2014-11-20 Thomas Quinot <quinot@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch13.adb
blobd8f71c53d5967d53d1e98d1f4ec675d3541f4f42
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Tss; use Exp_Tss;
35 with Exp_Util; use Exp_Util;
36 with Freeze; use Freeze;
37 with Lib; use Lib;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Rtsfind; use Rtsfind;
46 with Sem; use Sem;
47 with Sem_Aux; use Sem_Aux;
48 with Sem_Case; use Sem_Case;
49 with Sem_Ch3; use Sem_Ch3;
50 with Sem_Ch6; use Sem_Ch6;
51 with Sem_Ch8; use Sem_Ch8;
52 with Sem_Dim; use Sem_Dim;
53 with Sem_Disp; use Sem_Disp;
54 with Sem_Eval; use Sem_Eval;
55 with Sem_Prag; use Sem_Prag;
56 with Sem_Res; use Sem_Res;
57 with Sem_Type; use Sem_Type;
58 with Sem_Util; use Sem_Util;
59 with Sem_Warn; use Sem_Warn;
60 with Sinput; use Sinput;
61 with Snames; use Snames;
62 with Stand; use Stand;
63 with Sinfo; use Sinfo;
64 with Stringt; use Stringt;
65 with Targparm; use Targparm;
66 with Ttypes; use Ttypes;
67 with Tbuild; use Tbuild;
68 with Urealp; use Urealp;
69 with Warnsw; use Warnsw;
71 with GNAT.Heap_Sort_G;
73 package body Sem_Ch13 is
75 SSU : constant Pos := System_Storage_Unit;
76 -- Convenient short hand for commonly used constant
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
83 -- This routine is called after setting one of the sizes of type entity
84 -- Typ to Size. The purpose is to deal with the situation of a derived
85 -- type whose inherited alignment is no longer appropriate for the new
86 -- size value. In this case, we reset the Alignment to unknown.
88 procedure Build_Discrete_Static_Predicate
89 (Typ : Entity_Id;
90 Expr : Node_Id;
91 Nam : Name_Id);
92 -- Given a predicated type Typ, where Typ is a discrete static subtype,
93 -- whose predicate expression is Expr, tests if Expr is a static predicate,
94 -- and if so, builds the predicate range list. Nam is the name of the one
95 -- argument to the predicate function. Occurrences of the type name in the
96 -- predicate expression have been replaced by identifier references to this
97 -- name, which is unique, so any identifier with Chars matching Nam must be
98 -- a reference to the type. If the predicate is non-static, this procedure
99 -- returns doing nothing. If the predicate is static, then the predicate
100 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
101 -- rewritten as a canonicalized membership operation.
103 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
104 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
105 -- then either there are pragma Predicate entries on the rep chain for the
106 -- type (note that Predicate aspects are converted to pragma Predicate), or
107 -- there are inherited aspects from a parent type, or ancestor subtypes.
108 -- This procedure builds the spec and body for the Predicate function that
109 -- tests these predicates. N is the freeze node for the type. The spec of
110 -- the function is inserted before the freeze node, and the body of the
111 -- function is inserted after the freeze node. If the predicate expression
112 -- has at least one Raise_Expression, then this procedure also builds the
113 -- M version of the predicate function for use in membership tests.
115 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
116 -- Called if both Storage_Pool and Storage_Size attribute definition
117 -- clauses (SP and SS) are present for entity Ent. Issue error message.
119 procedure Freeze_Entity_Checks (N : Node_Id);
120 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
121 -- to generate appropriate semantic checks that are delayed until this
122 -- point (they had to be delayed this long for cases of delayed aspects,
123 -- e.g. analysis of statically predicated subtypes in choices, for which
124 -- we have to be sure the subtypes in question are frozen before checking.
126 function Get_Alignment_Value (Expr : Node_Id) return Uint;
127 -- Given the expression for an alignment value, returns the corresponding
128 -- Uint value. If the value is inappropriate, then error messages are
129 -- posted as required, and a value of No_Uint is returned.
131 function Is_Operational_Item (N : Node_Id) return Boolean;
132 -- A specification for a stream attribute is allowed before the full type
133 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
134 -- that do not specify a representation characteristic are operational
135 -- attributes.
137 function Is_Predicate_Static
138 (Expr : Node_Id;
139 Nam : Name_Id) return Boolean;
140 -- Given predicate expression Expr, tests if Expr is predicate-static in
141 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
142 -- name in the predicate expression have been replaced by references to
143 -- an identifier whose Chars field is Nam. This name is unique, so any
144 -- identifier with Chars matching Nam must be a reference to the type.
145 -- Returns True if the expression is predicate-static and False otherwise,
146 -- but is not in the business of setting flags or issuing error messages.
148 -- Only scalar types can have static predicates, so False is always
149 -- returned for non-scalar types.
151 -- Note: the RM seems to suggest that string types can also have static
152 -- predicates. But that really makes lttle sense as very few useful
153 -- predicates can be constructed for strings. Remember that:
155 -- "ABC" < "DEF"
157 -- is not a static expression. So even though the clearly faulty RM wording
158 -- allows the following:
160 -- subtype S is String with Static_Predicate => S < "DEF"
162 -- We can't allow this, otherwise we have predicate-static applying to a
163 -- larger class than static expressions, which was never intended.
165 procedure New_Stream_Subprogram
166 (N : Node_Id;
167 Ent : Entity_Id;
168 Subp : Entity_Id;
169 Nam : TSS_Name_Type);
170 -- Create a subprogram renaming of a given stream attribute to the
171 -- designated subprogram and then in the tagged case, provide this as a
172 -- primitive operation, or in the untagged case make an appropriate TSS
173 -- entry. This is more properly an expansion activity than just semantics,
174 -- but the presence of user-defined stream functions for limited types
175 -- is a legality check, which is why this takes place here rather than in
176 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
177 -- function to be generated.
179 -- To avoid elaboration anomalies with freeze nodes, for untagged types
180 -- we generate both a subprogram declaration and a subprogram renaming
181 -- declaration, so that the attribute specification is handled as a
182 -- renaming_as_body. For tagged types, the specification is one of the
183 -- primitive specs.
185 procedure Resolve_Iterable_Operation
186 (N : Node_Id;
187 Cursor : Entity_Id;
188 Typ : Entity_Id;
189 Nam : Name_Id);
190 -- If the name of a primitive operation for an Iterable aspect is
191 -- overloaded, resolve according to required signature.
193 procedure Set_Biased
194 (E : Entity_Id;
195 N : Node_Id;
196 Msg : String;
197 Biased : Boolean := True);
198 -- If Biased is True, sets Has_Biased_Representation flag for E, and
199 -- outputs a warning message at node N if Warn_On_Biased_Representation is
200 -- is True. This warning inserts the string Msg to describe the construct
201 -- causing biasing.
203 ----------------------------------------------
204 -- Table for Validate_Unchecked_Conversions --
205 ----------------------------------------------
207 -- The following table collects unchecked conversions for validation.
208 -- Entries are made by Validate_Unchecked_Conversion and then the call
209 -- to Validate_Unchecked_Conversions does the actual error checking and
210 -- posting of warnings. The reason for this delayed processing is to take
211 -- advantage of back-annotations of size and alignment values performed by
212 -- the back end.
214 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
215 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
216 -- already have modified all Sloc values if the -gnatD option is set.
218 type UC_Entry is record
219 Eloc : Source_Ptr; -- node used for posting warnings
220 Source : Entity_Id; -- source type for unchecked conversion
221 Target : Entity_Id; -- target type for unchecked conversion
222 Act_Unit : Entity_Id; -- actual function instantiated
223 end record;
225 package Unchecked_Conversions is new Table.Table (
226 Table_Component_Type => UC_Entry,
227 Table_Index_Type => Int,
228 Table_Low_Bound => 1,
229 Table_Initial => 50,
230 Table_Increment => 200,
231 Table_Name => "Unchecked_Conversions");
233 ----------------------------------------
234 -- Table for Validate_Address_Clauses --
235 ----------------------------------------
237 -- If an address clause has the form
239 -- for X'Address use Expr
241 -- where Expr is of the form Y'Address or recursively is a reference to a
242 -- constant of either of these forms, and X and Y are entities of objects,
243 -- then if Y has a smaller alignment than X, that merits a warning about
244 -- possible bad alignment. The following table collects address clauses of
245 -- this kind. We put these in a table so that they can be checked after the
246 -- back end has completed annotation of the alignments of objects, since we
247 -- can catch more cases that way.
249 type Address_Clause_Check_Record is record
250 N : Node_Id;
251 -- The address clause
253 X : Entity_Id;
254 -- The entity of the object overlaying Y
256 Y : Entity_Id;
257 -- The entity of the object being overlaid
259 Off : Boolean;
260 -- Whether the address is offset within Y
261 end record;
263 package Address_Clause_Checks is new Table.Table (
264 Table_Component_Type => Address_Clause_Check_Record,
265 Table_Index_Type => Int,
266 Table_Low_Bound => 1,
267 Table_Initial => 20,
268 Table_Increment => 200,
269 Table_Name => "Address_Clause_Checks");
271 -----------------------------------------
272 -- Adjust_Record_For_Reverse_Bit_Order --
273 -----------------------------------------
275 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
276 Comp : Node_Id;
277 CC : Node_Id;
279 begin
280 -- Processing depends on version of Ada
282 -- For Ada 95, we just renumber bits within a storage unit. We do the
283 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
284 -- Ada 83, and are free to add this extension.
286 if Ada_Version < Ada_2005 then
287 Comp := First_Component_Or_Discriminant (R);
288 while Present (Comp) loop
289 CC := Component_Clause (Comp);
291 -- If component clause is present, then deal with the non-default
292 -- bit order case for Ada 95 mode.
294 -- We only do this processing for the base type, and in fact that
295 -- is important, since otherwise if there are record subtypes, we
296 -- could reverse the bits once for each subtype, which is wrong.
298 if Present (CC) and then Ekind (R) = E_Record_Type then
299 declare
300 CFB : constant Uint := Component_Bit_Offset (Comp);
301 CSZ : constant Uint := Esize (Comp);
302 CLC : constant Node_Id := Component_Clause (Comp);
303 Pos : constant Node_Id := Position (CLC);
304 FB : constant Node_Id := First_Bit (CLC);
306 Storage_Unit_Offset : constant Uint :=
307 CFB / System_Storage_Unit;
309 Start_Bit : constant Uint :=
310 CFB mod System_Storage_Unit;
312 begin
313 -- Cases where field goes over storage unit boundary
315 if Start_Bit + CSZ > System_Storage_Unit then
317 -- Allow multi-byte field but generate warning
319 if Start_Bit mod System_Storage_Unit = 0
320 and then CSZ mod System_Storage_Unit = 0
321 then
322 Error_Msg_N
323 ("info: multi-byte field specified with "
324 & "non-standard Bit_Order?V?", CLC);
326 if Bytes_Big_Endian then
327 Error_Msg_N
328 ("\bytes are not reversed "
329 & "(component is big-endian)?V?", CLC);
330 else
331 Error_Msg_N
332 ("\bytes are not reversed "
333 & "(component is little-endian)?V?", CLC);
334 end if;
336 -- Do not allow non-contiguous field
338 else
339 Error_Msg_N
340 ("attempt to specify non-contiguous field "
341 & "not permitted", CLC);
342 Error_Msg_N
343 ("\caused by non-standard Bit_Order "
344 & "specified", CLC);
345 Error_Msg_N
346 ("\consider possibility of using "
347 & "Ada 2005 mode here", CLC);
348 end if;
350 -- Case where field fits in one storage unit
352 else
353 -- Give warning if suspicious component clause
355 if Intval (FB) >= System_Storage_Unit
356 and then Warn_On_Reverse_Bit_Order
357 then
358 Error_Msg_N
359 ("info: Bit_Order clause does not affect " &
360 "byte ordering?V?", Pos);
361 Error_Msg_Uint_1 :=
362 Intval (Pos) + Intval (FB) /
363 System_Storage_Unit;
364 Error_Msg_N
365 ("info: position normalized to ^ before bit " &
366 "order interpreted?V?", Pos);
367 end if;
369 -- Here is where we fix up the Component_Bit_Offset value
370 -- to account for the reverse bit order. Some examples of
371 -- what needs to be done are:
373 -- First_Bit .. Last_Bit Component_Bit_Offset
374 -- old new old new
376 -- 0 .. 0 7 .. 7 0 7
377 -- 0 .. 1 6 .. 7 0 6
378 -- 0 .. 2 5 .. 7 0 5
379 -- 0 .. 7 0 .. 7 0 4
381 -- 1 .. 1 6 .. 6 1 6
382 -- 1 .. 4 3 .. 6 1 3
383 -- 4 .. 7 0 .. 3 4 0
385 -- The rule is that the first bit is is obtained by
386 -- subtracting the old ending bit from storage_unit - 1.
388 Set_Component_Bit_Offset
389 (Comp,
390 (Storage_Unit_Offset * System_Storage_Unit) +
391 (System_Storage_Unit - 1) -
392 (Start_Bit + CSZ - 1));
394 Set_Normalized_First_Bit
395 (Comp,
396 Component_Bit_Offset (Comp) mod
397 System_Storage_Unit);
398 end if;
399 end;
400 end if;
402 Next_Component_Or_Discriminant (Comp);
403 end loop;
405 -- For Ada 2005, we do machine scalar processing, as fully described In
406 -- AI-133. This involves gathering all components which start at the
407 -- same byte offset and processing them together. Same approach is still
408 -- valid in later versions including Ada 2012.
410 else
411 declare
412 Max_Machine_Scalar_Size : constant Uint :=
413 UI_From_Int
414 (Standard_Long_Long_Integer_Size);
415 -- We use this as the maximum machine scalar size
417 Num_CC : Natural;
418 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
420 begin
421 -- This first loop through components does two things. First it
422 -- deals with the case of components with component clauses whose
423 -- length is greater than the maximum machine scalar size (either
424 -- accepting them or rejecting as needed). Second, it counts the
425 -- number of components with component clauses whose length does
426 -- not exceed this maximum for later processing.
428 Num_CC := 0;
429 Comp := First_Component_Or_Discriminant (R);
430 while Present (Comp) loop
431 CC := Component_Clause (Comp);
433 if Present (CC) then
434 declare
435 Fbit : constant Uint := Static_Integer (First_Bit (CC));
436 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
438 begin
439 -- Case of component with last bit >= max machine scalar
441 if Lbit >= Max_Machine_Scalar_Size then
443 -- This is allowed only if first bit is zero, and
444 -- last bit + 1 is a multiple of storage unit size.
446 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
448 -- This is the case to give a warning if enabled
450 if Warn_On_Reverse_Bit_Order then
451 Error_Msg_N
452 ("info: multi-byte field specified with "
453 & " non-standard Bit_Order?V?", CC);
455 if Bytes_Big_Endian then
456 Error_Msg_N
457 ("\bytes are not reversed "
458 & "(component is big-endian)?V?", CC);
459 else
460 Error_Msg_N
461 ("\bytes are not reversed "
462 & "(component is little-endian)?V?", CC);
463 end if;
464 end if;
466 -- Give error message for RM 13.5.1(10) violation
468 else
469 Error_Msg_FE
470 ("machine scalar rules not followed for&",
471 First_Bit (CC), Comp);
473 Error_Msg_Uint_1 := Lbit;
474 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
475 Error_Msg_F
476 ("\last bit (^) exceeds maximum machine "
477 & "scalar size (^)",
478 First_Bit (CC));
480 if (Lbit + 1) mod SSU /= 0 then
481 Error_Msg_Uint_1 := SSU;
482 Error_Msg_F
483 ("\and is not a multiple of Storage_Unit (^) "
484 & "(RM 13.4.1(10))",
485 First_Bit (CC));
487 else
488 Error_Msg_Uint_1 := Fbit;
489 Error_Msg_F
490 ("\and first bit (^) is non-zero "
491 & "(RM 13.4.1(10))",
492 First_Bit (CC));
493 end if;
494 end if;
496 -- OK case of machine scalar related component clause,
497 -- For now, just count them.
499 else
500 Num_CC := Num_CC + 1;
501 end if;
502 end;
503 end if;
505 Next_Component_Or_Discriminant (Comp);
506 end loop;
508 -- We need to sort the component clauses on the basis of the
509 -- Position values in the clause, so we can group clauses with
510 -- the same Position together to determine the relevant machine
511 -- scalar size.
513 Sort_CC : declare
514 Comps : array (0 .. Num_CC) of Entity_Id;
515 -- Array to collect component and discriminant entities. The
516 -- data starts at index 1, the 0'th entry is for the sort
517 -- routine.
519 function CP_Lt (Op1, Op2 : Natural) return Boolean;
520 -- Compare routine for Sort
522 procedure CP_Move (From : Natural; To : Natural);
523 -- Move routine for Sort
525 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
527 Start : Natural;
528 Stop : Natural;
529 -- Start and stop positions in the component list of the set of
530 -- components with the same starting position (that constitute
531 -- components in a single machine scalar).
533 MaxL : Uint;
534 -- Maximum last bit value of any component in this set
536 MSS : Uint;
537 -- Corresponding machine scalar size
539 -----------
540 -- CP_Lt --
541 -----------
543 function CP_Lt (Op1, Op2 : Natural) return Boolean is
544 begin
545 return Position (Component_Clause (Comps (Op1))) <
546 Position (Component_Clause (Comps (Op2)));
547 end CP_Lt;
549 -------------
550 -- CP_Move --
551 -------------
553 procedure CP_Move (From : Natural; To : Natural) is
554 begin
555 Comps (To) := Comps (From);
556 end CP_Move;
558 -- Start of processing for Sort_CC
560 begin
561 -- Collect the machine scalar relevant component clauses
563 Num_CC := 0;
564 Comp := First_Component_Or_Discriminant (R);
565 while Present (Comp) loop
566 declare
567 CC : constant Node_Id := Component_Clause (Comp);
569 begin
570 -- Collect only component clauses whose last bit is less
571 -- than machine scalar size. Any component clause whose
572 -- last bit exceeds this value does not take part in
573 -- machine scalar layout considerations. The test for
574 -- Error_Posted makes sure we exclude component clauses
575 -- for which we already posted an error.
577 if Present (CC)
578 and then not Error_Posted (Last_Bit (CC))
579 and then Static_Integer (Last_Bit (CC)) <
580 Max_Machine_Scalar_Size
581 then
582 Num_CC := Num_CC + 1;
583 Comps (Num_CC) := Comp;
584 end if;
585 end;
587 Next_Component_Or_Discriminant (Comp);
588 end loop;
590 -- Sort by ascending position number
592 Sorting.Sort (Num_CC);
594 -- We now have all the components whose size does not exceed
595 -- the max machine scalar value, sorted by starting position.
596 -- In this loop we gather groups of clauses starting at the
597 -- same position, to process them in accordance with AI-133.
599 Stop := 0;
600 while Stop < Num_CC loop
601 Start := Stop + 1;
602 Stop := Start;
603 MaxL :=
604 Static_Integer
605 (Last_Bit (Component_Clause (Comps (Start))));
606 while Stop < Num_CC loop
607 if Static_Integer
608 (Position (Component_Clause (Comps (Stop + 1)))) =
609 Static_Integer
610 (Position (Component_Clause (Comps (Stop))))
611 then
612 Stop := Stop + 1;
613 MaxL :=
614 UI_Max
615 (MaxL,
616 Static_Integer
617 (Last_Bit
618 (Component_Clause (Comps (Stop)))));
619 else
620 exit;
621 end if;
622 end loop;
624 -- Now we have a group of component clauses from Start to
625 -- Stop whose positions are identical, and MaxL is the
626 -- maximum last bit value of any of these components.
628 -- We need to determine the corresponding machine scalar
629 -- size. This loop assumes that machine scalar sizes are
630 -- even, and that each possible machine scalar has twice
631 -- as many bits as the next smaller one.
633 MSS := Max_Machine_Scalar_Size;
634 while MSS mod 2 = 0
635 and then (MSS / 2) >= SSU
636 and then (MSS / 2) > MaxL
637 loop
638 MSS := MSS / 2;
639 end loop;
641 -- Here is where we fix up the Component_Bit_Offset value
642 -- to account for the reverse bit order. Some examples of
643 -- what needs to be done for the case of a machine scalar
644 -- size of 8 are:
646 -- First_Bit .. Last_Bit Component_Bit_Offset
647 -- old new old new
649 -- 0 .. 0 7 .. 7 0 7
650 -- 0 .. 1 6 .. 7 0 6
651 -- 0 .. 2 5 .. 7 0 5
652 -- 0 .. 7 0 .. 7 0 4
654 -- 1 .. 1 6 .. 6 1 6
655 -- 1 .. 4 3 .. 6 1 3
656 -- 4 .. 7 0 .. 3 4 0
658 -- The rule is that the first bit is obtained by subtracting
659 -- the old ending bit from machine scalar size - 1.
661 for C in Start .. Stop loop
662 declare
663 Comp : constant Entity_Id := Comps (C);
664 CC : constant Node_Id := Component_Clause (Comp);
666 LB : constant Uint := Static_Integer (Last_Bit (CC));
667 NFB : constant Uint := MSS - Uint_1 - LB;
668 NLB : constant Uint := NFB + Esize (Comp) - 1;
669 Pos : constant Uint := Static_Integer (Position (CC));
671 begin
672 if Warn_On_Reverse_Bit_Order then
673 Error_Msg_Uint_1 := MSS;
674 Error_Msg_N
675 ("info: reverse bit order in machine " &
676 "scalar of length^?V?", First_Bit (CC));
677 Error_Msg_Uint_1 := NFB;
678 Error_Msg_Uint_2 := NLB;
680 if Bytes_Big_Endian then
681 Error_Msg_NE
682 ("\big-endian range for component "
683 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
684 else
685 Error_Msg_NE
686 ("\little-endian range for component"
687 & "& is ^ .. ^?V?", First_Bit (CC), Comp);
688 end if;
689 end if;
691 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
692 Set_Normalized_First_Bit (Comp, NFB mod SSU);
693 end;
694 end loop;
695 end loop;
696 end Sort_CC;
697 end;
698 end if;
699 end Adjust_Record_For_Reverse_Bit_Order;
701 -------------------------------------
702 -- Alignment_Check_For_Size_Change --
703 -------------------------------------
705 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
706 begin
707 -- If the alignment is known, and not set by a rep clause, and is
708 -- inconsistent with the size being set, then reset it to unknown,
709 -- we assume in this case that the size overrides the inherited
710 -- alignment, and that the alignment must be recomputed.
712 if Known_Alignment (Typ)
713 and then not Has_Alignment_Clause (Typ)
714 and then Size mod (Alignment (Typ) * SSU) /= 0
715 then
716 Init_Alignment (Typ);
717 end if;
718 end Alignment_Check_For_Size_Change;
720 -------------------------------------
721 -- Analyze_Aspects_At_Freeze_Point --
722 -------------------------------------
724 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
725 ASN : Node_Id;
726 A_Id : Aspect_Id;
727 Ritem : Node_Id;
729 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
730 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
731 -- the aspect specification node ASN.
733 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
734 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
735 -- a derived type can inherit aspects from its parent which have been
736 -- specified at the time of the derivation using an aspect, as in:
738 -- type A is range 1 .. 10
739 -- with Size => Not_Defined_Yet;
740 -- ..
741 -- type B is new A;
742 -- ..
743 -- Not_Defined_Yet : constant := 64;
745 -- In this example, the Size of A is considered to be specified prior
746 -- to the derivation, and thus inherited, even though the value is not
747 -- known at the time of derivation. To deal with this, we use two entity
748 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
749 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
750 -- the derived type (B here). If this flag is set when the derived type
751 -- is frozen, then this procedure is called to ensure proper inheritance
752 -- of all delayed aspects from the parent type. The derived type is E,
753 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
754 -- aspect specification node in the Rep_Item chain for the parent type.
756 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
757 -- Given an aspect specification node ASN whose expression is an
758 -- optional Boolean, this routines creates the corresponding pragma
759 -- at the freezing point.
761 ----------------------------------
762 -- Analyze_Aspect_Default_Value --
763 ----------------------------------
765 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
766 Ent : constant Entity_Id := Entity (ASN);
767 Expr : constant Node_Id := Expression (ASN);
768 Id : constant Node_Id := Identifier (ASN);
770 begin
771 Error_Msg_Name_1 := Chars (Id);
773 if not Is_Type (Ent) then
774 Error_Msg_N ("aspect% can only apply to a type", Id);
775 return;
777 elsif not Is_First_Subtype (Ent) then
778 Error_Msg_N ("aspect% cannot apply to subtype", Id);
779 return;
781 elsif A_Id = Aspect_Default_Value
782 and then not Is_Scalar_Type (Ent)
783 then
784 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
785 return;
787 elsif A_Id = Aspect_Default_Component_Value then
788 if not Is_Array_Type (Ent) then
789 Error_Msg_N ("aspect% can only be applied to array type", Id);
790 return;
792 elsif not Is_Scalar_Type (Component_Type (Ent)) then
793 Error_Msg_N ("aspect% requires scalar components", Id);
794 return;
795 end if;
796 end if;
798 Set_Has_Default_Aspect (Base_Type (Ent));
800 if Is_Scalar_Type (Ent) then
801 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
802 else
803 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
804 end if;
805 end Analyze_Aspect_Default_Value;
807 ---------------------------------
808 -- Inherit_Delayed_Rep_Aspects --
809 ---------------------------------
811 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
812 P : constant Entity_Id := Entity (ASN);
813 -- Entithy for parent type
815 N : Node_Id;
816 -- Item from Rep_Item chain
818 A : Aspect_Id;
820 begin
821 -- Loop through delayed aspects for the parent type
823 N := ASN;
824 while Present (N) loop
825 if Nkind (N) = N_Aspect_Specification then
826 exit when Entity (N) /= P;
828 if Is_Delayed_Aspect (N) then
829 A := Get_Aspect_Id (Chars (Identifier (N)));
831 -- Process delayed rep aspect. For Boolean attributes it is
832 -- not possible to cancel an attribute once set (the attempt
833 -- to use an aspect with xxx => False is an error) for a
834 -- derived type. So for those cases, we do not have to check
835 -- if a clause has been given for the derived type, since it
836 -- is harmless to set it again if it is already set.
838 case A is
840 -- Alignment
842 when Aspect_Alignment =>
843 if not Has_Alignment_Clause (E) then
844 Set_Alignment (E, Alignment (P));
845 end if;
847 -- Atomic
849 when Aspect_Atomic =>
850 if Is_Atomic (P) then
851 Set_Is_Atomic (E);
852 end if;
854 -- Atomic_Components
856 when Aspect_Atomic_Components =>
857 if Has_Atomic_Components (P) then
858 Set_Has_Atomic_Components (Base_Type (E));
859 end if;
861 -- Bit_Order
863 when Aspect_Bit_Order =>
864 if Is_Record_Type (E)
865 and then No (Get_Attribute_Definition_Clause
866 (E, Attribute_Bit_Order))
867 and then Reverse_Bit_Order (P)
868 then
869 Set_Reverse_Bit_Order (Base_Type (E));
870 end if;
872 -- Component_Size
874 when Aspect_Component_Size =>
875 if Is_Array_Type (E)
876 and then not Has_Component_Size_Clause (E)
877 then
878 Set_Component_Size
879 (Base_Type (E), Component_Size (P));
880 end if;
882 -- Machine_Radix
884 when Aspect_Machine_Radix =>
885 if Is_Decimal_Fixed_Point_Type (E)
886 and then not Has_Machine_Radix_Clause (E)
887 then
888 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
889 end if;
891 -- Object_Size (also Size which also sets Object_Size)
893 when Aspect_Object_Size | Aspect_Size =>
894 if not Has_Size_Clause (E)
895 and then
896 No (Get_Attribute_Definition_Clause
897 (E, Attribute_Object_Size))
898 then
899 Set_Esize (E, Esize (P));
900 end if;
902 -- Pack
904 when Aspect_Pack =>
905 if not Is_Packed (E) then
906 Set_Is_Packed (Base_Type (E));
908 if Is_Bit_Packed_Array (P) then
909 Set_Is_Bit_Packed_Array (Base_Type (E));
910 Set_Packed_Array_Impl_Type
911 (E, Packed_Array_Impl_Type (P));
912 end if;
913 end if;
915 -- Scalar_Storage_Order
917 when Aspect_Scalar_Storage_Order =>
918 if (Is_Record_Type (E) or else Is_Array_Type (E))
919 and then No (Get_Attribute_Definition_Clause
920 (E, Attribute_Scalar_Storage_Order))
921 and then Reverse_Storage_Order (P)
922 then
923 Set_Reverse_Storage_Order (Base_Type (E));
925 -- Clear default SSO indications, since the aspect
926 -- overrides the default.
928 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
929 Set_SSO_Set_High_By_Default (Base_Type (E), False);
930 end if;
932 -- Small
934 when Aspect_Small =>
935 if Is_Fixed_Point_Type (E)
936 and then not Has_Small_Clause (E)
937 then
938 Set_Small_Value (E, Small_Value (P));
939 end if;
941 -- Storage_Size
943 when Aspect_Storage_Size =>
944 if (Is_Access_Type (E) or else Is_Task_Type (E))
945 and then not Has_Storage_Size_Clause (E)
946 then
947 Set_Storage_Size_Variable
948 (Base_Type (E), Storage_Size_Variable (P));
949 end if;
951 -- Value_Size
953 when Aspect_Value_Size =>
955 -- Value_Size is never inherited, it is either set by
956 -- default, or it is explicitly set for the derived
957 -- type. So nothing to do here.
959 null;
961 -- Volatile
963 when Aspect_Volatile =>
964 if Is_Volatile (P) then
965 Set_Is_Volatile (E);
966 end if;
968 -- Volatile_Components
970 when Aspect_Volatile_Components =>
971 if Has_Volatile_Components (P) then
972 Set_Has_Volatile_Components (Base_Type (E));
973 end if;
975 -- That should be all the Rep Aspects
977 when others =>
978 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
979 null;
981 end case;
982 end if;
983 end if;
985 N := Next_Rep_Item (N);
986 end loop;
987 end Inherit_Delayed_Rep_Aspects;
989 -------------------------------------
990 -- Make_Pragma_From_Boolean_Aspect --
991 -------------------------------------
993 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
994 Ident : constant Node_Id := Identifier (ASN);
995 A_Name : constant Name_Id := Chars (Ident);
996 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
997 Ent : constant Entity_Id := Entity (ASN);
998 Expr : constant Node_Id := Expression (ASN);
999 Loc : constant Source_Ptr := Sloc (ASN);
1001 Prag : Node_Id;
1003 procedure Check_False_Aspect_For_Derived_Type;
1004 -- This procedure checks for the case of a false aspect for a derived
1005 -- type, which improperly tries to cancel an aspect inherited from
1006 -- the parent.
1008 -----------------------------------------
1009 -- Check_False_Aspect_For_Derived_Type --
1010 -----------------------------------------
1012 procedure Check_False_Aspect_For_Derived_Type is
1013 Par : Node_Id;
1015 begin
1016 -- We are only checking derived types
1018 if not Is_Derived_Type (E) then
1019 return;
1020 end if;
1022 Par := Nearest_Ancestor (E);
1024 case A_Id is
1025 when Aspect_Atomic | Aspect_Shared =>
1026 if not Is_Atomic (Par) then
1027 return;
1028 end if;
1030 when Aspect_Atomic_Components =>
1031 if not Has_Atomic_Components (Par) then
1032 return;
1033 end if;
1035 when Aspect_Discard_Names =>
1036 if not Discard_Names (Par) then
1037 return;
1038 end if;
1040 when Aspect_Pack =>
1041 if not Is_Packed (Par) then
1042 return;
1043 end if;
1045 when Aspect_Unchecked_Union =>
1046 if not Is_Unchecked_Union (Par) then
1047 return;
1048 end if;
1050 when Aspect_Volatile =>
1051 if not Is_Volatile (Par) then
1052 return;
1053 end if;
1055 when Aspect_Volatile_Components =>
1056 if not Has_Volatile_Components (Par) then
1057 return;
1058 end if;
1060 when others =>
1061 return;
1062 end case;
1064 -- Fall through means we are canceling an inherited aspect
1066 Error_Msg_Name_1 := A_Name;
1067 Error_Msg_NE
1068 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1070 end Check_False_Aspect_For_Derived_Type;
1072 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1074 begin
1075 -- Note that we know Expr is present, because for a missing Expr
1076 -- argument, we knew it was True and did not need to delay the
1077 -- evaluation to the freeze point.
1079 if Is_False (Static_Boolean (Expr)) then
1080 Check_False_Aspect_For_Derived_Type;
1082 else
1083 Prag :=
1084 Make_Pragma (Loc,
1085 Pragma_Argument_Associations => New_List (
1086 Make_Pragma_Argument_Association (Sloc (Ident),
1087 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))),
1089 Pragma_Identifier =>
1090 Make_Identifier (Sloc (Ident), Chars (Ident)));
1092 Set_From_Aspect_Specification (Prag, True);
1093 Set_Corresponding_Aspect (Prag, ASN);
1094 Set_Aspect_Rep_Item (ASN, Prag);
1095 Set_Is_Delayed_Aspect (Prag);
1096 Set_Parent (Prag, ASN);
1097 end if;
1098 end Make_Pragma_From_Boolean_Aspect;
1100 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1102 begin
1103 -- Must be visible in current scope
1105 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1106 return;
1107 end if;
1109 -- Look for aspect specification entries for this entity
1111 ASN := First_Rep_Item (E);
1112 while Present (ASN) loop
1113 if Nkind (ASN) = N_Aspect_Specification then
1114 exit when Entity (ASN) /= E;
1116 if Is_Delayed_Aspect (ASN) then
1117 A_Id := Get_Aspect_Id (ASN);
1119 case A_Id is
1121 -- For aspects whose expression is an optional Boolean, make
1122 -- the corresponding pragma at the freeze point.
1124 when Boolean_Aspects |
1125 Library_Unit_Aspects =>
1126 Make_Pragma_From_Boolean_Aspect (ASN);
1128 -- Special handling for aspects that don't correspond to
1129 -- pragmas/attributes.
1131 when Aspect_Default_Value |
1132 Aspect_Default_Component_Value =>
1133 Analyze_Aspect_Default_Value (ASN);
1135 -- Ditto for iterator aspects, because the corresponding
1136 -- attributes may not have been analyzed yet.
1138 when Aspect_Constant_Indexing |
1139 Aspect_Variable_Indexing |
1140 Aspect_Default_Iterator |
1141 Aspect_Iterator_Element =>
1142 Analyze (Expression (ASN));
1144 if Etype (Expression (ASN)) = Any_Type then
1145 Error_Msg_NE
1146 ("\aspect must be fully defined before & is frozen",
1147 ASN, E);
1148 end if;
1150 when Aspect_Iterable =>
1151 Validate_Iterable_Aspect (E, ASN);
1153 when others =>
1154 null;
1155 end case;
1157 Ritem := Aspect_Rep_Item (ASN);
1159 if Present (Ritem) then
1160 Analyze (Ritem);
1161 end if;
1162 end if;
1163 end if;
1165 Next_Rep_Item (ASN);
1166 end loop;
1168 -- This is where we inherit delayed rep aspects from our parent. Note
1169 -- that if we fell out of the above loop with ASN non-empty, it means
1170 -- we hit an aspect for an entity other than E, and it must be the
1171 -- type from which we were derived.
1173 if May_Inherit_Delayed_Rep_Aspects (E) then
1174 Inherit_Delayed_Rep_Aspects (ASN);
1175 end if;
1176 end Analyze_Aspects_At_Freeze_Point;
1178 -----------------------------------
1179 -- Analyze_Aspect_Specifications --
1180 -----------------------------------
1182 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1183 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
1184 -- Establish linkages between an aspect and its corresponding
1185 -- pragma.
1187 procedure Insert_After_SPARK_Mode
1188 (Prag : Node_Id;
1189 Ins_Nod : Node_Id;
1190 Decls : List_Id);
1191 -- Subsidiary to the analysis of aspects Abstract_State, Ghost,
1192 -- Initializes, Initial_Condition and Refined_State. Insert node Prag
1193 -- before node Ins_Nod. If Ins_Nod is for pragma SPARK_Mode, then skip
1194 -- SPARK_Mode. Decls is the associated declarative list where Prag is to
1195 -- reside.
1197 procedure Insert_Pragma (Prag : Node_Id);
1198 -- Subsidiary to the analysis of aspects Attach_Handler, Contract_Cases,
1199 -- Depends, Global, Post, Pre, Refined_Depends and Refined_Global.
1200 -- Insert pragma Prag such that it mimics the placement of a source
1201 -- pragma of the same kind.
1203 -- procedure Proc (Formal : ...) with Global => ...;
1205 -- procedure Proc (Formal : ...);
1206 -- pragma Global (...);
1208 --------------
1209 -- Decorate --
1210 --------------
1212 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
1213 begin
1214 Set_Aspect_Rep_Item (Asp, Prag);
1215 Set_Corresponding_Aspect (Prag, Asp);
1216 Set_From_Aspect_Specification (Prag);
1217 Set_Parent (Prag, Asp);
1218 end Decorate;
1220 -----------------------------
1221 -- Insert_After_SPARK_Mode --
1222 -----------------------------
1224 procedure Insert_After_SPARK_Mode
1225 (Prag : Node_Id;
1226 Ins_Nod : Node_Id;
1227 Decls : List_Id)
1229 Decl : Node_Id := Ins_Nod;
1231 begin
1232 -- Skip SPARK_Mode
1234 if Present (Decl)
1235 and then Nkind (Decl) = N_Pragma
1236 and then Pragma_Name (Decl) = Name_SPARK_Mode
1237 then
1238 Decl := Next (Decl);
1239 end if;
1241 if Present (Decl) then
1242 Insert_Before (Decl, Prag);
1244 -- Aitem acts as the last declaration
1246 else
1247 Append_To (Decls, Prag);
1248 end if;
1249 end Insert_After_SPARK_Mode;
1251 -------------------
1252 -- Insert_Pragma --
1253 -------------------
1255 procedure Insert_Pragma (Prag : Node_Id) is
1256 Aux : Node_Id;
1257 Decl : Node_Id;
1259 begin
1260 -- When the context is a library unit, the pragma is added to the
1261 -- Pragmas_After list.
