svn merge -r 217500:218679 svn+ssh://gcc.gnu.org/svn/gcc/trunk
[official-gcc.git] / gcc / ada / a-coorse.adb
blob34e562ec73323cd6c1dd4e2ab5c70068a8cabc3e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- A D A . C O N T A I N E R S . O R D E R E D _ S E T S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2004-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 with Ada.Unchecked_Deallocation;
32 with Ada.Containers.Red_Black_Trees.Generic_Operations;
33 pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Operations);
35 with Ada.Containers.Red_Black_Trees.Generic_Keys;
36 pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Keys);
38 with Ada.Containers.Red_Black_Trees.Generic_Set_Operations;
39 pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Set_Operations);
41 with System; use type System.Address;
43 package body Ada.Containers.Ordered_Sets is
45 pragma Annotate (CodePeer, Skip_Analysis);
47 ------------------------------
48 -- Access to Fields of Node --
49 ------------------------------
51 -- These subprograms provide functional notation for access to fields
52 -- of a node, and procedural notation for modifying these fields.
54 function Color (Node : Node_Access) return Color_Type;
55 pragma Inline (Color);
57 function Left (Node : Node_Access) return Node_Access;
58 pragma Inline (Left);
60 function Parent (Node : Node_Access) return Node_Access;
61 pragma Inline (Parent);
63 function Right (Node : Node_Access) return Node_Access;
64 pragma Inline (Right);
66 procedure Set_Color (Node : Node_Access; Color : Color_Type);
67 pragma Inline (Set_Color);
69 procedure Set_Left (Node : Node_Access; Left : Node_Access);
70 pragma Inline (Set_Left);
72 procedure Set_Right (Node : Node_Access; Right : Node_Access);
73 pragma Inline (Set_Right);
75 procedure Set_Parent (Node : Node_Access; Parent : Node_Access);
76 pragma Inline (Set_Parent);
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 function Copy_Node (Source : Node_Access) return Node_Access;
83 pragma Inline (Copy_Node);
85 procedure Free (X : in out Node_Access);
87 procedure Insert_Sans_Hint
88 (Tree : in out Tree_Type;
89 New_Item : Element_Type;
90 Node : out Node_Access;
91 Inserted : out Boolean);
93 procedure Insert_With_Hint
94 (Dst_Tree : in out Tree_Type;
95 Dst_Hint : Node_Access;
96 Src_Node : Node_Access;
97 Dst_Node : out Node_Access);
99 function Is_Equal_Node_Node (L, R : Node_Access) return Boolean;
100 pragma Inline (Is_Equal_Node_Node);
102 function Is_Greater_Element_Node
103 (Left : Element_Type;
104 Right : Node_Access) return Boolean;
105 pragma Inline (Is_Greater_Element_Node);
107 function Is_Less_Element_Node
108 (Left : Element_Type;
109 Right : Node_Access) return Boolean;
110 pragma Inline (Is_Less_Element_Node);
112 function Is_Less_Node_Node (L, R : Node_Access) return Boolean;
113 pragma Inline (Is_Less_Node_Node);
115 procedure Replace_Element
116 (Tree : in out Tree_Type;
117 Node : Node_Access;
118 Item : Element_Type);
120 --------------------------
121 -- Local Instantiations --
122 --------------------------
124 package Tree_Operations is
125 new Red_Black_Trees.Generic_Operations (Tree_Types);
127 procedure Delete_Tree is
128 new Tree_Operations.Generic_Delete_Tree (Free);
130 function Copy_Tree is
131 new Tree_Operations.Generic_Copy_Tree (Copy_Node, Delete_Tree);
133 use Tree_Operations;
135 function Is_Equal is
136 new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
138 package Element_Keys is
139 new Red_Black_Trees.Generic_Keys
140 (Tree_Operations => Tree_Operations,
141 Key_Type => Element_Type,
142 Is_Less_Key_Node => Is_Less_Element_Node,
143 Is_Greater_Key_Node => Is_Greater_Element_Node);
145 package Set_Ops is
146 new Generic_Set_Operations
147 (Tree_Operations => Tree_Operations,
148 Insert_With_Hint => Insert_With_Hint,
149 Copy_Tree => Copy_Tree,
150 Delete_Tree => Delete_Tree,
151 Is_Less => Is_Less_Node_Node,
152 Free => Free);
154 ---------
155 -- "<" --
156 ---------
158 function "<" (Left, Right : Cursor) return Boolean is
159 begin
160 if Left.Node = null then
161 raise Constraint_Error with "Left cursor equals No_Element";
162 end if;
164 if Right.Node = null then
165 raise Constraint_Error with "Right cursor equals No_Element";
166 end if;
168 pragma Assert (Vet (Left.Container.Tree, Left.Node),
169 "bad Left cursor in ""<""");
171 pragma Assert (Vet (Right.Container.Tree, Right.Node),
172 "bad Right cursor in ""<""");
174 return Left.Node.Element < Right.Node.Element;
175 end "<";
177 function "<" (Left : Cursor; Right : Element_Type) return Boolean is
178 begin
179 if Left.Node = null then
180 raise Constraint_Error with "Left cursor equals No_Element";
181 end if;
183 pragma Assert (Vet (Left.Container.Tree, Left.Node),
184 "bad Left cursor in ""<""");
186 return Left.Node.Element < Right;
187 end "<";
189 function "<" (Left : Element_Type; Right : Cursor) return Boolean is
190 begin
191 if Right.Node = null then
192 raise Constraint_Error with "Right cursor equals No_Element";
193 end if;
195 pragma Assert (Vet (Right.Container.Tree, Right.Node),
196 "bad Right cursor in ""<""");
198 return Left < Right.Node.Element;
199 end "<";
201 ---------
202 -- "=" --
203 ---------
205 function "=" (Left, Right : Set) return Boolean is
206 begin
207 return Is_Equal (Left.Tree, Right.Tree);
208 end "=";
210 ---------
211 -- ">" --
212 ---------
214 function ">" (Left, Right : Cursor) return Boolean is
215 begin
216 if Left.Node = null then
217 raise Constraint_Error with "Left cursor equals No_Element";
218 end if;
220 if Right.Node = null then
221 raise Constraint_Error with "Right cursor equals No_Element";
222 end if;
224 pragma Assert (Vet (Left.Container.Tree, Left.Node),
225 "bad Left cursor in "">""");
227 pragma Assert (Vet (Right.Container.Tree, Right.Node),
228 "bad Right cursor in "">""");
230 -- L > R same as R < L
232 return Right.Node.Element < Left.Node.Element;
233 end ">";
235 function ">" (Left : Element_Type; Right : Cursor) return Boolean is
236 begin
237 if Right.Node = null then
238 raise Constraint_Error with "Right cursor equals No_Element";
239 end if;
241 pragma Assert (Vet (Right.Container.Tree, Right.Node),
242 "bad Right cursor in "">""");
244 return Right.Node.Element < Left;
245 end ">";
247 function ">" (Left : Cursor; Right : Element_Type) return Boolean is
248 begin
249 if Left.Node = null then
250 raise Constraint_Error with "Left cursor equals No_Element";
251 end if;
253 pragma Assert (Vet (Left.Container.Tree, Left.Node),
254 "bad Left cursor in "">""");
256 return Right < Left.Node.Element;
257 end ">";
259 ------------
260 -- Adjust --
261 ------------
263 procedure Adjust is new Tree_Operations.Generic_Adjust (Copy_Tree);
265 procedure Adjust (Container : in out Set) is
266 begin
267 Adjust (Container.Tree);
268 end Adjust;
270 procedure Adjust (Control : in out Reference_Control_Type) is
271 begin
272 if Control.Container /= null then
273 declare
274 Tree : Tree_Type renames Control.Container.all.Tree;
275 B : Natural renames Tree.Busy;
276 L : Natural renames Tree.Lock;
277 begin
278 B := B + 1;
279 L := L + 1;
280 end;
281 end if;
282 end Adjust;
284 ------------
285 -- Assign --
286 ------------
288 procedure Assign (Target : in out Set; Source : Set) is
289 begin
290 if Target'Address = Source'Address then
291 return;
292 end if;
294 Target.Clear;
295 Target.Union (Source);
296 end Assign;
298 -------------
299 -- Ceiling --
300 -------------
302 function Ceiling (Container : Set; Item : Element_Type) return Cursor is
303 Node : constant Node_Access :=
