1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Expander
; use Expander
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch7
; use Exp_Ch7
;
36 with Exp_Ch9
; use Exp_Ch9
;
37 with Exp_Dbug
; use Exp_Dbug
;
38 with Exp_Disp
; use Exp_Disp
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Exp_Util
; use Exp_Util
;
41 with Fname
; use Fname
;
42 with Freeze
; use Freeze
;
43 with Inline
; use Inline
;
44 with Itypes
; use Itypes
;
45 with Lib
.Xref
; use Lib
.Xref
;
46 with Layout
; use Layout
;
47 with Namet
; use Namet
;
49 with Nlists
; use Nlists
;
50 with Nmake
; use Nmake
;
52 with Output
; use Output
;
53 with Restrict
; use Restrict
;
54 with Rident
; use Rident
;
55 with Rtsfind
; use Rtsfind
;
57 with Sem_Aux
; use Sem_Aux
;
58 with Sem_Cat
; use Sem_Cat
;
59 with Sem_Ch3
; use Sem_Ch3
;
60 with Sem_Ch4
; use Sem_Ch4
;
61 with Sem_Ch5
; use Sem_Ch5
;
62 with Sem_Ch8
; use Sem_Ch8
;
63 with Sem_Ch10
; use Sem_Ch10
;
64 with Sem_Ch12
; use Sem_Ch12
;
65 with Sem_Ch13
; use Sem_Ch13
;
66 with Sem_Dim
; use Sem_Dim
;
67 with Sem_Disp
; use Sem_Disp
;
68 with Sem_Dist
; use Sem_Dist
;
69 with Sem_Elim
; use Sem_Elim
;
70 with Sem_Eval
; use Sem_Eval
;
71 with Sem_Mech
; use Sem_Mech
;
72 with Sem_Prag
; use Sem_Prag
;
73 with Sem_Res
; use Sem_Res
;
74 with Sem_Util
; use Sem_Util
;
75 with Sem_Type
; use Sem_Type
;
76 with Sem_Warn
; use Sem_Warn
;
77 with Sinput
; use Sinput
;
78 with Stand
; use Stand
;
79 with Sinfo
; use Sinfo
;
80 with Sinfo
.CN
; use Sinfo
.CN
;
81 with Snames
; use Snames
;
82 with Stringt
; use Stringt
;
84 with Stylesw
; use Stylesw
;
85 with Targparm
; use Targparm
;
86 with Tbuild
; use Tbuild
;
87 with Uintp
; use Uintp
;
88 with Urealp
; use Urealp
;
89 with Validsw
; use Validsw
;
91 package body Sem_Ch6
is
93 May_Hide_Profile
: Boolean := False;
94 -- This flag is used to indicate that two formals in two subprograms being
95 -- checked for conformance differ only in that one is an access parameter
96 -- while the other is of a general access type with the same designated
97 -- type. In this case, if the rest of the signatures match, a call to
98 -- either subprogram may be ambiguous, which is worth a warning. The flag
99 -- is set in Compatible_Types, and the warning emitted in
100 -- New_Overloaded_Entity.
102 -----------------------
103 -- Local Subprograms --
104 -----------------------
106 procedure Analyze_Null_Procedure
108 Is_Completion
: out Boolean);
109 -- A null procedure can be a declaration or (Ada 2012) a completion
111 procedure Analyze_Return_Statement
(N
: Node_Id
);
112 -- Common processing for simple and extended return statements
114 procedure Analyze_Function_Return
(N
: Node_Id
);
115 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
116 -- applies to a [generic] function.
118 procedure Analyze_Return_Type
(N
: Node_Id
);
119 -- Subsidiary to Process_Formals: analyze subtype mark in function
120 -- specification in a context where the formals are visible and hide
123 procedure Analyze_Subprogram_Body_Helper
(N
: Node_Id
);
124 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
125 -- that we can use RETURN but not skip the debug output at the end.
127 procedure Analyze_Generic_Subprogram_Body
(N
: Node_Id
; Gen_Id
: Entity_Id
);
128 -- Analyze a generic subprogram body. N is the body to be analyzed, and
129 -- Gen_Id is the defining entity Id for the corresponding spec.
131 function Can_Override_Operator
(Subp
: Entity_Id
) return Boolean;
132 -- Returns true if Subp can override a predefined operator.
134 procedure Check_Conformance
137 Ctype
: Conformance_Type
;
139 Conforms
: out Boolean;
140 Err_Loc
: Node_Id
:= Empty
;
141 Get_Inst
: Boolean := False;
142 Skip_Controlling_Formals
: Boolean := False);
143 -- Given two entities, this procedure checks that the profiles associated
144 -- with these entities meet the conformance criterion given by the third
145 -- parameter. If they conform, Conforms is set True and control returns
146 -- to the caller. If they do not conform, Conforms is set to False, and
147 -- in addition, if Errmsg is True on the call, proper messages are output
148 -- to complain about the conformance failure. If Err_Loc is non_Empty
149 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
150 -- error messages are placed on the appropriate part of the construct
151 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
152 -- against a formal access-to-subprogram type so Get_Instance_Of must
155 procedure Check_Subprogram_Order
(N
: Node_Id
);
156 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
157 -- the alpha ordering rule for N if this ordering requirement applicable.
159 procedure Check_Returns
163 Proc
: Entity_Id
:= Empty
);
164 -- Called to check for missing return statements in a function body, or for
165 -- returns present in a procedure body which has No_Return set. HSS is the
166 -- handled statement sequence for the subprogram body. This procedure
167 -- checks all flow paths to make sure they either have return (Mode = 'F',
168 -- used for functions) or do not have a return (Mode = 'P', used for
169 -- No_Return procedures). The flag Err is set if there are any control
170 -- paths not explicitly terminated by a return in the function case, and is
171 -- True otherwise. Proc is the entity for the procedure case and is used
172 -- in posting the warning message.
174 procedure Check_Untagged_Equality
(Eq_Op
: Entity_Id
);
175 -- In Ada 2012, a primitive equality operator on an untagged record type
176 -- must appear before the type is frozen, and have the same visibility as
177 -- that of the type. This procedure checks that this rule is met, and
178 -- otherwise emits an error on the subprogram declaration and a warning
179 -- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
180 -- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
181 -- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
182 -- is set, otherwise the call has no effect.
184 procedure Enter_Overloaded_Entity
(S
: Entity_Id
);
185 -- This procedure makes S, a new overloaded entity, into the first visible
186 -- entity with that name.
188 function Is_Non_Overriding_Operation
190 New_E
: Entity_Id
) return Boolean;
191 -- Enforce the rule given in 12.3(18): a private operation in an instance
192 -- overrides an inherited operation only if the corresponding operation
193 -- was overriding in the generic. This needs to be checked for primitive
194 -- operations of types derived (in the generic unit) from formal private
195 -- or formal derived types.
197 procedure Make_Inequality_Operator
(S
: Entity_Id
);
198 -- Create the declaration for an inequality operator that is implicitly
199 -- created by a user-defined equality operator that yields a boolean.
201 procedure Set_Formal_Validity
(Formal_Id
: Entity_Id
);
202 -- Formal_Id is an formal parameter entity. This procedure deals with
203 -- setting the proper validity status for this entity, which depends on
204 -- the kind of parameter and the validity checking mode.
206 ---------------------------------------------
207 -- Analyze_Abstract_Subprogram_Declaration --
208 ---------------------------------------------
210 procedure Analyze_Abstract_Subprogram_Declaration
(N
: Node_Id
) is
211 Designator
: constant Entity_Id
:=
212 Analyze_Subprogram_Specification
(Specification
(N
));
213 Scop
: constant Entity_Id
:= Current_Scope
;
216 Check_SPARK_05_Restriction
("abstract subprogram is not allowed", N
);
218 Generate_Definition
(Designator
);
219 Set_Contract
(Designator
, Make_Contract
(Sloc
(Designator
)));
220 Set_Is_Abstract_Subprogram
(Designator
);
221 New_Overloaded_Entity
(Designator
);
222 Check_Delayed_Subprogram
(Designator
);
224 Set_Categorization_From_Scope
(Designator
, Scop
);
226 -- An abstract subprogram declared within a Ghost scope is automatically
227 -- Ghost (SPARK RM 6.9(2)).
229 if Comes_From_Source
(Designator
) and then Within_Ghost_Scope
then
230 Set_Is_Ghost_Entity
(Designator
);
233 if Ekind
(Scope
(Designator
)) = E_Protected_Type
then
235 ("abstract subprogram not allowed in protected type", N
);
237 -- Issue a warning if the abstract subprogram is neither a dispatching
238 -- operation nor an operation that overrides an inherited subprogram or
239 -- predefined operator, since this most likely indicates a mistake.
241 elsif Warn_On_Redundant_Constructs
242 and then not Is_Dispatching_Operation
(Designator
)
243 and then not Present
(Overridden_Operation
(Designator
))
244 and then (not Is_Operator_Symbol_Name
(Chars
(Designator
))
245 or else Scop
/= Scope
(Etype
(First_Formal
(Designator
))))
248 ("abstract subprogram is not dispatching or overriding?r?", N
);
251 Generate_Reference_To_Formals
(Designator
);
252 Check_Eliminated
(Designator
);
254 if Has_Aspects
(N
) then
255 Analyze_Aspect_Specifications
(N
, Designator
);
257 end Analyze_Abstract_Subprogram_Declaration
;
259 ---------------------------------
260 -- Analyze_Expression_Function --
261 ---------------------------------
263 procedure Analyze_Expression_Function
(N
: Node_Id
) is
264 Loc
: constant Source_Ptr
:= Sloc
(N
);
265 LocX
: constant Source_Ptr
:= Sloc
(Expression
(N
));
266 Expr
: constant Node_Id
:= Expression
(N
);
267 Spec
: constant Node_Id
:= Specification
(N
);
272 -- If the expression is a completion, Prev is the entity whose
273 -- declaration is completed. Def_Id is needed to analyze the spec.
280 -- This is one of the occasions on which we transform the tree during
281 -- semantic analysis. If this is a completion, transform the expression
282 -- function into an equivalent subprogram body, and analyze it.
284 -- Expression functions are inlined unconditionally. The back-end will
285 -- determine whether this is possible.
287 Inline_Processing_Required
:= True;
289 -- Create a specification for the generated body. Types and defauts in
290 -- the profile are copies of the spec, but new entities must be created
291 -- for the unit name and the formals.
293 New_Spec
:= New_Copy_Tree
(Spec
);
294 Set_Defining_Unit_Name
(New_Spec
,
295 Make_Defining_Identifier
(Sloc
(Defining_Unit_Name
(Spec
)),
296 Chars
(Defining_Unit_Name
(Spec
))));
298 if Present
(Parameter_Specifications
(New_Spec
)) then
300 Formal_Spec
: Node_Id
;
304 Formal_Spec
:= First
(Parameter_Specifications
(New_Spec
));
306 -- Create a new formal parameter at the same source position
308 while Present
(Formal_Spec
) loop
309 Def
:= Defining_Identifier
(Formal_Spec
);
310 Set_Defining_Identifier
(Formal_Spec
,
311 Make_Defining_Identifier
(Sloc
(Def
),
312 Chars
=> Chars
(Def
)));
318 Prev
:= Current_Entity_In_Scope
(Defining_Entity
(Spec
));
320 -- If there are previous overloadable entities with the same name,
321 -- check whether any of them is completed by the expression function.
322 -- In a generic context a formal subprogram has no completion.
324 if Present
(Prev
) and then Is_Overloadable
(Prev
)
325 and then not Is_Formal_Subprogram
(Prev
)
327 Def_Id
:= Analyze_Subprogram_Specification
(Spec
);
328 Prev
:= Find_Corresponding_Spec
(N
);
330 -- The previous entity may be an expression function as well, in
331 -- which case the redeclaration is illegal.
334 and then Nkind
(Original_Node
(Unit_Declaration_Node
(Prev
)))
335 = N_Expression_Function
337 Error_Msg_N
("Duplicate expression function", N
);
342 Ret
:= Make_Simple_Return_Statement
(LocX
, Expression
(N
));
345 Make_Subprogram_Body
(Loc
,
346 Specification
=> New_Spec
,
347 Declarations
=> Empty_List
,
348 Handled_Statement_Sequence
=>
349 Make_Handled_Sequence_Of_Statements
(LocX
,
350 Statements
=> New_List
(Ret
)));
352 -- If the expression completes a generic subprogram, we must create a
353 -- separate node for the body, because at instantiation the original
354 -- node of the generic copy must be a generic subprogram body, and
355 -- cannot be a expression function. Otherwise we just rewrite the
356 -- expression with the non-generic body.
358 if Present
(Prev
) and then Ekind
(Prev
) = E_Generic_Function
then
359 Insert_After
(N
, New_Body
);
361 -- Propagate any aspects or pragmas that apply to the expression
362 -- function to the proper body when the expression function acts
365 if Has_Aspects
(N
) then
366 Move_Aspects
(N
, To
=> New_Body
);
369 Relocate_Pragmas_To_Body
(New_Body
);
371 Rewrite
(N
, Make_Null_Statement
(Loc
));
372 Set_Has_Completion
(Prev
, False);
375 Set_Is_Inlined
(Prev
);
377 -- If the expression function is a completion, the previous declaration
378 -- must come from source. We know already that appears in the current
379 -- scope. The entity itself may be internally created if within a body
382 elsif Present
(Prev
) and then Comes_From_Source
(Parent
(Prev
))
383 and then not Is_Formal_Subprogram
(Prev
)
385 Set_Has_Completion
(Prev
, False);
387 -- An expression function that is a completion freezes the
388 -- expression. This means freezing the return type, and if it is
389 -- an access type, freezing its designated type as well.
391 -- Note that we cannot defer this freezing to the analysis of the
392 -- expression itself, because a freeze node might appear in a nested
393 -- scope, leading to an elaboration order issue in gigi.
395 Freeze_Before
(N
, Etype
(Prev
));
397 if Is_Access_Type
(Etype
(Prev
)) then
398 Freeze_Before
(N
, Designated_Type
(Etype
(Prev
)));
401 -- For navigation purposes, indicate that the function is a body
403 Generate_Reference
(Prev
, Defining_Entity
(N
), 'b', Force
=> True);
404 Rewrite
(N
, New_Body
);
406 -- Correct the parent pointer of the aspect specification list to
407 -- reference the rewritten node.
409 if Has_Aspects
(N
) then
410 Set_Parent
(Aspect_Specifications
(N
), N
);
413 -- Propagate any pragmas that apply to the expression function to the
414 -- proper body when the expression function acts as a completion.
415 -- Aspects are automatically transfered because of node rewriting.
417 Relocate_Pragmas_To_Body
(N
);
420 -- Prev is the previous entity with the same name, but it is can
421 -- be an unrelated spec that is not completed by the expression
422 -- function. In that case the relevant entity is the one in the body.
423 -- Not clear that the backend can inline it in this case ???
425 if Has_Completion
(Prev
) then
426 Set_Is_Inlined
(Prev
);
428 -- The formals of the expression function are body formals,
429 -- and do not appear in the ali file, which will only contain
430 -- references to the formals of the original subprogram spec.
437 F1
:= First_Formal
(Def_Id
);
438 F2
:= First_Formal
(Prev
);
440 while Present
(F1
) loop
441 Set_Spec_Entity
(F1
, F2
);
448 Set_Is_Inlined
(Defining_Entity
(New_Body
));
451 -- If this is not a completion, create both a declaration and a body, so
452 -- that the expression can be inlined whenever possible.
455 -- An expression function that is not a completion is not a
456 -- subprogram declaration, and thus cannot appear in a protected
459 if Nkind
(Parent
(N
)) = N_Protected_Definition
then
461 ("an expression function is not a legal protected operation", N
);
464 Rewrite
(N
, Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
));
466 -- Correct the parent pointer of the aspect specification list to
467 -- reference the rewritten node.
469 if Has_Aspects
(N
) then
470 Set_Parent
(Aspect_Specifications
(N
), N
);
475 -- Within a generic pre-analyze the original expression for name
476 -- capture. The body is also generated but plays no role in
477 -- this because it is not part of the original source.
479 if Inside_A_Generic
then
481 Id
: constant Entity_Id
:= Defining_Entity
(N
);
484 Set_Has_Completion
(Id
);
486 Install_Formals
(Id
);
487 Preanalyze_Spec_Expression
(Expr
, Etype
(Id
));
492 Set_Is_Inlined
(Defining_Entity
(N
));
494 -- Establish the linkages between the spec and the body. These are
495 -- used when the expression function acts as the prefix of attribute
496 -- 'Access in order to freeze the original expression which has been
497 -- moved to the generated body.
499 Set_Corresponding_Body
(N
, Defining_Entity
(New_Body
));
500 Set_Corresponding_Spec
(New_Body
, Defining_Entity
(N
));
502 -- To prevent premature freeze action, insert the new body at the end
503 -- of the current declarations, or at the end of the package spec.
504 -- However, resolve usage names now, to prevent spurious visibility
505 -- on later entities. Note that the function can now be called in
506 -- the current declarative part, which will appear to be prior to
507 -- the presence of the body in the code. There are nevertheless no
508 -- order of elaboration issues because all name resolution has taken
509 -- place at the point of declaration.
512 Decls
: List_Id
:= List_Containing
(N
);
513 Par
: constant Node_Id
:= Parent
(Decls
);
514 Id
: constant Entity_Id
:= Defining_Entity
(N
);
517 -- If this is a wrapper created for in an instance for a formal
518 -- subprogram, insert body after declaration, to be analyzed when
519 -- the enclosing instance is analyzed.
522 and then Is_Generic_Actual_Subprogram
(Defining_Entity
(N
))
524 Insert_After
(N
, New_Body
);
527 if Nkind
(Par
) = N_Package_Specification
528 and then Decls
= Visible_Declarations
(Par
)
529 and then Present
(Private_Declarations
(Par
))
530 and then not Is_Empty_List
(Private_Declarations
(Par
))
532 Decls
:= Private_Declarations
(Par
);
535 Insert_After
(Last
(Decls
), New_Body
);
537 Install_Formals
(Id
);
539 -- Preanalyze the expression for name capture, except in an
540 -- instance, where this has been done during generic analysis,
541 -- and will be redone when analyzing the body.
544 Expr
: constant Node_Id
:= Expression
(Ret
);
547 Set_Parent
(Expr
, Ret
);
549 if not In_Instance
then
550 Preanalyze_Spec_Expression
(Expr
, Etype
(Id
));
559 -- If the return expression is a static constant, we suppress warning
560 -- messages on unused formals, which in most cases will be noise.
562 Set_Is_Trivial_Subprogram
(Defining_Entity
(New_Body
),
563 Is_OK_Static_Expression
(Expr
));
564 end Analyze_Expression_Function
;
566 ----------------------------------------
567 -- Analyze_Extended_Return_Statement --
568 ----------------------------------------
570 procedure Analyze_Extended_Return_Statement
(N
: Node_Id
) is
572 Check_Compiler_Unit
("extended return statement", N
);
573 Analyze_Return_Statement
(N
);
574 end Analyze_Extended_Return_Statement
;
576 ----------------------------
577 -- Analyze_Function_Call --
578 ----------------------------
580 procedure Analyze_Function_Call
(N
: Node_Id
) is
581 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
582 Func_Nam
: constant Node_Id
:= Name
(N
);
588 -- A call of the form A.B (X) may be an Ada 2005 call, which is
589 -- rewritten as B (A, X). If the rewriting is successful, the call
590 -- has been analyzed and we just return.
592 if Nkind
(Func_Nam
) = N_Selected_Component
593 and then Name
(N
) /= Func_Nam
594 and then Is_Rewrite_Substitution
(N
)
595 and then Present
(Etype
(N
))
600 -- If error analyzing name, then set Any_Type as result type and return
602 if Etype
(Func_Nam
) = Any_Type
then
603 Set_Etype
(N
, Any_Type
);
607 -- Otherwise analyze the parameters
609 if Present
(Actuals
) then
610 Actual
:= First
(Actuals
);
611 while Present
(Actual
) loop
613 Check_Parameterless_Call
(Actual
);
619 end Analyze_Function_Call
;
621 -----------------------------
622 -- Analyze_Function_Return --
623 -----------------------------
625 procedure Analyze_Function_Return
(N
: Node_Id
) is
626 Loc
: constant Source_Ptr
:= Sloc
(N
);
627 Stm_Entity
: constant Entity_Id
:= Return_Statement_Entity
(N
);
628 Scope_Id
: constant Entity_Id
:= Return_Applies_To
(Stm_Entity
);
630 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
631 -- Function result subtype
633 procedure Check_Limited_Return
(Expr
: Node_Id
);
634 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
635 -- limited types. Used only for simple return statements.
636 -- Expr is the expression returned.
638 procedure Check_Return_Subtype_Indication
(Obj_Decl
: Node_Id
);
639 -- Check that the return_subtype_indication properly matches the result
640 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
642 --------------------------
643 -- Check_Limited_Return --
644 --------------------------
646 procedure Check_Limited_Return
(Expr
: Node_Id
) is
648 -- Ada 2005 (AI-318-02): Return-by-reference types have been
649 -- removed and replaced by anonymous access results. This is an
650 -- incompatibility with Ada 95. Not clear whether this should be
651 -- enforced yet or perhaps controllable with special switch. ???
653 -- A limited interface that is not immutably limited is OK.
655 if Is_Limited_Interface
(R_Type
)
657 not (Is_Task_Interface
(R_Type
)
658 or else Is_Protected_Interface
(R_Type
)
659 or else Is_Synchronized_Interface
(R_Type
))
663 elsif Is_Limited_Type
(R_Type
)
664 and then not Is_Interface
(R_Type
)
665 and then Comes_From_Source
(N
)
666 and then not In_Instance_Body
667 and then not OK_For_Limited_Init_In_05
(R_Type
, Expr
)
671 if Ada_Version
>= Ada_2005
672 and then not Debug_Flag_Dot_L
673 and then not GNAT_Mode
676 ("(Ada 2005) cannot copy object of a limited type "
677 & "(RM-2005 6.5(5.5/2))", Expr
);
679 if Is_Limited_View
(R_Type
) then
681 ("\return by reference not permitted in Ada 2005", Expr
);
684 -- Warn in Ada 95 mode, to give folks a heads up about this
687 -- In GNAT mode, this is just a warning, to allow it to be
688 -- evilly turned off. Otherwise it is a real error.
690 -- In a generic context, simplify the warning because it makes
691 -- no sense to discuss pass-by-reference or copy.
693 elsif Warn_On_Ada_2005_Compatibility
or GNAT_Mode
then
694 if Inside_A_Generic
then
696 ("return of limited object not permitted in Ada 2005 "
697 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
699 elsif Is_Limited_View
(R_Type
) then
701 ("return by reference not permitted in Ada 2005 "
702 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
705 ("cannot copy object of a limited type in Ada 2005 "
706 & "(RM-2005 6.5(5.5/2))?y?", Expr
);
709 -- Ada 95 mode, compatibility warnings disabled
712 return; -- skip continuation messages below
715 if not Inside_A_Generic
then
717 ("\consider switching to return of access type", Expr
);
718 Explain_Limited_Type
(R_Type
, Expr
);
721 end Check_Limited_Return
;
723 -------------------------------------
724 -- Check_Return_Subtype_Indication --
725 -------------------------------------
727 procedure Check_Return_Subtype_Indication
(Obj_Decl
: Node_Id
) is
728 Return_Obj
: constant Node_Id
:= Defining_Identifier
(Obj_Decl
);
730 R_Stm_Type
: constant Entity_Id
:= Etype
(Return_Obj
);
731 -- Subtype given in the extended return statement (must match R_Type)
733 Subtype_Ind
: constant Node_Id
:=
734 Object_Definition
(Original_Node
(Obj_Decl
));
736 R_Type_Is_Anon_Access
: constant Boolean :=
738 E_Anonymous_Access_Subprogram_Type
,
739 E_Anonymous_Access_Protected_Subprogram_Type
,
740 E_Anonymous_Access_Type
);
741 -- True if return type of the function is an anonymous access type
742 -- Can't we make Is_Anonymous_Access_Type in einfo ???
744 R_Stm_Type_Is_Anon_Access
: constant Boolean :=
745 Ekind_In
(R_Stm_Type
,
746 E_Anonymous_Access_Subprogram_Type
,
747 E_Anonymous_Access_Protected_Subprogram_Type
,
748 E_Anonymous_Access_Type
);
749 -- True if type of the return object is an anonymous access type
751 procedure Error_No_Match
(N
: Node_Id
);
752 -- Output error messages for case where types do not statically
753 -- match. N is the location for the messages.
759 procedure Error_No_Match
(N
: Node_Id
) is
762 ("subtype must statically match function result subtype", N
);
764 if not Predicates_Match
(R_Stm_Type
, R_Type
) then
765 Error_Msg_Node_2
:= R_Type
;
767 ("\predicate of& does not match predicate of&",
772 -- Start of processing for Check_Return_Subtype_Indication
775 -- First, avoid cascaded errors
777 if Error_Posted
(Obj_Decl
) or else Error_Posted
(Subtype_Ind
) then
781 -- "return access T" case; check that the return statement also has
782 -- "access T", and that the subtypes statically match:
783 -- if this is an access to subprogram the signatures must match.
785 if R_Type_Is_Anon_Access
then
786 if R_Stm_Type_Is_Anon_Access
then
788 Ekind
(Designated_Type
(R_Stm_Type
)) /= E_Subprogram_Type
790 if Base_Type
(Designated_Type
(R_Stm_Type
)) /=
791 Base_Type
(Designated_Type
(R_Type
))
792 or else not Subtypes_Statically_Match
(R_Stm_Type
, R_Type
)
794 Error_No_Match
(Subtype_Mark
(Subtype_Ind
));
798 -- For two anonymous access to subprogram types, the
799 -- types themselves must be type conformant.
801 if not Conforming_Types
802 (R_Stm_Type
, R_Type
, Fully_Conformant
)
804 Error_No_Match
(Subtype_Ind
);
809 Error_Msg_N
("must use anonymous access type", Subtype_Ind
);
812 -- If the return object is of an anonymous access type, then report
813 -- an error if the function's result type is not also anonymous.
815 elsif R_Stm_Type_Is_Anon_Access
816 and then not R_Type_Is_Anon_Access
818 Error_Msg_N
("anonymous access not allowed for function with "
819 & "named access result", Subtype_Ind
);
821 -- Subtype indication case: check that the return object's type is
822 -- covered by the result type, and that the subtypes statically match
823 -- when the result subtype is constrained. Also handle record types
824 -- with unknown discriminants for which we have built the underlying
825 -- record view. Coverage is needed to allow specific-type return
826 -- objects when the result type is class-wide (see AI05-32).
828 elsif Covers
(Base_Type
(R_Type
), Base_Type
(R_Stm_Type
))
829 or else (Is_Underlying_Record_View
(Base_Type
(R_Stm_Type
))
833 Underlying_Record_View
(Base_Type
(R_Stm_Type
))))
835 -- A null exclusion may be present on the return type, on the
836 -- function specification, on the object declaration or on the
839 if Is_Access_Type
(R_Type
)
841 (Can_Never_Be_Null
(R_Type
)
842 or else Null_Exclusion_Present
(Parent
(Scope_Id
))) /=
843 Can_Never_Be_Null
(R_Stm_Type
)
845 Error_No_Match
(Subtype_Ind
);
848 -- AI05-103: for elementary types, subtypes must statically match
850 if Is_Constrained
(R_Type
)
851 or else Is_Access_Type
(R_Type
)
853 if not Subtypes_Statically_Match
(R_Stm_Type
, R_Type
) then
854 Error_No_Match
(Subtype_Ind
);
858 -- All remaining cases are illegal
860 -- Note: previous versions of this subprogram allowed the return
861 -- value to be the ancestor of the return type if the return type
862 -- was a null extension. This was plainly incorrect.
866 ("wrong type for return_subtype_indication", Subtype_Ind
);
868 end Check_Return_Subtype_Indication
;
870 ---------------------
871 -- Local Variables --
872 ---------------------
876 -- Start of processing for Analyze_Function_Return
879 Set_Return_Present
(Scope_Id
);
881 if Nkind
(N
) = N_Simple_Return_Statement
then
882 Expr
:= Expression
(N
);
884 -- Guard against a malformed expression. The parser may have tried to
885 -- recover but the node is not analyzable.
887 if Nkind
(Expr
) = N_Error
then
888 Set_Etype
(Expr
, Any_Type
);
889 Expander_Mode_Save_And_Set
(False);
893 -- The resolution of a controlled [extension] aggregate associated
894 -- with a return statement creates a temporary which needs to be
895 -- finalized on function exit. Wrap the return statement inside a
896 -- block so that the finalization machinery can detect this case.
897 -- This early expansion is done only when the return statement is
898 -- not part of a handled sequence of statements.
900 if Nkind_In
(Expr
, N_Aggregate
,
901 N_Extension_Aggregate
)
902 and then Needs_Finalization
(R_Type
)
903 and then Nkind
(Parent
(N
)) /= N_Handled_Sequence_Of_Statements
906 Make_Block_Statement
(Loc
,
907 Handled_Statement_Sequence
=>
908 Make_Handled_Sequence_Of_Statements
(Loc
,
909 Statements
=> New_List
(Relocate_Node
(N
)))));
917 -- Ada 2005 (AI-251): If the type of the returned object is
918 -- an access to an interface type then we add an implicit type
919 -- conversion to force the displacement of the "this" pointer to
920 -- reference the secondary dispatch table. We cannot delay the
921 -- generation of this implicit conversion until the expansion
922 -- because in this case the type resolution changes the decoration
923 -- of the expression node to match R_Type; by contrast, if the
924 -- returned object is a class-wide interface type then it is too
925 -- early to generate here the implicit conversion since the return
926 -- statement may be rewritten by the expander into an extended
927 -- return statement whose expansion takes care of adding the
928 -- implicit type conversion to displace the pointer to the object.
931 and then Serious_Errors_Detected
= 0
932 and then Is_Access_Type
(R_Type
)
933 and then Nkind
(Expr
) /= N_Null
934 and then Is_Interface
(Designated_Type
(R_Type
))
935 and then Is_Progenitor
(Designated_Type
(R_Type
),
936 Designated_Type
(Etype
(Expr
)))
938 Rewrite
(Expr
, Convert_To
(R_Type
, Relocate_Node
(Expr
)));
942 Resolve
(Expr
, R_Type
);
943 Check_Limited_Return
(Expr
);
946 -- RETURN only allowed in SPARK as the last statement in function
948 if Nkind
(Parent
(N
)) /= N_Handled_Sequence_Of_Statements
950 (Nkind
(Parent
(Parent
(N
))) /= N_Subprogram_Body
951 or else Present
(Next
(N
)))
953 Check_SPARK_05_Restriction
954 ("RETURN should be the last statement in function", N
);
958 Check_SPARK_05_Restriction
("extended RETURN is not allowed", N
);
960 -- Analyze parts specific to extended_return_statement:
963 Obj_Decl
: constant Node_Id
:=
964 Last
(Return_Object_Declarations
(N
));
965 Has_Aliased
: constant Boolean := Aliased_Present
(Obj_Decl
);
966 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
969 Expr
:= Expression
(Obj_Decl
);
971 -- Note: The check for OK_For_Limited_Init will happen in
972 -- Analyze_Object_Declaration; we treat it as a normal
973 -- object declaration.
975 Set_Is_Return_Object
(Defining_Identifier
(Obj_Decl
));
978 Check_Return_Subtype_Indication
(Obj_Decl
);
980 if Present
(HSS
) then
983 if Present
(Exception_Handlers
(HSS
)) then
985 -- ???Has_Nested_Block_With_Handler needs to be set.
986 -- Probably by creating an actual N_Block_Statement.
987 -- Probably in Expand.
993 -- Mark the return object as referenced, since the return is an
994 -- implicit reference of the object.
996 Set_Referenced
(Defining_Identifier
(Obj_Decl
));
998 Check_References
(Stm_Entity
);
1000 -- Check RM 6.5 (5.9/3)
1003 if Ada_Version
< Ada_2012
then
1005 -- Shouldn't this test Warn_On_Ada_2012_Compatibility ???
1006 -- Can it really happen (extended return???)
1009 ("aliased only allowed for limited return objects "
1010 & "in Ada 2012??", N
);
1012 elsif not Is_Limited_View
(R_Type
) then
1014 ("aliased only allowed for limited return objects", N
);
1020 -- Case of Expr present
1024 -- Defend against previous errors
1026 and then Nkind
(Expr
) /= N_Empty
1027 and then Present
(Etype
(Expr
))
1029 -- Apply constraint check. Note that this is done before the implicit
1030 -- conversion of the expression done for anonymous access types to
1031 -- ensure correct generation of the null-excluding check associated
1032 -- with null-excluding expressions found in return statements.
1034 Apply_Constraint_Check
(Expr
, R_Type
);
1036 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1037 -- type, apply an implicit conversion of the expression to that type
1038 -- to force appropriate static and run-time accessibility checks.
1040 if Ada_Version
>= Ada_2005
1041 and then Ekind
(R_Type
) = E_Anonymous_Access_Type
1043 Rewrite
(Expr
, Convert_To
(R_Type
, Relocate_Node
(Expr
)));
1044 Analyze_And_Resolve
(Expr
, R_Type
);
1046 -- If this is a local anonymous access to subprogram, the
1047 -- accessibility check can be applied statically. The return is
1048 -- illegal if the access type of the return expression is declared
1049 -- inside of the subprogram (except if it is the subtype indication
1050 -- of an extended return statement).
1052 elsif Ekind
(R_Type
) = E_Anonymous_Access_Subprogram_Type
then
1053 if not Comes_From_Source
(Current_Scope
)
1054 or else Ekind
(Current_Scope
) = E_Return_Statement
1059 Scope_Depth
(Scope
(Etype
(Expr
))) >= Scope_Depth
(Scope_Id
)
1061 Error_Msg_N
("cannot return local access to subprogram", N
);
1064 -- The expression cannot be of a formal incomplete type
1066 elsif Ekind
(Etype
(Expr
)) = E_Incomplete_Type
1067 and then Is_Generic_Type
(Etype
(Expr
))
1070 ("cannot return expression of a formal incomplete type", N
);
1073 -- If the result type is class-wide, then check that the return
1074 -- expression's type is not declared at a deeper level than the
1075 -- function (RM05-6.5(5.6/2)).
1077 if Ada_Version
>= Ada_2005
1078 and then Is_Class_Wide_Type
(R_Type
)
1080 if Type_Access_Level
(Etype
(Expr
)) >
1081 Subprogram_Access_Level
(Scope_Id
)
1084 ("level of return expression type is deeper than "
1085 & "class-wide function!", Expr
);
1089 -- Check incorrect use of dynamically tagged expression
1091 if Is_Tagged_Type
(R_Type
) then
1092 Check_Dynamically_Tagged_Expression
1098 -- ??? A real run-time accessibility check is needed in cases
1099 -- involving dereferences of access parameters. For now we just
1100 -- check the static cases.
1102 if (Ada_Version
< Ada_2005
or else Debug_Flag_Dot_L
)
1103 and then Is_Limited_View
(Etype
(Scope_Id
))
1104 and then Object_Access_Level
(Expr
) >
1105 Subprogram_Access_Level
(Scope_Id
)
1107 -- Suppress the message in a generic, where the rewriting
1110 if Inside_A_Generic
then
1115 Make_Raise_Program_Error
(Loc
,
1116 Reason
=> PE_Accessibility_Check_Failed
));
1119 Error_Msg_Warn
:= SPARK_Mode
/= On
;
1120 Error_Msg_N
("cannot return a local value by reference<<", N
);
1121 Error_Msg_NE
("\& [<<", N
, Standard_Program_Error
);
1125 if Known_Null
(Expr
)
1126 and then Nkind
(Parent
(Scope_Id
)) = N_Function_Specification
1127 and then Null_Exclusion_Present
(Parent
(Scope_Id
))
1129 Apply_Compile_Time_Constraint_Error
1131 Msg
=> "(Ada 2005) null not allowed for "
1132 & "null-excluding return??",
1133 Reason
=> CE_Null_Not_Allowed
);
1136 end Analyze_Function_Return
;
1138 -------------------------------------
1139 -- Analyze_Generic_Subprogram_Body --
1140 -------------------------------------
1142 procedure Analyze_Generic_Subprogram_Body
1146 Gen_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Gen_Id
);
1147 Kind
: constant Entity_Kind
:= Ekind
(Gen_Id
);
1148 Body_Id
: Entity_Id
;
1153 -- Copy body and disable expansion while analyzing the generic For a
1154 -- stub, do not copy the stub (which would load the proper body), this
1155 -- will be done when the proper body is analyzed.
1157 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
1158 New_N
:= Copy_Generic_Node
(N
, Empty
, Instantiating
=> False);
1163 Spec
:= Specification
(N
);
1165 -- Within the body of the generic, the subprogram is callable, and
1166 -- behaves like the corresponding non-generic unit.
1168 Body_Id
:= Defining_Entity
(Spec
);
1170 if Kind
= E_Generic_Procedure
1171 and then Nkind
(Spec
) /= N_Procedure_Specification
1173 Error_Msg_N
("invalid body for generic procedure ", Body_Id
);
1176 elsif Kind
= E_Generic_Function
1177 and then Nkind
(Spec
) /= N_Function_Specification
1179 Error_Msg_N
("invalid body for generic function ", Body_Id
);
1183 Set_Corresponding_Body
(Gen_Decl
, Body_Id
);
1185 if Has_Completion
(Gen_Id
)
1186 and then Nkind
(Parent
(N
)) /= N_Subunit
1188 Error_Msg_N
("duplicate generic body", N
);
1191 Set_Has_Completion
(Gen_Id
);
1194 if Nkind
(N
) = N_Subprogram_Body_Stub
then
1195 Set_Ekind
(Defining_Entity
(Specification
(N
)), Kind
);
1197 Set_Corresponding_Spec
(N
, Gen_Id
);
1200 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
1201 Set_Cunit_Entity
(Current_Sem_Unit
, Defining_Entity
(N
));
1204 -- Make generic parameters immediately visible in the body. They are
1205 -- needed to process the formals declarations. Then make the formals
1206 -- visible in a separate step.
1208 Push_Scope
(Gen_Id
);
1212 First_Ent
: Entity_Id
;
1215 First_Ent
:= First_Entity
(Gen_Id
);
1218 while Present
(E
) and then not Is_Formal
(E
) loop
1223 Set_Use
(Generic_Formal_Declarations
(Gen_Decl
));
1225 -- Now generic formals are visible, and the specification can be
1226 -- analyzed, for subsequent conformance check.
1228 Body_Id
:= Analyze_Subprogram_Specification
(Spec
);
1230 -- Make formal parameters visible
1234 -- E is the first formal parameter, we loop through the formals
1235 -- installing them so that they will be visible.
1237 Set_First_Entity
(Gen_Id
, E
);
1238 while Present
(E
) loop
1244 -- Visible generic entity is callable within its own body
1246 Set_Ekind
(Gen_Id
, Ekind
(Body_Id
));
1247 Set_Contract
(Body_Id
, Make_Contract
(Sloc
(Body_Id
)));
1248 Set_Ekind
(Body_Id
, E_Subprogram_Body
);
1249 Set_Convention
(Body_Id
, Convention
(Gen_Id
));
1250 Set_Is_Obsolescent
(Body_Id
, Is_Obsolescent
(Gen_Id
));
1251 Set_Scope
(Body_Id
, Scope
(Gen_Id
));
1253 -- Inherit the "ghostness" of the generic spec. Note that this
1254 -- property is not directly inherited as the body may be subject
1255 -- to a different Ghost assertion policy.
1257 if Is_Ghost_Entity
(Gen_Id
) or else Within_Ghost_Scope
then
1258 Set_Is_Ghost_Entity
(Body_Id
);
1260 -- The Ghost policy in effect at the point of declaration and at
1261 -- the point of completion must match (SPARK RM 6.9(15)).
1263 Check_Ghost_Completion
(Gen_Id
, Body_Id
);
1266 Check_Fully_Conformant
(Body_Id
, Gen_Id
, Body_Id
);
1268 if Nkind
(N
) = N_Subprogram_Body_Stub
then
1270 -- No body to analyze, so restore state of generic unit
1272 Set_Ekind
(Gen_Id
, Kind
);
1273 Set_Ekind
(Body_Id
, Kind
);
1275 if Present
(First_Ent
) then
1276 Set_First_Entity
(Gen_Id
, First_Ent
);
1283 -- If this is a compilation unit, it must be made visible explicitly,
1284 -- because the compilation of the declaration, unlike other library
1285 -- unit declarations, does not. If it is not a unit, the following
1286 -- is redundant but harmless.
1288 Set_Is_Immediately_Visible
(Gen_Id
);
1289 Reference_Body_Formals
(Gen_Id
, Body_Id
);
1291 if Is_Child_Unit
(Gen_Id
) then
1292 Generate_Reference
(Gen_Id
, Scope
(Gen_Id
), 'k', False);
1295 Set_Actual_Subtypes
(N
, Current_Scope
);
1297 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
1298 -- invariants and predicates associated with the body and its spec.
1299 -- Note that this is not pure expansion as Expand_Subprogram_Contract
1300 -- prepares the contract assertions for generic subprograms or for
1301 -- ASIS. Do not generate contract checks in SPARK mode.
1303 if not GNATprove_Mode
then
1304 Expand_Subprogram_Contract
(N
, Gen_Id
, Body_Id
);
1307 -- If the generic unit carries pre- or post-conditions, copy them
1308 -- to the original generic tree, so that they are properly added
1309 -- to any instantiation.
1312 Orig
: constant Node_Id
:= Original_Node
(N
);
1316 Cond
:= First
(Declarations
(N
));
1317 while Present
(Cond
) loop
1318 if Nkind
(Cond
) = N_Pragma
1319 and then Pragma_Name
(Cond
) = Name_Check
1321 Prepend
(New_Copy_Tree
(Cond
), Declarations
(Orig
));
1323 elsif Nkind
(Cond
) = N_Pragma
1324 and then Pragma_Name
(Cond
) = Name_Postcondition
1326 Set_Ekind
(Defining_Entity
(Orig
), Ekind
(Gen_Id
));
1327 Prepend
(New_Copy_Tree
(Cond
), Declarations
(Orig
));
1336 Set_SPARK_Pragma
(Body_Id
, SPARK_Mode_Pragma
);
1337 Set_SPARK_Pragma_Inherited
(Body_Id
, True);
1339 Analyze_Declarations
(Declarations
(N
));
1341 Analyze
(Handled_Statement_Sequence
(N
));
1343 Save_Global_References
(Original_Node
(N
));
1345 -- Prior to exiting the scope, include generic formals again (if any
1346 -- are present) in the set of local entities.