1263 if Nkind (Parent (N)) = N_Compilation_Unit then
1264 Aux := Aux_Decls_Node (Parent (N));
1266 if No (Pragmas_After (Aux)) then
1267 Set_Pragmas_After (Aux, New_List);
1268 end if;
1270 Prepend (Prag, Pragmas_After (Aux));
1272 -- Pragmas associated with subprogram bodies are inserted in the
1273 -- declarative part.
1275 elsif Nkind (N) = N_Subprogram_Body then
1276 if Present (Declarations (N)) then
1278 -- Skip other internally generated pragmas from aspects to find
1279 -- the proper insertion point. As a result the order of pragmas
1280 -- is the same as the order of aspects.
1282 -- As precondition pragmas generated from conjuncts in the
1283 -- precondition aspect are presented in reverse order to
1284 -- Insert_Pragma, insert them in the correct order here by not
1285 -- skipping previously inserted precondition pragmas when the
1286 -- current pragma is a precondition.
1288 Decl := First (Declarations (N));
1289 while Present (Decl) loop
1290 if Nkind (Decl) = N_Pragma
1291 and then From_Aspect_Specification (Decl)
1292 and then not (Get_Pragma_Id (Decl) = Pragma_Precondition
1293 and then
1294 Get_Pragma_Id (Prag) = Pragma_Precondition)
1295 then
1296 Next (Decl);
1297 else
1298 exit;
1299 end if;
1300 end loop;
1302 if Present (Decl) then
1303 Insert_Before (Decl, Prag);
1304 else
1305 Append (Prag, Declarations (N));
1306 end if;
1307 else
1308 Set_Declarations (N, New_List (Prag));
1309 end if;
1311 -- Default
1313 else
1314 Insert_After (N, Prag);
1315 end if;
1316 end Insert_Pragma;
1318 -- Local variables
1320 Aspect : Node_Id;
1321 Aitem : Node_Id;
1322 Ent : Node_Id;
1324 L : constant List_Id := Aspect_Specifications (N);
1326 Ins_Node : Node_Id := N;
1327 -- Insert pragmas/attribute definition clause after this node when no
1328 -- delayed analysis is required.
1330 -- Start of processing for Analyze_Aspect_Specifications
1332 -- The general processing involves building an attribute definition
1333 -- clause or a pragma node that corresponds to the aspect. Then in order
1334 -- to delay the evaluation of this aspect to the freeze point, we attach
1335 -- the corresponding pragma/attribute definition clause to the aspect
1336 -- specification node, which is then placed in the Rep Item chain. In
1337 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1338 -- and we evaluate the rep item at the freeze point. When the aspect
1339 -- doesn't have a corresponding pragma/attribute definition clause, then
1340 -- its analysis is simply delayed at the freeze point.
1342 -- Some special cases don't require delay analysis, thus the aspect is
1343 -- analyzed right now.
1345 -- Note that there is a special handling for Pre, Post, Test_Case,
1346 -- Contract_Cases aspects. In these cases, we do not have to worry
1347 -- about delay issues, since the pragmas themselves deal with delay
1348 -- of visibility for the expression analysis. Thus, we just insert
1349 -- the pragma after the node N.
1351 begin
1352 pragma Assert (Present (L));
1354 -- Loop through aspects
1356 Aspect := First (L);
1357 Aspect_Loop : while Present (Aspect) loop
1358 Analyze_One_Aspect : declare
1359 Expr : constant Node_Id := Expression (Aspect);
1360 Id : constant Node_Id := Identifier (Aspect);
1361 Loc : constant Source_Ptr := Sloc (Aspect);
1362 Nam : constant Name_Id := Chars (Id);
1363 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1364 Anod : Node_Id;
1366 Delay_Required : Boolean;
1367 -- Set False if delay is not required
1369 Eloc : Source_Ptr := No_Location;
1370 -- Source location of expression, modified when we split PPC's. It
1371 -- is set below when Expr is present.
1373 procedure Analyze_Aspect_External_Or_Link_Name;
1374 -- Perform analysis of the External_Name or Link_Name aspects
1376 procedure Analyze_Aspect_Implicit_Dereference;
1377 -- Perform analysis of the Implicit_Dereference aspects
1379 procedure Make_Aitem_Pragma
1380 (Pragma_Argument_Associations : List_Id;
1381 Pragma_Name : Name_Id);
1382 -- This is a wrapper for Make_Pragma used for converting aspects
1383 -- to pragmas. It takes care of Sloc (set from Loc) and building
1384 -- the pragma identifier from the given name. In addition the
1385 -- flags Class_Present and Split_PPC are set from the aspect
1386 -- node, as well as Is_Ignored. This routine also sets the
1387 -- From_Aspect_Specification in the resulting pragma node to
1388 -- True, and sets Corresponding_Aspect to point to the aspect.
1389 -- The resulting pragma is assigned to Aitem.
1391 ------------------------------------------
1392 -- Analyze_Aspect_External_Or_Link_Name --
1393 ------------------------------------------
1395 procedure Analyze_Aspect_External_Or_Link_Name is
1396 begin
1397 -- Verify that there is an Import/Export aspect defined for the
1398 -- entity. The processing of that aspect in turn checks that
1399 -- there is a Convention aspect declared. The pragma is
1400 -- constructed when processing the Convention aspect.
1402 declare
1403 A : Node_Id;
1405 begin
1406 A := First (L);
1407 while Present (A) loop
1408 exit when Nam_In (Chars (Identifier (A)), Name_Export,
1409 Name_Import);
1410 Next (A);
1411 end loop;
1413 if No (A) then
1414 Error_Msg_N
1415 ("missing Import/Export for Link/External name",
1416 Aspect);
1417 end if;
1418 end;
1419 end Analyze_Aspect_External_Or_Link_Name;
1421 -----------------------------------------
1422 -- Analyze_Aspect_Implicit_Dereference --
1423 -----------------------------------------
1425 procedure Analyze_Aspect_Implicit_Dereference is
1426 begin
1427 if not Is_Type (E) or else not Has_Discriminants (E) then
1428 Error_Msg_N
1429 ("aspect must apply to a type with discriminants", N);
1431 else
1432 declare
1433 Disc : Entity_Id;
1435 begin
1436 Disc := First_Discriminant (E);
1437 while Present (Disc) loop
1438 if Chars (Expr) = Chars (Disc)
1439 and then Ekind (Etype (Disc)) =
1440 E_Anonymous_Access_Type
1441 then
1442 Set_Has_Implicit_Dereference (E);
1443 Set_Has_Implicit_Dereference (Disc);
1444 return;
1445 end if;
1447 Next_Discriminant (Disc);
1448 end loop;
1450 -- Error if no proper access discriminant.
1452 Error_Msg_NE
1453 ("not an access discriminant of&", Expr, E);
1454 end;
1455 end if;
1456 end Analyze_Aspect_Implicit_Dereference;
1458 -----------------------
1459 -- Make_Aitem_Pragma --
1460 -----------------------
1462 procedure Make_Aitem_Pragma
1463 (Pragma_Argument_Associations : List_Id;
1464 Pragma_Name : Name_Id)
1466 Args : List_Id := Pragma_Argument_Associations;
1468 begin
1469 -- We should never get here if aspect was disabled
1471 pragma Assert (not Is_Disabled (Aspect));
1473 -- Certain aspects allow for an optional name or expression. Do
1474 -- not generate a pragma with empty argument association list.
1476 if No (Args) or else No (Expression (First (Args))) then
1477 Args := No_List;
1478 end if;
1480 -- Build the pragma
1482 Aitem :=
1483 Make_Pragma (Loc,
1484 Pragma_Argument_Associations => Args,
1485 Pragma_Identifier =>
1486 Make_Identifier (Sloc (Id), Pragma_Name),
1487 Class_Present => Class_Present (Aspect),
1488 Split_PPC => Split_PPC (Aspect));
1490 -- Set additional semantic fields
1492 if Is_Ignored (Aspect) then
1493 Set_Is_Ignored (Aitem);
1494 elsif Is_Checked (Aspect) then
1495 Set_Is_Checked (Aitem);
1496 end if;
1498 Set_Corresponding_Aspect (Aitem, Aspect);
1499 Set_From_Aspect_Specification (Aitem, True);
1500 end Make_Aitem_Pragma;
1502 -- Start of processing for Analyze_One_Aspect
1504 begin
1505 -- Skip aspect if already analyzed, to avoid looping in some cases
1507 if Analyzed (Aspect) then
1508 goto Continue;
1509 end if;
1511 -- Skip looking at aspect if it is totally disabled. Just mark it
1512 -- as such for later reference in the tree. This also sets the
1513 -- Is_Ignored and Is_Checked flags appropriately.
1515 Check_Applicable_Policy (Aspect);
1517 if Is_Disabled (Aspect) then
1518 goto Continue;
1519 end if;
1521 -- Set the source location of expression, used in the case of
1522 -- a failed precondition/postcondition or invariant. Note that
1523 -- the source location of the expression is not usually the best
1524 -- choice here. For example, it gets located on the last AND
1525 -- keyword in a chain of boolean expressiond AND'ed together.
1526 -- It is best to put the message on the first character of the
1527 -- assertion, which is the effect of the First_Node call here.
1529 if Present (Expr) then
1530 Eloc := Sloc (First_Node (Expr));
1531 end if;
1533 -- Check restriction No_Implementation_Aspect_Specifications
1535 if Implementation_Defined_Aspect (A_Id) then
1536 Check_Restriction
1537 (No_Implementation_Aspect_Specifications, Aspect);
1538 end if;
1540 -- Check restriction No_Specification_Of_Aspect
1542 Check_Restriction_No_Specification_Of_Aspect (Aspect);
1544 -- Mark aspect analyzed (actual analysis is delayed till later)
1546 Set_Analyzed (Aspect);
1547 Set_Entity (Aspect, E);
1548 Ent := New_Occurrence_Of (E, Sloc (Id));
1550 -- Check for duplicate aspect. Note that the Comes_From_Source
1551 -- test allows duplicate Pre/Post's that we generate internally
1552 -- to escape being flagged here.
1554 if No_Duplicates_Allowed (A_Id) then
1555 Anod := First (L);
1556 while Anod /= Aspect loop
1557 if Comes_From_Source (Aspect)
1558 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
1559 then
1560 Error_Msg_Name_1 := Nam;
1561 Error_Msg_Sloc := Sloc (Anod);
1563 -- Case of same aspect specified twice
1565 if Class_Present (Anod) = Class_Present (Aspect) then
1566 if not Class_Present (Anod) then
1567 Error_Msg_NE
1568 ("aspect% for & previously given#",
1569 Id, E);
1570 else
1571 Error_Msg_NE
1572 ("aspect `%''Class` for & previously given#",
1573 Id, E);
1574 end if;
1575 end if;
1576 end if;
1578 Next (Anod);
1579 end loop;
1580 end if;
1582 -- Check some general restrictions on language defined aspects
1584 if not Implementation_Defined_Aspect (A_Id) then
1585 Error_Msg_Name_1 := Nam;
1587 -- Not allowed for renaming declarations
1589 if Nkind (N) in N_Renaming_Declaration then
1590 Error_Msg_N
1591 ("aspect % not allowed for renaming declaration",
1592 Aspect);
1593 end if;
1595 -- Not allowed for formal type declarations
1597 if Nkind (N) = N_Formal_Type_Declaration then
1598 Error_Msg_N
1599 ("aspect % not allowed for formal type declaration",
1600 Aspect);
1601 end if;
1602 end if;
1604 -- Copy expression for later processing by the procedures
1605 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
1607 Set_Entity (Id, New_Copy_Tree (Expr));
1609 -- Set Delay_Required as appropriate to aspect
1611 case Aspect_Delay (A_Id) is
1612 when Always_Delay =>
1613 Delay_Required := True;
1615 when Never_Delay =>
1616 Delay_Required := False;
1618 when Rep_Aspect =>
1620 -- If expression has the form of an integer literal, then
1621 -- do not delay, since we know the value cannot change.
1622 -- This optimization catches most rep clause cases.
1624 if (Present (Expr) and then Nkind (Expr) = N_Integer_Literal)
1625 or else (A_Id in Boolean_Aspects and then No (Expr))
1626 then
1627 Delay_Required := False;
1628 else
1629 Delay_Required := True;
1630 Set_Has_Delayed_Rep_Aspects (E);
1631 end if;
1632 end case;
1634 -- Processing based on specific aspect
1636 case A_Id is
1638 -- No_Aspect should be impossible
1640 when No_Aspect =>
1641 raise Program_Error;
1643 -- Case 1: Aspects corresponding to attribute definition
1644 -- clauses.
1646 when Aspect_Address |
1647 Aspect_Alignment |
1648 Aspect_Bit_Order |
1649 Aspect_Component_Size |
1650 Aspect_Constant_Indexing |
1651 Aspect_Default_Iterator |
1652 Aspect_Dispatching_Domain |
1653 Aspect_External_Tag |
1654 Aspect_Input |
1655 Aspect_Iterable |
1656 Aspect_Iterator_Element |
1657 Aspect_Machine_Radix |
1658 Aspect_Object_Size |
1659 Aspect_Output |
1660 Aspect_Read |
1661 Aspect_Scalar_Storage_Order |
1662 Aspect_Size |
1663 Aspect_Small |
1664 Aspect_Simple_Storage_Pool |
1665 Aspect_Storage_Pool |
1666 Aspect_Stream_Size |
1667 Aspect_Value_Size |
1668 Aspect_Variable_Indexing |
1669 Aspect_Write =>
1671 -- Indexing aspects apply only to tagged type
1673 if (A_Id = Aspect_Constant_Indexing
1674 or else
1675 A_Id = Aspect_Variable_Indexing)
1676 and then not (Is_Type (E)
1677 and then Is_Tagged_Type (E))
1678 then
1679 Error_Msg_N
1680 ("indexing aspect can only apply to a tagged type",
1681 Aspect);
1682 goto Continue;
1683 end if;
1685 -- For the case of aspect Address, we don't consider that we
1686 -- know the entity is never set in the source, since it is
1687 -- is likely aliasing is occurring.
1689 -- Note: one might think that the analysis of the resulting
1690 -- attribute definition clause would take care of that, but
1691 -- that's not the case since it won't be from source.
1693 if A_Id = Aspect_Address then
1694 Set_Never_Set_In_Source (E, False);
1695 end if;
1697 -- Correctness of the profile of a stream operation is
1698 -- verified at the freeze point, but we must detect the
1699 -- illegal specification of this aspect for a subtype now,
1700 -- to prevent malformed rep_item chains.
1702 if (A_Id = Aspect_Input or else
1703 A_Id = Aspect_Output or else
1704 A_Id = Aspect_Read or else
1705 A_Id = Aspect_Write)
1706 and not Is_First_Subtype (E)
1707 then
1708 Error_Msg_N
1709 ("local name must be a first subtype", Aspect);
1710 goto Continue;
1711 end if;
1713 -- Construct the attribute definition clause
1715 Aitem :=
1716 Make_Attribute_Definition_Clause (Loc,
1717 Name => Ent,
1718 Chars => Chars (Id),
1719 Expression => Relocate_Node (Expr));
1721 -- If the address is specified, then we treat the entity as
1722 -- referenced, to avoid spurious warnings. This is analogous
1723 -- to what is done with an attribute definition clause, but
1724 -- here we don't want to generate a reference because this
1725 -- is the point of definition of the entity.
1727 if A_Id = Aspect_Address then
1728 Set_Referenced (E);
1729 end if;
1731 -- Case 2: Aspects corresponding to pragmas
1733 -- Case 2a: Aspects corresponding to pragmas with two
1734 -- arguments, where the first argument is a local name
1735 -- referring to the entity, and the second argument is the
1736 -- aspect definition expression.
1738 -- Linker_Section/Suppress/Unsuppress
1740 when Aspect_Linker_Section |
1741 Aspect_Suppress |
1742 Aspect_Unsuppress =>
1744 Make_Aitem_Pragma
1745 (Pragma_Argument_Associations => New_List (
1746 Make_Pragma_Argument_Association (Loc,
1747 Expression => New_Occurrence_Of (E, Loc)),
1748 Make_Pragma_Argument_Association (Sloc (Expr),
1749 Expression => Relocate_Node (Expr))),
1750 Pragma_Name => Chars (Id));
1752 -- Synchronization
1754 -- Corresponds to pragma Implemented, construct the pragma
1756 when Aspect_Synchronization =>
1757 Make_Aitem_Pragma
1758 (Pragma_Argument_Associations => New_List (
1759 Make_Pragma_Argument_Association (Loc,
1760 Expression => New_Occurrence_Of (E, Loc)),
1761 Make_Pragma_Argument_Association (Sloc (Expr),
1762 Expression => Relocate_Node (Expr))),
1763 Pragma_Name => Name_Implemented);
1765 -- Attach_Handler
1767 when Aspect_Attach_Handler =>
1768 Make_Aitem_Pragma
1769 (Pragma_Argument_Associations => New_List (
1770 Make_Pragma_Argument_Association (Sloc (Ent),
1771 Expression => Ent),
1772 Make_Pragma_Argument_Association (Sloc (Expr),
1773 Expression => Relocate_Node (Expr))),
1774 Pragma_Name => Name_Attach_Handler);
1776 -- We need to insert this pragma into the tree to get proper
1777 -- processing and to look valid from a placement viewpoint.
1779 Insert_Pragma (Aitem);
1780 goto Continue;
1782 -- Dynamic_Predicate, Predicate, Static_Predicate
1784 when Aspect_Dynamic_Predicate |
1785 Aspect_Predicate |
1786 Aspect_Static_Predicate =>
1788 -- These aspects apply only to subtypes
1790 if not Is_Type (E) then
1791 Error_Msg_N
1792 ("predicate can only be specified for a subtype",
1793 Aspect);
1794 goto Continue;
1796 elsif Is_Incomplete_Type (E) then
1797 Error_Msg_N
1798 ("predicate cannot apply to incomplete view", Aspect);
1799 goto Continue;
1800 end if;
1802 -- Construct the pragma (always a pragma Predicate, with
1803 -- flags recording whether it is static/dynamic). We also
1804 -- set flags recording this in the type itself.
1806 Make_Aitem_Pragma
1807 (Pragma_Argument_Associations => New_List (
1808 Make_Pragma_Argument_Association (Sloc (Ent),
1809 Expression => Ent),
1810 Make_Pragma_Argument_Association (Sloc (Expr),
1811 Expression => Relocate_Node (Expr))),
1812 Pragma_Name => Name_Predicate);
1814 -- Mark type has predicates, and remember what kind of
1815 -- aspect lead to this predicate (we need this to access
1816 -- the right set of check policies later on).
1818 Set_Has_Predicates (E);
1820 if A_Id = Aspect_Dynamic_Predicate then
1821 Set_Has_Dynamic_Predicate_Aspect (E);
1822 elsif A_Id = Aspect_Static_Predicate then
1823 Set_Has_Static_Predicate_Aspect (E);
1824 end if;
1826 -- If the type is private, indicate that its completion
1827 -- has a freeze node, because that is the one that will
1828 -- be visible at freeze time.
1830 if Is_Private_Type (E) and then Present (Full_View (E)) then
1831 Set_Has_Predicates (Full_View (E));
1833 if A_Id = Aspect_Dynamic_Predicate then
1834 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
1835 elsif A_Id = Aspect_Static_Predicate then
1836 Set_Has_Static_Predicate_Aspect (Full_View (E));
1837 end if;
1839 Set_Has_Delayed_Aspects (Full_View (E));
1840 Ensure_Freeze_Node (Full_View (E));
1841 end if;
1843 -- Case 2b: Aspects corresponding to pragmas with two
1844 -- arguments, where the second argument is a local name
1845 -- referring to the entity, and the first argument is the
1846 -- aspect definition expression.
1848 -- Convention
1850 when Aspect_Convention =>
1852 -- The aspect may be part of the specification of an import
1853 -- or export pragma. Scan the aspect list to gather the
1854 -- other components, if any. The name of the generated
1855 -- pragma is one of Convention/Import/Export.
1857 declare
1858 Args : constant List_Id := New_List (
1859 Make_Pragma_Argument_Association (Sloc (Expr),
1860 Expression => Relocate_Node (Expr)),
1861 Make_Pragma_Argument_Association (Sloc (Ent),
1862 Expression => Ent));
1864 Imp_Exp_Seen : Boolean := False;
1865 -- Flag set when aspect Import or Export has been seen
1867 Imp_Seen : Boolean := False;
1868 -- Flag set when aspect Import has been seen
1870 Asp : Node_Id;
1871 Asp_Nam : Name_Id;
1872 Extern_Arg : Node_Id;
1873 Link_Arg : Node_Id;
1874 Prag_Nam : Name_Id;
1876 begin
1877 Extern_Arg := Empty;
1878 Link_Arg := Empty;
1879 Prag_Nam := Chars (Id);
1881 Asp := First (L);
1882 while Present (Asp) loop
1883 Asp_Nam := Chars (Identifier (Asp));
1885 -- Aspects Import and Export take precedence over
1886 -- aspect Convention. As a result the generated pragma
1887 -- must carry the proper interfacing aspect's name.
1889 if Nam_In (Asp_Nam, Name_Import, Name_Export) then
1890 if Imp_Exp_Seen then
1891 Error_Msg_N ("conflicting", Asp);
1892 else
1893 Imp_Exp_Seen := True;
1895 if Asp_Nam = Name_Import then
1896 Imp_Seen := True;
1897 end if;
1898 end if;
1900 Prag_Nam := Asp_Nam;
1902 -- Aspect External_Name adds an extra argument to the
1903 -- generated pragma.
1905 elsif Asp_Nam = Name_External_Name then
1906 Extern_Arg :=
1907 Make_Pragma_Argument_Association (Loc,
1908 Chars => Asp_Nam,
1909 Expression => Relocate_Node (Expression (Asp)));
1911 -- Aspect Link_Name adds an extra argument to the
1912 -- generated pragma.
1914 elsif Asp_Nam = Name_Link_Name then
1915 Link_Arg :=
1916 Make_Pragma_Argument_Association (Loc,
1917 Chars => Asp_Nam,
1918 Expression => Relocate_Node (Expression (Asp)));
1919 end if;
1921 Next (Asp);
1922 end loop;
1924 -- Assemble the full argument list
1926 if Present (Extern_Arg) then
1927 Append_To (Args, Extern_Arg);
1928 end if;
1930 if Present (Link_Arg) then
1931 Append_To (Args, Link_Arg);
1932 end if;
1934 Make_Aitem_Pragma
1935 (Pragma_Argument_Associations => Args,
1936 Pragma_Name => Prag_Nam);
1938 -- Store the generated pragma Import in the related
1939 -- subprogram.
1941 if Imp_Seen and then Is_Subprogram (E) then
1942 Set_Import_Pragma (E, Aitem);
1943 end if;
1944 end;
1946 -- CPU, Interrupt_Priority, Priority
1948 -- These three aspects can be specified for a subprogram spec
1949 -- or body, in which case we analyze the expression and export
1950 -- the value of the aspect.
1952 -- Previously, we generated an equivalent pragma for bodies
1953 -- (note that the specs cannot contain these pragmas). The
1954 -- pragma was inserted ahead of local declarations, rather than
1955 -- after the body. This leads to a certain duplication between
1956 -- the processing performed for the aspect and the pragma, but
1957 -- given the straightforward handling required it is simpler
1958 -- to duplicate than to translate the aspect in the spec into
1959 -- a pragma in the declarative part of the body.
1961 when Aspect_CPU |
1962 Aspect_Interrupt_Priority |
1963 Aspect_Priority =>
1965 if Nkind_In (N, N_Subprogram_Body,
1966 N_Subprogram_Declaration)
1967 then
1968 -- Analyze the aspect expression
1970 Analyze_And_Resolve (Expr, Standard_Integer);
1972 -- Interrupt_Priority aspect not allowed for main
1973 -- subprograms. ARM D.1 does not forbid this explicitly,
1974 -- but ARM J.15.11 (6/3) does not permit pragma
1975 -- Interrupt_Priority for subprograms.
1977 if A_Id = Aspect_Interrupt_Priority then
1978 Error_Msg_N
1979 ("Interrupt_Priority aspect cannot apply to "
1980 & "subprogram", Expr);
1982 -- The expression must be static
1984 elsif not Is_OK_Static_Expression (Expr) then
1985 Flag_Non_Static_Expr
1986 ("aspect requires static expression!", Expr);
1988 -- Check whether this is the main subprogram. Issue a
1989 -- warning only if it is obviously not a main program
1990 -- (when it has parameters or when the subprogram is
1991 -- within a package).
1993 elsif Present (Parameter_Specifications
1994 (Specification (N)))
1995 or else not Is_Compilation_Unit (Defining_Entity (N))
1996 then
1997 -- See ARM D.1 (14/3) and D.16 (12/3)
1999 Error_Msg_N
2000 ("aspect applied to subprogram other than the "
2001 & "main subprogram has no effect??", Expr);
2003 -- Otherwise check in range and export the value
2005 -- For the CPU aspect
2007 elsif A_Id = Aspect_CPU then
2008 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2010 -- Value is correct so we export the value to make
2011 -- it available at execution time.
2013 Set_Main_CPU
2014 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2016 else
2017 Error_Msg_N
2018 ("main subprogram CPU is out of range", Expr);
2019 end if;
2021 -- For the Priority aspect
2023 elsif A_Id = Aspect_Priority then
2024 if Is_In_Range (Expr, RTE (RE_Priority)) then
2026 -- Value is correct so we export the value to make
2027 -- it available at execution time.
2029 Set_Main_Priority
2030 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2032 -- Ignore pragma if Relaxed_RM_Semantics to support
2033 -- other targets/non GNAT compilers.
2035 elsif not Relaxed_RM_Semantics then
2036 Error_Msg_N
2037 ("main subprogram priority is out of range",
2038 Expr);
2039 end if;
2040 end if;
2042 -- Load an arbitrary entity from System.Tasking.Stages
2043 -- or System.Tasking.Restricted.Stages (depending on
2044 -- the supported profile) to make sure that one of these
2045 -- packages is implicitly with'ed, since we need to have
2046 -- the tasking run time active for the pragma Priority to
2047 -- have any effect. Previously we with'ed the package
2048 -- System.Tasking, but this package does not trigger the
2049 -- required initialization of the run-time library.
2051 declare
2052 Discard : Entity_Id;
2053 begin
2054 if Restricted_Profile then
2055 Discard := RTE (RE_Activate_Restricted_Tasks);
2056 else
2057 Discard := RTE (RE_Activate_Tasks);
2058 end if;
2059 end;
2061 -- Handling for these Aspects in subprograms is complete
2063 goto Continue;
2065 -- For tasks
2067 else
2068 -- Pass the aspect as an attribute
2070 Aitem :=
2071 Make_Attribute_Definition_Clause (Loc,
2072 Name => Ent,
2073 Chars => Chars (Id),
2074 Expression => Relocate_Node (Expr));
2075 end if;
2077 -- Warnings
2079 when Aspect_Warnings =>
2080 Make_Aitem_Pragma
2081 (Pragma_Argument_Associations => New_List (
2082 Make_Pragma_Argument_Association (Sloc (Expr),
2083 Expression => Relocate_Node (Expr)),
2084 Make_Pragma_Argument_Association (Loc,
2085 Expression => New_Occurrence_Of (E, Loc))),
2086 Pragma_Name => Chars (Id));
2088 -- Case 2c: Aspects corresponding to pragmas with three
2089 -- arguments.
2091 -- Invariant aspects have a first argument that references the
2092 -- entity, a second argument that is the expression and a third
2093 -- argument that is an appropriate message.
2095 -- Invariant, Type_Invariant
2097 when Aspect_Invariant |
2098 Aspect_Type_Invariant =>
2100 -- Analysis of the pragma will verify placement legality:
2101 -- an invariant must apply to a private type, or appear in
2102 -- the private part of a spec and apply to a completion.
2104 Make_Aitem_Pragma
2105 (Pragma_Argument_Associations => New_List (
2106 Make_Pragma_Argument_Association (Sloc (Ent),
2107 Expression => Ent),
2108 Make_Pragma_Argument_Association (Sloc (Expr),
2109 Expression => Relocate_Node (Expr))),
2110 Pragma_Name => Name_Invariant);
2112 -- Add message unless exception messages are suppressed
2114 if not Opt.Exception_Locations_Suppressed then
2115 Append_To (Pragma_Argument_Associations (Aitem),
2116 Make_Pragma_Argument_Association (Eloc,
2117 Chars => Name_Message,
2118 Expression =>
2119 Make_String_Literal (Eloc,
2120 Strval => "failed invariant from "
2121 & Build_Location_String (Eloc))));
2122 end if;
2124 -- For Invariant case, insert immediately after the entity
2125 -- declaration. We do not have to worry about delay issues
2126 -- since the pragma processing takes care of this.
2128 Delay_Required := False;
2130 -- Case 2d : Aspects that correspond to a pragma with one
2131 -- argument.
2133 -- Abstract_State
2135 -- Aspect Abstract_State introduces implicit declarations for
2136 -- all state abstraction entities it defines. To emulate this
2137 -- behavior, insert the pragma at the beginning of the visible
2138 -- declarations of the related package so that it is analyzed
2139 -- immediately.
2141 when Aspect_Abstract_State => Abstract_State : declare
2142 Context : Node_Id := N;
2143 Decl : Node_Id;
2144 Decls : List_Id;
2146 begin
2147 -- When aspect Abstract_State appears on a generic package,
2148 -- it is propageted to the package instance. The context in
2149 -- this case is the instance spec.
2151 if Nkind (Context) = N_Package_Instantiation then
2152 Context := Instance_Spec (Context);
2153 end if;
2155 if Nkind_In (Context, N_Generic_Package_Declaration,
2156 N_Package_Declaration)
2157 then
2158 Make_Aitem_Pragma
2159 (Pragma_Argument_Associations => New_List (
2160 Make_Pragma_Argument_Association (Loc,
2161 Expression => Relocate_Node (Expr))),
2162 Pragma_Name => Name_Abstract_State);
2163 Decorate (Aspect, Aitem);
2165 Decls := Visible_Declarations (Specification (Context));
2167 -- In general pragma Abstract_State must be at the top
2168 -- of the existing visible declarations to emulate its
2169 -- source counterpart. The only exception to this is a
2170 -- generic instance in which case the pragma must be
2171 -- inserted after the association renamings.
2173 if Present (Decls) then
2174 Decl := First (Decls);
2176 -- The visible declarations of a generic instance have
2177 -- the following structure:
2179 -- <renamings of generic formals>
2180 -- <renamings of internally-generated spec and body>
2181 -- <first source declaration>
2183 -- The pragma must be inserted before the first source
2184 -- declaration, skip the instance "header".
2186 if Is_Generic_Instance (Defining_Entity (Context)) then
2187 while Present (Decl)
2188 and then not Comes_From_Source (Decl)
2189 loop
2190 Decl := Next (Decl);
2191 end loop;
2192 end if;
2194 -- When aspects Abstract_State, Ghost,
2195 -- Initial_Condition and Initializes are out of order,
2196 -- ensure that pragma SPARK_Mode is always at the top
2197 -- of the declarations to properly enabled/suppress
2198 -- errors.
2200 Insert_After_SPARK_Mode
2201 (Prag => Aitem,
2202 Ins_Nod => Decl,
2203 Decls => Decls);
2205 -- Otherwise the pragma forms a new declarative list
2207 else
2208 Set_Visible_Declarations
2209 (Specification (Context), New_List (Aitem));
2210 end if;
2212 else
2213 Error_Msg_NE
2214 ("aspect & must apply to a package declaration",
2215 Aspect, Id);
2216 end if;
2218 goto Continue;
2219 end Abstract_State;
2221 -- Aspect Default_Internal_Condition is never delayed because
2222 -- it is equivalent to a source pragma which appears after the
2223 -- related private type. To deal with forward references, the
2224 -- generated pragma is stored in the rep chain of the related
2225 -- private type as types do not carry contracts. The pragma is
2226 -- wrapped inside of a procedure at the freeze point of the
2227 -- private type's full view.
2229 when Aspect_Default_Initial_Condition =>
2230 Make_Aitem_Pragma
2231 (Pragma_Argument_Associations => New_List (
2232 Make_Pragma_Argument_Association (Loc,
2233 Expression => Relocate_Node (Expr))),
2234 Pragma_Name =>
2235 Name_Default_Initial_Condition);
2237 Decorate (Aspect, Aitem);
2238 Insert_Pragma (Aitem);
2239 goto Continue;
2241 -- Default_Storage_Pool
2243 when Aspect_Default_Storage_Pool =>
2244 Make_Aitem_Pragma
2245 (Pragma_Argument_Associations => New_List (
2246 Make_Pragma_Argument_Association (Loc,
2247 Expression => Relocate_Node (Expr))),
2248 Pragma_Name =>
2249 Name_Default_Storage_Pool);
2251 Decorate (Aspect, Aitem);
2252 Insert_Pragma (Aitem);
2253 goto Continue;
2255 -- Depends
2257 -- Aspect Depends is never delayed because it is equivalent to
2258 -- a source pragma which appears after the related subprogram.
2259 -- To deal with forward references, the generated pragma is
2260 -- stored in the contract of the related subprogram and later
2261 -- analyzed at the end of the declarative region. See routine
2262 -- Analyze_Depends_In_Decl_Part for details.
2264 when Aspect_Depends =>
2265 Make_Aitem_Pragma
2266 (Pragma_Argument_Associations => New_List (
2267 Make_Pragma_Argument_Association (Loc,
2268 Expression => Relocate_Node (Expr))),
2269 Pragma_Name => Name_Depends);
2271 Decorate (Aspect, Aitem);
2272 Insert_Pragma (Aitem);
2273 goto Continue;
2275 -- Aspect Extensions_Visible is never delayed because it is
2276 -- equivalent to a source pragma which appears after the
2277 -- related subprogram.
2279 when Aspect_Extensions_Visible =>
2280 Make_Aitem_Pragma
2281 (Pragma_Argument_Associations => New_List (
2282 Make_Pragma_Argument_Association (Loc,
2283 Expression => Relocate_Node (Expr))),
2284 Pragma_Name => Name_Extensions_Visible);
2286 Decorate (Aspect, Aitem);
2287 Insert_Pragma (Aitem);
2288 goto Continue;
2290 -- Aspect Ghost is never delayed because it is equivalent to a
2291 -- source pragma which appears at the top of [generic] package
2292 -- declarations or after an object, a [generic] subprogram, or
2293 -- a type declaration.
2295 when Aspect_Ghost => Ghost : declare
2296 Decls : List_Id;
2298 begin
2299 Make_Aitem_Pragma
2300 (Pragma_Argument_Associations => New_List (
2301 Make_Pragma_Argument_Association (Loc,
2302 Expression => Relocate_Node (Expr))),
2303 Pragma_Name => Name_Ghost);
2305 Decorate (Aspect, Aitem);
2307 -- When the aspect applies to a [generic] package, insert
2308 -- the pragma at the top of the visible declarations. This
2309 -- emulates the placement of a source pragma.
2311 if Nkind_In (N, N_Generic_Package_Declaration,
2312 N_Package_Declaration)
2313 then
2314 Decls := Visible_Declarations (Specification (N));
2316 if No (Decls) then
2317 Decls := New_List;
2318 Set_Visible_Declarations (N, Decls);
2319 end if;
2321 -- When aspects Abstract_State, Ghost, Initial_Condition
2322 -- and Initializes are out of order, ensure that pragma
2323 -- SPARK_Mode is always at the top of the declarations to
2324 -- properly enabled/suppress errors.
2326 Insert_After_SPARK_Mode
2327 (Prag => Aitem,
2328 Ins_Nod => First (Decls),
2329 Decls => Decls);
2331 -- Otherwise the context is an object, [generic] subprogram
2332 -- or type declaration.
2334 else
2335 Insert_Pragma (Aitem);
2336 end if;
2338 goto Continue;
2339 end Ghost;
2341 -- Global
2343 -- Aspect Global is never delayed because it is equivalent to
2344 -- a source pragma which appears after the related subprogram.
2345 -- To deal with forward references, the generated pragma is
2346 -- stored in the contract of the related subprogram and later
2347 -- analyzed at the end of the declarative region. See routine
2348 -- Analyze_Global_In_Decl_Part for details.
2350 when Aspect_Global =>
2351 Make_Aitem_Pragma
2352 (Pragma_Argument_Associations => New_List (
2353 Make_Pragma_Argument_Association (Loc,
2354 Expression => Relocate_Node (Expr))),
2355 Pragma_Name => Name_Global);
2357 Decorate (Aspect, Aitem);
2358 Insert_Pragma (Aitem);
2359 goto Continue;
2361 -- Initial_Condition
2363 -- Aspect Initial_Condition is never delayed because it is
2364 -- equivalent to a source pragma which appears after the
2365 -- related package. To deal with forward references, the
2366 -- generated pragma is stored in the contract of the related
2367 -- package and later analyzed at the end of the declarative
2368 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2369 -- for details.
2371 when Aspect_Initial_Condition => Initial_Condition : declare
2372 Context : Node_Id := N;
2373 Decls : List_Id;
2375 begin
2376 -- When aspect Initial_Condition appears on a generic
2377 -- package, it is propageted to the package instance. The
2378 -- context in this case is the instance spec.
2380 if Nkind (Context) = N_Package_Instantiation then
2381 Context := Instance_Spec (Context);
2382 end if;
2384 if Nkind_In (Context, N_Generic_Package_Declaration,
2385 N_Package_Declaration)
2386 then
2387 Decls := Visible_Declarations (Specification (Context));
2389 Make_Aitem_Pragma
2390 (Pragma_Argument_Associations => New_List (
2391 Make_Pragma_Argument_Association (Loc,
2392 Expression => Relocate_Node (Expr))),
2393 Pragma_Name =>
2394 Name_Initial_Condition);
2395 Decorate (Aspect, Aitem);
2397 if No (Decls) then
2398 Decls := New_List;
2399 Set_Visible_Declarations (Context, Decls);
2400 end if;
2402 -- When aspects Abstract_State, Ghost, Initial_Condition
2403 -- and Initializes are out of order, ensure that pragma
2404 -- SPARK_Mode is always at the top of the declarations to
2405 -- properly enabled/suppress errors.