304 Element_Keys.Ceiling (Container.Tree, Item);
305 begin
306 return (if Node = null then No_Element
307 else Cursor'(Container'Unrestricted_Access, Node));
308 end Ceiling;
310 -----------
311 -- Clear --
312 -----------
314 procedure Clear is new Tree_Operations.Generic_Clear (Delete_Tree);
316 procedure Clear (Container : in out Set) is
317 begin
318 Clear (Container.Tree);
319 end Clear;
321 -----------
322 -- Color --
323 -----------
325 function Color (Node : Node_Access) return Color_Type is
326 begin
327 return Node.Color;
328 end Color;
330 ------------------------
331 -- Constant_Reference --
332 ------------------------
334 function Constant_Reference
335 (Container : aliased Set;
336 Position : Cursor) return Constant_Reference_Type
338 begin
339 if Position.Container = null then
340 raise Constraint_Error with "Position cursor has no element";
341 end if;
343 if Position.Container /= Container'Unrestricted_Access then
344 raise Program_Error with
345 "Position cursor designates wrong container";
346 end if;
348 pragma Assert
349 (Vet (Container.Tree, Position.Node),
350 "bad cursor in Constant_Reference");
352 declare
353 Tree : Tree_Type renames Position.Container.all.Tree;
354 B : Natural renames Tree.Busy;
355 L : Natural renames Tree.Lock;
356 begin
357 return R : constant Constant_Reference_Type :=
358 (Element => Position.Node.Element'Access,
359 Control => (Controlled with Container'Unrestricted_Access))
361 B := B + 1;
362 L := L + 1;
363 end return;
364 end;
365 end Constant_Reference;
367 --------------
368 -- Contains --
369 --------------
371 function Contains
372 (Container : Set;
373 Item : Element_Type) return Boolean
375 begin
376 return Find (Container, Item) /= No_Element;
377 end Contains;
379 ----------
380 -- Copy --
381 ----------
383 function Copy (Source : Set) return Set is
384 begin
385 return Target : Set do
386 Target.Assign (Source);
387 end return;
388 end Copy;
390 ---------------
391 -- Copy_Node --
392 ---------------
394 function Copy_Node (Source : Node_Access) return Node_Access is
395 Target : constant Node_Access :=
396 new Node_Type'(Parent => null,
397 Left => null,
398 Right => null,
399 Color => Source.Color,
400 Element => Source.Element);
401 begin
402 return Target;
403 end Copy_Node;
405 ------------
406 -- Delete --
407 ------------
409 procedure Delete (Container : in out Set; Position : in out Cursor) is
410 begin
411 if Position.Node = null then
412 raise Constraint_Error with "Position cursor equals No_Element";
413 end if;
415 if Position.Container /= Container'Unrestricted_Access then
416 raise Program_Error with "Position cursor designates wrong set";
417 end if;
419 pragma Assert (Vet (Container.Tree, Position.Node),
420 "bad cursor in Delete");
422 Tree_Operations.Delete_Node_Sans_Free (Container.Tree, Position.Node);
423 Free (Position.Node);
424 Position.Container := null;
425 end Delete;
427 procedure Delete (Container : in out Set; Item : Element_Type) is
428 X : Node_Access := Element_Keys.Find (Container.Tree, Item);
430 begin
431 if X = null then
432 raise Constraint_Error with "attempt to delete element not in set";
433 end if;
435 Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
436 Free (X);
437 end Delete;
439 ------------------
440 -- Delete_First --
441 ------------------
443 procedure Delete_First (Container : in out Set) is
444 Tree : Tree_Type renames Container.Tree;
445 X : Node_Access := Tree.First;
446 begin
447 if X /= null then
448 Tree_Operations.Delete_Node_Sans_Free (Tree, X);
449 Free (X);
450 end if;
451 end Delete_First;
453 -----------------
454 -- Delete_Last --
455 -----------------
457 procedure Delete_Last (Container : in out Set) is
458 Tree : Tree_Type renames Container.Tree;
459 X : Node_Access := Tree.Last;
460 begin
461 if X /= null then
462 Tree_Operations.Delete_Node_Sans_Free (Tree, X);
463 Free (X);
464 end if;
465 end Delete_Last;
467 ----------------
468 -- Difference --
469 ----------------
471 procedure Difference (Target : in out Set; Source : Set) is
472 begin
473 Set_Ops.Difference (Target.Tree, Source.Tree);
474 end Difference;
476 function Difference (Left, Right : Set) return Set is
477 Tree : constant Tree_Type := Set_Ops.Difference (Left.Tree, Right.Tree);
478 begin
479 return Set'(Controlled with Tree);
480 end Difference;
482 -------------
483 -- Element --
484 -------------
486 function Element (Position : Cursor) return Element_Type is
487 begin
488 if Position.Node = null then
489 raise Constraint_Error with "Position cursor equals No_Element";
490 end if;
492 pragma Assert (Vet (Position.Container.Tree, Position.Node),
493 "bad cursor in Element");
495 return Position.Node.Element;
496 end Element;
498 -------------------------
499 -- Equivalent_Elements --
500 -------------------------
502 function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
503 begin
504 return (if Left < Right or else Right < Left then False else True);
505 end Equivalent_Elements;
507 ---------------------
508 -- Equivalent_Sets --
509 ---------------------
511 function Equivalent_Sets (Left, Right : Set) return Boolean is
512 function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean;
513 pragma Inline (Is_Equivalent_Node_Node);
515 function Is_Equivalent is
516 new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
518 -----------------------------
519 -- Is_Equivalent_Node_Node --
520 -----------------------------
522 function Is_Equivalent_Node_Node (L, R : Node_Access) return Boolean is
523 begin
524 return (if L.Element < R.Element then False
525 elsif R.Element < L.Element then False
526 else True);
527 end Is_Equivalent_Node_Node;
529 -- Start of processing for Equivalent_Sets
531 begin
532 return Is_Equivalent (Left.Tree, Right.Tree);
533 end Equivalent_Sets;
535 -------------
536 -- Exclude --
537 -------------
539 procedure Exclude (Container : in out Set; Item : Element_Type) is
540 X : Node_Access := Element_Keys.Find (Container.Tree, Item);
542 begin
543 if X /= null then
544 Tree_Operations.Delete_Node_Sans_Free (Container.Tree, X);
545 Free (X);
546 end if;
547 end Exclude;
549 --------------
550 -- Finalize --
551 --------------
553 procedure Finalize (Object : in out Iterator) is
554 begin
555 if Object.Container /= null then
556 declare
557 B : Natural renames Object.Container.all.Tree.Busy;
558 begin
559 B := B - 1;
560 end;
561 end if;
562 end Finalize;
564 procedure Finalize (Control : in out Reference_Control_Type) is
565 begin
566 if Control.Container /= null then
567 declare
568 Tree : Tree_Type renames Control.Container.all.Tree;
569 B : Natural renames Tree.Busy;
570 L : Natural renames Tree.Lock;
571 begin
572 B := B - 1;
573 L := L - 1;
574 end;
576 Control.Container := null;
577 end if;
578 end Finalize;
580 ----------
581 -- Find --
582 ----------
584 function Find (Container : Set; Item : Element_Type) return Cursor is
585 Node : constant Node_Access := Element_Keys.Find (Container.Tree, Item);
586 begin
587 return (if Node = null then No_Element
588 else Cursor'(Container'Unrestricted_Access, Node));
589 end Find;
591 -----------
592 -- First --
593 -----------
595 function First (Container : Set) return Cursor is
596 begin
597 return
598 (if Container.Tree.First = null then No_Element
599 else Cursor'(Container'Unrestricted_Access, Container.Tree.First));
600 end First;
602 function First (Object : Iterator) return Cursor is
603 begin
604 -- The value of the iterator object's Node component influences the
605 -- behavior of the First (and Last) selector function.