1348 if Present
(First_Ent
) then
1349 Set_First_Entity
(Gen_Id
, First_Ent
);
1352 Check_References
(Gen_Id
);
1355 Process_End_Label
(Handled_Statement_Sequence
(N
), 't', Current_Scope
);
1357 Check_Subprogram_Order
(N
);
1359 -- Outside of its body, unit is generic again
1361 Set_Ekind
(Gen_Id
, Kind
);
1362 Generate_Reference
(Gen_Id
, Body_Id
, 'b', Set_Ref
=> False);
1365 Style
.Check_Identifier
(Body_Id
, Gen_Id
);
1369 end Analyze_Generic_Subprogram_Body
;
1371 ----------------------------
1372 -- Analyze_Null_Procedure --
1373 ----------------------------
1375 procedure Analyze_Null_Procedure
1377 Is_Completion
: out Boolean)
1379 Loc
: constant Source_Ptr
:= Sloc
(N
);
1380 Spec
: constant Node_Id
:= Specification
(N
);
1381 Designator
: Entity_Id
;
1383 Null_Body
: Node_Id
:= Empty
;
1387 -- Capture the profile of the null procedure before analysis, for
1388 -- expansion at the freeze point and at each point of call. The body is
1389 -- used if the procedure has preconditions, or if it is a completion. In
1390 -- the first case the body is analyzed at the freeze point, in the other
1391 -- it replaces the null procedure declaration.
1394 Make_Subprogram_Body
(Loc
,
1395 Specification
=> New_Copy_Tree
(Spec
),
1396 Declarations
=> New_List
,
1397 Handled_Statement_Sequence
=>
1398 Make_Handled_Sequence_Of_Statements
(Loc
,
1399 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
1401 -- Create new entities for body and formals
1403 Set_Defining_Unit_Name
(Specification
(Null_Body
),
1404 Make_Defining_Identifier
1405 (Sloc
(Defining_Entity
(N
)),
1406 Chars
(Defining_Entity
(N
))));
1408 Form
:= First
(Parameter_Specifications
(Specification
(Null_Body
)));
1409 while Present
(Form
) loop
1410 Set_Defining_Identifier
(Form
,
1411 Make_Defining_Identifier
1412 (Sloc
(Defining_Identifier
(Form
)),
1413 Chars
(Defining_Identifier
(Form
))));
1417 -- Determine whether the null procedure may be a completion of a generic
1418 -- suprogram, in which case we use the new null body as the completion
1419 -- and set minimal semantic information on the original declaration,
1420 -- which is rewritten as a null statement.
1422 Prev
:= Current_Entity_In_Scope
(Defining_Entity
(Spec
));
1424 if Present
(Prev
) and then Is_Generic_Subprogram
(Prev
) then
1425 Insert_Before
(N
, Null_Body
);
1426 Set_Ekind
(Defining_Entity
(N
), Ekind
(Prev
));
1427 Set_Contract
(Defining_Entity
(N
), Make_Contract
(Loc
));
1429 Rewrite
(N
, Make_Null_Statement
(Loc
));
1430 Analyze_Generic_Subprogram_Body
(Null_Body
, Prev
);
1431 Is_Completion
:= True;
1435 -- Resolve the types of the formals now, because the freeze point
1436 -- may appear in a different context, e.g. an instantiation.
1438 Form
:= First
(Parameter_Specifications
(Specification
(Null_Body
)));
1439 while Present
(Form
) loop
1440 if Nkind
(Parameter_Type
(Form
)) /= N_Access_Definition
then
1441 Find_Type
(Parameter_Type
(Form
));
1444 No
(Access_To_Subprogram_Definition
(Parameter_Type
(Form
)))
1446 Find_Type
(Subtype_Mark
(Parameter_Type
(Form
)));
1449 -- The case of a null procedure with a formal that is an
1450 -- access_to_subprogram type, and that is used as an actual
1451 -- in an instantiation is left to the enthusiastic reader.
1460 -- If there are previous overloadable entities with the same name,
1461 -- check whether any of them is completed by the null procedure.
1463 if Present
(Prev
) and then Is_Overloadable
(Prev
) then
1464 Designator
:= Analyze_Subprogram_Specification
(Spec
);
1465 Prev
:= Find_Corresponding_Spec
(N
);
1468 if No
(Prev
) or else not Comes_From_Source
(Prev
) then
1469 Designator
:= Analyze_Subprogram_Specification
(Spec
);
1470 Set_Has_Completion
(Designator
);
1472 -- Signal to caller that this is a procedure declaration
1474 Is_Completion
:= False;
1476 -- Null procedures are always inlined, but generic formal subprograms
1477 -- which appear as such in the internal instance of formal packages,
1478 -- need no completion and are not marked Inline.
1481 and then Nkind
(N
) /= N_Formal_Concrete_Subprogram_Declaration
1483 Set_Corresponding_Body
(N
, Defining_Entity
(Null_Body
));
1484 Set_Body_To_Inline
(N
, Null_Body
);
1485 Set_Is_Inlined
(Designator
);
1489 -- The null procedure is a completion. We unconditionally rewrite
1490 -- this as a null body (even if expansion is not active), because
1491 -- there are various error checks that are applied on this body
1492 -- when it is analyzed (e.g. correct aspect placement).
1494 if Has_Completion
(Prev
) then
1495 Error_Msg_Sloc
:= Sloc
(Prev
);
1496 Error_Msg_NE
("duplicate body for & declared#", N
, Prev
);
1499 Is_Completion
:= True;
1500 Rewrite
(N
, Null_Body
);
1503 end Analyze_Null_Procedure
;
1505 -----------------------------
1506 -- Analyze_Operator_Symbol --
1507 -----------------------------
1509 -- An operator symbol such as "+" or "and" may appear in context where the
1510 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1511 -- is just a string, as in (conjunction = "or"). In these cases the parser
1512 -- generates this node, and the semantics does the disambiguation. Other
1513 -- such case are actuals in an instantiation, the generic unit in an
1514 -- instantiation, and pragma arguments.
1516 procedure Analyze_Operator_Symbol
(N
: Node_Id
) is
1517 Par
: constant Node_Id
:= Parent
(N
);
1520 if (Nkind
(Par
) = N_Function_Call
and then N
= Name
(Par
))
1521 or else Nkind
(Par
) = N_Function_Instantiation
1522 or else (Nkind
(Par
) = N_Indexed_Component
and then N
= Prefix
(Par
))
1523 or else (Nkind
(Par
) = N_Pragma_Argument_Association
1524 and then not Is_Pragma_String_Literal
(Par
))
1525 or else Nkind
(Par
) = N_Subprogram_Renaming_Declaration
1526 or else (Nkind
(Par
) = N_Attribute_Reference
1527 and then Attribute_Name
(Par
) /= Name_Value
)
1529 Find_Direct_Name
(N
);
1532 Change_Operator_Symbol_To_String_Literal
(N
);
1535 end Analyze_Operator_Symbol
;
1537 -----------------------------------
1538 -- Analyze_Parameter_Association --
1539 -----------------------------------
1541 procedure Analyze_Parameter_Association
(N
: Node_Id
) is
1543 Analyze
(Explicit_Actual_Parameter
(N
));
1544 end Analyze_Parameter_Association
;
1546 ----------------------------
1547 -- Analyze_Procedure_Call --
1548 ----------------------------
1550 procedure Analyze_Procedure_Call
(N
: Node_Id
) is
1551 Loc
: constant Source_Ptr
:= Sloc
(N
);
1552 P
: constant Node_Id
:= Name
(N
);
1553 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
1557 procedure Analyze_Call_And_Resolve
;
1558 -- Do Analyze and Resolve calls for procedure call
1559 -- At end, check illegal order dependence.
1561 ------------------------------
1562 -- Analyze_Call_And_Resolve --
1563 ------------------------------
1565 procedure Analyze_Call_And_Resolve
is
1567 if Nkind
(N
) = N_Procedure_Call_Statement
then
1569 Resolve
(N
, Standard_Void_Type
);
1573 end Analyze_Call_And_Resolve
;
1575 -- Start of processing for Analyze_Procedure_Call
1578 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1579 -- a procedure call or an entry call. The prefix may denote an access
1580 -- to subprogram type, in which case an implicit dereference applies.
1581 -- If the prefix is an indexed component (without implicit dereference)
1582 -- then the construct denotes a call to a member of an entire family.
1583 -- If the prefix is a simple name, it may still denote a call to a
1584 -- parameterless member of an entry family. Resolution of these various
1585 -- interpretations is delicate.
1589 -- If this is a call of the form Obj.Op, the call may have been
1590 -- analyzed and possibly rewritten into a block, in which case
1593 if Analyzed
(N
) then
1597 -- If there is an error analyzing the name (which may have been
1598 -- rewritten if the original call was in prefix notation) then error
1599 -- has been emitted already, mark node and return.
1601 if Error_Posted
(N
) or else Etype
(Name
(N
)) = Any_Type
then
1602 Set_Etype
(N
, Any_Type
);
1606 -- Otherwise analyze the parameters
1608 if Present
(Actuals
) then
1609 Actual
:= First
(Actuals
);
1611 while Present
(Actual
) loop
1613 Check_Parameterless_Call
(Actual
);
1618 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
1620 if Nkind
(P
) = N_Attribute_Reference
1621 and then Nam_In
(Attribute_Name
(P
), Name_Elab_Spec
,
1623 Name_Elab_Subp_Body
)
1625 if Present
(Actuals
) then
1627 ("no parameters allowed for this call", First
(Actuals
));
1631 Set_Etype
(N
, Standard_Void_Type
);
1634 elsif Is_Entity_Name
(P
)
1635 and then Is_Record_Type
(Etype
(Entity
(P
)))
1636 and then Remote_AST_I_Dereference
(P
)
1640 elsif Is_Entity_Name
(P
)
1641 and then Ekind
(Entity
(P
)) /= E_Entry_Family
1643 if Is_Access_Type
(Etype
(P
))
1644 and then Ekind
(Designated_Type
(Etype
(P
))) = E_Subprogram_Type
1645 and then No
(Actuals
)
1646 and then Comes_From_Source
(N
)
1648 Error_Msg_N
("missing explicit dereference in call", N
);
1651 Analyze_Call_And_Resolve
;
1653 -- If the prefix is the simple name of an entry family, this is
1654 -- a parameterless call from within the task body itself.
1656 elsif Is_Entity_Name
(P
)
1657 and then Nkind
(P
) = N_Identifier
1658 and then Ekind
(Entity
(P
)) = E_Entry_Family
1659 and then Present
(Actuals
)
1660 and then No
(Next
(First
(Actuals
)))
1662 -- Can be call to parameterless entry family. What appears to be the
1663 -- sole argument is in fact the entry index. Rewrite prefix of node
1664 -- accordingly. Source representation is unchanged by this
1668 Make_Indexed_Component
(Loc
,
1670 Make_Selected_Component
(Loc
,
1671 Prefix
=> New_Occurrence_Of
(Scope
(Entity
(P
)), Loc
),
1672 Selector_Name
=> New_Occurrence_Of
(Entity
(P
), Loc
)),
1673 Expressions
=> Actuals
);
1674 Set_Name
(N
, New_N
);
1675 Set_Etype
(New_N
, Standard_Void_Type
);
1676 Set_Parameter_Associations
(N
, No_List
);
1677 Analyze_Call_And_Resolve
;
1679 elsif Nkind
(P
) = N_Explicit_Dereference
then
1680 if Ekind
(Etype
(P
)) = E_Subprogram_Type
then
1681 Analyze_Call_And_Resolve
;
1683 Error_Msg_N
("expect access to procedure in call", P
);
1686 -- The name can be a selected component or an indexed component that
1687 -- yields an access to subprogram. Such a prefix is legal if the call
1688 -- has parameter associations.
1690 elsif Is_Access_Type
(Etype
(P
))
1691 and then Ekind
(Designated_Type
(Etype
(P
))) = E_Subprogram_Type
1693 if Present
(Actuals
) then
1694 Analyze_Call_And_Resolve
;
1696 Error_Msg_N
("missing explicit dereference in call ", N
);
1699 -- If not an access to subprogram, then the prefix must resolve to the
1700 -- name of an entry, entry family, or protected operation.
1702 -- For the case of a simple entry call, P is a selected component where
1703 -- the prefix is the task and the selector name is the entry. A call to
1704 -- a protected procedure will have the same syntax. If the protected
1705 -- object contains overloaded operations, the entity may appear as a
1706 -- function, the context will select the operation whose type is Void.
1708 elsif Nkind
(P
) = N_Selected_Component
1709 and then Ekind_In
(Entity
(Selector_Name
(P
)), E_Entry
,
1713 Analyze_Call_And_Resolve
;
1715 elsif Nkind
(P
) = N_Selected_Component
1716 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Entry_Family
1717 and then Present
(Actuals
)
1718 and then No
(Next
(First
(Actuals
)))
1720 -- Can be call to parameterless entry family. What appears to be the
1721 -- sole argument is in fact the entry index. Rewrite prefix of node
1722 -- accordingly. Source representation is unchanged by this
1726 Make_Indexed_Component
(Loc
,
1727 Prefix
=> New_Copy
(P
),
1728 Expressions
=> Actuals
);
1729 Set_Name
(N
, New_N
);
1730 Set_Etype
(New_N
, Standard_Void_Type
);
1731 Set_Parameter_Associations
(N
, No_List
);
1732 Analyze_Call_And_Resolve
;
1734 -- For the case of a reference to an element of an entry family, P is
1735 -- an indexed component whose prefix is a selected component (task and
1736 -- entry family), and whose index is the entry family index.
1738 elsif Nkind
(P
) = N_Indexed_Component
1739 and then Nkind
(Prefix
(P
)) = N_Selected_Component
1740 and then Ekind
(Entity
(Selector_Name
(Prefix
(P
)))) = E_Entry_Family
1742 Analyze_Call_And_Resolve
;
1744 -- If the prefix is the name of an entry family, it is a call from
1745 -- within the task body itself.
1747 elsif Nkind
(P
) = N_Indexed_Component
1748 and then Nkind
(Prefix
(P
)) = N_Identifier
1749 and then Ekind
(Entity
(Prefix
(P
))) = E_Entry_Family
1752 Make_Selected_Component
(Loc
,
1753 Prefix
=> New_Occurrence_Of
(Scope
(Entity
(Prefix
(P
))), Loc
),
1754 Selector_Name
=> New_Occurrence_Of
(Entity
(Prefix
(P
)), Loc
));
1755 Rewrite
(Prefix
(P
), New_N
);
1757 Analyze_Call_And_Resolve
;
1759 -- In Ada 2012. a qualified expression is a name, but it cannot be a
1760 -- procedure name, so the construct can only be a qualified expression.
1762 elsif Nkind
(P
) = N_Qualified_Expression
1763 and then Ada_Version
>= Ada_2012
1765 Rewrite
(N
, Make_Code_Statement
(Loc
, Expression
=> P
));
1768 -- Anything else is an error
1771 Error_Msg_N
("invalid procedure or entry call", N
);
1773 end Analyze_Procedure_Call
;
1775 ------------------------------
1776 -- Analyze_Return_Statement --
1777 ------------------------------
1779 procedure Analyze_Return_Statement
(N
: Node_Id
) is
1781 pragma Assert
(Nkind_In
(N
, N_Simple_Return_Statement
,
1782 N_Extended_Return_Statement
));
1784 Returns_Object
: constant Boolean :=
1785 Nkind
(N
) = N_Extended_Return_Statement
1787 (Nkind
(N
) = N_Simple_Return_Statement
1788 and then Present
(Expression
(N
)));
1789 -- True if we're returning something; that is, "return <expression>;"
1790 -- or "return Result : T [:= ...]". False for "return;". Used for error
1791 -- checking: If Returns_Object is True, N should apply to a function
1792 -- body; otherwise N should apply to a procedure body, entry body,
1793 -- accept statement, or extended return statement.
1795 function Find_What_It_Applies_To
return Entity_Id
;
1796 -- Find the entity representing the innermost enclosing body, accept
1797 -- statement, or extended return statement. If the result is a callable
1798 -- construct or extended return statement, then this will be the value
1799 -- of the Return_Applies_To attribute. Otherwise, the program is
1800 -- illegal. See RM-6.5(4/2).
1802 -----------------------------
1803 -- Find_What_It_Applies_To --
1804 -----------------------------
1806 function Find_What_It_Applies_To
return Entity_Id
is
1807 Result
: Entity_Id
:= Empty
;
1810 -- Loop outward through the Scope_Stack, skipping blocks, loops,
1811 -- and postconditions.
1813 for J
in reverse 0 .. Scope_Stack
.Last
loop
1814 Result
:= Scope_Stack
.Table
(J
).Entity
;
1815 exit when not Ekind_In
(Result
, E_Block
, E_Loop
)
1816 and then Chars
(Result
) /= Name_uPostconditions
;
1819 pragma Assert
(Present
(Result
));
1821 end Find_What_It_Applies_To
;
1823 -- Local declarations
1825 Scope_Id
: constant Entity_Id
:= Find_What_It_Applies_To
;
1826 Kind
: constant Entity_Kind
:= Ekind
(Scope_Id
);
1827 Loc
: constant Source_Ptr
:= Sloc
(N
);
1828 Stm_Entity
: constant Entity_Id
:=
1830 (E_Return_Statement
, Current_Scope
, Loc
, 'R');
1832 -- Start of processing for Analyze_Return_Statement
1835 Set_Return_Statement_Entity
(N
, Stm_Entity
);
1837 Set_Etype
(Stm_Entity
, Standard_Void_Type
);
1838 Set_Return_Applies_To
(Stm_Entity
, Scope_Id
);
1840 -- Place Return entity on scope stack, to simplify enforcement of 6.5
1841 -- (4/2): an inner return statement will apply to this extended return.
1843 if Nkind
(N
) = N_Extended_Return_Statement
then
1844 Push_Scope
(Stm_Entity
);
1847 -- Check that pragma No_Return is obeyed. Don't complain about the
1848 -- implicitly-generated return that is placed at the end.
1850 if No_Return
(Scope_Id
) and then Comes_From_Source
(N
) then
1851 Error_Msg_N
("RETURN statement not allowed (No_Return)", N
);
1854 -- Warn on any unassigned OUT parameters if in procedure
1856 if Ekind
(Scope_Id
) = E_Procedure
then
1857 Warn_On_Unassigned_Out_Parameter
(N
, Scope_Id
);
1860 -- Check that functions return objects, and other things do not
1862 if Kind
= E_Function
or else Kind
= E_Generic_Function
then
1863 if not Returns_Object
then
1864 Error_Msg_N
("missing expression in return from function", N
);
1867 elsif Kind
= E_Procedure
or else Kind
= E_Generic_Procedure
then
1868 if Returns_Object
then
1869 Error_Msg_N
("procedure cannot return value (use function)", N
);
1872 elsif Kind
= E_Entry
or else Kind
= E_Entry_Family
then
1873 if Returns_Object
then
1874 if Is_Protected_Type
(Scope
(Scope_Id
)) then
1875 Error_Msg_N
("entry body cannot return value", N
);
1877 Error_Msg_N
("accept statement cannot return value", N
);
1881 elsif Kind
= E_Return_Statement
then
1883 -- We are nested within another return statement, which must be an
1884 -- extended_return_statement.
1886 if Returns_Object
then
1887 if Nkind
(N
) = N_Extended_Return_Statement
then
1889 ("extended return statement cannot be nested (use `RETURN;`)",
1892 -- Case of a simple return statement with a value inside extended
1893 -- return statement.
1897 ("return nested in extended return statement cannot return "
1898 & "value (use `RETURN;`)", N
);
1903 Error_Msg_N
("illegal context for return statement", N
);
1906 if Ekind_In
(Kind
, E_Function
, E_Generic_Function
) then
1907 Analyze_Function_Return
(N
);
1909 elsif Ekind_In
(Kind
, E_Procedure
, E_Generic_Procedure
) then
1910 Set_Return_Present
(Scope_Id
);
1913 if Nkind
(N
) = N_Extended_Return_Statement
then
1917 Kill_Current_Values
(Last_Assignment_Only
=> True);
1918 Check_Unreachable_Code
(N
);
1920 Analyze_Dimension
(N
);
1921 end Analyze_Return_Statement
;
1923 -------------------------------------
1924 -- Analyze_Simple_Return_Statement --
1925 -------------------------------------
1927 procedure Analyze_Simple_Return_Statement
(N
: Node_Id
) is
1929 if Present
(Expression
(N
)) then
1930 Mark_Coextensions
(N
, Expression
(N
));
1933 Analyze_Return_Statement
(N
);
1934 end Analyze_Simple_Return_Statement
;
1936 -------------------------
1937 -- Analyze_Return_Type --
1938 -------------------------
1940 procedure Analyze_Return_Type
(N
: Node_Id
) is
1941 Designator
: constant Entity_Id
:= Defining_Entity
(N
);
1942 Typ
: Entity_Id
:= Empty
;
1945 -- Normal case where result definition does not indicate an error
1947 if Result_Definition
(N
) /= Error
then
1948 if Nkind
(Result_Definition
(N
)) = N_Access_Definition
then
1949 Check_SPARK_05_Restriction
1950 ("access result is not allowed", Result_Definition
(N
));
1952 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1955 AD
: constant Node_Id
:=
1956 Access_To_Subprogram_Definition
(Result_Definition
(N
));
1958 if Present
(AD
) and then Protected_Present
(AD
) then
1959 Typ
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1961 Typ
:= Access_Definition
(N
, Result_Definition
(N
));
1965 Set_Parent
(Typ
, Result_Definition
(N
));
1966 Set_Is_Local_Anonymous_Access
(Typ
);
1967 Set_Etype
(Designator
, Typ
);
1969 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1971 Null_Exclusion_Static_Checks
(N
);
1973 -- Subtype_Mark case
1976 Find_Type
(Result_Definition
(N
));
1977 Typ
:= Entity
(Result_Definition
(N
));
1978 Set_Etype
(Designator
, Typ
);
1980 -- Unconstrained array as result is not allowed in SPARK
1982 if Is_Array_Type
(Typ
) and then not Is_Constrained
(Typ
) then
1983 Check_SPARK_05_Restriction
1984 ("returning an unconstrained array is not allowed",
1985 Result_Definition
(N
));
1988 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1990 Null_Exclusion_Static_Checks
(N
);
1992 -- If a null exclusion is imposed on the result type, then create
1993 -- a null-excluding itype (an access subtype) and use it as the
1994 -- function's Etype. Note that the null exclusion checks are done
1995 -- right before this, because they don't get applied to types that
1996 -- do not come from source.
1998 if Is_Access_Type
(Typ
) and then Null_Exclusion_Present
(N
) then
1999 Set_Etype
(Designator
,
2000 Create_Null_Excluding_Itype
2003 Scope_Id
=> Scope
(Current_Scope
)));
2005 -- The new subtype must be elaborated before use because
2006 -- it is visible outside of the function. However its base
2007 -- type may not be frozen yet, so the reference that will
2008 -- force elaboration must be attached to the freezing of
2011 -- If the return specification appears on a proper body,
2012 -- the subtype will have been created already on the spec.
2014 if Is_Frozen
(Typ
) then
2015 if Nkind
(Parent
(N
)) = N_Subprogram_Body
2016 and then Nkind
(Parent
(Parent
(N
))) = N_Subunit
2020 Build_Itype_Reference
(Etype
(Designator
), Parent
(N
));
2024 Ensure_Freeze_Node
(Typ
);
2027 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(N
));
2029 Set_Itype
(IR
, Etype
(Designator
));
2030 Append_Freeze_Actions
(Typ
, New_List
(IR
));
2035 Set_Etype
(Designator
, Typ
);
2038 if Ekind
(Typ
) = E_Incomplete_Type
2039 and then Is_Value_Type
(Typ
)
2043 elsif Ekind
(Typ
) = E_Incomplete_Type
2044 or else (Is_Class_Wide_Type
(Typ
)
2045 and then Ekind
(Root_Type
(Typ
)) = E_Incomplete_Type
)
2047 -- AI05-0151: Tagged incomplete types are allowed in all formal
2048 -- parts. Untagged incomplete types are not allowed in bodies.
2049 -- As a consequence, limited views cannot appear in a basic
2050 -- declaration that is itself within a body, because there is
2051 -- no point at which the non-limited view will become visible.
2053 if Ada_Version
>= Ada_2012
then
2054 if From_Limited_With
(Typ
) and then In_Package_Body
then
2056 ("invalid use of incomplete type&",
2057 Result_Definition
(N
), Typ
);
2059 -- The return type of a subprogram body cannot be of a
2060 -- formal incomplete type.
2062 elsif Is_Generic_Type
(Typ
)
2063 and then Nkind
(Parent
(N
)) = N_Subprogram_Body
2066 ("return type cannot be a formal incomplete type",
2067 Result_Definition
(N
));
2069 elsif Is_Class_Wide_Type
(Typ
)
2070 and then Is_Generic_Type
(Root_Type
(Typ
))
2071 and then Nkind
(Parent
(N
)) = N_Subprogram_Body
2074 ("return type cannot be a formal incomplete type",
2075 Result_Definition
(N
));
2077 elsif Is_Tagged_Type
(Typ
) then
2080 elsif Nkind
(Parent
(N
)) = N_Subprogram_Body
2081 or else Nkind_In
(Parent
(Parent
(N
)), N_Accept_Statement
,
2085 ("invalid use of untagged incomplete type&",
2089 -- The type must be completed in the current package. This
2090 -- is checked at the end of the package declaration when
2091 -- Taft-amendment types are identified. If the return type
2092 -- is class-wide, there is no required check, the type can
2093 -- be a bona fide TAT.
2095 if Ekind
(Scope
(Current_Scope
)) = E_Package
2096 and then In_Private_Part
(Scope
(Current_Scope
))
2097 and then not Is_Class_Wide_Type
(Typ
)
2099 Append_Elmt
(Designator
, Private_Dependents
(Typ
));
2104 ("invalid use of incomplete type&", Designator
, Typ
);
2109 -- Case where result definition does indicate an error
2112 Set_Etype
(Designator
, Any_Type
);
2114 end Analyze_Return_Type
;
2116 -----------------------------
2117 -- Analyze_Subprogram_Body --
2118 -----------------------------
2120 procedure Analyze_Subprogram_Body
(N
: Node_Id
) is
2121 Loc
: constant Source_Ptr
:= Sloc
(N
);
2122 Body_Spec
: constant Node_Id
:= Specification
(N
);
2123 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2126 if Debug_Flag_C
then
2127 Write_Str
("==> subprogram body ");
2128 Write_Name
(Chars
(Body_Id
));
2129 Write_Str
(" from ");
2130 Write_Location
(Loc
);
2135 Trace_Scope
(N
, Body_Id
, " Analyze subprogram: ");
2137 -- The real work is split out into the helper, so it can do "return;"
2138 -- without skipping the debug output:
2140 Analyze_Subprogram_Body_Helper
(N
);
2142 if Debug_Flag_C
then
2144 Write_Str
("<== subprogram body ");
2145 Write_Name
(Chars
(Body_Id
));
2146 Write_Str
(" from ");
2147 Write_Location
(Loc
);
2150 end Analyze_Subprogram_Body
;
2152 --------------------------------------
2153 -- Analyze_Subprogram_Body_Contract --
2154 --------------------------------------
2156 procedure Analyze_Subprogram_Body_Contract
(Body_Id
: Entity_Id
) is
2157 Body_Decl
: constant Node_Id
:= Parent
(Parent
(Body_Id
));
2158 Mode
: SPARK_Mode_Type
;
2160 Ref_Depends
: Node_Id
:= Empty
;
2161 Ref_Global
: Node_Id
:= Empty
;
2162 Spec_Id
: Entity_Id
;
2165 -- Due to the timing of contract analysis, delayed pragmas may be
2166 -- subject to the wrong SPARK_Mode, usually that of the enclosing
2167 -- context. To remedy this, restore the original SPARK_Mode of the
2168 -- related subprogram body.
2170 Save_SPARK_Mode_And_Set
(Body_Id
, Mode
);
2172 -- When a subprogram body declaration is illegal, its defining entity is
2173 -- left unanalyzed. There is nothing left to do in this case because the
2174 -- body lacks a contract, or even a proper Ekind.
2176 if Ekind
(Body_Id
) = E_Void
then
2180 if Nkind
(Body_Decl
) = N_Subprogram_Body_Stub
then
2181 Spec_Id
:= Corresponding_Spec_Of_Stub
(Body_Decl
);
2183 Spec_Id
:= Corresponding_Spec
(Body_Decl
);
2186 -- Locate and store pragmas Refined_Depends and Refined_Global since
2187 -- their order of analysis matters.
2189 Prag
:= Classifications
(Contract
(Body_Id
));
2190 while Present
(Prag
) loop
2191 if Pragma_Name
(Prag
) = Name_Refined_Depends
then
2192 Ref_Depends
:= Prag
;
2193 elsif Pragma_Name
(Prag
) = Name_Refined_Global
then
2197 Prag
:= Next_Pragma
(Prag
);
2200 -- Analyze Refined_Global first as Refined_Depends may mention items
2201 -- classified in the global refinement.
2203 if Present
(Ref_Global
) then
2204 Analyze_Refined_Global_In_Decl_Part
(Ref_Global
);
2206 -- When the corresponding Global aspect/pragma references a state with
2207 -- visible refinement, the body requires Refined_Global. Refinement is
2208 -- not required when SPARK checks are suppressed.
2210 elsif Present
(Spec_Id
) then
2211 Prag
:= Get_Pragma
(Spec_Id
, Pragma_Global
);
2213 if SPARK_Mode
/= Off
2214 and then Present
(Prag
)
2215 and then Contains_Refined_State
(Prag
)
2218 ("body of subprogram& requires global refinement",
2219 Body_Decl
, Spec_Id
);
2223 -- Refined_Depends must be analyzed after Refined_Global in order to see
2224 -- the modes of all global refinements.
2226 if Present
(Ref_Depends
) then
2227 Analyze_Refined_Depends_In_Decl_Part
(Ref_Depends
);
2229 -- When the corresponding Depends aspect/pragma references a state with
2230 -- visible refinement, the body requires Refined_Depends. Refinement is
2231 -- not required when SPARK checks are suppressed.
2233 elsif Present
(Spec_Id
) then
2234 Prag
:= Get_Pragma
(Spec_Id
, Pragma_Depends
);
2236 if SPARK_Mode
/= Off
2237 and then Present
(Prag
)
2238 and then Contains_Refined_State
(Prag
)
2241 ("body of subprogram& requires dependance refinement",
2242 Body_Decl
, Spec_Id
);
2246 -- Restore the SPARK_Mode of the enclosing context after all delayed
2247 -- pragmas have been analyzed.
2249 Restore_SPARK_Mode
(Mode
);
2250 end Analyze_Subprogram_Body_Contract
;
2252 ------------------------------------
2253 -- Analyze_Subprogram_Body_Helper --
2254 ------------------------------------
2256 -- This procedure is called for regular subprogram bodies, generic bodies,
2257 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2258 -- specification matters, and is used to create a proper declaration for
2259 -- the subprogram, or to perform conformance checks.
2261 procedure Analyze_Subprogram_Body_Helper
(N
: Node_Id
) is
2262 Loc
: constant Source_Ptr
:= Sloc
(N
);
2263 Body_Spec
: constant Node_Id
:= Specification
(N
);
2264 Body_Id
: Entity_Id
:= Defining_Entity
(Body_Spec
);
2265 Prev_Id
: constant Entity_Id
:= Current_Entity_In_Scope
(Body_Id
);
2266 Conformant
: Boolean;
2268 Prot_Typ
: Entity_Id
:= Empty
;
2269 Spec_Id
: Entity_Id
;
2270 Spec_Decl
: Node_Id
:= Empty
;
2272 Last_Real_Spec_Entity
: Entity_Id
:= Empty
;
2273 -- When we analyze a separate spec, the entity chain ends up containing
2274 -- the formals, as well as any itypes generated during analysis of the
2275 -- default expressions for parameters, or the arguments of associated
2276 -- precondition/postcondition pragmas (which are analyzed in the context
2277 -- of the spec since they have visibility on formals).
2279 -- These entities belong with the spec and not the body. However we do
2280 -- the analysis of the body in the context of the spec (again to obtain
2281 -- visibility to the formals), and all the entities generated during
2282 -- this analysis end up also chained to the entity chain of the spec.
2283 -- But they really belong to the body, and there is circuitry to move
2284 -- them from the spec to the body.
2286 -- However, when we do this move, we don't want to move the real spec
2287 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2288 -- variable points to the last real spec entity, so we only move those
2289 -- chained beyond that point. It is initialized to Empty to deal with
2290 -- the case where there is no separate spec.
2292 procedure Analyze_Aspects_On_Body_Or_Stub
;
2293 -- Analyze the aspect specifications of a subprogram body [stub]. It is
2294 -- assumed that N has aspects.
2296 function Body_Has_Contract
return Boolean;
2297 -- Check whether unanalyzed body has an aspect or pragma that may
2298 -- generate a SPARK contract.
2300 procedure Check_Anonymous_Return
;
2301 -- Ada 2005: if a function returns an access type that denotes a task,
2302 -- or a type that contains tasks, we must create a master entity for
2303 -- the anonymous type, which typically will be used in an allocator
2304 -- in the body of the function.
2306 procedure Check_Inline_Pragma
(Spec
: in out Node_Id
);
2307 -- Look ahead to recognize a pragma that may appear after the body.
2308 -- If there is a previous spec, check that it appears in the same
2309 -- declarative part. If the pragma is Inline_Always, perform inlining
2310 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2311 -- If the body acts as a spec, and inlining is required, we create a
2312 -- subprogram declaration for it, in order to attach the body to inline.
2313 -- If pragma does not appear after the body, check whether there is
2314 -- an inline pragma before any local declarations.
2316 procedure Check_Missing_Return
;
2317 -- Checks for a function with a no return statements, and also performs
2318 -- the warning checks implemented by Check_Returns. In formal mode, also
2319 -- verify that a function ends with a RETURN and that a procedure does
2320 -- not contain any RETURN.
2322 function Disambiguate_Spec
return Entity_Id
;
2323 -- When a primitive is declared between the private view and the full
2324 -- view of a concurrent type which implements an interface, a special
2325 -- mechanism is used to find the corresponding spec of the primitive
2328 procedure Exchange_Limited_Views
(Subp_Id
: Entity_Id
);
2329 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2330 -- incomplete types coming from a limited context and swap their limited
2331 -- views with the non-limited ones.
2333 function Is_Private_Concurrent_Primitive
2334 (Subp_Id
: Entity_Id
) return Boolean;
2335 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2336 -- type that implements an interface and has a private view.
2338 procedure Set_Trivial_Subprogram
(N
: Node_Id
);
2339 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
2340 -- subprogram whose body is being analyzed. N is the statement node
2341 -- causing the flag to be set, if the following statement is a return
2342 -- of an entity, we mark the entity as set in source to suppress any
2343 -- warning on the stylized use of function stubs with a dummy return.
2345 procedure Verify_Overriding_Indicator
;
2346 -- If there was a previous spec, the entity has been entered in the
2347 -- current scope previously. If the body itself carries an overriding
2348 -- indicator, check that it is consistent with the known status of the
2351 -------------------------------------
2352 -- Analyze_Aspects_On_Body_Or_Stub --
2353 -------------------------------------
2355 procedure Analyze_Aspects_On_Body_Or_Stub
is
2356 procedure Diagnose_Misplaced_Aspects
;
2357 -- Subprogram body [stub] N has aspects, but they are not properly
2358 -- placed. Provide precise diagnostics depending on the aspects
2361 --------------------------------
2362 -- Diagnose_Misplaced_Aspects --
2363 --------------------------------
2365 procedure Diagnose_Misplaced_Aspects
is
2369 -- The current aspect along with its name and id
2371 procedure SPARK_Aspect_Error
(Ref_Nam
: Name_Id
);
2372 -- Emit an error message concerning SPARK aspect Asp. Ref_Nam is
2373 -- the name of the refined version of the aspect.
2375 ------------------------
2376 -- SPARK_Aspect_Error --
2377 ------------------------
2379 procedure SPARK_Aspect_Error
(Ref_Nam
: Name_Id
) is
2381 -- The corresponding spec already contains the aspect in
2382 -- question and the one appearing on the body must be the
2385 -- procedure P with Global ...;
2386 -- procedure P with Global ... is ... end P;
2390 if Has_Aspect
(Spec_Id
, Asp_Id
) then
2391 Error_Msg_Name_1
:= Asp_Nam
;
2393 -- Subunits cannot carry aspects that apply to a subprogram
2396 if Nkind
(Parent
(N
)) = N_Subunit
then
2397 Error_Msg_N
("aspect % cannot apply to a subunit", Asp
);
2400 Error_Msg_Name_2
:= Ref_Nam
;
2401 Error_Msg_N
("aspect % should be %", Asp
);
2404 -- Otherwise the aspect must appear in the spec, not in the
2408 -- procedure P with Global ... is ... end P;
2412 ("aspect specification must appear in subprogram "
2413 & "declaration", Asp
);
2415 end SPARK_Aspect_Error
;
2417 -- Start of processing for Diagnose_Misplaced_Aspects
2420 -- Iterate over the aspect specifications and emit specific errors
2421 -- where applicable.
2423 Asp
:= First
(Aspect_Specifications
(N
));
2424 while Present
(Asp
) loop
2425 Asp_Nam
:= Chars
(Identifier
(Asp
));
2426 Asp_Id
:= Get_Aspect_Id
(Asp_Nam
);
2428 -- Do not emit errors on aspects that can appear on a
2429 -- subprogram body. This scenario occurs when the aspect
2430 -- specification list contains both misplaced and properly
2433 if Aspect_On_Body_Or_Stub_OK
(Asp_Id
) then
2436 -- Special diagnostics for SPARK aspects
2438 elsif Asp_Nam
= Name_Depends
then
2439 SPARK_Aspect_Error
(Name_Refined_Depends
);
2441 elsif Asp_Nam
= Name_Global
then
2442 SPARK_Aspect_Error
(Name_Refined_Global
);
2444 elsif Asp_Nam
= Name_Post
then
2445 SPARK_Aspect_Error
(Name_Refined_Post
);
2449 ("aspect specification must appear in subprogram "
2450 & "declaration", Asp
);
2455 end Diagnose_Misplaced_Aspects
;
2457 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
2460 -- Language-defined aspects cannot be associated with a subprogram
2461 -- body [stub] if the subprogram has a spec. Certain implementation
2462 -- defined aspects are allowed to break this rule (for list, see
2463 -- table Aspect_On_Body_Or_Stub_OK).
2465 if Present
(Spec_Id
) and then not Aspects_On_Body_Or_Stub_OK
(N
) then
2466 Diagnose_Misplaced_Aspects
;
2468 Analyze_Aspect_Specifications
(N
, Body_Id
);
2470 end Analyze_Aspects_On_Body_Or_Stub
;
2472 -----------------------
2473 -- Body_Has_Contract --
2474 -----------------------
2476 function Body_Has_Contract
return Boolean is
2477 Decls
: constant List_Id
:= Declarations
(N
);
2484 -- Check for unanalyzed aspects in the body that will
2485 -- generate a contract.
2487 if Present
(Aspect_Specifications
(N
)) then
2488 A_Spec
:= First
(Aspect_Specifications
(N
));
2489 while Present
(A_Spec
) loop
2490 A
:= Get_Aspect_Id
(Chars
(Identifier
(A_Spec
)));
2492 if A
= Aspect_Contract_Cases
or else
2493 A
= Aspect_Depends
or else
2494 A
= Aspect_Global
or else
2495 A
= Aspect_Pre
or else
2496 A
= Aspect_Precondition
or else
2497 A
= Aspect_Post
or else
2498 A
= Aspect_Postcondition
2507 -- Check for pragmas that may generate a contract
2509 if Present
(Decls
) then
2510 Decl
:= First
(Decls
);
2511 while Present
(Decl
) loop
2512 if Nkind
(Decl
) = N_Pragma
then
2513 P_Id
:= Get_Pragma_Id
(Pragma_Name
(Decl
));
2515 if P_Id
= Pragma_Contract_Cases
or else
2516 P_Id
= Pragma_Depends
or else
2517 P_Id
= Pragma_Global
or else
2518 P_Id
= Pragma_Pre
or else
2519 P_Id
= Pragma_Precondition
or else
2520 P_Id
= Pragma_Post
or else
2521 P_Id
= Pragma_Postcondition
2532 end Body_Has_Contract
;
2534 ----------------------------
2535 -- Check_Anonymous_Return --
2536 ----------------------------
2538 procedure Check_Anonymous_Return
is
2544 if Present
(Spec_Id
) then
2550 if Ekind
(Scop
) = E_Function
2551 and then Ekind
(Etype
(Scop
)) = E_Anonymous_Access_Type
2552 and then not Is_Thunk
(Scop
)
2554 -- Skip internally built functions which handle the case of
2555 -- a null access (see Expand_Interface_Conversion)
2557 and then not (Is_Interface
(Designated_Type
(Etype
(Scop
)))
2558 and then not Comes_From_Source
(Parent
(Scop
)))
2560 and then (Has_Task
(Designated_Type
(Etype
(Scop
)))
2562 (Is_Class_Wide_Type
(Designated_Type
(Etype
(Scop
)))
2564 Is_Limited_Record
(Designated_Type
(Etype
(Scop
)))))
2565 and then Expander_Active
2567 -- Avoid cases with no tasking support
2569 and then RTE_Available
(RE_Current_Master
)
2570 and then not Restriction_Active
(No_Task_Hierarchy
)
2573 Make_Object_Declaration
(Loc
,
2574 Defining_Identifier
=>
2575 Make_Defining_Identifier
(Loc
, Name_uMaster
),
2576 Constant_Present
=> True,
2577 Object_Definition
=>
2578 New_Occurrence_Of
(RTE
(RE_Master_Id
), Loc
),
2580 Make_Explicit_Dereference
(Loc
,
2581 New_Occurrence_Of
(RTE
(RE_Current_Master
), Loc
)));
2583 if Present
(Declarations
(N
)) then
2584 Prepend
(Decl
, Declarations
(N
));
2586 Set_Declarations
(N
, New_List
(Decl
));
2589 Set_Master_Id
(Etype
(Scop
), Defining_Identifier
(Decl
));
2590 Set_Has_Master_Entity
(Scop
);
2592 -- Now mark the containing scope as a task master
2595 while Nkind
(Par
) /= N_Compilation_Unit
loop
2596 Par
:= Parent
(Par
);
2597 pragma Assert
(Present
(Par
));
2599 -- If we fall off the top, we are at the outer level, and
2600 -- the environment task is our effective master, so nothing
2604 (Par
, N_Task_Body
, N_Block_Statement
, N_Subprogram_Body
)
2606 Set_Is_Task_Master
(Par
, True);
2611 end Check_Anonymous_Return
;
2613 -------------------------
2614 -- Check_Inline_Pragma --
2615 -------------------------
2617 procedure Check_Inline_Pragma
(Spec
: in out Node_Id
) is
2621 function Is_Inline_Pragma
(N
: Node_Id
) return Boolean;
2622 -- True when N is a pragma Inline or Inline_Always that applies
2623 -- to this subprogram.
