprintf (dump_file
, " realistic bound: %li\n",
3041 (long)get_estimated_loop_iterations_int (loop
));
3044 fprintf (dump_file
, "Loop %d is not simple.\n", loop
->num
);
3050 /* Creates a simple loop description of LOOP if it was not computed
3054 get_simple_loop_desc (struct loop
*loop
)
3056 struct niter_desc
*desc
= simple_loop_desc (loop
);
3061 /* At least desc->infinite is not always initialized by
3062 find_simple_loop_exit. */
3063 desc
= ggc_cleared_alloc
<niter_desc
> ();
3064 iv_analysis_loop_init (loop
);
3065 find_simple_exit (loop
, desc
);
3066 loop
->simple_loop_desc
= desc
;
3068 if (desc
->simple_p
&& (desc
->assumptions
|| desc
->infinite
))
3070 const char *wording
;
3072 /* Assume that no overflow happens and that the loop is finite.
3073 We already warned at the tree level if we ran optimizations there. */
3074 if (!flag_tree_loop_optimize
&& warn_unsafe_loop_optimizations
)
3079 flag_unsafe_loop_optimizations
3080 ? N_("assuming that the loop is not infinite")
3081 : N_("cannot optimize possibly infinite loops");
3082 warning (OPT_Wunsafe_loop_optimizations
, "%s",
3085 if (desc
->assumptions
)
3088 flag_unsafe_loop_optimizations
3089 ? N_("assuming that the loop counter does not overflow")
3090 : N_("cannot optimize loop, the loop counter may overflow");
3091 warning (OPT_Wunsafe_loop_optimizations
, "%s",
3096 if (flag_unsafe_loop_optimizations
)
3098 desc
->assumptions
= NULL_RTX
;
3099 desc
->infinite
= NULL_RTX
;
3106 /* Releases simple loop description for LOOP. */
3109 free_simple_loop_desc (struct loop
*loop
)
3111 struct niter_desc
*desc
= simple_loop_desc (loop
);
3117 loop
->simple_loop_desc
= NULL
;