jawt.c: Remove malloc.h, covered by stdlib.h.
[official-gcc.git] / gcc / flow.c
blob9eae74b4ad0fce3c86fbcf11246c1bdf32cd2147
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
141 #include "obstack.h"
142 #include "splay-tree.h"
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
146 #endif
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
149 #endif
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
152 #endif
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
156 #endif
157 #ifndef EH_USES
158 #define EH_USES(REGNO) 0
159 #endif
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
164 (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
165 #endif
166 #endif
168 /* This is the maximum number of times we process any given block if the
169 latest loop depth count is smaller than this number. Only used for the
170 failure strategy to avoid infinite loops in calculate_global_regs_live. */
171 #define MAX_LIVENESS_ROUNDS 20
173 /* Nonzero if the second flow pass has completed. */
174 int flow2_completed;
176 /* Maximum register number used in this function, plus one. */
178 int max_regno;
180 /* Indexed by n, giving various register information */
182 varray_type reg_n_info;
184 /* Regset of regs live when calls to `setjmp'-like functions happen. */
185 /* ??? Does this exist only for the setjmp-clobbered warning message? */
187 static regset regs_live_at_setjmp;
189 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
190 that have to go in the same hard reg.
191 The first two regs in the list are a pair, and the next two
192 are another pair, etc. */
193 rtx regs_may_share;
195 /* Set of registers that may be eliminable. These are handled specially
196 in updating regs_ever_live. */
198 static HARD_REG_SET elim_reg_set;
200 /* Holds information for tracking conditional register life information. */
201 struct reg_cond_life_info
203 /* A boolean expression of conditions under which a register is dead. */
204 rtx condition;
205 /* Conditions under which a register is dead at the basic block end. */
206 rtx orig_condition;
208 /* A boolean expression of conditions under which a register has been
209 stored into. */
210 rtx stores;
212 /* ??? Could store mask of bytes that are dead, so that we could finally
213 track lifetimes of multi-word registers accessed via subregs. */
216 /* For use in communicating between propagate_block and its subroutines.
217 Holds all information needed to compute life and def-use information. */
219 struct propagate_block_info
221 /* The basic block we're considering. */
222 basic_block bb;
224 /* Bit N is set if register N is conditionally or unconditionally live. */
225 regset reg_live;
227 /* Bit N is set if register N is set this insn. */
228 regset new_set;
230 /* Element N is the next insn that uses (hard or pseudo) register N
231 within the current basic block; or zero, if there is no such insn. */
232 rtx *reg_next_use;
234 /* Contains a list of all the MEMs we are tracking for dead store
235 elimination. */
236 rtx mem_set_list;
238 /* If non-null, record the set of registers set unconditionally in the
239 basic block. */
240 regset local_set;
242 /* If non-null, record the set of registers set conditionally in the
243 basic block. */
244 regset cond_local_set;
246 #ifdef HAVE_conditional_execution
247 /* Indexed by register number, holds a reg_cond_life_info for each
248 register that is not unconditionally live or dead. */
249 splay_tree reg_cond_dead;
251 /* Bit N is set if register N is in an expression in reg_cond_dead. */
252 regset reg_cond_reg;
253 #endif
255 /* The length of mem_set_list. */
256 int mem_set_list_len;
258 /* Nonzero if the value of CC0 is live. */
259 int cc0_live;
261 /* Flags controlling the set of information propagate_block collects. */
262 int flags;
263 /* Index of instruction being processed. */
264 int insn_num;
267 /* Number of dead insns removed. */
268 static int ndead;
270 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
271 where given register died. When the register is marked alive, we use the
272 information to compute amount of instructions life range cross.
273 (remember, we are walking backward). This can be computed as current
274 pbi->insn_num - reg_deaths[regno].
275 At the end of processing each basic block, the remaining live registers
276 are inspected and live ranges are increased same way so liverange of global
277 registers are computed correctly.
279 The array is maintained clear for dead registers, so it can be safely reused
280 for next basic block without expensive memset of the whole array after
281 reseting pbi->insn_num to 0. */
283 static int *reg_deaths;
285 /* Maximum length of pbi->mem_set_list before we start dropping
286 new elements on the floor. */
287 #define MAX_MEM_SET_LIST_LEN 100
289 /* Forward declarations */
290 static int verify_wide_reg_1 (rtx *, void *);
291 static void verify_wide_reg (int, basic_block);
292 static void verify_local_live_at_start (regset, basic_block);
293 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
294 static void notice_stack_pointer_modification (void);
295 static void mark_reg (rtx, void *);
296 static void mark_regs_live_at_end (regset);
297 static void calculate_global_regs_live (sbitmap, sbitmap, int);
298 static void propagate_block_delete_insn (rtx);
299 static rtx propagate_block_delete_libcall (rtx, rtx);
300 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
301 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
302 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
303 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
304 rtx, rtx, int);
305 static int find_regno_partial (rtx *, void *);
307 #ifdef HAVE_conditional_execution
308 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
309 static void free_reg_cond_life_info (splay_tree_value);
310 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
311 static void flush_reg_cond_reg (struct propagate_block_info *, int);
312 static rtx elim_reg_cond (rtx, unsigned int);
313 static rtx ior_reg_cond (rtx, rtx, int);
314 static rtx not_reg_cond (rtx);
315 static rtx and_reg_cond (rtx, rtx, int);
316 #endif
317 #ifdef AUTO_INC_DEC
318 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
319 rtx, rtx);
320 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
321 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
322 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
323 #endif
324 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
325 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
326 void debug_flow_info (void);
327 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
328 static int invalidate_mems_from_autoinc (rtx *, void *);
329 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
330 static void clear_log_links (sbitmap);
331 static int count_or_remove_death_notes_bb (basic_block, int);
332 static void allocate_bb_life_data (void);
334 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
335 note associated with the BLOCK. */
338 first_insn_after_basic_block_note (basic_block block)
340 rtx insn;
342 /* Get the first instruction in the block. */
343 insn = BB_HEAD (block);
345 if (insn == NULL_RTX)
346 return NULL_RTX;
347 if (LABEL_P (insn))
348 insn = NEXT_INSN (insn);
349 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
351 return NEXT_INSN (insn);
354 /* Perform data flow analysis for the whole control flow graph.
355 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
357 void
358 life_analysis (FILE *file, int flags)
360 #ifdef ELIMINABLE_REGS
361 int i;
362 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
363 #endif
365 /* Record which registers will be eliminated. We use this in
366 mark_used_regs. */
368 CLEAR_HARD_REG_SET (elim_reg_set);
370 #ifdef ELIMINABLE_REGS
371 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
372 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
373 #else
374 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
375 #endif
378 #ifdef CANNOT_CHANGE_MODE_CLASS
379 if (flags & PROP_REG_INFO)
380 init_subregs_of_mode ();
381 #endif
383 if (! optimize)
384 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
386 /* The post-reload life analysis have (on a global basis) the same
387 registers live as was computed by reload itself. elimination
388 Otherwise offsets and such may be incorrect.
390 Reload will make some registers as live even though they do not
391 appear in the rtl.
393 We don't want to create new auto-incs after reload, since they
394 are unlikely to be useful and can cause problems with shared
395 stack slots. */
396 if (reload_completed)
397 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
399 /* We want alias analysis information for local dead store elimination. */
400 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
401 init_alias_analysis ();
403 /* Always remove no-op moves. Do this before other processing so
404 that we don't have to keep re-scanning them. */
405 delete_noop_moves ();
407 /* Some targets can emit simpler epilogues if they know that sp was
408 not ever modified during the function. After reload, of course,
409 we've already emitted the epilogue so there's no sense searching. */
410 if (! reload_completed)
411 notice_stack_pointer_modification ();
413 /* Allocate and zero out data structures that will record the
414 data from lifetime analysis. */
415 allocate_reg_life_data ();
416 allocate_bb_life_data ();
418 /* Find the set of registers live on function exit. */
419 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
421 /* "Update" life info from zero. It'd be nice to begin the
422 relaxation with just the exit and noreturn blocks, but that set
423 is not immediately handy. */
425 if (flags & PROP_REG_INFO)
427 memset (regs_ever_live, 0, sizeof (regs_ever_live));
428 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
430 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
431 if (reg_deaths)
433 free (reg_deaths);
434 reg_deaths = NULL;
437 /* Clean up. */
438 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
439 end_alias_analysis ();
441 if (file)
442 dump_flow_info (file);
444 /* Removing dead insns should have made jumptables really dead. */
445 delete_dead_jumptables ();
448 /* A subroutine of verify_wide_reg, called through for_each_rtx.
449 Search for REGNO. If found, return 2 if it is not wider than
450 word_mode. */
452 static int
453 verify_wide_reg_1 (rtx *px, void *pregno)
455 rtx x = *px;
456 unsigned int regno = *(int *) pregno;
458 if (REG_P (x) && REGNO (x) == regno)
460 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
461 return 2;
462 return 1;
464 return 0;
467 /* A subroutine of verify_local_live_at_start. Search through insns
468 of BB looking for register REGNO. */
470 static void
471 verify_wide_reg (int regno, basic_block bb)
473 rtx head = BB_HEAD (bb), end = BB_END (bb);
475 while (1)
477 if (INSN_P (head))
479 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
480 if (r == 1)
481 return;
482 if (r == 2)
483 break;
485 if (head == end)
486 break;
487 head = NEXT_INSN (head);
489 if (dump_file)
491 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
492 dump_bb (bb, dump_file, 0);
494 fatal_error ("internal consistency failure");
497 /* A subroutine of update_life_info. Verify that there are no untoward
498 changes in live_at_start during a local update. */
500 static void
501 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
503 if (reload_completed)
505 /* After reload, there are no pseudos, nor subregs of multi-word
506 registers. The regsets should exactly match. */
507 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
509 if (dump_file)
511 fprintf (dump_file,
512 "live_at_start mismatch in bb %d, aborting\nNew:\n",
513 bb->index);
514 debug_bitmap_file (dump_file, new_live_at_start);
515 fputs ("Old:\n", dump_file);
516 dump_bb (bb, dump_file, 0);
518 fatal_error ("internal consistency failure");
521 else
523 unsigned i;
524 reg_set_iterator rsi;
526 /* Find the set of changed registers. */
527 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
529 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i, rsi)
531 /* No registers should die. */
532 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
534 if (dump_file)
536 fprintf (dump_file,
537 "Register %d died unexpectedly.\n", i);
538 dump_bb (bb, dump_file, 0);
540 fatal_error ("internal consistency failure");
542 /* Verify that the now-live register is wider than word_mode. */
543 verify_wide_reg (i, bb);
548 /* Updates life information starting with the basic blocks set in BLOCKS.
549 If BLOCKS is null, consider it to be the universal set.
551 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
552 we are only expecting local modifications to basic blocks. If we find
553 extra registers live at the beginning of a block, then we either killed
554 useful data, or we have a broken split that wants data not provided.
555 If we find registers removed from live_at_start, that means we have
556 a broken peephole that is killing a register it shouldn't.
558 ??? This is not true in one situation -- when a pre-reload splitter
559 generates subregs of a multi-word pseudo, current life analysis will
560 lose the kill. So we _can_ have a pseudo go live. How irritating.
562 It is also not true when a peephole decides that it doesn't need one
563 or more of the inputs.
565 Including PROP_REG_INFO does not properly refresh regs_ever_live
566 unless the caller resets it to zero. */
569 update_life_info (sbitmap blocks, enum update_life_extent extent,
570 int prop_flags)
572 regset tmp;
573 unsigned i;
574 int stabilized_prop_flags = prop_flags;
575 basic_block bb;
577 tmp = ALLOC_REG_SET (&reg_obstack);
578 ndead = 0;
580 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
581 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
583 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
584 ? TV_LIFE_UPDATE : TV_LIFE);
586 /* Changes to the CFG are only allowed when
587 doing a global update for the entire CFG. */
588 gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES)
589 || (extent != UPDATE_LIFE_LOCAL && !blocks));
591 /* For a global update, we go through the relaxation process again. */
592 if (extent != UPDATE_LIFE_LOCAL)
594 for ( ; ; )
596 int changed = 0;
598 calculate_global_regs_live (blocks, blocks,
599 prop_flags & (PROP_SCAN_DEAD_CODE
600 | PROP_SCAN_DEAD_STORES
601 | PROP_ALLOW_CFG_CHANGES));
603 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
604 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
605 break;
607 /* Removing dead code may allow the CFG to be simplified which
608 in turn may allow for further dead code detection / removal. */
609 FOR_EACH_BB_REVERSE (bb)
611 COPY_REG_SET (tmp, bb->global_live_at_end);
612 changed |= propagate_block (bb, tmp, NULL, NULL,
613 prop_flags & (PROP_SCAN_DEAD_CODE
614 | PROP_SCAN_DEAD_STORES
615 | PROP_KILL_DEAD_CODE));
618 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
619 subsequent propagate_block calls, since removing or acting as
620 removing dead code can affect global register liveness, which
621 is supposed to be finalized for this call after this loop. */
622 stabilized_prop_flags
623 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
624 | PROP_KILL_DEAD_CODE);
626 if (! changed)
627 break;
629 /* We repeat regardless of what cleanup_cfg says. If there were
630 instructions deleted above, that might have been only a
631 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
632 Further improvement may be possible. */
633 cleanup_cfg (CLEANUP_EXPENSIVE);
635 /* Zap the life information from the last round. If we don't
636 do this, we can wind up with registers that no longer appear
637 in the code being marked live at entry. */
638 FOR_EACH_BB (bb)
640 CLEAR_REG_SET (bb->global_live_at_start);
641 CLEAR_REG_SET (bb->global_live_at_end);
645 /* If asked, remove notes from the blocks we'll update. */
646 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
647 count_or_remove_death_notes (blocks, 1);
650 /* Clear log links in case we are asked to (re)compute them. */
651 if (prop_flags & PROP_LOG_LINKS)
652 clear_log_links (blocks);
654 if (blocks)
656 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
658 bb = BASIC_BLOCK (i);
660 COPY_REG_SET (tmp, bb->global_live_at_end);
661 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
663 if (extent == UPDATE_LIFE_LOCAL)
664 verify_local_live_at_start (tmp, bb);
667 else
669 FOR_EACH_BB_REVERSE (bb)
671 COPY_REG_SET (tmp, bb->global_live_at_end);
673 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
675 if (extent == UPDATE_LIFE_LOCAL)
676 verify_local_live_at_start (tmp, bb);
680 FREE_REG_SET (tmp);
682 if (prop_flags & PROP_REG_INFO)
684 reg_set_iterator rsi;
686 /* The only pseudos that are live at the beginning of the function
687 are those that were not set anywhere in the function. local-alloc
688 doesn't know how to handle these correctly, so mark them as not
689 local to any one basic block. */
690 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
691 FIRST_PSEUDO_REGISTER, i, rsi)
692 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
694 /* We have a problem with any pseudoreg that lives across the setjmp.
695 ANSI says that if a user variable does not change in value between
696 the setjmp and the longjmp, then the longjmp preserves it. This
697 includes longjmp from a place where the pseudo appears dead.