2625 -----------------------
2626 -- Is_Inline_Pragma --
2627 -----------------------
2629 function Is_Inline_Pragma
(N
: Node_Id
) return Boolean is
2632 Nkind
(N
) = N_Pragma
2634 (Pragma_Name
(N
) = Name_Inline_Always
2637 and then Pragma_Name
(N
) = Name_Inline
))
2640 (Expression
(First
(Pragma_Argument_Associations
(N
)))) =
2642 end Is_Inline_Pragma
;
2644 -- Start of processing for Check_Inline_Pragma
2647 if not Expander_Active
then
2651 if Is_List_Member
(N
)
2652 and then Present
(Next
(N
))
2653 and then Is_Inline_Pragma
(Next
(N
))
2657 elsif Nkind
(N
) /= N_Subprogram_Body_Stub
2658 and then Present
(Declarations
(N
))
2659 and then Is_Inline_Pragma
(First
(Declarations
(N
)))
2661 Prag
:= First
(Declarations
(N
));
2667 if Present
(Prag
) then
2668 if Present
(Spec_Id
) then
2669 if In_Same_List
(N
, Unit_Declaration_Node
(Spec_Id
)) then
2674 -- Create a subprogram declaration, to make treatment uniform
2677 Subp
: constant Entity_Id
:=
2678 Make_Defining_Identifier
(Loc
, Chars
(Body_Id
));
2679 Decl
: constant Node_Id
:=
2680 Make_Subprogram_Declaration
(Loc
,
2682 New_Copy_Tree
(Specification
(N
)));
2685 Set_Defining_Unit_Name
(Specification
(Decl
), Subp
);
2687 if Present
(First_Formal
(Body_Id
)) then
2688 Plist
:= Copy_Parameter_List
(Body_Id
);
2689 Set_Parameter_Specifications
2690 (Specification
(Decl
), Plist
);
2693 Insert_Before
(N
, Decl
);
2696 Set_Has_Pragma_Inline
(Subp
);
2698 if Pragma_Name
(Prag
) = Name_Inline_Always
then
2699 Set_Is_Inlined
(Subp
);
2700 Set_Has_Pragma_Inline_Always
(Subp
);
2703 -- Prior to copying the subprogram body to create a template
2704 -- for it for subsequent inlining, remove the pragma from
2705 -- the current body so that the copy that will produce the
2706 -- new body will start from a completely unanalyzed tree.
2708 if Nkind
(Parent
(Prag
)) = N_Subprogram_Body
then
2709 Rewrite
(Prag
, Make_Null_Statement
(Sloc
(Prag
)));
2716 end Check_Inline_Pragma
;
2718 --------------------------
2719 -- Check_Missing_Return --
2720 --------------------------
2722 procedure Check_Missing_Return
is
2724 Missing_Ret
: Boolean;
2727 if Nkind
(Body_Spec
) = N_Function_Specification
then
2728 if Present
(Spec_Id
) then
2734 if Return_Present
(Id
) then
2735 Check_Returns
(HSS
, 'F', Missing_Ret
);
2738 Set_Has_Missing_Return
(Id
);
2741 elsif Is_Generic_Subprogram
(Id
)
2742 or else not Is_Machine_Code_Subprogram
(Id
)
2744 Error_Msg_N
("missing RETURN statement in function body", N
);
2747 -- If procedure with No_Return, check returns
2749 elsif Nkind
(Body_Spec
) = N_Procedure_Specification
2750 and then Present
(Spec_Id
)
2751 and then No_Return
(Spec_Id
)
2753 Check_Returns
(HSS
, 'P', Missing_Ret
, Spec_Id
);
2756 -- Special checks in SPARK mode
2758 if Nkind
(Body_Spec
) = N_Function_Specification
then
2760 -- In SPARK mode, last statement of a function should be a return
2763 Stat
: constant Node_Id
:= Last_Source_Statement
(HSS
);
2766 and then not Nkind_In
(Stat
, N_Simple_Return_Statement
,
2767 N_Extended_Return_Statement
)
2769 Check_SPARK_05_Restriction
2770 ("last statement in function should be RETURN", Stat
);
2774 -- In SPARK mode, verify that a procedure has no return
2776 elsif Nkind
(Body_Spec
) = N_Procedure_Specification
then
2777 if Present
(Spec_Id
) then
2783 -- Would be nice to point to return statement here, can we
2784 -- borrow the Check_Returns procedure here ???
2786 if Return_Present
(Id
) then
2787 Check_SPARK_05_Restriction
2788 ("procedure should not have RETURN", N
);
2791 end Check_Missing_Return
;
2793 -----------------------
2794 -- Disambiguate_Spec --
2795 -----------------------
2797 function Disambiguate_Spec
return Entity_Id
is
2798 Priv_Spec
: Entity_Id
;
2801 procedure Replace_Types
(To_Corresponding
: Boolean);
2802 -- Depending on the flag, replace the type of formal parameters of
2803 -- Body_Id if it is a concurrent type implementing interfaces with
2804 -- the corresponding record type or the other way around.
2806 procedure Replace_Types
(To_Corresponding
: Boolean) is
2808 Formal_Typ
: Entity_Id
;
2811 Formal
:= First_Formal
(Body_Id
);
2812 while Present
(Formal
) loop
2813 Formal_Typ
:= Etype
(Formal
);
2815 if Is_Class_Wide_Type
(Formal_Typ
) then
2816 Formal_Typ
:= Root_Type
(Formal_Typ
);
2819 -- From concurrent type to corresponding record
2821 if To_Corresponding
then
2822 if Is_Concurrent_Type
(Formal_Typ
)
2823 and then Present
(Corresponding_Record_Type
(Formal_Typ
))
2824 and then Present
(Interfaces
(
2825 Corresponding_Record_Type
(Formal_Typ
)))
2828 Corresponding_Record_Type
(Formal_Typ
));
2831 -- From corresponding record to concurrent type
2834 if Is_Concurrent_Record_Type
(Formal_Typ
)
2835 and then Present
(Interfaces
(Formal_Typ
))
2838 Corresponding_Concurrent_Type
(Formal_Typ
));
2842 Next_Formal
(Formal
);
2846 -- Start of processing for Disambiguate_Spec
2849 -- Try to retrieve the specification of the body as is. All error
2850 -- messages are suppressed because the body may not have a spec in
2851 -- its current state.
2853 Spec_N
:= Find_Corresponding_Spec
(N
, False);
2855 -- It is possible that this is the body of a primitive declared
2856 -- between a private and a full view of a concurrent type. The
2857 -- controlling parameter of the spec carries the concurrent type,
2858 -- not the corresponding record type as transformed by Analyze_
2859 -- Subprogram_Specification. In such cases, we undo the change
2860 -- made by the analysis of the specification and try to find the
2863 -- Note that wrappers already have their corresponding specs and
2864 -- bodies set during their creation, so if the candidate spec is
2865 -- a wrapper, then we definitely need to swap all types to their
2866 -- original concurrent status.
2869 or else Is_Primitive_Wrapper
(Spec_N
)
2871 -- Restore all references of corresponding record types to the
2872 -- original concurrent types.
2874 Replace_Types
(To_Corresponding
=> False);
2875 Priv_Spec
:= Find_Corresponding_Spec
(N
, False);
2877 -- The current body truly belongs to a primitive declared between
2878 -- a private and a full view. We leave the modified body as is,
2879 -- and return the true spec.
2881 if Present
(Priv_Spec
)
2882 and then Is_Private_Primitive
(Priv_Spec
)
2887 -- In case that this is some sort of error, restore the original
2888 -- state of the body.
2890 Replace_Types
(To_Corresponding
=> True);
2894 end Disambiguate_Spec
;
2896 ----------------------------
2897 -- Exchange_Limited_Views --
2898 ----------------------------
2900 procedure Exchange_Limited_Views
(Subp_Id
: Entity_Id
) is
2901 procedure Detect_And_Exchange
(Id
: Entity_Id
);
2902 -- Determine whether Id's type denotes an incomplete type associated
2903 -- with a limited with clause and exchange the limited view with the
2906 -------------------------
2907 -- Detect_And_Exchange --
2908 -------------------------
2910 procedure Detect_And_Exchange
(Id
: Entity_Id
) is
2911 Typ
: constant Entity_Id
:= Etype
(Id
);
2914 if Ekind
(Typ
) = E_Incomplete_Type
2915 and then From_Limited_With
(Typ
)
2916 and then Present
(Non_Limited_View
(Typ
))
2918 Set_Etype
(Id
, Non_Limited_View
(Typ
));
2920 end Detect_And_Exchange
;
2926 -- Start of processing for Exchange_Limited_Views
2929 if No
(Subp_Id
) then
2932 -- Do not process subprogram bodies as they already use the non-
2933 -- limited view of types.
2935 elsif not Ekind_In
(Subp_Id
, E_Function
, E_Procedure
) then
2939 -- Examine all formals and swap views when applicable
2941 Formal
:= First_Formal
(Subp_Id
);
2942 while Present
(Formal
) loop
2943 Detect_And_Exchange
(Formal
);
2945 Next_Formal
(Formal
);
2948 -- Process the return type of a function
2950 if Ekind
(Subp_Id
) = E_Function
then
2951 Detect_And_Exchange
(Subp_Id
);
2953 end Exchange_Limited_Views
;
2955 -------------------------------------
2956 -- Is_Private_Concurrent_Primitive --
2957 -------------------------------------
2959 function Is_Private_Concurrent_Primitive
2960 (Subp_Id
: Entity_Id
) return Boolean
2962 Formal_Typ
: Entity_Id
;
2965 if Present
(First_Formal
(Subp_Id
)) then
2966 Formal_Typ
:= Etype
(First_Formal
(Subp_Id
));
2968 if Is_Concurrent_Record_Type
(Formal_Typ
) then
2969 if Is_Class_Wide_Type
(Formal_Typ
) then
2970 Formal_Typ
:= Root_Type
(Formal_Typ
);
2973 Formal_Typ
:= Corresponding_Concurrent_Type
(Formal_Typ
);
2976 -- The type of the first formal is a concurrent tagged type with
2980 Is_Concurrent_Type
(Formal_Typ
)
2981 and then Is_Tagged_Type
(Formal_Typ
)
2982 and then Has_Private_Declaration
(Formal_Typ
);
2986 end Is_Private_Concurrent_Primitive
;
2988 ----------------------------
2989 -- Set_Trivial_Subprogram --
2990 ----------------------------
2992 procedure Set_Trivial_Subprogram
(N
: Node_Id
) is
2993 Nxt
: constant Node_Id
:= Next
(N
);
2996 Set_Is_Trivial_Subprogram
(Body_Id
);
2998 if Present
(Spec_Id
) then
2999 Set_Is_Trivial_Subprogram
(Spec_Id
);
3003 and then Nkind
(Nxt
) = N_Simple_Return_Statement
3004 and then No
(Next
(Nxt
))
3005 and then Present
(Expression
(Nxt
))
3006 and then Is_Entity_Name
(Expression
(Nxt
))
3008 Set_Never_Set_In_Source
(Entity
(Expression
(Nxt
)), False);
3010 end Set_Trivial_Subprogram
;
3012 ---------------------------------
3013 -- Verify_Overriding_Indicator --
3014 ---------------------------------
3016 procedure Verify_Overriding_Indicator
is
3018 if Must_Override
(Body_Spec
) then
3019 if Nkind
(Spec_Id
) = N_Defining_Operator_Symbol
3020 and then Operator_Matches_Spec
(Spec_Id
, Spec_Id
)
3024 elsif not Present
(Overridden_Operation
(Spec_Id
)) then
3026 ("subprogram& is not overriding", Body_Spec
, Spec_Id
);
3028 -- Overriding indicators aren't allowed for protected subprogram
3029 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3030 -- this to a warning if -gnatd.E is enabled.
3032 elsif Ekind
(Scope
(Spec_Id
)) = E_Protected_Type
then
3033 Error_Msg_Warn
:= Error_To_Warning
;
3035 ("<<overriding indicator not allowed for protected "
3036 & "subprogram body", Body_Spec
);
3039 elsif Must_Not_Override
(Body_Spec
) then
3040 if Present
(Overridden_Operation
(Spec_Id
)) then
3042 ("subprogram& overrides inherited operation",
3043 Body_Spec
, Spec_Id
);
3045 elsif Nkind
(Spec_Id
) = N_Defining_Operator_Symbol
3046 and then Operator_Matches_Spec
(Spec_Id
, Spec_Id
)
3049 ("subprogram& overrides predefined operator ",
3050 Body_Spec
, Spec_Id
);
3052 -- Overriding indicators aren't allowed for protected subprogram
3053 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
3054 -- this to a warning if -gnatd.E is enabled.
3056 elsif Ekind
(Scope
(Spec_Id
)) = E_Protected_Type
then
3057 Error_Msg_Warn
:= Error_To_Warning
;
3060 ("<<overriding indicator not allowed "
3061 & "for protected subprogram body", Body_Spec
);
3063 -- If this is not a primitive operation, then the overriding
3064 -- indicator is altogether illegal.
3066 elsif not Is_Primitive
(Spec_Id
) then
3068 ("overriding indicator only allowed "
3069 & "if subprogram is primitive", Body_Spec
);
3072 -- If checking the style rule and the operation overrides, then
3073 -- issue a warning about a missing overriding_indicator. Protected
3074 -- subprogram bodies are excluded from this style checking, since
3075 -- they aren't primitives (even though their declarations can
3076 -- override) and aren't allowed to have an overriding_indicator.
3079 and then Present
(Overridden_Operation
(Spec_Id
))
3080 and then Ekind
(Scope
(Spec_Id
)) /= E_Protected_Type
3082 pragma Assert
(Unit_Declaration_Node
(Body_Id
) = N
);
3083 Style
.Missing_Overriding
(N
, Body_Id
);
3086 and then Can_Override_Operator
(Spec_Id
)
3087 and then not Is_Predefined_File_Name
3088 (Unit_File_Name
(Get_Source_Unit
(Spec_Id
)))
3090 pragma Assert
(Unit_Declaration_Node
(Body_Id
) = N
);
3091 Style
.Missing_Overriding
(N
, Body_Id
);
3093 end Verify_Overriding_Indicator
;
3095 -- Start of processing for Analyze_Subprogram_Body_Helper
3098 -- Generic subprograms are handled separately. They always have a
3099 -- generic specification. Determine whether current scope has a
3100 -- previous declaration.
3102 -- If the subprogram body is defined within an instance of the same
3103 -- name, the instance appears as a package renaming, and will be hidden
3104 -- within the subprogram.
3106 if Present
(Prev_Id
)
3107 and then not Is_Overloadable
(Prev_Id
)
3108 and then (Nkind
(Parent
(Prev_Id
)) /= N_Package_Renaming_Declaration
3109 or else Comes_From_Source
(Prev_Id
))
3111 if Is_Generic_Subprogram
(Prev_Id
) then
3113 Set_Is_Compilation_Unit
(Body_Id
, Is_Compilation_Unit
(Spec_Id
));
3114 Set_Is_Child_Unit
(Body_Id
, Is_Child_Unit
(Spec_Id
));
3116 Analyze_Generic_Subprogram_Body
(N
, Spec_Id
);
3118 if Nkind
(N
) = N_Subprogram_Body
then
3119 HSS
:= Handled_Statement_Sequence
(N
);
3120 Check_Missing_Return
;
3126 -- Previous entity conflicts with subprogram name. Attempting to
3127 -- enter name will post error.
3129 Enter_Name
(Body_Id
);
3133 -- Non-generic case, find the subprogram declaration, if one was seen,
3134 -- or enter new overloaded entity in the current scope. If the
3135 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
3136 -- part of the context of one of its subunits. No need to redo the
3139 elsif Prev_Id
= Body_Id
and then Has_Completion
(Body_Id
) then
3143 Body_Id
:= Analyze_Subprogram_Specification
(Body_Spec
);
3145 if Nkind
(N
) = N_Subprogram_Body_Stub
3146 or else No
(Corresponding_Spec
(N
))
3148 if Is_Private_Concurrent_Primitive
(Body_Id
) then
3149 Spec_Id
:= Disambiguate_Spec
;
3151 Spec_Id
:= Find_Corresponding_Spec
(N
);
3153 -- In GNATprove mode, if the body has no previous spec, create
3154 -- one so that the inlining machinery can operate properly.
3155 -- Transfer aspects, if any, to the new spec, so that they
3156 -- are legal and can be processed ahead of the body.
3157 -- We make two copies of the given spec, one for the new
3158 -- declaration, and one for the body.
3161 and then GNATprove_Mode
3163 -- Inlining does not apply during pre-analysis of code
3165 and then Full_Analysis
3167 -- Inlining only applies to full bodies, not stubs
3169 and then Nkind
(N
) /= N_Subprogram_Body_Stub
3171 -- Inlining only applies to bodies in the source code, not to
3172 -- those generated by the compiler. In particular, expression
3173 -- functions, whose body is generated by the compiler, are
3174 -- treated specially by GNATprove.
3176 and then Comes_From_Source
(Body_Id
)
3178 -- This cannot be done for a compilation unit, which is not
3179 -- in a context where we can insert a new spec.
3181 and then Is_List_Member
(N
)
3183 -- Inlining only applies to subprograms without contracts,
3184 -- as a contract is a sign that GNATprove should perform a
3185 -- modular analysis of the subprogram instead of a contextual
3186 -- analysis at each call site. The same test is performed in
3187 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
3188 -- here in another form (because the contract has not
3189 -- been attached to the body) to avoid frontend errors in
3190 -- case pragmas are used instead of aspects, because the
3191 -- corresponding pragmas in the body would not be transferred
3192 -- to the spec, leading to legality errors.
3194 and then not Body_Has_Contract
3197 Body_Spec
: constant Node_Id
:=
3198 Copy_Separate_Tree
(Specification
(N
));
3199 New_Decl
: constant Node_Id
:=
3200 Make_Subprogram_Declaration
(Loc
,
3201 Copy_Separate_Tree
(Specification
(N
)));
3203 SPARK_Mode_Aspect
: Node_Id
;
3205 Prag
, Aspect
: Node_Id
;
3208 Insert_Before
(N
, New_Decl
);
3209 Move_Aspects
(From
=> N
, To
=> New_Decl
);
3211 -- Mark the newly moved aspects as not analyzed, so that
3212 -- their effect on New_Decl is properly analyzed.
3214 Aspect
:= First
(Aspect_Specifications
(New_Decl
));
3215 while Present
(Aspect
) loop
3216 Set_Analyzed
(Aspect
, False);
3222 -- The analysis of the generated subprogram declaration
3223 -- may have introduced pragmas that need to be analyzed.
3225 Prag
:= Next
(New_Decl
);
3226 while Prag
/= N
loop
3231 Spec_Id
:= Defining_Entity
(New_Decl
);
3233 -- As Body_Id originally comes from source, mark the new
3234 -- Spec_Id as such, which is required so that calls to
3235 -- this subprogram are registered in the local effects
3236 -- stored in ALI files for GNATprove.
3238 Set_Comes_From_Source
(Spec_Id
, True);
3240 -- If aspect SPARK_Mode was specified on the body, it
3241 -- needs to be repeated on the generated decl and the
3242 -- body. Since the original aspect was moved to the
3243 -- generated decl, copy it for the body.
3245 if Has_Aspect
(Spec_Id
, Aspect_SPARK_Mode
) then
3246 SPARK_Mode_Aspect
:=
3247 New_Copy
(Find_Aspect
(Spec_Id
, Aspect_SPARK_Mode
));
3248 Set_Analyzed
(SPARK_Mode_Aspect
, False);
3249 Aspects
:= New_List
(SPARK_Mode_Aspect
);
3250 Set_Aspect_Specifications
(N
, Aspects
);
3253 Set_Specification
(N
, Body_Spec
);
3254 Body_Id
:= Analyze_Subprogram_Specification
(Body_Spec
);
3255 Set_Corresponding_Spec
(N
, Spec_Id
);
3260 -- If this is a duplicate body, no point in analyzing it
3262 if Error_Posted
(N
) then
3266 -- A subprogram body should cause freezing of its own declaration,
3267 -- but if there was no previous explicit declaration, then the
3268 -- subprogram will get frozen too late (there may be code within
3269 -- the body that depends on the subprogram having been frozen,
3270 -- such as uses of extra formals), so we force it to be frozen
3271 -- here. Same holds if the body and spec are compilation units.
3272 -- Finally, if the return type is an anonymous access to protected
3273 -- subprogram, it must be frozen before the body because its
3274 -- expansion has generated an equivalent type that is used when
3275 -- elaborating the body.
3277 -- An exception in the case of Ada 2012, AI05-177: The bodies
3278 -- created for expression functions do not freeze.
3281 and then Nkind
(Original_Node
(N
)) /= N_Expression_Function
3283 Freeze_Before
(N
, Body_Id
);
3285 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3286 Freeze_Before
(N
, Spec_Id
);
3288 elsif Is_Access_Subprogram_Type
(Etype
(Body_Id
)) then
3289 Freeze_Before
(N
, Etype
(Body_Id
));
3293 Spec_Id
:= Corresponding_Spec
(N
);
3297 -- Previously we scanned the body to look for nested subprograms, and
3298 -- rejected an inline directive if nested subprograms were present,
3299 -- because the back-end would generate conflicting symbols for the
3300 -- nested bodies. This is now unnecessary.
3302 -- Look ahead to recognize a pragma Inline that appears after the body
3304 Check_Inline_Pragma
(Spec_Id
);
3306 -- Deal with special case of a fully private operation in the body of
3307 -- the protected type. We must create a declaration for the subprogram,
3308 -- in order to attach the protected subprogram that will be used in
3309 -- internal calls. We exclude compiler generated bodies from the
3310 -- expander since the issue does not arise for those cases.
3313 and then Comes_From_Source
(N
)
3314 and then Is_Protected_Type
(Current_Scope
)
3316 Spec_Id
:= Build_Private_Protected_Declaration
(N
);
3319 -- If a separate spec is present, then deal with freezing issues
3321 if Present
(Spec_Id
) then
3322 Spec_Decl
:= Unit_Declaration_Node
(Spec_Id
);
3323 Verify_Overriding_Indicator
;
3325 -- In general, the spec will be frozen when we start analyzing the
3326 -- body. However, for internally generated operations, such as
3327 -- wrapper functions for inherited operations with controlling
3328 -- results, the spec may not have been frozen by the time we expand
3329 -- the freeze actions that include the bodies. In particular, extra
3330 -- formals for accessibility or for return-in-place may need to be
3331 -- generated. Freeze nodes, if any, are inserted before the current
3332 -- body. These freeze actions are also needed in ASIS mode to enable
3333 -- the proper back-annotations.
3335 if not Is_Frozen
(Spec_Id
)
3336 and then (Expander_Active
or ASIS_Mode
)
3338 -- Force the generation of its freezing node to ensure proper
3339 -- management of access types in the backend.
3341 -- This is definitely needed for some cases, but it is not clear
3342 -- why, to be investigated further???
3344 Set_Has_Delayed_Freeze
(Spec_Id
);
3345 Freeze_Before
(N
, Spec_Id
);
3349 -- Mark presence of postcondition procedure in current scope and mark
3350 -- the procedure itself as needing debug info. The latter is important
3351 -- when analyzing decision coverage (for example, for MC/DC coverage).
3353 if Chars
(Body_Id
) = Name_uPostconditions
then
3354 Set_Has_Postconditions
(Current_Scope
);
3355 Set_Debug_Info_Needed
(Body_Id
);
3358 -- Place subprogram on scope stack, and make formals visible. If there
3359 -- is a spec, the visible entity remains that of the spec.
3361 if Present
(Spec_Id
) then
3362 Generate_Reference
(Spec_Id
, Body_Id
, 'b', Set_Ref
=> False);
3364 if Is_Child_Unit
(Spec_Id
) then
3365 Generate_Reference
(Spec_Id
, Scope
(Spec_Id
), 'k', False);
3369 Style
.Check_Identifier
(Body_Id
, Spec_Id
);
3372 Set_Is_Compilation_Unit
(Body_Id
, Is_Compilation_Unit
(Spec_Id
));
3373 Set_Is_Child_Unit
(Body_Id
, Is_Child_Unit
(Spec_Id
));
3375 if Is_Abstract_Subprogram
(Spec_Id
) then
3376 Error_Msg_N
("an abstract subprogram cannot have a body", N
);
3380 Set_Convention
(Body_Id
, Convention
(Spec_Id
));
3381 Set_Has_Completion
(Spec_Id
);
3383 -- Inherit the "ghostness" of the subprogram spec. Note that this
3384 -- property is not directly inherited as the body may be subject
3385 -- to a different Ghost assertion policy.
3387 if Is_Ghost_Entity
(Spec_Id
) or else Within_Ghost_Scope
then
3388 Set_Is_Ghost_Entity
(Body_Id
);
3390 -- The Ghost policy in effect at the point of declaration and
3391 -- at the point of completion must match (SPARK RM 6.9(15)).
3393 Check_Ghost_Completion
(Spec_Id
, Body_Id
);
3396 if Is_Protected_Type
(Scope
(Spec_Id
)) then
3397 Prot_Typ
:= Scope
(Spec_Id
);
3400 -- If this is a body generated for a renaming, do not check for
3401 -- full conformance. The check is redundant, because the spec of
3402 -- the body is a copy of the spec in the renaming declaration,
3403 -- and the test can lead to spurious errors on nested defaults.
3405 if Present
(Spec_Decl
)
3406 and then not Comes_From_Source
(N
)
3408 (Nkind
(Original_Node
(Spec_Decl
)) =
3409 N_Subprogram_Renaming_Declaration
3410 or else (Present
(Corresponding_Body
(Spec_Decl
))
3412 Nkind
(Unit_Declaration_Node
3413 (Corresponding_Body
(Spec_Decl
))) =
3414 N_Subprogram_Renaming_Declaration
))
3418 -- Conversely, the spec may have been generated for specless body
3419 -- with an inline pragma.
3421 elsif Comes_From_Source
(N
)
3422 and then not Comes_From_Source
(Spec_Id
)
3423 and then Has_Pragma_Inline
(Spec_Id
)
3430 Fully_Conformant
, True, Conformant
, Body_Id
);
3433 -- If the body is not fully conformant, we have to decide if we
3434 -- should analyze it or not. If it has a really messed up profile
3435 -- then we probably should not analyze it, since we will get too
3436 -- many bogus messages.
3438 -- Our decision is to go ahead in the non-fully conformant case
3439 -- only if it is at least mode conformant with the spec. Note
3440 -- that the call to Check_Fully_Conformant has issued the proper
3441 -- error messages to complain about the lack of conformance.
3444 and then not Mode_Conformant
(Body_Id
, Spec_Id
)
3450 if Spec_Id
/= Body_Id
then
3451 Reference_Body_Formals
(Spec_Id
, Body_Id
);
3454 Set_Ekind
(Body_Id
, E_Subprogram_Body
);
3456 if Nkind
(N
) = N_Subprogram_Body_Stub
then
3457 Set_Corresponding_Spec_Of_Stub
(N
, Spec_Id
);
3462 Set_Corresponding_Spec
(N
, Spec_Id
);
3464 -- Ada 2005 (AI-345): If the operation is a primitive operation
3465 -- of a concurrent type, the type of the first parameter has been
3466 -- replaced with the corresponding record, which is the proper
3467 -- run-time structure to use. However, within the body there may
3468 -- be uses of the formals that depend on primitive operations
3469 -- of the type (in particular calls in prefixed form) for which
3470 -- we need the original concurrent type. The operation may have
3471 -- several controlling formals, so the replacement must be done
3474 if Comes_From_Source
(Spec_Id
)
3475 and then Present
(First_Entity
(Spec_Id
))
3476 and then Ekind
(Etype
(First_Entity
(Spec_Id
))) = E_Record_Type
3477 and then Is_Tagged_Type
(Etype
(First_Entity
(Spec_Id
)))
3478 and then Present
(Interfaces
(Etype
(First_Entity
(Spec_Id
))))
3479 and then Present
(Corresponding_Concurrent_Type
3480 (Etype
(First_Entity
(Spec_Id
))))
3483 Typ
: constant Entity_Id
:= Etype
(First_Entity
(Spec_Id
));
3487 Form
:= First_Formal
(Spec_Id
);
3488 while Present
(Form
) loop
3489 if Etype
(Form
) = Typ
then
3490 Set_Etype
(Form
, Corresponding_Concurrent_Type
(Typ
));
3498 -- Make the formals visible, and place subprogram on scope stack.
3499 -- This is also the point at which we set Last_Real_Spec_Entity
3500 -- to mark the entities which will not be moved to the body.
3502 Install_Formals
(Spec_Id
);
3503 Last_Real_Spec_Entity
:= Last_Entity
(Spec_Id
);
3505 -- Within an instance, add local renaming declarations so that
3506 -- gdb can retrieve the values of actuals more easily. This is
3507 -- only relevant if generating code (and indeed we definitely
3508 -- do not want these definitions -gnatc mode, because that would
3511 if Is_Generic_Instance
(Spec_Id
)
3512 and then Is_Wrapper_Package
(Current_Scope
)
3513 and then Expander_Active
3515 Build_Subprogram_Instance_Renamings
(N
, Current_Scope
);
3518 Push_Scope
(Spec_Id
);
3520 -- Make sure that the subprogram is immediately visible. For
3521 -- child units that have no separate spec this is indispensable.
3522 -- Otherwise it is safe albeit redundant.
3524 Set_Is_Immediately_Visible
(Spec_Id
);
3527 Set_Corresponding_Body
(Unit_Declaration_Node
(Spec_Id
), Body_Id
);
3528 Set_Contract
(Body_Id
, Make_Contract
(Sloc
(Body_Id
)));
3529 Set_Scope
(Body_Id
, Scope
(Spec_Id
));
3530 Set_Is_Obsolescent
(Body_Id
, Is_Obsolescent
(Spec_Id
));
3532 -- Case of subprogram body with no previous spec
3535 -- Check for style warning required
3539 -- Only apply check for source level subprograms for which checks
3540 -- have not been suppressed.
3542 and then Comes_From_Source
(Body_Id
)
3543 and then not Suppress_Style_Checks
(Body_Id
)
3545 -- No warnings within an instance
3547 and then not In_Instance
3549 -- No warnings for expression functions
3551 and then Nkind
(Original_Node
(N
)) /= N_Expression_Function
3553 Style
.Body_With_No_Spec
(N
);
3556 New_Overloaded_Entity
(Body_Id
);
3558 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
3559 Set_Acts_As_Spec
(N
);
3560 Generate_Definition
(Body_Id
);
3561 Set_Contract
(Body_Id
, Make_Contract
(Sloc
(Body_Id
)));
3563 (Body_Id
, Body_Id
, 'b', Set_Ref
=> False, Force
=> True);
3564 Install_Formals
(Body_Id
);
3566 Push_Scope
(Body_Id
);
3569 -- For stubs and bodies with no previous spec, generate references to
3572 Generate_Reference_To_Formals
(Body_Id
);
3575 -- Set SPARK_Mode from context
3577 Set_SPARK_Pragma
(Body_Id
, SPARK_Mode_Pragma
);
3578 Set_SPARK_Pragma_Inherited
(Body_Id
, True);
3580 -- If the return type is an anonymous access type whose designated type
3581 -- is the limited view of a class-wide type and the non-limited view is
3582 -- available, update the return type accordingly.
3584 if Ada_Version
>= Ada_2005
and then Comes_From_Source
(N
) then
3590 Rtyp
:= Etype
(Current_Scope
);
3592 if Ekind
(Rtyp
) = E_Anonymous_Access_Type
then
3593 Etyp
:= Directly_Designated_Type
(Rtyp
);
3595 if Is_Class_Wide_Type
(Etyp
)
3596 and then From_Limited_With
(Etyp
)
3598 Set_Directly_Designated_Type
3599 (Etype
(Current_Scope
), Available_View
(Etyp
));
3605 -- If this is the proper body of a stub, we must verify that the stub
3606 -- conforms to the body, and to the previous spec if one was present.
3607 -- We know already that the body conforms to that spec. This test is
3608 -- only required for subprograms that come from source.
3610 if Nkind
(Parent
(N
)) = N_Subunit
3611 and then Comes_From_Source
(N
)
3612 and then not Error_Posted
(Body_Id
)
3613 and then Nkind
(Corresponding_Stub
(Parent
(N
))) =
3614 N_Subprogram_Body_Stub
3617 Old_Id
: constant Entity_Id
:=
3619 (Specification
(Corresponding_Stub
(Parent
(N
))));
3621 Conformant
: Boolean := False;
3624 if No
(Spec_Id
) then
3625 Check_Fully_Conformant
(Body_Id
, Old_Id
);
3629 (Body_Id
, Old_Id
, Fully_Conformant
, False, Conformant
);
3631 if not Conformant
then
3633 -- The stub was taken to be a new declaration. Indicate that
3636 Set_Has_Completion
(Old_Id
, False);
3642 Set_Has_Completion
(Body_Id
);
3643 Check_Eliminated
(Body_Id
);
3645 if Nkind
(N
) = N_Subprogram_Body_Stub
then
3647 -- Analyze any aspect specifications that appear on the subprogram
3650 if Has_Aspects
(N
) then
3651 Analyze_Aspects_On_Body_Or_Stub
;
3654 -- Stop the analysis now as the stub cannot be inlined, plus it does
3655 -- not have declarative or statement lists.
3660 -- Handle frontend inlining
3662 -- Note: Normally we don't do any inlining if expansion is off, since
3663 -- we won't generate code in any case. An exception arises in GNATprove
3664 -- mode where we want to expand some calls in place, even with expansion
3665 -- disabled, since the inlining eases formal verification.
3667 if not GNATprove_Mode
3668 and then Expander_Active
3669 and then Serious_Errors_Detected
= 0
3670 and then Present
(Spec_Id
)
3671 and then Has_Pragma_Inline
(Spec_Id
)
3673 -- Legacy implementation (relying on frontend inlining)
3675 if not Back_End_Inlining
then
3676 if Has_Pragma_Inline_Always
(Spec_Id
)
3677 or else (Has_Pragma_Inline
(Spec_Id
) and Front_End_Inlining
)
3679 Build_Body_To_Inline
(N
, Spec_Id
);
3682 -- New implementation (relying on backend inlining)
3685 if Has_Pragma_Inline_Always
(Spec_Id
)
3686 or else Optimization_Level
> 0
3688 -- Handle function returning an unconstrained type
3690 if Comes_From_Source
(Body_Id
)
3691 and then Ekind
(Spec_Id
) = E_Function
3692 and then Returns_Unconstrained_Type
(Spec_Id
)
3694 Check_And_Split_Unconstrained_Function
(N
, Spec_Id
, Body_Id
);
3698 Subp_Body
: constant Node_Id
:=
3699 Unit_Declaration_Node
(Body_Id
);
3700 Subp_Decl
: constant List_Id
:= Declarations
(Subp_Body
);
3703 -- Do not pass inlining to the backend if the subprogram
3704 -- has declarations or statements which cannot be inlined
3705 -- by the backend. This check is done here to emit an
3706 -- error instead of the generic warning message reported
3707 -- by the GCC backend (ie. "function might not be
3710 if Present
(Subp_Decl
)
3711 and then Has_Excluded_Declaration
(Spec_Id
, Subp_Decl
)
3715 elsif Has_Excluded_Statement
3718 (Handled_Statement_Sequence
(Subp_Body
)))
3722 -- If the backend inlining is available then at this
3723 -- stage we only have to mark the subprogram as inlined.
3724 -- The expander will take care of registering it in the
3725 -- table of subprograms inlined by the backend a part of
3726 -- processing calls to it (cf. Expand_Call)
3729 Set_Is_Inlined
(Spec_Id
);
3736 -- In GNATprove mode, inline only when there is a separate subprogram
3737 -- declaration for now, as inlining of subprogram bodies acting as
3738 -- declarations, or subprogram stubs, are not supported by frontend
3739 -- inlining. This inlining should occur after analysis of the body, so
3740 -- that it is known whether the value of SPARK_Mode applicable to the
3741 -- body, which can be defined by a pragma inside the body.
3743 elsif GNATprove_Mode
3744 and then Full_Analysis
3745 and then not Inside_A_Generic
3746 and then Present
(Spec_Id
)
3747 and then Nkind
(Parent
(Parent
(Spec_Id
))) = N_Subprogram_Declaration
3748 and then Can_Be_Inlined_In_GNATprove_Mode
(Spec_Id
, Body_Id
)
3749 and then not Body_Has_Contract
3751 Build_Body_To_Inline
(N
, Spec_Id
);
3754 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
3755 -- of the specification we have to install the private withed units.
3756 -- This holds for child units as well.
3758 if Is_Compilation_Unit
(Body_Id
)
3759 or else Nkind
(Parent
(N
)) = N_Compilation_Unit
3761 Install_Private_With_Clauses
(Body_Id
);
3764 Check_Anonymous_Return
;
3766 -- Set the Protected_Formal field of each extra formal of the protected
3767 -- subprogram to reference the corresponding extra formal of the
3768 -- subprogram that implements it. For regular formals this occurs when
3769 -- the protected subprogram's declaration is expanded, but the extra
3770 -- formals don't get created until the subprogram is frozen. We need to
3771 -- do this before analyzing the protected subprogram's body so that any
3772 -- references to the original subprogram's extra formals will be changed
3773 -- refer to the implementing subprogram's formals (see Expand_Formal).
3775 if Present
(Spec_Id
)
3776 and then Is_Protected_Type
(Scope
(Spec_Id
))
3777 and then Present
(Protected_Body_Subprogram
(Spec_Id
))
3780 Impl_Subp
: constant Entity_Id
:=
3781 Protected_Body_Subprogram
(Spec_Id
);
3782 Prot_Ext_Formal
: Entity_Id
:= Extra_Formals
(Spec_Id
);
3783 Impl_Ext_Formal
: Entity_Id
:= Extra_Formals
(Impl_Subp
);
3785 while Present
(Prot_Ext_Formal
) loop
3786 pragma Assert
(Present
(Impl_Ext_Formal
));
3787 Set_Protected_Formal
(Prot_Ext_Formal
, Impl_Ext_Formal
);
3788 Next_Formal_With_Extras
(Prot_Ext_Formal
);
3789 Next_Formal_With_Extras
(Impl_Ext_Formal
);
3794 -- Now we can go on to analyze the body
3796 HSS
:= Handled_Statement_Sequence
(N
);
3797 Set_Actual_Subtypes
(N
, Current_Scope
);
3799 -- Add a declaration for the Protection object, renaming declarations
3800 -- for discriminals and privals and finally a declaration for the entry
3801 -- family index (if applicable). This form of early expansion is done
3802 -- when the Expander is active because Install_Private_Data_Declarations
3803 -- references entities which were created during regular expansion. The
3804 -- subprogram entity must come from source, and not be an internally
3805 -- generated subprogram.
3808 and then Present
(Prot_Typ
)
3809 and then Present
(Spec_Id
)
3810 and then Comes_From_Source
(Spec_Id
)
3811 and then not Is_Eliminated
(Spec_Id
)
3813 Install_Private_Data_Declarations
3814 (Sloc
(N
), Spec_Id
, Prot_Typ
, N
, Declarations
(N
));
3817 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
3818 -- may now appear in parameter and result profiles. Since the analysis
3819 -- of a subprogram body may use the parameter and result profile of the
3820 -- spec, swap any limited views with their non-limited counterpart.
3822 if Ada_Version
>= Ada_2012
then
3823 Exchange_Limited_Views
(Spec_Id
);
3826 -- Analyze any aspect specifications that appear on the subprogram body
3828 if Has_Aspects
(N
) then
3829 Analyze_Aspects_On_Body_Or_Stub
;
3832 -- Deal with [refined] preconditions, postconditions, Contract_Cases,
3833 -- invariants and predicates associated with the body and its spec.
3834 -- Note that this is not pure expansion as Expand_Subprogram_Contract
3835 -- prepares the contract assertions for generic subprograms or for ASIS.
3836 -- Do not generate contract checks in SPARK mode.
3838 if not GNATprove_Mode
then
3839 Expand_Subprogram_Contract
(N
, Spec_Id
, Body_Id
);
3842 -- Analyze the declarations (this call will analyze the precondition
3843 -- Check pragmas we prepended to the list, as well as the declaration
3844 -- of the _Postconditions procedure).