2407 Insert_After_SPARK_Mode
2408 (Prag => Aitem,
2409 Ins_Nod => First (Decls),
2410 Decls => Decls);
2412 else
2413 Error_Msg_NE
2414 ("aspect & must apply to a package declaration",
2415 Aspect, Id);
2416 end if;
2418 goto Continue;
2419 end Initial_Condition;
2421 -- Initializes
2423 -- Aspect Initializes is never delayed because it is equivalent
2424 -- to a source pragma appearing after the related package. To
2425 -- deal with forward references, the generated pragma is stored
2426 -- in the contract of the related package and later analyzed at
2427 -- the end of the declarative region. For details, see routine
2428 -- Analyze_Initializes_In_Decl_Part.
2430 when Aspect_Initializes => Initializes : declare
2431 Context : Node_Id := N;
2432 Decls : List_Id;
2434 begin
2435 -- When aspect Initializes appears on a generic package,
2436 -- it is propageted to the package instance. The context
2437 -- in this case is the instance spec.
2439 if Nkind (Context) = N_Package_Instantiation then
2440 Context := Instance_Spec (Context);
2441 end if;
2443 if Nkind_In (Context, N_Generic_Package_Declaration,
2444 N_Package_Declaration)
2445 then
2446 Decls := Visible_Declarations (Specification (Context));
2448 Make_Aitem_Pragma
2449 (Pragma_Argument_Associations => New_List (
2450 Make_Pragma_Argument_Association (Loc,
2451 Expression => Relocate_Node (Expr))),
2452 Pragma_Name => Name_Initializes);
2453 Decorate (Aspect, Aitem);
2455 if No (Decls) then
2456 Decls := New_List;
2457 Set_Visible_Declarations (Context, Decls);
2458 end if;
2460 -- When aspects Abstract_State, Ghost, Initial_Condition
2461 -- and Initializes are out of order, ensure that pragma
2462 -- SPARK_Mode is always at the top of the declarations to
2463 -- properly enabled/suppress errors.
2465 Insert_After_SPARK_Mode
2466 (Prag => Aitem,
2467 Ins_Nod => First (Decls),
2468 Decls => Decls);
2470 else
2471 Error_Msg_NE
2472 ("aspect & must apply to a package declaration",
2473 Aspect, Id);
2474 end if;
2476 goto Continue;
2477 end Initializes;
2479 -- Obsolescent
2481 when Aspect_Obsolescent => declare
2482 Args : List_Id;
2484 begin
2485 if No (Expr) then
2486 Args := No_List;
2487 else
2488 Args := New_List (
2489 Make_Pragma_Argument_Association (Sloc (Expr),
2490 Expression => Relocate_Node (Expr)));
2491 end if;
2493 Make_Aitem_Pragma
2494 (Pragma_Argument_Associations => Args,
2495 Pragma_Name => Chars (Id));
2496 end;
2498 -- Part_Of
2500 when Aspect_Part_Of =>
2501 if Nkind_In (N, N_Object_Declaration,
2502 N_Package_Instantiation)
2503 then
2504 Make_Aitem_Pragma
2505 (Pragma_Argument_Associations => New_List (
2506 Make_Pragma_Argument_Association (Loc,
2507 Expression => Relocate_Node (Expr))),
2508 Pragma_Name => Name_Part_Of);
2510 else
2511 Error_Msg_NE
2512 ("aspect & must apply to a variable or package "
2513 & "instantiation", Aspect, Id);
2514 end if;
2516 -- SPARK_Mode
2518 when Aspect_SPARK_Mode => SPARK_Mode : declare
2519 Decls : List_Id;
2521 begin
2522 Make_Aitem_Pragma
2523 (Pragma_Argument_Associations => New_List (
2524 Make_Pragma_Argument_Association (Loc,
2525 Expression => Relocate_Node (Expr))),
2526 Pragma_Name => Name_SPARK_Mode);
2528 -- When the aspect appears on a package or a subprogram
2529 -- body, insert the generated pragma at the top of the body
2530 -- declarations to emulate the behavior of a source pragma.
2532 if Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
2533 Decorate (Aspect, Aitem);
2535 Decls := Declarations (N);
2537 if No (Decls) then
2538 Decls := New_List;
2539 Set_Declarations (N, Decls);
2540 end if;
2542 Prepend_To (Decls, Aitem);
2543 goto Continue;
2545 -- When the aspect is associated with a [generic] package
2546 -- declaration, insert the generated pragma at the top of
2547 -- the visible declarations to emulate the behavior of a
2548 -- source pragma.
2550 elsif Nkind_In (N, N_Generic_Package_Declaration,
2551 N_Package_Declaration)
2552 then
2553 Decorate (Aspect, Aitem);
2555 Decls := Visible_Declarations (Specification (N));
2557 if No (Decls) then
2558 Decls := New_List;
2559 Set_Visible_Declarations (Specification (N), Decls);
2560 end if;
2562 Prepend_To (Decls, Aitem);
2563 goto Continue;
2564 end if;
2565 end SPARK_Mode;
2567 -- Refined_Depends
2569 -- Aspect Refined_Depends is never delayed because it is
2570 -- equivalent to a source pragma which appears in the
2571 -- declarations of the related subprogram body. To deal with
2572 -- forward references, the generated pragma is stored in the
2573 -- contract of the related subprogram body and later analyzed
2574 -- at the end of the declarative region. For details, see
2575 -- routine Analyze_Refined_Depends_In_Decl_Part.
2577 when Aspect_Refined_Depends =>
2578 Make_Aitem_Pragma
2579 (Pragma_Argument_Associations => New_List (
2580 Make_Pragma_Argument_Association (Loc,
2581 Expression => Relocate_Node (Expr))),
2582 Pragma_Name => Name_Refined_Depends);
2584 Decorate (Aspect, Aitem);
2585 Insert_Pragma (Aitem);
2586 goto Continue;
2588 -- Refined_Global
2590 -- Aspect Refined_Global is never delayed because it is
2591 -- equivalent to a source pragma which appears in the
2592 -- declarations of the related subprogram body. To deal with
2593 -- forward references, the generated pragma is stored in the
2594 -- contract of the related subprogram body and later analyzed
2595 -- at the end of the declarative region. For details, see
2596 -- routine Analyze_Refined_Global_In_Decl_Part.
2598 when Aspect_Refined_Global =>
2599 Make_Aitem_Pragma
2600 (Pragma_Argument_Associations => New_List (
2601 Make_Pragma_Argument_Association (Loc,
2602 Expression => Relocate_Node (Expr))),
2603 Pragma_Name => Name_Refined_Global);
2605 Decorate (Aspect, Aitem);
2606 Insert_Pragma (Aitem);
2607 goto Continue;
2609 -- Refined_Post
2611 when Aspect_Refined_Post =>
2612 Make_Aitem_Pragma
2613 (Pragma_Argument_Associations => New_List (
2614 Make_Pragma_Argument_Association (Loc,
2615 Expression => Relocate_Node (Expr))),
2616 Pragma_Name => Name_Refined_Post);
2618 -- Refined_State
2620 when Aspect_Refined_State => Refined_State : declare
2621 Decls : List_Id;
2623 begin
2624 -- The corresponding pragma for Refined_State is inserted in
2625 -- the declarations of the related package body. This action
2626 -- synchronizes both the source and from-aspect versions of
2627 -- the pragma.
2629 if Nkind (N) = N_Package_Body then
2630 Decls := Declarations (N);
2632 Make_Aitem_Pragma
2633 (Pragma_Argument_Associations => New_List (
2634 Make_Pragma_Argument_Association (Loc,
2635 Expression => Relocate_Node (Expr))),
2636 Pragma_Name => Name_Refined_State);
2637 Decorate (Aspect, Aitem);
2639 if No (Decls) then
2640 Decls := New_List;
2641 Set_Declarations (N, Decls);
2642 end if;
2644 -- Pragma Refined_State must be inserted after pragma
2645 -- SPARK_Mode in the tree. This ensures that any error
2646 -- messages dependent on SPARK_Mode will be properly
2647 -- enabled/suppressed.
2649 Insert_After_SPARK_Mode
2650 (Prag => Aitem,
2651 Ins_Nod => First (Decls),
2652 Decls => Decls);
2654 else
2655 Error_Msg_NE
2656 ("aspect & must apply to a package body", Aspect, Id);
2657 end if;
2659 goto Continue;
2660 end Refined_State;
2662 -- Relative_Deadline
2664 when Aspect_Relative_Deadline =>
2665 Make_Aitem_Pragma
2666 (Pragma_Argument_Associations => New_List (
2667 Make_Pragma_Argument_Association (Loc,
2668 Expression => Relocate_Node (Expr))),
2669 Pragma_Name => Name_Relative_Deadline);
2671 -- If the aspect applies to a task, the corresponding pragma
2672 -- must appear within its declarations, not after.
2674 if Nkind (N) = N_Task_Type_Declaration then
2675 declare
2676 Def : Node_Id;
2677 V : List_Id;
2679 begin
2680 if No (Task_Definition (N)) then
2681 Set_Task_Definition (N,
2682 Make_Task_Definition (Loc,
2683 Visible_Declarations => New_List,
2684 End_Label => Empty));
2685 end if;
2687 Def := Task_Definition (N);
2688 V := Visible_Declarations (Def);
2689 if not Is_Empty_List (V) then
2690 Insert_Before (First (V), Aitem);
2692 else
2693 Set_Visible_Declarations (Def, New_List (Aitem));
2694 end if;
2696 goto Continue;
2697 end;
2698 end if;
2700 -- Case 2e: Annotate aspect
2702 when Aspect_Annotate =>
2703 declare
2704 Args : List_Id;
2705 Pargs : List_Id;
2706 Arg : Node_Id;
2708 begin
2709 -- The argument can be a single identifier
2711 if Nkind (Expr) = N_Identifier then
2713 -- One level of parens is allowed
2715 if Paren_Count (Expr) > 1 then
2716 Error_Msg_F ("extra parentheses ignored", Expr);
2717 end if;
2719 Set_Paren_Count (Expr, 0);
2721 -- Add the single item to the list
2723 Args := New_List (Expr);
2725 -- Otherwise we must have an aggregate
2727 elsif Nkind (Expr) = N_Aggregate then
2729 -- Must be positional
2731 if Present (Component_Associations (Expr)) then
2732 Error_Msg_F
2733 ("purely positional aggregate required", Expr);
2734 goto Continue;
2735 end if;
2737 -- Must not be parenthesized
2739 if Paren_Count (Expr) /= 0 then
2740 Error_Msg_F ("extra parentheses ignored", Expr);
2741 end if;
2743 -- List of arguments is list of aggregate expressions
2745 Args := Expressions (Expr);
2747 -- Anything else is illegal
2749 else
2750 Error_Msg_F ("wrong form for Annotate aspect", Expr);
2751 goto Continue;
2752 end if;
2754 -- Prepare pragma arguments
2756 Pargs := New_List;
2757 Arg := First (Args);
2758 while Present (Arg) loop
2759 Append_To (Pargs,
2760 Make_Pragma_Argument_Association (Sloc (Arg),
2761 Expression => Relocate_Node (Arg)));
2762 Next (Arg);
2763 end loop;
2765 Append_To (Pargs,
2766 Make_Pragma_Argument_Association (Sloc (Ent),
2767 Chars => Name_Entity,
2768 Expression => Ent));
2770 Make_Aitem_Pragma
2771 (Pragma_Argument_Associations => Pargs,
2772 Pragma_Name => Name_Annotate);
2773 end;
2775 -- Case 3 : Aspects that don't correspond to pragma/attribute
2776 -- definition clause.
2778 -- Case 3a: The aspects listed below don't correspond to
2779 -- pragmas/attributes but do require delayed analysis.
2781 -- Default_Value can only apply to a scalar type
2783 when Aspect_Default_Value =>
2784 if not Is_Scalar_Type (E) then
2785 Error_Msg_N
2786 ("aspect Default_Value must apply to a scalar type", N);
2787 end if;
2789 Aitem := Empty;
2791 -- Default_Component_Value can only apply to an array type
2792 -- with scalar components.
2794 when Aspect_Default_Component_Value =>
2795 if not (Is_Array_Type (E)
2796 and then Is_Scalar_Type (Component_Type (E)))
2797 then
2798 Error_Msg_N ("aspect Default_Component_Value can only "
2799 & "apply to an array of scalar components", N);
2800 end if;
2802 Aitem := Empty;
2804 -- Case 3b: The aspects listed below don't correspond to
2805 -- pragmas/attributes and don't need delayed analysis.
2807 -- Implicit_Dereference
2809 -- For Implicit_Dereference, External_Name and Link_Name, only
2810 -- the legality checks are done during the analysis, thus no
2811 -- delay is required.
2813 when Aspect_Implicit_Dereference =>
2814 Analyze_Aspect_Implicit_Dereference;
2815 goto Continue;
2817 -- External_Name, Link_Name
2819 when Aspect_External_Name |
2820 Aspect_Link_Name =>
2821 Analyze_Aspect_External_Or_Link_Name;
2822 goto Continue;
2824 -- Dimension
2826 when Aspect_Dimension =>
2827 Analyze_Aspect_Dimension (N, Id, Expr);
2828 goto Continue;
2830 -- Dimension_System
2832 when Aspect_Dimension_System =>
2833 Analyze_Aspect_Dimension_System (N, Id, Expr);
2834 goto Continue;
2836 -- Case 4: Aspects requiring special handling
2838 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
2839 -- pragmas take care of the delay.
2841 -- Pre/Post
2843 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
2844 -- with a first argument that is the expression, and a second
2845 -- argument that is an informative message if the test fails.
2846 -- This is inserted right after the declaration, to get the
2847 -- required pragma placement. The processing for the pragmas
2848 -- takes care of the required delay.
2850 when Pre_Post_Aspects => Pre_Post : declare
2851 Pname : Name_Id;
2853 begin
2854 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
2855 Pname := Name_Precondition;
2856 else
2857 Pname := Name_Postcondition;
2858 end if;
2860 -- If the expressions is of the form A and then B, then
2861 -- we generate separate Pre/Post aspects for the separate
2862 -- clauses. Since we allow multiple pragmas, there is no
2863 -- problem in allowing multiple Pre/Post aspects internally.
2864 -- These should be treated in reverse order (B first and
2865 -- A second) since they are later inserted just after N in
2866 -- the order they are treated. This way, the pragma for A
2867 -- ends up preceding the pragma for B, which may have an
2868 -- importance for the error raised (either constraint error
2869 -- or precondition error).
2871 -- We do not do this for Pre'Class, since we have to put
2872 -- these conditions together in a complex OR expression.
2874 -- We do not do this in ASIS mode, as ASIS relies on the
2875 -- original node representing the complete expression, when
2876 -- retrieving it through the source aspect table.
2878 if not ASIS_Mode
2879 and then (Pname = Name_Postcondition
2880 or else not Class_Present (Aspect))
2881 then
2882 while Nkind (Expr) = N_And_Then loop
2883 Insert_After (Aspect,
2884 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
2885 Identifier => Identifier (Aspect),
2886 Expression => Relocate_Node (Left_Opnd (Expr)),
2887 Class_Present => Class_Present (Aspect),
2888 Split_PPC => True));
2889 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
2890 Eloc := Sloc (Expr);
2891 end loop;
2892 end if;
2894 -- Build the precondition/postcondition pragma
2896 -- Add note about why we do NOT need Copy_Tree here???
2898 Make_Aitem_Pragma
2899 (Pragma_Argument_Associations => New_List (
2900 Make_Pragma_Argument_Association (Eloc,
2901 Chars => Name_Check,
2902 Expression => Relocate_Node (Expr))),
2903 Pragma_Name => Pname);
2905 -- Add message unless exception messages are suppressed
2907 if not Opt.Exception_Locations_Suppressed then
2908 Append_To (Pragma_Argument_Associations (Aitem),
2909 Make_Pragma_Argument_Association (Eloc,
2910 Chars => Name_Message,
2911 Expression =>
2912 Make_String_Literal (Eloc,
2913 Strval => "failed "
2914 & Get_Name_String (Pname)
2915 & " from "
2916 & Build_Location_String (Eloc))));
2917 end if;
2919 Set_Is_Delayed_Aspect (Aspect);
2921 -- For Pre/Post cases, insert immediately after the entity
2922 -- declaration, since that is the required pragma placement.
2923 -- Note that for these aspects, we do not have to worry
2924 -- about delay issues, since the pragmas themselves deal
2925 -- with delay of visibility for the expression analysis.
2927 Insert_Pragma (Aitem);
2928 goto Continue;
2929 end Pre_Post;
2931 -- Test_Case
2933 when Aspect_Test_Case => Test_Case : declare
2934 Args : List_Id;
2935 Comp_Expr : Node_Id;
2936 Comp_Assn : Node_Id;
2937 New_Expr : Node_Id;
2939 begin
2940 Args := New_List;
2942 if Nkind (Parent (N)) = N_Compilation_Unit then
2943 Error_Msg_Name_1 := Nam;
2944 Error_Msg_N ("incorrect placement of aspect `%`", E);
2945 goto Continue;
2946 end if;
2948 if Nkind (Expr) /= N_Aggregate then
2949 Error_Msg_Name_1 := Nam;
2950 Error_Msg_NE
2951 ("wrong syntax for aspect `%` for &", Id, E);
2952 goto Continue;
2953 end if;
2955 -- Make pragma expressions refer to the original aspect
2956 -- expressions through the Original_Node link. This is used
2957 -- in semantic analysis for ASIS mode, so that the original
2958 -- expression also gets analyzed.
2960 Comp_Expr := First (Expressions (Expr));
2961 while Present (Comp_Expr) loop
2962 New_Expr := Relocate_Node (Comp_Expr);
2963 Set_Original_Node (New_Expr, Comp_Expr);
2964 Append_To (Args,
2965 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
2966 Expression => New_Expr));
2967 Next (Comp_Expr);
2968 end loop;
2970 Comp_Assn := First (Component_Associations (Expr));
2971 while Present (Comp_Assn) loop
2972 if List_Length (Choices (Comp_Assn)) /= 1
2973 or else
2974 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
2975 then
2976 Error_Msg_Name_1 := Nam;
2977 Error_Msg_NE
2978 ("wrong syntax for aspect `%` for &", Id, E);
2979 goto Continue;
2980 end if;
2982 New_Expr := Relocate_Node (Expression (Comp_Assn));
2983 Set_Original_Node (New_Expr, Expression (Comp_Assn));
2984 Append_To (Args,
2985 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
2986 Chars => Chars (First (Choices (Comp_Assn))),
2987 Expression => New_Expr));
2988 Next (Comp_Assn);
2989 end loop;
2991 -- Build the test-case pragma
2993 Make_Aitem_Pragma
2994 (Pragma_Argument_Associations => Args,
2995 Pragma_Name => Nam);
2996 end Test_Case;
2998 -- Contract_Cases
3000 when Aspect_Contract_Cases =>
3001 Make_Aitem_Pragma
3002 (Pragma_Argument_Associations => New_List (
3003 Make_Pragma_Argument_Association (Loc,
3004 Expression => Relocate_Node (Expr))),
3005 Pragma_Name => Nam);
3007 Decorate (Aspect, Aitem);
3008 Insert_Pragma (Aitem);
3009 goto Continue;
3011 -- Case 5: Special handling for aspects with an optional
3012 -- boolean argument.
3014 -- In the general case, the corresponding pragma cannot be
3015 -- generated yet because the evaluation of the boolean needs
3016 -- to be delayed till the freeze point.
3018 when Boolean_Aspects |
3019 Library_Unit_Aspects =>
3021 Set_Is_Boolean_Aspect (Aspect);
3023 -- Lock_Free aspect only apply to protected objects
3025 if A_Id = Aspect_Lock_Free then
3026 if Ekind (E) /= E_Protected_Type then
3027 Error_Msg_Name_1 := Nam;
3028 Error_Msg_N
3029 ("aspect % only applies to a protected object",
3030 Aspect);
3032 else
3033 -- Set the Uses_Lock_Free flag to True if there is no
3034 -- expression or if the expression is True. The
3035 -- evaluation of this aspect should be delayed to the
3036 -- freeze point (why???)
3038 if No (Expr)
3039 or else Is_True (Static_Boolean (Expr))
3040 then
3041 Set_Uses_Lock_Free (E);
3042 end if;
3044 Record_Rep_Item (E, Aspect);
3045 end if;
3047 goto Continue;
3049 elsif A_Id = Aspect_Import or else A_Id = Aspect_Export then
3051 -- For the case of aspects Import and Export, we don't
3052 -- consider that we know the entity is never set in the
3053 -- source, since it is is likely modified outside the
3054 -- program.
3056 -- Note: one might think that the analysis of the
3057 -- resulting pragma would take care of that, but
3058 -- that's not the case since it won't be from source.
3060 if Ekind (E) = E_Variable then
3061 Set_Never_Set_In_Source (E, False);
3062 end if;
3064 -- In older versions of Ada the corresponding pragmas
3065 -- specified a Convention. In Ada 2012 the convention is
3066 -- specified as a separate aspect, and it is optional,
3067 -- given that it defaults to Convention_Ada. The code
3068 -- that verifed that there was a matching convention
3069 -- is now obsolete.
3071 -- Resolve the expression of an Import or Export here,
3072 -- and require it to be of type Boolean and static. This
3073 -- is not quite right, because in general this should be
3074 -- delayed, but that seems tricky for these, because
3075 -- normally Boolean aspects are replaced with pragmas at
3076 -- the freeze point (in Make_Pragma_From_Boolean_Aspect),
3077 -- but in the case of these aspects we can't generate
3078 -- a simple pragma with just the entity name. ???
3080 if not Present (Expr)
3081 or else Is_True (Static_Boolean (Expr))
3082 then
3083 if A_Id = Aspect_Import then
3084 Set_Is_Imported (E);
3086 -- An imported entity cannot have an explicit
3087 -- initialization.
3089 if Nkind (N) = N_Object_Declaration
3090 and then Present (Expression (N))
3091 then
3092 Error_Msg_N
3093 ("imported entities cannot be initialized "
3094 & "(RM B.1(24))", Expression (N));
3095 end if;
3097 elsif A_Id = Aspect_Export then
3098 Set_Is_Exported (E);
3099 end if;
3100 end if;
3102 goto Continue;
3103 end if;
3105 -- Library unit aspects require special handling in the case
3106 -- of a package declaration, the pragma needs to be inserted
3107 -- in the list of declarations for the associated package.
3108 -- There is no issue of visibility delay for these aspects.
3110 if A_Id in Library_Unit_Aspects
3111 and then
3112 Nkind_In (N, N_Package_Declaration,
3113 N_Generic_Package_Declaration)
3114 and then Nkind (Parent (N)) /= N_Compilation_Unit
3116 -- Aspect is legal on a local instantiation of a library-
3117 -- level generic unit.
3119 and then not Is_Generic_Instance (Defining_Entity (N))
3120 then
3121 Error_Msg_N
3122 ("incorrect context for library unit aspect&", Id);
3123 goto Continue;
3124 end if;
3126 -- External property aspects are Boolean by nature, but
3127 -- their pragmas must contain two arguments, the second
3128 -- being the optional Boolean expression.
3130 if A_Id = Aspect_Async_Readers or else
3131 A_Id = Aspect_Async_Writers or else
3132 A_Id = Aspect_Effective_Reads or else
3133 A_Id = Aspect_Effective_Writes
3134 then
3135 declare
3136 Args : List_Id;
3138 begin
3139 -- The first argument of the external property pragma
3140 -- is the related object.
3142 Args :=
3143 New_List (
3144 Make_Pragma_Argument_Association (Sloc (Ent),
3145 Expression => Ent));
3147 -- The second argument is the optional Boolean
3148 -- expression which must be propagated even if it
3149 -- evaluates to False as this has special semantic
3150 -- meaning.
3152 if Present (Expr) then
3153 Append_To (Args,
3154 Make_Pragma_Argument_Association (Loc,
3155 Expression => Relocate_Node (Expr)));
3156 end if;
3158 Make_Aitem_Pragma
3159 (Pragma_Argument_Associations => Args,
3160 Pragma_Name => Nam);
3161 end;
3163 -- Cases where we do not delay, includes all cases where the
3164 -- expression is missing other than the above cases.
3166 elsif not Delay_Required or else No (Expr) then
3167 Make_Aitem_Pragma
3168 (Pragma_Argument_Associations => New_List (
3169 Make_Pragma_Argument_Association (Sloc (Ent),
3170 Expression => Ent)),
3171 Pragma_Name => Chars (Id));
3172 Delay_Required := False;
3174 -- In general cases, the corresponding pragma/attribute
3175 -- definition clause will be inserted later at the freezing
3176 -- point, and we do not need to build it now.
3178 else
3179 Aitem := Empty;
3180 end if;
3182 -- Storage_Size
3184 -- This is special because for access types we need to generate
3185 -- an attribute definition clause. This also works for single
3186 -- task declarations, but it does not work for task type
3187 -- declarations, because we have the case where the expression
3188 -- references a discriminant of the task type. That can't use
3189 -- an attribute definition clause because we would not have
3190 -- visibility on the discriminant. For that case we must
3191 -- generate a pragma in the task definition.
3193 when Aspect_Storage_Size =>
3195 -- Task type case
3197 if Ekind (E) = E_Task_Type then
3198 declare
3199 Decl : constant Node_Id := Declaration_Node (E);
3201 begin
3202 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3204 -- If no task definition, create one
3206 if No (Task_Definition (Decl)) then
3207 Set_Task_Definition (Decl,
3208 Make_Task_Definition (Loc,
3209 Visible_Declarations => Empty_List,
3210 End_Label => Empty));
3211 end if;
3213 -- Create a pragma and put it at the start of the task
3214 -- definition for the task type declaration.
3216 Make_Aitem_Pragma
3217 (Pragma_Argument_Associations => New_List (
3218 Make_Pragma_Argument_Association (Loc,
3219 Expression => Relocate_Node (Expr))),
3220 Pragma_Name => Name_Storage_Size);
3222 Prepend
3223 (Aitem,
3224 Visible_Declarations (Task_Definition (Decl)));
3225 goto Continue;
3226 end;
3228 -- All other cases, generate attribute definition
3230 else
3231 Aitem :=
3232 Make_Attribute_Definition_Clause (Loc,
3233 Name => Ent,
3234 Chars => Chars (Id),
3235 Expression => Relocate_Node (Expr));
3236 end if;
3237 end case;
3239 -- Attach the corresponding pragma/attribute definition clause to
3240 -- the aspect specification node.
3242 if Present (Aitem) then
3243 Set_From_Aspect_Specification (Aitem);
3244 end if;
3246 -- In the context of a compilation unit, we directly put the
3247 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3248 -- node (no delay is required here) except for aspects on a
3249 -- subprogram body (see below) and a generic package, for which we
3250 -- need to introduce the pragma before building the generic copy
3251 -- (see sem_ch12), and for package instantiations, where the
3252 -- library unit pragmas are better handled early.
3254 if Nkind (Parent (N)) = N_Compilation_Unit
3255 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3256 then
3257 declare
3258 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
3260 begin
3261 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
3263 -- For a Boolean aspect, create the corresponding pragma if
3264 -- no expression or if the value is True.
3266 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
3267 if Is_True (Static_Boolean (Expr)) then
3268 Make_Aitem_Pragma
3269 (Pragma_Argument_Associations => New_List (
3270 Make_Pragma_Argument_Association (Sloc (Ent),
3271 Expression => Ent)),
3272 Pragma_Name => Chars (Id));
3274 Set_From_Aspect_Specification (Aitem, True);
3275 Set_Corresponding_Aspect (Aitem, Aspect);
3277 else
3278 goto Continue;
3279 end if;
3280 end if;
3282 -- If the aspect is on a subprogram body (relevant aspect
3283 -- is Inline), add the pragma in front of the declarations.
3285 if Nkind (N) = N_Subprogram_Body then
3286 if No (Declarations (N)) then
3287 Set_Declarations (N, New_List);
3288 end if;
3290 Prepend (Aitem, Declarations (N));
3292 elsif Nkind (N) = N_Generic_Package_Declaration then
3293 if No (Visible_Declarations (Specification (N))) then
3294 Set_Visible_Declarations (Specification (N), New_List);
3295 end if;
3297 Prepend (Aitem,
3298 Visible_Declarations (Specification (N)));
3300 elsif Nkind (N) = N_Package_Instantiation then
3301 declare
3302 Spec : constant Node_Id :=
3303 Specification (Instance_Spec (N));
3304 begin
3305 if No (Visible_Declarations (Spec)) then
3306 Set_Visible_Declarations (Spec, New_List);
3307 end if;
3309 Prepend (Aitem, Visible_Declarations (Spec));
3310 end;
3312 else
3313 if No (Pragmas_After (Aux)) then
3314 Set_Pragmas_After (Aux, New_List);
3315 end if;
3317 Append (Aitem, Pragmas_After (Aux));
3318 end if;
3320 goto Continue;
3321 end;
3322 end if;
3324 -- The evaluation of the aspect is delayed to the freezing point.
3325 -- The pragma or attribute clause if there is one is then attached
3326 -- to the aspect specification which is put in the rep item list.
3328 if Delay_Required then
3329 if Present (Aitem) then
3330 Set_Is_Delayed_Aspect (Aitem);
3331 Set_Aspect_Rep_Item (Aspect, Aitem);
3332 Set_Parent (Aitem, Aspect);
3333 end if;
3335 Set_Is_Delayed_Aspect (Aspect);
3337 -- In the case of Default_Value, link the aspect to base type
3338 -- as well, even though it appears on a first subtype. This is
3339 -- mandated by the semantics of the aspect. Do not establish
3340 -- the link when processing the base type itself as this leads
3341 -- to a rep item circularity. Verify that we are dealing with
3342 -- a scalar type to prevent cascaded errors.
3344 if A_Id = Aspect_Default_Value
3345 and then Is_Scalar_Type (E)
3346 and then Base_Type (E) /= E
3347 then
3348 Set_Has_Delayed_Aspects (Base_Type (E));
3349 Record_Rep_Item (Base_Type (E), Aspect);
3350 end if;
3352 Set_Has_Delayed_Aspects (E);
3353 Record_Rep_Item (E, Aspect);
3355 -- When delay is not required and the context is a package or a
3356 -- subprogram body, insert the pragma in the body declarations.
3358 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
3359 if No (Declarations (N)) then
3360 Set_Declarations (N, New_List);
3361 end if;
3363 -- The pragma is added before source declarations
3365 Prepend_To (Declarations (N), Aitem);
3367 -- When delay is not required and the context is not a compilation
3368 -- unit, we simply insert the pragma/attribute definition clause
3369 -- in sequence.
3371 else
3372 Insert_After (Ins_Node, Aitem);
3373 Ins_Node := Aitem;
3374 end if;
3375 end Analyze_One_Aspect;
3377 <<Continue>>
3378 Next (Aspect);
3379 end loop Aspect_Loop;
3381 if Has_Delayed_Aspects (E) then
3382 Ensure_Freeze_Node (E);
3383 end if;
3384 end Analyze_Aspect_Specifications;
3386 -----------------------
3387 -- Analyze_At_Clause --
3388 -----------------------
3390 -- An at clause is replaced by the corresponding Address attribute
3391 -- definition clause that is the preferred approach in Ada 95.
3393 procedure Analyze_At_Clause (N : Node_Id) is
3394 CS : constant Boolean := Comes_From_Source (N);
3396 begin
3397 -- This is an obsolescent feature
3399 Check_Restriction (No_Obsolescent_Features, N);
3401 if Warn_On_Obsolescent_Feature then
3402 Error_Msg_N
3403 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
3404 Error_Msg_N
3405 ("\?j?use address attribute definition clause instead", N);
3406 end if;
3408 -- Rewrite as address clause
3410 Rewrite (N,
3411 Make_Attribute_Definition_Clause (Sloc (N),
3412 Name => Identifier (N),
3413 Chars => Name_Address,
3414 Expression => Expression (N)));
3416 -- We preserve Comes_From_Source, since logically the clause still comes
3417 -- from the source program even though it is changed in form.
3419 Set_Comes_From_Source (N, CS);
3421 -- Analyze rewritten clause
3423 Analyze_Attribute_Definition_Clause (N);
3424 end Analyze_At_Clause;
3426 -----------------------------------------
3427 -- Analyze_Attribute_Definition_Clause --
3428 -----------------------------------------
3430 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
3431 Loc : constant Source_Ptr := Sloc (N);
3432 Nam : constant Node_Id := Name (N);
3433 Attr : constant Name_Id := Chars (N);
3434 Expr : constant Node_Id := Expression (N);
3435 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
3437 Ent : Entity_Id;
3438 -- The entity of Nam after it is analyzed. In the case of an incomplete
3439 -- type, this is the underlying type.
3441 U_Ent : Entity_Id;
3442 -- The underlying entity to which the attribute applies. Generally this
3443 -- is the Underlying_Type of Ent, except in the case where the clause
3444 -- applies to full view of incomplete type or private type in which case
3445 -- U_Ent is just a copy of Ent.
3447 FOnly : Boolean := False;
3448 -- Reset to True for subtype specific attribute (Alignment, Size)
3449 -- and for stream attributes, i.e. those cases where in the call to
3450 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
3451 -- are checked. Note that the case of stream attributes is not clear
3452 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
3453 -- Storage_Size for derived task types, but that is also clearly
3454 -- unintentional.
3456 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
3457 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
3458 -- definition clauses.
3460 function Duplicate_Clause return Boolean;
3461 -- This routine checks if the aspect for U_Ent being given by attribute
3462 -- definition clause N is for an aspect that has already been specified,
3463 -- and if so gives an error message. If there is a duplicate, True is
3464 -- returned, otherwise if there is no error, False is returned.
3466 procedure Check_Indexing_Functions;
3467 -- Check that the function in Constant_Indexing or Variable_Indexing
3468 -- attribute has the proper type structure. If the name is overloaded,
3469 -- check that some interpretation is legal.
3471 procedure Check_Iterator_Functions;
3472 -- Check that there is a single function in Default_Iterator attribute
3473 -- has the proper type structure.
3475 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
3476 -- Common legality check for the previous two
3478 -----------------------------------
3479 -- Analyze_Stream_TSS_Definition --
3480 -----------------------------------
3482 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
3483 Subp : Entity_Id := Empty;
3484 I : Interp_Index;
3485 It : Interp;
3486 Pnam : Entity_Id;
3488 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
3489 -- True for Read attribute, false for other attributes
3491 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
3492 -- Return true if the entity is a subprogram with an appropriate
3493 -- profile for the attribute being defined.
3495 ----------------------
3496 -- Has_Good_Profile --
3497 ----------------------
3499 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
3500 F : Entity_Id;
3501 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
3502 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
3503 (False => E_Procedure, True => E_Function);
3504 Typ : Entity_Id;
3506 begin
3507 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
3508 return False;
3509 end if;
3511 F := First_Formal (Subp);
3513 if No (F)
3514 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
3515 or else Designated_Type (Etype (F)) /=
3516 Class_Wide_Type (RTE (RE_Root_Stream_Type))
3517 then
3518 return False;
3519 end if;
3521 if not Is_Function then
3522 Next_Formal (F);
3524 declare
3525 Expected_Mode : constant array (Boolean) of Entity_Kind :=
3526 (False => E_In_Parameter,
3527 True => E_Out_Parameter);
3528 begin
3529 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
3530 return False;
3531 end if;
3532 end;
3534 Typ := Etype (F);
3536 -- If the attribute specification comes from an aspect
3537 -- specification for a class-wide stream, the parameter must be
3538 -- a class-wide type of the entity to which the aspect applies.
3540 if From_Aspect_Specification (N)
3541 and then Class_Present (Parent (N))
3542 and then Is_Class_Wide_Type (Typ)
3543 then
3544 Typ := Etype (Typ);
3545 end if;
3547 else
3548 Typ := Etype (Subp);
3549 end if;
3551 -- Verify that the prefix of the attribute and the local name for
3552 -- the type of the formal match.
3554 if Base_Type (Typ) /= Base_Type (Ent)
3555 or else Present ((Next_Formal (F)))
3556 then
3557 return False;
3559 elsif not Is_Scalar_Type (Typ)
3560 and then not Is_First_Subtype (Typ)
3561 and then not Is_Class_Wide_Type (Typ)
3562 then
3563 return False;
3565 else
3566 return True;
3567 end if;
3568 end Has_Good_Profile;
3570 -- Start of processing for Analyze_Stream_TSS_Definition
3572 begin
3573 FOnly := True;
3575 if not Is_Type (U_Ent) then
3576 Error_Msg_N ("local name must be a subtype", Nam);
3577 return;
3579 elsif not Is_First_Subtype (U_Ent) then
3580 Error_Msg_N ("local name must be a first subtype", Nam);
3581 return;
3582 end if;
3584 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
3586 -- If Pnam is present, it can be either inherited from an ancestor
3587 -- type (in which case it is legal to redefine it for this type), or
3588 -- be a previous definition of the attribute for the same type (in
3589 -- which case it is illegal).
3591 -- In the first case, it will have been analyzed already, and we
3592 -- can check that its profile does not match the expected profile
3593 -- for a stream attribute of U_Ent. In the second case, either Pnam
3594 -- has been analyzed (and has the expected profile), or it has not
3595 -- been analyzed yet (case of a type that has not been frozen yet
3596 -- and for which the stream attribute has been set using Set_TSS).