698 (In principle, the value still exists if it is in scope.)
699 If the pseudo goes in a hard reg, some other value may occupy
700 that hard reg where this pseudo is dead, thus clobbering the pseudo.
701 Conclusion: such a pseudo must not go in a hard reg. */
702 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
703 FIRST_PSEUDO_REGISTER, i, rsi)
705 if (regno_reg_rtx[i] != 0)
707 REG_LIVE_LENGTH (i) = -1;
708 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
712 if (reg_deaths)
714 free (reg_deaths);
715 reg_deaths = NULL;
717 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
718 ? TV_LIFE_UPDATE : TV_LIFE);
719 if (ndead && dump_file)
720 fprintf (dump_file, "deleted %i dead insns\n", ndead);
721 return ndead;
724 /* Update life information in all blocks where BB_DIRTY is set. */
727 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
729 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
730 int n = 0;
731 basic_block bb;
732 int retval = 0;
734 sbitmap_zero (update_life_blocks);
735 FOR_EACH_BB (bb)
737 if (bb->flags & BB_DIRTY)
739 SET_BIT (update_life_blocks, bb->index);
740 n++;
744 if (n)
745 retval = update_life_info (update_life_blocks, extent, prop_flags);
747 sbitmap_free (update_life_blocks);
748 return retval;
751 /* Free the variables allocated by find_basic_blocks. */
753 void
754 free_basic_block_vars (void)
756 if (basic_block_info)
758 clear_edges ();
759 basic_block_info = NULL;
761 n_basic_blocks = 0;
762 last_basic_block = 0;
763 n_edges = 0;
765 label_to_block_map = NULL;
767 ENTRY_BLOCK_PTR->aux = NULL;
768 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
769 EXIT_BLOCK_PTR->aux = NULL;
770 EXIT_BLOCK_PTR->global_live_at_start = NULL;
773 /* Delete any insns that copy a register to itself. */
776 delete_noop_moves (void)
778 rtx insn, next;
779 basic_block bb;
780 int nnoops = 0;
782 FOR_EACH_BB (bb)
784 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
786 next = NEXT_INSN (insn);
787 if (INSN_P (insn) && noop_move_p (insn))
789 rtx note;
791 /* If we're about to remove the first insn of a libcall
792 then move the libcall note to the next real insn and
793 update the retval note. */
794 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
795 && XEXP (note, 0) != insn)
797 rtx new_libcall_insn = next_real_insn (insn);
798 rtx retval_note = find_reg_note (XEXP (note, 0),
799 REG_RETVAL, NULL_RTX);
800 REG_NOTES (new_libcall_insn)
801 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
802 REG_NOTES (new_libcall_insn));
803 XEXP (retval_note, 0) = new_libcall_insn;
806 delete_insn_and_edges (insn);
807 nnoops++;
811 if (nnoops && dump_file)
812 fprintf (dump_file, "deleted %i noop moves", nnoops);
813 return nnoops;
816 /* Delete any jump tables never referenced. We can't delete them at the
817 time of removing tablejump insn as they are referenced by the preceding
818 insns computing the destination, so we delay deleting and garbagecollect
819 them once life information is computed. */
820 void
821 delete_dead_jumptables (void)
823 basic_block bb;
825 /* A dead jump table does not belong to any basic block. Scan insns
826 between two adjacent basic blocks. */
827 FOR_EACH_BB (bb)
829 rtx insn, next;
831 for (insn = NEXT_INSN (BB_END (bb));
832 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
833 insn = next)
835 next = NEXT_INSN (insn);
836 if (LABEL_P (insn)
837 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
838 && JUMP_P (next)
839 && (GET_CODE (PATTERN (next)) == ADDR_VEC
840 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
842 rtx label = insn, jump = next;
844 if (dump_file)
845 fprintf (dump_file, "Dead jumptable %i removed\n",
846 INSN_UID (insn));
848 next = NEXT_INSN (next);
849 delete_insn (jump);
850 delete_insn (label);
856 /* Determine if the stack pointer is constant over the life of the function.
857 Only useful before prologues have been emitted. */
859 static void
860 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
861 void *data ATTRIBUTE_UNUSED)
863 if (x == stack_pointer_rtx
864 /* The stack pointer is only modified indirectly as the result
865 of a push until later in flow. See the comments in rtl.texi
866 regarding Embedded Side-Effects on Addresses. */
867 || (MEM_P (x)
868 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
869 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
870 current_function_sp_is_unchanging = 0;
873 static void
874 notice_stack_pointer_modification (void)
876 basic_block bb;
877 rtx insn;
879 /* Assume that the stack pointer is unchanging if alloca hasn't
880 been used. */
881 current_function_sp_is_unchanging = !current_function_calls_alloca;
882 if (! current_function_sp_is_unchanging)
883 return;
885 FOR_EACH_BB (bb)
886 FOR_BB_INSNS (bb, insn)
888 if (INSN_P (insn))
890 /* Check if insn modifies the stack pointer. */
891 note_stores (PATTERN (insn),
892 notice_stack_pointer_modification_1,
893 NULL);
894 if (! current_function_sp_is_unchanging)
895 return;
900 /* Mark a register in SET. Hard registers in large modes get all
901 of their component registers set as well. */
903 static void
904 mark_reg (rtx reg, void *xset)
906 regset set = (regset) xset;
907 int regno = REGNO (reg);
909 gcc_assert (GET_MODE (reg) != BLKmode);
911 SET_REGNO_REG_SET (set, regno);
912 if (regno < FIRST_PSEUDO_REGISTER)
914 int n = hard_regno_nregs[regno][GET_MODE (reg)];
915 while (--n > 0)
916 SET_REGNO_REG_SET (set, regno + n);
920 /* Mark those regs which are needed at the end of the function as live
921 at the end of the last basic block. */
923 static void
924 mark_regs_live_at_end (regset set)
926 unsigned int i;
928 /* If exiting needs the right stack value, consider the stack pointer
929 live at the end of the function. */
930 if ((HAVE_epilogue && epilogue_completed)
931 || ! EXIT_IGNORE_STACK
932 || (! FRAME_POINTER_REQUIRED
933 && ! current_function_calls_alloca
934 && flag_omit_frame_pointer)
935 || current_function_sp_is_unchanging)
937 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
940 /* Mark the frame pointer if needed at the end of the function. If
941 we end up eliminating it, it will be removed from the live list
942 of each basic block by reload. */
944 if (! reload_completed || frame_pointer_needed)
946 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
947 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
948 /* If they are different, also mark the hard frame pointer as live. */
949 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
950 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
951 #endif
954 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
955 /* Many architectures have a GP register even without flag_pic.
956 Assume the pic register is not in use, or will be handled by
957 other means, if it is not fixed. */
958 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
959 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
960 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
961 #endif
963 /* Mark all global registers, and all registers used by the epilogue
964 as being live at the end of the function since they may be
965 referenced by our caller. */
966 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
967 if (global_regs[i] || EPILOGUE_USES (i))
968 SET_REGNO_REG_SET (set, i);
970 if (HAVE_epilogue && epilogue_completed)
972 /* Mark all call-saved registers that we actually used. */
973 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
974 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
975 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
976 SET_REGNO_REG_SET (set, i);
979 #ifdef EH_RETURN_DATA_REGNO
980 /* Mark the registers that will contain data for the handler. */
981 if (reload_completed && current_function_calls_eh_return)
982 for (i = 0; ; ++i)
984 unsigned regno = EH_RETURN_DATA_REGNO(i);
985 if (regno == INVALID_REGNUM)
986 break;
987 SET_REGNO_REG_SET (set, regno);
989 #endif
990 #ifdef EH_RETURN_STACKADJ_RTX
991 if ((! HAVE_epilogue || ! epilogue_completed)
992 && current_function_calls_eh_return)
994 rtx tmp = EH_RETURN_STACKADJ_RTX;
995 if (tmp && REG_P (tmp))
996 mark_reg (tmp, set);
998 #endif
999 #ifdef EH_RETURN_HANDLER_RTX
1000 if ((! HAVE_epilogue || ! epilogue_completed)
1001 && current_function_calls_eh_return)
1003 rtx tmp = EH_RETURN_HANDLER_RTX;
1004 if (tmp && REG_P (tmp))
1005 mark_reg (tmp, set);
1007 #endif
1009 /* Mark function return value. */
1010 diddle_return_value (mark_reg, set);
1013 /* Propagate global life info around the graph of basic blocks. Begin
1014 considering blocks with their corresponding bit set in BLOCKS_IN.
1015 If BLOCKS_IN is null, consider it the universal set.
1017 BLOCKS_OUT is set for every block that was changed. */
1019 static void
1020 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1022 basic_block *queue, *qhead, *qtail, *qend, bb;
1023 regset tmp, new_live_at_end, invalidated_by_call;
1024 regset registers_made_dead;
1025 bool failure_strategy_required = false;
1026 int *block_accesses;
1028 /* The registers that are modified within this in block. */
1029 regset *local_sets;
1031 /* The registers that are conditionally modified within this block.
1032 In other words, regs that are set only as part of a COND_EXEC. */
1033 regset *cond_local_sets;
1035 int i;
1037 /* Some passes used to forget clear aux field of basic block causing
1038 sick behavior here. */
1039 #ifdef ENABLE_CHECKING
1040 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1041 gcc_assert (!bb->aux);
1042 #endif
1044 tmp = ALLOC_REG_SET (&reg_obstack);
1045 new_live_at_end = ALLOC_REG_SET (&reg_obstack);
1046 invalidated_by_call = ALLOC_REG_SET (&reg_obstack);
1047 registers_made_dead = ALLOC_REG_SET (&reg_obstack);
1049 /* Inconveniently, this is only readily available in hard reg set form. */
1050 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1051 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1052 SET_REGNO_REG_SET (invalidated_by_call, i);
1054 /* Allocate space for the sets of local properties. */
1055 local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1056 sizeof (regset));
1057 cond_local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1058 sizeof (regset));
1060 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1061 because the `head == tail' style test for an empty queue doesn't
1062 work with a full queue. */
1063 queue = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1)) * sizeof (*queue));
1064 qtail = queue;
1065 qhead = qend = queue + n_basic_blocks - (INVALID_BLOCK + 1);
1067 /* Queue the blocks set in the initial mask. Do this in reverse block
1068 number order so that we are more likely for the first round to do
1069 useful work. We use AUX non-null to flag that the block is queued. */
1070 if (blocks_in)
1072 FOR_EACH_BB (bb)
1073 if (TEST_BIT (blocks_in, bb->index))
1075 *--qhead = bb;
1076 bb->aux = bb;
1079 else
1081 FOR_EACH_BB (bb)
1083 *--qhead = bb;
1084 bb->aux = bb;
1088 block_accesses = xcalloc (last_basic_block, sizeof (int));
1090 /* We clean aux when we remove the initially-enqueued bbs, but we
1091 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1092 unconditionally. */
1093 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1095 if (blocks_out)
1096 sbitmap_zero (blocks_out);
1098 /* We work through the queue until there are no more blocks. What
1099 is live at the end of this block is precisely the union of what
1100 is live at the beginning of all its successors. So, we set its
1101 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1102 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1103 this block by walking through the instructions in this block in
1104 reverse order and updating as we go. If that changed
1105 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1106 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1108 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1109 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1110 must either be live at the end of the block, or used within the
1111 block. In the latter case, it will certainly never disappear
1112 from GLOBAL_LIVE_AT_START. In the former case, the register
1113 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1114 for one of the successor blocks. By induction, that cannot
1115 occur.
1117 ??? This reasoning doesn't work if we start from non-empty initial
1118 GLOBAL_LIVE_AT_START sets. And there are actually two problems:
1119 1) Updating may not terminate (endless oscillation).
1120 2) Even if it does (and it usually does), the resulting information
1121 may be inaccurate. Consider for example the following case:
1123 a = ...;
1124 while (...) {...} -- 'a' not mentioned at all
1125 ... = a;
1127 If the use of 'a' is deleted between two calculations of liveness
1128 information and the initial sets are not cleared, the information
1129 about a's liveness will get stuck inside the loop and the set will
1130 appear not to be dead.
1132 We do not attempt to solve 2) -- the information is conservatively
1133 correct (i.e. we never claim that something live is dead) and the
1134 amount of optimization opportunities missed due to this problem is
1135 not significant.
1137 1) is more serious. In order to fix it, we monitor the number of times
1138 each block is processed. Once one of the blocks has been processed more
1139 times than the maximum number of rounds, we use the following strategy:
1140 When a register disappears from one of the sets, we add it to a MAKE_DEAD
1141 set, remove all registers in this set from all GLOBAL_LIVE_AT_* sets and
1142 add the blocks with changed sets into the queue. Thus we are guaranteed
1143 to terminate (the worst case corresponds to all registers in MADE_DEAD,
1144 in which case the original reasoning above is valid), but in general we
1145 only fix up a few offending registers.
1147 The maximum number of rounds for computing liveness is the largest of
1148 MAX_LIVENESS_ROUNDS and the latest loop depth count for this function. */
1150 while (qhead != qtail)
1152 int rescan, changed;
1153 basic_block bb;
1154 edge e;
1155 edge_iterator ei;
1157 bb = *qhead++;
1158 if (qhead == qend)
1159 qhead = queue;
1160 bb->aux = NULL;
1162 /* Should we start using the failure strategy? */
1163 if (bb != ENTRY_BLOCK_PTR)
1165 int max_liveness_rounds =
1166 MAX (MAX_LIVENESS_ROUNDS, cfun->max_loop_depth);
1168 block_accesses[bb->index]++;
1169 if (block_accesses[bb->index] > max_liveness_rounds)
1170 failure_strategy_required = true;
1173 /* Begin by propagating live_at_start from the successor blocks. */
1174 CLEAR_REG_SET (new_live_at_end);
1176 if (EDGE_COUNT (bb->succs) > 0)
1177 FOR_EACH_EDGE (e, ei, bb->succs)
1179 basic_block sb = e->dest;
1181 /* Call-clobbered registers die across exception and
1182 call edges. */
1183 /* ??? Abnormal call edges ignored for the moment, as this gets
1184 confused by sibling call edges, which crashes reg-stack. */
1185 if (e->flags & EDGE_EH)
1186 bitmap_ior_and_compl_into (new_live_at_end,
1187 sb->global_live_at_start,
1188 invalidated_by_call);
1189 else
1190 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1192 /* If a target saves one register in another (instead of on
1193 the stack) the save register will need to be live for EH. */
1194 if (e->flags & EDGE_EH)
1195 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1196 if (EH_USES (i))
1197 SET_REGNO_REG_SET (new_live_at_end, i);
1199 else
1201 /* This might be a noreturn function that throws. And
1202 even if it isn't, getting the unwind info right helps
1203 debugging. */
1204 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1205 if (EH_USES (i))
1206 SET_REGNO_REG_SET (new_live_at_end, i);
1209 /* The all-important stack pointer must always be live. */
1210 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1212 /* Before reload, there are a few registers that must be forced
1213 live everywhere -- which might not already be the case for
1214 blocks within infinite loops. */
1215 if (! reload_completed)
1217 /* Any reference to any pseudo before reload is a potential
1218 reference of the frame pointer. */
1219 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1221 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1222 /* Pseudos with argument area equivalences may require
1223 reloading via the argument pointer. */
1224 if (fixed_regs[ARG_POINTER_REGNUM])
1225 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1226 #endif
1228 /* Any constant, or pseudo with constant equivalences, may
1229 require reloading from memory using the pic register. */
1230 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1231 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1232 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1235 if (bb == ENTRY_BLOCK_PTR)
1237 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1238 continue;
1241 /* On our first pass through this block, we'll go ahead and continue.