3846 Analyze_Declarations
(Declarations
(N
));
3848 -- Verify that the SPARK_Mode of the body agrees with that of its spec
3850 if Present
(Spec_Id
) and then Present
(SPARK_Pragma
(Body_Id
)) then
3851 if Present
(SPARK_Pragma
(Spec_Id
)) then
3852 if Get_SPARK_Mode_From_Pragma
(SPARK_Pragma
(Spec_Id
)) = Off
3854 Get_SPARK_Mode_From_Pragma
(SPARK_Pragma
(Body_Id
)) = On
3856 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Body_Id
));
3857 Error_Msg_N
("incorrect application of SPARK_Mode#", N
);
3858 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Spec_Id
));
3860 ("\value Off was set for SPARK_Mode on & #", N
, Spec_Id
);
3863 elsif Nkind
(Parent
(Parent
(Spec_Id
))) = N_Subprogram_Body_Stub
then
3867 Error_Msg_Sloc
:= Sloc
(SPARK_Pragma
(Body_Id
));
3868 Error_Msg_N
("incorrect application of SPARK_Mode #", N
);
3869 Error_Msg_Sloc
:= Sloc
(Spec_Id
);
3871 ("\no value was set for SPARK_Mode on & #", N
, Spec_Id
);
3875 -- If SPARK_Mode for body is not On, disable frontend inlining for this
3876 -- subprogram in GNATprove mode, as its body should not be analyzed.
3879 and then GNATprove_Mode
3880 and then Present
(Spec_Id
)
3881 and then Nkind
(Parent
(Parent
(Spec_Id
))) = N_Subprogram_Declaration
3883 Set_Body_To_Inline
(Parent
(Parent
(Spec_Id
)), Empty
);
3884 Set_Is_Inlined_Always
(Spec_Id
, False);
3887 -- Check completion, and analyze the statements
3890 Inspect_Deferred_Constant_Completion
(Declarations
(N
));
3893 -- Deal with end of scope processing for the body
3895 Process_End_Label
(HSS
, 't', Current_Scope
);
3897 Check_Subprogram_Order
(N
);
3898 Set_Analyzed
(Body_Id
);
3900 -- If we have a separate spec, then the analysis of the declarations
3901 -- caused the entities in the body to be chained to the spec id, but
3902 -- we want them chained to the body id. Only the formal parameters
3903 -- end up chained to the spec id in this case.
3905 if Present
(Spec_Id
) then
3907 -- We must conform to the categorization of our spec
3909 Validate_Categorization_Dependency
(N
, Spec_Id
);
3911 -- And if this is a child unit, the parent units must conform
3913 if Is_Child_Unit
(Spec_Id
) then
3914 Validate_Categorization_Dependency
3915 (Unit_Declaration_Node
(Spec_Id
), Spec_Id
);
3918 -- Here is where we move entities from the spec to the body
3920 -- Case where there are entities that stay with the spec
3922 if Present
(Last_Real_Spec_Entity
) then
3924 -- No body entities (happens when the only real spec entities come
3925 -- from precondition and postcondition pragmas).
3927 if No
(Last_Entity
(Body_Id
)) then
3929 (Body_Id
, Next_Entity
(Last_Real_Spec_Entity
));
3931 -- Body entities present (formals), so chain stuff past them
3935 (Last_Entity
(Body_Id
), Next_Entity
(Last_Real_Spec_Entity
));
3938 Set_Next_Entity
(Last_Real_Spec_Entity
, Empty
);
3939 Set_Last_Entity
(Body_Id
, Last_Entity
(Spec_Id
));
3940 Set_Last_Entity
(Spec_Id
, Last_Real_Spec_Entity
);
3942 -- Case where there are no spec entities, in this case there can be
3943 -- no body entities either, so just move everything.
3946 pragma Assert
(No
(Last_Entity
(Body_Id
)));
3947 Set_First_Entity
(Body_Id
, First_Entity
(Spec_Id
));
3948 Set_Last_Entity
(Body_Id
, Last_Entity
(Spec_Id
));
3949 Set_First_Entity
(Spec_Id
, Empty
);
3950 Set_Last_Entity
(Spec_Id
, Empty
);
3954 Check_Missing_Return
;
3956 -- Now we are going to check for variables that are never modified in
3957 -- the body of the procedure. But first we deal with a special case
3958 -- where we want to modify this check. If the body of the subprogram
3959 -- starts with a raise statement or its equivalent, or if the body
3960 -- consists entirely of a null statement, then it is pretty obvious that
3961 -- it is OK to not reference the parameters. For example, this might be
3962 -- the following common idiom for a stubbed function: statement of the
3963 -- procedure raises an exception. In particular this deals with the
3964 -- common idiom of a stubbed function, which appears something like:
3966 -- function F (A : Integer) return Some_Type;
3969 -- raise Program_Error;
3973 -- Here the purpose of X is simply to satisfy the annoying requirement
3974 -- in Ada that there be at least one return, and we certainly do not
3975 -- want to go posting warnings on X that it is not initialized. On
3976 -- the other hand, if X is entirely unreferenced that should still
3979 -- What we do is to detect these cases, and if we find them, flag the
3980 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
3981 -- suppress unwanted warnings. For the case of the function stub above
3982 -- we have a special test to set X as apparently assigned to suppress
3989 -- Skip initial labels (for one thing this occurs when we are in
3990 -- front end ZCX mode, but in any case it is irrelevant), and also
3991 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
3993 Stm
:= First
(Statements
(HSS
));
3994 while Nkind
(Stm
) = N_Label
3995 or else Nkind
(Stm
) in N_Push_xxx_Label
4000 -- Do the test on the original statement before expansion
4003 Ostm
: constant Node_Id
:= Original_Node
(Stm
);
4006 -- If explicit raise statement, turn on flag
4008 if Nkind
(Ostm
) = N_Raise_Statement
then
4009 Set_Trivial_Subprogram
(Stm
);
4011 -- If null statement, and no following statements, turn on flag
4013 elsif Nkind
(Stm
) = N_Null_Statement
4014 and then Comes_From_Source
(Stm
)
4015 and then No
(Next
(Stm
))
4017 Set_Trivial_Subprogram
(Stm
);
4019 -- Check for explicit call cases which likely raise an exception
4021 elsif Nkind
(Ostm
) = N_Procedure_Call_Statement
then
4022 if Is_Entity_Name
(Name
(Ostm
)) then
4024 Ent
: constant Entity_Id
:= Entity
(Name
(Ostm
));
4027 -- If the procedure is marked No_Return, then likely it
4028 -- raises an exception, but in any case it is not coming
4029 -- back here, so turn on the flag.
4032 and then Ekind
(Ent
) = E_Procedure
4033 and then No_Return
(Ent
)
4035 Set_Trivial_Subprogram
(Stm
);
4043 -- Check for variables that are never modified
4049 -- If there is a separate spec, then transfer Never_Set_In_Source
4050 -- flags from out parameters to the corresponding entities in the
4051 -- body. The reason we do that is we want to post error flags on
4052 -- the body entities, not the spec entities.
4054 if Present
(Spec_Id
) then
4055 E1
:= First_Entity
(Spec_Id
);
4056 while Present
(E1
) loop
4057 if Ekind
(E1
) = E_Out_Parameter
then
4058 E2
:= First_Entity
(Body_Id
);
4059 while Present
(E2
) loop
4060 exit when Chars
(E1
) = Chars
(E2
);
4064 if Present
(E2
) then
4065 Set_Never_Set_In_Source
(E2
, Never_Set_In_Source
(E1
));
4073 -- Check references in body
4075 Check_References
(Body_Id
);
4077 end Analyze_Subprogram_Body_Helper
;
4079 ---------------------------------
4080 -- Analyze_Subprogram_Contract --
4081 ---------------------------------
4083 procedure Analyze_Subprogram_Contract
(Subp
: Entity_Id
) is
4084 Items
: constant Node_Id
:= Contract
(Subp
);
4085 Case_Prag
: Node_Id
:= Empty
;
4086 Depends
: Node_Id
:= Empty
;
4087 Global
: Node_Id
:= Empty
;
4088 Mode
: SPARK_Mode_Type
;
4090 Post_Prag
: Node_Id
:= Empty
;
4092 Seen_In_Case
: Boolean := False;
4093 Seen_In_Post
: Boolean := False;
4096 -- Due to the timing of contract analysis, delayed pragmas may be
4097 -- subject to the wrong SPARK_Mode, usually that of the enclosing
4098 -- context. To remedy this, restore the original SPARK_Mode of the
4099 -- related subprogram body.
4101 Save_SPARK_Mode_And_Set
(Subp
, Mode
);
4103 if Present
(Items
) then
4105 -- Analyze pre- and postconditions
4107 Prag
:= Pre_Post_Conditions
(Items
);
4108 while Present
(Prag
) loop
4109 Analyze_Pre_Post_Condition_In_Decl_Part
(Prag
, Subp
);
4111 -- Verify whether a postcondition mentions attribute 'Result and
4112 -- its expression introduces a post-state.
4114 if Warn_On_Suspicious_Contract
4115 and then Pragma_Name
(Prag
) = Name_Postcondition
4118 Check_Result_And_Post_State
(Prag
, Seen_In_Post
);
4121 Prag
:= Next_Pragma
(Prag
);
4124 -- Analyze contract-cases and test-cases
4126 Prag
:= Contract_Test_Cases
(Items
);
4127 while Present
(Prag
) loop
4128 Nam
:= Pragma_Name
(Prag
);
4130 if Nam
= Name_Contract_Cases
then
4131 Analyze_Contract_Cases_In_Decl_Part
(Prag
);
4133 -- Verify whether contract-cases mention attribute 'Result and
4134 -- its expression introduces a post-state. Perform the check
4135 -- only when the pragma is legal.
4137 if Warn_On_Suspicious_Contract
4138 and then not Error_Posted
(Prag
)
4141 Check_Result_And_Post_State
(Prag
, Seen_In_Case
);
4145 pragma Assert
(Nam
= Name_Test_Case
);
4146 Analyze_Test_Case_In_Decl_Part
(Prag
, Subp
);
4149 Prag
:= Next_Pragma
(Prag
);
4152 -- Analyze classification pragmas
4154 Prag
:= Classifications
(Items
);
4155 while Present
(Prag
) loop
4156 Nam
:= Pragma_Name
(Prag
);
4158 if Nam
= Name_Depends
then
4161 elsif Nam
= Name_Global
then
4164 -- Note that pragma Extensions_Visible has already been analyzed
4168 Prag
:= Next_Pragma
(Prag
);
4171 -- Analyze Global first as Depends may mention items classified in
4172 -- the global categorization.
4174 if Present
(Global
) then
4175 Analyze_Global_In_Decl_Part
(Global
);
4178 -- Depends must be analyzed after Global in order to see the modes of
4179 -- all global items.
4181 if Present
(Depends
) then
4182 Analyze_Depends_In_Decl_Part
(Depends
);
4186 -- Emit an error when neither the postconditions nor the contract-cases
4187 -- mention attribute 'Result in the context of a function.
4189 if Warn_On_Suspicious_Contract
4190 and then Ekind_In
(Subp
, E_Function
, E_Generic_Function
)
4192 if Present
(Case_Prag
)
4193 and then not Seen_In_Case
4194 and then Present
(Post_Prag
)
4195 and then not Seen_In_Post
4198 ("neither function postcondition nor contract cases mention "
4199 & "result?T?", Post_Prag
);
4201 elsif Present
(Case_Prag
) and then not Seen_In_Case
then
4203 ("contract cases do not mention result?T?", Case_Prag
);
4205 -- OK if we have at least one IN OUT parameter
4207 elsif Present
(Post_Prag
) and then not Seen_In_Post
then
4211 F
:= First_Formal
(Subp
);
4212 while Present
(F
) loop
4213 if Ekind
(F
) = E_In_Out_Parameter
then
4221 -- If no in-out parameters and no mention of Result, the contract
4222 -- is certainly suspicious.
4225 ("function postcondition does not mention result?T?", Post_Prag
);
4229 -- Restore the SPARK_Mode of the enclosing context after all delayed
4230 -- pragmas have been analyzed.
4232 Restore_SPARK_Mode
(Mode
);
4233 end Analyze_Subprogram_Contract
;
4235 ------------------------------------
4236 -- Analyze_Subprogram_Declaration --
4237 ------------------------------------
4239 procedure Analyze_Subprogram_Declaration
(N
: Node_Id
) is
4240 Scop
: constant Entity_Id
:= Current_Scope
;
4241 Designator
: Entity_Id
;
4243 Is_Completion
: Boolean;
4244 -- Indicates whether a null procedure declaration is a completion
4247 -- Null procedures are not allowed in SPARK
4249 if Nkind
(Specification
(N
)) = N_Procedure_Specification
4250 and then Null_Present
(Specification
(N
))
4252 Check_SPARK_05_Restriction
("null procedure is not allowed", N
);
4254 if Is_Protected_Type
(Current_Scope
) then
4255 Error_Msg_N
("protected operation cannot be a null procedure", N
);
4258 Analyze_Null_Procedure
(N
, Is_Completion
);
4260 if Is_Completion
then
4262 -- The null procedure acts as a body, nothing further is needed.
4268 Designator
:= Analyze_Subprogram_Specification
(Specification
(N
));
4270 -- A reference may already have been generated for the unit name, in
4271 -- which case the following call is redundant. However it is needed for
4272 -- declarations that are the rewriting of an expression function.
4274 Generate_Definition
(Designator
);
4276 -- Set SPARK mode from current context (may be overwritten later with
4277 -- explicit pragma).
4279 Set_SPARK_Pragma
(Designator
, SPARK_Mode_Pragma
);
4280 Set_SPARK_Pragma_Inherited
(Designator
, True);
4282 -- A subprogram declared within a Ghost scope is automatically Ghost
4283 -- (SPARK RM 6.9(2)).
4285 if Comes_From_Source
(Designator
) and then Within_Ghost_Scope
then
4286 Set_Is_Ghost_Entity
(Designator
);
4289 if Debug_Flag_C
then
4290 Write_Str
("==> subprogram spec ");
4291 Write_Name
(Chars
(Designator
));
4292 Write_Str
(" from ");
4293 Write_Location
(Sloc
(N
));
4298 Validate_RCI_Subprogram_Declaration
(N
);
4299 New_Overloaded_Entity
(Designator
);
4300 Check_Delayed_Subprogram
(Designator
);
4302 -- If the type of the first formal of the current subprogram is a non-
4303 -- generic tagged private type, mark the subprogram as being a private
4304 -- primitive. Ditto if this is a function with controlling result, and
4305 -- the return type is currently private. In both cases, the type of the
4306 -- controlling argument or result must be in the current scope for the
4307 -- operation to be primitive.
4309 if Has_Controlling_Result
(Designator
)
4310 and then Is_Private_Type
(Etype
(Designator
))
4311 and then Scope
(Etype
(Designator
)) = Current_Scope
4312 and then not Is_Generic_Actual_Type
(Etype
(Designator
))
4314 Set_Is_Private_Primitive
(Designator
);
4316 elsif Present
(First_Formal
(Designator
)) then
4318 Formal_Typ
: constant Entity_Id
:=
4319 Etype
(First_Formal
(Designator
));
4321 Set_Is_Private_Primitive
(Designator
,
4322 Is_Tagged_Type
(Formal_Typ
)
4323 and then Scope
(Formal_Typ
) = Current_Scope
4324 and then Is_Private_Type
(Formal_Typ
)
4325 and then not Is_Generic_Actual_Type
(Formal_Typ
));
4329 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
4332 if Ada_Version
>= Ada_2005
4333 and then Comes_From_Source
(N
)
4334 and then Is_Dispatching_Operation
(Designator
)
4341 if Has_Controlling_Result
(Designator
) then
4342 Etyp
:= Etype
(Designator
);
4345 E
:= First_Entity
(Designator
);
4347 and then Is_Formal
(E
)
4348 and then not Is_Controlling_Formal
(E
)
4356 if Is_Access_Type
(Etyp
) then
4357 Etyp
:= Directly_Designated_Type
(Etyp
);
4360 if Is_Interface
(Etyp
)
4361 and then not Is_Abstract_Subprogram
(Designator
)
4362 and then not (Ekind
(Designator
) = E_Procedure
4363 and then Null_Present
(Specification
(N
)))
4365 Error_Msg_Name_1
:= Chars
(Defining_Entity
(N
));
4367 -- Specialize error message based on procedures vs. functions,
4368 -- since functions can't be null subprograms.
4370 if Ekind
(Designator
) = E_Procedure
then
4372 ("interface procedure % must be abstract or null", N
);
4375 ("interface function % must be abstract", N
);
4381 -- What is the following code for, it used to be
4383 -- ??? Set_Suppress_Elaboration_Checks
4384 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
4386 -- The following seems equivalent, but a bit dubious
4388 if Elaboration_Checks_Suppressed
(Designator
) then
4389 Set_Kill_Elaboration_Checks
(Designator
);
4392 if Scop
/= Standard_Standard
and then not Is_Child_Unit
(Designator
) then
4393 Set_Categorization_From_Scope
(Designator
, Scop
);
4396 -- For a compilation unit, check for library-unit pragmas
4398 Push_Scope
(Designator
);
4399 Set_Categorization_From_Pragmas
(N
);
4400 Validate_Categorization_Dependency
(N
, Designator
);
4404 -- For a compilation unit, set body required. This flag will only be
4405 -- reset if a valid Import or Interface pragma is processed later on.
4407 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
4408 Set_Body_Required
(Parent
(N
), True);
4410 if Ada_Version
>= Ada_2005
4411 and then Nkind
(Specification
(N
)) = N_Procedure_Specification
4412 and then Null_Present
(Specification
(N
))
4415 ("null procedure cannot be declared at library level", N
);
4419 Generate_Reference_To_Formals
(Designator
);
4420 Check_Eliminated
(Designator
);
4422 if Debug_Flag_C
then
4424 Write_Str
("<== subprogram spec ");
4425 Write_Name
(Chars
(Designator
));
4426 Write_Str
(" from ");
4427 Write_Location
(Sloc
(N
));
4431 if Is_Protected_Type
(Current_Scope
) then
4433 -- Indicate that this is a protected operation, because it may be
4434 -- used in subsequent declarations within the protected type.
4436 Set_Convention
(Designator
, Convention_Protected
);
4439 List_Inherited_Pre_Post_Aspects
(Designator
);
4441 if Has_Aspects
(N
) then
4442 Analyze_Aspect_Specifications
(N
, Designator
);
4444 end Analyze_Subprogram_Declaration
;
4446 --------------------------------------
4447 -- Analyze_Subprogram_Specification --
4448 --------------------------------------
4450 -- Reminder: N here really is a subprogram specification (not a subprogram
4451 -- declaration). This procedure is called to analyze the specification in
4452 -- both subprogram bodies and subprogram declarations (specs).
4454 function Analyze_Subprogram_Specification
(N
: Node_Id
) return Entity_Id
is
4455 Designator
: constant Entity_Id
:= Defining_Entity
(N
);
4456 Formals
: constant List_Id
:= Parameter_Specifications
(N
);
4458 -- Start of processing for Analyze_Subprogram_Specification
4461 -- User-defined operator is not allowed in SPARK, except as a renaming
4463 if Nkind
(Defining_Unit_Name
(N
)) = N_Defining_Operator_Symbol
4464 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
4466 Check_SPARK_05_Restriction
4467 ("user-defined operator is not allowed", N
);
4470 -- Proceed with analysis. Do not emit a cross-reference entry if the
4471 -- specification comes from an expression function, because it may be
4472 -- the completion of a previous declaration. It is is not, the cross-
4473 -- reference entry will be emitted for the new subprogram declaration.
4475 if Nkind
(Parent
(N
)) /= N_Expression_Function
then
4476 Generate_Definition
(Designator
);
4479 Set_Contract
(Designator
, Make_Contract
(Sloc
(Designator
)));
4481 if Nkind
(N
) = N_Function_Specification
then
4482 Set_Ekind
(Designator
, E_Function
);
4483 Set_Mechanism
(Designator
, Default_Mechanism
);
4485 Set_Ekind
(Designator
, E_Procedure
);
4486 Set_Etype
(Designator
, Standard_Void_Type
);
4489 -- Flag Is_Inlined_Always is True by default, and reversed to False for
4490 -- those subprograms which could be inlined in GNATprove mode (because
4491 -- Body_To_Inline is non-Empty) but cannot be inlined.
4493 if GNATprove_Mode
then
4494 Set_Is_Inlined_Always
(Designator
);
4497 -- Introduce new scope for analysis of the formals and the return type
4499 Set_Scope
(Designator
, Current_Scope
);
4501 if Present
(Formals
) then
4502 Push_Scope
(Designator
);
4503 Process_Formals
(Formals
, N
);
4505 -- Check dimensions in N for formals with default expression
4507 Analyze_Dimension_Formals
(N
, Formals
);
4509 -- Ada 2005 (AI-345): If this is an overriding operation of an
4510 -- inherited interface operation, and the controlling type is
4511 -- a synchronized type, replace the type with its corresponding
4512 -- record, to match the proper signature of an overriding operation.
4513 -- Same processing for an access parameter whose designated type is
4514 -- derived from a synchronized interface.
4516 if Ada_Version
>= Ada_2005
then
4519 Formal_Typ
: Entity_Id
;
4520 Rec_Typ
: Entity_Id
;
4521 Desig_Typ
: Entity_Id
;
4524 Formal
:= First_Formal
(Designator
);
4525 while Present
(Formal
) loop
4526 Formal_Typ
:= Etype
(Formal
);
4528 if Is_Concurrent_Type
(Formal_Typ
)
4529 and then Present
(Corresponding_Record_Type
(Formal_Typ
))
4531 Rec_Typ
:= Corresponding_Record_Type
(Formal_Typ
);
4533 if Present
(Interfaces
(Rec_Typ
)) then
4534 Set_Etype
(Formal
, Rec_Typ
);
4537 elsif Ekind
(Formal_Typ
) = E_Anonymous_Access_Type
then
4538 Desig_Typ
:= Designated_Type
(Formal_Typ
);
4540 if Is_Concurrent_Type
(Desig_Typ
)
4541 and then Present
(Corresponding_Record_Type
(Desig_Typ
))
4543 Rec_Typ
:= Corresponding_Record_Type
(Desig_Typ
);
4545 if Present
(Interfaces
(Rec_Typ
)) then
4546 Set_Directly_Designated_Type
(Formal_Typ
, Rec_Typ
);
4551 Next_Formal
(Formal
);
4558 -- The subprogram scope is pushed and popped around the processing of
4559 -- the return type for consistency with call above to Process_Formals
4560 -- (which itself can call Analyze_Return_Type), and to ensure that any
4561 -- itype created for the return type will be associated with the proper
4564 elsif Nkind
(N
) = N_Function_Specification
then
4565 Push_Scope
(Designator
);
4566 Analyze_Return_Type
(N
);
4572 if Nkind
(N
) = N_Function_Specification
then
4574 -- Deal with operator symbol case
4576 if Nkind
(Designator
) = N_Defining_Operator_Symbol
then
4577 Valid_Operator_Definition
(Designator
);
4580 May_Need_Actuals
(Designator
);
4582 -- Ada 2005 (AI-251): If the return type is abstract, verify that
4583 -- the subprogram is abstract also. This does not apply to renaming
4584 -- declarations, where abstractness is inherited, and to subprogram
4585 -- bodies generated for stream operations, which become renamings as
4588 -- In case of primitives associated with abstract interface types
4589 -- the check is applied later (see Analyze_Subprogram_Declaration).
4591 if not Nkind_In
(Original_Node
(Parent
(N
)),
4592 N_Subprogram_Renaming_Declaration
,
4593 N_Abstract_Subprogram_Declaration
,
4594 N_Formal_Abstract_Subprogram_Declaration
)
4596 if Is_Abstract_Type
(Etype
(Designator
))
4597 and then not Is_Interface
(Etype
(Designator
))
4600 ("function that returns abstract type must be abstract", N
);
4602 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
4603 -- access result whose designated type is abstract.
4605 elsif Nkind
(Result_Definition
(N
)) = N_Access_Definition
4607 not Is_Class_Wide_Type
(Designated_Type
(Etype
(Designator
)))
4608 and then Is_Abstract_Type
(Designated_Type
(Etype
(Designator
)))
4609 and then Ada_Version
>= Ada_2012
4611 Error_Msg_N
("function whose access result designates "
4612 & "abstract type must be abstract", N
);
4618 end Analyze_Subprogram_Specification
;
4620 -----------------------
4621 -- Check_Conformance --
4622 -----------------------
4624 procedure Check_Conformance
4625 (New_Id
: Entity_Id
;
4627 Ctype
: Conformance_Type
;
4629 Conforms
: out Boolean;
4630 Err_Loc
: Node_Id
:= Empty
;
4631 Get_Inst
: Boolean := False;
4632 Skip_Controlling_Formals
: Boolean := False)
4634 procedure Conformance_Error
(Msg
: String; N
: Node_Id
:= New_Id
);
4635 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
4636 -- If Errmsg is True, then processing continues to post an error message
4637 -- for conformance error on given node. Two messages are output. The
4638 -- first message points to the previous declaration with a general "no
4639 -- conformance" message. The second is the detailed reason, supplied as
4640 -- Msg. The parameter N provide information for a possible & insertion
4641 -- in the message, and also provides the location for posting the
4642 -- message in the absence of a specified Err_Loc location.
4644 -----------------------
4645 -- Conformance_Error --
4646 -----------------------
4648 procedure Conformance_Error
(Msg
: String; N
: Node_Id
:= New_Id
) is
4655 if No
(Err_Loc
) then
4661 Error_Msg_Sloc
:= Sloc
(Old_Id
);
4664 when Type_Conformant
=>
4665 Error_Msg_N
-- CODEFIX
4666 ("not type conformant with declaration#!", Enode
);
4668 when Mode_Conformant
=>
4669 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
4671 ("not mode conformant with operation inherited#!",
4675 ("not mode conformant with declaration#!", Enode
);
4678 when Subtype_Conformant
=>
4679 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
4681 ("not subtype conformant with operation inherited#!",
4685 ("not subtype conformant with declaration#!", Enode
);
4688 when Fully_Conformant
=>
4689 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
4690 Error_Msg_N
-- CODEFIX
4691 ("not fully conformant with operation inherited#!",
4694 Error_Msg_N
-- CODEFIX
4695 ("not fully conformant with declaration#!", Enode
);
4699 Error_Msg_NE
(Msg
, Enode
, N
);
4701 end Conformance_Error
;
4705 Old_Type
: constant Entity_Id
:= Etype
(Old_Id
);
4706 New_Type
: constant Entity_Id
:= Etype
(New_Id
);
4707 Old_Formal
: Entity_Id
;
4708 New_Formal
: Entity_Id
;
4709 Access_Types_Match
: Boolean;
4710 Old_Formal_Base
: Entity_Id
;
4711 New_Formal_Base
: Entity_Id
;
4713 -- Start of processing for Check_Conformance
4718 -- We need a special case for operators, since they don't appear
4721 if Ctype
= Type_Conformant
then
4722 if Ekind
(New_Id
) = E_Operator
4723 and then Operator_Matches_Spec
(New_Id
, Old_Id
)
4729 -- If both are functions/operators, check return types conform
4731 if Old_Type
/= Standard_Void_Type
4733 New_Type
/= Standard_Void_Type
4735 -- If we are checking interface conformance we omit controlling
4736 -- arguments and result, because we are only checking the conformance
4737 -- of the remaining parameters.
4739 if Has_Controlling_Result
(Old_Id
)
4740 and then Has_Controlling_Result
(New_Id
)
4741 and then Skip_Controlling_Formals
4745 elsif not Conforming_Types
(Old_Type
, New_Type
, Ctype
, Get_Inst
) then
4746 if Ctype
>= Subtype_Conformant
4747 and then not Predicates_Match
(Old_Type
, New_Type
)
4750 ("\predicate of return type does not match!", New_Id
);
4753 ("\return type does not match!", New_Id
);
4759 -- Ada 2005 (AI-231): In case of anonymous access types check the
4760 -- null-exclusion and access-to-constant attributes match.
4762 if Ada_Version
>= Ada_2005
4763 and then Ekind
(Etype
(Old_Type
)) = E_Anonymous_Access_Type
4765 (Can_Never_Be_Null
(Old_Type
) /= Can_Never_Be_Null
(New_Type
)
4766 or else Is_Access_Constant
(Etype
(Old_Type
)) /=
4767 Is_Access_Constant
(Etype
(New_Type
)))
4769 Conformance_Error
("\return type does not match!", New_Id
);
4773 -- If either is a function/operator and the other isn't, error
4775 elsif Old_Type
/= Standard_Void_Type
4776 or else New_Type
/= Standard_Void_Type
4778 Conformance_Error
("\functions can only match functions!", New_Id
);
4782 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
4783 -- If this is a renaming as body, refine error message to indicate that
4784 -- the conflict is with the original declaration. If the entity is not
4785 -- frozen, the conventions don't have to match, the one of the renamed
4786 -- entity is inherited.
4788 if Ctype
>= Subtype_Conformant
then
4789 if Convention
(Old_Id
) /= Convention
(New_Id
) then
4790 if not Is_Frozen
(New_Id
) then
4793 elsif Present
(Err_Loc
)
4794 and then Nkind
(Err_Loc
) = N_Subprogram_Renaming_Declaration
4795 and then Present
(Corresponding_Spec
(Err_Loc
))
4797 Error_Msg_Name_1
:= Chars
(New_Id
);
4799 Name_Ada
+ Convention_Id
'Pos (Convention
(New_Id
));
4800 Conformance_Error
("\prior declaration for% has convention %!");
4803 Conformance_Error
("\calling conventions do not match!");
4808 elsif Is_Formal_Subprogram
(Old_Id
)
4809 or else Is_Formal_Subprogram
(New_Id
)
4811 Conformance_Error
("\formal subprograms not allowed!");
4814 -- Pragma Ghost behaves as a convention in the context of subtype
4815 -- conformance (SPARK RM 6.9(5)). Do not check internally generated
4816 -- subprograms as their spec may reside in a Ghost region and their
4817 -- body not, or vice versa.
4819 elsif Comes_From_Source
(Old_Id
)
4820 and then Comes_From_Source
(New_Id
)
4821 and then Is_Ghost_Entity
(Old_Id
) /= Is_Ghost_Entity
(New_Id
)
4823 Conformance_Error
("\ghost modes do not match!");
4828 -- Deal with parameters
4830 -- Note: we use the entity information, rather than going directly
4831 -- to the specification in the tree. This is not only simpler, but
4832 -- absolutely necessary for some cases of conformance tests between
4833 -- operators, where the declaration tree simply does not exist.
4835 Old_Formal
:= First_Formal
(Old_Id
);
4836 New_Formal
:= First_Formal
(New_Id
);
4837 while Present
(Old_Formal
) and then Present
(New_Formal
) loop
4838 if Is_Controlling_Formal
(Old_Formal
)
4839 and then Is_Controlling_Formal
(New_Formal
)
4840 and then Skip_Controlling_Formals
4842 -- The controlling formals will have different types when
4843 -- comparing an interface operation with its match, but both
4844 -- or neither must be access parameters.
4846 if Is_Access_Type
(Etype
(Old_Formal
))
4848 Is_Access_Type
(Etype
(New_Formal
))
4850 goto Skip_Controlling_Formal
;
4853 ("\access parameter does not match!", New_Formal
);
4857 -- Ada 2012: Mode conformance also requires that formal parameters
4858 -- be both aliased, or neither.
4860 if Ctype
>= Mode_Conformant
and then Ada_Version
>= Ada_2012
then
4861 if Is_Aliased
(Old_Formal
) /= Is_Aliased
(New_Formal
) then
4863 ("\aliased parameter mismatch!", New_Formal
);
4867 if Ctype
= Fully_Conformant
then
4869 -- Names must match. Error message is more accurate if we do
4870 -- this before checking that the types of the formals match.
4872 if Chars
(Old_Formal
) /= Chars
(New_Formal
) then
4873 Conformance_Error
("\name& does not match!", New_Formal
);
4875 -- Set error posted flag on new formal as well to stop
4876 -- junk cascaded messages in some cases.
4878 Set_Error_Posted
(New_Formal
);
4882 -- Null exclusion must match
4884 if Null_Exclusion_Present
(Parent
(Old_Formal
))
4886 Null_Exclusion_Present
(Parent
(New_Formal
))
4888 -- Only give error if both come from source. This should be
4889 -- investigated some time, since it should not be needed ???
4891 if Comes_From_Source
(Old_Formal
)
4893 Comes_From_Source
(New_Formal
)
4896 ("\null exclusion for& does not match", New_Formal
);
4898 -- Mark error posted on the new formal to avoid duplicated
4899 -- complaint about types not matching.
4901 Set_Error_Posted
(New_Formal
);
4906 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
4907 -- case occurs whenever a subprogram is being renamed and one of its
4908 -- parameters imposes a null exclusion. For example:
4910 -- type T is null record;
4911 -- type Acc_T is access T;
4912 -- subtype Acc_T_Sub is Acc_T;
4914 -- procedure P (Obj : not null Acc_T_Sub); -- itype
4915 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
4918 Old_Formal_Base
:= Etype
(Old_Formal
);
4919 New_Formal_Base
:= Etype
(New_Formal
);
4922 Old_Formal_Base
:= Get_Instance_Of
(Old_Formal_Base
);
4923 New_Formal_Base
:= Get_Instance_Of
(New_Formal_Base
);
4926 Access_Types_Match
:= Ada_Version
>= Ada_2005
4928 -- Ensure that this rule is only applied when New_Id is a
4929 -- renaming of Old_Id.
4931 and then Nkind
(Parent
(Parent
(New_Id
))) =
4932 N_Subprogram_Renaming_Declaration
4933 and then Nkind
(Name
(Parent
(Parent
(New_Id
)))) in N_Has_Entity
4934 and then Present
(Entity
(Name
(Parent
(Parent
(New_Id
)))))
4935 and then Entity
(Name
(Parent
(Parent
(New_Id
)))) = Old_Id
4937 -- Now handle the allowed access-type case
4939 and then Is_Access_Type
(Old_Formal_Base
)
4940 and then Is_Access_Type
(New_Formal_Base
)
4942 -- The type kinds must match. The only exception occurs with
4943 -- multiple generics of the form:
4946 -- type F is private; type A is private;
4947 -- type F_Ptr is access F; type A_Ptr is access A;
4948 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
4949 -- package F_Pack is ... package A_Pack is
4950 -- package F_Inst is
4951 -- new F_Pack (A, A_Ptr, A_P);
4953 -- When checking for conformance between the parameters of A_P
4954 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
4955 -- because the compiler has transformed A_Ptr into a subtype of
4956 -- F_Ptr. We catch this case in the code below.
4958 and then (Ekind
(Old_Formal_Base
) = Ekind
(New_Formal_Base
)
4960 (Is_Generic_Type
(Old_Formal_Base
)
4961 and then Is_Generic_Type
(New_Formal_Base
)
4962 and then Is_Internal
(New_Formal_Base
)
4963 and then Etype
(Etype
(New_Formal_Base
)) =
4965 and then Directly_Designated_Type
(Old_Formal_Base
) =
4966 Directly_Designated_Type
(New_Formal_Base
)
4967 and then ((Is_Itype
(Old_Formal_Base
)
4968 and then Can_Never_Be_Null
(Old_Formal_Base
))
4970 (Is_Itype
(New_Formal_Base
)
4971 and then Can_Never_Be_Null
(New_Formal_Base
)));
4973 -- Types must always match. In the visible part of an instance,
4974 -- usual overloading rules for dispatching operations apply, and
4975 -- we check base types (not the actual subtypes).
4977 if In_Instance_Visible_Part
4978 and then Is_Dispatching_Operation
(New_Id
)
4980 if not Conforming_Types
4981 (T1
=> Base_Type
(Etype
(Old_Formal
)),
4982 T2
=> Base_Type
(Etype
(New_Formal
)),
4984 Get_Inst
=> Get_Inst
)
4985 and then not Access_Types_Match
4987 Conformance_Error
("\type of & does not match!", New_Formal
);
4991 elsif not Conforming_Types
4992 (T1
=> Old_Formal_Base
,
4993 T2
=> New_Formal_Base
,
4995 Get_Inst
=> Get_Inst
)
4996 and then not Access_Types_Match
4998 -- Don't give error message if old type is Any_Type. This test
4999 -- avoids some cascaded errors, e.g. in case of a bad spec.
5001 if Errmsg
and then Old_Formal_Base
= Any_Type
then
5004 if Ctype
>= Subtype_Conformant
5006 not Predicates_Match
(Old_Formal_Base
, New_Formal_Base
)
5009 ("\predicate of & does not match!", New_Formal
);
5012 ("\type of & does not match!", New_Formal
);
5019 -- For mode conformance, mode must match
5021 if Ctype
>= Mode_Conformant
then
5022 if Parameter_Mode
(Old_Formal
) /= Parameter_Mode
(New_Formal
) then
5023 if not Ekind_In
(New_Id
, E_Function
, E_Procedure
)
5024 or else not Is_Primitive_Wrapper
(New_Id
)
5026 Conformance_Error
("\mode of & does not match!", New_Formal
);
5030 T
: constant Entity_Id
:= Find_Dispatching_Type
(New_Id
);
5032 if Is_Protected_Type
(Corresponding_Concurrent_Type
(T
))
5034 Error_Msg_PT
(T
, New_Id
);
5037 ("\mode of & does not match!", New_Formal
);
5044 -- Part of mode conformance for access types is having the same
5045 -- constant modifier.
5047 elsif Access_Types_Match
5048 and then Is_Access_Constant
(Old_Formal_Base
) /=
5049 Is_Access_Constant
(New_Formal_Base
)
5052 ("\constant modifier does not match!", New_Formal
);
5057 if Ctype
>= Subtype_Conformant
then
5059 -- Ada 2005 (AI-231): In case of anonymous access types check
5060 -- the null-exclusion and access-to-constant attributes must
5061 -- match. For null exclusion, we test the types rather than the
5062 -- formals themselves, since the attribute is only set reliably
5063 -- on the formals in the Ada 95 case, and we exclude the case
5064 -- where Old_Formal is marked as controlling, to avoid errors
5065 -- when matching completing bodies with dispatching declarations
5066 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
5068 if Ada_Version
>= Ada_2005
5069 and then Ekind
(Etype
(Old_Formal
)) = E_Anonymous_Access_Type
5070 and then Ekind
(Etype
(New_Formal
)) = E_Anonymous_Access_Type
5072 ((Can_Never_Be_Null
(Etype
(Old_Formal
)) /=
5073 Can_Never_Be_Null
(Etype
(New_Formal
))
5075 not Is_Controlling_Formal
(Old_Formal
))
5077 Is_Access_Constant
(Etype
(Old_Formal
)) /=
5078 Is_Access_Constant
(Etype
(New_Formal
)))
5080 -- Do not complain if error already posted on New_Formal. This
5081 -- avoids some redundant error messages.
5083 and then not Error_Posted
(New_Formal
)
5085 -- It is allowed to omit the null-exclusion in case of stream
5086 -- attribute subprograms. We recognize stream subprograms
5087 -- through their TSS-generated suffix.
5090 TSS_Name
: constant TSS_Name_Type
:= Get_TSS_Name
(New_Id
);
5093 if TSS_Name
/= TSS_Stream_Read
5094 and then TSS_Name
/= TSS_Stream_Write
5095 and then TSS_Name
/= TSS_Stream_Input
5096 and then TSS_Name
/= TSS_Stream_Output
5098 -- Here we have a definite conformance error. It is worth
5099 -- special casing the error message for the case of a
5100 -- controlling formal (which excludes null).
5102 if Is_Controlling_Formal
(New_Formal
) then
5103 Error_Msg_Node_2
:= Scope
(New_Formal
);
5105 ("\controlling formal & of & excludes null, "
5106 & "declaration must exclude null as well",
5109 -- Normal case (couldn't we give more detail here???)
5113 ("\type of & does not match!", New_Formal
);
5122 -- Full conformance checks
5124 if Ctype
= Fully_Conformant
then
5126 -- We have checked already that names match
5128 if Parameter_Mode
(Old_Formal
) = E_In_Parameter
then
5130 -- Check default expressions for in parameters
5133 NewD
: constant Boolean :=
5134 Present
(Default_Value
(New_Formal
));
5135 OldD
: constant Boolean :=
5136 Present
(Default_Value
(Old_Formal
));
5138 if NewD
or OldD
then
5140 -- The old default value has been analyzed because the
5141 -- current full declaration will have frozen everything
5142 -- before. The new default value has not been analyzed,
5143 -- so analyze it now before we check for conformance.
5146 Push_Scope
(New_Id
);
5147 Preanalyze_Spec_Expression
5148 (Default_Value
(New_Formal
), Etype
(New_Formal
));
5152 if not (NewD
and OldD
)
5153 or else not Fully_Conformant_Expressions
5154 (Default_Value
(Old_Formal
),
5155 Default_Value
(New_Formal
))
5158 ("\default expression for & does not match!",
5167 -- A couple of special checks for Ada 83 mode. These checks are
5168 -- skipped if either entity is an operator in package Standard,
5169 -- or if either old or new instance is not from the source program.
5171 if Ada_Version
= Ada_83
5172 and then Sloc
(Old_Id
) > Standard_Location
5173 and then Sloc
(New_Id
) > Standard_Location
5174 and then Comes_From_Source
(Old_Id
)
5175 and then Comes_From_Source
(New_Id
)
5178 Old_Param
: constant Node_Id
:= Declaration_Node
(Old_Formal
);
5179 New_Param
: constant Node_Id
:= Declaration_Node
(New_Formal
);
5182 -- Explicit IN must be present or absent in both cases. This
5183 -- test is required only in the full conformance case.
5185 if In_Present
(Old_Param
) /= In_Present
(New_Param
)
5186 and then Ctype
= Fully_Conformant
5189 ("\(Ada 83) IN must appear in both declarations",
5194 -- Grouping (use of comma in param lists) must be the same
5195 -- This is where we catch a misconformance like:
5198 -- A : Integer; B : Integer
5200 -- which are represented identically in the tree except
5201 -- for the setting of the flags More_Ids and Prev_Ids.
5203 if More_Ids
(Old_Param
) /= More_Ids
(New_Param
)
5204 or else Prev_Ids
(Old_Param
) /= Prev_Ids
(New_Param
)
5207 ("\grouping of & does not match!", New_Formal
);
5213 -- This label is required when skipping controlling formals
5215 <<Skip_Controlling_Formal
>>
5217 Next_Formal
(Old_Formal
);
5218 Next_Formal
(New_Formal
);
5221 if Present
(Old_Formal
) then
5222 Conformance_Error
("\too few parameters!");
5225 elsif Present
(New_Formal
) then
5226 Conformance_Error
("\too many parameters!", New_Formal
);
5229 end Check_Conformance
;
5231 -----------------------
5232 -- Check_Conventions --
5233 -----------------------
5235 procedure Check_Conventions
(Typ
: Entity_Id
) is
5236 Ifaces_List
: Elist_Id
;
5238 procedure Check_Convention
(Op
: Entity_Id
);
5239 -- Verify that the convention of inherited dispatching operation Op is
5240 -- consistent among all subprograms it overrides. In order to minimize
5241 -- the search, Search_From is utilized to designate a specific point in
5242 -- the list rather than iterating over the whole list once more.