3598 if Present (Pnam)
3599 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
3600 then
3601 Error_Msg_Sloc := Sloc (Pnam);
3602 Error_Msg_Name_1 := Attr;
3603 Error_Msg_N ("% attribute already defined #", Nam);
3604 return;
3605 end if;
3607 Analyze (Expr);
3609 if Is_Entity_Name (Expr) then
3610 if not Is_Overloaded (Expr) then
3611 if Has_Good_Profile (Entity (Expr)) then
3612 Subp := Entity (Expr);
3613 end if;
3615 else
3616 Get_First_Interp (Expr, I, It);
3617 while Present (It.Nam) loop
3618 if Has_Good_Profile (It.Nam) then
3619 Subp := It.Nam;
3620 exit;
3621 end if;
3623 Get_Next_Interp (I, It);
3624 end loop;
3625 end if;
3626 end if;
3628 if Present (Subp) then
3629 if Is_Abstract_Subprogram (Subp) then
3630 Error_Msg_N ("stream subprogram must not be abstract", Expr);
3631 return;
3633 -- Test for stream subprogram for interface type being non-null
3635 elsif Is_Interface (U_Ent)
3636 and then not Inside_A_Generic
3637 and then Ekind (Subp) = E_Procedure
3638 and then
3639 not Null_Present
3640 (Specification
3641 (Unit_Declaration_Node (Ultimate_Alias (Subp))))
3642 then
3643 Error_Msg_N
3644 ("stream subprogram for interface type "
3645 & "must be null procedure", Expr);
3646 end if;
3648 Set_Entity (Expr, Subp);
3649 Set_Etype (Expr, Etype (Subp));
3651 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
3653 else
3654 Error_Msg_Name_1 := Attr;
3655 Error_Msg_N ("incorrect expression for% attribute", Expr);
3656 end if;
3657 end Analyze_Stream_TSS_Definition;
3659 ------------------------------
3660 -- Check_Indexing_Functions --
3661 ------------------------------
3663 procedure Check_Indexing_Functions is
3664 Indexing_Found : Boolean := False;
3666 procedure Check_One_Function (Subp : Entity_Id);
3667 -- Check one possible interpretation. Sets Indexing_Found True if a
3668 -- legal indexing function is found.
3670 procedure Illegal_Indexing (Msg : String);
3671 -- Diagnose illegal indexing function if not overloaded. In the
3672 -- overloaded case indicate that no legal interpretation exists.
3674 ------------------------
3675 -- Check_One_Function --
3676 ------------------------
3678 procedure Check_One_Function (Subp : Entity_Id) is
3679 Default_Element : Node_Id;
3680 Ret_Type : constant Entity_Id := Etype (Subp);
3682 begin
3683 if not Is_Overloadable (Subp) then
3684 Illegal_Indexing ("illegal indexing function for type&");
3685 return;
3687 elsif Scope (Subp) /= Scope (Ent) then
3688 if Nkind (Expr) = N_Expanded_Name then
3690 -- Indexing function can't be declared elsewhere
3692 Illegal_Indexing
3693 ("indexing function must be declared in scope of type&");
3694 end if;
3696 return;
3698 elsif No (First_Formal (Subp)) then
3699 Illegal_Indexing
3700 ("Indexing requires a function that applies to type&");
3701 return;
3703 elsif No (Next_Formal (First_Formal (Subp))) then
3704 Illegal_Indexing
3705 ("indexing function must have at least two parameters");
3706 return;
3708 elsif Is_Derived_Type (Ent) then
3709 if (Attr = Name_Constant_Indexing
3710 and then Present
3711 (Find_Aspect (Etype (Ent), Aspect_Constant_Indexing)))
3712 or else
3713 (Attr = Name_Variable_Indexing
3714 and then Present
3715 (Find_Aspect (Etype (Ent), Aspect_Variable_Indexing)))
3716 then
3717 if Debug_Flag_Dot_XX then
3718 null;
3720 else
3721 Illegal_Indexing
3722 ("indexing function already inherited "
3723 & "from parent type");
3724 return;
3725 end if;
3726 end if;
3727 end if;
3729 if not Check_Primitive_Function (Subp) then
3730 Illegal_Indexing
3731 ("Indexing aspect requires a function that applies to type&");
3732 return;
3733 end if;
3735 -- If partial declaration exists, verify that it is not tagged.
3737 if Ekind (Current_Scope) = E_Package
3738 and then Has_Private_Declaration (Ent)
3739 and then From_Aspect_Specification (N)
3740 and then
3741 List_Containing (Parent (Ent)) =
3742 Private_Declarations
3743 (Specification (Unit_Declaration_Node (Current_Scope)))
3744 and then Nkind (N) = N_Attribute_Definition_Clause
3745 then
3746 declare
3747 Decl : Node_Id;
3749 begin
3750 Decl :=
3751 First (Visible_Declarations
3752 (Specification
3753 (Unit_Declaration_Node (Current_Scope))));
3755 while Present (Decl) loop
3756 if Nkind (Decl) = N_Private_Type_Declaration
3757 and then Ent = Full_View (Defining_Identifier (Decl))
3758 and then Tagged_Present (Decl)
3759 and then No (Aspect_Specifications (Decl))
3760 then
3761 Illegal_Indexing
3762 ("Indexing aspect cannot be specified on full view "
3763 & "if partial view is tagged");
3764 return;
3765 end if;
3767 Next (Decl);
3768 end loop;
3769 end;
3770 end if;
3772 -- An indexing function must return either the default element of
3773 -- the container, or a reference type. For variable indexing it
3774 -- must be the latter.
3776 Default_Element :=
3777 Find_Value_Of_Aspect
3778 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
3780 if Present (Default_Element) then
3781 Analyze (Default_Element);
3783 if Is_Entity_Name (Default_Element)
3784 and then not Covers (Entity (Default_Element), Ret_Type)
3785 and then False
3786 then
3787 Illegal_Indexing
3788 ("wrong return type for indexing function");
3789 return;
3790 end if;
3791 end if;
3793 -- For variable_indexing the return type must be a reference type
3795 if Attr = Name_Variable_Indexing then
3796 if not Has_Implicit_Dereference (Ret_Type) then
3797 Illegal_Indexing
3798 ("variable indexing must return a reference type");
3799 return;
3801 elsif Is_Access_Constant
3802 (Etype (First_Discriminant (Ret_Type)))
3803 then
3804 Illegal_Indexing
3805 ("variable indexing must return an access to variable");
3806 return;
3807 end if;
3809 else
3810 if Has_Implicit_Dereference (Ret_Type)
3811 and then not
3812 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
3813 then
3814 Illegal_Indexing
3815 ("constant indexing must return an access to constant");
3816 return;
3818 elsif Is_Access_Type (Etype (First_Formal (Subp)))
3819 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
3820 then
3821 Illegal_Indexing
3822 ("constant indexing must apply to an access to constant");
3823 return;
3824 end if;
3825 end if;
3827 -- All checks succeeded.
3829 Indexing_Found := True;
3830 end Check_One_Function;
3832 -----------------------
3833 -- Illegal_Indexing --
3834 -----------------------
3836 procedure Illegal_Indexing (Msg : String) is
3837 begin
3838 Error_Msg_NE (Msg, N, Ent);
3839 end Illegal_Indexing;
3841 -- Start of processing for Check_Indexing_Functions
3843 begin
3844 if In_Instance then
3845 return;
3846 end if;
3848 Analyze (Expr);
3850 if not Is_Overloaded (Expr) then
3851 Check_One_Function (Entity (Expr));
3853 else
3854 declare
3855 I : Interp_Index;
3856 It : Interp;
3858 begin
3859 Indexing_Found := False;
3860 Get_First_Interp (Expr, I, It);
3861 while Present (It.Nam) loop
3863 -- Note that analysis will have added the interpretation
3864 -- that corresponds to the dereference. We only check the
3865 -- subprogram itself.
3867 if Is_Overloadable (It.Nam) then
3868 Check_One_Function (It.Nam);
3869 end if;
3871 Get_Next_Interp (I, It);
3872 end loop;
3873 end;
3874 end if;
3876 if not Indexing_Found and then not Error_Posted (N) then
3877 Error_Msg_NE
3878 ("aspect Indexing requires a local function that "
3879 & "applies to type&", Expr, Ent);
3880 end if;
3881 end Check_Indexing_Functions;
3883 ------------------------------
3884 -- Check_Iterator_Functions --
3885 ------------------------------
3887 procedure Check_Iterator_Functions is
3888 Default : Entity_Id;
3890 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
3891 -- Check one possible interpretation for validity
3893 ----------------------------
3894 -- Valid_Default_Iterator --
3895 ----------------------------
3897 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
3898 Formal : Entity_Id;
3900 begin
3901 if not Check_Primitive_Function (Subp) then
3902 return False;
3903 else
3904 Formal := First_Formal (Subp);
3905 end if;
3907 -- False if any subsequent formal has no default expression
3909 Formal := Next_Formal (Formal);
3910 while Present (Formal) loop
3911 if No (Expression (Parent (Formal))) then
3912 return False;
3913 end if;
3915 Next_Formal (Formal);
3916 end loop;
3918 -- True if all subsequent formals have default expressions
3920 return True;
3921 end Valid_Default_Iterator;
3923 -- Start of processing for Check_Iterator_Functions
3925 begin
3926 Analyze (Expr);
3928 if not Is_Entity_Name (Expr) then
3929 Error_Msg_N ("aspect Iterator must be a function name", Expr);
3930 end if;
3932 if not Is_Overloaded (Expr) then
3933 if not Check_Primitive_Function (Entity (Expr)) then
3934 Error_Msg_NE
3935 ("aspect Indexing requires a function that applies to type&",
3936 Entity (Expr), Ent);
3937 end if;
3939 if not Valid_Default_Iterator (Entity (Expr)) then
3940 Error_Msg_N ("improper function for default iterator", Expr);
3941 end if;
3943 else
3944 Default := Empty;
3945 declare
3946 I : Interp_Index;
3947 It : Interp;
3949 begin
3950 Get_First_Interp (Expr, I, It);
3951 while Present (It.Nam) loop
3952 if not Check_Primitive_Function (It.Nam)
3953 or else not Valid_Default_Iterator (It.Nam)
3954 then
3955 Remove_Interp (I);
3957 elsif Present (Default) then
3958 Error_Msg_N ("default iterator must be unique", Expr);
3960 else
3961 Default := It.Nam;
3962 end if;
3964 Get_Next_Interp (I, It);
3965 end loop;
3966 end;
3968 if Present (Default) then
3969 Set_Entity (Expr, Default);
3970 Set_Is_Overloaded (Expr, False);
3971 end if;
3972 end if;
3973 end Check_Iterator_Functions;
3975 -------------------------------
3976 -- Check_Primitive_Function --
3977 -------------------------------
3979 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
3980 Ctrl : Entity_Id;
3982 begin
3983 if Ekind (Subp) /= E_Function then
3984 return False;
3985 end if;
3987 if No (First_Formal (Subp)) then
3988 return False;
3989 else
3990 Ctrl := Etype (First_Formal (Subp));
3991 end if;
3993 -- Type of formal may be the class-wide type, an access to such,
3994 -- or an incomplete view.
3996 if Ctrl = Ent
3997 or else Ctrl = Class_Wide_Type (Ent)
3998 or else
3999 (Ekind (Ctrl) = E_Anonymous_Access_Type
4000 and then (Designated_Type (Ctrl) = Ent
4001 or else
4002 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
4003 or else
4004 (Ekind (Ctrl) = E_Incomplete_Type
4005 and then Full_View (Ctrl) = Ent)
4006 then
4007 null;
4008 else
4009 return False;
4010 end if;
4012 return True;
4013 end Check_Primitive_Function;
4015 ----------------------
4016 -- Duplicate_Clause --
4017 ----------------------
4019 function Duplicate_Clause return Boolean is
4020 A : Node_Id;
4022 begin
4023 -- Nothing to do if this attribute definition clause comes from
4024 -- an aspect specification, since we could not be duplicating an
4025 -- explicit clause, and we dealt with the case of duplicated aspects
4026 -- in Analyze_Aspect_Specifications.
4028 if From_Aspect_Specification (N) then
4029 return False;
4030 end if;
4032 -- Otherwise current clause may duplicate previous clause, or a
4033 -- previously given pragma or aspect specification for the same
4034 -- aspect.
4036 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
4038 if Present (A) then
4039 Error_Msg_Name_1 := Chars (N);
4040 Error_Msg_Sloc := Sloc (A);
4042 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
4043 return True;
4044 end if;
4046 return False;
4047 end Duplicate_Clause;
4049 -- Start of processing for Analyze_Attribute_Definition_Clause
4051 begin
4052 -- The following code is a defense against recursion. Not clear that
4053 -- this can happen legitimately, but perhaps some error situations can
4054 -- cause it, and we did see this recursion during testing.
4056 if Analyzed (N) then
4057 return;
4058 else
4059 Set_Analyzed (N, True);
4060 end if;
4062 -- Ignore some selected attributes in CodePeer mode since they are not
4063 -- relevant in this context.
4065 if CodePeer_Mode then
4066 case Id is
4068 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4069 -- internal representation of types by implicitly packing them.
4071 when Attribute_Component_Size =>
4072 Rewrite (N, Make_Null_Statement (Sloc (N)));
4073 return;
4075 when others =>
4076 null;
4077 end case;
4078 end if;
4080 -- Process Ignore_Rep_Clauses option
4082 if Ignore_Rep_Clauses then
4083 case Id is
4085 -- The following should be ignored. They do not affect legality
4086 -- and may be target dependent. The basic idea of -gnatI is to
4087 -- ignore any rep clauses that may be target dependent but do not
4088 -- affect legality (except possibly to be rejected because they
4089 -- are incompatible with the compilation target).
4091 when Attribute_Alignment |
4092 Attribute_Bit_Order |
4093 Attribute_Component_Size |
4094 Attribute_Machine_Radix |
4095 Attribute_Object_Size |
4096 Attribute_Size |
4097 Attribute_Small |
4098 Attribute_Stream_Size |
4099 Attribute_Value_Size =>
4100 Kill_Rep_Clause (N);
4101 return;
4103 -- The following should not be ignored, because in the first place
4104 -- they are reasonably portable, and should not cause problems
4105 -- in compiling code from another target, and also they do affect
4106 -- legality, e.g. failing to provide a stream attribute for a type
4107 -- may make a program illegal.
4109 when Attribute_External_Tag |
4110 Attribute_Input |
4111 Attribute_Output |
4112 Attribute_Read |
4113 Attribute_Simple_Storage_Pool |
4114 Attribute_Storage_Pool |
4115 Attribute_Storage_Size |
4116 Attribute_Write =>
4117 null;
4119 -- We do not do anything here with address clauses, they will be
4120 -- removed by Freeze later on, but for now, it works better to
4121 -- keep then in the tree.
4123 when Attribute_Address =>
4124 null;
4126 -- Other cases are errors ("attribute& cannot be set with
4127 -- definition clause"), which will be caught below.
4129 when others =>
4130 null;
4131 end case;
4132 end if;
4134 Analyze (Nam);
4135 Ent := Entity (Nam);
4137 if Rep_Item_Too_Early (Ent, N) then
4138 return;
4139 end if;
4141 -- Rep clause applies to full view of incomplete type or private type if
4142 -- we have one (if not, this is a premature use of the type). However,
4143 -- certain semantic checks need to be done on the specified entity (i.e.
4144 -- the private view), so we save it in Ent.
4146 if Is_Private_Type (Ent)
4147 and then Is_Derived_Type (Ent)
4148 and then not Is_Tagged_Type (Ent)
4149 and then No (Full_View (Ent))
4150 then
4151 -- If this is a private type whose completion is a derivation from
4152 -- another private type, there is no full view, and the attribute
4153 -- belongs to the type itself, not its underlying parent.
4155 U_Ent := Ent;
4157 elsif Ekind (Ent) = E_Incomplete_Type then
4159 -- The attribute applies to the full view, set the entity of the
4160 -- attribute definition accordingly.
4162 Ent := Underlying_Type (Ent);
4163 U_Ent := Ent;
4164 Set_Entity (Nam, Ent);
4166 else
4167 U_Ent := Underlying_Type (Ent);
4168 end if;
4170 -- Avoid cascaded error
4172 if Etype (Nam) = Any_Type then
4173 return;
4175 -- Must be declared in current scope or in case of an aspect
4176 -- specification, must be visible in current scope.
4178 elsif Scope (Ent) /= Current_Scope
4179 and then
4180 not (From_Aspect_Specification (N)
4181 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
4182 then
4183 Error_Msg_N ("entity must be declared in this scope", Nam);
4184 return;
4186 -- Must not be a source renaming (we do have some cases where the
4187 -- expander generates a renaming, and those cases are OK, in such
4188 -- cases any attribute applies to the renamed object as well).
4190 elsif Is_Object (Ent)
4191 and then Present (Renamed_Object (Ent))
4192 then
4193 -- Case of renamed object from source, this is an error
4195 if Comes_From_Source (Renamed_Object (Ent)) then
4196 Get_Name_String (Chars (N));
4197 Error_Msg_Strlen := Name_Len;
4198 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4199 Error_Msg_N
4200 ("~ clause not allowed for a renaming declaration "
4201 & "(RM 13.1(6))", Nam);
4202 return;
4204 -- For the case of a compiler generated renaming, the attribute
4205 -- definition clause applies to the renamed object created by the
4206 -- expander. The easiest general way to handle this is to create a
4207 -- copy of the attribute definition clause for this object.
4209 elsif Is_Entity_Name (Renamed_Object (Ent)) then
4210 Insert_Action (N,
4211 Make_Attribute_Definition_Clause (Loc,
4212 Name =>
4213 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4214 Chars => Chars (N),
4215 Expression => Duplicate_Subexpr (Expression (N))));
4217 -- If the renamed object is not an entity, it must be a dereference
4218 -- of an unconstrained function call, and we must introduce a new
4219 -- declaration to capture the expression. This is needed in the case
4220 -- of 'Alignment, where the original declaration must be rewritten.
4222 else
4223 pragma Assert
4224 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4225 null;
4226 end if;
4228 -- If no underlying entity, use entity itself, applies to some
4229 -- previously detected error cases ???
4231 elsif No (U_Ent) then
4232 U_Ent := Ent;
4234 -- Cannot specify for a subtype (exception Object/Value_Size)
4236 elsif Is_Type (U_Ent)
4237 and then not Is_First_Subtype (U_Ent)
4238 and then Id /= Attribute_Object_Size
4239 and then Id /= Attribute_Value_Size
4240 and then not From_At_Mod (N)
4241 then
4242 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4243 return;
4244 end if;
4246 Set_Entity (N, U_Ent);
4247 Check_Restriction_No_Use_Of_Attribute (N);
4249 -- Switch on particular attribute
4251 case Id is
4253 -------------
4254 -- Address --
4255 -------------
4257 -- Address attribute definition clause
4259 when Attribute_Address => Address : begin
4261 -- A little error check, catch for X'Address use X'Address;
4263 if Nkind (Nam) = N_Identifier
4264 and then Nkind (Expr) = N_Attribute_Reference
4265 and then Attribute_Name (Expr) = Name_Address
4266 and then Nkind (Prefix (Expr)) = N_Identifier
4267 and then Chars (Nam) = Chars (Prefix (Expr))
4268 then
4269 Error_Msg_NE
4270 ("address for & is self-referencing", Prefix (Expr), Ent);
4271 return;
4272 end if;
4274 -- Not that special case, carry on with analysis of expression
4276 Analyze_And_Resolve (Expr, RTE (RE_Address));
4278 -- Even when ignoring rep clauses we need to indicate that the
4279 -- entity has an address clause and thus it is legal to declare
4280 -- it imported. Freeze will get rid of the address clause later.
4282 if Ignore_Rep_Clauses then
4283 if Ekind_In (U_Ent, E_Variable, E_Constant) then
4284 Record_Rep_Item (U_Ent, N);
4285 end if;
4287 return;
4288 end if;
4290 if Duplicate_Clause then
4291 null;
4293 -- Case of address clause for subprogram
4295 elsif Is_Subprogram (U_Ent) then
4296 if Has_Homonym (U_Ent) then
4297 Error_Msg_N
4298 ("address clause cannot be given " &
4299 "for overloaded subprogram",
4300 Nam);
4301 return;
4302 end if;
4304 -- For subprograms, all address clauses are permitted, and we
4305 -- mark the subprogram as having a deferred freeze so that Gigi
4306 -- will not elaborate it too soon.
4308 -- Above needs more comments, what is too soon about???
4310 Set_Has_Delayed_Freeze (U_Ent);
4312 -- Case of address clause for entry
4314 elsif Ekind (U_Ent) = E_Entry then
4315 if Nkind (Parent (N)) = N_Task_Body then
4316 Error_Msg_N
4317 ("entry address must be specified in task spec", Nam);
4318 return;
4319 end if;
4321 -- For entries, we require a constant address
4323 Check_Constant_Address_Clause (Expr, U_Ent);
4325 -- Special checks for task types
4327 if Is_Task_Type (Scope (U_Ent))
4328 and then Comes_From_Source (Scope (U_Ent))
4329 then
4330 Error_Msg_N
4331 ("??entry address declared for entry in task type", N);
4332 Error_Msg_N
4333 ("\??only one task can be declared of this type", N);
4334 end if;
4336 -- Entry address clauses are obsolescent
4338 Check_Restriction (No_Obsolescent_Features, N);
4340 if Warn_On_Obsolescent_Feature then
4341 Error_Msg_N
4342 ("?j?attaching interrupt to task entry is an " &
4343 "obsolescent feature (RM J.7.1)", N);
4344 Error_Msg_N
4345 ("\?j?use interrupt procedure instead", N);
4346 end if;
4348 -- Case of an address clause for a controlled object which we
4349 -- consider to be erroneous.
4351 elsif Is_Controlled (Etype (U_Ent))
4352 or else Has_Controlled_Component (Etype (U_Ent))
4353 then
4354 Error_Msg_NE
4355 ("??controlled object& must not be overlaid", Nam, U_Ent);
4356 Error_Msg_N
4357 ("\??Program_Error will be raised at run time", Nam);
4358 Insert_Action (Declaration_Node (U_Ent),
4359 Make_Raise_Program_Error (Loc,
4360 Reason => PE_Overlaid_Controlled_Object));
4361 return;
4363 -- Case of address clause for a (non-controlled) object
4365 elsif Ekind_In (U_Ent, E_Variable, E_Constant) then
4366 declare
4367 Expr : constant Node_Id := Expression (N);
4368 O_Ent : Entity_Id;
4369 Off : Boolean;
4371 begin
4372 -- Exported variables cannot have an address clause, because
4373 -- this cancels the effect of the pragma Export.
4375 if Is_Exported (U_Ent) then
4376 Error_Msg_N
4377 ("cannot export object with address clause", Nam);
4378 return;
4379 end if;
4381 Find_Overlaid_Entity (N, O_Ent, Off);
4383 -- Overlaying controlled objects is erroneous
4385 if Present (O_Ent)
4386 and then (Has_Controlled_Component (Etype (O_Ent))
4387 or else Is_Controlled (Etype (O_Ent)))
4388 then
4389 Error_Msg_N
4390 ("??cannot overlay with controlled object", Expr);
4391 Error_Msg_N
4392 ("\??Program_Error will be raised at run time", Expr);
4393 Insert_Action (Declaration_Node (U_Ent),
4394 Make_Raise_Program_Error (Loc,
4395 Reason => PE_Overlaid_Controlled_Object));
4396 return;
4398 elsif Present (O_Ent)
4399 and then Ekind (U_Ent) = E_Constant
4400 and then not Is_Constant_Object (O_Ent)
4401 then
4402 Error_Msg_N ("??constant overlays a variable", Expr);
4404 -- Imported variables can have an address clause, but then
4405 -- the import is pretty meaningless except to suppress
4406 -- initializations, so we do not need such variables to
4407 -- be statically allocated (and in fact it causes trouble
4408 -- if the address clause is a local value).
4410 elsif Is_Imported (U_Ent) then
4411 Set_Is_Statically_Allocated (U_Ent, False);
4412 end if;
4414 -- We mark a possible modification of a variable with an
4415 -- address clause, since it is likely aliasing is occurring.
4417 Note_Possible_Modification (Nam, Sure => False);
4419 -- Here we are checking for explicit overlap of one variable
4420 -- by another, and if we find this then mark the overlapped
4421 -- variable as also being volatile to prevent unwanted
4422 -- optimizations. This is a significant pessimization so
4423 -- avoid it when there is an offset, i.e. when the object
4424 -- is composite; they cannot be optimized easily anyway.
4426 if Present (O_Ent)
4427 and then Is_Object (O_Ent)
4428 and then not Off
4430 -- The following test is an expedient solution to what
4431 -- is really a problem in CodePeer. Suppressing the
4432 -- Set_Treat_As_Volatile call here prevents later
4433 -- generation (in some cases) of trees that CodePeer
4434 -- should, but currently does not, handle correctly.
4435 -- This test should probably be removed when CodePeer
4436 -- is improved, just because we want the tree CodePeer
4437 -- analyzes to match the tree for which we generate code
4438 -- as closely as is practical. ???
4440 and then not CodePeer_Mode
4441 then
4442 -- ??? O_Ent might not be in current unit
4444 Set_Treat_As_Volatile (O_Ent);
4445 end if;
4447 -- Legality checks on the address clause for initialized
4448 -- objects is deferred until the freeze point, because
4449 -- a subsequent pragma might indicate that the object
4450 -- is imported and thus not initialized. Also, the address
4451 -- clause might involve entities that have yet to be
4452 -- elaborated.
4454 Set_Has_Delayed_Freeze (U_Ent);
4456 -- If an initialization call has been generated for this
4457 -- object, it needs to be deferred to after the freeze node
4458 -- we have just now added, otherwise GIGI will see a
4459 -- reference to the variable (as actual to the IP call)
4460 -- before its definition.
4462 declare
4463 Init_Call : constant Node_Id :=
4464 Remove_Init_Call (U_Ent, N);
4466 begin
4467 if Present (Init_Call) then
4468 Append_Freeze_Action (U_Ent, Init_Call);
4470 -- Reset Initialization_Statements pointer so that
4471 -- if there is a pragma Import further down, it can
4472 -- clear any default initialization.
4474 Set_Initialization_Statements (U_Ent, Init_Call);
4475 end if;
4476 end;
4478 if Is_Exported (U_Ent) then
4479 Error_Msg_N
4480 ("& cannot be exported if an address clause is given",
4481 Nam);
4482 Error_Msg_N
4483 ("\define and export a variable "
4484 & "that holds its address instead", Nam);
4485 end if;
4487 -- Entity has delayed freeze, so we will generate an
4488 -- alignment check at the freeze point unless suppressed.
4490 if not Range_Checks_Suppressed (U_Ent)
4491 and then not Alignment_Checks_Suppressed (U_Ent)
4492 then
4493 Set_Check_Address_Alignment (N);
4494 end if;
4496 -- Kill the size check code, since we are not allocating
4497 -- the variable, it is somewhere else.
4499 Kill_Size_Check_Code (U_Ent);
4501 -- If the address clause is of the form:
4503 -- for Y'Address use X'Address
4505 -- or
4507 -- Const : constant Address := X'Address;
4508 -- ...
4509 -- for Y'Address use Const;
4511 -- then we make an entry in the table for checking the size
4512 -- and alignment of the overlaying variable. We defer this
4513 -- check till after code generation to take full advantage
4514 -- of the annotation done by the back end.
4516 -- If the entity has a generic type, the check will be
4517 -- performed in the instance if the actual type justifies
4518 -- it, and we do not insert the clause in the table to
4519 -- prevent spurious warnings.
4521 -- Note: we used to test Comes_From_Source and only give
4522 -- this warning for source entities, but we have removed
4523 -- this test. It really seems bogus to generate overlays
4524 -- that would trigger this warning in generated code.
4525 -- Furthermore, by removing the test, we handle the
4526 -- aspect case properly.
4528 if Address_Clause_Overlay_Warnings
4529 and then Present (O_Ent)
4530 and then Is_Object (O_Ent)
4531 then
4532 if not Is_Generic_Type (Etype (U_Ent)) then
4533 Address_Clause_Checks.Append ((N, U_Ent, O_Ent, Off));
4534 end if;
4536 -- If variable overlays a constant view, and we are
4537 -- warning on overlays, then mark the variable as
4538 -- overlaying a constant (we will give warnings later
4539 -- if this variable is assigned).
4541 if Is_Constant_Object (O_Ent)
4542 and then Ekind (U_Ent) = E_Variable
4543 then
4544 Set_Overlays_Constant (U_Ent);
4545 end if;
4546 end if;
4547 end;
4549 -- Not a valid entity for an address clause
4551 else
4552 Error_Msg_N ("address cannot be given for &", Nam);
4553 end if;
4554 end Address;
4556 ---------------
4557 -- Alignment --
4558 ---------------
4560 -- Alignment attribute definition clause
4562 when Attribute_Alignment => Alignment : declare
4563 Align : constant Uint := Get_Alignment_Value (Expr);
4564 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
4566 begin
4567 FOnly := True;
4569 if not Is_Type (U_Ent)
4570 and then Ekind (U_Ent) /= E_Variable
4571 and then Ekind (U_Ent) /= E_Constant
4572 then
4573 Error_Msg_N ("alignment cannot be given for &", Nam);
4575 elsif Duplicate_Clause then
4576 null;
4578 elsif Align /= No_Uint then
4579 Set_Has_Alignment_Clause (U_Ent);
4581 -- Tagged type case, check for attempt to set alignment to a
4582 -- value greater than Max_Align, and reset if so.
4584 if Is_Tagged_Type (U_Ent) and then Align > Max_Align then
4585 Error_Msg_N
4586 ("alignment for & set to Maximum_Aligment??", Nam);
4587 Set_Alignment (U_Ent, Max_Align);
4589 -- All other cases
4591 else
4592 Set_Alignment (U_Ent, Align);
4593 end if;
4595 -- For an array type, U_Ent is the first subtype. In that case,
4596 -- also set the alignment of the anonymous base type so that
4597 -- other subtypes (such as the itypes for aggregates of the
4598 -- type) also receive the expected alignment.
4600 if Is_Array_Type (U_Ent) then
4601 Set_Alignment (Base_Type (U_Ent), Align);
4602 end if;
4603 end if;
4604 end Alignment;
4606 ---------------
4607 -- Bit_Order --
4608 ---------------
4610 -- Bit_Order attribute definition clause
4612 when Attribute_Bit_Order => Bit_Order : declare
4613 begin
4614 if not Is_Record_Type (U_Ent) then
4615 Error_Msg_N
4616 ("Bit_Order can only be defined for record type", Nam);
4618 elsif Duplicate_Clause then
4619 null;
4621 else
4622 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
4624 if Etype (Expr) = Any_Type then
4625 return;
4627 elsif not Is_OK_Static_Expression (Expr) then
4628 Flag_Non_Static_Expr
4629 ("Bit_Order requires static expression!", Expr);
4631 else
4632 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
4633 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
4634 end if;
4635 end if;
4636 end if;
4637 end Bit_Order;
4639 --------------------
4640 -- Component_Size --
4641 --------------------
4643 -- Component_Size attribute definition clause
4645 when Attribute_Component_Size => Component_Size_Case : declare
4646 Csize : constant Uint := Static_Integer (Expr);
4647 Ctyp : Entity_Id;
4648 Btype : Entity_Id;
4649 Biased : Boolean;
4650 New_Ctyp : Entity_Id;
4651 Decl : Node_Id;
4653 begin
4654 if not Is_Array_Type (U_Ent) then
4655 Error_Msg_N ("component size requires array type", Nam);
4656 return;
4657 end if;
4659 Btype := Base_Type (U_Ent);
4660 Ctyp := Component_Type (Btype);
4662 if Duplicate_Clause then
4663 null;
4665 elsif Rep_Item_Too_Early (Btype, N) then
4666 null;
4668 elsif Csize /= No_Uint then
4669 Check_Size (Expr, Ctyp, Csize, Biased);
4671 -- For the biased case, build a declaration for a subtype that
4672 -- will be used to represent the biased subtype that reflects
4673 -- the biased representation of components. We need the subtype
4674 -- to get proper conversions on referencing elements of the
4675 -- array. Note: component size clauses are ignored in VM mode.
4677 if VM_Target = No_VM then
4678 if Biased then
4679 New_Ctyp :=
4680 Make_Defining_Identifier (Loc,
4681 Chars =>
4682 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
4684 Decl :=
4685 Make_Subtype_Declaration (Loc,
4686 Defining_Identifier => New_Ctyp,
4687 Subtype_Indication =>
4688 New_Occurrence_Of (Component_Type (Btype), Loc));
4690 Set_Parent (Decl, N);
4691 Analyze (Decl, Suppress => All_Checks);
4693 Set_Has_Delayed_Freeze (New_Ctyp, False);
4694 Set_Esize (New_Ctyp, Csize);
4695 Set_RM_Size (New_Ctyp, Csize);
4696 Init_Alignment (New_Ctyp);
4697 Set_Is_Itype (New_Ctyp, True);
4698 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
4700 Set_Component_Type (Btype, New_Ctyp);
4701 Set_Biased (New_Ctyp, N, "component size clause");
4702 end if;
4704 Set_Component_Size (Btype, Csize);
4706 -- For VM case, we ignore component size clauses
4708 else
4709 -- Give a warning unless we are in GNAT mode, in which case
4710 -- the warning is suppressed since it is not useful.
4712 if not GNAT_Mode then
4713 Error_Msg_N
4714 ("component size ignored in this configuration??", N);
4715 end if;
4716 end if;
4718 -- Deal with warning on overridden size
4720 if Warn_On_Overridden_Size
4721 and then Has_Size_Clause (Ctyp)
4722 and then RM_Size (Ctyp) /= Csize
4723 then
4724 Error_Msg_NE
4725 ("component size overrides size clause for&?S?", N, Ctyp);
4726 end if;
4728 Set_Has_Component_Size_Clause (Btype, True);
4729 Set_Has_Non_Standard_Rep (Btype, True);
4730 end if;
4731 end Component_Size_Case;
4733 -----------------------
4734 -- Constant_Indexing --
4735 -----------------------
4737 when Attribute_Constant_Indexing =>
4738 Check_Indexing_Functions;
4740 ---------
4741 -- CPU --
4742 ---------
4744 when Attribute_CPU => CPU :
4745 begin
4746 -- CPU attribute definition clause not allowed except from aspect
4747 -- specification.
4749 if From_Aspect_Specification (N) then
4750 if not Is_Task_Type (U_Ent) then
4751 Error_Msg_N ("CPU can only be defined for task", Nam);
4753 elsif Duplicate_Clause then
4754 null;
4756 else
4757 -- The expression must be analyzed in the special manner
4758 -- described in "Handling of Default and Per-Object
4759 -- Expressions" in sem.ads.
4761 -- The visibility to the discriminants must be restored
4763 Push_Scope_And_Install_Discriminants (U_Ent);
4764 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
4765 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4767 if not Is_OK_Static_Expression (Expr) then
4768 Check_Restriction (Static_Priorities, Expr);
4769 end if;
4770 end if;
4772 else
4773 Error_Msg_N
4774 ("attribute& cannot be set with definition clause", N);
4775 end if;
4776 end CPU;
4778 ----------------------
4779 -- Default_Iterator --
4780 ----------------------
4782 when Attribute_Default_Iterator => Default_Iterator : declare
4783 Func : Entity_Id;
4785 begin
4786 if not Is_Tagged_Type (U_Ent) then
4787 Error_Msg_N
4788 ("aspect Default_Iterator applies to tagged type", Nam);
4789 end if;
4791 Check_Iterator_Functions;
4793 Analyze (Expr);
4795 if not Is_Entity_Name (Expr)
4796 or else Ekind (Entity (Expr)) /= E_Function
4797 then
4798 Error_Msg_N ("aspect Iterator must be a function", Expr);
4799 else
4800 Func := Entity (Expr);
4801 end if;
4803 if No (First_Formal (Func))
4804 or else Etype (First_Formal (Func)) /= U_Ent
4805 then
4806 Error_Msg_NE
4807 ("Default Iterator must be a primitive of&", Func, U_Ent);
4808 end if;
4809 end Default_Iterator;
4811 ------------------------
4812 -- Dispatching_Domain --
4813 ------------------------
4815 when Attribute_Dispatching_Domain => Dispatching_Domain :
4816 begin
4817 -- Dispatching_Domain attribute definition clause not allowed
4818 -- except from aspect specification.
4820 if From_Aspect_Specification (N) then
4821 if not Is_Task_Type (U_Ent) then
4822 Error_Msg_N ("Dispatching_Domain can only be defined" &
4823 "for task",
4824 Nam);
4826 elsif Duplicate_Clause then
4827 null;
4829 else
4830 -- The expression must be analyzed in the special manner
4831 -- described in "Handling of Default and Per-Object
4832 -- Expressions" in sem.ads.
4834 -- The visibility to the discriminants must be restored
4836 Push_Scope_And_Install_Discriminants (U_Ent);
4838 Preanalyze_Spec_Expression
4839 (Expr, RTE (RE_Dispatching_Domain));
4841 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4842 end if;
4844 else
4845 Error_Msg_N
4846 ("attribute& cannot be set with definition clause", N);
4847 end if;
4848 end Dispatching_Domain;
4850 ------------------
4851 -- External_Tag --
4852 ------------------
4854 when Attribute_External_Tag => External_Tag :
4855 begin
4856 if not Is_Tagged_Type (U_Ent) then
4857 Error_Msg_N ("should be a tagged type", Nam);
4858 end if;
4860 if Duplicate_Clause then
4861 null;
4863 else
4864 Analyze_And_Resolve (Expr, Standard_String);
4866 if not Is_OK_Static_Expression (Expr) then
4867 Flag_Non_Static_Expr
4868 ("static string required for tag name!", Nam);
4869 end if;
4871 if VM_Target /= No_VM then
4872 Error_Msg_Name_1 := Attr;
4873 Error_Msg_N
4874 ("% attribute unsupported in this configuration", Nam);
4875 end if;
4877 if not Is_Library_Level_Entity (U_Ent) then
4878 Error_Msg_NE
4879 ("??non-unique external tag supplied for &", N, U_Ent);
4880 Error_Msg_N
4881 ("\??same external tag applies to all "
4882 & "subprogram calls", N);
4883 Error_Msg_N
4884 ("\??corresponding internal tag cannot be obtained", N);
4885 end if;
4886 end if;
4887 end External_Tag;
4889 --------------------------
4890 -- Implicit_Dereference --
4891 --------------------------
4893 when Attribute_Implicit_Dereference =>
4895 -- Legality checks already performed at the point of the type
4896 -- declaration, aspect is not delayed.