1242 Recognize first pass by checking if local_set is NULL for this
1243 basic block. On subsequent passes, we get to skip out early if
1244 live_at_end wouldn't have changed. */
1246 if (local_sets[bb->index - (INVALID_BLOCK + 1)] == NULL)
1248 local_sets[bb->index - (INVALID_BLOCK + 1)]
1249 = ALLOC_REG_SET (&reg_obstack);
1250 cond_local_sets[bb->index - (INVALID_BLOCK + 1)]
1251 = ALLOC_REG_SET (&reg_obstack);
1252 rescan = 1;
1254 else
1256 /* If any bits were removed from live_at_end, we'll have to
1257 rescan the block. This wouldn't be necessary if we had
1258 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1259 local_live is really dependent on live_at_end. */
1260 rescan = bitmap_intersect_compl_p (bb->global_live_at_end,
1261 new_live_at_end);
1263 if (!rescan)
1265 regset cond_local_set;
1267 /* If any of the registers in the new live_at_end set are
1268 conditionally set in this basic block, we must rescan.
1269 This is because conditional lifetimes at the end of the
1270 block do not just take the live_at_end set into
1271 account, but also the liveness at the start of each
1272 successor block. We can miss changes in those sets if
1273 we only compare the new live_at_end against the
1274 previous one. */
1275 cond_local_set = cond_local_sets[bb->index - (INVALID_BLOCK + 1)];
1276 rescan = bitmap_intersect_p (new_live_at_end, cond_local_set);
1279 if (!rescan)
1281 regset local_set;
1283 /* Find the set of changed bits. Take this opportunity
1284 to notice that this set is empty and early out. */
1285 bitmap_xor (tmp, bb->global_live_at_end, new_live_at_end);
1286 if (bitmap_empty_p (tmp))
1287 continue;
1289 /* If any of the changed bits overlap with local_sets[bb],
1290 we'll have to rescan the block. */
1291 local_set = local_sets[bb->index - (INVALID_BLOCK + 1)];
1292 rescan = bitmap_intersect_p (tmp, local_set);
1296 /* Let our caller know that BB changed enough to require its
1297 death notes updated. */
1298 if (blocks_out)
1299 SET_BIT (blocks_out, bb->index);
1301 if (! rescan)
1303 /* Add to live_at_start the set of all registers in
1304 new_live_at_end that aren't in the old live_at_end. */
1306 changed = bitmap_ior_and_compl_into (bb->global_live_at_start,
1307 new_live_at_end,
1308 bb->global_live_at_end);
1309 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1310 if (! changed)
1311 continue;
1313 else
1315 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1317 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1318 into live_at_start. */
1319 propagate_block (bb, new_live_at_end,
1320 local_sets[bb->index - (INVALID_BLOCK + 1)],
1321 cond_local_sets[bb->index - (INVALID_BLOCK + 1)],
1322 flags);
1324 /* If live_at start didn't change, no need to go farther. */
1325 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1326 continue;
1328 if (failure_strategy_required)
1330 /* Get the list of registers that were removed from the
1331 bb->global_live_at_start set. */
1332 bitmap_and_compl (tmp, bb->global_live_at_start,
1333 new_live_at_end);
1334 if (!bitmap_empty_p (tmp))
1336 bool pbb_changed;
1337 basic_block pbb;
1339 /* It should not happen that one of registers we have
1340 removed last time is disappears again before any other
1341 register does. */
1342 pbb_changed = bitmap_ior_into (registers_made_dead, tmp);
1343 gcc_assert (pbb_changed);
1345 /* Now remove the registers from all sets. */
1346 FOR_EACH_BB (pbb)
1348 pbb_changed = false;
1350 pbb_changed
1351 |= bitmap_and_compl_into (pbb->global_live_at_start,
1352 registers_made_dead);
1353 pbb_changed
1354 |= bitmap_and_compl_into (pbb->global_live_at_end,
1355 registers_made_dead);
1356 if (!pbb_changed)
1357 continue;
1359 /* Note the (possible) change. */
1360 if (blocks_out)
1361 SET_BIT (blocks_out, pbb->index);
1363 /* Makes sure to really rescan the block. */
1364 if (local_sets[pbb->index - (INVALID_BLOCK + 1)])
1366 FREE_REG_SET (local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1367 FREE_REG_SET (cond_local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1368 local_sets[pbb->index - (INVALID_BLOCK + 1)] = 0;
1371 /* Add it to the queue. */
1372 if (pbb->aux == NULL)
1374 *qtail++ = pbb;
1375 if (qtail == qend)
1376 qtail = queue;
1377 pbb->aux = pbb;
1380 continue;
1382 } /* end of failure_strategy_required */
1384 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1387 /* Queue all predecessors of BB so that we may re-examine
1388 their live_at_end. */
1389 FOR_EACH_EDGE (e, ei, bb->preds)
1391 basic_block pb = e->src;
1392 if (pb->aux == NULL)
1394 *qtail++ = pb;
1395 if (qtail == qend)
1396 qtail = queue;
1397 pb->aux = pb;
1402 FREE_REG_SET (tmp);
1403 FREE_REG_SET (new_live_at_end);
1404 FREE_REG_SET (invalidated_by_call);
1405 FREE_REG_SET (registers_made_dead);
1407 if (blocks_out)
1409 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1411 basic_block bb = BASIC_BLOCK (i);
1412 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1413 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1416 else
1418 FOR_EACH_BB (bb)
1420 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1421 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1425 free (block_accesses);
1426 free (queue);
1427 free (cond_local_sets);
1428 free (local_sets);
1432 /* This structure is used to pass parameters to and from the
1433 the function find_regno_partial(). It is used to pass in the
1434 register number we are looking, as well as to return any rtx
1435 we find. */
1437 typedef struct {
1438 unsigned regno_to_find;
1439 rtx retval;
1440 } find_regno_partial_param;
1443 /* Find the rtx for the reg numbers specified in 'data' if it is
1444 part of an expression which only uses part of the register. Return
1445 it in the structure passed in. */
1446 static int
1447 find_regno_partial (rtx *ptr, void *data)
1449 find_regno_partial_param *param = (find_regno_partial_param *)data;
1450 unsigned reg = param->regno_to_find;
1451 param->retval = NULL_RTX;
1453 if (*ptr == NULL_RTX)
1454 return 0;
1456 switch (GET_CODE (*ptr))
1458 case ZERO_EXTRACT:
1459 case SIGN_EXTRACT:
1460 case STRICT_LOW_PART:
1461 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1463 param->retval = XEXP (*ptr, 0);
1464 return 1;
1466 break;
1468 case SUBREG:
1469 if (REG_P (SUBREG_REG (*ptr))
1470 && REGNO (SUBREG_REG (*ptr)) == reg)
1472 param->retval = SUBREG_REG (*ptr);
1473 return 1;
1475 break;
1477 default:
1478 break;
1481 return 0;
1484 /* Process all immediate successors of the entry block looking for pseudo
1485 registers which are live on entry. Find all of those whose first
1486 instance is a partial register reference of some kind, and initialize
1487 them to 0 after the entry block. This will prevent bit sets within
1488 registers whose value is unknown, and may contain some kind of sticky
1489 bits we don't want. */
1492 initialize_uninitialized_subregs (void)
1494 rtx insn;
1495 edge e;
1496 unsigned reg, did_something = 0;
1497 find_regno_partial_param param;
1498 edge_iterator ei;
1500 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
1502 basic_block bb = e->dest;
1503 regset map = bb->global_live_at_start;
1504 reg_set_iterator rsi;
1506 EXECUTE_IF_SET_IN_REG_SET (map, FIRST_PSEUDO_REGISTER, reg, rsi)
1508 int uid = REGNO_FIRST_UID (reg);
1509 rtx i;
1511 /* Find an insn which mentions the register we are looking for.
1512 Its preferable to have an instance of the register's rtl since
1513 there may be various flags set which we need to duplicate.
1514 If we can't find it, its probably an automatic whose initial
1515 value doesn't matter, or hopefully something we don't care about. */
1516 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1518 if (i != NULL_RTX)
1520 /* Found the insn, now get the REG rtx, if we can. */
1521 param.regno_to_find = reg;
1522 for_each_rtx (&i, find_regno_partial, &param);
1523 if (param.retval != NULL_RTX)
1525 start_sequence ();
1526 emit_move_insn (param.retval,
1527 CONST0_RTX (GET_MODE (param.retval)));
1528 insn = get_insns ();
1529 end_sequence ();
1530 insert_insn_on_edge (insn, e);
1531 did_something = 1;
1537 if (did_something)
1538 commit_edge_insertions ();
1539 return did_something;
1543 /* Subroutines of life analysis. */
1545 /* Allocate the permanent data structures that represent the results
1546 of life analysis. */
1548 static void
1549 allocate_bb_life_data (void)
1551 basic_block bb;
1553 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1555 bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1556 bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1559 regs_live_at_setjmp = ALLOC_REG_SET (&reg_obstack);
1562 void
1563 allocate_reg_life_data (void)
1565 int i;
1567 max_regno = max_reg_num ();
1568 gcc_assert (!reg_deaths);
1569 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1571 /* Recalculate the register space, in case it has grown. Old style
1572 vector oriented regsets would set regset_{size,bytes} here also. */
1573 allocate_reg_info (max_regno, FALSE, FALSE);
1575 /* Reset all the data we'll collect in propagate_block and its
1576 subroutines. */
1577 for (i = 0; i < max_regno; i++)
1579 REG_N_SETS (i) = 0;
1580 REG_N_REFS (i) = 0;
1581 REG_N_DEATHS (i) = 0;
1582 REG_N_CALLS_CROSSED (i) = 0;
1583 REG_LIVE_LENGTH (i) = 0;
1584 REG_FREQ (i) = 0;
1585 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1589 /* Delete dead instructions for propagate_block. */
1591 static void
1592 propagate_block_delete_insn (rtx insn)
1594 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1596 /* If the insn referred to a label, and that label was attached to
1597 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1598 pretty much mandatory to delete it, because the ADDR_VEC may be
1599 referencing labels that no longer exist.
1601 INSN may reference a deleted label, particularly when a jump
1602 table has been optimized into a direct jump. There's no
1603 real good way to fix up the reference to the deleted label
1604 when the label is deleted, so we just allow it here. */
1606 if (inote && LABEL_P (inote))
1608 rtx label = XEXP (inote, 0);
1609 rtx next;
1611 /* The label may be forced if it has been put in the constant
1612 pool. If that is the only use we must discard the table
1613 jump following it, but not the label itself. */
1614 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1615 && (next = next_nonnote_insn (label)) != NULL
1616 && JUMP_P (next)
1617 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1618 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1620 rtx pat = PATTERN (next);
1621 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1622 int len = XVECLEN (pat, diff_vec_p);
1623 int i;
1625 for (i = 0; i < len; i++)
1626 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1628 delete_insn_and_edges (next);
1629 ndead++;
1633 delete_insn_and_edges (insn);
1634 ndead++;
1637 /* Delete dead libcalls for propagate_block. Return the insn
1638 before the libcall. */
1640 static rtx
1641 propagate_block_delete_libcall (rtx insn, rtx note)
1643 rtx first = XEXP (note, 0);
1644 rtx before = PREV_INSN (first);
1646 delete_insn_chain_and_edges (first, insn);
1647 ndead++;
1648 return before;
1651 /* Update the life-status of regs for one insn. Return the previous insn. */
1654 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1656 rtx prev = PREV_INSN (insn);
1657 int flags = pbi->flags;
1658 int insn_is_dead = 0;
1659 int libcall_is_dead = 0;
1660 rtx note;
1661 unsigned i;
1663 if (! INSN_P (insn))
1664 return prev;
1666 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1667 if (flags & PROP_SCAN_DEAD_CODE)
1669 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1670 libcall_is_dead = (insn_is_dead && note != 0
1671 && libcall_dead_p (pbi, note, insn));
1674 /* If an instruction consists of just dead store(s) on final pass,
1675 delete it. */
1676 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1678 /* If we're trying to delete a prologue or epilogue instruction
1679 that isn't flagged as possibly being dead, something is wrong.
1680 But if we are keeping the stack pointer depressed, we might well
1681 be deleting insns that are used to compute the amount to update
1682 it by, so they are fine. */
1683 if (reload_completed
1684 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1685 && (TYPE_RETURNS_STACK_DEPRESSED
1686 (TREE_TYPE (current_function_decl))))
1687 && (((HAVE_epilogue || HAVE_prologue)
1688 && prologue_epilogue_contains (insn))
1689 || (HAVE_sibcall_epilogue
1690 && sibcall_epilogue_contains (insn)))
1691 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1692 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1694 /* Record sets. Do this even for dead instructions, since they
1695 would have killed the values if they hadn't been deleted. To
1696 be consistent, we also have to emit a clobber when we delete
1697 an insn that clobbers a live register. */
1698 pbi->flags |= PROP_DEAD_INSN;
1699 mark_set_regs (pbi, PATTERN (insn), insn);
1700 pbi->flags &= ~PROP_DEAD_INSN;
1702 /* CC0 is now known to be dead. Either this insn used it,
1703 in which case it doesn't anymore, or clobbered it,
1704 so the next insn can't use it. */
1705 pbi->cc0_live = 0;
1707 if (libcall_is_dead)
1708 prev = propagate_block_delete_libcall (insn, note);
1709 else
1712 /* If INSN contains a RETVAL note and is dead, but the libcall
1713 as a whole is not dead, then we want to remove INSN, but
1714 not the whole libcall sequence.
1716 However, we need to also remove the dangling REG_LIBCALL
1717 note so that we do not have mis-matched LIBCALL/RETVAL
1718 notes. In theory we could find a new location for the
1719 REG_RETVAL note, but it hardly seems worth the effort.
1721 NOTE at this point will be the RETVAL note if it exists. */
1722 if (note)
1724 rtx libcall_note;
1726 libcall_note
1727 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1728 remove_note (XEXP (note, 0), libcall_note);
1731 /* Similarly if INSN contains a LIBCALL note, remove the
1732 dangling REG_RETVAL note. */
1733 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1734 if (note)
1736 rtx retval_note;
1738 retval_note
1739 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1740 remove_note (XEXP (note, 0), retval_note);
1743 /* Now delete INSN. */
1744 propagate_block_delete_insn (insn);
1747 return prev;
1750 /* See if this is an increment or decrement that can be merged into
1751 a following memory address. */
1752 #ifdef AUTO_INC_DEC
1754 rtx x = single_set (insn);
1756 /* Does this instruction increment or decrement a register? */
1757 if ((flags & PROP_AUTOINC)
1758 && x != 0
1759 && REG_P (SET_DEST (x))
1760 && (GET_CODE (SET_SRC (x)) == PLUS
1761 || GET_CODE (SET_SRC (x)) == MINUS)
1762 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1763 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1764 /* Ok, look for a following memory ref we can combine with.