5244 ----------------------
5245 -- Check_Convention --
5246 ----------------------
5248 procedure Check_Convention
(Op
: Entity_Id
) is
5249 Op_Conv
: constant Convention_Id
:= Convention
(Op
);
5250 Iface_Conv
: Convention_Id
;
5251 Iface_Elmt
: Elmt_Id
;
5252 Iface_Prim_Elmt
: Elmt_Id
;
5253 Iface_Prim
: Entity_Id
;
5256 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
5257 while Present
(Iface_Elmt
) loop
5259 First_Elmt
(Primitive_Operations
(Node
(Iface_Elmt
)));
5260 while Present
(Iface_Prim_Elmt
) loop
5261 Iface_Prim
:= Node
(Iface_Prim_Elmt
);
5262 Iface_Conv
:= Convention
(Iface_Prim
);
5264 if Is_Interface_Conformant
(Typ
, Iface_Prim
, Op
)
5265 and then Iface_Conv
/= Op_Conv
5268 ("inconsistent conventions in primitive operations", Typ
);
5270 Error_Msg_Name_1
:= Chars
(Op
);
5271 Error_Msg_Name_2
:= Get_Convention_Name
(Op_Conv
);
5272 Error_Msg_Sloc
:= Sloc
(Op
);
5274 if Comes_From_Source
(Op
) or else No
(Alias
(Op
)) then
5275 if not Present
(Overridden_Operation
(Op
)) then
5276 Error_Msg_N
("\\primitive % defined #", Typ
);
5279 ("\\overriding operation % with "
5280 & "convention % defined #", Typ
);
5283 else pragma Assert
(Present
(Alias
(Op
)));
5284 Error_Msg_Sloc
:= Sloc
(Alias
(Op
));
5285 Error_Msg_N
("\\inherited operation % with "
5286 & "convention % defined #", Typ
);
5289 Error_Msg_Name_1
:= Chars
(Op
);
5290 Error_Msg_Name_2
:= Get_Convention_Name
(Iface_Conv
);
5291 Error_Msg_Sloc
:= Sloc
(Iface_Prim
);
5292 Error_Msg_N
("\\overridden operation % with "
5293 & "convention % defined #", Typ
);
5295 -- Avoid cascading errors
5300 Next_Elmt
(Iface_Prim_Elmt
);
5303 Next_Elmt
(Iface_Elmt
);
5305 end Check_Convention
;
5309 Prim_Op
: Entity_Id
;
5310 Prim_Op_Elmt
: Elmt_Id
;
5312 -- Start of processing for Check_Conventions
5315 if not Has_Interfaces
(Typ
) then
5319 Collect_Interfaces
(Typ
, Ifaces_List
);
5321 -- The algorithm checks every overriding dispatching operation against
5322 -- all the corresponding overridden dispatching operations, detecting
5323 -- differences in conventions.
5325 Prim_Op_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
5326 while Present
(Prim_Op_Elmt
) loop
5327 Prim_Op
:= Node
(Prim_Op_Elmt
);
5329 -- A small optimization: skip the predefined dispatching operations
5330 -- since they always have the same convention.
5332 if not Is_Predefined_Dispatching_Operation
(Prim_Op
) then
5333 Check_Convention
(Prim_Op
);
5336 Next_Elmt
(Prim_Op_Elmt
);
5338 end Check_Conventions
;
5340 ------------------------------
5341 -- Check_Delayed_Subprogram --
5342 ------------------------------
5344 procedure Check_Delayed_Subprogram
(Designator
: Entity_Id
) is
5347 procedure Possible_Freeze
(T
: Entity_Id
);
5348 -- T is the type of either a formal parameter or of the return type.
5349 -- If T is not yet frozen and needs a delayed freeze, then the
5350 -- subprogram itself must be delayed. If T is the limited view of an
5351 -- incomplete type the subprogram must be frozen as well, because
5352 -- T may depend on local types that have not been frozen yet.
5354 ---------------------
5355 -- Possible_Freeze --
5356 ---------------------
5358 procedure Possible_Freeze
(T
: Entity_Id
) is
5360 if Has_Delayed_Freeze
(T
) and then not Is_Frozen
(T
) then
5361 Set_Has_Delayed_Freeze
(Designator
);
5363 elsif Is_Access_Type
(T
)
5364 and then Has_Delayed_Freeze
(Designated_Type
(T
))
5365 and then not Is_Frozen
(Designated_Type
(T
))
5367 Set_Has_Delayed_Freeze
(Designator
);
5369 elsif Ekind
(T
) = E_Incomplete_Type
5370 and then From_Limited_With
(T
)
5372 Set_Has_Delayed_Freeze
(Designator
);
5374 -- AI05-0151: In Ada 2012, Incomplete types can appear in the profile
5375 -- of a subprogram or entry declaration.
5377 elsif Ekind
(T
) = E_Incomplete_Type
5378 and then Ada_Version
>= Ada_2012
5380 Set_Has_Delayed_Freeze
(Designator
);
5383 end Possible_Freeze
;
5385 -- Start of processing for Check_Delayed_Subprogram
5388 -- All subprograms, including abstract subprograms, may need a freeze
5389 -- node if some formal type or the return type needs one.
5391 Possible_Freeze
(Etype
(Designator
));
5392 Possible_Freeze
(Base_Type
(Etype
(Designator
))); -- needed ???
5394 -- Need delayed freeze if any of the formal types themselves need
5395 -- a delayed freeze and are not yet frozen.
5397 F
:= First_Formal
(Designator
);
5398 while Present
(F
) loop
5399 Possible_Freeze
(Etype
(F
));
5400 Possible_Freeze
(Base_Type
(Etype
(F
))); -- needed ???
5404 -- Mark functions that return by reference. Note that it cannot be
5405 -- done for delayed_freeze subprograms because the underlying
5406 -- returned type may not be known yet (for private types)
5408 if not Has_Delayed_Freeze
(Designator
) and then Expander_Active
then
5410 Typ
: constant Entity_Id
:= Etype
(Designator
);
5411 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
5413 if Is_Limited_View
(Typ
) then
5414 Set_Returns_By_Ref
(Designator
);
5415 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
5416 Set_Returns_By_Ref
(Designator
);
5420 end Check_Delayed_Subprogram
;
5422 ------------------------------------
5423 -- Check_Discriminant_Conformance --
5424 ------------------------------------
5426 procedure Check_Discriminant_Conformance
5431 Old_Discr
: Entity_Id
:= First_Discriminant
(Prev
);
5432 New_Discr
: Node_Id
:= First
(Discriminant_Specifications
(N
));
5433 New_Discr_Id
: Entity_Id
;
5434 New_Discr_Type
: Entity_Id
;
5436 procedure Conformance_Error
(Msg
: String; N
: Node_Id
);
5437 -- Post error message for conformance error on given node. Two messages
5438 -- are output. The first points to the previous declaration with a
5439 -- general "no conformance" message. The second is the detailed reason,
5440 -- supplied as Msg. The parameter N provide information for a possible
5441 -- & insertion in the message.
5443 -----------------------
5444 -- Conformance_Error --
5445 -----------------------
5447 procedure Conformance_Error
(Msg
: String; N
: Node_Id
) is
5449 Error_Msg_Sloc
:= Sloc
(Prev_Loc
);
5450 Error_Msg_N
-- CODEFIX
5451 ("not fully conformant with declaration#!", N
);
5452 Error_Msg_NE
(Msg
, N
, N
);
5453 end Conformance_Error
;
5455 -- Start of processing for Check_Discriminant_Conformance
5458 while Present
(Old_Discr
) and then Present
(New_Discr
) loop
5459 New_Discr_Id
:= Defining_Identifier
(New_Discr
);
5461 -- The subtype mark of the discriminant on the full type has not
5462 -- been analyzed so we do it here. For an access discriminant a new
5465 if Nkind
(Discriminant_Type
(New_Discr
)) = N_Access_Definition
then
5467 Access_Definition
(N
, Discriminant_Type
(New_Discr
));
5470 Analyze
(Discriminant_Type
(New_Discr
));
5471 New_Discr_Type
:= Etype
(Discriminant_Type
(New_Discr
));
5473 -- Ada 2005: if the discriminant definition carries a null
5474 -- exclusion, create an itype to check properly for consistency
5475 -- with partial declaration.
5477 if Is_Access_Type
(New_Discr_Type
)
5478 and then Null_Exclusion_Present
(New_Discr
)
5481 Create_Null_Excluding_Itype
5482 (T
=> New_Discr_Type
,
5483 Related_Nod
=> New_Discr
,
5484 Scope_Id
=> Current_Scope
);
5488 if not Conforming_Types
5489 (Etype
(Old_Discr
), New_Discr_Type
, Fully_Conformant
)
5491 Conformance_Error
("type of & does not match!", New_Discr_Id
);
5494 -- Treat the new discriminant as an occurrence of the old one,
5495 -- for navigation purposes, and fill in some semantic
5496 -- information, for completeness.
5498 Generate_Reference
(Old_Discr
, New_Discr_Id
, 'r');
5499 Set_Etype
(New_Discr_Id
, Etype
(Old_Discr
));
5500 Set_Scope
(New_Discr_Id
, Scope
(Old_Discr
));
5505 if Chars
(Old_Discr
) /= Chars
(Defining_Identifier
(New_Discr
)) then
5506 Conformance_Error
("name & does not match!", New_Discr_Id
);
5510 -- Default expressions must match
5513 NewD
: constant Boolean :=
5514 Present
(Expression
(New_Discr
));
5515 OldD
: constant Boolean :=
5516 Present
(Expression
(Parent
(Old_Discr
)));
5519 if NewD
or OldD
then
5521 -- The old default value has been analyzed and expanded,
5522 -- because the current full declaration will have frozen
5523 -- everything before. The new default values have not been
5524 -- expanded, so expand now to check conformance.
5527 Preanalyze_Spec_Expression
5528 (Expression
(New_Discr
), New_Discr_Type
);
5531 if not (NewD
and OldD
)
5532 or else not Fully_Conformant_Expressions
5533 (Expression
(Parent
(Old_Discr
)),
5534 Expression
(New_Discr
))
5538 ("default expression for & does not match!",
5545 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
5547 if Ada_Version
= Ada_83
then
5549 Old_Disc
: constant Node_Id
:= Declaration_Node
(Old_Discr
);
5552 -- Grouping (use of comma in param lists) must be the same
5553 -- This is where we catch a misconformance like:
5556 -- A : Integer; B : Integer
5558 -- which are represented identically in the tree except
5559 -- for the setting of the flags More_Ids and Prev_Ids.
5561 if More_Ids
(Old_Disc
) /= More_Ids
(New_Discr
)
5562 or else Prev_Ids
(Old_Disc
) /= Prev_Ids
(New_Discr
)
5565 ("grouping of & does not match!", New_Discr_Id
);
5571 Next_Discriminant
(Old_Discr
);
5575 if Present
(Old_Discr
) then
5576 Conformance_Error
("too few discriminants!", Defining_Identifier
(N
));
5579 elsif Present
(New_Discr
) then
5581 ("too many discriminants!", Defining_Identifier
(New_Discr
));
5584 end Check_Discriminant_Conformance
;
5586 ----------------------------
5587 -- Check_Fully_Conformant --
5588 ----------------------------
5590 procedure Check_Fully_Conformant
5591 (New_Id
: Entity_Id
;
5593 Err_Loc
: Node_Id
:= Empty
)
5596 pragma Warnings
(Off
, Result
);
5599 (New_Id
, Old_Id
, Fully_Conformant
, True, Result
, Err_Loc
);
5600 end Check_Fully_Conformant
;
5602 ---------------------------
5603 -- Check_Mode_Conformant --
5604 ---------------------------
5606 procedure Check_Mode_Conformant
5607 (New_Id
: Entity_Id
;
5609 Err_Loc
: Node_Id
:= Empty
;
5610 Get_Inst
: Boolean := False)
5613 pragma Warnings
(Off
, Result
);
5616 (New_Id
, Old_Id
, Mode_Conformant
, True, Result
, Err_Loc
, Get_Inst
);
5617 end Check_Mode_Conformant
;
5619 --------------------------------
5620 -- Check_Overriding_Indicator --
5621 --------------------------------
5623 procedure Check_Overriding_Indicator
5625 Overridden_Subp
: Entity_Id
;
5626 Is_Primitive
: Boolean)
5632 -- No overriding indicator for literals
5634 if Ekind
(Subp
) = E_Enumeration_Literal
then
5637 elsif Ekind
(Subp
) = E_Entry
then
5638 Decl
:= Parent
(Subp
);
5640 -- No point in analyzing a malformed operator
5642 elsif Nkind
(Subp
) = N_Defining_Operator_Symbol
5643 and then Error_Posted
(Subp
)
5648 Decl
:= Unit_Declaration_Node
(Subp
);
5651 if Nkind_In
(Decl
, N_Subprogram_Body
,
5652 N_Subprogram_Body_Stub
,
5653 N_Subprogram_Declaration
,
5654 N_Abstract_Subprogram_Declaration
,
5655 N_Subprogram_Renaming_Declaration
)
5657 Spec
:= Specification
(Decl
);
5659 elsif Nkind
(Decl
) = N_Entry_Declaration
then
5666 -- The overriding operation is type conformant with the overridden one,
5667 -- but the names of the formals are not required to match. If the names
5668 -- appear permuted in the overriding operation, this is a possible
5669 -- source of confusion that is worth diagnosing. Controlling formals
5670 -- often carry names that reflect the type, and it is not worthwhile
5671 -- requiring that their names match.
5673 if Present
(Overridden_Subp
)
5674 and then Nkind
(Subp
) /= N_Defining_Operator_Symbol
5681 Form1
:= First_Formal
(Subp
);
5682 Form2
:= First_Formal
(Overridden_Subp
);
5684 -- If the overriding operation is a synchronized operation, skip
5685 -- the first parameter of the overridden operation, which is
5686 -- implicit in the new one. If the operation is declared in the
5687 -- body it is not primitive and all formals must match.
5689 if Is_Concurrent_Type
(Scope
(Subp
))
5690 and then Is_Tagged_Type
(Scope
(Subp
))
5691 and then not Has_Completion
(Scope
(Subp
))
5693 Form2
:= Next_Formal
(Form2
);
5696 if Present
(Form1
) then
5697 Form1
:= Next_Formal
(Form1
);
5698 Form2
:= Next_Formal
(Form2
);
5701 while Present
(Form1
) loop
5702 if not Is_Controlling_Formal
(Form1
)
5703 and then Present
(Next_Formal
(Form2
))
5704 and then Chars
(Form1
) = Chars
(Next_Formal
(Form2
))
5706 Error_Msg_Node_2
:= Alias
(Overridden_Subp
);
5707 Error_Msg_Sloc
:= Sloc
(Error_Msg_Node_2
);
5709 ("& does not match corresponding formal of&#",
5714 Next_Formal
(Form1
);
5715 Next_Formal
(Form2
);
5720 -- If there is an overridden subprogram, then check that there is no
5721 -- "not overriding" indicator, and mark the subprogram as overriding.
5722 -- This is not done if the overridden subprogram is marked as hidden,
5723 -- which can occur for the case of inherited controlled operations
5724 -- (see Derive_Subprogram), unless the inherited subprogram's parent
5725 -- subprogram is not itself hidden. (Note: This condition could probably
5726 -- be simplified, leaving out the testing for the specific controlled
5727 -- cases, but it seems safer and clearer this way, and echoes similar
5728 -- special-case tests of this kind in other places.)
5730 if Present
(Overridden_Subp
)
5731 and then (not Is_Hidden
(Overridden_Subp
)
5733 (Nam_In
(Chars
(Overridden_Subp
), Name_Initialize
,
5736 and then Present
(Alias
(Overridden_Subp
))
5737 and then not Is_Hidden
(Alias
(Overridden_Subp
))))
5739 if Must_Not_Override
(Spec
) then
5740 Error_Msg_Sloc
:= Sloc
(Overridden_Subp
);
5742 if Ekind
(Subp
) = E_Entry
then
5744 ("entry & overrides inherited operation #", Spec
, Subp
);
5747 ("subprogram & overrides inherited operation #", Spec
, Subp
);
5750 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
5751 -- as an extension of Root_Controlled, and thus has a useless Adjust
5752 -- operation. This operation should not be inherited by other limited
5753 -- controlled types. An explicit Adjust for them is not overriding.
5755 elsif Must_Override
(Spec
)
5756 and then Chars
(Overridden_Subp
) = Name_Adjust
5757 and then Is_Limited_Type
(Etype
(First_Formal
(Subp
)))
5758 and then Present
(Alias
(Overridden_Subp
))
5760 Is_Predefined_File_Name
5761 (Unit_File_Name
(Get_Source_Unit
(Alias
(Overridden_Subp
))))
5763 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
5765 elsif Is_Subprogram
(Subp
) then
5766 if Is_Init_Proc
(Subp
) then
5769 elsif No
(Overridden_Operation
(Subp
)) then
5771 -- For entities generated by Derive_Subprograms the overridden
5772 -- operation is the inherited primitive (which is available
5773 -- through the attribute alias)
5775 if (Is_Dispatching_Operation
(Subp
)
5776 or else Is_Dispatching_Operation
(Overridden_Subp
))
5777 and then not Comes_From_Source
(Overridden_Subp
)
5778 and then Find_Dispatching_Type
(Overridden_Subp
) =
5779 Find_Dispatching_Type
(Subp
)
5780 and then Present
(Alias
(Overridden_Subp
))
5781 and then Comes_From_Source
(Alias
(Overridden_Subp
))
5783 Set_Overridden_Operation
(Subp
, Alias
(Overridden_Subp
));
5784 Inherit_Subprogram_Contract
(Subp
, Alias
(Overridden_Subp
));
5787 Set_Overridden_Operation
(Subp
, Overridden_Subp
);
5788 Inherit_Subprogram_Contract
(Subp
, Overridden_Subp
);
5793 -- If primitive flag is set or this is a protected operation, then
5794 -- the operation is overriding at the point of its declaration, so
5795 -- warn if necessary. Otherwise it may have been declared before the
5796 -- operation it overrides and no check is required.
5799 and then not Must_Override
(Spec
)
5800 and then (Is_Primitive
5801 or else Ekind
(Scope
(Subp
)) = E_Protected_Type
)
5803 Style
.Missing_Overriding
(Decl
, Subp
);
5806 -- If Subp is an operator, it may override a predefined operation, if
5807 -- it is defined in the same scope as the type to which it applies.
5808 -- In that case Overridden_Subp is empty because of our implicit
5809 -- representation for predefined operators. We have to check whether the
5810 -- signature of Subp matches that of a predefined operator. Note that
5811 -- first argument provides the name of the operator, and the second
5812 -- argument the signature that may match that of a standard operation.
5813 -- If the indicator is overriding, then the operator must match a
5814 -- predefined signature, because we know already that there is no
5815 -- explicit overridden operation.
5817 elsif Nkind
(Subp
) = N_Defining_Operator_Symbol
then
5818 if Must_Not_Override
(Spec
) then
5820 -- If this is not a primitive or a protected subprogram, then
5821 -- "not overriding" is illegal.
5824 and then Ekind
(Scope
(Subp
)) /= E_Protected_Type
5826 Error_Msg_N
("overriding indicator only allowed "
5827 & "if subprogram is primitive", Subp
);
5829 elsif Can_Override_Operator
(Subp
) then
5831 ("subprogram& overrides predefined operator ", Spec
, Subp
);
5834 elsif Must_Override
(Spec
) then
5835 if No
(Overridden_Operation
(Subp
))
5836 and then not Can_Override_Operator
(Subp
)
5838 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
5841 elsif not Error_Posted
(Subp
)
5842 and then Style_Check
5843 and then Can_Override_Operator
(Subp
)
5845 not Is_Predefined_File_Name
5846 (Unit_File_Name
(Get_Source_Unit
(Subp
)))
5848 -- If style checks are enabled, indicate that the indicator is
5849 -- missing. However, at the point of declaration, the type of
5850 -- which this is a primitive operation may be private, in which
5851 -- case the indicator would be premature.
5853 if Has_Private_Declaration
(Etype
(Subp
))
5854 or else Has_Private_Declaration
(Etype
(First_Formal
(Subp
)))
5858 Style
.Missing_Overriding
(Decl
, Subp
);
5862 elsif Must_Override
(Spec
) then
5863 if Ekind
(Subp
) = E_Entry
then
5864 Error_Msg_NE
("entry & is not overriding", Spec
, Subp
);
5866 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
5869 -- If the operation is marked "not overriding" and it's not primitive
5870 -- then an error is issued, unless this is an operation of a task or
5871 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
5872 -- has been specified have already been checked above.
5874 elsif Must_Not_Override
(Spec
)
5875 and then not Is_Primitive
5876 and then Ekind
(Subp
) /= E_Entry
5877 and then Ekind
(Scope
(Subp
)) /= E_Protected_Type
5880 ("overriding indicator only allowed if subprogram is primitive",
5884 end Check_Overriding_Indicator
;
5890 -- Note: this procedure needs to know far too much about how the expander
5891 -- messes with exceptions. The use of the flag Exception_Junk and the
5892 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
5893 -- works, but is not very clean. It would be better if the expansion
5894 -- routines would leave Original_Node working nicely, and we could use
5895 -- Original_Node here to ignore all the peculiar expander messing ???
5897 procedure Check_Returns
5901 Proc
: Entity_Id
:= Empty
)
5905 procedure Check_Statement_Sequence
(L
: List_Id
);
5906 -- Internal recursive procedure to check a list of statements for proper
5907 -- termination by a return statement (or a transfer of control or a
5908 -- compound statement that is itself internally properly terminated).
5910 ------------------------------
5911 -- Check_Statement_Sequence --
5912 ------------------------------
5914 procedure Check_Statement_Sequence
(L
: List_Id
) is
5919 function Assert_False
return Boolean;
5920 -- Returns True if Last_Stm is a pragma Assert (False) that has been
5921 -- rewritten as a null statement when assertions are off. The assert
5922 -- is not active, but it is still enough to kill the warning.
5928 function Assert_False
return Boolean is
5929 Orig
: constant Node_Id
:= Original_Node
(Last_Stm
);
5932 if Nkind
(Orig
) = N_Pragma
5933 and then Pragma_Name
(Orig
) = Name_Assert
5934 and then not Error_Posted
(Orig
)
5937 Arg
: constant Node_Id
:=
5938 First
(Pragma_Argument_Associations
(Orig
));
5939 Exp
: constant Node_Id
:= Expression
(Arg
);
5941 return Nkind
(Exp
) = N_Identifier
5942 and then Chars
(Exp
) = Name_False
;
5952 Raise_Exception_Call
: Boolean;
5953 -- Set True if statement sequence terminated by Raise_Exception call
5954 -- or a Reraise_Occurrence call.
5956 -- Start of processing for Check_Statement_Sequence
5959 Raise_Exception_Call
:= False;
5961 -- Get last real statement
5963 Last_Stm
:= Last
(L
);
5965 -- Deal with digging out exception handler statement sequences that
5966 -- have been transformed by the local raise to goto optimization.
5967 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
5968 -- optimization has occurred, we are looking at something like:
5971 -- original stmts in block
5975 -- goto L1; | omitted if No_Exception_Propagation
5980 -- goto L3; -- skip handler when exception not raised
5982 -- <<L1>> -- target label for local exception
5996 -- and what we have to do is to dig out the estmts1 and estmts2
5997 -- sequences (which were the original sequences of statements in
5998 -- the exception handlers) and check them.
6000 if Nkind
(Last_Stm
) = N_Label
and then Exception_Junk
(Last_Stm
) then
6005 exit when Nkind
(Stm
) /= N_Block_Statement
;
6006 exit when not Exception_Junk
(Stm
);
6009 exit when Nkind
(Stm
) /= N_Label
;
6010 exit when not Exception_Junk
(Stm
);
6011 Check_Statement_Sequence
6012 (Statements
(Handled_Statement_Sequence
(Next
(Stm
))));
6017 exit when Nkind
(Stm
) /= N_Goto_Statement
;
6018 exit when not Exception_Junk
(Stm
);
6022 -- Don't count pragmas
6024 while Nkind
(Last_Stm
) = N_Pragma
6026 -- Don't count call to SS_Release (can happen after Raise_Exception)
6029 (Nkind
(Last_Stm
) = N_Procedure_Call_Statement
6031 Nkind
(Name
(Last_Stm
)) = N_Identifier
6033 Is_RTE
(Entity
(Name
(Last_Stm
)), RE_SS_Release
))
6035 -- Don't count exception junk
6038 (Nkind_In
(Last_Stm
, N_Goto_Statement
,
6040 N_Object_Declaration
)
6041 and then Exception_Junk
(Last_Stm
))
6042 or else Nkind
(Last_Stm
) in N_Push_xxx_Label
6043 or else Nkind
(Last_Stm
) in N_Pop_xxx_Label
6045 -- Inserted code, such as finalization calls, is irrelevant: we only
6046 -- need to check original source.
6048 or else Is_Rewrite_Insertion
(Last_Stm
)
6053 -- Here we have the "real" last statement
6055 Kind
:= Nkind
(Last_Stm
);
6057 -- Transfer of control, OK. Note that in the No_Return procedure
6058 -- case, we already diagnosed any explicit return statements, so
6059 -- we can treat them as OK in this context.
6061 if Is_Transfer
(Last_Stm
) then
6064 -- Check cases of explicit non-indirect procedure calls
6066 elsif Kind
= N_Procedure_Call_Statement
6067 and then Is_Entity_Name
(Name
(Last_Stm
))
6069 -- Check call to Raise_Exception procedure which is treated
6070 -- specially, as is a call to Reraise_Occurrence.
6072 -- We suppress the warning in these cases since it is likely that
6073 -- the programmer really does not expect to deal with the case
6074 -- of Null_Occurrence, and thus would find a warning about a
6075 -- missing return curious, and raising Program_Error does not
6076 -- seem such a bad behavior if this does occur.
6078 -- Note that in the Ada 2005 case for Raise_Exception, the actual
6079 -- behavior will be to raise Constraint_Error (see AI-329).
6081 if Is_RTE
(Entity
(Name
(Last_Stm
)), RE_Raise_Exception
)
6083 Is_RTE
(Entity
(Name
(Last_Stm
)), RE_Reraise_Occurrence
)
6085 Raise_Exception_Call
:= True;
6087 -- For Raise_Exception call, test first argument, if it is
6088 -- an attribute reference for a 'Identity call, then we know
6089 -- that the call cannot possibly return.
6092 Arg
: constant Node_Id
:=
6093 Original_Node
(First_Actual
(Last_Stm
));
6095 if Nkind
(Arg
) = N_Attribute_Reference
6096 and then Attribute_Name
(Arg
) = Name_Identity
6103 -- If statement, need to look inside if there is an else and check
6104 -- each constituent statement sequence for proper termination.
6106 elsif Kind
= N_If_Statement
6107 and then Present
(Else_Statements
(Last_Stm
))
6109 Check_Statement_Sequence
(Then_Statements
(Last_Stm
));
6110 Check_Statement_Sequence
(Else_Statements
(Last_Stm
));
6112 if Present
(Elsif_Parts
(Last_Stm
)) then
6114 Elsif_Part
: Node_Id
:= First
(Elsif_Parts
(Last_Stm
));
6117 while Present
(Elsif_Part
) loop
6118 Check_Statement_Sequence
(Then_Statements
(Elsif_Part
));
6126 -- Case statement, check each case for proper termination
6128 elsif Kind
= N_Case_Statement
then
6132 Case_Alt
:= First_Non_Pragma
(Alternatives
(Last_Stm
));
6133 while Present
(Case_Alt
) loop
6134 Check_Statement_Sequence
(Statements
(Case_Alt
));
6135 Next_Non_Pragma
(Case_Alt
);
6141 -- Block statement, check its handled sequence of statements
6143 elsif Kind
= N_Block_Statement
then
6149 (Handled_Statement_Sequence
(Last_Stm
), Mode
, Err1
);
6158 -- Loop statement. If there is an iteration scheme, we can definitely
6159 -- fall out of the loop. Similarly if there is an exit statement, we
6160 -- can fall out. In either case we need a following return.
6162 elsif Kind
= N_Loop_Statement
then
6163 if Present
(Iteration_Scheme
(Last_Stm
))
6164 or else Has_Exit
(Entity
(Identifier
(Last_Stm
)))
6168 -- A loop with no exit statement or iteration scheme is either
6169 -- an infinite loop, or it has some other exit (raise/return).
6170 -- In either case, no warning is required.
6176 -- Timed entry call, check entry call and delay alternatives
6178 -- Note: in expanded code, the timed entry call has been converted
6179 -- to a set of expanded statements on which the check will work
6180 -- correctly in any case.
6182 elsif Kind
= N_Timed_Entry_Call
then
6184 ECA
: constant Node_Id
:= Entry_Call_Alternative
(Last_Stm
);
6185 DCA
: constant Node_Id
:= Delay_Alternative
(Last_Stm
);
6188 -- If statement sequence of entry call alternative is missing,
6189 -- then we can definitely fall through, and we post the error
6190 -- message on the entry call alternative itself.
6192 if No
(Statements
(ECA
)) then
6195 -- If statement sequence of delay alternative is missing, then
6196 -- we can definitely fall through, and we post the error
6197 -- message on the delay alternative itself.
6199 -- Note: if both ECA and DCA are missing the return, then we
6200 -- post only one message, should be enough to fix the bugs.
6201 -- If not we will get a message next time on the DCA when the
6204 elsif No
(Statements
(DCA
)) then
6207 -- Else check both statement sequences
6210 Check_Statement_Sequence
(Statements
(ECA
));
6211 Check_Statement_Sequence
(Statements
(DCA
));
6216 -- Conditional entry call, check entry call and else part
6218 -- Note: in expanded code, the conditional entry call has been
6219 -- converted to a set of expanded statements on which the check
6220 -- will work correctly in any case.
6222 elsif Kind
= N_Conditional_Entry_Call
then
6224 ECA
: constant Node_Id
:= Entry_Call_Alternative
(Last_Stm
);
6227 -- If statement sequence of entry call alternative is missing,
6228 -- then we can definitely fall through, and we post the error
6229 -- message on the entry call alternative itself.
6231 if No
(Statements
(ECA
)) then
6234 -- Else check statement sequence and else part
6237 Check_Statement_Sequence
(Statements
(ECA
));
6238 Check_Statement_Sequence
(Else_Statements
(Last_Stm
));
6244 -- If we fall through, issue appropriate message
6248 -- Kill warning if last statement is a raise exception call,
6249 -- or a pragma Assert (False). Note that with assertions enabled,
6250 -- such a pragma has been converted into a raise exception call
6251 -- already, so the Assert_False is for the assertions off case.
6253 if not Raise_Exception_Call
and then not Assert_False
then
6255 -- In GNATprove mode, it is an error to have a missing return
6257 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6259 -- Issue error message or warning
6262 ("RETURN statement missing following this statement<<!",
6265 ("\Program_Error ]<<!", Last_Stm
);
6268 -- Note: we set Err even though we have not issued a warning
6269 -- because we still have a case of a missing return. This is
6270 -- an extremely marginal case, probably will never be noticed
6271 -- but we might as well get it right.
6275 -- Otherwise we have the case of a procedure marked No_Return
6278 if not Raise_Exception_Call
then
6279 if GNATprove_Mode
then
6281 ("implied return after this statement "
6282 & "would have raised Program_Error", Last_Stm
);
6285 ("implied return after this statement "
6286 & "will raise Program_Error??", Last_Stm
);
6289 Error_Msg_Warn
:= SPARK_Mode
/= On
;
6291 ("\procedure & is marked as No_Return<<!", Last_Stm
, Proc
);
6295 RE
: constant Node_Id
:=
6296 Make_Raise_Program_Error
(Sloc
(Last_Stm
),
6297 Reason
=> PE_Implicit_Return
);
6299 Insert_After
(Last_Stm
, RE
);
6303 end Check_Statement_Sequence
;
6305 -- Start of processing for Check_Returns
6309 Check_Statement_Sequence
(Statements
(HSS
));
6311 if Present
(Exception_Handlers
(HSS
)) then
6312 Handler
:= First_Non_Pragma
(Exception_Handlers
(HSS
));
6313 while Present
(Handler
) loop
6314 Check_Statement_Sequence
(Statements
(Handler
));
6315 Next_Non_Pragma
(Handler
);
6320 ----------------------------
6321 -- Check_Subprogram_Order --
6322 ----------------------------
6324 procedure Check_Subprogram_Order
(N
: Node_Id
) is
6326 function Subprogram_Name_Greater
(S1
, S2
: String) return Boolean;
6327 -- This is used to check if S1 > S2 in the sense required by this test,
6328 -- for example nameab < namec, but name2 < name10.
6330 -----------------------------
6331 -- Subprogram_Name_Greater --
6332 -----------------------------
6334 function Subprogram_Name_Greater
(S1
, S2
: String) return Boolean is
6339 -- Deal with special case where names are identical except for a
6340 -- numerical suffix. These are handled specially, taking the numeric
6341 -- ordering from the suffix into account.
6344 while S1
(L1
) in '0' .. '9' loop
6349 while S2
(L2
) in '0' .. '9' loop
6353 -- If non-numeric parts non-equal, do straight compare
6355 if S1
(S1
'First .. L1
) /= S2
(S2
'First .. L2
) then
6358 -- If non-numeric parts equal, compare suffixed numeric parts. Note
6359 -- that a missing suffix is treated as numeric zero in this test.
6363 while L1
< S1
'Last loop
6365 N1
:= N1
* 10 + Character'Pos (S1
(L1
)) - Character'Pos ('0');
6369 while L2
< S2
'Last loop
6371 N2
:= N2
* 10 + Character'Pos (S2
(L2
)) - Character'Pos ('0');
6376 end Subprogram_Name_Greater
;
6378 -- Start of processing for Check_Subprogram_Order
6381 -- Check body in alpha order if this is option
6384 and then Style_Check_Order_Subprograms
6385 and then Nkind
(N
) = N_Subprogram_Body
6386 and then Comes_From_Source
(N
)
6387 and then In_Extended_Main_Source_Unit
(N
)
6391 renames Scope_Stack
.Table
6392 (Scope_Stack
.Last
).Last_Subprogram_Name
;
6394 Body_Id
: constant Entity_Id
:=
6395 Defining_Entity
(Specification
(N
));
6398 Get_Decoded_Name_String
(Chars
(Body_Id
));
6401 if Subprogram_Name_Greater
6402 (LSN
.all, Name_Buffer
(1 .. Name_Len
))
6404 Style
.Subprogram_Not_In_Alpha_Order
(Body_Id
);
6410 LSN
:= new String'(Name_Buffer (1 .. Name_Len));
6413 end Check_Subprogram_Order;
6415 ------------------------------
6416 -- Check_Subtype_Conformant --
6417 ------------------------------
6419 procedure Check_Subtype_Conformant
6420 (New_Id : Entity_Id;
6422 Err_Loc : Node_Id := Empty;
6423 Skip_Controlling_Formals : Boolean := False;
6424 Get_Inst : Boolean := False)
6427 pragma Warnings (Off, Result);
6430 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
6431 Skip_Controlling_Formals => Skip_Controlling_Formals,
6432 Get_Inst => Get_Inst);
6433 end Check_Subtype_Conformant;
6435 ---------------------------
6436 -- Check_Type_Conformant --
6437 ---------------------------
6439 procedure Check_Type_Conformant
6440 (New_Id : Entity_Id;
6442 Err_Loc : Node_Id := Empty)
6445 pragma Warnings (Off, Result);
6448 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
6449 end Check_Type_Conformant;
6451 ---------------------------
6452 -- Can_Override_Operator --
6453 ---------------------------
6455 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
6459 if Nkind (Subp) /= N_Defining_Operator_Symbol then
6463 Typ := Base_Type (Etype (First_Formal (Subp)));
6465 -- Check explicitly that the operation is a primitive of the type
6467 return Operator_Matches_Spec (Subp, Subp)
6468 and then not Is_Generic_Type (Typ)
6469 and then Scope (Subp) = Scope (Typ)
6470 and then not Is_Class_Wide_Type (Typ);
6472 end Can_Override_Operator;
6474 ----------------------
6475 -- Conforming_Types --
6476 ----------------------
6478 function Conforming_Types
6481 Ctype : Conformance_Type;
6482 Get_Inst : Boolean := False) return Boolean
6484 Type_1 : Entity_Id := T1;
6485 Type_2 : Entity_Id := T2;
6486 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
6488 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
6489 -- If neither T1 nor T2 are generic actual types, or if they are in
6490 -- different scopes (e.g. parent and child instances), then verify that
6491 -- the base types are equal. Otherwise T1 and T2 must be on the same
6492 -- subtype chain. The whole purpose of this procedure is to prevent
6493 -- spurious ambiguities in an instantiation that may arise if two
6494 -- distinct generic types are instantiated with the same actual.
6496 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
6497 -- An access parameter can designate an incomplete type. If the
6498 -- incomplete type is the limited view of a type from a limited_
6499 -- with_clause, check whether the non-limited view is available. If
6500 -- it is a (non-limited) incomplete type, get the full view.
6502 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
6503 -- Returns True if and only if either T1 denotes a limited view of T2
6504 -- or T2 denotes a limited view of T1. This can arise when the limited
6505 -- with view of a type is used in a subprogram declaration and the
6506 -- subprogram body is in the scope of a regular with clause for the
6507 -- same unit. In such a case, the two type entities can be considered
6508 -- identical for purposes of conformance checking.
6510 ----------------------
6511 -- Base_Types_Match --
6512 ----------------------
6514 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
6515 BT1 : constant Entity_Id := Base_Type (T1);
6516 BT2 : constant Entity_Id := Base_Type (T2);
6522 elsif BT1 = BT2 then
6524 -- The following is too permissive. A more precise test should
6525 -- check that the generic actual is an ancestor subtype of the
6528 -- See code in Find_Corresponding_Spec that applies an additional
6529 -- filter to handle accidental amiguities in instances.
6531 return not Is_Generic_Actual_Type (T1)
6532 or else not Is_Generic_Actual_Type (T2)
6533 or else Scope (T1) /= Scope (T2);
6535 -- If T2 is a generic actual type it is declared as the subtype of
6536 -- the actual. If that actual is itself a subtype we need to use its
6537 -- own base type to check for compatibility.
6539 elsif Ekind (BT2) = Ekind (T2) and then BT1 = Base_Type (BT2) then
6542 elsif Ekind (BT1) = Ekind (T1) and then BT2 = Base_Type (BT1) then
6548 end Base_Types_Match;
6550 --------------------------
6551 -- Find_Designated_Type --
6552 --------------------------
6554 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
6558 Desig := Directly_Designated_Type (T);
6560 if Ekind (Desig) = E_Incomplete_Type then
6562 -- If regular incomplete type, get full view if available
6564 if Present (Full_View (Desig)) then
6565 Desig := Full_View (Desig);
6567 -- If limited view of a type, get non-limited view if available,
6568 -- and check again for a regular incomplete type.
6570 elsif Present (Non_Limited_View (Desig)) then
6571 Desig := Get_Full_View (Non_Limited_View (Desig));
6576 end Find_Designated_Type;
6578 -------------------------------
6579 -- Matches_Limited_With_View --
6580 -------------------------------
6582 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
6584 -- In some cases a type imported through a limited_with clause, and
6585 -- its nonlimited view are both visible, for example in an anonymous
6586 -- access-to-class-wide type in a formal. Both entities designate the
6589 if From_Limited_With (T1) and then T2 = Available_View (T1) then
6592 elsif From_Limited_With (T2) and then T1 = Available_View (T2) then
6595 elsif From_Limited_With (T1)
6596 and then From_Limited_With (T2)
6597 and then Available_View (T1) = Available_View (T2)
6604 end Matches_Limited_With_View;
6606 -- Start of processing for Conforming_Types
6609 -- The context is an instance association for a formal access-to-
6610 -- subprogram type; the formal parameter types require mapping because
6611 -- they may denote other formal parameters of the generic unit.
6614 Type_1 := Get_Instance_Of (T1);
6615 Type_2 := Get_Instance_Of (T2);
6618 -- If one of the types is a view of the other introduced by a limited
6619 -- with clause, treat these as conforming for all purposes.
6621 if Matches_Limited_With_View (T1, T2) then
6624 elsif Base_Types_Match (Type_1, Type_2) then
6625 return Ctype <= Mode_Conformant
6626 or else Subtypes_Statically_Match (Type_1, Type_2);
6628 elsif Is_Incomplete_Or_Private_Type (Type_1)
6629 and then Present (Full_View (Type_1))
6630 and then Base_Types_Match (Full_View (Type_1), Type_2)
6632 return Ctype <= Mode_Conformant
6633 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
6635 elsif Ekind (Type_2) = E_Incomplete_Type
6636 and then Present (Full_View (Type_2))
6637 and then Base_Types_Match (Type_1, Full_View (Type_2))
6639 return Ctype <= Mode_Conformant
6640 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6642 elsif Is_Private_Type (Type_2)
6643 and then In_Instance
6644 and then Present (Full_View (Type_2))
6645 and then Base_Types_Match (Type_1, Full_View (Type_2))
6647 return Ctype <= Mode_Conformant
6648 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
6651 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
6652 -- treated recursively because they carry a signature. As far as
6653 -- conformance is concerned, convention plays no role, and either
6654 -- or both could be access to protected subprograms.
6656 Are_Anonymous_Access_To_Subprogram_Types :=
6657 Ekind_In (Type_1, E_Anonymous_Access_Subprogram_Type,
6658 E_Anonymous_Access_Protected_Subprogram_Type)
6660 Ekind_In (Type_2, E_Anonymous_Access_Subprogram_Type,
6661 E_Anonymous_Access_Protected_Subprogram_Type);
6663 -- Test anonymous access type case. For this case, static subtype
6664 -- matching is required for mode conformance (RM 6.3.1(15)). We check
6665 -- the base types because we may have built internal subtype entities
6666 -- to handle null-excluding types (see Process_Formals).