4898 null;
4900 -----------
4901 -- Input --
4902 -----------
4904 when Attribute_Input =>
4905 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
4906 Set_Has_Specified_Stream_Input (Ent);
4908 ------------------------
4909 -- Interrupt_Priority --
4910 ------------------------
4912 when Attribute_Interrupt_Priority => Interrupt_Priority :
4913 begin
4914 -- Interrupt_Priority attribute definition clause not allowed
4915 -- except from aspect specification.
4917 if From_Aspect_Specification (N) then
4918 if not Is_Concurrent_Type (U_Ent) then
4919 Error_Msg_N
4920 ("Interrupt_Priority can only be defined for task "
4921 & "and protected object", Nam);
4923 elsif Duplicate_Clause then
4924 null;
4926 else
4927 -- The expression must be analyzed in the special manner
4928 -- described in "Handling of Default and Per-Object
4929 -- Expressions" in sem.ads.
4931 -- The visibility to the discriminants must be restored
4933 Push_Scope_And_Install_Discriminants (U_Ent);
4935 Preanalyze_Spec_Expression
4936 (Expr, RTE (RE_Interrupt_Priority));
4938 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
4939 end if;
4941 else
4942 Error_Msg_N
4943 ("attribute& cannot be set with definition clause", N);
4944 end if;
4945 end Interrupt_Priority;
4947 --------------
4948 -- Iterable --
4949 --------------
4951 when Attribute_Iterable =>
4952 Analyze (Expr);
4954 if Nkind (Expr) /= N_Aggregate then
4955 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
4956 end if;
4958 declare
4959 Assoc : Node_Id;
4961 begin
4962 Assoc := First (Component_Associations (Expr));
4963 while Present (Assoc) loop
4964 if not Is_Entity_Name (Expression (Assoc)) then
4965 Error_Msg_N ("value must be a function", Assoc);
4966 end if;
4968 Next (Assoc);
4969 end loop;
4970 end;
4972 ----------------------
4973 -- Iterator_Element --
4974 ----------------------
4976 when Attribute_Iterator_Element =>
4977 Analyze (Expr);
4979 if not Is_Entity_Name (Expr)
4980 or else not Is_Type (Entity (Expr))
4981 then
4982 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
4983 end if;
4985 -------------------
4986 -- Machine_Radix --
4987 -------------------
4989 -- Machine radix attribute definition clause
4991 when Attribute_Machine_Radix => Machine_Radix : declare
4992 Radix : constant Uint := Static_Integer (Expr);
4994 begin
4995 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
4996 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
4998 elsif Duplicate_Clause then
4999 null;
5001 elsif Radix /= No_Uint then
5002 Set_Has_Machine_Radix_Clause (U_Ent);
5003 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5005 if Radix = 2 then
5006 null;
5007 elsif Radix = 10 then
5008 Set_Machine_Radix_10 (U_Ent);
5009 else
5010 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5011 end if;
5012 end if;
5013 end Machine_Radix;
5015 -----------------
5016 -- Object_Size --
5017 -----------------
5019 -- Object_Size attribute definition clause
5021 when Attribute_Object_Size => Object_Size : declare
5022 Size : constant Uint := Static_Integer (Expr);
5024 Biased : Boolean;
5025 pragma Warnings (Off, Biased);
5027 begin
5028 if not Is_Type (U_Ent) then
5029 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5031 elsif Duplicate_Clause then
5032 null;
5034 else
5035 Check_Size (Expr, U_Ent, Size, Biased);
5037 if Is_Scalar_Type (U_Ent) then
5038 if Size /= 8 and then Size /= 16 and then Size /= 32
5039 and then UI_Mod (Size, 64) /= 0
5040 then
5041 Error_Msg_N
5042 ("Object_Size must be 8, 16, 32, or multiple of 64",
5043 Expr);
5044 end if;
5046 elsif Size mod 8 /= 0 then
5047 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
5048 end if;
5050 Set_Esize (U_Ent, Size);
5051 Set_Has_Object_Size_Clause (U_Ent);
5052 Alignment_Check_For_Size_Change (U_Ent, Size);
5053 end if;
5054 end Object_Size;
5056 ------------
5057 -- Output --
5058 ------------
5060 when Attribute_Output =>
5061 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5062 Set_Has_Specified_Stream_Output (Ent);
5064 --------------
5065 -- Priority --
5066 --------------
5068 when Attribute_Priority => Priority :
5069 begin
5070 -- Priority attribute definition clause not allowed except from
5071 -- aspect specification.
5073 if From_Aspect_Specification (N) then
5074 if not (Is_Concurrent_Type (U_Ent)
5075 or else Ekind (U_Ent) = E_Procedure)
5076 then
5077 Error_Msg_N
5078 ("Priority can only be defined for task and protected "
5079 & "object", Nam);
5081 elsif Duplicate_Clause then
5082 null;
5084 else
5085 -- The expression must be analyzed in the special manner
5086 -- described in "Handling of Default and Per-Object
5087 -- Expressions" in sem.ads.
5089 -- The visibility to the discriminants must be restored
5091 Push_Scope_And_Install_Discriminants (U_Ent);
5092 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5093 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5095 if not Is_OK_Static_Expression (Expr) then
5096 Check_Restriction (Static_Priorities, Expr);
5097 end if;
5098 end if;
5100 else
5101 Error_Msg_N
5102 ("attribute& cannot be set with definition clause", N);
5103 end if;
5104 end Priority;
5106 ----------
5107 -- Read --
5108 ----------
5110 when Attribute_Read =>
5111 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5112 Set_Has_Specified_Stream_Read (Ent);
5114 --------------------------
5115 -- Scalar_Storage_Order --
5116 --------------------------
5118 -- Scalar_Storage_Order attribute definition clause
5120 when Attribute_Scalar_Storage_Order => Scalar_Storage_Order : declare
5121 begin
5122 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
5123 Error_Msg_N
5124 ("Scalar_Storage_Order can only be defined for "
5125 & "record or array type", Nam);
5127 elsif Duplicate_Clause then
5128 null;
5130 else
5131 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5133 if Etype (Expr) = Any_Type then
5134 return;
5136 elsif not Is_OK_Static_Expression (Expr) then
5137 Flag_Non_Static_Expr
5138 ("Scalar_Storage_Order requires static expression!", Expr);
5140 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5142 -- Here for the case of a non-default (i.e. non-confirming)
5143 -- Scalar_Storage_Order attribute definition.
5145 if Support_Nondefault_SSO_On_Target then
5146 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
5147 else
5148 Error_Msg_N
5149 ("non-default Scalar_Storage_Order "
5150 & "not supported on target", Expr);
5151 end if;
5152 end if;
5154 -- Clear SSO default indications since explicit setting of the
5155 -- order overrides the defaults.
5157 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5158 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
5159 end if;
5160 end Scalar_Storage_Order;
5162 ----------
5163 -- Size --
5164 ----------
5166 -- Size attribute definition clause
5168 when Attribute_Size => Size : declare
5169 Size : constant Uint := Static_Integer (Expr);
5170 Etyp : Entity_Id;
5171 Biased : Boolean;
5173 begin
5174 FOnly := True;
5176 if Duplicate_Clause then
5177 null;
5179 elsif not Is_Type (U_Ent)
5180 and then Ekind (U_Ent) /= E_Variable
5181 and then Ekind (U_Ent) /= E_Constant
5182 then
5183 Error_Msg_N ("size cannot be given for &", Nam);
5185 elsif Is_Array_Type (U_Ent)
5186 and then not Is_Constrained (U_Ent)
5187 then
5188 Error_Msg_N
5189 ("size cannot be given for unconstrained array", Nam);
5191 elsif Size /= No_Uint then
5192 if VM_Target /= No_VM and then not GNAT_Mode then
5194 -- Size clause is not handled properly on VM targets.
5195 -- Display a warning unless we are in GNAT mode, in which
5196 -- case this is useless.
5198 Error_Msg_N
5199 ("size clauses are ignored in this configuration??", N);
5200 end if;
5202 if Is_Type (U_Ent) then
5203 Etyp := U_Ent;
5204 else
5205 Etyp := Etype (U_Ent);
5206 end if;
5208 -- Check size, note that Gigi is in charge of checking that the
5209 -- size of an array or record type is OK. Also we do not check
5210 -- the size in the ordinary fixed-point case, since it is too
5211 -- early to do so (there may be subsequent small clause that
5212 -- affects the size). We can check the size if a small clause
5213 -- has already been given.
5215 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5216 or else Has_Small_Clause (U_Ent)
5217 then
5218 Check_Size (Expr, Etyp, Size, Biased);
5219 Set_Biased (U_Ent, N, "size clause", Biased);
5220 end if;
5222 -- For types set RM_Size and Esize if possible
5224 if Is_Type (U_Ent) then
5225 Set_RM_Size (U_Ent, Size);
5227 -- For elementary types, increase Object_Size to power of 2,
5228 -- but not less than a storage unit in any case (normally
5229 -- this means it will be byte addressable).
5231 -- For all other types, nothing else to do, we leave Esize
5232 -- (object size) unset, the back end will set it from the
5233 -- size and alignment in an appropriate manner.
5235 -- In both cases, we check whether the alignment must be
5236 -- reset in the wake of the size change.
5238 if Is_Elementary_Type (U_Ent) then
5239 if Size <= System_Storage_Unit then
5240 Init_Esize (U_Ent, System_Storage_Unit);
5241 elsif Size <= 16 then
5242 Init_Esize (U_Ent, 16);
5243 elsif Size <= 32 then
5244 Init_Esize (U_Ent, 32);
5245 else
5246 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5247 end if;
5249 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5250 else
5251 Alignment_Check_For_Size_Change (U_Ent, Size);
5252 end if;
5254 -- For objects, set Esize only
5256 else
5257 if Is_Elementary_Type (Etyp) then
5258 if Size /= System_Storage_Unit
5259 and then
5260 Size /= System_Storage_Unit * 2
5261 and then
5262 Size /= System_Storage_Unit * 4
5263 and then
5264 Size /= System_Storage_Unit * 8
5265 then
5266 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5267 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
5268 Error_Msg_N
5269 ("size for primitive object must be a power of 2"
5270 & " in the range ^-^", N);
5271 end if;
5272 end if;
5274 Set_Esize (U_Ent, Size);
5275 end if;
5277 Set_Has_Size_Clause (U_Ent);
5278 end if;
5279 end Size;
5281 -----------
5282 -- Small --
5283 -----------
5285 -- Small attribute definition clause
5287 when Attribute_Small => Small : declare
5288 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
5289 Small : Ureal;
5291 begin
5292 Analyze_And_Resolve (Expr, Any_Real);
5294 if Etype (Expr) = Any_Type then
5295 return;
5297 elsif not Is_OK_Static_Expression (Expr) then
5298 Flag_Non_Static_Expr
5299 ("small requires static expression!", Expr);
5300 return;
5302 else
5303 Small := Expr_Value_R (Expr);
5305 if Small <= Ureal_0 then
5306 Error_Msg_N ("small value must be greater than zero", Expr);
5307 return;
5308 end if;
5310 end if;
5312 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
5313 Error_Msg_N
5314 ("small requires an ordinary fixed point type", Nam);
5316 elsif Has_Small_Clause (U_Ent) then
5317 Error_Msg_N ("small already given for &", Nam);
5319 elsif Small > Delta_Value (U_Ent) then
5320 Error_Msg_N
5321 ("small value must not be greater than delta value", Nam);
5323 else
5324 Set_Small_Value (U_Ent, Small);
5325 Set_Small_Value (Implicit_Base, Small);
5326 Set_Has_Small_Clause (U_Ent);
5327 Set_Has_Small_Clause (Implicit_Base);
5328 Set_Has_Non_Standard_Rep (Implicit_Base);
5329 end if;
5330 end Small;
5332 ------------------
5333 -- Storage_Pool --
5334 ------------------
5336 -- Storage_Pool attribute definition clause
5338 when Attribute_Storage_Pool | Attribute_Simple_Storage_Pool => declare
5339 Pool : Entity_Id;
5340 T : Entity_Id;
5342 begin
5343 if Ekind (U_Ent) = E_Access_Subprogram_Type then
5344 Error_Msg_N
5345 ("storage pool cannot be given for access-to-subprogram type",
5346 Nam);
5347 return;
5349 elsif not
5350 Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
5351 then
5352 Error_Msg_N
5353 ("storage pool can only be given for access types", Nam);
5354 return;
5356 elsif Is_Derived_Type (U_Ent) then
5357 Error_Msg_N
5358 ("storage pool cannot be given for a derived access type",
5359 Nam);
5361 elsif Duplicate_Clause then
5362 return;
5364 elsif Present (Associated_Storage_Pool (U_Ent)) then
5365 Error_Msg_N ("storage pool already given for &", Nam);
5366 return;
5367 end if;
5369 -- Check for Storage_Size previously given
5371 declare
5372 SS : constant Node_Id :=
5373 Get_Attribute_Definition_Clause
5374 (U_Ent, Attribute_Storage_Size);
5375 begin
5376 if Present (SS) then
5377 Check_Pool_Size_Clash (U_Ent, N, SS);
5378 end if;
5379 end;
5381 -- Storage_Pool case
5383 if Id = Attribute_Storage_Pool then
5384 Analyze_And_Resolve
5385 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
5387 -- In the Simple_Storage_Pool case, we allow a variable of any
5388 -- simple storage pool type, so we Resolve without imposing an
5389 -- expected type.
5391 else
5392 Analyze_And_Resolve (Expr);
5394 if not Present (Get_Rep_Pragma
5395 (Etype (Expr), Name_Simple_Storage_Pool_Type))
5396 then
5397 Error_Msg_N
5398 ("expression must be of a simple storage pool type", Expr);
5399 end if;
5400 end if;
5402 if not Denotes_Variable (Expr) then
5403 Error_Msg_N ("storage pool must be a variable", Expr);
5404 return;
5405 end if;
5407 if Nkind (Expr) = N_Type_Conversion then
5408 T := Etype (Expression (Expr));
5409 else
5410 T := Etype (Expr);
5411 end if;
5413 -- The Stack_Bounded_Pool is used internally for implementing
5414 -- access types with a Storage_Size. Since it only work properly
5415 -- when used on one specific type, we need to check that it is not
5416 -- hijacked improperly:
5418 -- type T is access Integer;
5419 -- for T'Storage_Size use n;
5420 -- type Q is access Float;
5421 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
5423 if RTE_Available (RE_Stack_Bounded_Pool)
5424 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
5425 then
5426 Error_Msg_N ("non-shareable internal Pool", Expr);
5427 return;
5428 end if;
5430 -- If the argument is a name that is not an entity name, then
5431 -- we construct a renaming operation to define an entity of
5432 -- type storage pool.
5434 if not Is_Entity_Name (Expr)
5435 and then Is_Object_Reference (Expr)
5436 then
5437 Pool := Make_Temporary (Loc, 'P', Expr);
5439 declare
5440 Rnode : constant Node_Id :=
5441 Make_Object_Renaming_Declaration (Loc,
5442 Defining_Identifier => Pool,
5443 Subtype_Mark =>
5444 New_Occurrence_Of (Etype (Expr), Loc),
5445 Name => Expr);
5447 begin
5448 -- If the attribute definition clause comes from an aspect
5449 -- clause, then insert the renaming before the associated
5450 -- entity's declaration, since the attribute clause has
5451 -- not yet been appended to the declaration list.
5453 if From_Aspect_Specification (N) then
5454 Insert_Before (Parent (Entity (N)), Rnode);
5455 else
5456 Insert_Before (N, Rnode);
5457 end if;
5459 Analyze (Rnode);
5460 Set_Associated_Storage_Pool (U_Ent, Pool);
5461 end;
5463 elsif Is_Entity_Name (Expr) then
5464 Pool := Entity (Expr);
5466 -- If pool is a renamed object, get original one. This can
5467 -- happen with an explicit renaming, and within instances.
5469 while Present (Renamed_Object (Pool))
5470 and then Is_Entity_Name (Renamed_Object (Pool))
5471 loop
5472 Pool := Entity (Renamed_Object (Pool));
5473 end loop;
5475 if Present (Renamed_Object (Pool))
5476 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
5477 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
5478 then
5479 Pool := Entity (Expression (Renamed_Object (Pool)));
5480 end if;
5482 Set_Associated_Storage_Pool (U_Ent, Pool);
5484 elsif Nkind (Expr) = N_Type_Conversion
5485 and then Is_Entity_Name (Expression (Expr))
5486 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
5487 then
5488 Pool := Entity (Expression (Expr));
5489 Set_Associated_Storage_Pool (U_Ent, Pool);
5491 else
5492 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
5493 return;
5494 end if;
5495 end;
5497 ------------------
5498 -- Storage_Size --
5499 ------------------
5501 -- Storage_Size attribute definition clause
5503 when Attribute_Storage_Size => Storage_Size : declare
5504 Btype : constant Entity_Id := Base_Type (U_Ent);
5506 begin
5507 if Is_Task_Type (U_Ent) then
5509 -- Check obsolescent (but never obsolescent if from aspect)
5511 if not From_Aspect_Specification (N) then
5512 Check_Restriction (No_Obsolescent_Features, N);
5514 if Warn_On_Obsolescent_Feature then
5515 Error_Msg_N
5516 ("?j?storage size clause for task is an " &
5517 "obsolescent feature (RM J.9)", N);
5518 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
5519 end if;
5520 end if;
5522 FOnly := True;
5523 end if;
5525 if not Is_Access_Type (U_Ent)
5526 and then Ekind (U_Ent) /= E_Task_Type
5527 then
5528 Error_Msg_N ("storage size cannot be given for &", Nam);
5530 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
5531 Error_Msg_N
5532 ("storage size cannot be given for a derived access type",
5533 Nam);
5535 elsif Duplicate_Clause then
5536 null;
5538 else
5539 Analyze_And_Resolve (Expr, Any_Integer);
5541 if Is_Access_Type (U_Ent) then
5543 -- Check for Storage_Pool previously given
5545 declare
5546 SP : constant Node_Id :=
5547 Get_Attribute_Definition_Clause
5548 (U_Ent, Attribute_Storage_Pool);
5550 begin
5551 if Present (SP) then
5552 Check_Pool_Size_Clash (U_Ent, SP, N);
5553 end if;
5554 end;
5556 -- Special case of for x'Storage_Size use 0
5558 if Is_OK_Static_Expression (Expr)
5559 and then Expr_Value (Expr) = 0
5560 then
5561 Set_No_Pool_Assigned (Btype);
5562 end if;
5563 end if;
5565 Set_Has_Storage_Size_Clause (Btype);
5566 end if;
5567 end Storage_Size;
5569 -----------------
5570 -- Stream_Size --
5571 -----------------
5573 when Attribute_Stream_Size => Stream_Size : declare
5574 Size : constant Uint := Static_Integer (Expr);
5576 begin
5577 if Ada_Version <= Ada_95 then
5578 Check_Restriction (No_Implementation_Attributes, N);
5579 end if;
5581 if Duplicate_Clause then
5582 null;
5584 elsif Is_Elementary_Type (U_Ent) then
5585 if Size /= System_Storage_Unit
5586 and then
5587 Size /= System_Storage_Unit * 2
5588 and then
5589 Size /= System_Storage_Unit * 4
5590 and then
5591 Size /= System_Storage_Unit * 8
5592 then
5593 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5594 Error_Msg_N
5595 ("stream size for elementary type must be a"
5596 & " power of 2 and at least ^", N);
5598 elsif RM_Size (U_Ent) > Size then
5599 Error_Msg_Uint_1 := RM_Size (U_Ent);
5600 Error_Msg_N
5601 ("stream size for elementary type must be a"
5602 & " power of 2 and at least ^", N);
5603 end if;
5605 Set_Has_Stream_Size_Clause (U_Ent);
5607 else
5608 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
5609 end if;
5610 end Stream_Size;
5612 ----------------
5613 -- Value_Size --
5614 ----------------
5616 -- Value_Size attribute definition clause
5618 when Attribute_Value_Size => Value_Size : declare
5619 Size : constant Uint := Static_Integer (Expr);
5620 Biased : Boolean;
5622 begin
5623 if not Is_Type (U_Ent) then
5624 Error_Msg_N ("Value_Size cannot be given for &", Nam);
5626 elsif Duplicate_Clause then
5627 null;
5629 elsif Is_Array_Type (U_Ent)
5630 and then not Is_Constrained (U_Ent)
5631 then
5632 Error_Msg_N
5633 ("Value_Size cannot be given for unconstrained array", Nam);
5635 else
5636 if Is_Elementary_Type (U_Ent) then
5637 Check_Size (Expr, U_Ent, Size, Biased);
5638 Set_Biased (U_Ent, N, "value size clause", Biased);
5639 end if;
5641 Set_RM_Size (U_Ent, Size);
5642 end if;
5643 end Value_Size;
5645 -----------------------
5646 -- Variable_Indexing --
5647 -----------------------
5649 when Attribute_Variable_Indexing =>
5650 Check_Indexing_Functions;
5652 -----------
5653 -- Write --
5654 -----------
5656 when Attribute_Write =>
5657 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
5658 Set_Has_Specified_Stream_Write (Ent);
5660 -- All other attributes cannot be set
5662 when others =>
5663 Error_Msg_N
5664 ("attribute& cannot be set with definition clause", N);
5665 end case;
5667 -- The test for the type being frozen must be performed after any
5668 -- expression the clause has been analyzed since the expression itself
5669 -- might cause freezing that makes the clause illegal.
5671 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
5672 return;
5673 end if;
5674 end Analyze_Attribute_Definition_Clause;
5676 ----------------------------
5677 -- Analyze_Code_Statement --
5678 ----------------------------
5680 procedure Analyze_Code_Statement (N : Node_Id) is
5681 HSS : constant Node_Id := Parent (N);
5682 SBody : constant Node_Id := Parent (HSS);
5683 Subp : constant Entity_Id := Current_Scope;
5684 Stmt : Node_Id;
5685 Decl : Node_Id;
5686 StmtO : Node_Id;
5687 DeclO : Node_Id;
5689 begin
5690 -- Analyze and check we get right type, note that this implements the
5691 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
5692 -- is the only way that Asm_Insn could possibly be visible.
5694 Analyze_And_Resolve (Expression (N));
5696 if Etype (Expression (N)) = Any_Type then
5697 return;
5698 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
5699 Error_Msg_N ("incorrect type for code statement", N);
5700 return;
5701 end if;
5703 Check_Code_Statement (N);
5705 -- Make sure we appear in the handled statement sequence of a
5706 -- subprogram (RM 13.8(3)).
5708 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
5709 or else Nkind (SBody) /= N_Subprogram_Body
5710 then
5711 Error_Msg_N
5712 ("code statement can only appear in body of subprogram", N);
5713 return;
5714 end if;
5716 -- Do remaining checks (RM 13.8(3)) if not already done
5718 if not Is_Machine_Code_Subprogram (Subp) then
5719 Set_Is_Machine_Code_Subprogram (Subp);
5721 -- No exception handlers allowed
5723 if Present (Exception_Handlers (HSS)) then
5724 Error_Msg_N
5725 ("exception handlers not permitted in machine code subprogram",
5726 First (Exception_Handlers (HSS)));
5727 end if;
5729 -- No declarations other than use clauses and pragmas (we allow
5730 -- certain internally generated declarations as well).
5732 Decl := First (Declarations (SBody));
5733 while Present (Decl) loop
5734 DeclO := Original_Node (Decl);
5735 if Comes_From_Source (DeclO)
5736 and not Nkind_In (DeclO, N_Pragma,
5737 N_Use_Package_Clause,
5738 N_Use_Type_Clause,
5739 N_Implicit_Label_Declaration)
5740 then
5741 Error_Msg_N
5742 ("this declaration not allowed in machine code subprogram",
5743 DeclO);
5744 end if;
5746 Next (Decl);
5747 end loop;
5749 -- No statements other than code statements, pragmas, and labels.
5750 -- Again we allow certain internally generated statements.
5752 -- In Ada 2012, qualified expressions are names, and the code
5753 -- statement is initially parsed as a procedure call.
5755 Stmt := First (Statements (HSS));
5756 while Present (Stmt) loop
5757 StmtO := Original_Node (Stmt);
5759 -- A procedure call transformed into a code statement is OK.
5761 if Ada_Version >= Ada_2012
5762 and then Nkind (StmtO) = N_Procedure_Call_Statement
5763 and then Nkind (Name (StmtO)) = N_Qualified_Expression
5764 then
5765 null;
5767 elsif Comes_From_Source (StmtO)
5768 and then not Nkind_In (StmtO, N_Pragma,
5769 N_Label,
5770 N_Code_Statement)
5771 then
5772 Error_Msg_N
5773 ("this statement is not allowed in machine code subprogram",
5774 StmtO);
5775 end if;
5777 Next (Stmt);
5778 end loop;
5779 end if;
5780 end Analyze_Code_Statement;
5782 -----------------------------------------------
5783 -- Analyze_Enumeration_Representation_Clause --
5784 -----------------------------------------------
5786 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
5787 Ident : constant Node_Id := Identifier (N);
5788 Aggr : constant Node_Id := Array_Aggregate (N);
5789 Enumtype : Entity_Id;
5790 Elit : Entity_Id;
5791 Expr : Node_Id;
5792 Assoc : Node_Id;
5793 Choice : Node_Id;
5794 Val : Uint;
5796 Err : Boolean := False;
5797 -- Set True to avoid cascade errors and crashes on incorrect source code
5799 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
5800 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
5801 -- Allowed range of universal integer (= allowed range of enum lit vals)
5803 Min : Uint;
5804 Max : Uint;
5805 -- Minimum and maximum values of entries
5807 Max_Node : Node_Id;
5808 -- Pointer to node for literal providing max value
5810 begin
5811 if Ignore_Rep_Clauses then
5812 Kill_Rep_Clause (N);
5813 return;
5814 end if;
5816 -- Ignore enumeration rep clauses by default in CodePeer mode,
5817 -- unless -gnatd.I is specified, as a work around for potential false
5818 -- positive messages.
5820 if CodePeer_Mode and not Debug_Flag_Dot_II then
5821 return;
5822 end if;
5824 -- First some basic error checks
5826 Find_Type (Ident);
5827 Enumtype := Entity (Ident);
5829 if Enumtype = Any_Type
5830 or else Rep_Item_Too_Early (Enumtype, N)
5831 then
5832 return;
5833 else
5834 Enumtype := Underlying_Type (Enumtype);
5835 end if;
5837 if not Is_Enumeration_Type (Enumtype) then
5838 Error_Msg_NE
5839 ("enumeration type required, found}",
5840 Ident, First_Subtype (Enumtype));
5841 return;
5842 end if;
5844 -- Ignore rep clause on generic actual type. This will already have
5845 -- been flagged on the template as an error, and this is the safest
5846 -- way to ensure we don't get a junk cascaded message in the instance.
5848 if Is_Generic_Actual_Type (Enumtype) then
5849 return;
5851 -- Type must be in current scope
5853 elsif Scope (Enumtype) /= Current_Scope then
5854 Error_Msg_N ("type must be declared in this scope", Ident);
5855 return;
5857 -- Type must be a first subtype
5859 elsif not Is_First_Subtype (Enumtype) then
5860 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
5861 return;
5863 -- Ignore duplicate rep clause
5865 elsif Has_Enumeration_Rep_Clause (Enumtype) then
5866 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
5867 return;
5869 -- Don't allow rep clause for standard [wide_[wide_]]character
5871 elsif Is_Standard_Character_Type (Enumtype) then
5872 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
5873 return;
5875 -- Check that the expression is a proper aggregate (no parentheses)
5877 elsif Paren_Count (Aggr) /= 0 then
5878 Error_Msg
5879 ("extra parentheses surrounding aggregate not allowed",
5880 First_Sloc (Aggr));
5881 return;
5883 -- All tests passed, so set rep clause in place
5885 else
5886 Set_Has_Enumeration_Rep_Clause (Enumtype);
5887 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
5888 end if;
5890 -- Now we process the aggregate. Note that we don't use the normal
5891 -- aggregate code for this purpose, because we don't want any of the
5892 -- normal expansion activities, and a number of special semantic
5893 -- rules apply (including the component type being any integer type)
5895 Elit := First_Literal (Enumtype);
5897 -- First the positional entries if any
5899 if Present (Expressions (Aggr)) then
5900 Expr := First (Expressions (Aggr));
5901 while Present (Expr) loop
5902 if No (Elit) then
5903 Error_Msg_N ("too many entries in aggregate", Expr);
5904 return;
5905 end if;
5907 Val := Static_Integer (Expr);
5909 -- Err signals that we found some incorrect entries processing
5910 -- the list. The final checks for completeness and ordering are
5911 -- skipped in this case.
5913 if Val = No_Uint then
5914 Err := True;
5916 elsif Val < Lo or else Hi < Val then
5917 Error_Msg_N ("value outside permitted range", Expr);
5918 Err := True;
5919 end if;
5921 Set_Enumeration_Rep (Elit, Val);
5922 Set_Enumeration_Rep_Expr (Elit, Expr);
5923 Next (Expr);
5924 Next (Elit);
5925 end loop;
5926 end if;
5928 -- Now process the named entries if present
5930 if Present (Component_Associations (Aggr)) then
5931 Assoc := First (Component_Associations (Aggr));
5932 while Present (Assoc) loop
5933 Choice := First (Choices (Assoc));
5935 if Present (Next (Choice)) then
5936 Error_Msg_N
5937 ("multiple choice not allowed here", Next (Choice));
5938 Err := True;
5939 end if;
5941 if Nkind (Choice) = N_Others_Choice then
5942 Error_Msg_N ("others choice not allowed here", Choice);
5943 Err := True;
5945 elsif Nkind (Choice) = N_Range then
5947 -- ??? should allow zero/one element range here
5949 Error_Msg_N ("range not allowed here", Choice);
5950 Err := True;
5952 else
5953 Analyze_And_Resolve (Choice, Enumtype);
5955 if Error_Posted (Choice) then
5956 Err := True;
5957 end if;
5959 if not Err then
5960 if Is_Entity_Name (Choice)
5961 and then Is_Type (Entity (Choice))
5962 then
5963 Error_Msg_N ("subtype name not allowed here", Choice);
5964 Err := True;
5966 -- ??? should allow static subtype with zero/one entry
5968 elsif Etype (Choice) = Base_Type (Enumtype) then
5969 if not Is_OK_Static_Expression (Choice) then
5970 Flag_Non_Static_Expr
5971 ("non-static expression used for choice!", Choice);
5972 Err := True;
5974 else
5975 Elit := Expr_Value_E (Choice);
5977 if Present (Enumeration_Rep_Expr (Elit)) then
5978 Error_Msg_Sloc :=
5979 Sloc (Enumeration_Rep_Expr (Elit));
5980 Error_Msg_NE
5981 ("representation for& previously given#",
5982 Choice, Elit);
5983 Err := True;
5984 end if;
5986 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
5988 Expr := Expression (Assoc);
5989 Val := Static_Integer (Expr);
5991 if Val = No_Uint then
5992 Err := True;
5994 elsif Val < Lo or else Hi < Val then
5995 Error_Msg_N ("value outside permitted range", Expr);
5996 Err := True;
5997 end if;
5999 Set_Enumeration_Rep (Elit, Val);
6000 end if;
6001 end if;
6002 end if;
6003 end if;
6005 Next (Assoc);
6006 end loop;
6007 end if;
6009 -- Aggregate is fully processed. Now we check that a full set of
6010 -- representations was given, and that they are in range and in order.
6011 -- These checks are only done if no other errors occurred.
6013 if not Err then
6014 Min := No_Uint;
6015 Max := No_Uint;
6017 Elit := First_Literal (Enumtype);
6018 while Present (Elit) loop
6019 if No (Enumeration_Rep_Expr (Elit)) then
6020 Error_Msg_NE ("missing representation for&!", N, Elit);
6022 else
6023 Val := Enumeration_Rep (Elit);
6025 if Min = No_Uint then
6026 Min := Val;
6027 end if;
6029 if Val /= No_Uint then
6030 if Max /= No_Uint and then Val <= Max then
6031 Error_Msg_NE
6032 ("enumeration value for& not ordered!",
6033 Enumeration_Rep_Expr (Elit), Elit);
6034 end if;
6036 Max_Node := Enumeration_Rep_Expr (Elit);
6037 Max := Val;
6038 end if;
6040 -- If there is at least one literal whose representation is not
6041 -- equal to the Pos value, then note that this enumeration type
6042 -- has a non-standard representation.
6044 if Val /= Enumeration_Pos (Elit) then
6045 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6046 end if;
6047 end if;
6049 Next (Elit);
6050 end loop;
6052 -- Now set proper size information
6054 declare
6055 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6057 begin
6058 if Has_Size_Clause (Enumtype) then
6060 -- All OK, if size is OK now
6062 if RM_Size (Enumtype) >= Minsize then
6063 null;
6065 else
6066 -- Try if we can get by with biasing
6068 Minsize :=
6069 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6071 -- Error message if even biasing does not work
6073 if RM_Size (Enumtype) < Minsize then
6074 Error_Msg_Uint_1 := RM_Size (Enumtype);
6075 Error_Msg_Uint_2 := Max;
6076 Error_Msg_N
6077 ("previously given size (^) is too small "
6078 & "for this value (^)", Max_Node);
6080 -- If biasing worked, indicate that we now have biased rep
6082 else
6083 Set_Biased
6084 (Enumtype, Size_Clause (Enumtype), "size clause");
6085 end if;
6086 end if;
6088 else
6089 Set_RM_Size (Enumtype, Minsize);
6090 Set_Enum_Esize (Enumtype);
6091 end if;
6093 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6094 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6095 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6096 end;
6097 end if;
6099 -- We repeat the too late test in case it froze itself
6101 if Rep_Item_Too_Late (Enumtype, N) then
6102 null;
6103 end if;
6104 end Analyze_Enumeration_Representation_Clause;
6106 ----------------------------
6107 -- Analyze_Free_Statement --
6108 ----------------------------
6110 procedure Analyze_Free_Statement (N : Node_Id) is
6111 begin
6112 Analyze (Expression (N));
6113 end Analyze_Free_Statement;
6115 ---------------------------
6116 -- Analyze_Freeze_Entity --
6117 ---------------------------
6119 procedure Analyze_Freeze_Entity (N : Node_Id) is
6120 begin
6121 Freeze_Entity_Checks (N);
6122 end Analyze_Freeze_Entity;
6124 -----------------------------------
6125 -- Analyze_Freeze_Generic_Entity --
6126 -----------------------------------
6128 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6129 begin
6130 Freeze_Entity_Checks (N);
6131 end Analyze_Freeze_Generic_Entity;
6133 ------------------------------------------
6134 -- Analyze_Record_Representation_Clause --
6135 ------------------------------------------
6137 -- Note: we check as much as we can here, but we can't do any checks
6138 -- based on the position values (e.g. overlap checks) until freeze time
6139 -- because especially in Ada 2005 (machine scalar mode), the processing
6140 -- for non-standard bit order can substantially change the positions.
6141 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6142 -- for the remainder of this processing.
6144 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6145 Ident : constant Node_Id := Identifier (N);
6146 Biased : Boolean;
6147 CC : Node_Id;
6148 Comp : Entity_Id;
6149 Fbit : Uint;
6150 Hbit : Uint := Uint_0;
6151 Lbit : Uint;
6152 Ocomp : Entity_Id;
6153 Posit : Uint;
6154 Rectype : Entity_Id;
6155 Recdef : Node_Id;
6157 function Is_Inherited (Comp : Entity_Id) return Boolean;
6158 -- True if Comp is an inherited component in a record extension
6160 ------------------
6161 -- Is_Inherited --
6162 ------------------
6164 function Is_Inherited (Comp : Entity_Id) return Boolean is
6165 Comp_Base : Entity_Id;
6167 begin
6168 if Ekind (Rectype) = E_Record_Subtype then
6169 Comp_Base := Original_Record_Component (Comp);
6170 else
6171 Comp_Base := Comp;
6172 end if;
6174 return Comp_Base /= Original_Record_Component (Comp_Base);
6175 end Is_Inherited;
6177 -- Local variables
6179 Is_Record_Extension : Boolean;
6180 -- True if Rectype is a record extension
6182 CR_Pragma : Node_Id := Empty;
6183 -- Points to N_Pragma node if Complete_Representation pragma present
6185 -- Start of processing for Analyze_Record_Representation_Clause
6187 begin
6188 if Ignore_Rep_Clauses then
6189 Kill_Rep_Clause (N);
6190 return;
6191 end if;
6193 Find_Type (Ident);
6194 Rectype := Entity (Ident);
6196 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6197 return;
6198 else
6199 Rectype := Underlying_Type (Rectype);
6200 end if;
6202 -- First some basic error checks
6204 if not Is_Record_Type (Rectype) then
6205 Error_Msg_NE
6206 ("record type required, found}", Ident, First_Subtype (Rectype));
6207 return;
6209 elsif Scope (Rectype) /= Current_Scope then
6210 Error_Msg_N ("type must be declared in this scope", N);
6211 return;
6213 elsif not Is_First_Subtype (Rectype) then
6214 Error_Msg_N ("cannot give record rep clause for subtype", N);
6215 return;
6217 elsif Has_Record_Rep_Clause (Rectype) then
6218 Error_Msg_N ("duplicate record rep clause ignored", N);
6219 return;
6221 elsif Rep_Item_Too_Late (Rectype, N) then
6222 return;
6223 end if;
6225 -- We know we have a first subtype, now possibly go the the anonymous
6226 -- base type to determine whether Rectype is a record extension.
6228 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6229 Is_Record_Extension :=
6230 Nkind (Recdef) = N_Derived_Type_Definition
6231 and then Present (Record_Extension_Part (Recdef));
6233 if Present (Mod_Clause (N)) then
6234 declare
6235 Loc : constant Source_Ptr := Sloc (N);
6236 M : constant Node_Id := Mod_Clause (N);
6237 P : constant List_Id := Pragmas_Before (M);
6238 AtM_Nod : Node_Id;
6240 Mod_Val : Uint;
6241 pragma Warnings (Off, Mod_Val);
6243 begin
6244 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
6246 if Warn_On_Obsolescent_Feature then
6247 Error_Msg_N
6248 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6249 Error_Msg_N
6250 ("\?j?use alignment attribute definition clause instead", N);
6251 end if;
6253 if Present (P) then
6254 Analyze_List (P);
6255 end if;
6257 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6258 -- the Mod clause into an alignment clause anyway, so that the
6259 -- back-end can compute and back-annotate properly the size and
6260 -- alignment of types that may include this record.