607 -- When the Node component is null, this means the iterator object was
608 -- constructed without a start expression, in which case the (forward)
609 -- iteration starts from the (logical) beginning of the entire sequence
610 -- of items (corresponding to Container.First, for a forward iterator).
612 -- Otherwise, this is iteration over a partial sequence of items. When
613 -- the Node component is non-null, the iterator object was constructed
614 -- with a start expression, that specifies the position from which the
615 -- (forward) partial iteration begins.
617 if Object.Node = null then
618 return Object.Container.First;
619 else
620 return Cursor'(Object.Container, Object.Node);
621 end if;
622 end First;
624 -------------------
625 -- First_Element --
626 -------------------
628 function First_Element (Container : Set) return Element_Type is
629 begin
630 if Container.Tree.First = null then
631 raise Constraint_Error with "set is empty";
632 end if;
634 return Container.Tree.First.Element;
635 end First_Element;
637 -----------
638 -- Floor --
639 -----------
641 function Floor (Container : Set; Item : Element_Type) return Cursor is
642 Node : constant Node_Access := Element_Keys.Floor (Container.Tree, Item);
643 begin
644 return (if Node = null then No_Element
645 else Cursor'(Container'Unrestricted_Access, Node));
646 end Floor;
648 ----------
649 -- Free --
650 ----------
652 procedure Free (X : in out Node_Access) is
653 procedure Deallocate is
654 new Ada.Unchecked_Deallocation (Node_Type, Node_Access);
655 begin
656 if X /= null then
657 X.Parent := X;
658 X.Left := X;
659 X.Right := X;
660 Deallocate (X);
661 end if;
662 end Free;
664 ------------------
665 -- Generic_Keys --
666 ------------------
668 package body Generic_Keys is
670 -----------------------
671 -- Local Subprograms --
672 -----------------------
674 function Is_Greater_Key_Node
675 (Left : Key_Type;
676 Right : Node_Access) return Boolean;
677 pragma Inline (Is_Greater_Key_Node);
679 function Is_Less_Key_Node
680 (Left : Key_Type;
681 Right : Node_Access) return Boolean;
682 pragma Inline (Is_Less_Key_Node);
684 --------------------------
685 -- Local Instantiations --
686 --------------------------
688 package Key_Keys is
689 new Red_Black_Trees.Generic_Keys
690 (Tree_Operations => Tree_Operations,
691 Key_Type => Key_Type,
692 Is_Less_Key_Node => Is_Less_Key_Node,
693 Is_Greater_Key_Node => Is_Greater_Key_Node);
695 ------------
696 -- Adjust --
697 ------------
699 procedure Adjust (Control : in out Reference_Control_Type) is
700 begin
701 if Control.Container /= null then
702 declare
703 Tree : Tree_Type renames Control.Container.Tree;
704 B : Natural renames Tree.Busy;
705 L : Natural renames Tree.Lock;
706 begin
707 B := B + 1;
708 L := L + 1;
709 end;
710 end if;
711 end Adjust;
713 -------------
714 -- Ceiling --
715 -------------
717 function Ceiling (Container : Set; Key : Key_Type) return Cursor is
718 Node : constant Node_Access := Key_Keys.Ceiling (Container.Tree, Key);
719 begin
720 return (if Node = null then No_Element
721 else Cursor'(Container'Unrestricted_Access, Node));
722 end Ceiling;
724 ------------------------
725 -- Constant_Reference --
726 ------------------------
728 function Constant_Reference
729 (Container : aliased Set;
730 Key : Key_Type) return Constant_Reference_Type
732 Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
734 begin
735 if Node = null then
736 raise Constraint_Error with "key not in set";
737 end if;
739 declare
740 Tree : Tree_Type renames Container'Unrestricted_Access.all.Tree;
741 B : Natural renames Tree.Busy;
742 L : Natural renames Tree.Lock;
743 begin
744 return R : constant Constant_Reference_Type :=
745 (Element => Node.Element'Access,
746 Control => (Controlled with Container'Unrestricted_Access))
748 B := B + 1;
749 L := L + 1;
750 end return;
751 end;
752 end Constant_Reference;
754 --------------
755 -- Contains --
756 --------------
758 function Contains (Container : Set; Key : Key_Type) return Boolean is
759 begin
760 return Find (Container, Key) /= No_Element;
761 end Contains;
763 ------------
764 -- Delete --
765 ------------
767 procedure Delete (Container : in out Set; Key : Key_Type) is
768 X : Node_Access := Key_Keys.Find (Container.Tree, Key);
770 begin
771 if X = null then
772 raise Constraint_Error with "attempt to delete key not in set";
773 end if;
775 Delete_Node_Sans_Free (Container.Tree, X);
776 Free (X);
777 end Delete;
779 -------------
780 -- Element --
781 -------------
783 function Element (Container : Set; Key : Key_Type) return Element_Type is
784 Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
786 begin
787 if Node = null then
788 raise Constraint_Error with "key not in set";
789 end if;
791 return Node.Element;
792 end Element;
794 ---------------------
795 -- Equivalent_Keys --
796 ---------------------
798 function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
799 begin
800 return (if Left < Right or else Right < Left then False else True);
801 end Equivalent_Keys;
803 -------------
804 -- Exclude --
805 -------------
807 procedure Exclude (Container : in out Set; Key : Key_Type) is
808 X : Node_Access := Key_Keys.Find (Container.Tree, Key);
809 begin
810 if X /= null then
811 Delete_Node_Sans_Free (Container.Tree, X);
812 Free (X);
813 end if;
814 end Exclude;
816 --------------
817 -- Finalize --
818 --------------
820 procedure Finalize (Control : in out Reference_Control_Type) is
821 begin
822 if Control.Container /= null then
823 declare
824 Tree : Tree_Type renames Control.Container.Tree;
825 B : Natural renames Tree.Busy;
826 L : Natural renames Tree.Lock;
827 begin
828 B := B - 1;
829 L := L - 1;
830 end;
832 if not (Key (Control.Pos) = Control.Old_Key.all) then
833 Delete (Control.Container.all, Key (Control.Pos));
834 raise Program_Error;
835 end if;
837 Control.Container := null;
838 Control.Old_Key := null;
839 end if;
840 end Finalize;
842 ----------
843 -- Find --
844 ----------
846 function Find (Container : Set; Key : Key_Type) return Cursor is
847 Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
848 begin
849 return (if Node = null then No_Element
850 else Cursor'(Container'Unrestricted_Access, Node));