6668 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
6670 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
6672 -- Ada 2005 (AI-254)
6674 or else Are_Anonymous_Access_To_Subprogram_Types
6677 Desig_1 : Entity_Id;
6678 Desig_2 : Entity_Id;
6681 -- In Ada 2005, access constant indicators must match for
6682 -- subtype conformance.
6684 if Ada_Version >= Ada_2005
6685 and then Ctype >= Subtype_Conformant
6687 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
6692 Desig_1 := Find_Designated_Type (Type_1);
6693 Desig_2 := Find_Designated_Type (Type_2);
6695 -- If the context is an instance association for a formal
6696 -- access-to-subprogram type; formal access parameter designated
6697 -- types require mapping because they may denote other formal
6698 -- parameters of the generic unit.
6701 Desig_1 := Get_Instance_Of (Desig_1);
6702 Desig_2 := Get_Instance_Of (Desig_2);
6705 -- It is possible for a Class_Wide_Type to be introduced for an
6706 -- incomplete type, in which case there is a separate class_ wide
6707 -- type for the full view. The types conform if their Etypes
6708 -- conform, i.e. one may be the full view of the other. This can
6709 -- only happen in the context of an access parameter, other uses
6710 -- of an incomplete Class_Wide_Type are illegal.
6712 if Is_Class_Wide_Type (Desig_1)
6714 Is_Class_Wide_Type (Desig_2)
6718 (Etype (Base_Type (Desig_1)),
6719 Etype (Base_Type (Desig_2)), Ctype);
6721 elsif Are_Anonymous_Access_To_Subprogram_Types then
6722 if Ada_Version < Ada_2005 then
6723 return Ctype = Type_Conformant
6725 Subtypes_Statically_Match (Desig_1, Desig_2);
6727 -- We must check the conformance of the signatures themselves
6731 Conformant : Boolean;
6734 (Desig_1, Desig_2, Ctype, False, Conformant);
6740 return Base_Type (Desig_1) = Base_Type (Desig_2)
6741 and then (Ctype = Type_Conformant
6743 Subtypes_Statically_Match (Desig_1, Desig_2));
6747 -- Otherwise definitely no match
6750 if ((Ekind (Type_1) = E_Anonymous_Access_Type
6751 and then Is_Access_Type (Type_2))
6752 or else (Ekind (Type_2) = E_Anonymous_Access_Type
6753 and then Is_Access_Type (Type_1)))
6756 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
6758 May_Hide_Profile := True;
6763 end Conforming_Types;
6765 --------------------------
6766 -- Create_Extra_Formals --
6767 --------------------------
6769 procedure Create_Extra_Formals (E : Entity_Id) is
6771 First_Extra : Entity_Id := Empty;
6772 Last_Extra : Entity_Id;
6773 Formal_Type : Entity_Id;
6774 P_Formal : Entity_Id := Empty;
6776 function Add_Extra_Formal
6777 (Assoc_Entity : Entity_Id;
6780 Suffix : String) return Entity_Id;
6781 -- Add an extra formal to the current list of formals and extra formals.
6782 -- The extra formal is added to the end of the list of extra formals,
6783 -- and also returned as the result. These formals are always of mode IN.
6784 -- The new formal has the type Typ, is declared in Scope, and its name
6785 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
6786 -- The following suffixes are currently used. They should not be changed
6787 -- without coordinating with CodePeer, which makes use of these to
6788 -- provide better messages.
6790 -- O denotes the Constrained bit.
6791 -- L denotes the accessibility level.
6792 -- BIP_xxx denotes an extra formal for a build-in-place function. See
6793 -- the full list in exp_ch6.BIP_Formal_Kind.
6795 ----------------------
6796 -- Add_Extra_Formal --
6797 ----------------------
6799 function Add_Extra_Formal
6800 (Assoc_Entity : Entity_Id;
6803 Suffix : String) return Entity_Id
6805 EF : constant Entity_Id :=
6806 Make_Defining_Identifier (Sloc (Assoc_Entity),
6807 Chars => New_External_Name (Chars (Assoc_Entity),
6811 -- A little optimization. Never generate an extra formal for the
6812 -- _init operand of an initialization procedure, since it could
6815 if Chars (Formal) = Name_uInit then
6819 Set_Ekind (EF, E_In_Parameter);
6820 Set_Actual_Subtype (EF, Typ);
6821 Set_Etype (EF, Typ);
6822 Set_Scope (EF, Scope);
6823 Set_Mechanism (EF, Default_Mechanism);
6824 Set_Formal_Validity (EF);
6826 if No (First_Extra) then
6828 Set_Extra_Formals (Scope, First_Extra);
6831 if Present (Last_Extra) then
6832 Set_Extra_Formal (Last_Extra, EF);
6838 end Add_Extra_Formal;
6840 -- Start of processing for Create_Extra_Formals
6843 -- We never generate extra formals if expansion is not active because we
6844 -- don't need them unless we are generating code.
6846 if not Expander_Active then
6850 -- No need to generate extra formals in interface thunks whose target
6851 -- primitive has no extra formals.
6853 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Entity (E))) then
6857 -- If this is a derived subprogram then the subtypes of the parent
6858 -- subprogram's formal parameters will be used to determine the need
6859 -- for extra formals.
6861 if Is_Overloadable (E) and then Present (Alias (E)) then
6862 P_Formal := First_Formal (Alias (E));
6865 Last_Extra := Empty;
6866 Formal := First_Formal (E);
6867 while Present (Formal) loop
6868 Last_Extra := Formal;
6869 Next_Formal (Formal);
6872 -- If Extra_formals were already created, don't do it again. This
6873 -- situation may arise for subprogram types created as part of
6874 -- dispatching calls (see Expand_Dispatching_Call)
6876 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
6880 -- If the subprogram is a predefined dispatching subprogram then don't
6881 -- generate any extra constrained or accessibility level formals. In
6882 -- general we suppress these for internal subprograms (by not calling
6883 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
6884 -- generated stream attributes do get passed through because extra
6885 -- build-in-place formals are needed in some cases (limited 'Input
).
6887 if Is_Predefined_Internal_Operation
(E
) then
6888 goto Test_For_Func_Result_Extras
;
6891 Formal
:= First_Formal
(E
);
6892 while Present
(Formal
) loop
6894 -- Create extra formal for supporting the attribute 'Constrained.
6895 -- The case of a private type view without discriminants also
6896 -- requires the extra formal if the underlying type has defaulted
6899 if Ekind
(Formal
) /= E_In_Parameter
then
6900 if Present
(P_Formal
) then
6901 Formal_Type
:= Etype
(P_Formal
);
6903 Formal_Type
:= Etype
(Formal
);
6906 -- Do not produce extra formals for Unchecked_Union parameters.
6907 -- Jump directly to the end of the loop.
6909 if Is_Unchecked_Union
(Base_Type
(Formal_Type
)) then
6910 goto Skip_Extra_Formal_Generation
;
6913 if not Has_Discriminants
(Formal_Type
)
6914 and then Ekind
(Formal_Type
) in Private_Kind
6915 and then Present
(Underlying_Type
(Formal_Type
))
6917 Formal_Type
:= Underlying_Type
(Formal_Type
);
6920 -- Suppress the extra formal if formal's subtype is constrained or
6921 -- indefinite, or we're compiling for Ada 2012 and the underlying
6922 -- type is tagged and limited. In Ada 2012, a limited tagged type
6923 -- can have defaulted discriminants, but 'Constrained is required
6924 -- to return True, so the formal is never needed (see AI05-0214).
6925 -- Note that this ensures consistency of calling sequences for
6926 -- dispatching operations when some types in a class have defaults
6927 -- on discriminants and others do not (and requiring the extra
6928 -- formal would introduce distributed overhead).
6930 -- If the type does not have a completion yet, treat as prior to
6931 -- Ada 2012 for consistency.
6933 if Has_Discriminants
(Formal_Type
)
6934 and then not Is_Constrained
(Formal_Type
)
6935 and then not Is_Indefinite_Subtype
(Formal_Type
)
6936 and then (Ada_Version
< Ada_2012
6937 or else No
(Underlying_Type
(Formal_Type
))
6939 (Is_Limited_Type
(Formal_Type
)
6942 (Underlying_Type
(Formal_Type
)))))
6944 Set_Extra_Constrained
6945 (Formal
, Add_Extra_Formal
(Formal
, Standard_Boolean
, E
, "O"));
6949 -- Create extra formal for supporting accessibility checking. This
6950 -- is done for both anonymous access formals and formals of named
6951 -- access types that are marked as controlling formals. The latter
6952 -- case can occur when Expand_Dispatching_Call creates a subprogram
6953 -- type and substitutes the types of access-to-class-wide actuals
6954 -- for the anonymous access-to-specific-type of controlling formals.
6955 -- Base_Type is applied because in cases where there is a null
6956 -- exclusion the formal may have an access subtype.
6958 -- This is suppressed if we specifically suppress accessibility
6959 -- checks at the package level for either the subprogram, or the
6960 -- package in which it resides. However, we do not suppress it
6961 -- simply if the scope has accessibility checks suppressed, since
6962 -- this could cause trouble when clients are compiled with a
6963 -- different suppression setting. The explicit checks at the
6964 -- package level are safe from this point of view.
6966 if (Ekind
(Base_Type
(Etype
(Formal
))) = E_Anonymous_Access_Type
6967 or else (Is_Controlling_Formal
(Formal
)
6968 and then Is_Access_Type
(Base_Type
(Etype
(Formal
)))))
6970 (Explicit_Suppress
(E
, Accessibility_Check
)
6972 Explicit_Suppress
(Scope
(E
), Accessibility_Check
))
6975 or else Present
(Extra_Accessibility
(P_Formal
)))
6977 Set_Extra_Accessibility
6978 (Formal
, Add_Extra_Formal
(Formal
, Standard_Natural
, E
, "L"));
6981 -- This label is required when skipping extra formal generation for
6982 -- Unchecked_Union parameters.
6984 <<Skip_Extra_Formal_Generation
>>
6986 if Present
(P_Formal
) then
6987 Next_Formal
(P_Formal
);
6990 Next_Formal
(Formal
);
6993 <<Test_For_Func_Result_Extras
>>
6995 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
6996 -- function call is ... determined by the point of call ...".
6998 if Needs_Result_Accessibility_Level
(E
) then
6999 Set_Extra_Accessibility_Of_Result
7000 (E
, Add_Extra_Formal
(E
, Standard_Natural
, E
, "L"));
7003 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
7004 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
7006 if Ada_Version
>= Ada_2005
and then Is_Build_In_Place_Function
(E
) then
7008 Result_Subt
: constant Entity_Id
:= Etype
(E
);
7009 Full_Subt
: constant Entity_Id
:= Available_View
(Result_Subt
);
7010 Formal_Typ
: Entity_Id
;
7012 Discard
: Entity_Id
;
7013 pragma Warnings
(Off
, Discard
);
7016 -- In the case of functions with unconstrained result subtypes,
7017 -- add a 4-state formal indicating whether the return object is
7018 -- allocated by the caller (1), or should be allocated by the
7019 -- callee on the secondary stack (2), in the global heap (3), or
7020 -- in a user-defined storage pool (4). For the moment we just use
7021 -- Natural for the type of this formal. Note that this formal
7022 -- isn't usually needed in the case where the result subtype is
7023 -- constrained, but it is needed when the function has a tagged
7024 -- result, because generally such functions can be called in a
7025 -- dispatching context and such calls must be handled like calls
7026 -- to a class-wide function.
7028 if Needs_BIP_Alloc_Form
(E
) then
7031 (E
, Standard_Natural
,
7032 E
, BIP_Formal_Suffix
(BIP_Alloc_Form
));
7034 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
7035 -- use a user-defined pool. This formal is not added on
7036 -- .NET/JVM/ZFP as those targets do not support pools.
7038 if VM_Target
= No_VM
7039 and then RTE_Available
(RE_Root_Storage_Pool_Ptr
)
7043 (E
, RTE
(RE_Root_Storage_Pool_Ptr
),
7044 E
, BIP_Formal_Suffix
(BIP_Storage_Pool
));
7048 -- In the case of functions whose result type needs finalization,
7049 -- add an extra formal which represents the finalization master.
7051 if Needs_BIP_Finalization_Master
(E
) then
7054 (E
, RTE
(RE_Finalization_Master_Ptr
),
7055 E
, BIP_Formal_Suffix
(BIP_Finalization_Master
));
7058 -- When the result type contains tasks, add two extra formals: the
7059 -- master of the tasks to be created, and the caller's activation
7062 if Has_Task
(Full_Subt
) then
7065 (E
, RTE
(RE_Master_Id
),
7066 E
, BIP_Formal_Suffix
(BIP_Task_Master
));
7069 (E
, RTE
(RE_Activation_Chain_Access
),
7070 E
, BIP_Formal_Suffix
(BIP_Activation_Chain
));
7073 -- All build-in-place functions get an extra formal that will be
7074 -- passed the address of the return object within the caller.
7077 Create_Itype
(E_Anonymous_Access_Type
, E
, Scope_Id
=> Scope
(E
));
7079 Set_Directly_Designated_Type
(Formal_Typ
, Result_Subt
);
7080 Set_Etype
(Formal_Typ
, Formal_Typ
);
7081 Set_Depends_On_Private
7082 (Formal_Typ
, Has_Private_Component
(Formal_Typ
));
7083 Set_Is_Public
(Formal_Typ
, Is_Public
(Scope
(Formal_Typ
)));
7084 Set_Is_Access_Constant
(Formal_Typ
, False);
7086 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
7087 -- the designated type comes from the limited view (for back-end
7090 Set_From_Limited_With
7091 (Formal_Typ
, From_Limited_With
(Result_Subt
));
7093 Layout_Type
(Formal_Typ
);
7097 (E
, Formal_Typ
, E
, BIP_Formal_Suffix
(BIP_Object_Access
));
7100 end Create_Extra_Formals
;
7102 -----------------------------
7103 -- Enter_Overloaded_Entity --
7104 -----------------------------
7106 procedure Enter_Overloaded_Entity
(S
: Entity_Id
) is
7107 E
: Entity_Id
:= Current_Entity_In_Scope
(S
);
7108 C_E
: Entity_Id
:= Current_Entity
(S
);
7112 Set_Has_Homonym
(E
);
7113 Set_Has_Homonym
(S
);
7116 Set_Is_Immediately_Visible
(S
);
7117 Set_Scope
(S
, Current_Scope
);
7119 -- Chain new entity if front of homonym in current scope, so that
7120 -- homonyms are contiguous.
7122 if Present
(E
) and then E
/= C_E
then
7123 while Homonym
(C_E
) /= E
loop
7124 C_E
:= Homonym
(C_E
);
7127 Set_Homonym
(C_E
, S
);
7131 Set_Current_Entity
(S
);
7136 if Is_Inherited_Operation
(S
) then
7137 Append_Inherited_Subprogram
(S
);
7139 Append_Entity
(S
, Current_Scope
);
7142 Set_Public_Status
(S
);
7144 if Debug_Flag_E
then
7145 Write_Str
("New overloaded entity chain: ");
7146 Write_Name
(Chars
(S
));
7149 while Present
(E
) loop
7150 Write_Str
(" "); Write_Int
(Int
(E
));
7157 -- Generate warning for hiding
7160 and then Comes_From_Source
(S
)
7161 and then In_Extended_Main_Source_Unit
(S
)
7168 -- Warn unless genuine overloading. Do not emit warning on
7169 -- hiding predefined operators in Standard (these are either an
7170 -- (artifact of our implicit declarations, or simple noise) but
7171 -- keep warning on a operator defined on a local subtype, because
7172 -- of the real danger that different operators may be applied in
7173 -- various parts of the program.
7175 -- Note that if E and S have the same scope, there is never any
7176 -- hiding. Either the two conflict, and the program is illegal,
7177 -- or S is overriding an implicit inherited subprogram.
7179 if Scope
(E
) /= Scope
(S
)
7180 and then (not Is_Overloadable
(E
)
7181 or else Subtype_Conformant
(E
, S
))
7182 and then (Is_Immediately_Visible
(E
)
7184 Is_Potentially_Use_Visible
(S
))
7186 if Scope
(E
) /= Standard_Standard
then
7187 Error_Msg_Sloc
:= Sloc
(E
);
7188 Error_Msg_N
("declaration of & hides one #?h?", S
);
7190 elsif Nkind
(S
) = N_Defining_Operator_Symbol
7192 Scope
(Base_Type
(Etype
(First_Formal
(S
)))) /= Scope
(S
)
7195 ("declaration of & hides predefined operator?h?", S
);
7200 end Enter_Overloaded_Entity
;
7202 -----------------------------
7203 -- Check_Untagged_Equality --
7204 -----------------------------
7206 procedure Check_Untagged_Equality
(Eq_Op
: Entity_Id
) is
7207 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
7208 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Eq_Op
);
7212 -- This check applies only if we have a subprogram declaration with an
7213 -- untagged record type.
7215 if Nkind
(Decl
) /= N_Subprogram_Declaration
7216 or else not Is_Record_Type
(Typ
)
7217 or else Is_Tagged_Type
(Typ
)
7222 -- In Ada 2012 case, we will output errors or warnings depending on
7223 -- the setting of debug flag -gnatd.E.
7225 if Ada_Version
>= Ada_2012
then
7226 Error_Msg_Warn
:= Debug_Flag_Dot_EE
;
7228 -- In earlier versions of Ada, nothing to do unless we are warning on
7229 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
7232 if not Warn_On_Ada_2012_Compatibility
then
7237 -- Cases where the type has already been frozen
7239 if Is_Frozen
(Typ
) then
7241 -- If the type is not declared in a package, or if we are in the body
7242 -- of the package or in some other scope, the new operation is not
7243 -- primitive, and therefore legal, though suspicious. Should we
7244 -- generate a warning in this case ???
7246 if Ekind
(Scope
(Typ
)) /= E_Package
7247 or else Scope
(Typ
) /= Current_Scope
7251 -- If the type is a generic actual (sub)type, the operation is not
7252 -- primitive either because the base type is declared elsewhere.
7254 elsif Is_Generic_Actual_Type
(Typ
) then
7257 -- Here we have a definite error of declaration after freezing
7260 if Ada_Version
>= Ada_2012
then
7262 ("equality operator must be declared before type & is "
7263 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op
, Typ
);
7265 -- In Ada 2012 mode with error turned to warning, output one
7266 -- more warning to warn that the equality operation may not
7267 -- compose. This is the consequence of ignoring the error.
7269 if Error_Msg_Warn
then
7270 Error_Msg_N
("\equality operation may not compose??", Eq_Op
);
7275 ("equality operator must be declared before type& is "
7276 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op
, Typ
);
7279 -- If we are in the package body, we could just move the
7280 -- declaration to the package spec, so add a message saying that.
7282 if In_Package_Body
(Scope
(Typ
)) then
7283 if Ada_Version
>= Ada_2012
then
7285 ("\move declaration to package spec<<", Eq_Op
);
7288 ("\move declaration to package spec (Ada 2012)?y?", Eq_Op
);
7291 -- Otherwise try to find the freezing point
7294 Obj_Decl
:= Next
(Parent
(Typ
));
7295 while Present
(Obj_Decl
) and then Obj_Decl
/= Decl
loop
7296 if Nkind
(Obj_Decl
) = N_Object_Declaration
7297 and then Etype
(Defining_Identifier
(Obj_Decl
)) = Typ
7299 -- Freezing point, output warnings
7301 if Ada_Version
>= Ada_2012
then
7303 ("type& is frozen by declaration??", Obj_Decl
, Typ
);
7305 ("\an equality operator cannot be declared after "
7310 ("type& is frozen by declaration (Ada 2012)?y?",
7313 ("\an equality operator cannot be declared after "
7314 & "this point (Ada 2012)?y?",
7326 -- Here if type is not frozen yet. It is illegal to have a primitive
7327 -- equality declared in the private part if the type is visible.
7329 elsif not In_Same_List
(Parent
(Typ
), Decl
)
7330 and then not Is_Limited_Type
(Typ
)
7332 -- Shouldn't we give an RM reference here???
7334 if Ada_Version
>= Ada_2012
then
7336 ("equality operator appears too late<<", Eq_Op
);
7339 ("equality operator appears too late (Ada 2012)?y?", Eq_Op
);
7342 -- No error detected
7347 end Check_Untagged_Equality
;
7349 -----------------------------
7350 -- Find_Corresponding_Spec --
7351 -----------------------------
7353 function Find_Corresponding_Spec
7355 Post_Error
: Boolean := True) return Entity_Id
7357 Spec
: constant Node_Id
:= Specification
(N
);
7358 Designator
: constant Entity_Id
:= Defining_Entity
(Spec
);
7362 function Different_Generic_Profile
(E
: Entity_Id
) return Boolean;
7363 -- Even if fully conformant, a body may depend on a generic actual when
7364 -- the spec does not, or vice versa, in which case they were distinct
7365 -- entities in the generic.
7367 -------------------------------
7368 -- Different_Generic_Profile --
7369 -------------------------------
7371 function Different_Generic_Profile
(E
: Entity_Id
) return Boolean is
7374 function Same_Generic_Actual
(T1
, T2
: Entity_Id
) return Boolean;
7375 -- Check that the types of corresponding formals have the same
7376 -- generic actual if any. We have to account for subtypes of a
7377 -- generic formal, declared between a spec and a body, which may
7378 -- appear distinct in an instance but matched in the generic, and
7379 -- the subtype may be used either in the spec or the body of the
7380 -- subprogram being checked.
7382 -------------------------
7383 -- Same_Generic_Actual --
7384 -------------------------
7386 function Same_Generic_Actual
(T1
, T2
: Entity_Id
) return Boolean is
7388 function Is_Declared_Subtype
(S1
, S2
: Entity_Id
) return Boolean;
7389 -- Predicate to check whether S1 is a subtype of S2 in the source
7392 -------------------------
7393 -- Is_Declared_Subtype --
7394 -------------------------
7396 function Is_Declared_Subtype
(S1
, S2
: Entity_Id
) return Boolean is
7398 return Comes_From_Source
(Parent
(S1
))
7399 and then Nkind
(Parent
(S1
)) = N_Subtype_Declaration
7400 and then Is_Entity_Name
(Subtype_Indication
(Parent
(S1
)))
7401 and then Entity
(Subtype_Indication
(Parent
(S1
))) = S2
;
7402 end Is_Declared_Subtype
;
7404 -- Start of processing for Same_Generic_Actual
7407 return Is_Generic_Actual_Type
(T1
) = Is_Generic_Actual_Type
(T2
)
7408 or else Is_Declared_Subtype
(T1
, T2
)
7409 or else Is_Declared_Subtype
(T2
, T1
);
7410 end Same_Generic_Actual
;
7412 -- Start of processing for Different_Generic_Profile
7415 if not In_Instance
then
7418 elsif Ekind
(E
) = E_Function
7419 and then not Same_Generic_Actual
(Etype
(E
), Etype
(Designator
))
7424 F1
:= First_Formal
(Designator
);
7425 F2
:= First_Formal
(E
);
7426 while Present
(F1
) loop
7427 if not Same_Generic_Actual
(Etype
(F1
), Etype
(F2
)) then
7436 end Different_Generic_Profile
;
7438 -- Start of processing for Find_Corresponding_Spec
7441 E
:= Current_Entity
(Designator
);
7442 while Present
(E
) loop
7444 -- We are looking for a matching spec. It must have the same scope,
7445 -- and the same name, and either be type conformant, or be the case
7446 -- of a library procedure spec and its body (which belong to one
7447 -- another regardless of whether they are type conformant or not).
7449 if Scope
(E
) = Current_Scope
then
7450 if Current_Scope
= Standard_Standard
7451 or else (Ekind
(E
) = Ekind
(Designator
)
7452 and then Type_Conformant
(E
, Designator
))
7454 -- Within an instantiation, we know that spec and body are
7455 -- subtype conformant, because they were subtype conformant in
7456 -- the generic. We choose the subtype-conformant entity here as
7457 -- well, to resolve spurious ambiguities in the instance that
7458 -- were not present in the generic (i.e. when two different
7459 -- types are given the same actual). If we are looking for a
7460 -- spec to match a body, full conformance is expected.
7464 -- Inherit the convention and "ghostness" of the matching
7465 -- spec to ensure proper full and subtype conformance.
7467 Set_Convention
(Designator
, Convention
(E
));
7469 if Is_Ghost_Entity
(E
) then
7470 Set_Is_Ghost_Entity
(Designator
);
7473 -- Skip past subprogram bodies and subprogram renamings that
7474 -- may appear to have a matching spec, but that aren't fully
7475 -- conformant with it. That can occur in cases where an
7476 -- actual type causes unrelated homographs in the instance.
7478 if Nkind_In
(N
, N_Subprogram_Body
,
7479 N_Subprogram_Renaming_Declaration
)
7480 and then Present
(Homonym
(E
))
7481 and then not Fully_Conformant
(Designator
, E
)
7485 elsif not Subtype_Conformant
(Designator
, E
) then
7488 elsif Different_Generic_Profile
(E
) then
7493 -- Ada 2012 (AI05-0165): For internally generated bodies of
7494 -- null procedures locate the internally generated spec. We
7495 -- enforce mode conformance since a tagged type may inherit
7496 -- from interfaces several null primitives which differ only
7497 -- in the mode of the formals.
7499 if not (Comes_From_Source
(E
))
7500 and then Is_Null_Procedure
(E
)
7501 and then not Mode_Conformant
(Designator
, E
)
7505 -- For null procedures coming from source that are completions,
7506 -- analysis of the generated body will establish the link.
7508 elsif Comes_From_Source
(E
)
7509 and then Nkind
(Spec
) = N_Procedure_Specification
7510 and then Null_Present
(Spec
)
7514 elsif not Has_Completion
(E
) then
7515 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
7516 Set_Corresponding_Spec
(N
, E
);
7519 Set_Has_Completion
(E
);
7522 elsif Nkind
(Parent
(N
)) = N_Subunit
then
7524 -- If this is the proper body of a subunit, the completion
7525 -- flag is set when analyzing the stub.
7529 -- If E is an internal function with a controlling result that
7530 -- was created for an operation inherited by a null extension,
7531 -- it may be overridden by a body without a previous spec (one
7532 -- more reason why these should be shunned). In that case we
7533 -- remove the generated body if present, because the current
7534 -- one is the explicit overriding.
7536 elsif Ekind
(E
) = E_Function
7537 and then Ada_Version
>= Ada_2005
7538 and then not Comes_From_Source
(E
)
7539 and then Has_Controlling_Result
(E
)
7540 and then Is_Null_Extension
(Etype
(E
))
7541 and then Comes_From_Source
(Spec
)
7543 Set_Has_Completion
(E
, False);
7546 and then Nkind
(Parent
(E
)) = N_Function_Specification
7549 (Unit_Declaration_Node
7550 (Corresponding_Body
(Unit_Declaration_Node
(E
))));
7554 -- If expansion is disabled, or if the wrapper function has
7555 -- not been generated yet, this a late body overriding an
7556 -- inherited operation, or it is an overriding by some other
7557 -- declaration before the controlling result is frozen. In
7558 -- either case this is a declaration of a new entity.
7564 -- If the body already exists, then this is an error unless
7565 -- the previous declaration is the implicit declaration of a
7566 -- derived subprogram. It is also legal for an instance to
7567 -- contain type conformant overloadable declarations (but the
7568 -- generic declaration may not), per 8.3(26/2).
7570 elsif No
(Alias
(E
))
7571 and then not Is_Intrinsic_Subprogram
(E
)
7572 and then not In_Instance
7575 Error_Msg_Sloc
:= Sloc
(E
);
7577 if Is_Imported
(E
) then
7579 ("body not allowed for imported subprogram & declared#",
7582 Error_Msg_NE
("duplicate body for & declared#", N
, E
);
7586 -- Child units cannot be overloaded, so a conformance mismatch
7587 -- between body and a previous spec is an error.
7589 elsif Is_Child_Unit
(E
)
7591 Nkind
(Unit_Declaration_Node
(Designator
)) = N_Subprogram_Body
7593 Nkind
(Parent
(Unit_Declaration_Node
(Designator
))) =
7598 ("body of child unit does not match previous declaration", N
);
7606 -- On exit, we know that no previous declaration of subprogram exists
7609 end Find_Corresponding_Spec
;
7611 ----------------------
7612 -- Fully_Conformant --
7613 ----------------------
7615 function Fully_Conformant
(New_Id
, Old_Id
: Entity_Id
) return Boolean is
7618 Check_Conformance
(New_Id
, Old_Id
, Fully_Conformant
, False, Result
);
7620 end Fully_Conformant
;
7622 ----------------------------------
7623 -- Fully_Conformant_Expressions --
7624 ----------------------------------
7626 function Fully_Conformant_Expressions
7627 (Given_E1
: Node_Id
;
7628 Given_E2
: Node_Id
) return Boolean
7630 E1
: constant Node_Id
:= Original_Node
(Given_E1
);
7631 E2
: constant Node_Id
:= Original_Node
(Given_E2
);
7632 -- We always test conformance on original nodes, since it is possible
7633 -- for analysis and/or expansion to make things look as though they
7634 -- conform when they do not, e.g. by converting 1+2 into 3.
7636 function FCE
(Given_E1
, Given_E2
: Node_Id
) return Boolean
7637 renames Fully_Conformant_Expressions
;
7639 function FCL
(L1
, L2
: List_Id
) return Boolean;
7640 -- Compare elements of two lists for conformance. Elements have to be
7641 -- conformant, and actuals inserted as default parameters do not match
7642 -- explicit actuals with the same value.
7644 function FCO
(Op_Node
, Call_Node
: Node_Id
) return Boolean;
7645 -- Compare an operator node with a function call
7651 function FCL
(L1
, L2
: List_Id
) return Boolean is
7655 if L1
= No_List
then
7661 if L2
= No_List
then
7667 -- Compare two lists, skipping rewrite insertions (we want to compare
7668 -- the original trees, not the expanded versions).
7671 if Is_Rewrite_Insertion
(N1
) then
7673 elsif Is_Rewrite_Insertion
(N2
) then
7679 elsif not FCE
(N1
, N2
) then
7692 function FCO
(Op_Node
, Call_Node
: Node_Id
) return Boolean is
7693 Actuals
: constant List_Id
:= Parameter_Associations
(Call_Node
);
7698 or else Entity
(Op_Node
) /= Entity
(Name
(Call_Node
))
7703 Act
:= First
(Actuals
);
7705 if Nkind
(Op_Node
) in N_Binary_Op
then
7706 if not FCE
(Left_Opnd
(Op_Node
), Act
) then
7713 return Present
(Act
)
7714 and then FCE
(Right_Opnd
(Op_Node
), Act
)
7715 and then No
(Next
(Act
));
7719 -- Start of processing for Fully_Conformant_Expressions
7722 -- Non-conformant if paren count does not match. Note: if some idiot
7723 -- complains that we don't do this right for more than 3 levels of
7724 -- parentheses, they will be treated with the respect they deserve.
7726 if Paren_Count
(E1
) /= Paren_Count
(E2
) then
7729 -- If same entities are referenced, then they are conformant even if
7730 -- they have different forms (RM 8.3.1(19-20)).
7732 elsif Is_Entity_Name
(E1
) and then Is_Entity_Name
(E2
) then
7733 if Present
(Entity
(E1
)) then
7734 return Entity
(E1
) = Entity
(E2
)
7735 or else (Chars
(Entity
(E1
)) = Chars
(Entity
(E2
))
7736 and then Ekind
(Entity
(E1
)) = E_Discriminant
7737 and then Ekind
(Entity
(E2
)) = E_In_Parameter
);
7739 elsif Nkind
(E1
) = N_Expanded_Name
7740 and then Nkind
(E2
) = N_Expanded_Name
7741 and then Nkind
(Selector_Name
(E1
)) = N_Character_Literal
7742 and then Nkind
(Selector_Name
(E2
)) = N_Character_Literal
7744 return Chars
(Selector_Name
(E1
)) = Chars
(Selector_Name
(E2
));
7747 -- Identifiers in component associations don't always have
7748 -- entities, but their names must conform.
7750 return Nkind
(E1
) = N_Identifier
7751 and then Nkind
(E2
) = N_Identifier
7752 and then Chars
(E1
) = Chars
(E2
);
7755 elsif Nkind
(E1
) = N_Character_Literal
7756 and then Nkind
(E2
) = N_Expanded_Name
7758 return Nkind
(Selector_Name
(E2
)) = N_Character_Literal
7759 and then Chars
(E1
) = Chars
(Selector_Name
(E2
));
7761 elsif Nkind
(E2
) = N_Character_Literal
7762 and then Nkind
(E1
) = N_Expanded_Name
7764 return Nkind
(Selector_Name
(E1
)) = N_Character_Literal
7765 and then Chars
(E2
) = Chars
(Selector_Name
(E1
));
7767 elsif Nkind
(E1
) in N_Op
and then Nkind
(E2
) = N_Function_Call
then
7768 return FCO
(E1
, E2
);
7770 elsif Nkind
(E2
) in N_Op
and then Nkind
(E1
) = N_Function_Call
then
7771 return FCO
(E2
, E1
);
7773 -- Otherwise we must have the same syntactic entity
7775 elsif Nkind
(E1
) /= Nkind
(E2
) then
7778 -- At this point, we specialize by node type
7785 FCL
(Expressions
(E1
), Expressions
(E2
))
7787 FCL
(Component_Associations
(E1
),
7788 Component_Associations
(E2
));
7791 if Nkind
(Expression
(E1
)) = N_Qualified_Expression
7793 Nkind
(Expression
(E2
)) = N_Qualified_Expression
7795 return FCE
(Expression
(E1
), Expression
(E2
));
7797 -- Check that the subtype marks and any constraints
7802 Indic1
: constant Node_Id
:= Expression
(E1
);
7803 Indic2
: constant Node_Id
:= Expression
(E2
);
7808 if Nkind
(Indic1
) /= N_Subtype_Indication
then
7810 Nkind
(Indic2
) /= N_Subtype_Indication
7811 and then Entity
(Indic1
) = Entity
(Indic2
);
7813 elsif Nkind
(Indic2
) /= N_Subtype_Indication
then
7815 Nkind
(Indic1
) /= N_Subtype_Indication
7816 and then Entity
(Indic1
) = Entity
(Indic2
);
7819 if Entity
(Subtype_Mark
(Indic1
)) /=
7820 Entity
(Subtype_Mark
(Indic2
))
7825 Elt1
:= First
(Constraints
(Constraint
(Indic1
)));
7826 Elt2
:= First
(Constraints
(Constraint
(Indic2
)));
7827 while Present
(Elt1
) and then Present
(Elt2
) loop
7828 if not FCE
(Elt1
, Elt2
) then
7841 when N_Attribute_Reference
=>
7843 Attribute_Name
(E1
) = Attribute_Name
(E2
)
7844 and then FCL
(Expressions
(E1
), Expressions
(E2
));
7848 Entity
(E1
) = Entity
(E2
)
7849 and then FCE
(Left_Opnd
(E1
), Left_Opnd
(E2
))
7850 and then FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
7852 when N_Short_Circuit | N_Membership_Test
=>
7854 FCE
(Left_Opnd
(E1
), Left_Opnd
(E2
))
7856 FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
7858 when N_Case_Expression
=>
7864 if not FCE
(Expression
(E1
), Expression
(E2
)) then
7868 Alt1
:= First
(Alternatives
(E1
));
7869 Alt2
:= First
(Alternatives
(E2
));
7871 if Present
(Alt1
) /= Present
(Alt2
) then
7873 elsif No
(Alt1
) then
7877 if not FCE
(Expression
(Alt1
), Expression
(Alt2
))
7878 or else not FCL
(Discrete_Choices
(Alt1
),
7879 Discrete_Choices
(Alt2
))
7890 when N_Character_Literal
=>
7892 Char_Literal_Value
(E1
) = Char_Literal_Value
(E2
);
7894 when N_Component_Association
=>
7896 FCL
(Choices
(E1
), Choices
(E2
))
7898 FCE
(Expression
(E1
), Expression
(E2
));
7900 when N_Explicit_Dereference
=>
7902 FCE
(Prefix
(E1
), Prefix
(E2
));
7904 when N_Extension_Aggregate
=>
7906 FCL
(Expressions
(E1
), Expressions
(E2
))
7907 and then Null_Record_Present
(E1
) =
7908 Null_Record_Present
(E2
)
7909 and then FCL
(Component_Associations
(E1
),
7910 Component_Associations
(E2
));
7912 when N_Function_Call
=>
7914 FCE
(Name
(E1
), Name
(E2
))
7916 FCL
(Parameter_Associations
(E1
),
7917 Parameter_Associations
(E2
));
7919 when N_If_Expression
=>
7921 FCL
(Expressions
(E1
), Expressions
(E2
));
7923 when N_Indexed_Component
=>
7925 FCE
(Prefix
(E1
), Prefix
(E2
))
7927 FCL
(Expressions
(E1
), Expressions
(E2
));
7929 when N_Integer_Literal
=>
7930 return (Intval
(E1
) = Intval
(E2
));
7935 when N_Operator_Symbol
=>
7937 Chars
(E1
) = Chars
(E2
);
7939 when N_Others_Choice
=>
7942 when N_Parameter_Association
=>
7944 Chars
(Selector_Name
(E1
)) = Chars
(Selector_Name
(E2
))
7945 and then FCE
(Explicit_Actual_Parameter
(E1
),
7946 Explicit_Actual_Parameter
(E2
));
7948 when N_Qualified_Expression
=>
7950 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
7952 FCE
(Expression
(E1
), Expression
(E2
));
7954 when N_Quantified_Expression
=>
7955 if not FCE
(Condition
(E1
), Condition
(E2
)) then
7959 if Present
(Loop_Parameter_Specification
(E1
))
7960 and then Present
(Loop_Parameter_Specification
(E2
))
7963 L1
: constant Node_Id
:=
7964 Loop_Parameter_Specification
(E1
);
7965 L2
: constant Node_Id
:=
7966 Loop_Parameter_Specification
(E2
);
7970 Reverse_Present
(L1
) = Reverse_Present
(L2
)
7972 FCE
(Defining_Identifier
(L1
),
7973 Defining_Identifier
(L2
))
7975 FCE
(Discrete_Subtype_Definition
(L1
),
7976 Discrete_Subtype_Definition
(L2
));
7979 elsif Present
(Iterator_Specification
(E1
))
7980 and then Present
(Iterator_Specification
(E2
))
7983 I1
: constant Node_Id
:= Iterator_Specification
(E1
);
7984 I2
: constant Node_Id
:= Iterator_Specification
(E2
);
7988 FCE
(Defining_Identifier
(I1
),
7989 Defining_Identifier
(I2
))
7991 Of_Present
(I1
) = Of_Present
(I2
)
7993 Reverse_Present
(I1
) = Reverse_Present
(I2
)
7994 and then FCE
(Name
(I1
), Name
(I2
))
7995 and then FCE
(Subtype_Indication
(I1
),
7996 Subtype_Indication
(I2
));
7999 -- The quantified expressions used different specifications to
8000 -- walk their respective ranges.
8008 FCE
(Low_Bound
(E1
), Low_Bound
(E2
))
8010 FCE
(High_Bound
(E1
), High_Bound
(E2
));
8012 when N_Real_Literal
=>
8013 return (Realval
(E1
) = Realval
(E2
));
8015 when N_Selected_Component
=>
8017 FCE
(Prefix
(E1
), Prefix
(E2
))
8019 FCE
(Selector_Name
(E1
), Selector_Name
(E2
));
8023 FCE
(Prefix
(E1
), Prefix
(E2
))
8025 FCE
(Discrete_Range
(E1
), Discrete_Range
(E2
));
8027 when N_String_Literal
=>
8029 S1
: constant String_Id
:= Strval
(E1
);
8030 S2
: constant String_Id
:= Strval
(E2
);
8031 L1
: constant Nat
:= String_Length
(S1
);
8032 L2
: constant Nat
:= String_Length
(S2
);
8039 for J
in 1 .. L1
loop
8040 if Get_String_Char
(S1
, J
) /=
8041 Get_String_Char
(S2
, J
)
8051 when N_Type_Conversion
=>
8053 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
8055 FCE
(Expression
(E1
), Expression
(E2
));
8059 Entity
(E1
) = Entity
(E2
)
8061 FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
8063 when N_Unchecked_Type_Conversion
=>
8065 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
8067 FCE
(Expression
(E1
), Expression
(E2
));
8069 -- All other node types cannot appear in this context. Strictly
8070 -- we should raise a fatal internal error. Instead we just ignore
8071 -- the nodes. This means that if anyone makes a mistake in the
8072 -- expander and mucks an expression tree irretrievably, the result
8073 -- will be a failure to detect a (probably very obscure) case
8074 -- of non-conformance, which is better than bombing on some
8075 -- case where two expressions do in fact conform.
8082 end Fully_Conformant_Expressions
;
8084 ----------------------------------------
8085 -- Fully_Conformant_Discrete_Subtypes --
8086 ----------------------------------------
8088 function Fully_Conformant_Discrete_Subtypes
8089 (Given_S1
: Node_Id
;
8090 Given_S2
: Node_Id
) return Boolean
8092 S1
: constant Node_Id
:= Original_Node
(Given_S1
);
8093 S2
: constant Node_Id
:= Original_Node
(Given_S2
);
8095 function Conforming_Bounds
(B1
, B2
: Node_Id
) return Boolean;
8096 -- Special-case for a bound given by a discriminant, which in the body
8097 -- is replaced with the discriminal of the enclosing type.