6262 -- This seems dubious, this destroys the source tree in a manner
6263 -- not detectable by ASIS ???
6265 if Operating_Mode = Check_Semantics and then ASIS_Mode then
6266 AtM_Nod :=
6267 Make_Attribute_Definition_Clause (Loc,
6268 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
6269 Chars => Name_Alignment,
6270 Expression => Relocate_Node (Expression (M)));
6272 Set_From_At_Mod (AtM_Nod);
6273 Insert_After (N, AtM_Nod);
6274 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
6275 Set_Mod_Clause (N, Empty);
6277 else
6278 -- Get the alignment value to perform error checking
6280 Mod_Val := Get_Alignment_Value (Expression (M));
6281 end if;
6282 end;
6283 end if;
6285 -- For untagged types, clear any existing component clauses for the
6286 -- type. If the type is derived, this is what allows us to override
6287 -- a rep clause for the parent. For type extensions, the representation
6288 -- of the inherited components is inherited, so we want to keep previous
6289 -- component clauses for completeness.
6291 if not Is_Tagged_Type (Rectype) then
6292 Comp := First_Component_Or_Discriminant (Rectype);
6293 while Present (Comp) loop
6294 Set_Component_Clause (Comp, Empty);
6295 Next_Component_Or_Discriminant (Comp);
6296 end loop;
6297 end if;
6299 -- All done if no component clauses
6301 CC := First (Component_Clauses (N));
6303 if No (CC) then
6304 return;
6305 end if;
6307 -- A representation like this applies to the base type
6309 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
6310 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
6311 Set_Has_Specified_Layout (Base_Type (Rectype));
6313 -- Process the component clauses
6315 while Present (CC) loop
6317 -- Pragma
6319 if Nkind (CC) = N_Pragma then
6320 Analyze (CC);
6322 -- The only pragma of interest is Complete_Representation
6324 if Pragma_Name (CC) = Name_Complete_Representation then
6325 CR_Pragma := CC;
6326 end if;
6328 -- Processing for real component clause
6330 else
6331 Posit := Static_Integer (Position (CC));
6332 Fbit := Static_Integer (First_Bit (CC));
6333 Lbit := Static_Integer (Last_Bit (CC));
6335 if Posit /= No_Uint
6336 and then Fbit /= No_Uint
6337 and then Lbit /= No_Uint
6338 then
6339 if Posit < 0 then
6340 Error_Msg_N
6341 ("position cannot be negative", Position (CC));
6343 elsif Fbit < 0 then
6344 Error_Msg_N
6345 ("first bit cannot be negative", First_Bit (CC));
6347 -- The Last_Bit specified in a component clause must not be
6348 -- less than the First_Bit minus one (RM-13.5.1(10)).
6350 elsif Lbit < Fbit - 1 then
6351 Error_Msg_N
6352 ("last bit cannot be less than first bit minus one",
6353 Last_Bit (CC));
6355 -- Values look OK, so find the corresponding record component
6356 -- Even though the syntax allows an attribute reference for
6357 -- implementation-defined components, GNAT does not allow the
6358 -- tag to get an explicit position.
6360 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
6361 if Attribute_Name (Component_Name (CC)) = Name_Tag then
6362 Error_Msg_N ("position of tag cannot be specified", CC);
6363 else
6364 Error_Msg_N ("illegal component name", CC);
6365 end if;
6367 else
6368 Comp := First_Entity (Rectype);
6369 while Present (Comp) loop
6370 exit when Chars (Comp) = Chars (Component_Name (CC));
6371 Next_Entity (Comp);
6372 end loop;
6374 if No (Comp) then
6376 -- Maybe component of base type that is absent from
6377 -- statically constrained first subtype.
6379 Comp := First_Entity (Base_Type (Rectype));
6380 while Present (Comp) loop
6381 exit when Chars (Comp) = Chars (Component_Name (CC));
6382 Next_Entity (Comp);
6383 end loop;
6384 end if;
6386 if No (Comp) then
6387 Error_Msg_N
6388 ("component clause is for non-existent field", CC);
6390 -- Ada 2012 (AI05-0026): Any name that denotes a
6391 -- discriminant of an object of an unchecked union type
6392 -- shall not occur within a record_representation_clause.
6394 -- The general restriction of using record rep clauses on
6395 -- Unchecked_Union types has now been lifted. Since it is
6396 -- possible to introduce a record rep clause which mentions
6397 -- the discriminant of an Unchecked_Union in non-Ada 2012
6398 -- code, this check is applied to all versions of the
6399 -- language.
6401 elsif Ekind (Comp) = E_Discriminant
6402 and then Is_Unchecked_Union (Rectype)
6403 then
6404 Error_Msg_N
6405 ("cannot reference discriminant of unchecked union",
6406 Component_Name (CC));
6408 elsif Is_Record_Extension and then Is_Inherited (Comp) then
6409 Error_Msg_NE
6410 ("component clause not allowed for inherited "
6411 & "component&", CC, Comp);
6413 elsif Present (Component_Clause (Comp)) then
6415 -- Diagnose duplicate rep clause, or check consistency
6416 -- if this is an inherited component. In a double fault,
6417 -- there may be a duplicate inconsistent clause for an
6418 -- inherited component.
6420 if Scope (Original_Record_Component (Comp)) = Rectype
6421 or else Parent (Component_Clause (Comp)) = N
6422 then
6423 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
6424 Error_Msg_N ("component clause previously given#", CC);
6426 else
6427 declare
6428 Rep1 : constant Node_Id := Component_Clause (Comp);
6429 begin
6430 if Intval (Position (Rep1)) /=
6431 Intval (Position (CC))
6432 or else Intval (First_Bit (Rep1)) /=
6433 Intval (First_Bit (CC))
6434 or else Intval (Last_Bit (Rep1)) /=
6435 Intval (Last_Bit (CC))
6436 then
6437 Error_Msg_N
6438 ("component clause inconsistent "
6439 & "with representation of ancestor", CC);
6441 elsif Warn_On_Redundant_Constructs then
6442 Error_Msg_N
6443 ("?r?redundant confirming component clause "
6444 & "for component!", CC);
6445 end if;
6446 end;
6447 end if;
6449 -- Normal case where this is the first component clause we
6450 -- have seen for this entity, so set it up properly.
6452 else
6453 -- Make reference for field in record rep clause and set
6454 -- appropriate entity field in the field identifier.
6456 Generate_Reference
6457 (Comp, Component_Name (CC), Set_Ref => False);
6458 Set_Entity (Component_Name (CC), Comp);
6460 -- Update Fbit and Lbit to the actual bit number
6462 Fbit := Fbit + UI_From_Int (SSU) * Posit;
6463 Lbit := Lbit + UI_From_Int (SSU) * Posit;
6465 if Has_Size_Clause (Rectype)
6466 and then RM_Size (Rectype) <= Lbit
6467 then
6468 Error_Msg_N
6469 ("bit number out of range of specified size",
6470 Last_Bit (CC));
6471 else
6472 Set_Component_Clause (Comp, CC);
6473 Set_Component_Bit_Offset (Comp, Fbit);
6474 Set_Esize (Comp, 1 + (Lbit - Fbit));
6475 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
6476 Set_Normalized_Position (Comp, Fbit / SSU);
6478 if Warn_On_Overridden_Size
6479 and then Has_Size_Clause (Etype (Comp))
6480 and then RM_Size (Etype (Comp)) /= Esize (Comp)
6481 then
6482 Error_Msg_NE
6483 ("?S?component size overrides size clause for&",
6484 Component_Name (CC), Etype (Comp));
6485 end if;
6487 -- This information is also set in the corresponding
6488 -- component of the base type, found by accessing the
6489 -- Original_Record_Component link if it is present.
6491 Ocomp := Original_Record_Component (Comp);
6493 if Hbit < Lbit then
6494 Hbit := Lbit;
6495 end if;
6497 Check_Size
6498 (Component_Name (CC),
6499 Etype (Comp),
6500 Esize (Comp),
6501 Biased);
6503 Set_Biased
6504 (Comp, First_Node (CC), "component clause", Biased);
6506 if Present (Ocomp) then
6507 Set_Component_Clause (Ocomp, CC);
6508 Set_Component_Bit_Offset (Ocomp, Fbit);
6509 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
6510 Set_Normalized_Position (Ocomp, Fbit / SSU);
6511 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
6513 Set_Normalized_Position_Max
6514 (Ocomp, Normalized_Position (Ocomp));
6516 -- Note: we don't use Set_Biased here, because we
6517 -- already gave a warning above if needed, and we
6518 -- would get a duplicate for the same name here.
6520 Set_Has_Biased_Representation
6521 (Ocomp, Has_Biased_Representation (Comp));
6522 end if;
6524 if Esize (Comp) < 0 then
6525 Error_Msg_N ("component size is negative", CC);
6526 end if;
6527 end if;
6528 end if;
6529 end if;
6530 end if;
6531 end if;
6533 Next (CC);
6534 end loop;
6536 -- Check missing components if Complete_Representation pragma appeared
6538 if Present (CR_Pragma) then
6539 Comp := First_Component_Or_Discriminant (Rectype);
6540 while Present (Comp) loop
6541 if No (Component_Clause (Comp)) then
6542 Error_Msg_NE
6543 ("missing component clause for &", CR_Pragma, Comp);
6544 end if;
6546 Next_Component_Or_Discriminant (Comp);
6547 end loop;
6549 -- Give missing components warning if required
6551 elsif Warn_On_Unrepped_Components then
6552 declare
6553 Num_Repped_Components : Nat := 0;
6554 Num_Unrepped_Components : Nat := 0;
6556 begin
6557 -- First count number of repped and unrepped components
6559 Comp := First_Component_Or_Discriminant (Rectype);
6560 while Present (Comp) loop
6561 if Present (Component_Clause (Comp)) then
6562 Num_Repped_Components := Num_Repped_Components + 1;
6563 else
6564 Num_Unrepped_Components := Num_Unrepped_Components + 1;
6565 end if;
6567 Next_Component_Or_Discriminant (Comp);
6568 end loop;
6570 -- We are only interested in the case where there is at least one
6571 -- unrepped component, and at least half the components have rep
6572 -- clauses. We figure that if less than half have them, then the
6573 -- partial rep clause is really intentional. If the component
6574 -- type has no underlying type set at this point (as for a generic
6575 -- formal type), we don't know enough to give a warning on the
6576 -- component.
6578 if Num_Unrepped_Components > 0
6579 and then Num_Unrepped_Components < Num_Repped_Components
6580 then
6581 Comp := First_Component_Or_Discriminant (Rectype);
6582 while Present (Comp) loop
6583 if No (Component_Clause (Comp))
6584 and then Comes_From_Source (Comp)
6585 and then Present (Underlying_Type (Etype (Comp)))
6586 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
6587 or else Size_Known_At_Compile_Time
6588 (Underlying_Type (Etype (Comp))))
6589 and then not Has_Warnings_Off (Rectype)
6590 then
6591 Error_Msg_Sloc := Sloc (Comp);
6592 Error_Msg_NE
6593 ("?C?no component clause given for & declared #",
6594 N, Comp);
6595 end if;
6597 Next_Component_Or_Discriminant (Comp);
6598 end loop;
6599 end if;
6600 end;
6601 end if;
6602 end Analyze_Record_Representation_Clause;
6604 -------------------------------------
6605 -- Build_Discrete_Static_Predicate --
6606 -------------------------------------
6608 procedure Build_Discrete_Static_Predicate
6609 (Typ : Entity_Id;
6610 Expr : Node_Id;
6611 Nam : Name_Id)
6613 Loc : constant Source_Ptr := Sloc (Expr);
6615 Non_Static : exception;
6616 -- Raised if something non-static is found
6618 Btyp : constant Entity_Id := Base_Type (Typ);
6620 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
6621 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
6622 -- Low bound and high bound value of base type of Typ
6624 TLo : constant Uint := Expr_Value (Type_Low_Bound (Typ));
6625 THi : constant Uint := Expr_Value (Type_High_Bound (Typ));
6626 -- Low bound and high bound values of static subtype Typ
6628 type REnt is record
6629 Lo, Hi : Uint;
6630 end record;
6631 -- One entry in a Rlist value, a single REnt (range entry) value denotes
6632 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
6633 -- value.
6635 type RList is array (Nat range <>) of REnt;
6636 -- A list of ranges. The ranges are sorted in increasing order, and are
6637 -- disjoint (there is a gap of at least one value between each range in
6638 -- the table). A value is in the set of ranges in Rlist if it lies
6639 -- within one of these ranges.
6641 False_Range : constant RList :=
6642 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
6643 -- An empty set of ranges represents a range list that can never be
6644 -- satisfied, since there are no ranges in which the value could lie,
6645 -- so it does not lie in any of them. False_Range is a canonical value
6646 -- for this empty set, but general processing should test for an Rlist
6647 -- with length zero (see Is_False predicate), since other null ranges
6648 -- may appear which must be treated as False.
6650 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
6651 -- Range representing True, value must be in the base range
6653 function "and" (Left : RList; Right : RList) return RList;
6654 -- And's together two range lists, returning a range list. This is a set
6655 -- intersection operation.
6657 function "or" (Left : RList; Right : RList) return RList;
6658 -- Or's together two range lists, returning a range list. This is a set
6659 -- union operation.
6661 function "not" (Right : RList) return RList;
6662 -- Returns complement of a given range list, i.e. a range list
6663 -- representing all the values in TLo .. THi that are not in the input
6664 -- operand Right.
6666 function Build_Val (V : Uint) return Node_Id;
6667 -- Return an analyzed N_Identifier node referencing this value, suitable
6668 -- for use as an entry in the Static_Discrte_Predicate list. This node
6669 -- is typed with the base type.
6671 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
6672 -- Return an analyzed N_Range node referencing this range, suitable for
6673 -- use as an entry in the Static_Discrete_Predicate list. This node is
6674 -- typed with the base type.
6676 function Get_RList (Exp : Node_Id) return RList;
6677 -- This is a recursive routine that converts the given expression into a
6678 -- list of ranges, suitable for use in building the static predicate.
6680 function Is_False (R : RList) return Boolean;
6681 pragma Inline (Is_False);
6682 -- Returns True if the given range list is empty, and thus represents a
6683 -- False list of ranges that can never be satisfied.
6685 function Is_True (R : RList) return Boolean;
6686 -- Returns True if R trivially represents the True predicate by having a
6687 -- single range from BLo to BHi.
6689 function Is_Type_Ref (N : Node_Id) return Boolean;
6690 pragma Inline (Is_Type_Ref);
6691 -- Returns if True if N is a reference to the type for the predicate in
6692 -- the expression (i.e. if it is an identifier whose Chars field matches
6693 -- the Nam given in the call). N must not be parenthesized, if the type
6694 -- name appears in parens, this routine will return False.
6696 function Lo_Val (N : Node_Id) return Uint;
6697 -- Given an entry from a Static_Discrete_Predicate list that is either
6698 -- a static expression or static range, gets either the expression value
6699 -- or the low bound of the range.
6701 function Hi_Val (N : Node_Id) return Uint;
6702 -- Given an entry from a Static_Discrete_Predicate list that is either
6703 -- a static expression or static range, gets either the expression value
6704 -- or the high bound of the range.
6706 function Membership_Entry (N : Node_Id) return RList;
6707 -- Given a single membership entry (range, value, or subtype), returns
6708 -- the corresponding range list. Raises Static_Error if not static.
6710 function Membership_Entries (N : Node_Id) return RList;
6711 -- Given an element on an alternatives list of a membership operation,
6712 -- returns the range list corresponding to this entry and all following
6713 -- entries (i.e. returns the "or" of this list of values).
6715 function Stat_Pred (Typ : Entity_Id) return RList;
6716 -- Given a type, if it has a static predicate, then return the predicate
6717 -- as a range list, otherwise raise Non_Static.
6719 -----------
6720 -- "and" --
6721 -----------
6723 function "and" (Left : RList; Right : RList) return RList is
6724 FEnt : REnt;
6725 -- First range of result
6727 SLeft : Nat := Left'First;
6728 -- Start of rest of left entries
6730 SRight : Nat := Right'First;
6731 -- Start of rest of right entries
6733 begin
6734 -- If either range is True, return the other
6736 if Is_True (Left) then
6737 return Right;
6738 elsif Is_True (Right) then
6739 return Left;
6740 end if;
6742 -- If either range is False, return False
6744 if Is_False (Left) or else Is_False (Right) then
6745 return False_Range;
6746 end if;
6748 -- Loop to remove entries at start that are disjoint, and thus just
6749 -- get discarded from the result entirely.
6751 loop
6752 -- If no operands left in either operand, result is false
6754 if SLeft > Left'Last or else SRight > Right'Last then
6755 return False_Range;
6757 -- Discard first left operand entry if disjoint with right
6759 elsif Left (SLeft).Hi < Right (SRight).Lo then
6760 SLeft := SLeft + 1;
6762 -- Discard first right operand entry if disjoint with left
6764 elsif Right (SRight).Hi < Left (SLeft).Lo then
6765 SRight := SRight + 1;
6767 -- Otherwise we have an overlapping entry
6769 else
6770 exit;
6771 end if;
6772 end loop;
6774 -- Now we have two non-null operands, and first entries overlap. The
6775 -- first entry in the result will be the overlapping part of these
6776 -- two entries.
6778 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
6779 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
6781 -- Now we can remove the entry that ended at a lower value, since its
6782 -- contribution is entirely contained in Fent.
6784 if Left (SLeft).Hi <= Right (SRight).Hi then
6785 SLeft := SLeft + 1;
6786 else
6787 SRight := SRight + 1;
6788 end if;
6790 -- Compute result by concatenating this first entry with the "and" of
6791 -- the remaining parts of the left and right operands. Note that if
6792 -- either of these is empty, "and" will yield empty, so that we will
6793 -- end up with just Fent, which is what we want in that case.
6795 return
6796 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
6797 end "and";
6799 -----------
6800 -- "not" --
6801 -----------
6803 function "not" (Right : RList) return RList is
6804 begin
6805 -- Return True if False range
6807 if Is_False (Right) then
6808 return True_Range;
6809 end if;
6811 -- Return False if True range
6813 if Is_True (Right) then
6814 return False_Range;
6815 end if;
6817 -- Here if not trivial case
6819 declare
6820 Result : RList (1 .. Right'Length + 1);
6821 -- May need one more entry for gap at beginning and end
6823 Count : Nat := 0;
6824 -- Number of entries stored in Result
6826 begin
6827 -- Gap at start
6829 if Right (Right'First).Lo > TLo then
6830 Count := Count + 1;
6831 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
6832 end if;
6834 -- Gaps between ranges
6836 for J in Right'First .. Right'Last - 1 loop
6837 Count := Count + 1;
6838 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
6839 end loop;
6841 -- Gap at end
6843 if Right (Right'Last).Hi < THi then
6844 Count := Count + 1;
6845 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
6846 end if;
6848 return Result (1 .. Count);
6849 end;
6850 end "not";
6852 ----------
6853 -- "or" --
6854 ----------
6856 function "or" (Left : RList; Right : RList) return RList is
6857 FEnt : REnt;
6858 -- First range of result
6860 SLeft : Nat := Left'First;
6861 -- Start of rest of left entries
6863 SRight : Nat := Right'First;
6864 -- Start of rest of right entries
6866 begin
6867 -- If either range is True, return True
6869 if Is_True (Left) or else Is_True (Right) then
6870 return True_Range;
6871 end if;
6873 -- If either range is False (empty), return the other
6875 if Is_False (Left) then
6876 return Right;
6877 elsif Is_False (Right) then
6878 return Left;
6879 end if;
6881 -- Initialize result first entry from left or right operand depending
6882 -- on which starts with the lower range.
6884 if Left (SLeft).Lo < Right (SRight).Lo then
6885 FEnt := Left (SLeft);
6886 SLeft := SLeft + 1;
6887 else
6888 FEnt := Right (SRight);
6889 SRight := SRight + 1;
6890 end if;
6892 -- This loop eats ranges from left and right operands that are
6893 -- contiguous with the first range we are gathering.
6895 loop
6896 -- Eat first entry in left operand if contiguous or overlapped by
6897 -- gathered first operand of result.
6899 if SLeft <= Left'Last
6900 and then Left (SLeft).Lo <= FEnt.Hi + 1
6901 then
6902 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
6903 SLeft := SLeft + 1;
6905 -- Eat first entry in right operand if contiguous or overlapped by
6906 -- gathered right operand of result.
6908 elsif SRight <= Right'Last
6909 and then Right (SRight).Lo <= FEnt.Hi + 1
6910 then
6911 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
6912 SRight := SRight + 1;
6914 -- All done if no more entries to eat
6916 else
6917 exit;
6918 end if;
6919 end loop;
6921 -- Obtain result as the first entry we just computed, concatenated
6922 -- to the "or" of the remaining results (if one operand is empty,
6923 -- this will just concatenate with the other
6925 return
6926 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
6927 end "or";
6929 -----------------
6930 -- Build_Range --
6931 -----------------
6933 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
6934 Result : Node_Id;
6935 begin
6936 Result :=
6937 Make_Range (Loc,
6938 Low_Bound => Build_Val (Lo),
6939 High_Bound => Build_Val (Hi));
6940 Set_Etype (Result, Btyp);
6941 Set_Analyzed (Result);
6942 return Result;
6943 end Build_Range;
6945 ---------------
6946 -- Build_Val --
6947 ---------------
6949 function Build_Val (V : Uint) return Node_Id is
6950 Result : Node_Id;
6952 begin
6953 if Is_Enumeration_Type (Typ) then
6954 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
6955 else
6956 Result := Make_Integer_Literal (Loc, V);
6957 end if;
6959 Set_Etype (Result, Btyp);
6960 Set_Is_Static_Expression (Result);
6961 Set_Analyzed (Result);
6962 return Result;
6963 end Build_Val;
6965 ---------------
6966 -- Get_RList --
6967 ---------------
6969 function Get_RList (Exp : Node_Id) return RList is
6970 Op : Node_Kind;
6971 Val : Uint;
6973 begin
6974 -- Static expression can only be true or false
6976 if Is_OK_Static_Expression (Exp) then
6977 if Expr_Value (Exp) = 0 then
6978 return False_Range;
6979 else
6980 return True_Range;
6981 end if;
6982 end if;
6984 -- Otherwise test node type
6986 Op := Nkind (Exp);
6988 case Op is
6990 -- And
6992 when N_Op_And | N_And_Then =>
6993 return Get_RList (Left_Opnd (Exp))
6995 Get_RList (Right_Opnd (Exp));
6997 -- Or
6999 when N_Op_Or | N_Or_Else =>
7000 return Get_RList (Left_Opnd (Exp))
7002 Get_RList (Right_Opnd (Exp));
7004 -- Not
7006 when N_Op_Not =>
7007 return not Get_RList (Right_Opnd (Exp));
7009 -- Comparisons of type with static value
7011 when N_Op_Compare =>
7013 -- Type is left operand
7015 if Is_Type_Ref (Left_Opnd (Exp))
7016 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7017 then
7018 Val := Expr_Value (Right_Opnd (Exp));
7020 -- Typ is right operand
7022 elsif Is_Type_Ref (Right_Opnd (Exp))
7023 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7024 then
7025 Val := Expr_Value (Left_Opnd (Exp));
7027 -- Invert sense of comparison
7029 case Op is
7030 when N_Op_Gt => Op := N_Op_Lt;
7031 when N_Op_Lt => Op := N_Op_Gt;
7032 when N_Op_Ge => Op := N_Op_Le;
7033 when N_Op_Le => Op := N_Op_Ge;
7034 when others => null;
7035 end case;
7037 -- Other cases are non-static
7039 else
7040 raise Non_Static;
7041 end if;
7043 -- Construct range according to comparison operation
7045 case Op is
7046 when N_Op_Eq =>
7047 return RList'(1 => REnt'(Val, Val));
7049 when N_Op_Ge =>
7050 return RList'(1 => REnt'(Val, BHi));
7052 when N_Op_Gt =>
7053 return RList'(1 => REnt'(Val + 1, BHi));
7055 when N_Op_Le =>
7056 return RList'(1 => REnt'(BLo, Val));
7058 when N_Op_Lt =>
7059 return RList'(1 => REnt'(BLo, Val - 1));
7061 when N_Op_Ne =>
7062 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
7064 when others =>
7065 raise Program_Error;
7066 end case;
7068 -- Membership (IN)
7070 when N_In =>
7071 if not Is_Type_Ref (Left_Opnd (Exp)) then
7072 raise Non_Static;
7073 end if;
7075 if Present (Right_Opnd (Exp)) then
7076 return Membership_Entry (Right_Opnd (Exp));
7077 else
7078 return Membership_Entries (First (Alternatives (Exp)));
7079 end if;
7081 -- Negative membership (NOT IN)
7083 when N_Not_In =>
7084 if not Is_Type_Ref (Left_Opnd (Exp)) then
7085 raise Non_Static;
7086 end if;
7088 if Present (Right_Opnd (Exp)) then
7089 return not Membership_Entry (Right_Opnd (Exp));
7090 else
7091 return not Membership_Entries (First (Alternatives (Exp)));
7092 end if;
7094 -- Function call, may be call to static predicate
7096 when N_Function_Call =>
7097 if Is_Entity_Name (Name (Exp)) then
7098 declare
7099 Ent : constant Entity_Id := Entity (Name (Exp));
7100 begin
7101 if Is_Predicate_Function (Ent)
7102 or else
7103 Is_Predicate_Function_M (Ent)
7104 then
7105 return Stat_Pred (Etype (First_Formal (Ent)));
7106 end if;
7107 end;
7108 end if;
7110 -- Other function call cases are non-static
7112 raise Non_Static;
7114 -- Qualified expression, dig out the expression
7116 when N_Qualified_Expression =>
7117 return Get_RList (Expression (Exp));
7119 when N_Case_Expression =>
7120 declare
7121 Alt : Node_Id;
7122 Choices : List_Id;
7123 Dep : Node_Id;
7125 begin
7126 if not Is_Entity_Name (Expression (Expr))
7127 or else Etype (Expression (Expr)) /= Typ
7128 then
7129 Error_Msg_N
7130 ("expression must denaote subtype", Expression (Expr));
7131 return False_Range;
7132 end if;
7134 -- Collect discrete choices in all True alternatives
7136 Choices := New_List;
7137 Alt := First (Alternatives (Exp));
7138 while Present (Alt) loop
7139 Dep := Expression (Alt);
7141 if not Is_OK_Static_Expression (Dep) then
7142 raise Non_Static;
7144 elsif Is_True (Expr_Value (Dep)) then
7145 Append_List_To (Choices,
7146 New_Copy_List (Discrete_Choices (Alt)));
7147 end if;
7149 Next (Alt);
7150 end loop;
7152 return Membership_Entries (First (Choices));
7153 end;
7155 -- Expression with actions: if no actions, dig out expression
7157 when N_Expression_With_Actions =>
7158 if Is_Empty_List (Actions (Exp)) then
7159 return Get_RList (Expression (Exp));
7160 else
7161 raise Non_Static;
7162 end if;
7164 -- Xor operator
7166 when N_Op_Xor =>
7167 return (Get_RList (Left_Opnd (Exp))
7168 and not Get_RList (Right_Opnd (Exp)))
7169 or (Get_RList (Right_Opnd (Exp))
7170 and not Get_RList (Left_Opnd (Exp)));
7172 -- Any other node type is non-static
7174 when others =>
7175 raise Non_Static;
7176 end case;
7177 end Get_RList;
7179 ------------
7180 -- Hi_Val --
7181 ------------
7183 function Hi_Val (N : Node_Id) return Uint is
7184 begin
7185 if Is_OK_Static_Expression (N) then
7186 return Expr_Value (N);
7187 else
7188 pragma Assert (Nkind (N) = N_Range);
7189 return Expr_Value (High_Bound (N));
7190 end if;
7191 end Hi_Val;
7193 --------------
7194 -- Is_False --
7195 --------------
7197 function Is_False (R : RList) return Boolean is
7198 begin
7199 return R'Length = 0;
7200 end Is_False;
7202 -------------
7203 -- Is_True --
7204 -------------
7206 function Is_True (R : RList) return Boolean is
7207 begin
7208 return R'Length = 1
7209 and then R (R'First).Lo = BLo
7210 and then R (R'First).Hi = BHi;
7211 end Is_True;
7213 -----------------
7214 -- Is_Type_Ref --
7215 -----------------
7217 function Is_Type_Ref (N : Node_Id) return Boolean is
7218 begin
7219 return Nkind (N) = N_Identifier
7220 and then Chars (N) = Nam
7221 and then Paren_Count (N) = 0;
7222 end Is_Type_Ref;
7224 ------------
7225 -- Lo_Val --
7226 ------------
7228 function Lo_Val (N : Node_Id) return Uint is
7229 begin
7230 if Is_OK_Static_Expression (N) then
7231 return Expr_Value (N);
7232 else
7233 pragma Assert (Nkind (N) = N_Range);
7234 return Expr_Value (Low_Bound (N));
7235 end if;
7236 end Lo_Val;
7238 ------------------------
7239 -- Membership_Entries --
7240 ------------------------
7242 function Membership_Entries (N : Node_Id) return RList is
7243 begin
7244 if No (Next (N)) then
7245 return Membership_Entry (N);
7246 else
7247 return Membership_Entry (N) or Membership_Entries (Next (N));
7248 end if;
7249 end Membership_Entries;
7251 ----------------------
7252 -- Membership_Entry --
7253 ----------------------
7255 function Membership_Entry (N : Node_Id) return RList is
7256 Val : Uint;
7257 SLo : Uint;
7258 SHi : Uint;
7260 begin
7261 -- Range case
7263 if Nkind (N) = N_Range then
7264 if not Is_OK_Static_Expression (Low_Bound (N))
7265 or else
7266 not Is_OK_Static_Expression (High_Bound (N))
7267 then
7268 raise Non_Static;
7269 else
7270 SLo := Expr_Value (Low_Bound (N));
7271 SHi := Expr_Value (High_Bound (N));
7272 return RList'(1 => REnt'(SLo, SHi));
7273 end if;
7275 -- Static expression case
7277 elsif Is_OK_Static_Expression (N) then
7278 Val := Expr_Value (N);
7279 return RList'(1 => REnt'(Val, Val));
7281 -- Identifier (other than static expression) case
7283 else pragma Assert (Nkind (N) = N_Identifier);
7285 -- Type case
7287 if Is_Type (Entity (N)) then
7289 -- If type has predicates, process them
7291 if Has_Predicates (Entity (N)) then
7292 return Stat_Pred (Entity (N));
7294 -- For static subtype without predicates, get range
7296 elsif Is_OK_Static_Subtype (Entity (N)) then
7297 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
7298 SHi := Expr_Value (Type_High_Bound (Entity (N)));
7299 return RList'(1 => REnt'(SLo, SHi));
7301 -- Any other type makes us non-static
7303 else
7304 raise Non_Static;
7305 end if;
7307 -- Any other kind of identifier in predicate (e.g. a non-static
7308 -- expression value) means this is not a static predicate.
7310 else
7311 raise Non_Static;
7312 end if;
7313 end if;
7314 end Membership_Entry;
7316 ---------------
7317 -- Stat_Pred --
7318 ---------------
7320 function Stat_Pred (Typ : Entity_Id) return RList is
7321 begin
7322 -- Not static if type does not have static predicates
7324 if not Has_Static_Predicate (Typ) then
7325 raise Non_Static;
7326 end if;
7328 -- Otherwise we convert the predicate list to a range list
7330 declare
7331 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
7332 Result : RList (1 .. List_Length (Spred));
7333 P : Node_Id;
7335 begin
7336 P := First (Static_Discrete_Predicate (Typ));
7337 for J in Result'Range loop
7338 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
7339 Next (P);
7340 end loop;
7342 return Result;
7343 end;
7344 end Stat_Pred;
7346 -- Start of processing for Build_Discrete_Static_Predicate
7348 begin
7349 -- Analyze the expression to see if it is a static predicate
7351 declare
7352 Ranges : constant RList := Get_RList (Expr);
7353 -- Range list from expression if it is static
7355 Plist : List_Id;
7357 begin
7358 -- Convert range list into a form for the static predicate. In the
7359 -- Ranges array, we just have raw ranges, these must be converted
7360 -- to properly typed and analyzed static expressions or range nodes.
7362 -- Note: here we limit ranges to the ranges of the subtype, so that
7363 -- a predicate is always false for values outside the subtype. That
7364 -- seems fine, such values are invalid anyway, and considering them
7365 -- to fail the predicate seems allowed and friendly, and furthermore
7366 -- simplifies processing for case statements and loops.
7368 Plist := New_List;
7370 for J in Ranges'Range loop
7371 declare
7372 Lo : Uint := Ranges (J).Lo;
7373 Hi : Uint := Ranges (J).Hi;
7375 begin
7376 -- Ignore completely out of range entry
7378 if Hi < TLo or else Lo > THi then
7379 null;
7381 -- Otherwise process entry
7383 else
7384 -- Adjust out of range value to subtype range
7386 if Lo < TLo then
7387 Lo := TLo;
7388 end if;
7390 if Hi > THi then
7391 Hi := THi;
7392 end if;
7394 -- Convert range into required form
7396 Append_To (Plist, Build_Range (Lo, Hi));
7397 end if;
7398 end;
7399 end loop;
7401 -- Processing was successful and all entries were static, so now we
7402 -- can store the result as the predicate list.
7404 Set_Static_Discrete_Predicate (Typ, Plist);
7406 -- The processing for static predicates put the expression into
7407 -- canonical form as a series of ranges. It also eliminated
7408 -- duplicates and collapsed and combined ranges. We might as well
7409 -- replace the alternatives list of the right operand of the
7410 -- membership test with the static predicate list, which will
7411 -- usually be more efficient.
7413 declare
7414 New_Alts : constant List_Id := New_List;
7415 Old_Node : Node_Id;
7416 New_Node : Node_Id;
7418 begin
7419 Old_Node := First (Plist);
7420 while Present (Old_Node) loop
7421 New_Node := New_Copy (Old_Node);
7423 if Nkind (New_Node) = N_Range then
7424 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
7425 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
7426 end if;
7428 Append_To (New_Alts, New_Node);
7429 Next (Old_Node);
7430 end loop;
7432 -- If empty list, replace by False
7434 if Is_Empty_List (New_Alts) then
7435 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
7437 -- Else replace by set membership test
7439 else
7440 Rewrite (Expr,
7441 Make_In (Loc,
7442 Left_Opnd => Make_Identifier (Loc, Nam),
7443 Right_Opnd => Empty,
7444 Alternatives => New_Alts));
7446 -- Resolve new expression in function context
7448 Install_Formals (Predicate_Function (Typ));
7449 Push_Scope (Predicate_Function (Typ));
7450 Analyze_And_Resolve (Expr, Standard_Boolean);
7451 Pop_Scope;
7452 end if;
7453 end;
7454 end;
7456 -- If non-static, return doing nothing
7458 exception
7459 when Non_Static =>
7460 return;
7461 end Build_Discrete_Static_Predicate;
7463 -------------------------------------------
7464 -- Build_Invariant_Procedure_Declaration --
7465 -------------------------------------------
7467 function Build_Invariant_Procedure_Declaration
7468 (Typ : Entity_Id) return Node_Id
7470 Loc : constant Source_Ptr := Sloc (Typ);
7471 Object_Entity : constant Entity_Id :=
7472 Make_Defining_Identifier (Loc, New_Internal_Name ('I'));
7473 Spec : Node_Id;
7474 SId : Entity_Id;
7476 begin
7477 Set_Etype (Object_Entity, Typ);
7479 -- Check for duplicate definiations.
7481 if Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)) then
7482 return Empty;
7483 end if;
7485 SId :=
7486 Make_Defining_Identifier (Loc,
7487 Chars => New_External_Name (Chars (Typ), "Invariant"));
7488 Set_Has_Invariants (Typ);
7489 Set_Ekind (SId, E_Procedure);
7490 Set_Etype (SId, Standard_Void_Type);
7491 Set_Is_Invariant_Procedure (SId);
7492 Set_Invariant_Procedure (Typ, SId);
7494 Spec :=
7495 Make_Procedure_Specification (Loc,
7496 Defining_Unit_Name => SId,
7497 Parameter_Specifications => New_List (
7498 Make_Parameter_Specification (Loc,
7499 Defining_Identifier => Object_Entity,
7500 Parameter_Type => New_Occurrence_Of (Typ, Loc))));
7502 return Make_Subprogram_Declaration (Loc, Specification => Spec);
7503 end Build_Invariant_Procedure_Declaration;
7505 -------------------------------
7506 -- Build_Invariant_Procedure --
7507 -------------------------------
7509 -- The procedure that is constructed here has the form
7511 -- procedure typInvariant (Ixxx : typ) is
7512 -- begin
7513 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7514 -- pragma Check (Invariant, exp, "failed invariant from xxx");
7515 -- ...
7516 -- pragma Check (Invariant, exp, "failed inherited invariant from xxx");
7517 -- ...
7518 -- end typInvariant;
7520 procedure Build_Invariant_Procedure (Typ : Entity_Id; N : Node_Id) is
7521 Loc : constant Source_Ptr := Sloc (Typ);
7522 Stmts : List_Id;
7523 Spec : Node_Id;
7524 SId : Entity_Id;
7525 PDecl : Node_Id;
7526 PBody : Node_Id;
7528 Nam : Name_Id;
7529 -- Name for Check pragma, usually Invariant, but might be Type_Invariant
7530 -- if we come from a Type_Invariant aspect, we make sure to build the
7531 -- Check pragma with the right name, so that Check_Policy works right.
7533 Visible_Decls : constant List_Id := Visible_Declarations (N);
7534 Private_Decls : constant List_Id := Private_Declarations (N);
7536 procedure Add_Invariants (T : Entity_Id; Inherit : Boolean);
7537 -- Appends statements to Stmts for any invariants in the rep item chain
7538 -- of the given type. If Inherit is False, then we only process entries
7539 -- on the chain for the type Typ. If Inherit is True, then we ignore any
7540 -- Invariant aspects, but we process all Invariant'Class aspects, adding
7541 -- "inherited" to the exception message and generating an informational
7542 -- message about the inheritance of an invariant.