1765 If one is found, change the memory ref to a PRE_INC
1766 or PRE_DEC, cancel this insn, and return 1.
1767 Return 0 if nothing has been done. */
1768 && try_pre_increment_1 (pbi, insn))
1769 return prev;
1771 #endif /* AUTO_INC_DEC */
1773 CLEAR_REG_SET (pbi->new_set);
1775 /* If this is not the final pass, and this insn is copying the value of
1776 a library call and it's dead, don't scan the insns that perform the
1777 library call, so that the call's arguments are not marked live. */
1778 if (libcall_is_dead)
1780 /* Record the death of the dest reg. */
1781 mark_set_regs (pbi, PATTERN (insn), insn);
1783 insn = XEXP (note, 0);
1784 return PREV_INSN (insn);
1786 else if (GET_CODE (PATTERN (insn)) == SET
1787 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1788 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1789 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1790 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1792 /* We have an insn to pop a constant amount off the stack.
1793 (Such insns use PLUS regardless of the direction of the stack,
1794 and any insn to adjust the stack by a constant is always a pop
1795 or part of a push.)
1796 These insns, if not dead stores, have no effect on life, though
1797 they do have an effect on the memory stores we are tracking. */
1798 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1799 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1800 concludes that the stack pointer is not modified. */
1801 mark_set_regs (pbi, PATTERN (insn), insn);
1803 else
1805 /* Any regs live at the time of a call instruction must not go
1806 in a register clobbered by calls. Find all regs now live and
1807 record this for them. */
1809 if (CALL_P (insn) && (flags & PROP_REG_INFO))
1811 reg_set_iterator rsi;
1812 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1813 REG_N_CALLS_CROSSED (i)++;
1816 /* Record sets. Do this even for dead instructions, since they
1817 would have killed the values if they hadn't been deleted. */
1818 mark_set_regs (pbi, PATTERN (insn), insn);
1820 if (CALL_P (insn))
1822 regset live_at_end;
1823 bool sibcall_p;
1824 rtx note, cond;
1825 int i;
1827 cond = NULL_RTX;
1828 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1829 cond = COND_EXEC_TEST (PATTERN (insn));
1831 /* Non-constant calls clobber memory, constant calls do not
1832 clobber memory, though they may clobber outgoing arguments
1833 on the stack. */
1834 if (! CONST_OR_PURE_CALL_P (insn))
1836 free_EXPR_LIST_list (&pbi->mem_set_list);
1837 pbi->mem_set_list_len = 0;
1839 else
1840 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1842 /* There may be extra registers to be clobbered. */
1843 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1844 note;
1845 note = XEXP (note, 1))
1846 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1847 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1848 cond, insn, pbi->flags);
1850 /* Calls change all call-used and global registers; sibcalls do not
1851 clobber anything that must be preserved at end-of-function,
1852 except for return values. */
1854 sibcall_p = SIBLING_CALL_P (insn);
1855 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1856 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1857 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1858 && ! (sibcall_p
1859 && REGNO_REG_SET_P (live_at_end, i)
1860 && ! refers_to_regno_p (i, i+1,
1861 current_function_return_rtx,
1862 (rtx *) 0)))
1864 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1865 /* We do not want REG_UNUSED notes for these registers. */
1866 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1867 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1871 /* If an insn doesn't use CC0, it becomes dead since we assume
1872 that every insn clobbers it. So show it dead here;
1873 mark_used_regs will set it live if it is referenced. */
1874 pbi->cc0_live = 0;
1876 /* Record uses. */
1877 if (! insn_is_dead)
1878 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1880 /* Sometimes we may have inserted something before INSN (such as a move)
1881 when we make an auto-inc. So ensure we will scan those insns. */
1882 #ifdef AUTO_INC_DEC
1883 prev = PREV_INSN (insn);
1884 #endif
1886 if (! insn_is_dead && CALL_P (insn))
1888 int i;
1889 rtx note, cond;
1891 cond = NULL_RTX;
1892 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1893 cond = COND_EXEC_TEST (PATTERN (insn));
1895 /* Calls use their arguments, and may clobber memory which
1896 address involves some register. */
1897 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1898 note;
1899 note = XEXP (note, 1))
1900 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1901 of which mark_used_regs knows how to handle. */
1902 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1904 /* The stack ptr is used (honorarily) by a CALL insn. */
1905 if ((flags & PROP_REG_INFO)
1906 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1907 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1908 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1910 /* Calls may also reference any of the global registers,
1911 so they are made live. */
1912 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1913 if (global_regs[i])
1914 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1918 pbi->insn_num++;
1920 return prev;
1923 /* Initialize a propagate_block_info struct for public consumption.
1924 Note that the structure itself is opaque to this file, but that
1925 the user can use the regsets provided here. */
1927 struct propagate_block_info *
1928 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1929 regset cond_local_set, int flags)
1931 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1933 pbi->bb = bb;
1934 pbi->reg_live = live;
1935 pbi->mem_set_list = NULL_RTX;
1936 pbi->mem_set_list_len = 0;
1937 pbi->local_set = local_set;
1938 pbi->cond_local_set = cond_local_set;
1939 pbi->cc0_live = 0;
1940 pbi->flags = flags;
1941 pbi->insn_num = 0;
1943 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1944 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1945 else
1946 pbi->reg_next_use = NULL;
1948 pbi->new_set = BITMAP_ALLOC (NULL);
1950 #ifdef HAVE_conditional_execution
1951 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1952 free_reg_cond_life_info);
1953 pbi->reg_cond_reg = BITMAP_ALLOC (NULL);
1955 /* If this block ends in a conditional branch, for each register
1956 live from one side of the branch and not the other, record the
1957 register as conditionally dead. */
1958 if (JUMP_P (BB_END (bb))
1959 && any_condjump_p (BB_END (bb)))
1961 regset diff = ALLOC_REG_SET (&reg_obstack);
1962 basic_block bb_true, bb_false;
1963 unsigned i;
1965 /* Identify the successor blocks. */
1966 bb_true = EDGE_SUCC (bb, 0)->dest;
1967 if (!single_succ_p (bb))
1969 bb_false = EDGE_SUCC (bb, 1)->dest;
1971 if (EDGE_SUCC (bb, 0)->flags & EDGE_FALLTHRU)
1973 basic_block t = bb_false;
1974 bb_false = bb_true;
1975 bb_true = t;
1977 else
1978 gcc_assert (EDGE_SUCC (bb, 1)->flags & EDGE_FALLTHRU);
1980 else
1982 /* This can happen with a conditional jump to the next insn. */
1983 gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true));
1985 /* Simplest way to do nothing. */
1986 bb_false = bb_true;
1989 /* Compute which register lead different lives in the successors. */
1990 bitmap_xor (diff, bb_true->global_live_at_start,
1991 bb_false->global_live_at_start);
1993 if (!bitmap_empty_p (diff))
1995 /* Extract the condition from the branch. */
1996 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1997 rtx cond_true = XEXP (set_src, 0);
1998 rtx reg = XEXP (cond_true, 0);
1999 enum rtx_code inv_cond;
2001 if (GET_CODE (reg) == SUBREG)
2002 reg = SUBREG_REG (reg);
2004 /* We can only track conditional lifetimes if the condition is
2005 in the form of a reversible comparison of a register against
2006 zero. If the condition is more complex than that, then it is
2007 safe not to record any information. */
2008 inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
2009 if (inv_cond != UNKNOWN
2010 && REG_P (reg)
2011 && XEXP (cond_true, 1) == const0_rtx)
2013 rtx cond_false
2014 = gen_rtx_fmt_ee (inv_cond,
2015 GET_MODE (cond_true), XEXP (cond_true, 0),
2016 XEXP (cond_true, 1));
2017 reg_set_iterator rsi;
2019 if (GET_CODE (XEXP (set_src, 1)) == PC)
2021 rtx t = cond_false;
2022 cond_false = cond_true;
2023 cond_true = t;
2026 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
2028 /* For each such register, mark it conditionally dead. */
2029 EXECUTE_IF_SET_IN_REG_SET (diff, 0, i, rsi)
2031 struct reg_cond_life_info *rcli;
2032 rtx cond;
2034 rcli = xmalloc (sizeof (*rcli));
2036 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
2037 cond = cond_false;
2038 else
2039 cond = cond_true;
2040 rcli->condition = cond;
2041 rcli->stores = const0_rtx;
2042 rcli->orig_condition = cond;
2044 splay_tree_insert (pbi->reg_cond_dead, i,
2045 (splay_tree_value) rcli);
2050 FREE_REG_SET (diff);
2052 #endif
2054 /* If this block has no successors, any stores to the frame that aren't
2055 used later in the block are dead. So make a pass over the block
2056 recording any such that are made and show them dead at the end. We do
2057 a very conservative and simple job here. */
2058 if (optimize
2059 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
2060 && (TYPE_RETURNS_STACK_DEPRESSED
2061 (TREE_TYPE (current_function_decl))))
2062 && (flags & PROP_SCAN_DEAD_STORES)
2063 && (EDGE_COUNT (bb->succs) == 0
2064 || (single_succ_p (bb)
2065 && single_succ (bb) == EXIT_BLOCK_PTR
2066 && ! current_function_calls_eh_return)))
2068 rtx insn, set;
2069 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
2070 if (NONJUMP_INSN_P (insn)
2071 && (set = single_set (insn))
2072 && MEM_P (SET_DEST (set)))
2074 rtx mem = SET_DEST (set);
2075 rtx canon_mem = canon_rtx (mem);
2077 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2078 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2079 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2080 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2081 add_to_mem_set_list (pbi, canon_mem);
2085 return pbi;
2088 /* Release a propagate_block_info struct. */
2090 void
2091 free_propagate_block_info (struct propagate_block_info *pbi)
2093 free_EXPR_LIST_list (&pbi->mem_set_list);
2095 BITMAP_FREE (pbi->new_set);
2097 #ifdef HAVE_conditional_execution
2098 splay_tree_delete (pbi->reg_cond_dead);
2099 BITMAP_FREE (pbi->reg_cond_reg);
2100 #endif
2102 if (pbi->flags & PROP_REG_INFO)
2104 int num = pbi->insn_num;
2105 unsigned i;
2106 reg_set_iterator rsi;
2108 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
2110 REG_LIVE_LENGTH (i) += num - reg_deaths[i];
2111 reg_deaths[i] = 0;
2114 if (pbi->reg_next_use)
2115 free (pbi->reg_next_use);
2117 free (pbi);
2120 /* Compute the registers live at the beginning of a basic block BB from
2121 those live at the end.
2123 When called, REG_LIVE contains those live at the end. On return, it
2124 contains those live at the beginning.
2126 LOCAL_SET, if non-null, will be set with all registers killed
2127 unconditionally by this basic block.
2128 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2129 killed conditionally by this basic block. If there is any unconditional
2130 set of a register, then the corresponding bit will be set in LOCAL_SET
2131 and cleared in COND_LOCAL_SET.
2132 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2133 case, the resulting set will be equal to the union of the two sets that
2134 would otherwise be computed.
2136 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2139 propagate_block (basic_block bb, regset live, regset local_set,
2140 regset cond_local_set, int flags)
2142 struct propagate_block_info *pbi;
2143 rtx insn, prev;
2144 int changed;
2146 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2148 if (flags & PROP_REG_INFO)
2150 unsigned i;
2151 reg_set_iterator rsi;
2153 /* Process the regs live at the end of the block.
2154 Mark them as not local to any one basic block. */
2155 EXECUTE_IF_SET_IN_REG_SET (live, 0, i, rsi)
2156 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
2159 /* Scan the block an insn at a time from end to beginning. */
2161 changed = 0;
2162 for (insn = BB_END (bb); ; insn = prev)
2164 /* If this is a call to `setjmp' et al, warn if any
2165 non-volatile datum is live. */
2166 if ((flags & PROP_REG_INFO)
2167 && CALL_P (insn)
2168 && find_reg_note (insn, REG_SETJMP, NULL))
2169 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2171 prev = propagate_one_insn (pbi, insn);
2172 if (!prev)
2173 changed |= insn != get_insns ();
2174 else
2175 changed |= NEXT_INSN (prev) != insn;
2177 if (insn == BB_HEAD (bb))
2178 break;
2181 free_propagate_block_info (pbi);
2183 return changed;
2186 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2187 (SET expressions whose destinations are registers dead after the insn).
2188 NEEDED is the regset that says which regs are alive after the insn.
2190 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2192 If X is the entire body of an insn, NOTES contains the reg notes
2193 pertaining to the insn. */
2195 static int
2196 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2197 rtx notes ATTRIBUTE_UNUSED)
2199 enum rtx_code code = GET_CODE (x);
2201 /* Don't eliminate insns that may trap. */
2202 if (flag_non_call_exceptions && may_trap_p (x))
2203 return 0;
2205 #ifdef AUTO_INC_DEC
2206 /* As flow is invoked after combine, we must take existing AUTO_INC
2207 expressions into account. */
2208 for (; notes; notes = XEXP (notes, 1))
2210 if (REG_NOTE_KIND (notes) == REG_INC)
2212 int regno = REGNO (XEXP (notes, 0));
2214 /* Don't delete insns to set global regs. */
2215 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2216 || REGNO_REG_SET_P (pbi->reg_live, regno))
2217 return 0;
2220 #endif
2222 /* If setting something that's a reg or part of one,
2223 see if that register's altered value will be live. */
2225 if (code == SET)
2227 rtx r = SET_DEST (x);
2229 #ifdef HAVE_cc0
2230 if (GET_CODE (r) == CC0)
2231 return ! pbi->cc0_live;
2232 #endif
2234 /* A SET that is a subroutine call cannot be dead. */
2235 if (GET_CODE (SET_SRC (x)) == CALL)
2237 if (! call_ok)
2238 return 0;
2241 /* Don't eliminate loads from volatile memory or volatile asms. */
2242 else if (volatile_refs_p (SET_SRC (x)))
2243 return 0;
2245 if (MEM_P (r))
2247 rtx temp, canon_r;
2249 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2250 return 0;
2252 canon_r = canon_rtx (r);
2254 /* Walk the set of memory locations we are currently tracking
2255 and see if one is an identical match to this memory location.