8099 function Conforming_Ranges
(R1
, R2
: Node_Id
) return Boolean;
8100 -- Check both bounds
8102 -----------------------
8103 -- Conforming_Bounds --
8104 -----------------------
8106 function Conforming_Bounds
(B1
, B2
: Node_Id
) return Boolean is
8108 if Is_Entity_Name
(B1
)
8109 and then Is_Entity_Name
(B2
)
8110 and then Ekind
(Entity
(B1
)) = E_Discriminant
8112 return Chars
(B1
) = Chars
(B2
);
8115 return Fully_Conformant_Expressions
(B1
, B2
);
8117 end Conforming_Bounds
;
8119 -----------------------
8120 -- Conforming_Ranges --
8121 -----------------------
8123 function Conforming_Ranges
(R1
, R2
: Node_Id
) return Boolean is
8126 Conforming_Bounds
(Low_Bound
(R1
), Low_Bound
(R2
))
8128 Conforming_Bounds
(High_Bound
(R1
), High_Bound
(R2
));
8129 end Conforming_Ranges
;
8131 -- Start of processing for Fully_Conformant_Discrete_Subtypes
8134 if Nkind
(S1
) /= Nkind
(S2
) then
8137 elsif Is_Entity_Name
(S1
) then
8138 return Entity
(S1
) = Entity
(S2
);
8140 elsif Nkind
(S1
) = N_Range
then
8141 return Conforming_Ranges
(S1
, S2
);
8143 elsif Nkind
(S1
) = N_Subtype_Indication
then
8145 Entity
(Subtype_Mark
(S1
)) = Entity
(Subtype_Mark
(S2
))
8148 (Range_Expression
(Constraint
(S1
)),
8149 Range_Expression
(Constraint
(S2
)));
8153 end Fully_Conformant_Discrete_Subtypes
;
8155 --------------------
8156 -- Install_Entity --
8157 --------------------
8159 procedure Install_Entity
(E
: Entity_Id
) is
8160 Prev
: constant Entity_Id
:= Current_Entity
(E
);
8162 Set_Is_Immediately_Visible
(E
);
8163 Set_Current_Entity
(E
);
8164 Set_Homonym
(E
, Prev
);
8167 ---------------------
8168 -- Install_Formals --
8169 ---------------------
8171 procedure Install_Formals
(Id
: Entity_Id
) is
8174 F
:= First_Formal
(Id
);
8175 while Present
(F
) loop
8179 end Install_Formals
;
8181 -----------------------------
8182 -- Is_Interface_Conformant --
8183 -----------------------------
8185 function Is_Interface_Conformant
8186 (Tagged_Type
: Entity_Id
;
8187 Iface_Prim
: Entity_Id
;
8188 Prim
: Entity_Id
) return Boolean
8190 -- The operation may in fact be an inherited (implicit) operation
8191 -- rather than the original interface primitive, so retrieve the
8192 -- ultimate ancestor.
8194 Iface
: constant Entity_Id
:=
8195 Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
));
8196 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Prim
);
8198 function Controlling_Formal
(Prim
: Entity_Id
) return Entity_Id
;
8199 -- Return the controlling formal of Prim
8201 ------------------------
8202 -- Controlling_Formal --
8203 ------------------------
8205 function Controlling_Formal
(Prim
: Entity_Id
) return Entity_Id
is
8209 E
:= First_Entity
(Prim
);
8210 while Present
(E
) loop
8211 if Is_Formal
(E
) and then Is_Controlling_Formal
(E
) then
8219 end Controlling_Formal
;
8223 Iface_Ctrl_F
: constant Entity_Id
:= Controlling_Formal
(Iface_Prim
);
8224 Prim_Ctrl_F
: constant Entity_Id
:= Controlling_Formal
(Prim
);
8226 -- Start of processing for Is_Interface_Conformant
8229 pragma Assert
(Is_Subprogram
(Iface_Prim
)
8230 and then Is_Subprogram
(Prim
)
8231 and then Is_Dispatching_Operation
(Iface_Prim
)
8232 and then Is_Dispatching_Operation
(Prim
));
8234 pragma Assert
(Is_Interface
(Iface
)
8235 or else (Present
(Alias
(Iface_Prim
))
8238 (Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
)))));
8240 if Prim
= Iface_Prim
8241 or else not Is_Subprogram
(Prim
)
8242 or else Ekind
(Prim
) /= Ekind
(Iface_Prim
)
8243 or else not Is_Dispatching_Operation
(Prim
)
8244 or else Scope
(Prim
) /= Scope
(Tagged_Type
)
8246 or else Base_Type
(Typ
) /= Base_Type
(Tagged_Type
)
8247 or else not Primitive_Names_Match
(Iface_Prim
, Prim
)
8251 -- The mode of the controlling formals must match
8253 elsif Present
(Iface_Ctrl_F
)
8254 and then Present
(Prim_Ctrl_F
)
8255 and then Ekind
(Iface_Ctrl_F
) /= Ekind
(Prim_Ctrl_F
)
8259 -- Case of a procedure, or a function whose result type matches the
8260 -- result type of the interface primitive, or a function that has no
8261 -- controlling result (I or access I).
8263 elsif Ekind
(Iface_Prim
) = E_Procedure
8264 or else Etype
(Prim
) = Etype
(Iface_Prim
)
8265 or else not Has_Controlling_Result
(Prim
)
8267 return Type_Conformant
8268 (Iface_Prim
, Prim
, Skip_Controlling_Formals
=> True);
8270 -- Case of a function returning an interface, or an access to one. Check
8271 -- that the return types correspond.
8273 elsif Implements_Interface
(Typ
, Iface
) then
8274 if (Ekind
(Etype
(Prim
)) = E_Anonymous_Access_Type
)
8276 (Ekind
(Etype
(Iface_Prim
)) = E_Anonymous_Access_Type
)
8281 Type_Conformant
(Prim
, Ultimate_Alias
(Iface_Prim
),
8282 Skip_Controlling_Formals
=> True);
8288 end Is_Interface_Conformant
;
8290 ---------------------------------
8291 -- Is_Non_Overriding_Operation --
8292 ---------------------------------
8294 function Is_Non_Overriding_Operation
8295 (Prev_E
: Entity_Id
;
8296 New_E
: Entity_Id
) return Boolean
8300 G_Typ
: Entity_Id
:= Empty
;
8302 function Get_Generic_Parent_Type
(F_Typ
: Entity_Id
) return Entity_Id
;
8303 -- If F_Type is a derived type associated with a generic actual subtype,
8304 -- then return its Generic_Parent_Type attribute, else return Empty.
8306 function Types_Correspond
8307 (P_Type
: Entity_Id
;
8308 N_Type
: Entity_Id
) return Boolean;
8309 -- Returns true if and only if the types (or designated types in the
8310 -- case of anonymous access types) are the same or N_Type is derived
8311 -- directly or indirectly from P_Type.
8313 -----------------------------
8314 -- Get_Generic_Parent_Type --
8315 -----------------------------
8317 function Get_Generic_Parent_Type
(F_Typ
: Entity_Id
) return Entity_Id
is
8323 if Is_Derived_Type
(F_Typ
)
8324 and then Nkind
(Parent
(F_Typ
)) = N_Full_Type_Declaration
8326 -- The tree must be traversed to determine the parent subtype in
8327 -- the generic unit, which unfortunately isn't always available
8328 -- via semantic attributes. ??? (Note: The use of Original_Node
8329 -- is needed for cases where a full derived type has been
8332 Defn
:= Type_Definition
(Original_Node
(Parent
(F_Typ
)));
8333 if Nkind
(Defn
) = N_Derived_Type_Definition
then
8334 Indic
:= Subtype_Indication
(Defn
);
8336 if Nkind
(Indic
) = N_Subtype_Indication
then
8337 G_Typ
:= Entity
(Subtype_Mark
(Indic
));
8339 G_Typ
:= Entity
(Indic
);
8342 if Nkind
(Parent
(G_Typ
)) = N_Subtype_Declaration
8343 and then Present
(Generic_Parent_Type
(Parent
(G_Typ
)))
8345 return Generic_Parent_Type
(Parent
(G_Typ
));
8351 end Get_Generic_Parent_Type
;
8353 ----------------------
8354 -- Types_Correspond --
8355 ----------------------
8357 function Types_Correspond
8358 (P_Type
: Entity_Id
;
8359 N_Type
: Entity_Id
) return Boolean
8361 Prev_Type
: Entity_Id
:= Base_Type
(P_Type
);
8362 New_Type
: Entity_Id
:= Base_Type
(N_Type
);
8365 if Ekind
(Prev_Type
) = E_Anonymous_Access_Type
then
8366 Prev_Type
:= Designated_Type
(Prev_Type
);
8369 if Ekind
(New_Type
) = E_Anonymous_Access_Type
then
8370 New_Type
:= Designated_Type
(New_Type
);
8373 if Prev_Type
= New_Type
then
8376 elsif not Is_Class_Wide_Type
(New_Type
) then
8377 while Etype
(New_Type
) /= New_Type
loop
8378 New_Type
:= Etype
(New_Type
);
8379 if New_Type
= Prev_Type
then
8385 end Types_Correspond
;
8387 -- Start of processing for Is_Non_Overriding_Operation
8390 -- In the case where both operations are implicit derived subprograms
8391 -- then neither overrides the other. This can only occur in certain
8392 -- obscure cases (e.g., derivation from homographs created in a generic
8395 if Present
(Alias
(Prev_E
)) and then Present
(Alias
(New_E
)) then
8398 elsif Ekind
(Current_Scope
) = E_Package
8399 and then Is_Generic_Instance
(Current_Scope
)
8400 and then In_Private_Part
(Current_Scope
)
8401 and then Comes_From_Source
(New_E
)
8403 -- We examine the formals and result type of the inherited operation,
8404 -- to determine whether their type is derived from (the instance of)
8405 -- a generic type. The first such formal or result type is the one
8408 Formal
:= First_Formal
(Prev_E
);
8409 while Present
(Formal
) loop
8410 F_Typ
:= Base_Type
(Etype
(Formal
));
8412 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
8413 F_Typ
:= Designated_Type
(F_Typ
);
8416 G_Typ
:= Get_Generic_Parent_Type
(F_Typ
);
8417 exit when Present
(G_Typ
);
8419 Next_Formal
(Formal
);
8422 if No
(G_Typ
) and then Ekind
(Prev_E
) = E_Function
then
8423 G_Typ
:= Get_Generic_Parent_Type
(Base_Type
(Etype
(Prev_E
)));
8430 -- If the generic type is a private type, then the original operation
8431 -- was not overriding in the generic, because there was no primitive
8432 -- operation to override.
8434 if Nkind
(Parent
(G_Typ
)) = N_Formal_Type_Declaration
8435 and then Nkind
(Formal_Type_Definition
(Parent
(G_Typ
))) =
8436 N_Formal_Private_Type_Definition
8440 -- The generic parent type is the ancestor of a formal derived
8441 -- type declaration. We need to check whether it has a primitive
8442 -- operation that should be overridden by New_E in the generic.
8446 P_Formal
: Entity_Id
;
8447 N_Formal
: Entity_Id
;
8451 Prim_Elt
: Elmt_Id
:= First_Elmt
(Primitive_Operations
(G_Typ
));
8454 while Present
(Prim_Elt
) loop
8455 P_Prim
:= Node
(Prim_Elt
);
8457 if Chars
(P_Prim
) = Chars
(New_E
)
8458 and then Ekind
(P_Prim
) = Ekind
(New_E
)
8460 P_Formal
:= First_Formal
(P_Prim
);
8461 N_Formal
:= First_Formal
(New_E
);
8462 while Present
(P_Formal
) and then Present
(N_Formal
) loop
8463 P_Typ
:= Etype
(P_Formal
);
8464 N_Typ
:= Etype
(N_Formal
);
8466 if not Types_Correspond
(P_Typ
, N_Typ
) then
8470 Next_Entity
(P_Formal
);
8471 Next_Entity
(N_Formal
);
8474 -- Found a matching primitive operation belonging to the
8475 -- formal ancestor type, so the new subprogram is
8479 and then No
(N_Formal
)
8480 and then (Ekind
(New_E
) /= E_Function
8483 (Etype
(P_Prim
), Etype
(New_E
)))
8489 Next_Elmt
(Prim_Elt
);
8492 -- If no match found, then the new subprogram does not override
8493 -- in the generic (nor in the instance).
8495 -- If the type in question is not abstract, and the subprogram
8496 -- is, this will be an error if the new operation is in the
8497 -- private part of the instance. Emit a warning now, which will
8498 -- make the subsequent error message easier to understand.
8500 if not Is_Abstract_Type
(F_Typ
)
8501 and then Is_Abstract_Subprogram
(Prev_E
)
8502 and then In_Private_Part
(Current_Scope
)
8504 Error_Msg_Node_2
:= F_Typ
;
8506 ("private operation& in generic unit does not override "
8507 & "any primitive operation of& (RM 12.3 (18))??",
8517 end Is_Non_Overriding_Operation
;
8519 -------------------------------------
8520 -- List_Inherited_Pre_Post_Aspects --
8521 -------------------------------------
8523 procedure List_Inherited_Pre_Post_Aspects
(E
: Entity_Id
) is
8525 if Opt
.List_Inherited_Aspects
8526 and then Is_Subprogram_Or_Generic_Subprogram
(E
)
8529 Inherited
: constant Subprogram_List
:= Inherited_Subprograms
(E
);
8533 for J
in Inherited
'Range loop
8534 P
:= Pre_Post_Conditions
(Contract
(Inherited
(J
)));
8535 while Present
(P
) loop
8536 Error_Msg_Sloc
:= Sloc
(P
);
8538 if Class_Present
(P
) and then not Split_PPC
(P
) then
8539 if Pragma_Name
(P
) = Name_Precondition
then
8540 Error_Msg_N
("info: & inherits `Pre''Class` aspect "
8543 Error_Msg_N
("info: & inherits `Post''Class` aspect "
8548 P
:= Next_Pragma
(P
);
8553 end List_Inherited_Pre_Post_Aspects
;
8555 ------------------------------
8556 -- Make_Inequality_Operator --
8557 ------------------------------
8559 -- S is the defining identifier of an equality operator. We build a
8560 -- subprogram declaration with the right signature. This operation is
8561 -- intrinsic, because it is always expanded as the negation of the
8562 -- call to the equality function.
8564 procedure Make_Inequality_Operator
(S
: Entity_Id
) is
8565 Loc
: constant Source_Ptr
:= Sloc
(S
);
8568 Op_Name
: Entity_Id
;
8570 FF
: constant Entity_Id
:= First_Formal
(S
);
8571 NF
: constant Entity_Id
:= Next_Formal
(FF
);
8574 -- Check that equality was properly defined, ignore call if not
8581 A
: constant Entity_Id
:=
8582 Make_Defining_Identifier
(Sloc
(FF
),
8583 Chars
=> Chars
(FF
));
8585 B
: constant Entity_Id
:=
8586 Make_Defining_Identifier
(Sloc
(NF
),
8587 Chars
=> Chars
(NF
));
8590 Op_Name
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Ne
);
8592 Formals
:= New_List
(
8593 Make_Parameter_Specification
(Loc
,
8594 Defining_Identifier
=> A
,
8596 New_Occurrence_Of
(Etype
(First_Formal
(S
)),
8597 Sloc
(Etype
(First_Formal
(S
))))),
8599 Make_Parameter_Specification
(Loc
,
8600 Defining_Identifier
=> B
,
8602 New_Occurrence_Of
(Etype
(Next_Formal
(First_Formal
(S
))),
8603 Sloc
(Etype
(Next_Formal
(First_Formal
(S
)))))));
8606 Make_Subprogram_Declaration
(Loc
,
8608 Make_Function_Specification
(Loc
,
8609 Defining_Unit_Name
=> Op_Name
,
8610 Parameter_Specifications
=> Formals
,
8611 Result_Definition
=>
8612 New_Occurrence_Of
(Standard_Boolean
, Loc
)));
8614 -- Insert inequality right after equality if it is explicit or after
8615 -- the derived type when implicit. These entities are created only
8616 -- for visibility purposes, and eventually replaced in the course
8617 -- of expansion, so they do not need to be attached to the tree and
8618 -- seen by the back-end. Keeping them internal also avoids spurious
8619 -- freezing problems. The declaration is inserted in the tree for
8620 -- analysis, and removed afterwards. If the equality operator comes
8621 -- from an explicit declaration, attach the inequality immediately
8622 -- after. Else the equality is inherited from a derived type
8623 -- declaration, so insert inequality after that declaration.
8625 if No
(Alias
(S
)) then
8626 Insert_After
(Unit_Declaration_Node
(S
), Decl
);
8627 elsif Is_List_Member
(Parent
(S
)) then
8628 Insert_After
(Parent
(S
), Decl
);
8630 Insert_After
(Parent
(Etype
(First_Formal
(S
))), Decl
);
8633 Mark_Rewrite_Insertion
(Decl
);
8634 Set_Is_Intrinsic_Subprogram
(Op_Name
);
8637 Set_Has_Completion
(Op_Name
);
8638 Set_Corresponding_Equality
(Op_Name
, S
);
8639 Set_Is_Abstract_Subprogram
(Op_Name
, Is_Abstract_Subprogram
(S
));
8641 end Make_Inequality_Operator
;
8643 ----------------------
8644 -- May_Need_Actuals --
8645 ----------------------
8647 procedure May_Need_Actuals
(Fun
: Entity_Id
) is
8652 F
:= First_Formal
(Fun
);
8654 while Present
(F
) loop
8655 if No
(Default_Value
(F
)) then
8663 Set_Needs_No_Actuals
(Fun
, B
);
8664 end May_Need_Actuals
;
8666 ---------------------
8667 -- Mode_Conformant --
8668 ---------------------
8670 function Mode_Conformant
(New_Id
, Old_Id
: Entity_Id
) return Boolean is
8673 Check_Conformance
(New_Id
, Old_Id
, Mode_Conformant
, False, Result
);
8675 end Mode_Conformant
;
8677 ---------------------------
8678 -- New_Overloaded_Entity --
8679 ---------------------------
8681 procedure New_Overloaded_Entity
8683 Derived_Type
: Entity_Id
:= Empty
)
8685 Overridden_Subp
: Entity_Id
:= Empty
;
8686 -- Set if the current scope has an operation that is type-conformant
8687 -- with S, and becomes hidden by S.
8689 Is_Primitive_Subp
: Boolean;
8690 -- Set to True if the new subprogram is primitive
8693 -- Entity that S overrides
8695 Prev_Vis
: Entity_Id
:= Empty
;
8696 -- Predecessor of E in Homonym chain
8698 procedure Check_For_Primitive_Subprogram
8699 (Is_Primitive
: out Boolean;
8700 Is_Overriding
: Boolean := False);
8701 -- If the subprogram being analyzed is a primitive operation of the type
8702 -- of a formal or result, set the Has_Primitive_Operations flag on the
8703 -- type, and set Is_Primitive to True (otherwise set to False). Set the
8704 -- corresponding flag on the entity itself for later use.
8706 procedure Check_Synchronized_Overriding
8707 (Def_Id
: Entity_Id
;
8708 Overridden_Subp
: out Entity_Id
);
8709 -- First determine if Def_Id is an entry or a subprogram either defined
8710 -- in the scope of a task or protected type, or is a primitive of such
8711 -- a type. Check whether Def_Id overrides a subprogram of an interface
8712 -- implemented by the synchronized type, return the overridden entity
8715 function Is_Private_Declaration
(E
: Entity_Id
) return Boolean;
8716 -- Check that E is declared in the private part of the current package,
8717 -- or in the package body, where it may hide a previous declaration.
8718 -- We can't use In_Private_Part by itself because this flag is also
8719 -- set when freezing entities, so we must examine the place of the
8720 -- declaration in the tree, and recognize wrapper packages as well.
8722 function Is_Overriding_Alias
8724 New_E
: Entity_Id
) return Boolean;
8725 -- Check whether new subprogram and old subprogram are both inherited
8726 -- from subprograms that have distinct dispatch table entries. This can
8727 -- occur with derivations from instances with accidental homonyms. The
8728 -- function is conservative given that the converse is only true within
8729 -- instances that contain accidental overloadings.
8731 ------------------------------------
8732 -- Check_For_Primitive_Subprogram --
8733 ------------------------------------
8735 procedure Check_For_Primitive_Subprogram
8736 (Is_Primitive
: out Boolean;
8737 Is_Overriding
: Boolean := False)
8743 function Visible_Part_Type
(T
: Entity_Id
) return Boolean;
8744 -- Returns true if T is declared in the visible part of the current
8745 -- package scope; otherwise returns false. Assumes that T is declared
8748 procedure Check_Private_Overriding
(T
: Entity_Id
);
8749 -- Checks that if a primitive abstract subprogram of a visible
8750 -- abstract type is declared in a private part, then it must override
8751 -- an abstract subprogram declared in the visible part. Also checks
8752 -- that if a primitive function with a controlling result is declared
8753 -- in a private part, then it must override a function declared in
8754 -- the visible part.
8756 ------------------------------
8757 -- Check_Private_Overriding --
8758 ------------------------------
8760 procedure Check_Private_Overriding
(T
: Entity_Id
) is
8762 if Is_Package_Or_Generic_Package
(Current_Scope
)
8763 and then In_Private_Part
(Current_Scope
)
8764 and then Visible_Part_Type
(T
)
8765 and then not In_Instance
8767 if Is_Abstract_Type
(T
)
8768 and then Is_Abstract_Subprogram
(S
)
8769 and then (not Is_Overriding
8770 or else not Is_Abstract_Subprogram
(E
))
8772 Error_Msg_N
("abstract subprograms must be visible "
8773 & "(RM 3.9.3(10))!", S
);
8775 elsif Ekind
(S
) = E_Function
and then not Is_Overriding
then
8776 if Is_Tagged_Type
(T
) and then T
= Base_Type
(Etype
(S
)) then
8777 Error_Msg_N
("private function with tagged result must"
8778 & " override visible-part function", S
);
8779 Error_Msg_N
("\move subprogram to the visible part"
8780 & " (RM 3.9.3(10))", S
);
8782 -- AI05-0073: extend this test to the case of a function
8783 -- with a controlling access result.
8785 elsif Ekind
(Etype
(S
)) = E_Anonymous_Access_Type
8786 and then Is_Tagged_Type
(Designated_Type
(Etype
(S
)))
8788 not Is_Class_Wide_Type
(Designated_Type
(Etype
(S
)))
8789 and then Ada_Version
>= Ada_2012
8792 ("private function with controlling access result "
8793 & "must override visible-part function", S
);
8795 ("\move subprogram to the visible part"
8796 & " (RM 3.9.3(10))", S
);
8800 end Check_Private_Overriding
;
8802 -----------------------
8803 -- Visible_Part_Type --
8804 -----------------------
8806 function Visible_Part_Type
(T
: Entity_Id
) return Boolean is
8807 P
: constant Node_Id
:= Unit_Declaration_Node
(Scope
(T
));
8811 -- If the entity is a private type, then it must be declared in a
8814 if Ekind
(T
) in Private_Kind
then
8818 -- Otherwise, we traverse the visible part looking for its
8819 -- corresponding declaration. We cannot use the declaration
8820 -- node directly because in the private part the entity of a
8821 -- private type is the one in the full view, which does not
8822 -- indicate that it is the completion of something visible.
8824 N
:= First
(Visible_Declarations
(Specification
(P
)));
8825 while Present
(N
) loop
8826 if Nkind
(N
) = N_Full_Type_Declaration
8827 and then Present
(Defining_Identifier
(N
))
8828 and then T
= Defining_Identifier
(N
)
8832 elsif Nkind_In
(N
, N_Private_Type_Declaration
,
8833 N_Private_Extension_Declaration
)
8834 and then Present
(Defining_Identifier
(N
))
8835 and then T
= Full_View
(Defining_Identifier
(N
))
8844 end Visible_Part_Type
;
8846 -- Start of processing for Check_For_Primitive_Subprogram
8849 Is_Primitive
:= False;
8851 if not Comes_From_Source
(S
) then
8854 -- If subprogram is at library level, it is not primitive operation
8856 elsif Current_Scope
= Standard_Standard
then
8859 elsif (Is_Package_Or_Generic_Package
(Current_Scope
)
8860 and then not In_Package_Body
(Current_Scope
))
8861 or else Is_Overriding
8863 -- For function, check return type
8865 if Ekind
(S
) = E_Function
then
8866 if Ekind
(Etype
(S
)) = E_Anonymous_Access_Type
then
8867 F_Typ
:= Designated_Type
(Etype
(S
));
8872 B_Typ
:= Base_Type
(F_Typ
);
8874 if Scope
(B_Typ
) = Current_Scope
8875 and then not Is_Class_Wide_Type
(B_Typ
)
8876 and then not Is_Generic_Type
(B_Typ
)
8878 Is_Primitive
:= True;
8879 Set_Has_Primitive_Operations
(B_Typ
);
8880 Set_Is_Primitive
(S
);
8881 Check_Private_Overriding
(B_Typ
);
8885 -- For all subprograms, check formals
8887 Formal
:= First_Formal
(S
);
8888 while Present
(Formal
) loop
8889 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
8890 F_Typ
:= Designated_Type
(Etype
(Formal
));
8892 F_Typ
:= Etype
(Formal
);
8895 B_Typ
:= Base_Type
(F_Typ
);
8897 if Ekind
(B_Typ
) = E_Access_Subtype
then
8898 B_Typ
:= Base_Type
(B_Typ
);
8901 if Scope
(B_Typ
) = Current_Scope
8902 and then not Is_Class_Wide_Type
(B_Typ
)
8903 and then not Is_Generic_Type
(B_Typ
)
8905 Is_Primitive
:= True;
8906 Set_Is_Primitive
(S
);
8907 Set_Has_Primitive_Operations
(B_Typ
);
8908 Check_Private_Overriding
(B_Typ
);
8911 Next_Formal
(Formal
);
8914 -- Special case: An equality function can be redefined for a type
8915 -- occurring in a declarative part, and won't otherwise be treated as
8916 -- a primitive because it doesn't occur in a package spec and doesn't
8917 -- override an inherited subprogram. It's important that we mark it
8918 -- primitive so it can be returned by Collect_Primitive_Operations
8919 -- and be used in composing the equality operation of later types
8920 -- that have a component of the type.
8922 elsif Chars
(S
) = Name_Op_Eq
8923 and then Etype
(S
) = Standard_Boolean
8925 B_Typ
:= Base_Type
(Etype
(First_Formal
(S
)));
8927 if Scope
(B_Typ
) = Current_Scope
8929 Base_Type
(Etype
(Next_Formal
(First_Formal
(S
)))) = B_Typ
8930 and then not Is_Limited_Type
(B_Typ
)
8932 Is_Primitive
:= True;
8933 Set_Is_Primitive
(S
);
8934 Set_Has_Primitive_Operations
(B_Typ
);
8935 Check_Private_Overriding
(B_Typ
);
8938 end Check_For_Primitive_Subprogram
;
8940 -----------------------------------
8941 -- Check_Synchronized_Overriding --
8942 -----------------------------------
8944 procedure Check_Synchronized_Overriding
8945 (Def_Id
: Entity_Id
;
8946 Overridden_Subp
: out Entity_Id
)
8948 Ifaces_List
: Elist_Id
;
8952 function Matches_Prefixed_View_Profile
8953 (Prim_Params
: List_Id
;
8954 Iface_Params
: List_Id
) return Boolean;
8955 -- Determine whether a subprogram's parameter profile Prim_Params
8956 -- matches that of a potentially overridden interface subprogram
8957 -- Iface_Params. Also determine if the type of first parameter of
8958 -- Iface_Params is an implemented interface.
8960 -----------------------------------
8961 -- Matches_Prefixed_View_Profile --
8962 -----------------------------------
8964 function Matches_Prefixed_View_Profile
8965 (Prim_Params
: List_Id
;
8966 Iface_Params
: List_Id
) return Boolean
8968 Iface_Id
: Entity_Id
;
8969 Iface_Param
: Node_Id
;
8970 Iface_Typ
: Entity_Id
;
8971 Prim_Id
: Entity_Id
;
8972 Prim_Param
: Node_Id
;
8973 Prim_Typ
: Entity_Id
;
8975 function Is_Implemented
8976 (Ifaces_List
: Elist_Id
;
8977 Iface
: Entity_Id
) return Boolean;
8978 -- Determine if Iface is implemented by the current task or
8981 --------------------
8982 -- Is_Implemented --
8983 --------------------
8985 function Is_Implemented
8986 (Ifaces_List
: Elist_Id
;
8987 Iface
: Entity_Id
) return Boolean
8989 Iface_Elmt
: Elmt_Id
;
8992 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
8993 while Present
(Iface_Elmt
) loop
8994 if Node
(Iface_Elmt
) = Iface
then
8998 Next_Elmt
(Iface_Elmt
);
9004 -- Start of processing for Matches_Prefixed_View_Profile
9007 Iface_Param
:= First
(Iface_Params
);
9008 Iface_Typ
:= Etype
(Defining_Identifier
(Iface_Param
));
9010 if Is_Access_Type
(Iface_Typ
) then
9011 Iface_Typ
:= Designated_Type
(Iface_Typ
);
9014 Prim_Param
:= First
(Prim_Params
);
9016 -- The first parameter of the potentially overridden subprogram
9017 -- must be an interface implemented by Prim.
9019 if not Is_Interface
(Iface_Typ
)
9020 or else not Is_Implemented
(Ifaces_List
, Iface_Typ
)
9025 -- The checks on the object parameters are done, move onto the
9026 -- rest of the parameters.
9028 if not In_Scope
then
9029 Prim_Param
:= Next
(Prim_Param
);
9032 Iface_Param
:= Next
(Iface_Param
);
9033 while Present
(Iface_Param
) and then Present
(Prim_Param
) loop
9034 Iface_Id
:= Defining_Identifier
(Iface_Param
);
9035 Iface_Typ
:= Find_Parameter_Type
(Iface_Param
);
9037 Prim_Id
:= Defining_Identifier
(Prim_Param
);
9038 Prim_Typ
:= Find_Parameter_Type
(Prim_Param
);
9040 if Ekind
(Iface_Typ
) = E_Anonymous_Access_Type
9041 and then Ekind
(Prim_Typ
) = E_Anonymous_Access_Type
9042 and then Is_Concurrent_Type
(Designated_Type
(Prim_Typ
))
9044 Iface_Typ
:= Designated_Type
(Iface_Typ
);
9045 Prim_Typ
:= Designated_Type
(Prim_Typ
);
9048 -- Case of multiple interface types inside a parameter profile
9050 -- (Obj_Param : in out Iface; ...; Param : Iface)
9052 -- If the interface type is implemented, then the matching type
9053 -- in the primitive should be the implementing record type.
9055 if Ekind
(Iface_Typ
) = E_Record_Type
9056 and then Is_Interface
(Iface_Typ
)
9057 and then Is_Implemented
(Ifaces_List
, Iface_Typ
)
9059 if Prim_Typ
/= Typ
then
9063 -- The two parameters must be both mode and subtype conformant
9065 elsif Ekind
(Iface_Id
) /= Ekind
(Prim_Id
)
9067 Conforming_Types
(Iface_Typ
, Prim_Typ
, Subtype_Conformant
)
9076 -- One of the two lists contains more parameters than the other
9078 if Present
(Iface_Param
) or else Present
(Prim_Param
) then
9083 end Matches_Prefixed_View_Profile
;
9085 -- Start of processing for Check_Synchronized_Overriding
9088 Overridden_Subp
:= Empty
;
9090 -- Def_Id must be an entry or a subprogram. We should skip predefined
9091 -- primitives internally generated by the frontend; however at this
9092 -- stage predefined primitives are still not fully decorated. As a
9093 -- minor optimization we skip here internally generated subprograms.
9095 if (Ekind
(Def_Id
) /= E_Entry
9096 and then Ekind
(Def_Id
) /= E_Function
9097 and then Ekind
(Def_Id
) /= E_Procedure
)
9098 or else not Comes_From_Source
(Def_Id
)
9103 -- Search for the concurrent declaration since it contains the list
9104 -- of all implemented interfaces. In this case, the subprogram is
9105 -- declared within the scope of a protected or a task type.
9107 if Present
(Scope
(Def_Id
))
9108 and then Is_Concurrent_Type
(Scope
(Def_Id
))
9109 and then not Is_Generic_Actual_Type
(Scope
(Def_Id
))
9111 Typ
:= Scope
(Def_Id
);
9114 -- The enclosing scope is not a synchronized type and the subprogram
9117 elsif No
(First_Formal
(Def_Id
)) then
9120 -- The subprogram has formals and hence it may be a primitive of a
9124 Typ
:= Etype
(First_Formal
(Def_Id
));
9126 if Is_Access_Type
(Typ
) then
9127 Typ
:= Directly_Designated_Type
(Typ
);
9130 if Is_Concurrent_Type
(Typ
)
9131 and then not Is_Generic_Actual_Type
(Typ
)
9135 -- This case occurs when the concurrent type is declared within
9136 -- a generic unit. As a result the corresponding record has been
9137 -- built and used as the type of the first formal, we just have
9138 -- to retrieve the corresponding concurrent type.
9140 elsif Is_Concurrent_Record_Type
(Typ
)
9141 and then not Is_Class_Wide_Type
(Typ
)
9142 and then Present
(Corresponding_Concurrent_Type
(Typ
))
9144 Typ
:= Corresponding_Concurrent_Type
(Typ
);
9152 -- There is no overriding to check if is an inherited operation in a
9153 -- type derivation on for a generic actual.
9155 Collect_Interfaces
(Typ
, Ifaces_List
);
9157 if Is_Empty_Elmt_List
(Ifaces_List
) then
9161 -- Determine whether entry or subprogram Def_Id overrides a primitive
9162 -- operation that belongs to one of the interfaces in Ifaces_List.
9165 Candidate
: Entity_Id
:= Empty
;
9166 Hom
: Entity_Id
:= Empty
;
9167 Iface_Typ
: Entity_Id
;
9168 Subp
: Entity_Id
:= Empty
;
9171 -- Traverse the homonym chain, looking for a potentially
9172 -- overridden subprogram that belongs to an implemented
9175 Hom
:= Current_Entity_In_Scope
(Def_Id
);
9176 while Present
(Hom
) loop
9180 or else not Is_Overloadable
(Subp
)
9181 or else not Is_Primitive
(Subp
)
9182 or else not Is_Dispatching_Operation
(Subp
)
9183 or else not Present
(Find_Dispatching_Type
(Subp
))
9184 or else not Is_Interface
(Find_Dispatching_Type
(Subp
))
9188 -- Entries and procedures can override abstract or null
9189 -- interface procedures.
9191 elsif (Ekind
(Def_Id
) = E_Procedure
9192 or else Ekind
(Def_Id
) = E_Entry
)
9193 and then Ekind
(Subp
) = E_Procedure
9194 and then Matches_Prefixed_View_Profile
9195 (Parameter_Specifications
(Parent
(Def_Id
)),
9196 Parameter_Specifications
(Parent
(Subp
)))
9200 -- For an overridden subprogram Subp, check whether the mode
9201 -- of its first parameter is correct depending on the kind
9202 -- of synchronized type.
9205 Formal
: constant Node_Id
:= First_Formal
(Candidate
);
9208 -- In order for an entry or a protected procedure to
9209 -- override, the first parameter of the overridden
9210 -- routine must be of mode "out", "in out" or
9211 -- access-to-variable.
9213 if Ekind_In
(Candidate
, E_Entry
, E_Procedure
)
9214 and then Is_Protected_Type
(Typ
)
9215 and then Ekind
(Formal
) /= E_In_Out_Parameter
9216 and then Ekind
(Formal
) /= E_Out_Parameter
9217 and then Nkind
(Parameter_Type
(Parent
(Formal
))) /=
9222 -- All other cases are OK since a task entry or routine
9223 -- does not have a restriction on the mode of the first
9224 -- parameter of the overridden interface routine.
9227 Overridden_Subp
:= Candidate
;
9232 -- Functions can override abstract interface functions
9234 elsif Ekind
(Def_Id
) = E_Function
9235 and then Ekind
(Subp
) = E_Function
9236 and then Matches_Prefixed_View_Profile
9237 (Parameter_Specifications
(Parent
(Def_Id
)),
9238 Parameter_Specifications
(Parent
(Subp
)))
9239 and then Etype
(Result_Definition
(Parent
(Def_Id
))) =
9240 Etype
(Result_Definition
(Parent
(Subp
)))
9242 Overridden_Subp
:= Subp
;
9246 Hom
:= Homonym
(Hom
);
9249 -- After examining all candidates for overriding, we are left with
9250 -- the best match which is a mode incompatible interface routine.
9251 -- Do not emit an error if the Expander is active since this error
9252 -- will be detected later on after all concurrent types are
9253 -- expanded and all wrappers are built. This check is meant for
9254 -- spec-only compilations.
9256 if Present
(Candidate
) and then not Expander_Active
then
9258 Find_Parameter_Type
(Parent
(First_Formal
(Candidate
)));
9260 -- Def_Id is primitive of a protected type, declared inside the
9261 -- type, and the candidate is primitive of a limited or
9262 -- synchronized interface.
9265 and then Is_Protected_Type
(Typ
)
9267 (Is_Limited_Interface
(Iface_Typ
)
9268 or else Is_Protected_Interface
(Iface_Typ
)
9269 or else Is_Synchronized_Interface
(Iface_Typ
)
9270 or else Is_Task_Interface
(Iface_Typ
))
9272 Error_Msg_PT
(Parent
(Typ
), Candidate
);
9276 Overridden_Subp
:= Candidate
;
9279 end Check_Synchronized_Overriding
;
9281 ----------------------------
9282 -- Is_Private_Declaration --
9283 ----------------------------
9285 function Is_Private_Declaration
(E
: Entity_Id
) return Boolean is
9286 Priv_Decls
: List_Id
;
9287 Decl
: constant Node_Id
:= Unit_Declaration_Node
(E
);
9290 if Is_Package_Or_Generic_Package
(Current_Scope
)
9291 and then In_Private_Part
(Current_Scope
)
9294 Private_Declarations
(Package_Specification
(Current_Scope
));
9296 return In_Package_Body
(Current_Scope
)
9298 (Is_List_Member
(Decl
)
9299 and then List_Containing
(Decl
) = Priv_Decls
)
9300 or else (Nkind
(Parent
(Decl
)) = N_Package_Specification
9303 (Defining_Entity
(Parent
(Decl
)))
9304 and then List_Containing
(Parent
(Parent
(Decl
))) =
9309 end Is_Private_Declaration
;
9311 --------------------------
9312 -- Is_Overriding_Alias --
9313 --------------------------
9315 function Is_Overriding_Alias
9317 New_E
: Entity_Id
) return Boolean
9319 AO
: constant Entity_Id
:= Alias
(Old_E
);
9320 AN
: constant Entity_Id
:= Alias
(New_E
);
9322 return Scope
(AO
) /= Scope
(AN
)
9323 or else No
(DTC_Entity
(AO
))
9324 or else No
(DTC_Entity
(AN
))
9325 or else DT_Position
(AO
) = DT_Position
(AN
);
9326 end Is_Overriding_Alias
;
9328 -- Start of processing for New_Overloaded_Entity
9331 -- We need to look for an entity that S may override. This must be a
9332 -- homonym in the current scope, so we look for the first homonym of
9333 -- S in the current scope as the starting point for the search.
9335 E
:= Current_Entity_In_Scope
(S
);
9337 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
9338 -- They are directly added to the list of primitive operations of
9339 -- Derived_Type, unless this is a rederivation in the private part
9340 -- of an operation that was already derived in the visible part of
9341 -- the current package.
9343 if Ada_Version
>= Ada_2005
9344 and then Present
(Derived_Type
)
9345 and then Present
(Alias
(S
))
9346 and then Is_Dispatching_Operation
(Alias
(S
))
9347 and then Present
(Find_Dispatching_Type
(Alias
(S
)))
9348 and then Is_Interface
(Find_Dispatching_Type
(Alias
(S
)))
9350 -- For private types, when the full-view is processed we propagate to
9351 -- the full view the non-overridden entities whose attribute "alias"
9352 -- references an interface primitive. These entities were added by
9353 -- Derive_Subprograms to ensure that interface primitives are
9356 -- Inside_Freeze_Actions is non zero when S corresponds with an
9357 -- internal entity that links an interface primitive with its
9358 -- covering primitive through attribute Interface_Alias (see
9359 -- Add_Internal_Interface_Entities).
9361 if Inside_Freezing_Actions
= 0
9362 and then Is_Package_Or_Generic_Package
(Current_Scope
)
9363 and then In_Private_Part
(Current_Scope
)
9364 and then Nkind
(Parent
(E
)) = N_Private_Extension_Declaration
9365 and then Nkind
(Parent
(S
)) = N_Full_Type_Declaration
9366 and then Full_View
(Defining_Identifier
(Parent
(E
)))
9367 = Defining_Identifier
(Parent
(S
))
9368 and then Alias
(E
) = Alias
(S
)
9370 Check_Operation_From_Private_View
(S
, E
);
9371 Set_Is_Dispatching_Operation
(S
);
9376 Enter_Overloaded_Entity
(S
);
9377 Check_Dispatching_Operation
(S
, Empty
);
9378 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
9384 -- If there is no homonym then this is definitely not overriding
9387 Enter_Overloaded_Entity
(S
);
9388 Check_Dispatching_Operation
(S
, Empty
);
9389 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
9391 -- If subprogram has an explicit declaration, check whether it has an
9392 -- overriding indicator.
9394 if Comes_From_Source
(S
) then
9395 Check_Synchronized_Overriding
(S
, Overridden_Subp
);
9397 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
9398 -- it may have overridden some hidden inherited primitive. Update
9399 -- Overridden_Subp to avoid spurious errors when checking the
9400 -- overriding indicator.
9402 if Ada_Version
>= Ada_2012
9403 and then No
(Overridden_Subp
)
9404 and then Is_Dispatching_Operation
(S
)
9405 and then Present
(Overridden_Operation
(S
))
9407 Overridden_Subp
:= Overridden_Operation
(S
);
9410 Check_Overriding_Indicator
9411 (S
, Overridden_Subp
, Is_Primitive
=> Is_Primitive_Subp
);
9414 -- If there is a homonym that is not overloadable, then we have an
9415 -- error, except for the special cases checked explicitly below.
9417 elsif not Is_Overloadable
(E
) then
9419 -- Check for spurious conflict produced by a subprogram that has the
9420 -- same name as that of the enclosing generic package. The conflict
9421 -- occurs within an instance, between the subprogram and the renaming
9422 -- declaration for the package. After the subprogram, the package
9423 -- renaming declaration becomes hidden.