7544 Object_Name : Name_Id;
7545 -- Name for argument of invariant procedure
7547 Object_Entity : Node_Id;
7548 -- The entity of the formal for the procedure
7550 --------------------
7551 -- Add_Invariants --
7552 --------------------
7554 procedure Add_Invariants (T : Entity_Id; Inherit : Boolean) is
7555 Ritem : Node_Id;
7556 Arg1 : Node_Id;
7557 Arg2 : Node_Id;
7558 Arg3 : Node_Id;
7559 Exp : Node_Id;
7560 Loc : Source_Ptr;
7561 Assoc : List_Id;
7562 Str : String_Id;
7564 procedure Replace_Type_Reference (N : Node_Id);
7565 -- Replace a single occurrence N of the subtype name with a reference
7566 -- to the formal of the predicate function. N can be an identifier
7567 -- referencing the subtype, or a selected component, representing an
7568 -- appropriately qualified occurrence of the subtype name.
7570 procedure Replace_Type_References is
7571 new Replace_Type_References_Generic (Replace_Type_Reference);
7572 -- Traverse an expression replacing all occurrences of the subtype
7573 -- name with appropriate references to the object that is the formal
7574 -- parameter of the predicate function. Note that we must ensure
7575 -- that the type and entity information is properly set in the
7576 -- replacement node, since we will do a Preanalyze call of this
7577 -- expression without proper visibility of the procedure argument.
7579 ----------------------------
7580 -- Replace_Type_Reference --
7581 ----------------------------
7583 -- Note: See comments in Add_Predicates.Replace_Type_Reference
7584 -- regarding handling of Sloc and Comes_From_Source.
7586 procedure Replace_Type_Reference (N : Node_Id) is
7587 begin
7589 -- Add semantic information to node to be rewritten, for ASIS
7590 -- navigation needs.
7592 if Nkind (N) = N_Identifier then
7593 Set_Entity (N, T);
7594 Set_Etype (N, T);
7596 elsif Nkind (N) = N_Selected_Component then
7597 Analyze (Prefix (N));
7598 Set_Entity (Selector_Name (N), T);
7599 Set_Etype (Selector_Name (N), T);
7600 end if;
7602 -- Invariant'Class, replace with T'Class (obj)
7603 -- In ASIS mode, an inherited item is analyzed already, and the
7604 -- replacement has been done, so do not repeat transformation
7605 -- to prevent ill-formed tree.
7607 if Class_Present (Ritem) then
7608 if ASIS_Mode
7609 and then Nkind (Parent (N)) = N_Attribute_Reference
7610 and then Attribute_Name (Parent (N)) = Name_Class
7611 then
7612 null;
7614 else
7615 Rewrite (N,
7616 Make_Type_Conversion (Sloc (N),
7617 Subtype_Mark =>
7618 Make_Attribute_Reference (Sloc (N),
7619 Prefix => New_Occurrence_Of (T, Sloc (N)),
7620 Attribute_Name => Name_Class),
7621 Expression =>
7622 Make_Identifier (Sloc (N), Object_Name)));
7624 Set_Entity (Expression (N), Object_Entity);
7625 Set_Etype (Expression (N), Typ);
7626 end if;
7628 -- Invariant, replace with obj
7630 else
7631 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
7632 Set_Entity (N, Object_Entity);
7633 Set_Etype (N, Typ);
7634 end if;
7636 Set_Comes_From_Source (N, True);
7637 end Replace_Type_Reference;
7639 -- Start of processing for Add_Invariants
7641 begin
7642 Ritem := First_Rep_Item (T);
7643 while Present (Ritem) loop
7644 if Nkind (Ritem) = N_Pragma
7645 and then Pragma_Name (Ritem) = Name_Invariant
7646 then
7647 Arg1 := First (Pragma_Argument_Associations (Ritem));
7648 Arg2 := Next (Arg1);
7649 Arg3 := Next (Arg2);
7651 Arg1 := Get_Pragma_Arg (Arg1);
7652 Arg2 := Get_Pragma_Arg (Arg2);
7654 -- For Inherit case, ignore Invariant, process only Class case
7656 if Inherit then
7657 if not Class_Present (Ritem) then
7658 goto Continue;
7659 end if;
7661 -- For Inherit false, process only item for right type
7663 else
7664 if Entity (Arg1) /= Typ then
7665 goto Continue;
7666 end if;
7667 end if;
7669 if No (Stmts) then
7670 Stmts := Empty_List;
7671 end if;
7673 Exp := New_Copy_Tree (Arg2);
7675 -- Preserve sloc of original pragma Invariant
7677 Loc := Sloc (Ritem);
7679 -- We need to replace any occurrences of the name of the type
7680 -- with references to the object, converted to type'Class in
7681 -- the case of Invariant'Class aspects.
7683 Replace_Type_References (Exp, T);
7685 -- If this invariant comes from an aspect, find the aspect
7686 -- specification, and replace the saved expression because
7687 -- we need the subtype references replaced for the calls to
7688 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
7689 -- and Check_Aspect_At_End_Of_Declarations.
7691 if From_Aspect_Specification (Ritem) then
7692 declare
7693 Aitem : Node_Id;
7695 begin
7696 -- Loop to find corresponding aspect, note that this
7697 -- must be present given the pragma is marked delayed.
7699 -- Note: in practice Next_Rep_Item (Ritem) is Empty so
7700 -- this loop does nothing. Furthermore, why isn't this
7701 -- simply Corresponding_Aspect ???
7703 Aitem := Next_Rep_Item (Ritem);
7704 while Present (Aitem) loop
7705 if Nkind (Aitem) = N_Aspect_Specification
7706 and then Aspect_Rep_Item (Aitem) = Ritem
7707 then
7708 Set_Entity
7709 (Identifier (Aitem), New_Copy_Tree (Exp));
7710 exit;
7711 end if;
7713 Aitem := Next_Rep_Item (Aitem);
7714 end loop;
7715 end;
7716 end if;
7718 -- Now we need to preanalyze the expression to properly capture
7719 -- the visibility in the visible part. The expression will not
7720 -- be analyzed for real until the body is analyzed, but that is
7721 -- at the end of the private part and has the wrong visibility.
7723 Set_Parent (Exp, N);
7724 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
7726 -- A class-wide invariant may be inherited in a separate unit,
7727 -- where the corresponding expression cannot be resolved by
7728 -- visibility, because it refers to a local function. Propagate
7729 -- semantic information to the original representation item, to
7730 -- be used when an invariant procedure for a derived type is
7731 -- constructed.
7733 -- Unclear how to handle class-wide invariants that are not
7734 -- function calls ???
7736 if not Inherit
7737 and then Class_Present (Ritem)
7738 and then Nkind (Exp) = N_Function_Call
7739 and then Nkind (Arg2) = N_Indexed_Component
7740 then
7741 Rewrite (Arg2,
7742 Make_Function_Call (Loc,
7743 Name =>
7744 New_Occurrence_Of (Entity (Name (Exp)), Loc),
7745 Parameter_Associations =>
7746 New_Copy_List (Expressions (Arg2))));
7747 end if;
7749 -- In ASIS mode, even if assertions are not enabled, we must
7750 -- analyze the original expression in the aspect specification
7751 -- because it is part of the original tree.
7753 if ASIS_Mode and then From_Aspect_Specification (Ritem) then
7754 declare
7755 Inv : constant Node_Id :=
7756 Expression (Corresponding_Aspect (Ritem));
7757 begin
7758 Replace_Type_References (Inv, T);
7759 Preanalyze_Assert_Expression (Inv, Standard_Boolean);
7760 end;
7761 end if;
7763 -- Get name to be used for Check pragma
7765 if not From_Aspect_Specification (Ritem) then
7766 Nam := Name_Invariant;
7767 else
7768 Nam := Chars (Identifier (Corresponding_Aspect (Ritem)));
7769 end if;
7771 -- Build first two arguments for Check pragma
7773 Assoc :=
7774 New_List (
7775 Make_Pragma_Argument_Association (Loc,
7776 Expression => Make_Identifier (Loc, Chars => Nam)),
7777 Make_Pragma_Argument_Association (Loc,
7778 Expression => Exp));
7780 -- Add message if present in Invariant pragma
7782 if Present (Arg3) then
7783 Str := Strval (Get_Pragma_Arg (Arg3));
7785 -- If inherited case, and message starts "failed invariant",
7786 -- change it to be "failed inherited invariant".
7788 if Inherit then
7789 String_To_Name_Buffer (Str);
7791 if Name_Buffer (1 .. 16) = "failed invariant" then
7792 Insert_Str_In_Name_Buffer ("inherited ", 8);
7793 Str := String_From_Name_Buffer;
7794 end if;
7795 end if;
7797 Append_To (Assoc,
7798 Make_Pragma_Argument_Association (Loc,
7799 Expression => Make_String_Literal (Loc, Str)));
7800 end if;
7802 -- Add Check pragma to list of statements
7804 Append_To (Stmts,
7805 Make_Pragma (Loc,
7806 Pragma_Identifier =>
7807 Make_Identifier (Loc, Name_Check),
7808 Pragma_Argument_Associations => Assoc));
7810 -- If Inherited case and option enabled, output info msg. Note
7811 -- that we know this is a case of Invariant'Class.
7813 if Inherit and Opt.List_Inherited_Aspects then
7814 Error_Msg_Sloc := Sloc (Ritem);
7815 Error_Msg_N
7816 ("info: & inherits `Invariant''Class` aspect from #?L?",
7817 Typ);
7818 end if;
7819 end if;
7821 <<Continue>>
7822 Next_Rep_Item (Ritem);
7823 end loop;
7824 end Add_Invariants;
7826 -- Start of processing for Build_Invariant_Procedure
7828 begin
7829 Stmts := No_List;
7830 PDecl := Empty;
7831 PBody := Empty;
7832 SId := Empty;
7834 -- If the aspect specification exists for some view of the type, the
7835 -- declaration for the procedure has been created.
7837 if Has_Invariants (Typ) then
7838 SId := Invariant_Procedure (Typ);
7839 end if;
7841 -- If the body is already present, nothing to do. This will occur when
7842 -- the type is already frozen, which is the case when the invariant
7843 -- appears in a private part, and the freezing takes place before the
7844 -- final pass over full declarations.
7846 -- See Exp_Ch3.Insert_Component_Invariant_Checks for details.
7848 if Present (SId) then
7849 PDecl := Unit_Declaration_Node (SId);
7851 if Present (PDecl)
7852 and then Nkind (PDecl) = N_Subprogram_Declaration
7853 and then Present (Corresponding_Body (PDecl))
7854 then
7855 return;
7856 end if;
7858 else
7859 PDecl := Build_Invariant_Procedure_Declaration (Typ);
7860 end if;
7862 -- Recover formal of procedure, for use in the calls to invariant
7863 -- functions (including inherited ones).
7865 Object_Entity :=
7866 Defining_Identifier
7867 (First (Parameter_Specifications (Specification (PDecl))));
7868 Object_Name := Chars (Object_Entity);
7870 -- Add invariants for the current type
7872 Add_Invariants (Typ, Inherit => False);
7874 -- Add invariants for parent types
7876 declare
7877 Current_Typ : Entity_Id;
7878 Parent_Typ : Entity_Id;
7880 begin
7881 Current_Typ := Typ;
7882 loop
7883 Parent_Typ := Etype (Current_Typ);
7885 if Is_Private_Type (Parent_Typ)
7886 and then Present (Full_View (Base_Type (Parent_Typ)))
7887 then
7888 Parent_Typ := Full_View (Base_Type (Parent_Typ));
7889 end if;
7891 exit when Parent_Typ = Current_Typ;
7893 Current_Typ := Parent_Typ;
7894 Add_Invariants (Current_Typ, Inherit => True);
7895 end loop;
7896 end;
7898 -- Build the procedure if we generated at least one Check pragma
7900 if Stmts /= No_List then
7901 Spec := Copy_Separate_Tree (Specification (PDecl));
7903 PBody :=
7904 Make_Subprogram_Body (Loc,
7905 Specification => Spec,
7906 Declarations => Empty_List,
7907 Handled_Statement_Sequence =>
7908 Make_Handled_Sequence_Of_Statements (Loc,
7909 Statements => Stmts));
7911 -- Insert procedure declaration and spec at the appropriate points.
7912 -- If declaration is already analyzed, it was processed by the
7913 -- generated pragma.
7915 if Present (Private_Decls) then
7917 -- The spec goes at the end of visible declarations, but they have
7918 -- already been analyzed, so we need to explicitly do the analyze.
7920 if not Analyzed (PDecl) then
7921 Append_To (Visible_Decls, PDecl);
7922 Analyze (PDecl);
7923 end if;
7925 -- The body goes at the end of the private declarations, which we
7926 -- have not analyzed yet, so we do not need to perform an explicit
7927 -- analyze call. We skip this if there are no private declarations
7928 -- (this is an error that will be caught elsewhere);
7930 Append_To (Private_Decls, PBody);
7932 -- If the invariant appears on the full view of a type, the
7933 -- analysis of the private part is complete, and we must
7934 -- analyze the new body explicitly.
7936 if In_Private_Part (Current_Scope) then
7937 Analyze (PBody);
7938 end if;
7940 -- If there are no private declarations this may be an error that
7941 -- will be diagnosed elsewhere. However, if this is a non-private
7942 -- type that inherits invariants, it needs no completion and there
7943 -- may be no private part. In this case insert invariant procedure
7944 -- at end of current declarative list, and analyze at once, given
7945 -- that the type is about to be frozen.
7947 elsif not Is_Private_Type (Typ) then
7948 Append_To (Visible_Decls, PDecl);
7949 Append_To (Visible_Decls, PBody);
7950 Analyze (PDecl);
7951 Analyze (PBody);
7952 end if;
7953 end if;
7954 end Build_Invariant_Procedure;
7956 -------------------------------
7957 -- Build_Predicate_Functions --
7958 -------------------------------
7960 -- The procedures that are constructed here have the form:
7962 -- function typPredicate (Ixxx : typ) return Boolean is
7963 -- begin
7964 -- return
7965 -- exp1 and then exp2 and then ...
7966 -- and then typ1Predicate (typ1 (Ixxx))
7967 -- and then typ2Predicate (typ2 (Ixxx))
7968 -- and then ...;
7969 -- end typPredicate;
7971 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
7972 -- this is the point at which these expressions get analyzed, providing the
7973 -- required delay, and typ1, typ2, are entities from which predicates are
7974 -- inherited. Note that we do NOT generate Check pragmas, that's because we
7975 -- use this function even if checks are off, e.g. for membership tests.
7977 -- If the expression has at least one Raise_Expression, then we also build
7978 -- the typPredicateM version of the function, in which any occurrence of a
7979 -- Raise_Expression is converted to "return False".
7981 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
7982 Loc : constant Source_Ptr := Sloc (Typ);
7984 Expr : Node_Id;
7985 -- This is the expression for the result of the function. It is
7986 -- is build by connecting the component predicates with AND THEN.
7988 Expr_M : Node_Id;
7989 -- This is the corresponding return expression for the Predicate_M
7990 -- function. It differs in that raise expressions are marked for
7991 -- special expansion (see Process_REs).
7993 Object_Name : constant Name_Id := New_Internal_Name ('I');
7994 -- Name for argument of Predicate procedure. Note that we use the same
7995 -- name for both predicate functions. That way the reference within the
7996 -- predicate expression is the same in both functions.
7998 Object_Entity : constant Entity_Id :=
7999 Make_Defining_Identifier (Loc, Chars => Object_Name);
8000 -- Entity for argument of Predicate procedure
8002 Object_Entity_M : constant Entity_Id :=
8003 Make_Defining_Identifier (Loc, Chars => Object_Name);
8004 -- Entity for argument of Predicate_M procedure
8006 Raise_Expression_Present : Boolean := False;
8007 -- Set True if Expr has at least one Raise_Expression
8009 procedure Add_Call (T : Entity_Id);
8010 -- Includes a call to the predicate function for type T in Expr if T
8011 -- has predicates and Predicate_Function (T) is non-empty.
8013 procedure Add_Predicates;
8014 -- Appends expressions for any Predicate pragmas in the rep item chain
8015 -- Typ to Expr. Note that we look only at items for this exact entity.
8016 -- Inheritance of predicates for the parent type is done by calling the
8017 -- Predicate_Function of the parent type, using Add_Call above.
8019 function Test_RE (N : Node_Id) return Traverse_Result;
8020 -- Used in Test_REs, tests one node for being a raise expression, and if
8021 -- so sets Raise_Expression_Present True.
8023 procedure Test_REs is new Traverse_Proc (Test_RE);
8024 -- Tests to see if Expr contains any raise expressions
8026 function Process_RE (N : Node_Id) return Traverse_Result;
8027 -- Used in Process REs, tests if node N is a raise expression, and if
8028 -- so, marks it to be converted to return False.
8030 procedure Process_REs is new Traverse_Proc (Process_RE);
8031 -- Marks any raise expressions in Expr_M to return False
8033 --------------
8034 -- Add_Call --
8035 --------------
8037 procedure Add_Call (T : Entity_Id) is
8038 Exp : Node_Id;
8040 begin
8041 if Present (T) and then Present (Predicate_Function (T)) then
8042 Set_Has_Predicates (Typ);
8044 -- Build the call to the predicate function of T
8046 Exp :=
8047 Make_Predicate_Call
8048 (T, Convert_To (T, Make_Identifier (Loc, Object_Name)));
8050 -- Add call to evolving expression, using AND THEN if needed
8052 if No (Expr) then
8053 Expr := Exp;
8055 else
8056 Expr :=
8057 Make_And_Then (Sloc (Expr),
8058 Left_Opnd => Relocate_Node (Expr),
8059 Right_Opnd => Exp);
8060 end if;
8062 -- Output info message on inheritance if required. Note we do not
8063 -- give this information for generic actual types, since it is
8064 -- unwelcome noise in that case in instantiations. We also
8065 -- generally suppress the message in instantiations, and also
8066 -- if it involves internal names.
8068 if Opt.List_Inherited_Aspects
8069 and then not Is_Generic_Actual_Type (Typ)
8070 and then Instantiation_Depth (Sloc (Typ)) = 0
8071 and then not Is_Internal_Name (Chars (T))
8072 and then not Is_Internal_Name (Chars (Typ))
8073 then
8074 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8075 Error_Msg_Node_2 := T;
8076 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8077 end if;
8078 end if;
8079 end Add_Call;
8081 --------------------
8082 -- Add_Predicates --
8083 --------------------
8085 procedure Add_Predicates is
8086 Ritem : Node_Id;
8087 Arg1 : Node_Id;
8088 Arg2 : Node_Id;
8090 procedure Replace_Type_Reference (N : Node_Id);
8091 -- Replace a single occurrence N of the subtype name with a reference
8092 -- to the formal of the predicate function. N can be an identifier
8093 -- referencing the subtype, or a selected component, representing an
8094 -- appropriately qualified occurrence of the subtype name.
8096 procedure Replace_Type_References is
8097 new Replace_Type_References_Generic (Replace_Type_Reference);
8098 -- Traverse an expression changing every occurrence of an identifier
8099 -- whose name matches the name of the subtype with a reference to
8100 -- the formal parameter of the predicate function.
8102 ----------------------------
8103 -- Replace_Type_Reference --
8104 ----------------------------
8106 procedure Replace_Type_Reference (N : Node_Id) is
8107 begin
8108 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8109 -- Use the Sloc of the usage name, not the defining name
8111 Set_Etype (N, Typ);
8112 Set_Entity (N, Object_Entity);
8114 -- We want to treat the node as if it comes from source, so that
8115 -- ASIS will not ignore it
8117 Set_Comes_From_Source (N, True);
8118 end Replace_Type_Reference;
8120 -- Start of processing for Add_Predicates
8122 begin
8123 Ritem := First_Rep_Item (Typ);
8124 while Present (Ritem) loop
8125 if Nkind (Ritem) = N_Pragma
8126 and then Pragma_Name (Ritem) = Name_Predicate
8127 then
8128 -- Acquire arguments
8130 Arg1 := First (Pragma_Argument_Associations (Ritem));
8131 Arg2 := Next (Arg1);
8133 Arg1 := Get_Pragma_Arg (Arg1);
8134 Arg2 := Get_Pragma_Arg (Arg2);
8136 -- See if this predicate pragma is for the current type or for
8137 -- its full view. A predicate on a private completion is placed
8138 -- on the partial view beause this is the visible entity that
8139 -- is frozen.
8141 if Entity (Arg1) = Typ
8142 or else Full_View (Entity (Arg1)) = Typ
8143 then
8144 -- We have a match, this entry is for our subtype
8146 -- We need to replace any occurrences of the name of the
8147 -- type with references to the object.
8149 Replace_Type_References (Arg2, Typ);
8151 -- If this predicate comes from an aspect, find the aspect
8152 -- specification, and replace the saved expression because
8153 -- we need the subtype references replaced for the calls to
8154 -- Preanalyze_Spec_Expressin in Check_Aspect_At_Freeze_Point
8155 -- and Check_Aspect_At_End_Of_Declarations.
8157 if From_Aspect_Specification (Ritem) then
8158 declare
8159 Aitem : Node_Id;
8161 begin
8162 -- Loop to find corresponding aspect, note that this
8163 -- must be present given the pragma is marked delayed.
8165 Aitem := Next_Rep_Item (Ritem);
8166 loop
8167 if Nkind (Aitem) = N_Aspect_Specification
8168 and then Aspect_Rep_Item (Aitem) = Ritem
8169 then
8170 Set_Entity
8171 (Identifier (Aitem), New_Copy_Tree (Arg2));
8172 exit;
8173 end if;
8175 Aitem := Next_Rep_Item (Aitem);
8176 end loop;
8177 end;
8178 end if;
8180 -- Now we can add the expression
8182 if No (Expr) then
8183 Expr := Relocate_Node (Arg2);
8185 -- There already was a predicate, so add to it
8187 else
8188 Expr :=
8189 Make_And_Then (Loc,
8190 Left_Opnd => Relocate_Node (Expr),
8191 Right_Opnd => Relocate_Node (Arg2));
8192 end if;
8193 end if;
8194 end if;
8196 Next_Rep_Item (Ritem);
8197 end loop;
8198 end Add_Predicates;
8200 ----------------
8201 -- Process_RE --
8202 ----------------
8204 function Process_RE (N : Node_Id) return Traverse_Result is
8205 begin
8206 if Nkind (N) = N_Raise_Expression then
8207 Set_Convert_To_Return_False (N);
8208 return Skip;
8209 else
8210 return OK;
8211 end if;
8212 end Process_RE;
8214 -------------
8215 -- Test_RE --
8216 -------------
8218 function Test_RE (N : Node_Id) return Traverse_Result is
8219 begin
8220 if Nkind (N) = N_Raise_Expression then
8221 Raise_Expression_Present := True;
8222 return Abandon;
8223 else
8224 return OK;
8225 end if;
8226 end Test_RE;
8228 -- Start of processing for Build_Predicate_Functions
8230 begin
8231 -- Return if already built or if type does not have predicates
8233 if not Has_Predicates (Typ)
8234 or else Present (Predicate_Function (Typ))
8235 then
8236 return;
8237 end if;
8239 -- Prepare to construct predicate expression
8241 Expr := Empty;
8243 -- Add Predicates for the current type
8245 Add_Predicates;
8247 -- Add predicates for ancestor if present
8249 declare
8250 Atyp : constant Entity_Id := Nearest_Ancestor (Typ);
8251 begin
8252 if Present (Atyp) then
8253 Add_Call (Atyp);
8254 end if;
8255 end;
8257 -- Case where predicates are present
8259 if Present (Expr) then
8261 -- Test for raise expression present
8263 Test_REs (Expr);
8265 -- If raise expression is present, capture a copy of Expr for use
8266 -- in building the predicateM function version later on. For this
8267 -- copy we replace references to Object_Entity by Object_Entity_M.
8269 if Raise_Expression_Present then
8270 declare
8271 Map : constant Elist_Id := New_Elmt_List;
8272 begin
8273 Append_Elmt (Object_Entity, Map);
8274 Append_Elmt (Object_Entity_M, Map);
8275 Expr_M := New_Copy_Tree (Expr, Map => Map);
8276 end;
8277 end if;
8279 -- Build the main predicate function
8281 declare
8282 SId : constant Entity_Id :=
8283 Make_Defining_Identifier (Loc,
8284 Chars => New_External_Name (Chars (Typ), "Predicate"));
8285 -- The entity for the the function spec
8287 SIdB : constant Entity_Id :=
8288 Make_Defining_Identifier (Loc,
8289 Chars => New_External_Name (Chars (Typ), "Predicate"));
8290 -- The entity for the function body
8292 Spec : Node_Id;
8293 FDecl : Node_Id;
8294 FBody : Node_Id;
8296 begin
8297 -- Build function declaration
8299 Set_Ekind (SId, E_Function);
8300 Set_Is_Internal (SId);
8301 Set_Is_Predicate_Function (SId);
8302 Set_Predicate_Function (Typ, SId);
8304 -- The predicate function is shared between views of a type
8306 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8307 Set_Predicate_Function (Full_View (Typ), SId);
8308 end if;
8310 Spec :=
8311 Make_Function_Specification (Loc,
8312 Defining_Unit_Name => SId,
8313 Parameter_Specifications => New_List (
8314 Make_Parameter_Specification (Loc,
8315 Defining_Identifier => Object_Entity,
8316 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8317 Result_Definition =>
8318 New_Occurrence_Of (Standard_Boolean, Loc));
8320 FDecl :=
8321 Make_Subprogram_Declaration (Loc,
8322 Specification => Spec);
8324 -- Build function body
8326 Spec :=
8327 Make_Function_Specification (Loc,
8328 Defining_Unit_Name => SIdB,
8329 Parameter_Specifications => New_List (
8330 Make_Parameter_Specification (Loc,
8331 Defining_Identifier =>
8332 Make_Defining_Identifier (Loc, Object_Name),
8333 Parameter_Type =>
8334 New_Occurrence_Of (Typ, Loc))),
8335 Result_Definition =>
8336 New_Occurrence_Of (Standard_Boolean, Loc));
8338 FBody :=
8339 Make_Subprogram_Body (Loc,
8340 Specification => Spec,
8341 Declarations => Empty_List,
8342 Handled_Statement_Sequence =>
8343 Make_Handled_Sequence_Of_Statements (Loc,
8344 Statements => New_List (
8345 Make_Simple_Return_Statement (Loc,
8346 Expression => Expr))));
8348 -- Insert declaration before freeze node and body after
8350 Insert_Before_And_Analyze (N, FDecl);
8351 Insert_After_And_Analyze (N, FBody);
8352 end;
8354 -- Test for raise expressions present and if so build M version
8356 if Raise_Expression_Present then
8357 declare
8358 SId : constant Entity_Id :=
8359 Make_Defining_Identifier (Loc,
8360 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8361 -- The entity for the the function spec
8363 SIdB : constant Entity_Id :=
8364 Make_Defining_Identifier (Loc,
8365 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8366 -- The entity for the function body
8368 Spec : Node_Id;
8369 FDecl : Node_Id;
8370 FBody : Node_Id;
8371 BTemp : Entity_Id;
8373 begin
8374 -- Mark any raise expressions for special expansion
8376 Process_REs (Expr_M);
8378 -- Build function declaration
8380 Set_Ekind (SId, E_Function);
8381 Set_Is_Predicate_Function_M (SId);
8382 Set_Predicate_Function_M (Typ, SId);
8384 -- The predicate function is shared between views of a type
8386 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8387 Set_Predicate_Function_M (Full_View (Typ), SId);
8388 end if;
8390 Spec :=
8391 Make_Function_Specification (Loc,
8392 Defining_Unit_Name => SId,
8393 Parameter_Specifications => New_List (
8394 Make_Parameter_Specification (Loc,
8395 Defining_Identifier => Object_Entity_M,
8396 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8397 Result_Definition =>
8398 New_Occurrence_Of (Standard_Boolean, Loc));
8400 FDecl :=
8401 Make_Subprogram_Declaration (Loc,
8402 Specification => Spec);
8404 -- Build function body
8406 Spec :=
8407 Make_Function_Specification (Loc,
8408 Defining_Unit_Name => SIdB,
8409 Parameter_Specifications => New_List (
8410 Make_Parameter_Specification (Loc,
8411 Defining_Identifier =>
8412 Make_Defining_Identifier (Loc, Object_Name),
8413 Parameter_Type =>
8414 New_Occurrence_Of (Typ, Loc))),
8415 Result_Definition =>
8416 New_Occurrence_Of (Standard_Boolean, Loc));
8418 -- Build the body, we declare the boolean expression before
8419 -- doing the return, because we are not really confident of
8420 -- what happens if a return appears within a return.
8422 BTemp :=
8423 Make_Defining_Identifier (Loc,
8424 Chars => New_Internal_Name ('B'));
8426 FBody :=
8427 Make_Subprogram_Body (Loc,
8428 Specification => Spec,
8430 Declarations => New_List (
8431 Make_Object_Declaration (Loc,
8432 Defining_Identifier => BTemp,
8433 Constant_Present => True,
8434 Object_Definition =>
8435 New_Occurrence_Of (Standard_Boolean, Loc),
8436 Expression => Expr_M)),
8438 Handled_Statement_Sequence =>
8439 Make_Handled_Sequence_Of_Statements (Loc,
8440 Statements => New_List (
8441 Make_Simple_Return_Statement (Loc,
8442 Expression => New_Occurrence_Of (BTemp, Loc)))));
8444 -- Insert declaration before freeze node and body after
8446 Insert_Before_And_Analyze (N, FDecl);
8447 Insert_After_And_Analyze (N, FBody);
8448 end;
8449 end if;
8451 -- See if we have a static predicate. Note that the answer may be
8452 -- yes even if we have an explicit Dynamic_Predicate present.
8454 declare
8455 PS : Boolean;
8456 EN : Node_Id;
8458 begin
8459 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8460 PS := False;
8461 else
8462 PS := Is_Predicate_Static (Expr, Object_Name);
8463 end if;
8465 -- Case where we have a predicate-static aspect
8467 if PS then
8469 -- We don't set Has_Static_Predicate_Aspect, since we can have
8470 -- any of the three cases (Predicate, Dynamic_Predicate, or
8471 -- Static_Predicate) generating a predicate with an expression
8472 -- that is predicate-static. We just indicate that we have a
8473 -- predicate that can be treated as static.
8475 Set_Has_Static_Predicate (Typ);
8477 -- For discrete subtype, build the static predicate list
8479 if Is_Discrete_Type (Typ) then
8480 if not Is_Static_Subtype (Typ) then
8482 -- This can only happen in the presence of previous
8483 -- semantic errors.
8485 pragma Assert (Serious_Errors_Detected > 0);
8486 return;
8487 end if;
8489 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
8491 -- If we don't get a static predicate list, it means that we
8492 -- have a case where this is not possible, most typically in
8493 -- the case where we inherit a dynamic predicate. We do not
8494 -- consider this an error, we just leave the predicate as
8495 -- dynamic. But if we do succeed in building the list, then
8496 -- we mark the predicate as static.
8498 if No (Static_Discrete_Predicate (Typ)) then
8499 Set_Has_Static_Predicate (Typ, False);
8500 end if;
8502 -- For real or string subtype, save predicate expression
8504 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
8505 Set_Static_Real_Or_String_Predicate (Typ, Expr);
8506 end if;
8508 -- Case of dynamic predicate (expression is not predicate-static)
8510 else
8511 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
8512 -- is only set if we have an explicit Dynamic_Predicate aspect
8513 -- given. Here we may simply have a Predicate aspect where the
8514 -- expression happens not to be predicate-static.
8516 -- Emit an error when the predicate is categorized as static
8517 -- but its expression is not predicate-static.
8519 -- First a little fiddling to get a nice location for the
8520 -- message. If the expression is of the form (A and then B),
8521 -- then use the left operand for the Sloc. This avoids getting
8522 -- confused by a call to a higher-level predicate with a less
8523 -- convenient source location.
8525 EN := Expr;
8526 while Nkind (EN) = N_And_Then loop
8527 EN := Left_Opnd (EN);
8528 end loop;
8530 -- Now post appropriate message
8532 if Has_Static_Predicate_Aspect (Typ) then
8533 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
8534 Error_Msg_F
8535 ("expression is not predicate-static (RM 3.2.4(16-22))",
8536 EN);
8537 else
8538 Error_Msg_F
8539 ("static predicate requires scalar or string type", EN);
8540 end if;
8541 end if;
8542 end if;
8543 end;
8544 end if;
8545 end Build_Predicate_Functions;
8547 -----------------------------------------
8548 -- Check_Aspect_At_End_Of_Declarations --
8549 -----------------------------------------
8551 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
8552 Ent : constant Entity_Id := Entity (ASN);
8553 Ident : constant Node_Id := Identifier (ASN);
8554 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
8556 End_Decl_Expr : constant Node_Id := Entity (Ident);
8557 -- Expression to be analyzed at end of declarations
8559 Freeze_Expr : constant Node_Id := Expression (ASN);
8560 -- Expression from call to Check_Aspect_At_Freeze_Point
8562 T : constant Entity_Id := Etype (Freeze_Expr);
8563 -- Type required for preanalyze call
8565 Err : Boolean;
8566 -- Set False if error
8568 -- On entry to this procedure, Entity (Ident) contains a copy of the
8569 -- original expression from the aspect, saved for this purpose, and
8570 -- but Expression (Ident) is a preanalyzed copy of the expression,
8571 -- preanalyzed just after the freeze point.
8573 procedure Check_Overloaded_Name;
8574 -- For aspects whose expression is simply a name, this routine checks if
8575 -- the name is overloaded or not. If so, it verifies there is an
8576 -- interpretation that matches the entity obtained at the freeze point,
8577 -- otherwise the compiler complains.
8579 ---------------------------
8580 -- Check_Overloaded_Name --
8581 ---------------------------
8583 procedure Check_Overloaded_Name is
8584 begin
8585 if not Is_Overloaded (End_Decl_Expr) then
8586 Err := not Is_Entity_Name (End_Decl_Expr)
8587 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
8589 else
8590 Err := True;
8592 declare
8593 Index : Interp_Index;
8594 It : Interp;
8596 begin
8597 Get_First_Interp (End_Decl_Expr, Index, It);
8598 while Present (It.Typ) loop
8599 if It.Nam = Entity (Freeze_Expr) then
8600 Err := False;
8601 exit;
8602 end if;
8604 Get_Next_Interp (Index, It);
8605 end loop;
8606 end;
8607 end if;
8608 end Check_Overloaded_Name;
8610 -- Start of processing for Check_Aspect_At_End_Of_Declarations
8612 begin
8613 -- Case of aspects Dimension, Dimension_System and Synchronization
8615 if A_Id = Aspect_Synchronization then
8616 return;
8618 -- Case of stream attributes, just have to compare entities. However,
8619 -- the expression is just a name (possibly overloaded), and there may
8620 -- be stream operations declared for unrelated types, so we just need
8621 -- to verify that one of these interpretations is the one available at
8622 -- at the freeze point.
8624 elsif A_Id = Aspect_Input or else
8625 A_Id = Aspect_Output or else
8626 A_Id = Aspect_Read or else
8627 A_Id = Aspect_Write
8628 then
8629 Analyze (End_Decl_Expr);
8630 Check_Overloaded_Name;
8632 elsif A_Id = Aspect_Variable_Indexing or else
8633 A_Id = Aspect_Constant_Indexing or else
8634 A_Id = Aspect_Default_Iterator or else
8635 A_Id = Aspect_Iterator_Element
8636 then
8637 -- Make type unfrozen before analysis, to prevent spurious errors
8638 -- about late attributes.
8640 Set_Is_Frozen (Ent, False);
8641 Analyze (End_Decl_Expr);
8642 Set_Is_Frozen (Ent, True);
8644 -- If the end of declarations comes before any other freeze
8645 -- point, the Freeze_Expr is not analyzed: no check needed.
8647 if Analyzed (Freeze_Expr) and then not In_Instance then
8648 Check_Overloaded_Name;
8649 else
8650 Err := False;
8651 end if;
8653 -- All other cases
8655 else
8656 -- Indicate that the expression comes from an aspect specification,
8657 -- which is used in subsequent analysis even if expansion is off.
8659 Set_Parent (End_Decl_Expr, ASN);
8661 -- In a generic context the aspect expressions have not been
8662 -- preanalyzed, so do it now. There are no conformance checks
8663 -- to perform in this case.
8665 if No (T) then
8666 Check_Aspect_At_Freeze_Point (ASN);
8667 return;
8669 -- The default values attributes may be defined in the private part,
8670 -- and the analysis of the expression may take place when only the
8671 -- partial view is visible. The expression must be scalar, so use
8672 -- the full view to resolve.
8674 elsif (A_Id = Aspect_Default_Value
8675 or else
8676 A_Id = Aspect_Default_Component_Value)
8677 and then Is_Private_Type (T)
8678 then
8679 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
8681 else
8682 Preanalyze_Spec_Expression (End_Decl_Expr, T);
8683 end if;
8685 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
8686 end if;
8688 -- Output error message if error. Force error on aspect specification
8689 -- even if there is an error on the expression itself.
8691 if Err then
8692 Error_Msg_NE
8693 ("!visibility of aspect for& changes after freeze point",
8694 ASN, Ent);
8695 Error_Msg_NE
8696 ("info: & is frozen here, aspects evaluated at this point??",
8697 Freeze_Node (Ent), Ent);
8698 end if;
8699 end Check_Aspect_At_End_Of_Declarations;
8701 ----------------------------------
8702 -- Check_Aspect_At_Freeze_Point --
8703 ----------------------------------
8705 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
8706 Ident : constant Node_Id := Identifier (ASN);
8707 -- Identifier (use Entity field to save expression)
8709 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
8711 T : Entity_Id := Empty;
8712 -- Type required for preanalyze call
8714 begin
8715 -- On entry to this procedure, Entity (Ident) contains a copy of the
8716 -- original expression from the aspect, saved for this purpose.