2256 If so, this memory write is dead (remember, we're walking
2257 backwards from the end of the block to the start). Since
2258 rtx_equal_p does not check the alias set or flags, we also
2259 must have the potential for them to conflict (anti_dependence). */
2260 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2261 if (anti_dependence (r, XEXP (temp, 0)))
2263 rtx mem = XEXP (temp, 0);
2265 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2266 && (GET_MODE_SIZE (GET_MODE (canon_r))
2267 <= GET_MODE_SIZE (GET_MODE (mem))))
2268 return 1;
2270 #ifdef AUTO_INC_DEC
2271 /* Check if memory reference matches an auto increment. Only
2272 post increment/decrement or modify are valid. */
2273 if (GET_MODE (mem) == GET_MODE (r)
2274 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2275 || GET_CODE (XEXP (mem, 0)) == POST_INC
2276 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2277 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2278 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2279 return 1;
2280 #endif
2283 else
2285 while (GET_CODE (r) == SUBREG
2286 || GET_CODE (r) == STRICT_LOW_PART
2287 || GET_CODE (r) == ZERO_EXTRACT)
2288 r = XEXP (r, 0);
2290 if (REG_P (r))
2292 int regno = REGNO (r);
2294 /* Obvious. */
2295 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2296 return 0;
2298 /* If this is a hard register, verify that subsequent
2299 words are not needed. */
2300 if (regno < FIRST_PSEUDO_REGISTER)
2302 int n = hard_regno_nregs[regno][GET_MODE (r)];
2304 while (--n > 0)
2305 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2306 return 0;
2309 /* Don't delete insns to set global regs. */
2310 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2311 return 0;
2313 /* Make sure insns to set the stack pointer aren't deleted. */
2314 if (regno == STACK_POINTER_REGNUM)
2315 return 0;
2317 /* ??? These bits might be redundant with the force live bits
2318 in calculate_global_regs_live. We would delete from
2319 sequential sets; whether this actually affects real code
2320 for anything but the stack pointer I don't know. */
2321 /* Make sure insns to set the frame pointer aren't deleted. */
2322 if (regno == FRAME_POINTER_REGNUM
2323 && (! reload_completed || frame_pointer_needed))
2324 return 0;
2325 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2326 if (regno == HARD_FRAME_POINTER_REGNUM
2327 && (! reload_completed || frame_pointer_needed))
2328 return 0;
2329 #endif
2331 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2332 /* Make sure insns to set arg pointer are never deleted
2333 (if the arg pointer isn't fixed, there will be a USE
2334 for it, so we can treat it normally). */
2335 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2336 return 0;
2337 #endif
2339 /* Otherwise, the set is dead. */
2340 return 1;
2345 /* If performing several activities, insn is dead if each activity
2346 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2347 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2348 worth keeping. */
2349 else if (code == PARALLEL)
2351 int i = XVECLEN (x, 0);
2353 for (i--; i >= 0; i--)
2354 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2355 && GET_CODE (XVECEXP (x, 0, i)) != USE
2356 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2357 return 0;
2359 return 1;
2362 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2363 is not necessarily true for hard registers until after reload. */
2364 else if (code == CLOBBER)
2366 if (REG_P (XEXP (x, 0))
2367 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2368 || reload_completed)
2369 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2370 return 1;
2373 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2374 Instances where it is still used are either (1) temporary and the USE
2375 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2376 or (3) hiding bugs elsewhere that are not properly representing data
2377 flow. */
2379 return 0;
2382 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2383 return 1 if the entire library call is dead.
2384 This is true if INSN copies a register (hard or pseudo)
2385 and if the hard return reg of the call insn is dead.
2386 (The caller should have tested the destination of the SET inside
2387 INSN already for death.)
2389 If this insn doesn't just copy a register, then we don't
2390 have an ordinary libcall. In that case, cse could not have
2391 managed to substitute the source for the dest later on,
2392 so we can assume the libcall is dead.
2394 PBI is the block info giving pseudoregs live before this insn.
2395 NOTE is the REG_RETVAL note of the insn. */
2397 static int
2398 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2400 rtx x = single_set (insn);
2402 if (x)
2404 rtx r = SET_SRC (x);
2406 if (REG_P (r) || GET_CODE (r) == SUBREG)
2408 rtx call = XEXP (note, 0);
2409 rtx call_pat;
2410 int i;
2412 /* Find the call insn. */
2413 while (call != insn && !CALL_P (call))
2414 call = NEXT_INSN (call);
2416 /* If there is none, do nothing special,
2417 since ordinary death handling can understand these insns. */
2418 if (call == insn)
2419 return 0;
2421 /* See if the hard reg holding the value is dead.
2422 If this is a PARALLEL, find the call within it. */
2423 call_pat = PATTERN (call);
2424 if (GET_CODE (call_pat) == PARALLEL)
2426 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2427 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2428 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2429 break;
2431 /* This may be a library call that is returning a value
2432 via invisible pointer. Do nothing special, since
2433 ordinary death handling can understand these insns. */
2434 if (i < 0)
2435 return 0;
2437 call_pat = XVECEXP (call_pat, 0, i);
2440 if (! insn_dead_p (pbi, call_pat, 1, REG_NOTES (call)))
2441 return 0;
2443 while ((insn = PREV_INSN (insn)) != call)
2445 if (! INSN_P (insn))
2446 continue;
2447 if (! insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn)))
2448 return 0;
2450 return 1;
2453 return 0;
2456 /* 1 if register REGNO was alive at a place where `setjmp' was called
2457 and was set more than once or is an argument.
2458 Such regs may be clobbered by `longjmp'. */
2461 regno_clobbered_at_setjmp (int regno)
2463 if (n_basic_blocks == 0)
2464 return 0;
2466 return ((REG_N_SETS (regno) > 1
2467 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2468 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2471 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2472 maximal list size; look for overlaps in mode and select the largest. */
2473 static void
2474 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2476 rtx i;
2478 /* We don't know how large a BLKmode store is, so we must not
2479 take them into consideration. */
2480 if (GET_MODE (mem) == BLKmode)
2481 return;
2483 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2485 rtx e = XEXP (i, 0);
2486 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2488 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2490 #ifdef AUTO_INC_DEC
2491 /* If we must store a copy of the mem, we can just modify
2492 the mode of the stored copy. */
2493 if (pbi->flags & PROP_AUTOINC)
2494 PUT_MODE (e, GET_MODE (mem));
2495 else
2496 #endif
2497 XEXP (i, 0) = mem;
2499 return;
2503 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2505 #ifdef AUTO_INC_DEC
2506 /* Store a copy of mem, otherwise the address may be
2507 scrogged by find_auto_inc. */
2508 if (pbi->flags & PROP_AUTOINC)
2509 mem = shallow_copy_rtx (mem);
2510 #endif
2511 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2512 pbi->mem_set_list_len++;
2516 /* INSN references memory, possibly using autoincrement addressing modes.
2517 Find any entries on the mem_set_list that need to be invalidated due
2518 to an address change. */
2520 static int
2521 invalidate_mems_from_autoinc (rtx *px, void *data)
2523 rtx x = *px;
2524 struct propagate_block_info *pbi = data;
2526 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2528 invalidate_mems_from_set (pbi, XEXP (x, 0));
2529 return -1;
2532 return 0;
2535 /* EXP is a REG or MEM. Remove any dependent entries from
2536 pbi->mem_set_list. */
2538 static void
2539 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2541 rtx temp = pbi->mem_set_list;
2542 rtx prev = NULL_RTX;
2543 rtx next;
2545 while (temp)
2547 next = XEXP (temp, 1);
2548 if ((REG_P (exp) && reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2549 /* When we get an EXP that is a mem here, we want to check if EXP
2550 overlaps the *address* of any of the mems in the list (i.e. not
2551 whether the mems actually overlap; that's done elsewhere). */
2552 || (MEM_P (exp)
2553 && reg_overlap_mentioned_p (exp, XEXP (XEXP (temp, 0), 0))))
2555 /* Splice this entry out of the list. */
2556 if (prev)
2557 XEXP (prev, 1) = next;
2558 else
2559 pbi->mem_set_list = next;
2560 free_EXPR_LIST_node (temp);
2561 pbi->mem_set_list_len--;
2563 else
2564 prev = temp;
2565 temp = next;
2569 /* Process the registers that are set within X. Their bits are set to
2570 1 in the regset DEAD, because they are dead prior to this insn.
2572 If INSN is nonzero, it is the insn being processed.
2574 FLAGS is the set of operations to perform. */
2576 static void
2577 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2579 rtx cond = NULL_RTX;
2580 rtx link;
2581 enum rtx_code code;
2582 int flags = pbi->flags;
2584 if (insn)
2585 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2587 if (REG_NOTE_KIND (link) == REG_INC)
2588 mark_set_1 (pbi, SET, XEXP (link, 0),
2589 (GET_CODE (x) == COND_EXEC
2590 ? COND_EXEC_TEST (x) : NULL_RTX),
2591 insn, flags);
2593 retry:
2594 switch (code = GET_CODE (x))
2596 case SET:
2597 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2598 flags |= PROP_ASM_SCAN;
2599 /* Fall through */
2600 case CLOBBER:
2601 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2602 return;
2604 case COND_EXEC:
2605 cond = COND_EXEC_TEST (x);
2606 x = COND_EXEC_CODE (x);
2607 goto retry;
2609 case PARALLEL:
2611 int i;
2613 /* We must scan forwards. If we have an asm, we need to set
2614 the PROP_ASM_SCAN flag before scanning the clobbers. */
2615 for (i = 0; i < XVECLEN (x, 0); i++)
2617 rtx sub = XVECEXP (x, 0, i);
2618 switch (code = GET_CODE (sub))
2620 case COND_EXEC:
2621 gcc_assert (!cond);
2623 cond = COND_EXEC_TEST (sub);
2624 sub = COND_EXEC_CODE (sub);
2625 if (GET_CODE (sub) == SET)
2626 goto mark_set;
2627 if (GET_CODE (sub) == CLOBBER)
2628 goto mark_clob;
2629 break;
2631 case SET:
2632 mark_set:
2633 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2634 flags |= PROP_ASM_SCAN;
2635 /* Fall through */
2636 case CLOBBER:
2637 mark_clob:
2638 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2639 break;
2641 case ASM_OPERANDS:
2642 flags |= PROP_ASM_SCAN;
2643 break;
2645 default:
2646 break;
2649 break;
2652 default:
2653 break;
2657 /* Process a single set, which appears in INSN. REG (which may not
2658 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2659 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2660 If the set is conditional (because it appear in a COND_EXEC), COND
2661 will be the condition. */
2663 static void
2664 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2666 int regno_first = -1, regno_last = -1;
2667 unsigned long not_dead = 0;
2668 int i;
2670 /* Modifying just one hardware register of a multi-reg value or just a
2671 byte field of a register does not mean the value from before this insn
2672 is now dead. Of course, if it was dead after it's unused now. */
2674 switch (GET_CODE (reg))
2676 case PARALLEL:
2677 /* Some targets place small structures in registers for return values of
2678 functions. We have to detect this case specially here to get correct
2679 flow information. */
2680 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2681 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2682 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2683 flags);
2684 return;
2686 case SIGN_EXTRACT:
2687 /* SIGN_EXTRACT cannot be an lvalue. */
2688 gcc_unreachable ();
2690 case ZERO_EXTRACT:
2691 case STRICT_LOW_PART:
2692 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2694 reg = XEXP (reg, 0);
2695 while (GET_CODE (reg) == SUBREG
2696 || GET_CODE (reg) == ZERO_EXTRACT
2697 || GET_CODE (reg) == STRICT_LOW_PART);
2698 if (MEM_P (reg))
2699 break;
2700 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2701 /* Fall through. */
2703 case REG:
2704 regno_last = regno_first = REGNO (reg);
2705 if (regno_first < FIRST_PSEUDO_REGISTER)
2706 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2707 break;
2709 case SUBREG:
2710 if (REG_P (SUBREG_REG (reg)))
2712 enum machine_mode outer_mode = GET_MODE (reg);
2713 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2715 /* Identify the range of registers affected. This is moderately
2716 tricky for hard registers. See alter_subreg. */
2718 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2719 if (regno_first < FIRST_PSEUDO_REGISTER)
2721 regno_first += subreg_regno_offset (regno_first, inner_mode,
2722 SUBREG_BYTE (reg),
2723 outer_mode);
2724 regno_last = (regno_first
2725 + hard_regno_nregs[regno_first][outer_mode] - 1);
2727 /* Since we've just adjusted the register number ranges, make
2728 sure REG matches. Otherwise some_was_live will be clear
2729 when it shouldn't have been, and we'll create incorrect
2730 REG_UNUSED notes. */
2731 reg = gen_rtx_REG (outer_mode, regno_first);
2733 else
2735 /* If the number of words in the subreg is less than the number
2736 of words in the full register, we have a well-defined partial
2737 set. Otherwise the high bits are undefined.
2739 This is only really applicable to pseudos, since we just took
2740 care of multi-word hard registers. */
2741 if (((GET_MODE_SIZE (outer_mode)
2742 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2743 < ((GET_MODE_SIZE (inner_mode)
2744 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2745 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2746 regno_first);
2748 reg = SUBREG_REG (reg);
2751 else
2752 reg = SUBREG_REG (reg);
2753 break;
2755 default:
2756 break;
2759 /* If this set is a MEM, then it kills any aliased writes and any
2760 other MEMs which use it.
2761 If this set is a REG, then it kills any MEMs which use the reg. */
2762 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2764 if (REG_P (reg) || MEM_P (reg))
2765 invalidate_mems_from_set (pbi, reg);
2767 /* If the memory reference had embedded side effects (autoincrement
2768 address modes) then we may need to kill some entries on the
2769 memory set list. */
2770 if (insn && MEM_P (reg))
2771 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2773 if (MEM_P (reg) && ! side_effects_p (reg)
2774 /* ??? With more effort we could track conditional memory life. */
2775 && ! cond)
2776 add_to_mem_set_list (pbi, canon_rtx (reg));
2779 if (REG_P (reg)
2780 && ! (regno_first == FRAME_POINTER_REGNUM
2781 && (! reload_completed || frame_pointer_needed))
2782 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2783 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2784 && (! reload_completed || frame_pointer_needed))
2785 #endif
2786 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2787 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2788 #endif
2791 int some_was_live = 0, some_was_dead = 0;
2793 for (i = regno_first; i <= regno_last; ++i)
2795 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2796 if (pbi->local_set)
2798 /* Order of the set operation matters here since both
2799 sets may be the same. */
2800 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2801 if (cond != NULL_RTX
2802 && ! REGNO_REG_SET_P (pbi->local_set, i))
2803 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2804 else
2805 SET_REGNO_REG_SET (pbi->local_set, i);
2807 if (code != CLOBBER)
2808 SET_REGNO_REG_SET (pbi->new_set, i);
2810 some_was_live |= needed_regno;
2811 some_was_dead |= ! needed_regno;
2814 #ifdef HAVE_conditional_execution
2815 /* Consider conditional death in deciding that the register needs
2816 a death note. */
2817 if (some_was_live && ! not_dead
2818 /* The stack pointer is never dead. Well, not strictly true,
2819 but it's very difficult to tell from here. Hopefully
2820 combine_stack_adjustments will fix up the most egregious
2821 errors. */
2822 && regno_first != STACK_POINTER_REGNUM)
2824 for (i = regno_first; i <= regno_last; ++i)
2825 if (! mark_regno_cond_dead (pbi, i, cond))
2826 not_dead |= ((unsigned long) 1) << (i - regno_first);
2828 #endif
2830 /* Additional data to record if this is the final pass. */
2831 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2832 | PROP_DEATH_NOTES | PROP_AUTOINC))
2834 rtx y;
2835 int blocknum = pbi->bb->index;
2837 y = NULL_RTX;
2838 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2840 y = pbi->reg_next_use[regno_first];
2842 /* The next use is no longer next, since a store intervenes. */
2843 for (i = regno_first; i <= regno_last; ++i)
2844 pbi->reg_next_use[i] = 0;
2847 if (flags & PROP_REG_INFO)
2849 for (i = regno_first; i <= regno_last; ++i)
2851 /* Count (weighted) references, stores, etc. This counts a
2852 register twice if it is modified, but that is correct. */
2853 REG_N_SETS (i) += 1;
2854 REG_N_REFS (i) += 1;
2855 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2857 /* The insns where a reg is live are normally counted
2858 elsewhere, but we want the count to include the insn
2859 where the reg is set, and the normal counting mechanism
2860 would not count it. */
2861 REG_LIVE_LENGTH (i) += 1;
2864 /* If this is a hard reg, record this function uses the reg. */
2865 if (regno_first < FIRST_PSEUDO_REGISTER)
2867 for (i = regno_first; i <= regno_last; i++)
2868 regs_ever_live[i] = 1;
2869 if (flags & PROP_ASM_SCAN)
2870 for (i = regno_first; i <= regno_last; i++)
2871 regs_asm_clobbered[i] = 1;
2873 else
2875 /* Keep track of which basic blocks each reg appears in. */
2876 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2877 REG_BASIC_BLOCK (regno_first) = blocknum;
2878 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2879 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2883 if (! some_was_dead)
2885 if (flags & PROP_LOG_LINKS)
2887 /* Make a logical link from the next following insn
2888 that uses this register, back to this insn.