9425 if Ekind
(E
) = E_Package
9426 and then Present
(Renamed_Object
(E
))
9427 and then Renamed_Object
(E
) = Current_Scope
9428 and then Nkind
(Parent
(Renamed_Object
(E
))) =
9429 N_Package_Specification
9430 and then Present
(Generic_Parent
(Parent
(Renamed_Object
(E
))))
9433 Set_Is_Immediately_Visible
(E
, False);
9434 Enter_Overloaded_Entity
(S
);
9435 Set_Homonym
(S
, Homonym
(E
));
9436 Check_Dispatching_Operation
(S
, Empty
);
9437 Check_Overriding_Indicator
(S
, Empty
, Is_Primitive
=> False);
9439 -- If the subprogram is implicit it is hidden by the previous
9440 -- declaration. However if it is dispatching, it must appear in the
9441 -- dispatch table anyway, because it can be dispatched to even if it
9442 -- cannot be called directly.
9444 elsif Present
(Alias
(S
)) and then not Comes_From_Source
(S
) then
9445 Set_Scope
(S
, Current_Scope
);
9447 if Is_Dispatching_Operation
(Alias
(S
)) then
9448 Check_Dispatching_Operation
(S
, Empty
);
9454 Error_Msg_Sloc
:= Sloc
(E
);
9456 -- Generate message, with useful additional warning if in generic
9458 if Is_Generic_Unit
(E
) then
9459 Error_Msg_N
("previous generic unit cannot be overloaded", S
);
9460 Error_Msg_N
("\& conflicts with declaration#", S
);
9462 Error_Msg_N
("& conflicts with declaration#", S
);
9468 -- E exists and is overloadable
9471 Check_Synchronized_Overriding
(S
, Overridden_Subp
);
9473 -- Loop through E and its homonyms to determine if any of them is
9474 -- the candidate for overriding by S.
9476 while Present
(E
) loop
9478 -- Definitely not interesting if not in the current scope
9480 if Scope
(E
) /= Current_Scope
then
9483 -- A function can overload the name of an abstract state. The
9484 -- state can be viewed as a function with a profile that cannot
9485 -- be matched by anything.
9487 elsif Ekind
(S
) = E_Function
9488 and then Ekind
(E
) = E_Abstract_State
9490 Enter_Overloaded_Entity
(S
);
9493 -- Ada 2012 (AI05-0165): For internally generated bodies of null
9494 -- procedures locate the internally generated spec. We enforce
9495 -- mode conformance since a tagged type may inherit from
9496 -- interfaces several null primitives which differ only in
9497 -- the mode of the formals.
9499 elsif not Comes_From_Source
(S
)
9500 and then Is_Null_Procedure
(S
)
9501 and then not Mode_Conformant
(E
, S
)
9505 -- Check if we have type conformance
9507 elsif Type_Conformant
(E
, S
) then
9509 -- If the old and new entities have the same profile and one
9510 -- is not the body of the other, then this is an error, unless
9511 -- one of them is implicitly declared.
9513 -- There are some cases when both can be implicit, for example
9514 -- when both a literal and a function that overrides it are
9515 -- inherited in a derivation, or when an inherited operation
9516 -- of a tagged full type overrides the inherited operation of
9517 -- a private extension. Ada 83 had a special rule for the
9518 -- literal case. In Ada 95, the later implicit operation hides
9519 -- the former, and the literal is always the former. In the
9520 -- odd case where both are derived operations declared at the
9521 -- same point, both operations should be declared, and in that
9522 -- case we bypass the following test and proceed to the next
9523 -- part. This can only occur for certain obscure cases in
9524 -- instances, when an operation on a type derived from a formal
9525 -- private type does not override a homograph inherited from
9526 -- the actual. In subsequent derivations of such a type, the
9527 -- DT positions of these operations remain distinct, if they
9530 if Present
(Alias
(S
))
9531 and then (No
(Alias
(E
))
9532 or else Comes_From_Source
(E
)
9533 or else Is_Abstract_Subprogram
(S
)
9535 (Is_Dispatching_Operation
(E
)
9536 and then Is_Overriding_Alias
(E
, S
)))
9537 and then Ekind
(E
) /= E_Enumeration_Literal
9539 -- When an derived operation is overloaded it may be due to
9540 -- the fact that the full view of a private extension
9541 -- re-inherits. It has to be dealt with.
9543 if Is_Package_Or_Generic_Package
(Current_Scope
)
9544 and then In_Private_Part
(Current_Scope
)
9546 Check_Operation_From_Private_View
(S
, E
);
9549 -- In any case the implicit operation remains hidden by the
9550 -- existing declaration, which is overriding. Indicate that
9551 -- E overrides the operation from which S is inherited.
9553 if Present
(Alias
(S
)) then
9554 Set_Overridden_Operation
(E
, Alias
(S
));
9555 Inherit_Subprogram_Contract
(E
, Alias
(S
));
9558 Set_Overridden_Operation
(E
, S
);
9559 Inherit_Subprogram_Contract
(E
, S
);
9562 if Comes_From_Source
(E
) then
9563 Check_Overriding_Indicator
(E
, S
, Is_Primitive
=> False);
9568 -- Within an instance, the renaming declarations for actual
9569 -- subprograms may become ambiguous, but they do not hide each
9572 elsif Ekind
(E
) /= E_Entry
9573 and then not Comes_From_Source
(E
)
9574 and then not Is_Generic_Instance
(E
)
9575 and then (Present
(Alias
(E
))
9576 or else Is_Intrinsic_Subprogram
(E
))
9577 and then (not In_Instance
9578 or else No
(Parent
(E
))
9579 or else Nkind
(Unit_Declaration_Node
(E
)) /=
9580 N_Subprogram_Renaming_Declaration
)
9582 -- A subprogram child unit is not allowed to override an
9583 -- inherited subprogram (10.1.1(20)).
9585 if Is_Child_Unit
(S
) then
9587 ("child unit overrides inherited subprogram in parent",
9592 if Is_Non_Overriding_Operation
(E
, S
) then
9593 Enter_Overloaded_Entity
(S
);
9595 if No
(Derived_Type
)
9596 or else Is_Tagged_Type
(Derived_Type
)
9598 Check_Dispatching_Operation
(S
, Empty
);
9604 -- E is a derived operation or an internal operator which
9605 -- is being overridden. Remove E from further visibility.
9606 -- Furthermore, if E is a dispatching operation, it must be
9607 -- replaced in the list of primitive operations of its type
9608 -- (see Override_Dispatching_Operation).
9610 Overridden_Subp
:= E
;
9616 Prev
:= First_Entity
(Current_Scope
);
9617 while Present
(Prev
) and then Next_Entity
(Prev
) /= E
loop
9621 -- It is possible for E to be in the current scope and
9622 -- yet not in the entity chain. This can only occur in a
9623 -- generic context where E is an implicit concatenation
9624 -- in the formal part, because in a generic body the
9625 -- entity chain starts with the formals.
9628 (Present
(Prev
) or else Chars
(E
) = Name_Op_Concat
);
9630 -- E must be removed both from the entity_list of the
9631 -- current scope, and from the visibility chain
9633 if Debug_Flag_E
then
9634 Write_Str
("Override implicit operation ");
9635 Write_Int
(Int
(E
));
9639 -- If E is a predefined concatenation, it stands for four
9640 -- different operations. As a result, a single explicit
9641 -- declaration does not hide it. In a possible ambiguous
9642 -- situation, Disambiguate chooses the user-defined op,
9643 -- so it is correct to retain the previous internal one.
9645 if Chars
(E
) /= Name_Op_Concat
9646 or else Ekind
(E
) /= E_Operator
9648 -- For nondispatching derived operations that are
9649 -- overridden by a subprogram declared in the private
9650 -- part of a package, we retain the derived subprogram
9651 -- but mark it as not immediately visible. If the
9652 -- derived operation was declared in the visible part
9653 -- then this ensures that it will still be visible
9654 -- outside the package with the proper signature
9655 -- (calls from outside must also be directed to this
9656 -- version rather than the overriding one, unlike the
9657 -- dispatching case). Calls from inside the package
9658 -- will still resolve to the overriding subprogram
9659 -- since the derived one is marked as not visible
9660 -- within the package.
9662 -- If the private operation is dispatching, we achieve
9663 -- the overriding by keeping the implicit operation
9664 -- but setting its alias to be the overriding one. In
9665 -- this fashion the proper body is executed in all
9666 -- cases, but the original signature is used outside
9669 -- If the overriding is not in the private part, we
9670 -- remove the implicit operation altogether.
9672 if Is_Private_Declaration
(S
) then
9673 if not Is_Dispatching_Operation
(E
) then
9674 Set_Is_Immediately_Visible
(E
, False);
9676 -- Work done in Override_Dispatching_Operation,
9677 -- so nothing else needs to be done here.
9683 -- Find predecessor of E in Homonym chain
9685 if E
= Current_Entity
(E
) then
9688 Prev_Vis
:= Current_Entity
(E
);
9689 while Homonym
(Prev_Vis
) /= E
loop
9690 Prev_Vis
:= Homonym
(Prev_Vis
);
9694 if Prev_Vis
/= Empty
then
9696 -- Skip E in the visibility chain
9698 Set_Homonym
(Prev_Vis
, Homonym
(E
));
9701 Set_Name_Entity_Id
(Chars
(E
), Homonym
(E
));
9704 Set_Next_Entity
(Prev
, Next_Entity
(E
));
9706 if No
(Next_Entity
(Prev
)) then
9707 Set_Last_Entity
(Current_Scope
, Prev
);
9712 Enter_Overloaded_Entity
(S
);
9714 -- For entities generated by Derive_Subprograms the
9715 -- overridden operation is the inherited primitive
9716 -- (which is available through the attribute alias).
9718 if not (Comes_From_Source
(E
))
9719 and then Is_Dispatching_Operation
(E
)
9720 and then Find_Dispatching_Type
(E
) =
9721 Find_Dispatching_Type
(S
)
9722 and then Present
(Alias
(E
))
9723 and then Comes_From_Source
(Alias
(E
))
9725 Set_Overridden_Operation
(S
, Alias
(E
));
9726 Inherit_Subprogram_Contract
(S
, Alias
(E
));
9728 -- Normal case of setting entity as overridden
9730 -- Note: Static_Initialization and Overridden_Operation
9731 -- attributes use the same field in subprogram entities.
9732 -- Static_Initialization is only defined for internal
9733 -- initialization procedures, where Overridden_Operation
9734 -- is irrelevant. Therefore the setting of this attribute
9735 -- must check whether the target is an init_proc.
9737 elsif not Is_Init_Proc
(S
) then
9738 Set_Overridden_Operation
(S
, E
);
9739 Inherit_Subprogram_Contract
(S
, E
);
9742 Check_Overriding_Indicator
(S
, E
, Is_Primitive
=> True);
9744 -- If S is a user-defined subprogram or a null procedure
9745 -- expanded to override an inherited null procedure, or a
9746 -- predefined dispatching primitive then indicate that E
9747 -- overrides the operation from which S is inherited.
9749 if Comes_From_Source
(S
)
9751 (Present
(Parent
(S
))
9753 Nkind
(Parent
(S
)) = N_Procedure_Specification
9755 Null_Present
(Parent
(S
)))
9757 (Present
(Alias
(E
))
9759 Is_Predefined_Dispatching_Operation
(Alias
(E
)))
9761 if Present
(Alias
(E
)) then
9762 Set_Overridden_Operation
(S
, Alias
(E
));
9763 Inherit_Subprogram_Contract
(S
, Alias
(E
));
9767 if Is_Dispatching_Operation
(E
) then
9769 -- An overriding dispatching subprogram inherits the
9770 -- convention of the overridden subprogram (AI-117).
9772 Set_Convention
(S
, Convention
(E
));
9773 Check_Dispatching_Operation
(S
, E
);
9776 Check_Dispatching_Operation
(S
, Empty
);
9779 Check_For_Primitive_Subprogram
9780 (Is_Primitive_Subp
, Is_Overriding
=> True);
9781 goto Check_Inequality
;
9784 -- Apparent redeclarations in instances can occur when two
9785 -- formal types get the same actual type. The subprograms in
9786 -- in the instance are legal, even if not callable from the
9787 -- outside. Calls from within are disambiguated elsewhere.
9788 -- For dispatching operations in the visible part, the usual
9789 -- rules apply, and operations with the same profile are not
9792 elsif (In_Instance_Visible_Part
9793 and then not Is_Dispatching_Operation
(E
))
9794 or else In_Instance_Not_Visible
9798 -- Here we have a real error (identical profile)
9801 Error_Msg_Sloc
:= Sloc
(E
);
9803 -- Avoid cascaded errors if the entity appears in
9804 -- subsequent calls.
9806 Set_Scope
(S
, Current_Scope
);
9808 -- Generate error, with extra useful warning for the case
9809 -- of a generic instance with no completion.
9811 if Is_Generic_Instance
(S
)
9812 and then not Has_Completion
(E
)
9815 ("instantiation cannot provide body for&", S
);
9816 Error_Msg_N
("\& conflicts with declaration#", S
);
9818 Error_Msg_N
("& conflicts with declaration#", S
);
9825 -- If one subprogram has an access parameter and the other
9826 -- a parameter of an access type, calls to either might be
9827 -- ambiguous. Verify that parameters match except for the
9828 -- access parameter.
9830 if May_Hide_Profile
then
9836 F1
:= First_Formal
(S
);
9837 F2
:= First_Formal
(E
);
9838 while Present
(F1
) and then Present
(F2
) loop
9839 if Is_Access_Type
(Etype
(F1
)) then
9840 if not Is_Access_Type
(Etype
(F2
))
9841 or else not Conforming_Types
9842 (Designated_Type
(Etype
(F1
)),
9843 Designated_Type
(Etype
(F2
)),
9846 May_Hide_Profile
:= False;
9850 not Conforming_Types
9851 (Etype
(F1
), Etype
(F2
), Type_Conformant
)
9853 May_Hide_Profile
:= False;
9864 Error_Msg_NE
("calls to& may be ambiguous??", S
, S
);
9873 -- On exit, we know that S is a new entity
9875 Enter_Overloaded_Entity
(S
);
9876 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
9877 Check_Overriding_Indicator
9878 (S
, Overridden_Subp
, Is_Primitive
=> Is_Primitive_Subp
);
9880 -- Overloading is not allowed in SPARK, except for operators
9882 if Nkind
(S
) /= N_Defining_Operator_Symbol
then
9883 Error_Msg_Sloc
:= Sloc
(Homonym
(S
));
9884 Check_SPARK_05_Restriction
9885 ("overloading not allowed with entity#", S
);
9888 -- If S is a derived operation for an untagged type then by
9889 -- definition it's not a dispatching operation (even if the parent
9890 -- operation was dispatching), so Check_Dispatching_Operation is not
9891 -- called in that case.
9893 if No
(Derived_Type
)
9894 or else Is_Tagged_Type
(Derived_Type
)
9896 Check_Dispatching_Operation
(S
, Empty
);
9900 -- If this is a user-defined equality operator that is not a derived
9901 -- subprogram, create the corresponding inequality. If the operation is
9902 -- dispatching, the expansion is done elsewhere, and we do not create
9903 -- an explicit inequality operation.
9905 <<Check_Inequality
>>
9906 if Chars
(S
) = Name_Op_Eq
9907 and then Etype
(S
) = Standard_Boolean
9908 and then Present
(Parent
(S
))
9909 and then not Is_Dispatching_Operation
(S
)
9911 Make_Inequality_Operator
(S
);
9912 Check_Untagged_Equality
(S
);
9914 end New_Overloaded_Entity
;
9916 ---------------------
9917 -- Process_Formals --
9918 ---------------------
9920 procedure Process_Formals
9922 Related_Nod
: Node_Id
)
9924 Param_Spec
: Node_Id
;
9926 Formal_Type
: Entity_Id
;
9930 Num_Out_Params
: Nat
:= 0;
9931 First_Out_Param
: Entity_Id
:= Empty
;
9932 -- Used for setting Is_Only_Out_Parameter
9934 function Designates_From_Limited_With
(Typ
: Entity_Id
) return Boolean;
9935 -- Determine whether an access type designates a type coming from a
9938 function Is_Class_Wide_Default
(D
: Node_Id
) return Boolean;
9939 -- Check whether the default has a class-wide type. After analysis the
9940 -- default has the type of the formal, so we must also check explicitly
9941 -- for an access attribute.
9943 ----------------------------------
9944 -- Designates_From_Limited_With --
9945 ----------------------------------
9947 function Designates_From_Limited_With
(Typ
: Entity_Id
) return Boolean is
9948 Desig
: Entity_Id
:= Typ
;
9951 if Is_Access_Type
(Desig
) then
9952 Desig
:= Directly_Designated_Type
(Desig
);
9955 if Is_Class_Wide_Type
(Desig
) then
9956 Desig
:= Root_Type
(Desig
);
9960 Ekind
(Desig
) = E_Incomplete_Type
9961 and then From_Limited_With
(Desig
);
9962 end Designates_From_Limited_With
;
9964 ---------------------------
9965 -- Is_Class_Wide_Default --
9966 ---------------------------
9968 function Is_Class_Wide_Default
(D
: Node_Id
) return Boolean is
9970 return Is_Class_Wide_Type
(Designated_Type
(Etype
(D
)))
9971 or else (Nkind
(D
) = N_Attribute_Reference
9972 and then Attribute_Name
(D
) = Name_Access
9973 and then Is_Class_Wide_Type
(Etype
(Prefix
(D
))));
9974 end Is_Class_Wide_Default
;
9976 -- Start of processing for Process_Formals
9979 -- In order to prevent premature use of the formals in the same formal
9980 -- part, the Ekind is left undefined until all default expressions are
9981 -- analyzed. The Ekind is established in a separate loop at the end.
9983 Param_Spec
:= First
(T
);
9984 while Present
(Param_Spec
) loop
9985 Formal
:= Defining_Identifier
(Param_Spec
);
9986 Set_Never_Set_In_Source
(Formal
, True);
9987 Enter_Name
(Formal
);
9989 -- Case of ordinary parameters
9991 if Nkind
(Parameter_Type
(Param_Spec
)) /= N_Access_Definition
then
9992 Find_Type
(Parameter_Type
(Param_Spec
));
9993 Ptype
:= Parameter_Type
(Param_Spec
);
9995 if Ptype
= Error
then
9999 Formal_Type
:= Entity
(Ptype
);
10001 if Is_Incomplete_Type
(Formal_Type
)
10003 (Is_Class_Wide_Type
(Formal_Type
)
10004 and then Is_Incomplete_Type
(Root_Type
(Formal_Type
)))
10006 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
10007 -- primitive operations, as long as their completion is
10008 -- in the same declarative part. If in the private part
10009 -- this means that the type cannot be a Taft-amendment type.
10010 -- Check is done on package exit. For access to subprograms,
10011 -- the use is legal for Taft-amendment types.
10013 -- Ada 2012: tagged incomplete types are allowed as generic
10014 -- formal types. They do not introduce dependencies and the
10015 -- corresponding generic subprogram does not have a delayed
10016 -- freeze, because it does not need a freeze node. However,
10017 -- it is still the case that untagged incomplete types cannot
10018 -- be Taft-amendment types and must be completed in private
10019 -- part, so the subprogram must appear in the list of private
10020 -- dependents of the type.
10022 if Is_Tagged_Type
(Formal_Type
)
10023 or else (Ada_Version
>= Ada_2012
10024 and then not From_Limited_With
(Formal_Type
)
10025 and then not Is_Generic_Type
(Formal_Type
))
10027 if Ekind
(Scope
(Current_Scope
)) = E_Package
10028 and then not Is_Generic_Type
(Formal_Type
)
10029 and then not Is_Class_Wide_Type
(Formal_Type
)
10032 (Parent
(T
), N_Access_Function_Definition
,
10033 N_Access_Procedure_Definition
)
10037 To
=> Private_Dependents
(Base_Type
(Formal_Type
)));
10039 -- Freezing is delayed to ensure that Register_Prim
10040 -- will get called for this operation, which is needed
10041 -- in cases where static dispatch tables aren't built.
10042 -- (Note that the same is done for controlling access
10043 -- parameter cases in function Access_Definition.)
10045 if not Is_Thunk
(Current_Scope
) then
10046 Set_Has_Delayed_Freeze
(Current_Scope
);
10051 -- Special handling of Value_Type for CIL case
10053 elsif Is_Value_Type
(Formal_Type
) then
10056 elsif not Nkind_In
(Parent
(T
), N_Access_Function_Definition
,
10057 N_Access_Procedure_Definition
)
10059 -- AI05-0151: Tagged incomplete types are allowed in all
10060 -- formal parts. Untagged incomplete types are not allowed
10061 -- in bodies. Limited views of either kind are not allowed
10062 -- if there is no place at which the non-limited view can
10063 -- become available.
10065 -- Incomplete formal untagged types are not allowed in
10066 -- subprogram bodies (but are legal in their declarations).
10068 if Is_Generic_Type
(Formal_Type
)
10069 and then not Is_Tagged_Type
(Formal_Type
)
10070 and then Nkind
(Parent
(Related_Nod
)) = N_Subprogram_Body
10073 ("invalid use of formal incomplete type", Param_Spec
);
10075 elsif Ada_Version
>= Ada_2012
then
10076 if Is_Tagged_Type
(Formal_Type
)
10077 and then (not From_Limited_With
(Formal_Type
)
10078 or else not In_Package_Body
)
10082 elsif Nkind_In
(Parent
(Parent
(T
)), N_Accept_Statement
,
10083 N_Accept_Alternative
,
10088 ("invalid use of untagged incomplete type&",
10089 Ptype
, Formal_Type
);
10094 ("invalid use of incomplete type&",
10095 Param_Spec
, Formal_Type
);
10097 -- Further checks on the legality of incomplete types
10098 -- in formal parts are delayed until the freeze point
10099 -- of the enclosing subprogram or access to subprogram.
10103 elsif Ekind
(Formal_Type
) = E_Void
then
10105 ("premature use of&",
10106 Parameter_Type
(Param_Spec
), Formal_Type
);
10109 -- Ada 2012 (AI-142): Handle aliased parameters
10111 if Ada_Version
>= Ada_2012
10112 and then Aliased_Present
(Param_Spec
)
10114 Set_Is_Aliased
(Formal
);
10117 -- Ada 2005 (AI-231): Create and decorate an internal subtype
10118 -- declaration corresponding to the null-excluding type of the
10119 -- formal in the enclosing scope. Finally, replace the parameter
10120 -- type of the formal with the internal subtype.
10122 if Ada_Version
>= Ada_2005
10123 and then Null_Exclusion_Present
(Param_Spec
)
10125 if not Is_Access_Type
(Formal_Type
) then
10127 ("`NOT NULL` allowed only for an access type", Param_Spec
);
10130 if Can_Never_Be_Null
(Formal_Type
)
10131 and then Comes_From_Source
(Related_Nod
)
10134 ("`NOT NULL` not allowed (& already excludes null)",
10135 Param_Spec
, Formal_Type
);
10139 Create_Null_Excluding_Itype
10141 Related_Nod
=> Related_Nod
,
10142 Scope_Id
=> Scope
(Current_Scope
));
10144 -- If the designated type of the itype is an itype that is
10145 -- not frozen yet, we set the Has_Delayed_Freeze attribute
10146 -- on the access subtype, to prevent order-of-elaboration
10147 -- issues in the backend.
10150 -- type T is access procedure;
10151 -- procedure Op (O : not null T);
10153 if Is_Itype
(Directly_Designated_Type
(Formal_Type
))
10155 not Is_Frozen
(Directly_Designated_Type
(Formal_Type
))
10157 Set_Has_Delayed_Freeze
(Formal_Type
);
10162 -- An access formal type
10166 Access_Definition
(Related_Nod
, Parameter_Type
(Param_Spec
));
10168 -- No need to continue if we already notified errors
10170 if not Present
(Formal_Type
) then
10174 -- Ada 2005 (AI-254)
10177 AD
: constant Node_Id
:=
10178 Access_To_Subprogram_Definition
10179 (Parameter_Type
(Param_Spec
));
10181 if Present
(AD
) and then Protected_Present
(AD
) then
10183 Replace_Anonymous_Access_To_Protected_Subprogram
10189 Set_Etype
(Formal
, Formal_Type
);
10191 -- Deal with default expression if present
10193 Default
:= Expression
(Param_Spec
);
10195 if Present
(Default
) then
10196 Check_SPARK_05_Restriction
10197 ("default expression is not allowed", Default
);
10199 if Out_Present
(Param_Spec
) then
10201 ("default initialization only allowed for IN parameters",
10205 -- Do the special preanalysis of the expression (see section on
10206 -- "Handling of Default Expressions" in the spec of package Sem).
10208 Preanalyze_Spec_Expression
(Default
, Formal_Type
);
10210 -- An access to constant cannot be the default for
10211 -- an access parameter that is an access to variable.
10213 if Ekind
(Formal_Type
) = E_Anonymous_Access_Type
10214 and then not Is_Access_Constant
(Formal_Type
)
10215 and then Is_Access_Type
(Etype
(Default
))
10216 and then Is_Access_Constant
(Etype
(Default
))
10219 ("formal that is access to variable cannot be initialized "
10220 & "with an access-to-constant expression", Default
);
10223 -- Check that the designated type of an access parameter's default
10224 -- is not a class-wide type unless the parameter's designated type
10225 -- is also class-wide.
10227 if Ekind
(Formal_Type
) = E_Anonymous_Access_Type
10228 and then not Designates_From_Limited_With
(Formal_Type
)
10229 and then Is_Class_Wide_Default
(Default
)
10230 and then not Is_Class_Wide_Type
(Designated_Type
(Formal_Type
))
10233 ("access to class-wide expression not allowed here", Default
);
10236 -- Check incorrect use of dynamically tagged expressions
10238 if Is_Tagged_Type
(Formal_Type
) then
10239 Check_Dynamically_Tagged_Expression
10241 Typ
=> Formal_Type
,
10242 Related_Nod
=> Default
);
10246 -- Ada 2005 (AI-231): Static checks
10248 if Ada_Version
>= Ada_2005
10249 and then Is_Access_Type
(Etype
(Formal
))
10250 and then Can_Never_Be_Null
(Etype
(Formal
))
10252 Null_Exclusion_Static_Checks
(Param_Spec
);
10255 -- The following checks are relevant when SPARK_Mode is on as these
10256 -- are not standard Ada legality rules.
10258 if SPARK_Mode
= On
then
10259 if Ekind_In
(Scope
(Formal
), E_Function
, E_Generic_Function
) then
10261 -- A function cannot have a parameter of mode IN OUT or OUT
10264 if Ekind_In
(Formal
, E_In_Out_Parameter
, E_Out_Parameter
) then
10266 ("function cannot have parameter of mode `OUT` or "
10267 & "`IN OUT`", Formal
);
10269 -- A function cannot have an effectively volatile formal
10270 -- parameter (SPARK RM 7.1.3(10)).
10272 elsif Is_Effectively_Volatile
(Formal
) then
10274 ("function cannot have a volatile formal parameter",
10278 -- A procedure cannot have an effectively volatile formal
10279 -- parameter of mode IN because it behaves as a constant
10280 -- (SPARK RM 7.1.3(6)).
10282 elsif Ekind
(Scope
(Formal
)) = E_Procedure
10283 and then Ekind
(Formal
) = E_In_Parameter
10284 and then Is_Effectively_Volatile
(Formal
)
10287 ("formal parameter of mode `IN` cannot be volatile", Formal
);
10295 -- If this is the formal part of a function specification, analyze the
10296 -- subtype mark in the context where the formals are visible but not
10297 -- yet usable, and may hide outer homographs.
10299 if Nkind
(Related_Nod
) = N_Function_Specification
then
10300 Analyze_Return_Type
(Related_Nod
);
10303 -- Now set the kind (mode) of each formal
10305 Param_Spec
:= First
(T
);
10306 while Present
(Param_Spec
) loop
10307 Formal
:= Defining_Identifier
(Param_Spec
);
10308 Set_Formal_Mode
(Formal
);
10310 if Ekind
(Formal
) = E_In_Parameter
then
10311 Set_Default_Value
(Formal
, Expression
(Param_Spec
));
10313 if Present
(Expression
(Param_Spec
)) then
10314 Default
:= Expression
(Param_Spec
);
10316 if Is_Scalar_Type
(Etype
(Default
)) then
10317 if Nkind
(Parameter_Type
(Param_Spec
)) /=
10318 N_Access_Definition
10320 Formal_Type
:= Entity
(Parameter_Type
(Param_Spec
));
10324 (Related_Nod
, Parameter_Type
(Param_Spec
));
10327 Apply_Scalar_Range_Check
(Default
, Formal_Type
);
10331 elsif Ekind
(Formal
) = E_Out_Parameter
then
10332 Num_Out_Params
:= Num_Out_Params
+ 1;
10334 if Num_Out_Params
= 1 then
10335 First_Out_Param
:= Formal
;
10338 elsif Ekind
(Formal
) = E_In_Out_Parameter
then
10339 Num_Out_Params
:= Num_Out_Params
+ 1;
10342 -- Skip remaining processing if formal type was in error
10344 if Etype
(Formal
) = Any_Type
or else Error_Posted
(Formal
) then
10345 goto Next_Parameter
;
10348 -- Force call by reference if aliased
10350 if Is_Aliased
(Formal
) then
10351 Set_Mechanism
(Formal
, By_Reference
);
10353 -- Warn if user asked this to be passed by copy
10355 if Convention
(Formal_Type
) = Convention_Ada_Pass_By_Copy
then
10357 ("cannot pass aliased parameter & by copy??", Formal
);
10360 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
10362 elsif Convention
(Formal_Type
) = Convention_Ada_Pass_By_Copy
then
10363 Set_Mechanism
(Formal
, By_Copy
);
10365 elsif Convention
(Formal_Type
) = Convention_Ada_Pass_By_Reference
then
10366 Set_Mechanism
(Formal
, By_Reference
);
10373 if Present
(First_Out_Param
) and then Num_Out_Params
= 1 then
10374 Set_Is_Only_Out_Parameter
(First_Out_Param
);
10376 end Process_Formals
;
10378 ----------------------------
10379 -- Reference_Body_Formals --
10380 ----------------------------
10382 procedure Reference_Body_Formals
(Spec
: Entity_Id
; Bod
: Entity_Id
) is
10387 if Error_Posted
(Spec
) then
10391 -- Iterate over both lists. They may be of different lengths if the two
10392 -- specs are not conformant.
10394 Fs
:= First_Formal
(Spec
);
10395 Fb
:= First_Formal
(Bod
);
10396 while Present
(Fs
) and then Present
(Fb
) loop
10397 Generate_Reference
(Fs
, Fb
, 'b');
10399 if Style_Check
then
10400 Style
.Check_Identifier
(Fb
, Fs
);
10403 Set_Spec_Entity
(Fb
, Fs
);
10404 Set_Referenced
(Fs
, False);
10408 end Reference_Body_Formals
;
10410 -------------------------
10411 -- Set_Actual_Subtypes --
10412 -------------------------
10414 procedure Set_Actual_Subtypes
(N
: Node_Id
; Subp
: Entity_Id
) is
10416 Formal
: Entity_Id
;
10418 First_Stmt
: Node_Id
:= Empty
;
10419 AS_Needed
: Boolean;
10422 -- If this is an empty initialization procedure, no need to create
10423 -- actual subtypes (small optimization).
10425 if Ekind
(Subp
) = E_Procedure
and then Is_Null_Init_Proc
(Subp
) then
10429 Formal
:= First_Formal
(Subp
);
10430 while Present
(Formal
) loop
10431 T
:= Etype
(Formal
);
10433 -- We never need an actual subtype for a constrained formal
10435 if Is_Constrained
(T
) then
10436 AS_Needed
:= False;
10438 -- If we have unknown discriminants, then we do not need an actual
10439 -- subtype, or more accurately we cannot figure it out. Note that
10440 -- all class-wide types have unknown discriminants.
10442 elsif Has_Unknown_Discriminants
(T
) then
10443 AS_Needed
:= False;
10445 -- At this stage we have an unconstrained type that may need an
10446 -- actual subtype. For sure the actual subtype is needed if we have
10447 -- an unconstrained array type.
10449 elsif Is_Array_Type
(T
) then
10452 -- The only other case needing an actual subtype is an unconstrained
10453 -- record type which is an IN parameter (we cannot generate actual
10454 -- subtypes for the OUT or IN OUT case, since an assignment can
10455 -- change the discriminant values. However we exclude the case of
10456 -- initialization procedures, since discriminants are handled very
10457 -- specially in this context, see the section entitled "Handling of
10458 -- Discriminants" in Einfo.
10460 -- We also exclude the case of Discrim_SO_Functions (functions used
10461 -- in front end layout mode for size/offset values), since in such
10462 -- functions only discriminants are referenced, and not only are such
10463 -- subtypes not needed, but they cannot always be generated, because
10464 -- of order of elaboration issues.
10466 elsif Is_Record_Type
(T
)
10467 and then Ekind
(Formal
) = E_In_Parameter
10468 and then Chars
(Formal
) /= Name_uInit
10469 and then not Is_Unchecked_Union
(T
)
10470 and then not Is_Discrim_SO_Function
(Subp
)
10474 -- All other cases do not need an actual subtype
10477 AS_Needed
:= False;
10480 -- Generate actual subtypes for unconstrained arrays and
10481 -- unconstrained discriminated records.
10484 if Nkind
(N
) = N_Accept_Statement
then
10486 -- If expansion is active, the formal is replaced by a local
10487 -- variable that renames the corresponding entry of the
10488 -- parameter block, and it is this local variable that may
10489 -- require an actual subtype.
10491 if Expander_Active
then
10492 Decl
:= Build_Actual_Subtype
(T
, Renamed_Object
(Formal
));
10494 Decl
:= Build_Actual_Subtype
(T
, Formal
);
10497 if Present
(Handled_Statement_Sequence
(N
)) then
10499 First
(Statements
(Handled_Statement_Sequence
(N
)));
10500 Prepend
(Decl
, Statements
(Handled_Statement_Sequence
(N
)));
10501 Mark_Rewrite_Insertion
(Decl
);
10503 -- If the accept statement has no body, there will be no
10504 -- reference to the actuals, so no need to compute actual
10511 Decl
:= Build_Actual_Subtype
(T
, Formal
);
10512 Prepend
(Decl
, Declarations
(N
));
10513 Mark_Rewrite_Insertion
(Decl
);
10516 -- The declaration uses the bounds of an existing object, and
10517 -- therefore needs no constraint checks.
10519 Analyze
(Decl
, Suppress
=> All_Checks
);
10521 -- We need to freeze manually the generated type when it is
10522 -- inserted anywhere else than in a declarative part.
10524 if Present
(First_Stmt
) then
10525 Insert_List_Before_And_Analyze
(First_Stmt
,
10526 Freeze_Entity
(Defining_Identifier
(Decl
), N
));
10528 -- Ditto if the type has a dynamic predicate, because the
10529 -- generated function will mention the actual subtype.
10531 elsif Has_Dynamic_Predicate_Aspect
(T
) then
10532 Insert_List_Before_And_Analyze
(Decl
,
10533 Freeze_Entity
(Defining_Identifier
(Decl
), N
));
10536 if Nkind
(N
) = N_Accept_Statement
10537 and then Expander_Active
10539 Set_Actual_Subtype
(Renamed_Object
(Formal
),
10540 Defining_Identifier
(Decl
));
10542 Set_Actual_Subtype
(Formal
, Defining_Identifier
(Decl
));
10546 Next_Formal
(Formal
);
10548 end Set_Actual_Subtypes
;
10550 ---------------------
10551 -- Set_Formal_Mode --
10552 ---------------------
10554 procedure Set_Formal_Mode
(Formal_Id
: Entity_Id
) is
10555 Spec
: constant Node_Id
:= Parent
(Formal_Id
);
10558 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
10559 -- since we ensure that corresponding actuals are always valid at the
10560 -- point of the call.
10562 if Out_Present
(Spec
) then
10563 if Ekind_In
(Scope
(Formal_Id
), E_Function
, E_Generic_Function
) then
10565 -- [IN] OUT parameters allowed for functions in Ada 2012
10567 if Ada_Version
>= Ada_2012
then
10569 -- Even in Ada 2012 operators can only have IN parameters
10571 if Is_Operator_Symbol_Name
(Chars
(Scope
(Formal_Id
))) then
10572 Error_Msg_N
("operators can only have IN parameters", Spec
);
10575 if In_Present
(Spec
) then
10576 Set_Ekind
(Formal_Id
, E_In_Out_Parameter
);
10578 Set_Ekind
(Formal_Id
, E_Out_Parameter
);
10581 Set_Has_Out_Or_In_Out_Parameter
(Scope
(Formal_Id
), True);
10583 -- But not in earlier versions of Ada
10586 Error_Msg_N
("functions can only have IN parameters", Spec
);
10587 Set_Ekind
(Formal_Id
, E_In_Parameter
);
10590 elsif In_Present
(Spec
) then
10591 Set_Ekind
(Formal_Id
, E_In_Out_Parameter
);
10594 Set_Ekind
(Formal_Id
, E_Out_Parameter
);
10595 Set_Never_Set_In_Source
(Formal_Id
, True);
10596 Set_Is_True_Constant
(Formal_Id
, False);
10597 Set_Current_Value
(Formal_Id
, Empty
);
10601 Set_Ekind
(Formal_Id
, E_In_Parameter
);
10604 -- Set Is_Known_Non_Null for access parameters since the language
10605 -- guarantees that access parameters are always non-null. We also set
10606 -- Can_Never_Be_Null, since there is no way to change the value.
10608 if Nkind
(Parameter_Type
(Spec
)) = N_Access_Definition
then
10610 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
10611 -- null; In Ada 2005, only if then null_exclusion is explicit.
10613 if Ada_Version
< Ada_2005
10614 or else Can_Never_Be_Null
(Etype
(Formal_Id
))
10616 Set_Is_Known_Non_Null
(Formal_Id
);
10617 Set_Can_Never_Be_Null
(Formal_Id
);
10620 -- Ada 2005 (AI-231): Null-exclusion access subtype
10622 elsif Is_Access_Type
(Etype
(Formal_Id
))
10623 and then Can_Never_Be_Null
(Etype
(Formal_Id
))
10625 Set_Is_Known_Non_Null
(Formal_Id
);
10627 -- We can also set Can_Never_Be_Null (thus preventing some junk
10628 -- access checks) for the case of an IN parameter, which cannot
10629 -- be changed, or for an IN OUT parameter, which can be changed but
10630 -- not to a null value. But for an OUT parameter, the initial value
10631 -- passed in can be null, so we can't set this flag in that case.
10633 if Ekind
(Formal_Id
) /= E_Out_Parameter
then
10634 Set_Can_Never_Be_Null
(Formal_Id
);
10638 Set_Mechanism
(Formal_Id
, Default_Mechanism
);
10639 Set_Formal_Validity
(Formal_Id
);
10640 end Set_Formal_Mode
;
10642 -------------------------
10643 -- Set_Formal_Validity --
10644 -------------------------
10646 procedure Set_Formal_Validity
(Formal_Id
: Entity_Id
) is
10648 -- If no validity checking, then we cannot assume anything about the
10649 -- validity of parameters, since we do not know there is any checking
10650 -- of the validity on the call side.
10652 if not Validity_Checks_On
then
10655 -- If validity checking for parameters is enabled, this means we are
10656 -- not supposed to make any assumptions about argument values.
10658 elsif Validity_Check_Parameters
then
10661 -- If we are checking in parameters, we will assume that the caller is
10662 -- also checking parameters, so we can assume the parameter is valid.
10664 elsif Ekind
(Formal_Id
) = E_In_Parameter
10665 and then Validity_Check_In_Params
10667 Set_Is_Known_Valid
(Formal_Id
, True);
10669 -- Similar treatment for IN OUT parameters
10671 elsif Ekind
(Formal_Id
) = E_In_Out_Parameter
10672 and then Validity_Check_In_Out_Params
10674 Set_Is_Known_Valid
(Formal_Id
, True);
10676 end Set_Formal_Validity
;
10678 ------------------------
10679 -- Subtype_Conformant --
10680 ------------------------
10682 function Subtype_Conformant
10683 (New_Id
: Entity_Id
;
10684 Old_Id
: Entity_Id
;
10685 Skip_Controlling_Formals
: Boolean := False) return Boolean
10689 Check_Conformance
(New_Id
, Old_Id
, Subtype_Conformant
, False, Result
,
10690 Skip_Controlling_Formals
=> Skip_Controlling_Formals
);
10692 end Subtype_Conformant
;
10694 ---------------------
10695 -- Type_Conformant --
10696 ---------------------
10698 function Type_Conformant
10699 (New_Id
: Entity_Id
;
10700 Old_Id
: Entity_Id
;
10701 Skip_Controlling_Formals
: Boolean := False) return Boolean
10705 May_Hide_Profile
:= False;
10707 (New_Id
, Old_Id
, Type_Conformant
, False, Result
,
10708 Skip_Controlling_Formals
=> Skip_Controlling_Formals
);
10710 end Type_Conformant
;
10712 -------------------------------
10713 -- Valid_Operator_Definition --
10714 -------------------------------
10716 procedure Valid_Operator_Definition
(Designator
: Entity_Id
) is
10719 Id
: constant Name_Id
:= Chars
(Designator
);
10723 F
:= First_Formal
(Designator
);
10724 while Present
(F
) loop
10727 if Present
(Default_Value
(F
)) then
10729 ("default values not allowed for operator parameters",
10732 -- For function instantiations that are operators, we must check
10733 -- separately that the corresponding generic only has in-parameters.
10734 -- For subprogram declarations this is done in Set_Formal_Mode. Such
10735 -- an error could not arise in earlier versions of the language.
10737 elsif Ekind
(F
) /= E_In_Parameter
then
10738 Error_Msg_N
("operators can only have IN parameters", F
);
10744 -- Verify that user-defined operators have proper number of arguments
10745 -- First case of operators which can only be unary
10747 if Nam_In
(Id
, Name_Op_Not
, Name_Op_Abs
) then
10750 -- Case of operators which can be unary or binary
10752 elsif Nam_In
(Id
, Name_Op_Add
, Name_Op_Subtract
) then
10753 N_OK
:= (N
in 1 .. 2);
10755 -- All other operators can only be binary
10763 ("incorrect number of arguments for operator", Designator
);
10767 and then Base_Type
(Etype
(Designator
)) = Standard_Boolean
10768 and then not Is_Intrinsic_Subprogram
(Designator
)
10771 ("explicit definition of inequality not allowed", Designator
);
10773 end Valid_Operator_Definition
;