851 end Find;
853 -----------
854 -- Floor --
855 -----------
857 function Floor (Container : Set; Key : Key_Type) return Cursor is
858 Node : constant Node_Access := Key_Keys.Floor (Container.Tree, Key);
859 begin
860 return (if Node = null then No_Element
861 else Cursor'(Container'Unrestricted_Access, Node));
862 end Floor;
864 -------------------------
865 -- Is_Greater_Key_Node --
866 -------------------------
868 function Is_Greater_Key_Node
869 (Left : Key_Type;
870 Right : Node_Access) return Boolean
872 begin
873 return Key (Right.Element) < Left;
874 end Is_Greater_Key_Node;
876 ----------------------
877 -- Is_Less_Key_Node --
878 ----------------------
880 function Is_Less_Key_Node
881 (Left : Key_Type;
882 Right : Node_Access) return Boolean
884 begin
885 return Left < Key (Right.Element);
886 end Is_Less_Key_Node;
888 ---------
889 -- Key --
890 ---------
892 function Key (Position : Cursor) return Key_Type is
893 begin
894 if Position.Node = null then
895 raise Constraint_Error with
896 "Position cursor equals No_Element";
897 end if;
899 pragma Assert (Vet (Position.Container.Tree, Position.Node),
900 "bad cursor in Key");
902 return Key (Position.Node.Element);
903 end Key;
905 ----------
906 -- Read --
907 ----------
909 procedure Read
910 (Stream : not null access Root_Stream_Type'Class;
911 Item : out Reference_Type)
913 begin
914 raise Program_Error with "attempt to stream reference";
915 end Read;
917 ------------------------------
918 -- Reference_Preserving_Key --
919 ------------------------------
921 function Reference_Preserving_Key
922 (Container : aliased in out Set;
923 Position : Cursor) return Reference_Type
925 begin
926 if Position.Container = null then
927 raise Constraint_Error with "Position cursor has no element";
928 end if;
930 if Position.Container /= Container'Unrestricted_Access then
931 raise Program_Error with
932 "Position cursor designates wrong container";
933 end if;
935 pragma Assert
936 (Vet (Container.Tree, Position.Node),
937 "bad cursor in function Reference_Preserving_Key");
939 declare
940 Tree : Tree_Type renames Container.Tree;
941 B : Natural renames Tree.Busy;
942 L : Natural renames Tree.Lock;
944 begin
945 return R : constant Reference_Type :=
946 (Element => Position.Node.Element'Access,
947 Control =>
948 (Controlled with
949 Container => Container'Access,
950 Pos => Position,
951 Old_Key => new Key_Type'(Key (Position))))
953 B := B + 1;
954 L := L + 1;
955 end return;
956 end;
957 end Reference_Preserving_Key;
959 function Reference_Preserving_Key
960 (Container : aliased in out Set;
961 Key : Key_Type) return Reference_Type
963 Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
965 begin
966 if Node = null then
967 raise Constraint_Error with "key not in set";
968 end if;
970 declare
971 Tree : Tree_Type renames Container.Tree;
972 B : Natural renames Tree.Busy;
973 L : Natural renames Tree.Lock;
975 begin
976 return R : constant Reference_Type :=
977 (Element => Node.Element'Access,
978 Control =>
979 (Controlled with
980 Container => Container'Access,
981 Pos => Find (Container, Key),
982 Old_Key => new Key_Type'(Key)))
984 B := B + 1;
985 L := L + 1;
986 end return;
987 end;
988 end Reference_Preserving_Key;
990 -------------
991 -- Replace --
992 -------------
994 procedure Replace
995 (Container : in out Set;
996 Key : Key_Type;
997 New_Item : Element_Type)
999 Node : constant Node_Access := Key_Keys.Find (Container.Tree, Key);
1001 begin
1002 if Node = null then
1003 raise Constraint_Error with
1004 "attempt to replace key not in set";
1005 end if;
1007 Replace_Element (Container.Tree, Node, New_Item);
1008 end Replace;
1010 -----------------------------------
1011 -- Update_Element_Preserving_Key --
1012 -----------------------------------
1014 procedure Update_Element_Preserving_Key
1015 (Container : in out Set;
1016 Position : Cursor;
1017 Process : not null access procedure (Element : in out Element_Type))
1019 Tree : Tree_Type renames Container.Tree;
1021 begin
1022 if Position.Node = null then
1023 raise Constraint_Error with
1024 "Position cursor equals No_Element";
1025 end if;
1027 if Position.Container /= Container'Unrestricted_Access then
1028 raise Program_Error with
1029 "Position cursor designates wrong set";
1030 end if;
1032 pragma Assert (Vet (Container.Tree, Position.Node),
1033 "bad cursor in Update_Element_Preserving_Key");
1035 declare
1036 E : Element_Type renames Position.Node.Element;
1037 K : constant Key_Type := Key (E);
1039 B : Natural renames Tree.Busy;
1040 L : Natural renames Tree.Lock;
1042 Eq : Boolean;
1044 begin
1045 B := B + 1;
1046 L := L + 1;
1048 begin
1049 Process (E);
1050 Eq := Equivalent_Keys (K, Key (E));
1051 exception
1052 when others =>
1053 L := L - 1;
1054 B := B - 1;
1055 raise;
1056 end;
1058 L := L - 1;
1059 B := B - 1;
1061 if Eq then
1062 return;
1063 end if;
1064 end;
1066 declare
1067 X : Node_Access := Position.Node;
1068 begin
1069 Tree_Operations.Delete_Node_Sans_Free (Tree, X);
1070 Free (X);
1071 end;
1073 raise Program_Error with "key was modified";
1074 end Update_Element_Preserving_Key;
1076 -----------
1077 -- Write --
1078 -----------
1080 procedure Write
1081 (Stream : not null access Root_Stream_Type'Class;
1082 Item : Reference_Type)
1084 begin
1085 raise Program_Error with "attempt to stream reference";
1086 end Write;
1088 end Generic_Keys;
1090 -----------------
1091 -- Has_Element --
1092 -----------------
1094 function Has_Element (Position : Cursor) return Boolean is
1095 begin
1096 return Position /= No_Element;
1097 end Has_Element;
1099 -------------
1100 -- Include --
1101 -------------
1103 procedure Include (Container : in out Set; New_Item : Element_Type) is
1104 Position : Cursor;
1105 Inserted : Boolean;
1107 begin
1108 Insert (Container, New_Item, Position, Inserted);
1110 if not Inserted then
1111 if Container.Tree.Lock > 0 then
1112 raise Program_Error with
1113 "attempt to tamper with elements (set is locked)";
1114 end if;
1116 Position.Node.Element := New_Item;
1117 end if;
1118 end Include;
1120 ------------
1121 -- Insert --
1122 ------------
1124 procedure Insert
1125 (Container : in out Set;