2889 The following insns have already been processed.
2891 We don't build a LOG_LINK for hard registers containing
2892 in ASM_OPERANDs. If these registers get replaced,
2893 we might wind up changing the semantics of the insn,
2894 even if reload can make what appear to be valid
2895 assignments later.
2897 We don't build a LOG_LINK for global registers to
2898 or from a function call. We don't want to let
2899 combine think that it knows what is going on with
2900 global registers. */
2901 if (y && (BLOCK_NUM (y) == blocknum)
2902 && (regno_first >= FIRST_PSEUDO_REGISTER
2903 || (asm_noperands (PATTERN (y)) < 0
2904 && ! ((CALL_P (insn)
2905 || CALL_P (y))
2906 && global_regs[regno_first]))))
2907 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2910 else if (not_dead)
2912 else if (! some_was_live)
2914 if (flags & PROP_REG_INFO)
2915 REG_N_DEATHS (regno_first) += 1;
2917 if (flags & PROP_DEATH_NOTES)
2919 /* Note that dead stores have already been deleted
2920 when possible. If we get here, we have found a
2921 dead store that cannot be eliminated (because the
2922 same insn does something useful). Indicate this
2923 by marking the reg being set as dying here. */
2924 REG_NOTES (insn)
2925 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2928 else
2930 if (flags & PROP_DEATH_NOTES)
2932 /* This is a case where we have a multi-word hard register
2933 and some, but not all, of the words of the register are
2934 needed in subsequent insns. Write REG_UNUSED notes
2935 for those parts that were not needed. This case should
2936 be rare. */
2938 for (i = regno_first; i <= regno_last; ++i)
2939 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2940 REG_NOTES (insn)
2941 = alloc_EXPR_LIST (REG_UNUSED,
2942 regno_reg_rtx[i],
2943 REG_NOTES (insn));
2948 /* Mark the register as being dead. */
2949 if (some_was_live
2950 /* The stack pointer is never dead. Well, not strictly true,
2951 but it's very difficult to tell from here. Hopefully
2952 combine_stack_adjustments will fix up the most egregious
2953 errors. */
2954 && regno_first != STACK_POINTER_REGNUM)
2956 for (i = regno_first; i <= regno_last; ++i)
2957 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2959 if ((pbi->flags & PROP_REG_INFO)
2960 && REGNO_REG_SET_P (pbi->reg_live, i))
2962 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2963 reg_deaths[i] = 0;
2965 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2967 if (flags & PROP_DEAD_INSN)
2968 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, reg), insn);
2971 else if (REG_P (reg))
2973 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2974 pbi->reg_next_use[regno_first] = 0;
2976 if ((flags & PROP_REG_INFO) != 0
2977 && (flags & PROP_ASM_SCAN) != 0
2978 && regno_first < FIRST_PSEUDO_REGISTER)
2980 for (i = regno_first; i <= regno_last; i++)
2981 regs_asm_clobbered[i] = 1;
2985 /* If this is the last pass and this is a SCRATCH, show it will be dying
2986 here and count it. */
2987 else if (GET_CODE (reg) == SCRATCH)
2989 if (flags & PROP_DEATH_NOTES)
2990 REG_NOTES (insn)
2991 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2995 #ifdef HAVE_conditional_execution
2996 /* Mark REGNO conditionally dead.
2997 Return true if the register is now unconditionally dead. */
2999 static int
3000 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
3002 /* If this is a store to a predicate register, the value of the
3003 predicate is changing, we don't know that the predicate as seen
3004 before is the same as that seen after. Flush all dependent
3005 conditions from reg_cond_dead. This will make all such
3006 conditionally live registers unconditionally live. */
3007 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
3008 flush_reg_cond_reg (pbi, regno);
3010 /* If this is an unconditional store, remove any conditional
3011 life that may have existed. */
3012 if (cond == NULL_RTX)
3013 splay_tree_remove (pbi->reg_cond_dead, regno);
3014 else
3016 splay_tree_node node;
3017 struct reg_cond_life_info *rcli;
3018 rtx ncond;
3020 /* Otherwise this is a conditional set. Record that fact.
3021 It may have been conditionally used, or there may be a
3022 subsequent set with a complementary condition. */
3024 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
3025 if (node == NULL)
3027 /* The register was unconditionally live previously.
3028 Record the current condition as the condition under
3029 which it is dead. */
3030 rcli = xmalloc (sizeof (*rcli));
3031 rcli->condition = cond;
3032 rcli->stores = cond;
3033 rcli->orig_condition = const0_rtx;
3034 splay_tree_insert (pbi->reg_cond_dead, regno,
3035 (splay_tree_value) rcli);
3037 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3039 /* Not unconditionally dead. */
3040 return 0;
3042 else
3044 /* The register was conditionally live previously.
3045 Add the new condition to the old. */
3046 rcli = (struct reg_cond_life_info *) node->value;
3047 ncond = rcli->condition;
3048 ncond = ior_reg_cond (ncond, cond, 1);
3049 if (rcli->stores == const0_rtx)
3050 rcli->stores = cond;
3051 else if (rcli->stores != const1_rtx)
3052 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
3054 /* If the register is now unconditionally dead, remove the entry
3055 in the splay_tree. A register is unconditionally dead if the
3056 dead condition ncond is true. A register is also unconditionally
3057 dead if the sum of all conditional stores is an unconditional
3058 store (stores is true), and the dead condition is identically the
3059 same as the original dead condition initialized at the end of
3060 the block. This is a pointer compare, not an rtx_equal_p
3061 compare. */
3062 if (ncond == const1_rtx
3063 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
3064 splay_tree_remove (pbi->reg_cond_dead, regno);
3065 else
3067 rcli->condition = ncond;
3069 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3071 /* Not unconditionally dead. */
3072 return 0;
3077 return 1;
3080 /* Called from splay_tree_delete for pbi->reg_cond_life. */
3082 static void
3083 free_reg_cond_life_info (splay_tree_value value)
3085 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
3086 free (rcli);
3089 /* Helper function for flush_reg_cond_reg. */
3091 static int
3092 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
3094 struct reg_cond_life_info *rcli;
3095 int *xdata = (int *) data;
3096 unsigned int regno = xdata[0];
3098 /* Don't need to search if last flushed value was farther on in
3099 the in-order traversal. */
3100 if (xdata[1] >= (int) node->key)
3101 return 0;
3103 /* Splice out portions of the expression that refer to regno. */
3104 rcli = (struct reg_cond_life_info *) node->value;
3105 rcli->condition = elim_reg_cond (rcli->condition, regno);
3106 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3107 rcli->stores = elim_reg_cond (rcli->stores, regno);
3109 /* If the entire condition is now false, signal the node to be removed. */
3110 if (rcli->condition == const0_rtx)
3112 xdata[1] = node->key;
3113 return -1;
3115 else
3116 gcc_assert (rcli->condition != const1_rtx);
3118 return 0;
3121 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3123 static void
3124 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
3126 int pair[2];
3128 pair[0] = regno;
3129 pair[1] = -1;
3130 while (splay_tree_foreach (pbi->reg_cond_dead,
3131 flush_reg_cond_reg_1, pair) == -1)
3132 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3134 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3137 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3138 For ior/and, the ADD flag determines whether we want to add the new
3139 condition X to the old one unconditionally. If it is zero, we will
3140 only return a new expression if X allows us to simplify part of
3141 OLD, otherwise we return NULL to the caller.
3142 If ADD is nonzero, we will return a new condition in all cases. The
3143 toplevel caller of one of these functions should always pass 1 for
3144 ADD. */
3146 static rtx
3147 ior_reg_cond (rtx old, rtx x, int add)
3149 rtx op0, op1;
3151 if (COMPARISON_P (old))
3153 if (COMPARISON_P (x)
3154 && REVERSE_CONDEXEC_PREDICATES_P (x, old)
3155 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3156 return const1_rtx;
3157 if (GET_CODE (x) == GET_CODE (old)
3158 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3159 return old;
3160 if (! add)
3161 return NULL;
3162 return gen_rtx_IOR (0, old, x);
3165 switch (GET_CODE (old))
3167 case IOR:
3168 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3169 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3170 if (op0 != NULL || op1 != NULL)
3172 if (op0 == const0_rtx)
3173 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3174 if (op1 == const0_rtx)
3175 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3176 if (op0 == const1_rtx || op1 == const1_rtx)
3177 return const1_rtx;
3178 if (op0 == NULL)
3179 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3180 else if (rtx_equal_p (x, op0))
3181 /* (x | A) | x ~ (x | A). */
3182 return old;
3183 if (op1 == NULL)
3184 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3185 else if (rtx_equal_p (x, op1))
3186 /* (A | x) | x ~ (A | x). */
3187 return old;
3188 return gen_rtx_IOR (0, op0, op1);
3190 if (! add)
3191 return NULL;
3192 return gen_rtx_IOR (0, old, x);
3194 case AND:
3195 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3196 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3197 if (op0 != NULL || op1 != NULL)
3199 if (op0 == const1_rtx)
3200 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3201 if (op1 == const1_rtx)
3202 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3203 if (op0 == const0_rtx || op1 == const0_rtx)
3204 return const0_rtx;
3205 if (op0 == NULL)
3206 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3207 else if (rtx_equal_p (x, op0))
3208 /* (x & A) | x ~ x. */
3209 return op0;
3210 if (op1 == NULL)
3211 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3212 else if (rtx_equal_p (x, op1))
3213 /* (A & x) | x ~ x. */
3214 return op1;
3215 return gen_rtx_AND (0, op0, op1);
3217 if (! add)
3218 return NULL;
3219 return gen_rtx_IOR (0, old, x);
3221 case NOT:
3222 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3223 if (op0 != NULL)
3224 return not_reg_cond (op0);
3225 if (! add)
3226 return NULL;
3227 return gen_rtx_IOR (0, old, x);
3229 default:
3230 gcc_unreachable ();
3234 static rtx
3235 not_reg_cond (rtx x)
3237 if (x == const0_rtx)
3238 return const1_rtx;
3239 else if (x == const1_rtx)
3240 return const0_rtx;
3241 if (GET_CODE (x) == NOT)
3242 return XEXP (x, 0);
3243 if (COMPARISON_P (x)
3244 && REG_P (XEXP (x, 0)))
3246 gcc_assert (XEXP (x, 1) == const0_rtx);
3248 return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
3249 VOIDmode, XEXP (x, 0), const0_rtx);
3251 return gen_rtx_NOT (0, x);
3254 static rtx
3255 and_reg_cond (rtx old, rtx x, int add)
3257 rtx op0, op1;
3259 if (COMPARISON_P (old))
3261 if (COMPARISON_P (x)
3262 && GET_CODE (x) == reversed_comparison_code (old, NULL)
3263 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3264 return const0_rtx;
3265 if (GET_CODE (x) == GET_CODE (old)
3266 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3267 return old;
3268 if (! add)
3269 return NULL;
3270 return gen_rtx_AND (0, old, x);
3273 switch (GET_CODE (old))
3275 case IOR:
3276 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3277 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3278 if (op0 != NULL || op1 != NULL)
3280 if (op0 == const0_rtx)
3281 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3282 if (op1 == const0_rtx)
3283 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3284 if (op0 == const1_rtx || op1 == const1_rtx)
3285 return const1_rtx;
3286 if (op0 == NULL)
3287 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3288 else if (rtx_equal_p (x, op0))
3289 /* (x | A) & x ~ x. */
3290 return op0;
3291 if (op1 == NULL)
3292 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3293 else if (rtx_equal_p (x, op1))
3294 /* (A | x) & x ~ x. */
3295 return op1;
3296 return gen_rtx_IOR (0, op0, op1);
3298 if (! add)
3299 return NULL;
3300 return gen_rtx_AND (0, old, x);
3302 case AND:
3303 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3304 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3305 if (op0 != NULL || op1 != NULL)
3307 if (op0 == const1_rtx)
3308 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3309 if (op1 == const1_rtx)
3310 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3311 if (op0 == const0_rtx || op1 == const0_rtx)
3312 return const0_rtx;
3313 if (op0 == NULL)
3314 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3315 else if (rtx_equal_p (x, op0))
3316 /* (x & A) & x ~ (x & A). */
3317 return old;
3318 if (op1 == NULL)
3319 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3320 else if (rtx_equal_p (x, op1))
3321 /* (A & x) & x ~ (A & x). */
3322 return old;
3323 return gen_rtx_AND (0, op0, op1);
3325 if (! add)
3326 return NULL;
3327 return gen_rtx_AND (0, old, x);
3329 case NOT:
3330 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3331 if (op0 != NULL)
3332 return not_reg_cond (op0);
3333 if (! add)
3334 return NULL;
3335 return gen_rtx_AND (0, old, x);
3337 default:
3338 gcc_unreachable ();
3342 /* Given a condition X, remove references to reg REGNO and return the
3343 new condition. The removal will be done so that all conditions
3344 involving REGNO are considered to evaluate to false. This function
3345 is used when the value of REGNO changes. */
3347 static rtx
3348 elim_reg_cond (rtx x, unsigned int regno)
3350 rtx op0, op1;
3352 if (COMPARISON_P (x))
3354 if (REGNO (XEXP (x, 0)) == regno)
3355 return const0_rtx;
3356 return x;
3359 switch (GET_CODE (x))
3361 case AND:
3362 op0 = elim_reg_cond (XEXP (x, 0), regno);
3363 op1 = elim_reg_cond (XEXP (x, 1), regno);
3364 if (op0 == const0_rtx || op1 == const0_rtx)
3365 return const0_rtx;
3366 if (op0 == const1_rtx)
3367 return op1;
3368 if (op1 == const1_rtx)
3369 return op0;
3370 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3371 return x;
3372 return gen_rtx_AND (0, op0, op1);
3374 case IOR:
3375 op0 = elim_reg_cond (XEXP (x, 0), regno);
3376 op1 = elim_reg_cond (XEXP (x, 1), regno);
3377 if (op0 == const1_rtx || op1 == const1_rtx)
3378 return const1_rtx;
3379 if (op0 == const0_rtx)
3380 return op1;
3381 if (op1 == const0_rtx)
3382 return op0;
3383 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3384 return x;
3385 return gen_rtx_IOR (0, op0, op1);
3387 case NOT:
3388 op0 = elim_reg_cond (XEXP (x, 0), regno);
3389 if (op0 == const0_rtx)
3390 return const1_rtx;
3391 if (op0 == const1_rtx)
3392 return const0_rtx;
3393 if (op0 != XEXP (x, 0))
3394 return not_reg_cond (op0);
3395 return x;
3397 default:
3398 gcc_unreachable ();
3401 #endif /* HAVE_conditional_execution */
3403 #ifdef AUTO_INC_DEC
3405 /* Try to substitute the auto-inc expression INC as the address inside
3406 MEM which occurs in INSN. Currently, the address of MEM is an expression
3407 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3408 that has a single set whose source is a PLUS of INCR_REG and something
3409 else. */
3411 static void
3412 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3413 rtx mem, rtx incr, rtx incr_reg)
3415 int regno = REGNO (incr_reg);
3416 rtx set = single_set (incr);
3417 rtx q = SET_DEST (set);
3418 rtx y = SET_SRC (set);
3419 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3420 int changed;
3422 /* Make sure this reg appears only once in this insn. */
3423 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3424 return;
3426 if (dead_or_set_p (incr, incr_reg)
3427 /* Mustn't autoinc an eliminable register. */
3428 && (regno >= FIRST_PSEUDO_REGISTER
3429 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3431 /* This is the simple case. Try to make the auto-inc. If
3432 we can't, we are done. Otherwise, we will do any
3433 needed updates below. */
3434 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3435 return;
3437 else if (REG_P (q)
3438 /* PREV_INSN used here to check the semi-open interval
3439 [insn,incr). */
3440 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3441 /* We must also check for sets of q as q may be
3442 a call clobbered hard register and there may
3443 be a call between PREV_INSN (insn) and incr. */
3444 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3446 /* We have *p followed sometime later by q = p+size.