1126 New_Item : Element_Type;
1127 Position : out Cursor;
1128 Inserted : out Boolean)
1130 begin
1131 Insert_Sans_Hint
1132 (Container.Tree,
1133 New_Item,
1134 Position.Node,
1135 Inserted);
1137 Position.Container := Container'Unrestricted_Access;
1138 end Insert;
1140 procedure Insert
1141 (Container : in out Set;
1142 New_Item : Element_Type)
1144 Position : Cursor;
1145 pragma Unreferenced (Position);
1147 Inserted : Boolean;
1149 begin
1150 Insert (Container, New_Item, Position, Inserted);
1152 if not Inserted then
1153 raise Constraint_Error with
1154 "attempt to insert element already in set";
1155 end if;
1156 end Insert;
1158 ----------------------
1159 -- Insert_Sans_Hint --
1160 ----------------------
1162 procedure Insert_Sans_Hint
1163 (Tree : in out Tree_Type;
1164 New_Item : Element_Type;
1165 Node : out Node_Access;
1166 Inserted : out Boolean)
1168 function New_Node return Node_Access;
1169 pragma Inline (New_Node);
1171 procedure Insert_Post is
1172 new Element_Keys.Generic_Insert_Post (New_Node);
1174 procedure Conditional_Insert_Sans_Hint is
1175 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1177 --------------
1178 -- New_Node --
1179 --------------
1181 function New_Node return Node_Access is
1182 begin
1183 return new Node_Type'(Parent => null,
1184 Left => null,
1185 Right => null,
1186 Color => Red_Black_Trees.Red,
1187 Element => New_Item);
1188 end New_Node;
1190 -- Start of processing for Insert_Sans_Hint
1192 begin
1193 Conditional_Insert_Sans_Hint
1194 (Tree,
1195 New_Item,
1196 Node,
1197 Inserted);
1198 end Insert_Sans_Hint;
1200 ----------------------
1201 -- Insert_With_Hint --
1202 ----------------------
1204 procedure Insert_With_Hint
1205 (Dst_Tree : in out Tree_Type;
1206 Dst_Hint : Node_Access;
1207 Src_Node : Node_Access;
1208 Dst_Node : out Node_Access)
1210 Success : Boolean;
1211 pragma Unreferenced (Success);
1213 function New_Node return Node_Access;
1214 pragma Inline (New_Node);
1216 procedure Insert_Post is
1217 new Element_Keys.Generic_Insert_Post (New_Node);
1219 procedure Insert_Sans_Hint is
1220 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1222 procedure Local_Insert_With_Hint is
1223 new Element_Keys.Generic_Conditional_Insert_With_Hint
1224 (Insert_Post,
1225 Insert_Sans_Hint);
1227 --------------
1228 -- New_Node --
1229 --------------
1231 function New_Node return Node_Access is
1232 Node : constant Node_Access :=
1233 new Node_Type'(Parent => null,
1234 Left => null,
1235 Right => null,
1236 Color => Red,
1237 Element => Src_Node.Element);
1238 begin
1239 return Node;
1240 end New_Node;
1242 -- Start of processing for Insert_With_Hint
1244 begin
1245 Local_Insert_With_Hint
1246 (Dst_Tree,
1247 Dst_Hint,
1248 Src_Node.Element,
1249 Dst_Node,
1250 Success);
1251 end Insert_With_Hint;
1253 ------------------
1254 -- Intersection --
1255 ------------------
1257 procedure Intersection (Target : in out Set; Source : Set) is
1258 begin
1259 Set_Ops.Intersection (Target.Tree, Source.Tree);
1260 end Intersection;
1262 function Intersection (Left, Right : Set) return Set is
1263 Tree : constant Tree_Type :=
1264 Set_Ops.Intersection (Left.Tree, Right.Tree);
1265 begin
1266 return Set'(Controlled with Tree);
1267 end Intersection;
1269 --------------
1270 -- Is_Empty --
1271 --------------
1273 function Is_Empty (Container : Set) return Boolean is
1274 begin
1275 return Container.Tree.Length = 0;
1276 end Is_Empty;
1278 ------------------------
1279 -- Is_Equal_Node_Node --
1280 ------------------------
1282 function Is_Equal_Node_Node (L, R : Node_Access) return Boolean is
1283 begin
1284 return L.Element = R.Element;
1285 end Is_Equal_Node_Node;
1287 -----------------------------
1288 -- Is_Greater_Element_Node --
1289 -----------------------------
1291 function Is_Greater_Element_Node
1292 (Left : Element_Type;
1293 Right : Node_Access) return Boolean
1295 begin
1296 -- Compute e > node same as node < e
1298 return Right.Element < Left;
1299 end Is_Greater_Element_Node;
1301 --------------------------
1302 -- Is_Less_Element_Node --
1303 --------------------------
1305 function Is_Less_Element_Node
1306 (Left : Element_Type;
1307 Right : Node_Access) return Boolean
1309 begin
1310 return Left < Right.Element;
1311 end Is_Less_Element_Node;
1313 -----------------------
1314 -- Is_Less_Node_Node --
1315 -----------------------
1317 function Is_Less_Node_Node (L, R : Node_Access) return Boolean is
1318 begin
1319 return L.Element < R.Element;
1320 end Is_Less_Node_Node;
1322 ---------------
1323 -- Is_Subset --
1324 ---------------
1326 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean is
1327 begin
1328 return Set_Ops.Is_Subset (Subset => Subset.Tree, Of_Set => Of_Set.Tree);
1329 end Is_Subset;
1331 -------------
1332 -- Iterate --
1333 -------------
1335 procedure Iterate
1336 (Container : Set;
1337 Process : not null access procedure (Position : Cursor))
1339 procedure Process_Node (Node : Node_Access);
1340 pragma Inline (Process_Node);
1342 procedure Local_Iterate is
1343 new Tree_Operations.Generic_Iteration (Process_Node);
1345 ------------------
1346 -- Process_Node --
1347 ------------------
1349 procedure Process_Node (Node : Node_Access) is
1350 begin
1351 Process (Cursor'(Container'Unrestricted_Access, Node));
1352 end Process_Node;
1354 T : Tree_Type renames Container'Unrestricted_Access.all.Tree;
1355 B : Natural renames T.Busy;
1357 -- Start of processing for Iterate
1359 begin
1360 B := B + 1;
1362 begin
1363 Local_Iterate (T);
1364 exception
1365 when others =>
1366 B := B - 1;
1367 raise;
1368 end;
1370 B := B - 1;
1371 end Iterate;
1373 function Iterate (Container : Set)
1374 return Set_Iterator_Interfaces.Reversible_Iterator'Class
1376 B : Natural renames Container'Unrestricted_Access.all.Tree.Busy;
1378 begin
1379 -- The value of the Node component influences the behavior of the First
1380 -- and Last selector functions of the iterator object. When the Node
1381 -- component is null (as is the case here), this means the iterator
1382 -- object was constructed without a start expression. This is a complete
1383 -- iterator, meaning that the iteration starts from the (logical)
1384 -- beginning of the sequence of items.