3447 Both p and q must be live afterward,
3448 and q is not used between INSN and its assignment.
3449 Change it to q = p, ...*q..., q = q+size.
3450 Then fall into the usual case. */
3451 rtx insns, temp;
3453 start_sequence ();
3454 emit_move_insn (q, incr_reg);
3455 insns = get_insns ();
3456 end_sequence ();
3458 /* If we can't make the auto-inc, or can't make the
3459 replacement into Y, exit. There's no point in making
3460 the change below if we can't do the auto-inc and doing
3461 so is not correct in the pre-inc case. */
3463 XEXP (inc, 0) = q;
3464 validate_change (insn, &XEXP (mem, 0), inc, 1);
3465 validate_change (incr, &XEXP (y, opnum), q, 1);
3466 if (! apply_change_group ())
3467 return;
3469 /* We now know we'll be doing this change, so emit the
3470 new insn(s) and do the updates. */
3471 emit_insn_before (insns, insn);
3473 if (BB_HEAD (pbi->bb) == insn)
3474 BB_HEAD (pbi->bb) = insns;
3476 /* INCR will become a NOTE and INSN won't contain a
3477 use of INCR_REG. If a use of INCR_REG was just placed in
3478 the insn before INSN, make that the next use.
3479 Otherwise, invalidate it. */
3480 if (NONJUMP_INSN_P (PREV_INSN (insn))
3481 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3482 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3483 pbi->reg_next_use[regno] = PREV_INSN (insn);
3484 else
3485 pbi->reg_next_use[regno] = 0;
3487 incr_reg = q;
3488 regno = REGNO (q);
3490 if ((pbi->flags & PROP_REG_INFO)
3491 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3492 reg_deaths[regno] = pbi->insn_num;
3494 /* REGNO is now used in INCR which is below INSN, but
3495 it previously wasn't live here. If we don't mark
3496 it as live, we'll put a REG_DEAD note for it
3497 on this insn, which is incorrect. */
3498 SET_REGNO_REG_SET (pbi->reg_live, regno);
3500 /* If there are any calls between INSN and INCR, show
3501 that REGNO now crosses them. */
3502 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3503 if (CALL_P (temp))
3504 REG_N_CALLS_CROSSED (regno)++;
3506 /* Invalidate alias info for Q since we just changed its value. */
3507 clear_reg_alias_info (q);
3509 else
3510 return;
3512 /* If we haven't returned, it means we were able to make the
3513 auto-inc, so update the status. First, record that this insn
3514 has an implicit side effect. */
3516 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3518 /* Modify the old increment-insn to simply copy
3519 the already-incremented value of our register. */
3520 changed = validate_change (incr, &SET_SRC (set), incr_reg, 0);
3521 gcc_assert (changed);
3523 /* If that makes it a no-op (copying the register into itself) delete
3524 it so it won't appear to be a "use" and a "set" of this
3525 register. */
3526 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3528 /* If the original source was dead, it's dead now. */
3529 rtx note;
3531 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3533 remove_note (incr, note);
3534 if (XEXP (note, 0) != incr_reg)
3536 unsigned int regno = REGNO (XEXP (note, 0));
3538 if ((pbi->flags & PROP_REG_INFO)
3539 && REGNO_REG_SET_P (pbi->reg_live, regno))
3541 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3542 reg_deaths[regno] = 0;
3544 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3548 SET_INSN_DELETED (incr);
3551 if (regno >= FIRST_PSEUDO_REGISTER)
3553 /* Count an extra reference to the reg. When a reg is
3554 incremented, spilling it is worse, so we want to make
3555 that less likely. */
3556 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3558 /* Count the increment as a setting of the register,
3559 even though it isn't a SET in rtl. */
3560 REG_N_SETS (regno)++;
3564 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3565 reference. */
3567 static void
3568 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3570 rtx addr = XEXP (x, 0);
3571 HOST_WIDE_INT offset = 0;
3572 rtx set, y, incr, inc_val;
3573 int regno;
3574 int size = GET_MODE_SIZE (GET_MODE (x));
3576 if (JUMP_P (insn))
3577 return;
3579 /* Here we detect use of an index register which might be good for
3580 postincrement, postdecrement, preincrement, or predecrement. */
3582 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3583 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3585 if (!REG_P (addr))
3586 return;
3588 regno = REGNO (addr);
3590 /* Is the next use an increment that might make auto-increment? */
3591 incr = pbi->reg_next_use[regno];
3592 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3593 return;
3594 set = single_set (incr);
3595 if (set == 0 || GET_CODE (set) != SET)
3596 return;
3597 y = SET_SRC (set);
3599 if (GET_CODE (y) != PLUS)
3600 return;
3602 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3603 inc_val = XEXP (y, 1);
3604 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3605 inc_val = XEXP (y, 0);
3606 else
3607 return;
3609 if (GET_CODE (inc_val) == CONST_INT)
3611 if (HAVE_POST_INCREMENT
3612 && (INTVAL (inc_val) == size && offset == 0))
3613 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3614 incr, addr);
3615 else if (HAVE_POST_DECREMENT
3616 && (INTVAL (inc_val) == -size && offset == 0))
3617 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3618 incr, addr);
3619 else if (HAVE_PRE_INCREMENT
3620 && (INTVAL (inc_val) == size && offset == size))
3621 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3622 incr, addr);
3623 else if (HAVE_PRE_DECREMENT
3624 && (INTVAL (inc_val) == -size && offset == -size))
3625 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3626 incr, addr);
3627 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3628 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3629 gen_rtx_PLUS (Pmode,
3630 addr,
3631 inc_val)),
3632 insn, x, incr, addr);
3633 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3634 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3635 gen_rtx_PLUS (Pmode,
3636 addr,
3637 inc_val)),
3638 insn, x, incr, addr);
3640 else if (REG_P (inc_val)
3641 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3642 NEXT_INSN (incr)))
3645 if (HAVE_POST_MODIFY_REG && offset == 0)
3646 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3647 gen_rtx_PLUS (Pmode,
3648 addr,
3649 inc_val)),
3650 insn, x, incr, addr);
3654 #endif /* AUTO_INC_DEC */
3656 static void
3657 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3658 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3660 unsigned int regno_first, regno_last, i;
3661 int some_was_live, some_was_dead, some_not_set;
3663 regno_last = regno_first = REGNO (reg);
3664 if (regno_first < FIRST_PSEUDO_REGISTER)
3665 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3667 /* Find out if any of this register is live after this instruction. */
3668 some_was_live = some_was_dead = 0;
3669 for (i = regno_first; i <= regno_last; ++i)
3671 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3672 some_was_live |= needed_regno;
3673 some_was_dead |= ! needed_regno;
3676 /* Find out if any of the register was set this insn. */
3677 some_not_set = 0;
3678 for (i = regno_first; i <= regno_last; ++i)
3679 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3681 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3683 /* Record where each reg is used, so when the reg is set we know
3684 the next insn that uses it. */
3685 pbi->reg_next_use[regno_first] = insn;
3688 if (pbi->flags & PROP_REG_INFO)
3690 if (regno_first < FIRST_PSEUDO_REGISTER)
3692 /* If this is a register we are going to try to eliminate,
3693 don't mark it live here. If we are successful in
3694 eliminating it, it need not be live unless it is used for
3695 pseudos, in which case it will have been set live when it
3696 was allocated to the pseudos. If the register will not
3697 be eliminated, reload will set it live at that point.
3699 Otherwise, record that this function uses this register. */
3700 /* ??? The PPC backend tries to "eliminate" on the pic
3701 register to itself. This should be fixed. In the mean
3702 time, hack around it. */
3704 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3705 && (regno_first == FRAME_POINTER_REGNUM
3706 || regno_first == ARG_POINTER_REGNUM)))
3707 for (i = regno_first; i <= regno_last; ++i)
3708 regs_ever_live[i] = 1;
3710 else
3712 /* Keep track of which basic block each reg appears in. */
3714 int blocknum = pbi->bb->index;
3715 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3716 REG_BASIC_BLOCK (regno_first) = blocknum;
3717 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3718 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3720 /* Count (weighted) number of uses of each reg. */
3721 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3722 REG_N_REFS (regno_first)++;
3724 for (i = regno_first; i <= regno_last; ++i)
3725 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3727 gcc_assert (!reg_deaths[i]);
3728 reg_deaths[i] = pbi->insn_num;
3732 /* Record and count the insns in which a reg dies. If it is used in
3733 this insn and was dead below the insn then it dies in this insn.
3734 If it was set in this insn, we do not make a REG_DEAD note;
3735 likewise if we already made such a note. */
3736 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3737 && some_was_dead
3738 && some_not_set)
3740 /* Check for the case where the register dying partially
3741 overlaps the register set by this insn. */
3742 if (regno_first != regno_last)
3743 for (i = regno_first; i <= regno_last; ++i)
3744 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3746 /* If none of the words in X is needed, make a REG_DEAD note.
3747 Otherwise, we must make partial REG_DEAD notes. */
3748 if (! some_was_live)
3750 if ((pbi->flags & PROP_DEATH_NOTES)
3751 && ! find_regno_note (insn, REG_DEAD, regno_first))
3752 REG_NOTES (insn)
3753 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3755 if (pbi->flags & PROP_REG_INFO)
3756 REG_N_DEATHS (regno_first)++;
3758 else
3760 /* Don't make a REG_DEAD note for a part of a register
3761 that is set in the insn. */
3762 for (i = regno_first; i <= regno_last; ++i)
3763 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3764 && ! dead_or_set_regno_p (insn, i))
3765 REG_NOTES (insn)
3766 = alloc_EXPR_LIST (REG_DEAD,
3767 regno_reg_rtx[i],
3768 REG_NOTES (insn));
3772 /* Mark the register as being live. */
3773 for (i = regno_first; i <= regno_last; ++i)
3775 #ifdef HAVE_conditional_execution
3776 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3777 #endif
3779 SET_REGNO_REG_SET (pbi->reg_live, i);
3781 #ifdef HAVE_conditional_execution
3782 /* If this is a conditional use, record that fact. If it is later
3783 conditionally set, we'll know to kill the register. */
3784 if (cond != NULL_RTX)
3786 splay_tree_node node;
3787 struct reg_cond_life_info *rcli;
3788 rtx ncond;
3790 if (this_was_live)
3792 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3793 if (node == NULL)
3795 /* The register was unconditionally live previously.
3796 No need to do anything. */
3798 else
3800 /* The register was conditionally live previously.
3801 Subtract the new life cond from the old death cond. */
3802 rcli = (struct reg_cond_life_info *) node->value;
3803 ncond = rcli->condition;
3804 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3806 /* If the register is now unconditionally live,
3807 remove the entry in the splay_tree. */
3808 if (ncond == const0_rtx)
3809 splay_tree_remove (pbi->reg_cond_dead, i);
3810 else
3812 rcli->condition = ncond;
3813 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3814 REGNO (XEXP (cond, 0)));
3818 else
3820 /* The register was not previously live at all. Record
3821 the condition under which it is still dead. */
3822 rcli = xmalloc (sizeof (*rcli));
3823 rcli->condition = not_reg_cond (cond);
3824 rcli->stores = const0_rtx;
3825 rcli->orig_condition = const0_rtx;
3826 splay_tree_insert (pbi->reg_cond_dead, i,
3827 (splay_tree_value) rcli);
3829 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3832 else if (this_was_live)
3834 /* The register may have been conditionally live previously, but
3835 is now unconditionally live. Remove it from the conditionally
3836 dead list, so that a conditional set won't cause us to think
3837 it dead. */
3838 splay_tree_remove (pbi->reg_cond_dead, i);
3840 #endif
3844 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3845 This is done assuming the registers needed from X are those that
3846 have 1-bits in PBI->REG_LIVE.