1386 -- Note: For a forward iterator, Container.First is the beginning, and
1387 -- for a reverse iterator, Container.Last is the beginning.
1389 B := B + 1;
1391 return It : constant Iterator :=
1392 Iterator'(Limited_Controlled with
1393 Container => Container'Unrestricted_Access,
1394 Node => null);
1395 end Iterate;
1397 function Iterate (Container : Set; Start : Cursor)
1398 return Set_Iterator_Interfaces.Reversible_Iterator'Class
1400 B : Natural renames Container'Unrestricted_Access.all.Tree.Busy;
1402 begin
1403 -- It was formerly the case that when Start = No_Element, the partial
1404 -- iterator was defined to behave the same as for a complete iterator,
1405 -- and iterate over the entire sequence of items. However, those
1406 -- semantics were unintuitive and arguably error-prone (it is too easy
1407 -- to accidentally create an endless loop), and so they were changed,
1408 -- per the ARG meeting in Denver on 2011/11. However, there was no
1409 -- consensus about what positive meaning this corner case should have,
1410 -- and so it was decided to simply raise an exception. This does imply,
1411 -- however, that it is not possible to use a partial iterator to specify
1412 -- an empty sequence of items.
1414 if Start = No_Element then
1415 raise Constraint_Error with
1416 "Start position for iterator equals No_Element";
1417 end if;
1419 if Start.Container /= Container'Unrestricted_Access then
1420 raise Program_Error with
1421 "Start cursor of Iterate designates wrong set";
1422 end if;
1424 pragma Assert (Vet (Container.Tree, Start.Node),
1425 "Start cursor of Iterate is bad");
1427 -- The value of the Node component influences the behavior of the First
1428 -- and Last selector functions of the iterator object. When the Node
1429 -- component is non-null (as is the case here), it means that this is a
1430 -- partial iteration, over a subset of the complete sequence of
1431 -- items. The iterator object was constructed with a start expression,
1432 -- indicating the position from which the iteration begins. Note that
1433 -- the start position has the same value irrespective of whether this is
1434 -- a forward or reverse iteration.
1436 B := B + 1;
1438 return It : constant Iterator :=
1439 Iterator'(Limited_Controlled with
1440 Container => Container'Unrestricted_Access,
1441 Node => Start.Node);
1442 end Iterate;
1444 ----------
1445 -- Last --
1446 ----------
1448 function Last (Container : Set) return Cursor is
1449 begin
1450 return
1451 (if Container.Tree.Last = null then No_Element
1452 else Cursor'(Container'Unrestricted_Access, Container.Tree.Last));
1453 end Last;
1455 function Last (Object : Iterator) return Cursor is
1456 begin
1457 -- The value of the iterator object's Node component influences the
1458 -- behavior of the Last (and First) selector function.
1460 -- When the Node component is null, this means the iterator object was
1461 -- constructed without a start expression, in which case the (reverse)
1462 -- iteration starts from the (logical) beginning of the entire sequence
1463 -- (corresponding to Container.Last, for a reverse iterator).
1465 -- Otherwise, this is iteration over a partial sequence of items. When
1466 -- the Node component is non-null, the iterator object was constructed
1467 -- with a start expression, that specifies the position from which the
1468 -- (reverse) partial iteration begins.
1470 if Object.Node = null then
1471 return Object.Container.Last;
1472 else
1473 return Cursor'(Object.Container, Object.Node);
1474 end if;
1475 end Last;
1477 ------------------
1478 -- Last_Element --
1479 ------------------
1481 function Last_Element (Container : Set) return Element_Type is
1482 begin
1483 if Container.Tree.Last = null then
1484 raise Constraint_Error with "set is empty";
1485 else
1486 return Container.Tree.Last.Element;
1487 end if;
1488 end Last_Element;
1490 ----------
1491 -- Left --
1492 ----------
1494 function Left (Node : Node_Access) return Node_Access is
1495 begin
1496 return Node.Left;
1497 end Left;
1499 ------------
1500 -- Length --
1501 ------------
1503 function Length (Container : Set) return Count_Type is
1504 begin
1505 return Container.Tree.Length;
1506 end Length;
1508 ----------
1509 -- Move --
1510 ----------
1512 procedure Move is new Tree_Operations.Generic_Move (Clear);
1514 procedure Move (Target : in out Set; Source : in out Set) is
1515 begin
1516 Move (Target => Target.Tree, Source => Source.Tree);
1517 end Move;
1519 ----------
1520 -- Next --
1521 ----------
1523 function Next (Position : Cursor) return Cursor is
1524 begin
1525 if Position = No_Element then
1526 return No_Element;
1527 end if;
1529 pragma Assert (Vet (Position.Container.Tree, Position.Node),
1530 "bad cursor in Next");
1532 declare
1533 Node : constant Node_Access :=
1534 Tree_Operations.Next (Position.Node);
1535 begin
1536 return (if Node = null then No_Element
1537 else Cursor'(Position.Container, Node));
1538 end;
1539 end Next;
1541 procedure Next (Position : in out Cursor) is
1542 begin
1543 Position := Next (Position);
1544 end Next;
1546 function Next (Object : Iterator; Position : Cursor) return Cursor is
1547 begin
1548 if Position.Container = null then
1549 return No_Element;
1550 end if;
1552 if Position.Container /= Object.Container then
1553 raise Program_Error with
1554 "Position cursor of Next designates wrong set";
1555 end if;
1557 return Next (Position);
1558 end Next;
1560 -------------
1561 -- Overlap --
1562 -------------
1564 function Overlap (Left, Right : Set) return Boolean is
1565 begin
1566 return Set_Ops.Overlap (Left.Tree, Right.Tree);
1567 end Overlap;
1569 ------------
1570 -- Parent --
1571 ------------
1573 function Parent (Node : Node_Access) return Node_Access is
1574 begin
1575 return Node.Parent;
1576 end Parent;
1578 --------------
1579 -- Previous --
1580 --------------
1582 function Previous (Position : Cursor) return Cursor is
1583 begin
1584 if Position = No_Element then
1585 return No_Element;
1586 end if;
1588 pragma Assert (Vet (Position.Container.Tree, Position.Node),
1589 "bad cursor in Previous");
1591 declare
1592 Node : constant Node_Access :=
1593 Tree_Operations.Previous (Position.Node);
1594 begin
1595 return (if Node = null then No_Element
1596 else Cursor'(Position.Container, Node));
1597 end;
1598 end Previous;
1600 procedure Previous (Position : in out Cursor) is
1601 begin
1602 Position := Previous (Position);
1603 end Previous;
1605 function Previous (Object : Iterator; Position : Cursor) return Cursor is
1606 begin
1607 if Position.Container = null then
1608 return No_Element;
1609 end if;
1611 if Position.Container /= Object.Container then
1612 raise Program_Error with
1613 "Position cursor of Previous designates wrong set";
1614 end if;
1616 return Previous (Position);
1617 end Previous;
1619 -------------------
1620 -- Query_Element --
1621 -------------------
1623 procedure Query_Element
1624 (Position : Cursor;
1625 Process : not null access procedure (Element : Element_Type))
1627 begin
1628 if Position.Node = null then
1629 raise Constraint_Error with "Position cursor equals No_Element";
1630 end if;
1632 pragma Assert (Vet (Position.Container.Tree, Position.Node),
1633 "bad cursor in Query_Element");
1635 declare
1636 T : Tree_Type renames Position.Container.Tree;
1638 B : Natural renames T.Busy;
1639 L : Natural renames T.Lock;
1641 begin
1642 B := B + 1;
1643 L := L + 1;
1645 begin
1646 Process (Position.Node.Element);
1647 exception
1648 when others =>
1649 L := L - 1;
1650 B := B - 1;
1651 raise;
1652 end;
1654 L := L - 1;
1655 B := B - 1;
1656 end;
1657 end Query_Element;
1659 ----------
1660 -- Read --
1661 ----------
1663 procedure Read
1664 (Stream : not null access Root_Stream_Type'Class;
1665 Container : out Set)
1667 function Read_Node
1668 (Stream : not null access Root_Stream_Type'Class) return Node_Access;
1669 pragma Inline (Read_Node);
1671 procedure Read is
1672 new Tree_Operations.Generic_Read (Clear, Read_Node);
1674 ---------------
1675 -- Read_Node --
1676 ---------------
1678 function Read_Node
1679 (Stream : not null access Root_Stream_Type'Class) return Node_Access
1681 Node : Node_Access := new Node_Type;
1682 begin
1683 Element_Type'Read (Stream, Node.Element);
1684 return Node;
1685 exception
1686 when others =>
1687 Free (Node);
1688 raise;
1689 end Read_Node;
1691 -- Start of processing for Read
1693 begin
1694 Read (Stream, Container.Tree);
1695 end Read;
1697 procedure Read
1698 (Stream : not null access Root_Stream_Type'Class;
1699 Item : out Cursor)
1701 begin
1702 raise Program_Error with "attempt to stream set cursor";
1703 end Read;
1705 procedure Read
1706 (Stream : not null access Root_Stream_Type'Class;
1707 Item : out Constant_Reference_Type)
1709 begin
1710 raise Program_Error with "attempt to stream reference";
1711 end Read;
1713 -------------
1714 -- Replace --
1715 -------------
1717 procedure Replace (Container : in out Set; New_Item : Element_Type) is
1718 Node : constant Node_Access :=
1719 Element_Keys.Find (Container.Tree, New_Item);
1721 begin
1722 if Node = null then
1723 raise Constraint_Error with
1724 "attempt to replace element not in set";
1725 end if;
1727 if Container.Tree.Lock > 0 then
1728 raise Program_Error with
1729 "attempt to tamper with elements (set is locked)";
1730 end if;
1732 Node.Element := New_Item;
1733 end Replace;
1735 ---------------------
1736 -- Replace_Element --
1737 ---------------------
1739 procedure Replace_Element
1740 (Tree : in out Tree_Type;
1741 Node : Node_Access;
1742 Item : Element_Type)
1744 pragma Assert (Node /= null);
1746 function New_Node return Node_Access;
1747 pragma Inline (New_Node);
1749 procedure Local_Insert_Post is
1750 new Element_Keys.Generic_Insert_Post (New_Node);
1752 procedure Local_Insert_Sans_Hint is
1753 new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
1755 procedure Local_Insert_With_Hint is
1756 new Element_Keys.Generic_Conditional_Insert_With_Hint
1757 (Local_Insert_Post,
1758 Local_Insert_Sans_Hint);
1760 --------------
1761 -- New_Node --
1762 --------------
1764 function New_Node return Node_Access is
1765 begin
1766 Node.Element := Item;
1767 Node.Color := Red;
1768 Node.Parent := null;
1769 Node.Right := null;
1770 Node.Left := null;
1771 return Node;
1772 end New_Node;
1774 Hint : Node_Access;
1775 Result : Node_Access;
1776 Inserted : Boolean;
1777 Compare : Boolean;
1779 -- Per AI05-0022, the container implementation is required to detect
1780 -- element tampering by a generic actual subprogram.
1782 B : Natural renames Tree.Busy;
1783 L : Natural renames Tree.Lock;
1785 -- Start of processing for Replace_Element
1787 begin
1788 -- Replace_Element assigns value Item to the element designated by Node,
1789 -- per certain semantic constraints.
1791 -- If Item is equivalent to the element, then element is replaced and
1792 -- there's nothing else to do. This is the easy case.
1794 -- If Item is not equivalent, then the node will (possibly) have to move
1795 -- to some other place in the tree. This is slighly more complicated,
1796 -- because we must ensure that Item is not equivalent to some other
1797 -- element in the tree (in which case, the replacement is not allowed).
1799 -- Determine whether Item is equivalent to element on the specified
1800 -- node.
1802 begin
1803 B := B + 1;
1804 L := L + 1;
1806 Compare := (if Item < Node.Element then False
1807 elsif Node.Element < Item then False
1808 else True);
1810 L := L - 1;
1811 B := B - 1;
1813 exception
1814 when others =>
1815 L := L - 1;
1816 B := B - 1;
1818 raise;
1819 end;
1821 if Compare then
1822 -- Item is equivalent to the node's element, so we will not have to
1823 -- move the node.
1825 if Tree.Lock > 0 then
1826 raise Program_Error with
1827 "attempt to tamper with elements (set is locked)";
1828 end if;
1830 Node.Element := Item;
1831 return;
1832 end if;
1834 -- The replacement Item is not equivalent to the element on the
1835 -- specified node, which means that it will need to be re-inserted in a
1836 -- different position in the tree. We must now determine whether Item is
1837 -- equivalent to some other element in the tree (which would prohibit
1838 -- the assignment and hence the move).
1840 -- Ceiling returns the smallest element equivalent or greater than the
1841 -- specified Item; if there is no such element, then it returns null.
1843 Hint := Element_Keys.Ceiling (Tree, Item);
1845 if Hint /= null then
1846 begin
1847 B := B + 1;
1848 L := L + 1;
1850 Compare := Item < Hint.Element;
1852 L := L - 1;
1853 B := B - 1;
1855 exception
1856 when others =>
1857 L := L - 1;
1858 B := B - 1;
1860 raise;
1861 end;
1863 -- Item >= Hint.Element
1865 if not Compare then
1867 -- Ceiling returns an element that is equivalent or greater
1868 -- than Item. If Item is "not less than" the element, then
1869 -- by elimination we know that Item is equivalent to the element.
1871 -- But this means that it is not possible to assign the value of
1872 -- Item to the specified element (on Node), because a different
1873 -- element (on Hint) equivalent to Item already exsits. (Were we
1874 -- to change Node's element value, we would have to move Node, but
1875 -- we would be unable to move the Node, because its new position
1876 -- in the tree is already occupied by an equivalent element.)