3848 INSN is the containing instruction. If INSN is dead, this function
3849 is not called. */
3851 static void
3852 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3854 RTX_CODE code;
3855 int regno;
3856 int flags = pbi->flags;
3858 retry:
3859 if (!x)
3860 return;
3861 code = GET_CODE (x);
3862 switch (code)
3864 case LABEL_REF:
3865 case SYMBOL_REF:
3866 case CONST_INT:
3867 case CONST:
3868 case CONST_DOUBLE:
3869 case CONST_VECTOR:
3870 case PC:
3871 case ADDR_VEC:
3872 case ADDR_DIFF_VEC:
3873 return;
3875 #ifdef HAVE_cc0
3876 case CC0:
3877 pbi->cc0_live = 1;
3878 return;
3879 #endif
3881 case CLOBBER:
3882 /* If we are clobbering a MEM, mark any registers inside the address
3883 as being used. */
3884 if (MEM_P (XEXP (x, 0)))
3885 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3886 return;
3888 case MEM:
3889 /* Don't bother watching stores to mems if this is not the
3890 final pass. We'll not be deleting dead stores this round. */
3891 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3893 /* Invalidate the data for the last MEM stored, but only if MEM is
3894 something that can be stored into. */
3895 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3896 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3897 /* Needn't clear the memory set list. */
3899 else
3901 rtx temp = pbi->mem_set_list;
3902 rtx prev = NULL_RTX;
3903 rtx next;
3905 while (temp)
3907 next = XEXP (temp, 1);
3908 if (anti_dependence (XEXP (temp, 0), x))
3910 /* Splice temp out of the list. */
3911 if (prev)
3912 XEXP (prev, 1) = next;
3913 else
3914 pbi->mem_set_list = next;
3915 free_EXPR_LIST_node (temp);
3916 pbi->mem_set_list_len--;
3918 else
3919 prev = temp;
3920 temp = next;
3924 /* If the memory reference had embedded side effects (autoincrement
3925 address modes. Then we may need to kill some entries on the
3926 memory set list. */
3927 if (insn)
3928 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3931 #ifdef AUTO_INC_DEC
3932 if (flags & PROP_AUTOINC)
3933 find_auto_inc (pbi, x, insn);
3934 #endif
3935 break;
3937 case SUBREG:
3938 #ifdef CANNOT_CHANGE_MODE_CLASS
3939 if (flags & PROP_REG_INFO)
3940 record_subregs_of_mode (x);
3941 #endif
3943 /* While we're here, optimize this case. */
3944 x = SUBREG_REG (x);
3945 if (!REG_P (x))
3946 goto retry;
3947 /* Fall through. */
3949 case REG:
3950 /* See a register other than being set => mark it as needed. */
3951 mark_used_reg (pbi, x, cond, insn);
3952 return;
3954 case SET:
3956 rtx testreg = SET_DEST (x);
3957 int mark_dest = 0;
3959 /* If storing into MEM, don't show it as being used. But do
3960 show the address as being used. */
3961 if (MEM_P (testreg))
3963 #ifdef AUTO_INC_DEC
3964 if (flags & PROP_AUTOINC)
3965 find_auto_inc (pbi, testreg, insn);
3966 #endif
3967 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3968 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3969 return;
3972 /* Storing in STRICT_LOW_PART is like storing in a reg
3973 in that this SET might be dead, so ignore it in TESTREG.
3974 but in some other ways it is like using the reg.
3976 Storing in a SUBREG or a bit field is like storing the entire
3977 register in that if the register's value is not used
3978 then this SET is not needed. */
3979 while (GET_CODE (testreg) == STRICT_LOW_PART
3980 || GET_CODE (testreg) == ZERO_EXTRACT
3981 || GET_CODE (testreg) == SUBREG)
3983 #ifdef CANNOT_CHANGE_MODE_CLASS
3984 if ((flags & PROP_REG_INFO) && GET_CODE (testreg) == SUBREG)
3985 record_subregs_of_mode (testreg);
3986 #endif
3988 /* Modifying a single register in an alternate mode
3989 does not use any of the old value. But these other
3990 ways of storing in a register do use the old value. */
3991 if (GET_CODE (testreg) == SUBREG
3992 && !((REG_BYTES (SUBREG_REG (testreg))
3993 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3994 > (REG_BYTES (testreg)
3995 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3997 else
3998 mark_dest = 1;
4000 testreg = XEXP (testreg, 0);
4003 /* If this is a store into a register or group of registers,
4004 recursively scan the value being stored. */
4006 if ((GET_CODE (testreg) == PARALLEL
4007 && GET_MODE (testreg) == BLKmode)
4008 || (REG_P (testreg)
4009 && (regno = REGNO (testreg),
4010 ! (regno == FRAME_POINTER_REGNUM
4011 && (! reload_completed || frame_pointer_needed)))
4012 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4013 && ! (regno == HARD_FRAME_POINTER_REGNUM
4014 && (! reload_completed || frame_pointer_needed))
4015 #endif
4016 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4017 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
4018 #endif
4021 if (mark_dest)
4022 mark_used_regs (pbi, SET_DEST (x), cond, insn);
4023 mark_used_regs (pbi, SET_SRC (x), cond, insn);
4024 return;
4027 break;
4029 case ASM_OPERANDS:
4030 case UNSPEC_VOLATILE:
4031 case TRAP_IF:
4032 case ASM_INPUT:
4034 /* Traditional and volatile asm instructions must be considered to use
4035 and clobber all hard registers, all pseudo-registers and all of
4036 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
4038 Consider for instance a volatile asm that changes the fpu rounding
4039 mode. An insn should not be moved across this even if it only uses
4040 pseudo-regs because it might give an incorrectly rounded result.
4042 ?!? Unfortunately, marking all hard registers as live causes massive
4043 problems for the register allocator and marking all pseudos as live
4044 creates mountains of uninitialized variable warnings.
4046 So for now, just clear the memory set list and mark any regs
4047 we can find in ASM_OPERANDS as used. */
4048 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
4050 free_EXPR_LIST_list (&pbi->mem_set_list);
4051 pbi->mem_set_list_len = 0;
4054 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
4055 We can not just fall through here since then we would be confused
4056 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
4057 traditional asms unlike their normal usage. */
4058 if (code == ASM_OPERANDS)
4060 int j;
4062 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
4063 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
4065 break;
4068 case COND_EXEC:
4069 gcc_assert (!cond);
4071 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
4073 cond = COND_EXEC_TEST (x);
4074 x = COND_EXEC_CODE (x);
4075 goto retry;
4077 default:
4078 break;
4081 /* Recursively scan the operands of this expression. */
4084 const char * const fmt = GET_RTX_FORMAT (code);
4085 int i;
4087 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4089 if (fmt[i] == 'e')
4091 /* Tail recursive case: save a function call level. */
4092 if (i == 0)
4094 x = XEXP (x, 0);
4095 goto retry;
4097 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4099 else if (fmt[i] == 'E')
4101 int j;
4102 for (j = 0; j < XVECLEN (x, i); j++)
4103 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4109 #ifdef AUTO_INC_DEC
4111 static int
4112 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
4114 /* Find the next use of this reg. If in same basic block,
4115 make it do pre-increment or pre-decrement if appropriate. */
4116 rtx x = single_set (insn);
4117 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4118 * INTVAL (XEXP (SET_SRC (x), 1)));
4119 int regno = REGNO (SET_DEST (x));
4120 rtx y = pbi->reg_next_use[regno];
4121 if (y != 0
4122 && SET_DEST (x) != stack_pointer_rtx
4123 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4124 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4125 mode would be better. */
4126 && ! dead_or_set_p (y, SET_DEST (x))
4127 && try_pre_increment (y, SET_DEST (x), amount))
4129 /* We have found a suitable auto-increment and already changed
4130 insn Y to do it. So flush this increment instruction. */
4131 propagate_block_delete_insn (insn);
4133 /* Count a reference to this reg for the increment insn we are
4134 deleting. When a reg is incremented, spilling it is worse,
4135 so we want to make that less likely. */
4136 if (regno >= FIRST_PSEUDO_REGISTER)
4138 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4139 REG_N_SETS (regno)++;
4142 /* Flush any remembered memories depending on the value of
4143 the incremented register. */
4144 invalidate_mems_from_set (pbi, SET_DEST (x));
4146 return 1;
4148 return 0;
4151 /* Try to change INSN so that it does pre-increment or pre-decrement
4152 addressing on register REG in order to add AMOUNT to REG.
4153 AMOUNT is negative for pre-decrement.
4154 Returns 1 if the change could be made.
4155 This checks all about the validity of the result of modifying INSN. */
4157 static int
4158 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4160 rtx use;
4162 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4163 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4164 int pre_ok = 0;
4165 /* Nonzero if we can try to make a post-increment or post-decrement.
4166 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4167 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4168 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4169 int post_ok = 0;
4171 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4172 int do_post = 0;
4174 /* From the sign of increment, see which possibilities are conceivable
4175 on this target machine. */
4176 if (HAVE_PRE_INCREMENT && amount > 0)
4177 pre_ok = 1;
4178 if (HAVE_POST_INCREMENT && amount > 0)
4179 post_ok = 1;
4181 if (HAVE_PRE_DECREMENT && amount < 0)
4182 pre_ok = 1;
4183 if (HAVE_POST_DECREMENT && amount < 0)
4184 post_ok = 1;
4186 if (! (pre_ok || post_ok))
4187 return 0;
4189 /* It is not safe to add a side effect to a jump insn
4190 because if the incremented register is spilled and must be reloaded
4191 there would be no way to store the incremented value back in memory. */
4193 if (JUMP_P (insn))
4194 return 0;
4196 use = 0;
4197 if (pre_ok)
4198 use = find_use_as_address (PATTERN (insn), reg, 0);
4199 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4201 use = find_use_as_address (PATTERN (insn), reg, -amount);
4202 do_post = 1;
4205 if (use == 0 || use == (rtx) (size_t) 1)
4206 return 0;
4208 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4209 return 0;
4211 /* See if this combination of instruction and addressing mode exists. */
4212 if (! validate_change (insn, &XEXP (use, 0),
4213 gen_rtx_fmt_e (amount > 0
4214 ? (do_post ? POST_INC : PRE_INC)
4215 : (do_post ? POST_DEC : PRE_DEC),
4216 Pmode, reg), 0))
4217 return 0;
4219 /* Record that this insn now has an implicit side effect on X. */
4220 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4221 return 1;
4224 #endif /* AUTO_INC_DEC */
4226 /* Find the place in the rtx X where REG is used as a memory address.
4227 Return the MEM rtx that so uses it.
4228 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4229 (plus REG (const_int PLUSCONST)).
4231 If such an address does not appear, return 0.
4232 If REG appears more than once, or is used other than in such an address,
4233 return (rtx) 1. */
4236 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4238 enum rtx_code code = GET_CODE (x);
4239 const char * const fmt = GET_RTX_FORMAT (code);
4240 int i;
4241 rtx value = 0;
4242 rtx tem;
4244 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4245 return x;
4247 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4248 && XEXP (XEXP (x, 0), 0) == reg
4249 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4250 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4251 return x;
4253 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4255 /* If REG occurs inside a MEM used in a bit-field reference,
4256 that is unacceptable. */
4257 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4258 return (rtx) (size_t) 1;
4261 if (x == reg)
4262 return (rtx) (size_t) 1;
4264 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4266 if (fmt[i] == 'e')
4268 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4269 if (value == 0)
4270 value = tem;
4271 else if (tem != 0)
4272 return (rtx) (size_t) 1;
4274 else if (fmt[i] == 'E')
4276 int j;
4277 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4279 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4280 if (value == 0)
4281 value = tem;
4282 else if (tem != 0)
4283 return (rtx) (size_t) 1;
4288 return value;
4291 /* Write information about registers and basic blocks into FILE.
4292 This is part of making a debugging dump. */
4294 void
4295 dump_regset (regset r, FILE *outf)
4297 unsigned i;
4298 reg_set_iterator rsi;
4300 if (r == NULL)
4302 fputs (" (nil)", outf);
4303 return;
4306 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
4308 fprintf (outf, " %d", i);
4309 if (i < FIRST_PSEUDO_REGISTER)
4310 fprintf (outf, " [%s]",
4311 reg_names[i]);
4315 /* Print a human-readable representation of R on the standard error
4316 stream. This function is designed to be used from within the
4317 debugger. */
4319 void
4320 debug_regset (regset r)
4322 dump_regset (r, stderr);
4323 putc ('\n', stderr);
4326 /* Recompute register set/reference counts immediately prior to register
4327 allocation.
4329 This avoids problems with set/reference counts changing to/from values
4330 which have special meanings to the register allocators.
4332 Additionally, the reference counts are the primary component used by the
4333 register allocators to prioritize pseudos for allocation to hard regs.
4334 More accurate reference counts generally lead to better register allocation.
4336 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4337 possibly other information which is used by the register allocators. */
4339 void
4340 recompute_reg_usage (void)
4342 allocate_reg_life_data ();
4343 /* distribute_notes in combiner fails to convert some of the
4344 REG_UNUSED notes to REG_DEAD notes. This causes CHECK_DEAD_NOTES
4345 in sched1 to die. To solve this update the DEATH_NOTES
4346 here. */
4347 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4350 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4351 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4352 of the number of registers that died. */
4355 count_or_remove_death_notes (sbitmap blocks, int kill)
4357 int count = 0;
4358 int i;
4359 basic_block bb;
4361 /* This used to be a loop over all the blocks with a membership test
4362 inside the loop. That can be amazingly expensive on a large CFG
4363 when only a small number of bits are set in BLOCKs (for example,
4364 the calls from the scheduler typically have very few bits set).
4366 For extra credit, someone should convert BLOCKS to a bitmap rather
4367 than an sbitmap. */
4368 if (blocks)
4370 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4372 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4375 else
4377 FOR_EACH_BB (bb)
4379 count += count_or_remove_death_notes_bb (bb, kill);
4383 return count;
4386 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4387 block BB. Returns a count of the number of registers that died. */
4389 static int
4390 count_or_remove_death_notes_bb (basic_block bb, int kill)
4392 int count = 0;
4393 rtx insn;
4395 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4397 if (INSN_P (insn))
4399 rtx *pprev = &REG_NOTES (insn);
4400 rtx link = *pprev;
4402 while (link)
4404 switch (REG_NOTE_KIND (link))
4406 case REG_DEAD:
4407 if (REG_P (XEXP (link, 0)))
4409 rtx reg = XEXP (link, 0);
4410 int n;
4412 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4413 n = 1;
4414 else
4415 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4416 count += n;
4419 /* Fall through. */
4421 case REG_UNUSED:
4422 if (kill)
4424 rtx next = XEXP (link, 1);
4425 free_EXPR_LIST_node (link);
4426 *pprev = link = next;
4427 break;
4429 /* Fall through. */
4431 default:
4432 pprev = &XEXP (link, 1);
4433 link = *pprev;
4434 break;
4439 if (insn == BB_END (bb))
4440 break;
4443 return count;
4446 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4447 if blocks is NULL. */
4449 static void
4450 clear_log_links (sbitmap blocks)
4452 rtx insn;
4453 int i;
4455 if (!blocks)
4457 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4458 if (INSN_P (insn))
4459 free_INSN_LIST_list (&LOG_LINKS (insn));
4461 else
4462 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4464 basic_block bb = BASIC_BLOCK (i);
4466 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4467 insn = NEXT_INSN (insn))
4468 if (INSN_P (insn))
4469 free_INSN_LIST_list (&LOG_LINKS (insn));
4473 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4474 correspond to the hard registers, if any, set in that map. This
4475 could be done far more efficiently by having all sorts of special-cases
4476 with moving single words, but probably isn't worth the trouble. */
4478 void
4479 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4481 unsigned i;
4482 bitmap_iterator bi;
4484 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4486 if (i >= FIRST_PSEUDO_REGISTER)
4487 return;
4488 SET_HARD_REG_BIT (*to, i);