1878 raise Program_Error with "attempt to replace existing element";
1879 end if;
1881 -- Item is not equivalent to any other element in the tree, so it is
1882 -- safe to assign the value of Item to Node.Element. This means that
1883 -- the node will have to move to a different position in the tree
1884 -- (because its element will have a different value).
1886 -- The nearest (greater) neighbor of Item is Hint. This will be the
1887 -- insertion position of Node (because its element will have Item as
1888 -- its new value).
1890 -- If Node equals Hint, the relative position of Node does not
1891 -- change. This allows us to perform an optimization: we need not
1892 -- remove Node from the tree and then reinsert it with its new value,
1893 -- because it would only be placed in the exact same position.
1895 if Hint = Node then
1896 if Tree.Lock > 0 then
1897 raise Program_Error with
1898 "attempt to tamper with elements (set is locked)";
1899 end if;
1901 Node.Element := Item;
1902 return;
1903 end if;
1904 end if;
1906 -- If we get here, it is because Item was greater than all elements in
1907 -- the tree (Hint = null), or because Item was less than some element at
1908 -- a different place in the tree (Item < Hint.Element). In either case,
1909 -- we remove Node from the tree (without actually deallocating it), and
1910 -- then insert Item into the tree, onto the same Node (so no new node is
1911 -- actually allocated).
1913 Tree_Operations.Delete_Node_Sans_Free (Tree, Node); -- Checks busy-bit
1915 Local_Insert_With_Hint -- use unconditional insert here instead???
1916 (Tree => Tree,
1917 Position => Hint,
1918 Key => Item,
1919 Node => Result,
1920 Inserted => Inserted);
1922 pragma Assert (Inserted);
1923 pragma Assert (Result = Node);
1924 end Replace_Element;
1926 procedure Replace_Element
1927 (Container : in out Set;
1928 Position : Cursor;
1929 New_Item : Element_Type)
1931 begin
1932 if Position.Node = null then
1933 raise Constraint_Error with
1934 "Position cursor equals No_Element";
1935 end if;
1937 if Position.Container /= Container'Unrestricted_Access then
1938 raise Program_Error with
1939 "Position cursor designates wrong set";
1940 end if;
1942 pragma Assert (Vet (Container.Tree, Position.Node),
1943 "bad cursor in Replace_Element");
1945 Replace_Element (Container.Tree, Position.Node, New_Item);
1946 end Replace_Element;
1948 ---------------------
1949 -- Reverse_Iterate --
1950 ---------------------
1952 procedure Reverse_Iterate
1953 (Container : Set;
1954 Process : not null access procedure (Position : Cursor))
1956 procedure Process_Node (Node : Node_Access);
1957 pragma Inline (Process_Node);
1959 procedure Local_Reverse_Iterate is
1960 new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
1962 ------------------
1963 -- Process_Node --
1964 ------------------
1966 procedure Process_Node (Node : Node_Access) is
1967 begin
1968 Process (Cursor'(Container'Unrestricted_Access, Node));
1969 end Process_Node;
1971 T : Tree_Type renames Container.Tree'Unrestricted_Access.all;
1972 B : Natural renames T.Busy;
1974 -- Start of processing for Reverse_Iterate
1976 begin
1977 B := B + 1;
1979 begin
1980 Local_Reverse_Iterate (T);
1981 exception
1982 when others =>
1983 B := B - 1;
1984 raise;
1985 end;
1987 B := B - 1;
1988 end Reverse_Iterate;
1990 -----------
1991 -- Right --
1992 -----------
1994 function Right (Node : Node_Access) return Node_Access is
1995 begin
1996 return Node.Right;
1997 end Right;
1999 ---------------
2000 -- Set_Color --
2001 ---------------
2003 procedure Set_Color (Node : Node_Access; Color : Color_Type) is
2004 begin
2005 Node.Color := Color;
2006 end Set_Color;
2008 --------------
2009 -- Set_Left --
2010 --------------
2012 procedure Set_Left (Node : Node_Access; Left : Node_Access) is
2013 begin
2014 Node.Left := Left;
2015 end Set_Left;
2017 ----------------
2018 -- Set_Parent --
2019 ----------------
2021 procedure Set_Parent (Node : Node_Access; Parent : Node_Access) is
2022 begin
2023 Node.Parent := Parent;
2024 end Set_Parent;
2026 ---------------
2027 -- Set_Right --
2028 ---------------
2030 procedure Set_Right (Node : Node_Access; Right : Node_Access) is
2031 begin
2032 Node.Right := Right;
2033 end Set_Right;
2035 --------------------------
2036 -- Symmetric_Difference --
2037 --------------------------
2039 procedure Symmetric_Difference (Target : in out Set; Source : Set) is
2040 begin
2041 Set_Ops.Symmetric_Difference (Target.Tree, Source.Tree);
2042 end Symmetric_Difference;
2044 function Symmetric_Difference (Left, Right : Set) return Set is
2045 Tree : constant Tree_Type :=
2046 Set_Ops.Symmetric_Difference (Left.Tree, Right.Tree);
2047 begin
2048 return Set'(Controlled with Tree);
2049 end Symmetric_Difference;
2051 ------------
2052 -- To_Set --
2053 ------------
2055 function To_Set (New_Item : Element_Type) return Set is
2056 Tree : Tree_Type;
2057 Node : Node_Access;
2058 Inserted : Boolean;
2059 pragma Unreferenced (Node, Inserted);
2060 begin
2061 Insert_Sans_Hint (Tree, New_Item, Node, Inserted);
2062 return Set'(Controlled with Tree);
2063 end To_Set;
2065 -----------
2066 -- Union --
2067 -----------
2069 procedure Union (Target : in out Set; Source : Set) is
2070 begin
2071 Set_Ops.Union (Target.Tree, Source.Tree);
2072 end Union;
2074 function Union (Left, Right : Set) return Set is
2075 Tree : constant Tree_Type :=
2076 Set_Ops.Union (Left.Tree, Right.Tree);
2077 begin
2078 return Set'(Controlled with Tree);
2079 end Union;
2081 -----------
2082 -- Write --
2083 -----------
2085 procedure Write
2086 (Stream : not null access Root_Stream_Type'Class;
2087 Container : Set)
2089 procedure Write_Node
2090 (Stream : not null access Root_Stream_Type'Class;
2091 Node : Node_Access);
2092 pragma Inline (Write_Node);
2094 procedure Write is
2095 new Tree_Operations.Generic_Write (Write_Node);
2097 ----------------
2098 -- Write_Node --
2099 ----------------
2101 procedure Write_Node
2102 (Stream : not null access Root_Stream_Type'Class;
2103 Node : Node_Access)
2105 begin
2106 Element_Type'Write (Stream, Node.Element);
2107 end Write_Node;
2109 -- Start of processing for Write
2111 begin
2112 Write (Stream, Container.Tree);
2113 end Write;
2115 procedure Write
2116 (Stream : not null access Root_Stream_Type'Class;
2117 Item : Cursor)
2119 begin
2120 raise Program_Error with "attempt to stream set cursor";
2121 end Write;
2123 procedure Write
2124 (Stream : not null access Root_Stream_Type'Class;
2125 Item : Constant_Reference_Type)
2127 begin
2128 raise Program_Error with "attempt to stream reference";
2129 end Write;
2131 end Ada.Containers.Ordered_Sets;