8718 -- On exit from this procedure Entity (Ident) is unchanged, still
8719 -- containing that copy, but Expression (Ident) is a preanalyzed copy
8720 -- of the expression, preanalyzed just after the freeze point.
8722 -- Make a copy of the expression to be preanalyzed
8724 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
8726 -- Find type for preanalyze call
8728 case A_Id is
8730 -- No_Aspect should be impossible
8732 when No_Aspect =>
8733 raise Program_Error;
8735 -- Aspects taking an optional boolean argument
8737 when Boolean_Aspects |
8738 Library_Unit_Aspects =>
8740 T := Standard_Boolean;
8742 -- Aspects corresponding to attribute definition clauses
8744 when Aspect_Address =>
8745 T := RTE (RE_Address);
8747 when Aspect_Attach_Handler =>
8748 T := RTE (RE_Interrupt_ID);
8750 when Aspect_Bit_Order | Aspect_Scalar_Storage_Order =>
8751 T := RTE (RE_Bit_Order);
8753 when Aspect_Convention =>
8754 return;
8756 when Aspect_CPU =>
8757 T := RTE (RE_CPU_Range);
8759 -- Default_Component_Value is resolved with the component type
8761 when Aspect_Default_Component_Value =>
8762 T := Component_Type (Entity (ASN));
8764 when Aspect_Default_Storage_Pool =>
8765 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
8767 -- Default_Value is resolved with the type entity in question
8769 when Aspect_Default_Value =>
8770 T := Entity (ASN);
8772 when Aspect_Dispatching_Domain =>
8773 T := RTE (RE_Dispatching_Domain);
8775 when Aspect_External_Tag =>
8776 T := Standard_String;
8778 when Aspect_External_Name =>
8779 T := Standard_String;
8781 when Aspect_Link_Name =>
8782 T := Standard_String;
8784 when Aspect_Priority | Aspect_Interrupt_Priority =>
8785 T := Standard_Integer;
8787 when Aspect_Relative_Deadline =>
8788 T := RTE (RE_Time_Span);
8790 when Aspect_Small =>
8791 T := Universal_Real;
8793 -- For a simple storage pool, we have to retrieve the type of the
8794 -- pool object associated with the aspect's corresponding attribute
8795 -- definition clause.
8797 when Aspect_Simple_Storage_Pool =>
8798 T := Etype (Expression (Aspect_Rep_Item (ASN)));
8800 when Aspect_Storage_Pool =>
8801 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
8803 when Aspect_Alignment |
8804 Aspect_Component_Size |
8805 Aspect_Machine_Radix |
8806 Aspect_Object_Size |
8807 Aspect_Size |
8808 Aspect_Storage_Size |
8809 Aspect_Stream_Size |
8810 Aspect_Value_Size =>
8811 T := Any_Integer;
8813 when Aspect_Linker_Section =>
8814 T := Standard_String;
8816 when Aspect_Synchronization =>
8817 return;
8819 -- Special case, the expression of these aspects is just an entity
8820 -- that does not need any resolution, so just analyze.
8822 when Aspect_Input |
8823 Aspect_Output |
8824 Aspect_Read |
8825 Aspect_Suppress |
8826 Aspect_Unsuppress |
8827 Aspect_Warnings |
8828 Aspect_Write =>
8829 Analyze (Expression (ASN));
8830 return;
8832 -- Same for Iterator aspects, where the expression is a function
8833 -- name. Legality rules are checked separately.
8835 when Aspect_Constant_Indexing |
8836 Aspect_Default_Iterator |
8837 Aspect_Iterator_Element |
8838 Aspect_Variable_Indexing =>
8839 Analyze (Expression (ASN));
8840 return;
8842 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
8844 when Aspect_Iterable =>
8845 T := Entity (ASN);
8847 declare
8848 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
8849 Assoc : Node_Id;
8850 Expr : Node_Id;
8852 begin
8853 if Cursor = Any_Type then
8854 return;
8855 end if;
8857 Assoc := First (Component_Associations (Expression (ASN)));
8858 while Present (Assoc) loop
8859 Expr := Expression (Assoc);
8860 Analyze (Expr);
8862 if not Error_Posted (Expr) then
8863 Resolve_Iterable_Operation
8864 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
8865 end if;
8867 Next (Assoc);
8868 end loop;
8869 end;
8871 return;
8873 -- Invariant/Predicate take boolean expressions
8875 when Aspect_Dynamic_Predicate |
8876 Aspect_Invariant |
8877 Aspect_Predicate |
8878 Aspect_Static_Predicate |
8879 Aspect_Type_Invariant =>
8880 T := Standard_Boolean;
8882 -- Here is the list of aspects that don't require delay analysis
8884 when Aspect_Abstract_State |
8885 Aspect_Annotate |
8886 Aspect_Contract_Cases |
8887 Aspect_Default_Initial_Condition |
8888 Aspect_Depends |
8889 Aspect_Dimension |
8890 Aspect_Dimension_System |
8891 Aspect_Extensions_Visible |
8892 Aspect_Ghost |
8893 Aspect_Global |
8894 Aspect_Implicit_Dereference |
8895 Aspect_Initial_Condition |
8896 Aspect_Initializes |
8897 Aspect_Obsolescent |
8898 Aspect_Part_Of |
8899 Aspect_Post |
8900 Aspect_Postcondition |
8901 Aspect_Pre |
8902 Aspect_Precondition |
8903 Aspect_Refined_Depends |
8904 Aspect_Refined_Global |
8905 Aspect_Refined_Post |
8906 Aspect_Refined_State |
8907 Aspect_SPARK_Mode |
8908 Aspect_Test_Case =>
8909 raise Program_Error;
8911 end case;
8913 -- Do the preanalyze call
8915 Preanalyze_Spec_Expression (Expression (ASN), T);
8916 end Check_Aspect_At_Freeze_Point;
8918 -----------------------------------
8919 -- Check_Constant_Address_Clause --
8920 -----------------------------------
8922 procedure Check_Constant_Address_Clause
8923 (Expr : Node_Id;
8924 U_Ent : Entity_Id)
8926 procedure Check_At_Constant_Address (Nod : Node_Id);
8927 -- Checks that the given node N represents a name whose 'Address is
8928 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
8929 -- address value is the same at the point of declaration of U_Ent and at
8930 -- the time of elaboration of the address clause.
8932 procedure Check_Expr_Constants (Nod : Node_Id);
8933 -- Checks that Nod meets the requirements for a constant address clause
8934 -- in the sense of the enclosing procedure.
8936 procedure Check_List_Constants (Lst : List_Id);
8937 -- Check that all elements of list Lst meet the requirements for a
8938 -- constant address clause in the sense of the enclosing procedure.
8940 -------------------------------
8941 -- Check_At_Constant_Address --
8942 -------------------------------
8944 procedure Check_At_Constant_Address (Nod : Node_Id) is
8945 begin
8946 if Is_Entity_Name (Nod) then
8947 if Present (Address_Clause (Entity ((Nod)))) then
8948 Error_Msg_NE
8949 ("invalid address clause for initialized object &!",
8950 Nod, U_Ent);
8951 Error_Msg_NE
8952 ("address for& cannot" &
8953 " depend on another address clause! (RM 13.1(22))!",
8954 Nod, U_Ent);
8956 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
8957 and then Sloc (U_Ent) < Sloc (Entity (Nod))
8958 then
8959 Error_Msg_NE
8960 ("invalid address clause for initialized object &!",
8961 Nod, U_Ent);
8962 Error_Msg_Node_2 := U_Ent;
8963 Error_Msg_NE
8964 ("\& must be defined before & (RM 13.1(22))!",
8965 Nod, Entity (Nod));
8966 end if;
8968 elsif Nkind (Nod) = N_Selected_Component then
8969 declare
8970 T : constant Entity_Id := Etype (Prefix (Nod));
8972 begin
8973 if (Is_Record_Type (T)
8974 and then Has_Discriminants (T))
8975 or else
8976 (Is_Access_Type (T)
8977 and then Is_Record_Type (Designated_Type (T))
8978 and then Has_Discriminants (Designated_Type (T)))
8979 then
8980 Error_Msg_NE
8981 ("invalid address clause for initialized object &!",
8982 Nod, U_Ent);
8983 Error_Msg_N
8984 ("\address cannot depend on component" &
8985 " of discriminated record (RM 13.1(22))!",
8986 Nod);
8987 else
8988 Check_At_Constant_Address (Prefix (Nod));
8989 end if;
8990 end;
8992 elsif Nkind (Nod) = N_Indexed_Component then
8993 Check_At_Constant_Address (Prefix (Nod));
8994 Check_List_Constants (Expressions (Nod));
8996 else
8997 Check_Expr_Constants (Nod);
8998 end if;
8999 end Check_At_Constant_Address;
9001 --------------------------
9002 -- Check_Expr_Constants --
9003 --------------------------
9005 procedure Check_Expr_Constants (Nod : Node_Id) is
9006 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9007 Ent : Entity_Id := Empty;
9009 begin
9010 if Nkind (Nod) in N_Has_Etype
9011 and then Etype (Nod) = Any_Type
9012 then
9013 return;
9014 end if;
9016 case Nkind (Nod) is
9017 when N_Empty | N_Error =>
9018 return;
9020 when N_Identifier | N_Expanded_Name =>
9021 Ent := Entity (Nod);
9023 -- We need to look at the original node if it is different
9024 -- from the node, since we may have rewritten things and
9025 -- substituted an identifier representing the rewrite.
9027 if Original_Node (Nod) /= Nod then
9028 Check_Expr_Constants (Original_Node (Nod));
9030 -- If the node is an object declaration without initial
9031 -- value, some code has been expanded, and the expression
9032 -- is not constant, even if the constituents might be
9033 -- acceptable, as in A'Address + offset.
9035 if Ekind (Ent) = E_Variable
9036 and then
9037 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9038 and then
9039 No (Expression (Declaration_Node (Ent)))
9040 then
9041 Error_Msg_NE
9042 ("invalid address clause for initialized object &!",
9043 Nod, U_Ent);
9045 -- If entity is constant, it may be the result of expanding
9046 -- a check. We must verify that its declaration appears
9047 -- before the object in question, else we also reject the
9048 -- address clause.
9050 elsif Ekind (Ent) = E_Constant
9051 and then In_Same_Source_Unit (Ent, U_Ent)
9052 and then Sloc (Ent) > Loc_U_Ent
9053 then
9054 Error_Msg_NE
9055 ("invalid address clause for initialized object &!",
9056 Nod, U_Ent);
9057 end if;
9059 return;
9060 end if;
9062 -- Otherwise look at the identifier and see if it is OK
9064 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9065 or else Is_Type (Ent)
9066 then
9067 return;
9069 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9071 -- This is the case where we must have Ent defined before
9072 -- U_Ent. Clearly if they are in different units this
9073 -- requirement is met since the unit containing Ent is
9074 -- already processed.
9076 if not In_Same_Source_Unit (Ent, U_Ent) then
9077 return;
9079 -- Otherwise location of Ent must be before the location
9080 -- of U_Ent, that's what prior defined means.
9082 elsif Sloc (Ent) < Loc_U_Ent then
9083 return;
9085 else
9086 Error_Msg_NE
9087 ("invalid address clause for initialized object &!",
9088 Nod, U_Ent);
9089 Error_Msg_Node_2 := U_Ent;
9090 Error_Msg_NE
9091 ("\& must be defined before & (RM 13.1(22))!",
9092 Nod, Ent);
9093 end if;
9095 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9096 Check_Expr_Constants (Original_Node (Nod));
9098 else
9099 Error_Msg_NE
9100 ("invalid address clause for initialized object &!",
9101 Nod, U_Ent);
9103 if Comes_From_Source (Ent) then
9104 Error_Msg_NE
9105 ("\reference to variable& not allowed"
9106 & " (RM 13.1(22))!", Nod, Ent);
9107 else
9108 Error_Msg_N
9109 ("non-static expression not allowed"
9110 & " (RM 13.1(22))!", Nod);
9111 end if;
9112 end if;
9114 when N_Integer_Literal =>
9116 -- If this is a rewritten unchecked conversion, in a system
9117 -- where Address is an integer type, always use the base type
9118 -- for a literal value. This is user-friendly and prevents
9119 -- order-of-elaboration issues with instances of unchecked
9120 -- conversion.
9122 if Nkind (Original_Node (Nod)) = N_Function_Call then
9123 Set_Etype (Nod, Base_Type (Etype (Nod)));
9124 end if;
9126 when N_Real_Literal |
9127 N_String_Literal |
9128 N_Character_Literal =>
9129 return;
9131 when N_Range =>
9132 Check_Expr_Constants (Low_Bound (Nod));
9133 Check_Expr_Constants (High_Bound (Nod));
9135 when N_Explicit_Dereference =>
9136 Check_Expr_Constants (Prefix (Nod));
9138 when N_Indexed_Component =>
9139 Check_Expr_Constants (Prefix (Nod));
9140 Check_List_Constants (Expressions (Nod));
9142 when N_Slice =>
9143 Check_Expr_Constants (Prefix (Nod));
9144 Check_Expr_Constants (Discrete_Range (Nod));
9146 when N_Selected_Component =>
9147 Check_Expr_Constants (Prefix (Nod));
9149 when N_Attribute_Reference =>
9150 if Nam_In (Attribute_Name (Nod), Name_Address,
9151 Name_Access,
9152 Name_Unchecked_Access,
9153 Name_Unrestricted_Access)
9154 then
9155 Check_At_Constant_Address (Prefix (Nod));
9157 else
9158 Check_Expr_Constants (Prefix (Nod));
9159 Check_List_Constants (Expressions (Nod));
9160 end if;
9162 when N_Aggregate =>
9163 Check_List_Constants (Component_Associations (Nod));
9164 Check_List_Constants (Expressions (Nod));
9166 when N_Component_Association =>
9167 Check_Expr_Constants (Expression (Nod));
9169 when N_Extension_Aggregate =>
9170 Check_Expr_Constants (Ancestor_Part (Nod));
9171 Check_List_Constants (Component_Associations (Nod));
9172 Check_List_Constants (Expressions (Nod));
9174 when N_Null =>
9175 return;
9177 when N_Binary_Op | N_Short_Circuit | N_Membership_Test =>
9178 Check_Expr_Constants (Left_Opnd (Nod));
9179 Check_Expr_Constants (Right_Opnd (Nod));
9181 when N_Unary_Op =>
9182 Check_Expr_Constants (Right_Opnd (Nod));
9184 when N_Type_Conversion |
9185 N_Qualified_Expression |
9186 N_Allocator |
9187 N_Unchecked_Type_Conversion =>
9188 Check_Expr_Constants (Expression (Nod));
9190 when N_Function_Call =>
9191 if not Is_Pure (Entity (Name (Nod))) then
9192 Error_Msg_NE
9193 ("invalid address clause for initialized object &!",
9194 Nod, U_Ent);
9196 Error_Msg_NE
9197 ("\function & is not pure (RM 13.1(22))!",
9198 Nod, Entity (Name (Nod)));
9200 else
9201 Check_List_Constants (Parameter_Associations (Nod));
9202 end if;
9204 when N_Parameter_Association =>
9205 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
9207 when others =>
9208 Error_Msg_NE
9209 ("invalid address clause for initialized object &!",
9210 Nod, U_Ent);
9211 Error_Msg_NE
9212 ("\must be constant defined before& (RM 13.1(22))!",
9213 Nod, U_Ent);
9214 end case;
9215 end Check_Expr_Constants;
9217 --------------------------
9218 -- Check_List_Constants --
9219 --------------------------
9221 procedure Check_List_Constants (Lst : List_Id) is
9222 Nod1 : Node_Id;
9224 begin
9225 if Present (Lst) then
9226 Nod1 := First (Lst);
9227 while Present (Nod1) loop
9228 Check_Expr_Constants (Nod1);
9229 Next (Nod1);
9230 end loop;
9231 end if;
9232 end Check_List_Constants;
9234 -- Start of processing for Check_Constant_Address_Clause
9236 begin
9237 -- If rep_clauses are to be ignored, no need for legality checks. In
9238 -- particular, no need to pester user about rep clauses that violate the
9239 -- rule on constant addresses, given that these clauses will be removed
9240 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9241 -- we want to relax these checks.
9243 if not Ignore_Rep_Clauses and not CodePeer_Mode then
9244 Check_Expr_Constants (Expr);
9245 end if;
9246 end Check_Constant_Address_Clause;
9248 ---------------------------
9249 -- Check_Pool_Size_Clash --
9250 ---------------------------
9252 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9253 Post : Node_Id;
9255 begin
9256 -- We need to find out which one came first. Note that in the case of
9257 -- aspects mixed with pragmas there are cases where the processing order
9258 -- is reversed, which is why we do the check here.
9260 if Sloc (SP) < Sloc (SS) then
9261 Error_Msg_Sloc := Sloc (SP);
9262 Post := SS;
9263 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9265 else
9266 Error_Msg_Sloc := Sloc (SS);
9267 Post := SP;
9268 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9269 end if;
9271 Error_Msg_N
9272 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9273 end Check_Pool_Size_Clash;
9275 ----------------------------------------
9276 -- Check_Record_Representation_Clause --
9277 ----------------------------------------
9279 procedure Check_Record_Representation_Clause (N : Node_Id) is
9280 Loc : constant Source_Ptr := Sloc (N);
9281 Ident : constant Node_Id := Identifier (N);
9282 Rectype : Entity_Id;
9283 Fent : Entity_Id;
9284 CC : Node_Id;
9285 Fbit : Uint;
9286 Lbit : Uint;
9287 Hbit : Uint := Uint_0;
9288 Comp : Entity_Id;
9289 Pcomp : Entity_Id;
9291 Max_Bit_So_Far : Uint;
9292 -- Records the maximum bit position so far. If all field positions
9293 -- are monotonically increasing, then we can skip the circuit for
9294 -- checking for overlap, since no overlap is possible.
9296 Tagged_Parent : Entity_Id := Empty;
9297 -- This is set in the case of a derived tagged type for which we have
9298 -- Is_Fully_Repped_Tagged_Type True (indicating that all components are
9299 -- positioned by record representation clauses). In this case we must
9300 -- check for overlap between components of this tagged type, and the
9301 -- components of its parent. Tagged_Parent will point to this parent
9302 -- type. For all other cases Tagged_Parent is left set to Empty.
9304 Parent_Last_Bit : Uint;
9305 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9306 -- last bit position for any field in the parent type. We only need to
9307 -- check overlap for fields starting below this point.
9309 Overlap_Check_Required : Boolean;
9310 -- Used to keep track of whether or not an overlap check is required
9312 Overlap_Detected : Boolean := False;
9313 -- Set True if an overlap is detected
9315 Ccount : Natural := 0;
9316 -- Number of component clauses in record rep clause
9318 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9319 -- Given two entities for record components or discriminants, checks
9320 -- if they have overlapping component clauses and issues errors if so.
9322 procedure Find_Component;
9323 -- Finds component entity corresponding to current component clause (in
9324 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9325 -- start/stop bits for the field. If there is no matching component or
9326 -- if the matching component does not have a component clause, then
9327 -- that's an error and Comp is set to Empty, but no error message is
9328 -- issued, since the message was already given. Comp is also set to
9329 -- Empty if the current "component clause" is in fact a pragma.
9331 -----------------------------
9332 -- Check_Component_Overlap --
9333 -----------------------------
9335 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9336 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9337 CC2 : constant Node_Id := Component_Clause (C2_Ent);
9339 begin
9340 if Present (CC1) and then Present (CC2) then
9342 -- Exclude odd case where we have two tag components in the same
9343 -- record, both at location zero. This seems a bit strange, but
9344 -- it seems to happen in some circumstances, perhaps on an error.
9346 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
9347 return;
9348 end if;
9350 -- Here we check if the two fields overlap
9352 declare
9353 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
9354 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
9355 E1 : constant Uint := S1 + Esize (C1_Ent);
9356 E2 : constant Uint := S2 + Esize (C2_Ent);
9358 begin
9359 if E2 <= S1 or else E1 <= S2 then
9360 null;
9361 else
9362 Error_Msg_Node_2 := Component_Name (CC2);
9363 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
9364 Error_Msg_Node_1 := Component_Name (CC1);
9365 Error_Msg_N
9366 ("component& overlaps & #", Component_Name (CC1));
9367 Overlap_Detected := True;
9368 end if;
9369 end;
9370 end if;
9371 end Check_Component_Overlap;
9373 --------------------
9374 -- Find_Component --
9375 --------------------
9377 procedure Find_Component is
9379 procedure Search_Component (R : Entity_Id);
9380 -- Search components of R for a match. If found, Comp is set
9382 ----------------------
9383 -- Search_Component --
9384 ----------------------
9386 procedure Search_Component (R : Entity_Id) is
9387 begin
9388 Comp := First_Component_Or_Discriminant (R);
9389 while Present (Comp) loop
9391 -- Ignore error of attribute name for component name (we
9392 -- already gave an error message for this, so no need to
9393 -- complain here)
9395 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
9396 null;
9397 else
9398 exit when Chars (Comp) = Chars (Component_Name (CC));
9399 end if;
9401 Next_Component_Or_Discriminant (Comp);
9402 end loop;
9403 end Search_Component;
9405 -- Start of processing for Find_Component
9407 begin
9408 -- Return with Comp set to Empty if we have a pragma
9410 if Nkind (CC) = N_Pragma then
9411 Comp := Empty;
9412 return;
9413 end if;
9415 -- Search current record for matching component
9417 Search_Component (Rectype);
9419 -- If not found, maybe component of base type discriminant that is
9420 -- absent from statically constrained first subtype.
9422 if No (Comp) then
9423 Search_Component (Base_Type (Rectype));
9424 end if;
9426 -- If no component, or the component does not reference the component
9427 -- clause in question, then there was some previous error for which
9428 -- we already gave a message, so just return with Comp Empty.
9430 if No (Comp) or else Component_Clause (Comp) /= CC then
9431 Check_Error_Detected;
9432 Comp := Empty;
9434 -- Normal case where we have a component clause
9436 else
9437 Fbit := Component_Bit_Offset (Comp);
9438 Lbit := Fbit + Esize (Comp) - 1;
9439 end if;
9440 end Find_Component;
9442 -- Start of processing for Check_Record_Representation_Clause
9444 begin
9445 Find_Type (Ident);
9446 Rectype := Entity (Ident);
9448 if Rectype = Any_Type then
9449 return;
9450 else
9451 Rectype := Underlying_Type (Rectype);
9452 end if;
9454 -- See if we have a fully repped derived tagged type
9456 declare
9457 PS : constant Entity_Id := Parent_Subtype (Rectype);
9459 begin
9460 if Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
9461 Tagged_Parent := PS;
9463 -- Find maximum bit of any component of the parent type
9465 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
9466 Pcomp := First_Entity (Tagged_Parent);
9467 while Present (Pcomp) loop
9468 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
9469 if Component_Bit_Offset (Pcomp) /= No_Uint
9470 and then Known_Static_Esize (Pcomp)
9471 then
9472 Parent_Last_Bit :=
9473 UI_Max
9474 (Parent_Last_Bit,
9475 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
9476 end if;
9478 Next_Entity (Pcomp);
9479 end if;
9480 end loop;
9481 end if;
9482 end;
9484 -- All done if no component clauses
9486 CC := First (Component_Clauses (N));
9488 if No (CC) then
9489 return;
9490 end if;
9492 -- If a tag is present, then create a component clause that places it
9493 -- at the start of the record (otherwise gigi may place it after other
9494 -- fields that have rep clauses).
9496 Fent := First_Entity (Rectype);
9498 if Nkind (Fent) = N_Defining_Identifier
9499 and then Chars (Fent) = Name_uTag
9500 then
9501 Set_Component_Bit_Offset (Fent, Uint_0);
9502 Set_Normalized_Position (Fent, Uint_0);
9503 Set_Normalized_First_Bit (Fent, Uint_0);
9504 Set_Normalized_Position_Max (Fent, Uint_0);
9505 Init_Esize (Fent, System_Address_Size);
9507 Set_Component_Clause (Fent,
9508 Make_Component_Clause (Loc,
9509 Component_Name => Make_Identifier (Loc, Name_uTag),
9511 Position => Make_Integer_Literal (Loc, Uint_0),
9512 First_Bit => Make_Integer_Literal (Loc, Uint_0),
9513 Last_Bit =>
9514 Make_Integer_Literal (Loc,
9515 UI_From_Int (System_Address_Size))));
9517 Ccount := Ccount + 1;
9518 end if;
9520 Max_Bit_So_Far := Uint_Minus_1;
9521 Overlap_Check_Required := False;
9523 -- Process the component clauses
9525 while Present (CC) loop
9526 Find_Component;
9528 if Present (Comp) then
9529 Ccount := Ccount + 1;
9531 -- We need a full overlap check if record positions non-monotonic
9533 if Fbit <= Max_Bit_So_Far then
9534 Overlap_Check_Required := True;
9535 end if;
9537 Max_Bit_So_Far := Lbit;
9539 -- Check bit position out of range of specified size
9541 if Has_Size_Clause (Rectype)
9542 and then RM_Size (Rectype) <= Lbit
9543 then
9544 Error_Msg_N
9545 ("bit number out of range of specified size",
9546 Last_Bit (CC));
9548 -- Check for overlap with tag component
9550 else
9551 if Is_Tagged_Type (Rectype)
9552 and then Fbit < System_Address_Size
9553 then
9554 Error_Msg_NE
9555 ("component overlaps tag field of&",
9556 Component_Name (CC), Rectype);
9557 Overlap_Detected := True;
9558 end if;
9560 if Hbit < Lbit then
9561 Hbit := Lbit;
9562 end if;
9563 end if;
9565 -- Check parent overlap if component might overlap parent field
9567 if Present (Tagged_Parent) and then Fbit <= Parent_Last_Bit then
9568 Pcomp := First_Component_Or_Discriminant (Tagged_Parent);
9569 while Present (Pcomp) loop
9570 if not Is_Tag (Pcomp)
9571 and then Chars (Pcomp) /= Name_uParent
9572 then
9573 Check_Component_Overlap (Comp, Pcomp);
9574 end if;
9576 Next_Component_Or_Discriminant (Pcomp);
9577 end loop;
9578 end if;
9579 end if;
9581 Next (CC);
9582 end loop;
9584 -- Now that we have processed all the component clauses, check for
9585 -- overlap. We have to leave this till last, since the components can
9586 -- appear in any arbitrary order in the representation clause.
9588 -- We do not need this check if all specified ranges were monotonic,
9589 -- as recorded by Overlap_Check_Required being False at this stage.
9591 -- This first section checks if there are any overlapping entries at
9592 -- all. It does this by sorting all entries and then seeing if there are
9593 -- any overlaps. If there are none, then that is decisive, but if there
9594 -- are overlaps, they may still be OK (they may result from fields in
9595 -- different variants).
9597 if Overlap_Check_Required then
9598 Overlap_Check1 : declare
9600 OC_Fbit : array (0 .. Ccount) of Uint;
9601 -- First-bit values for component clauses, the value is the offset
9602 -- of the first bit of the field from start of record. The zero
9603 -- entry is for use in sorting.
9605 OC_Lbit : array (0 .. Ccount) of Uint;
9606 -- Last-bit values for component clauses, the value is the offset
9607 -- of the last bit of the field from start of record. The zero
9608 -- entry is for use in sorting.
9610 OC_Count : Natural := 0;
9611 -- Count of entries in OC_Fbit and OC_Lbit
9613 function OC_Lt (Op1, Op2 : Natural) return Boolean;
9614 -- Compare routine for Sort
9616 procedure OC_Move (From : Natural; To : Natural);
9617 -- Move routine for Sort
9619 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
9621 -----------
9622 -- OC_Lt --
9623 -----------
9625 function OC_Lt (Op1, Op2 : Natural) return Boolean is
9626 begin
9627 return OC_Fbit (Op1) < OC_Fbit (Op2);
9628 end OC_Lt;
9630 -------------
9631 -- OC_Move --
9632 -------------
9634 procedure OC_Move (From : Natural; To : Natural) is
9635 begin
9636 OC_Fbit (To) := OC_Fbit (From);
9637 OC_Lbit (To) := OC_Lbit (From);
9638 end OC_Move;
9640 -- Start of processing for Overlap_Check
9642 begin
9643 CC := First (Component_Clauses (N));
9644 while Present (CC) loop
9646 -- Exclude component clause already marked in error
9648 if not Error_Posted (CC) then
9649 Find_Component;
9651 if Present (Comp) then
9652 OC_Count := OC_Count + 1;
9653 OC_Fbit (OC_Count) := Fbit;
9654 OC_Lbit (OC_Count) := Lbit;
9655 end if;
9656 end if;
9658 Next (CC);
9659 end loop;
9661 Sorting.Sort (OC_Count);
9663 Overlap_Check_Required := False;
9664 for J in 1 .. OC_Count - 1 loop
9665 if OC_Lbit (J) >= OC_Fbit (J + 1) then
9666 Overlap_Check_Required := True;
9667 exit;
9668 end if;
9669 end loop;
9670 end Overlap_Check1;
9671 end if;
9673 -- If Overlap_Check_Required is still True, then we have to do the full
9674 -- scale overlap check, since we have at least two fields that do
9675 -- overlap, and we need to know if that is OK since they are in
9676 -- different variant, or whether we have a definite problem.
9678 if Overlap_Check_Required then
9679 Overlap_Check2 : declare
9680 C1_Ent, C2_Ent : Entity_Id;
9681 -- Entities of components being checked for overlap
9683 Clist : Node_Id;
9684 -- Component_List node whose Component_Items are being checked
9686 Citem : Node_Id;
9687 -- Component declaration for component being checked
9689 begin
9690 C1_Ent := First_Entity (Base_Type (Rectype));
9692 -- Loop through all components in record. For each component check
9693 -- for overlap with any of the preceding elements on the component
9694 -- list containing the component and also, if the component is in
9695 -- a variant, check against components outside the case structure.
9696 -- This latter test is repeated recursively up the variant tree.
9698 Main_Component_Loop : while Present (C1_Ent) loop
9699 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
9700 goto Continue_Main_Component_Loop;
9701 end if;
9703 -- Skip overlap check if entity has no declaration node. This
9704 -- happens with discriminants in constrained derived types.
9705 -- Possibly we are missing some checks as a result, but that
9706 -- does not seem terribly serious.
9708 if No (Declaration_Node (C1_Ent)) then
9709 goto Continue_Main_Component_Loop;
9710 end if;
9712 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
9714 -- Loop through component lists that need checking. Check the
9715 -- current component list and all lists in variants above us.
9717 Component_List_Loop : loop
9719 -- If derived type definition, go to full declaration
9720 -- If at outer level, check discriminants if there are any.
9722 if Nkind (Clist) = N_Derived_Type_Definition then
9723 Clist := Parent (Clist);
9724 end if;
9726 -- Outer level of record definition, check discriminants
9728 if Nkind_In (Clist, N_Full_Type_Declaration,
9729 N_Private_Type_Declaration)
9730 then
9731 if Has_Discriminants (Defining_Identifier (Clist)) then
9732 C2_Ent :=
9733 First_Discriminant (Defining_Identifier (Clist));
9734 while Present (C2_Ent) loop
9735 exit when C1_Ent = C2_Ent;
9736 Check_Component_Overlap (C1_Ent, C2_Ent);
9737 Next_Discriminant (C2_Ent);
9738 end loop;
9739 end if;
9741 -- Record extension case
9743 elsif Nkind (Clist) = N_Derived_Type_Definition then
9744 Clist := Empty;
9746 -- Otherwise check one component list
9748 else
9749 Citem := First (Component_Items (Clist));
9750 while Present (Citem) loop
9751 if Nkind (Citem) = N_Component_Declaration then
9752 C2_Ent := Defining_Identifier (Citem);
9753 exit when C1_Ent = C2_Ent;
9754 Check_Component_Overlap (C1_Ent, C2_Ent);
9755 end if;
9757 Next (Citem);
9758 end loop;
9759 end if;
9761 -- Check for variants above us (the parent of the Clist can
9762 -- be a variant, in which case its parent is a variant part,
9763 -- and the parent of the variant part is a component list
9764 -- whose components must all be checked against the current
9765 -- component for overlap).
9767 if Nkind (Parent (Clist)) = N_Variant then
9768 Clist := Parent (Parent (Parent (Clist)));
9770 -- Check for possible discriminant part in record, this
9771 -- is treated essentially as another level in the
9772 -- recursion. For this case the parent of the component
9773 -- list is the record definition, and its parent is the
9774 -- full type declaration containing the discriminant
9775 -- specifications.
9777 elsif Nkind (Parent (Clist)) = N_Record_Definition then
9778 Clist := Parent (Parent ((Clist)));
9780 -- If neither of these two cases, we are at the top of
9781 -- the tree.
9783 else
9784 exit Component_List_Loop;
9785 end if;
9786 end loop Component_List_Loop;
9788 <<Continue_Main_Component_Loop>>
9789 Next_Entity (C1_Ent);
9791 end loop Main_Component_Loop;
9792 end Overlap_Check2;
9793 end if;
9795 -- The following circuit deals with warning on record holes (gaps). We
9796 -- skip this check if overlap was detected, since it makes sense for the
9797 -- programmer to fix this illegality before worrying about warnings.
9799 if not Overlap_Detected and Warn_On_Record_Holes then
9800 Record_Hole_Check : declare
9801 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
9802 -- Full declaration of record type
9804 procedure Check_Component_List
9805 (CL : Node_Id;
9806 Sbit : Uint;
9807 DS : List_Id);
9808 -- Check component list CL for holes. The starting bit should be
9809 -- Sbit. which is zero for the main record component list and set
9810 -- appropriately for recursive calls for variants. DS is set to
9811 -- a list of discriminant specifications to be included in the
9812 -- consideration of components. It is No_List if none to consider.
9814 --------------------------
9815 -- Check_Component_List --
9816 --------------------------
9818 procedure Check_Component_List
9819 (CL : Node_Id;
9820 Sbit : Uint;
9821 DS : List_Id)
9823 Compl : Integer;
9825 begin
9826 Compl := Integer (List_Length (Component_Items (CL)));
9828 if DS /= No_List then
9829 Compl := Compl + Integer (List_Length (DS));
9830 end if;
9832 declare
9833 Comps : array (Natural range 0 .. Compl) of Entity_Id;
9834 -- Gather components (zero entry is for sort routine)
9836 Ncomps : Natural := 0;
9837 -- Number of entries stored in Comps (starting at Comps (1))
9839 Citem : Node_Id;
9840 -- One component item or discriminant specification
9842 Nbit : Uint;
9843 -- Starting bit for next component
9845 CEnt : Entity_Id;
9846 -- Component entity
9848 Variant : Node_Id;
9849 -- One variant
9851 function Lt (Op1, Op2 : Natural) return Boolean;
9852 -- Compare routine for Sort
9854 procedure Move (From : Natural; To : Natural);
9855 -- Move routine for Sort
9857 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
9859 --------
9860 -- Lt --
9861 --------
9863 function Lt (Op1, Op2 : Natural) return Boolean is
9864 begin
9865 return Component_Bit_Offset (Comps (Op1))
9867 Component_Bit_Offset (Comps (Op2));
9868 end Lt;
9870 ----------
9871 -- Move --
9872 ----------
9874 procedure Move (From : Natural; To : Natural) is
9875 begin
9876 Comps (To) := Comps (From);
9877 end Move;
9879 begin
9880 -- Gather discriminants into Comp
9882 if DS /= No_List then
9883 Citem := First (DS);
9884 while Present (Citem) loop
9885 if Nkind (Citem) = N_Discriminant_Specification then
9886 declare
9887 Ent : constant Entity_Id :=
9888 Defining_Identifier (Citem);
9889 begin
9890 if Ekind (Ent) = E_Discriminant then
9891 Ncomps := Ncomps + 1;
9892 Comps (Ncomps) := Ent;
9893 end if;
9894 end;
9895 end if;
9897 Next (Citem);
9898 end loop;
9899 end if;
9901 -- Gather component entities into Comp
9903 Citem := First (Component_Items (CL));
9904 while Present (Citem) loop
9905 if Nkind (Citem) = N_Component_Declaration then
9906 Ncomps := Ncomps + 1;
9907 Comps (Ncomps) := Defining_Identifier (Citem);
9908 end if;
9910 Next (Citem);
9911 end loop;
9913 -- Now sort the component entities based on the first bit.
9914 -- Note we already know there are no overlapping components.
9916 Sorting.Sort (Ncomps);
9918 -- Loop through entries checking for holes
9920 Nbit := Sbit;
9921 for J in 1 .. Ncomps loop
9922 CEnt := Comps (J);
9923 Error_Msg_Uint_1 := Component_Bit_Offset (CEnt) - Nbit;
9925 if Error_Msg_Uint_1 > 0 then
9926 Error_Msg_NE
9927 ("?H?^-bit gap before component&",
9928 Component_Name (Component_Clause (CEnt)), CEnt);
9929 end if;
9931 Nbit := Component_Bit_Offset (CEnt) + Esize (CEnt);
9932 end loop;
9934 -- Process variant parts recursively if present
9936 if Present (Variant_Part (CL)) then
9937 Variant := First (Variants (Variant_Part (CL)));
9938 while Present (Variant) loop
9939 Check_Component_List
9940 (Component_List (Variant), Nbit, No_List);
9941 Next (Variant);
9942 end loop;
9943 end if;
9944 end;
9945 end Check_Component_List;
9947 -- Start of processing for Record_Hole_Check
9949 begin
9950 declare
9951 Sbit : Uint;
9953 begin
9954 if Is_Tagged_Type (Rectype) then
9955 Sbit := UI_From_Int (System_Address_Size);
9956 else
9957 Sbit := Uint_0;
9958 end if;
9960 if Nkind (Decl) = N_Full_Type_Declaration
9961 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
9962 then
9963 Check_Component_List
9964 (Component_List (Type_Definition (Decl)),
9965 Sbit,
9966 Discriminant_Specifications (Decl));
9967 end if;
9968 end;
9969 end Record_Hole_Check;
9970 end if;
9972 -- For records that have component clauses for all components, and whose
9973 -- size is less than or equal to 32, we need to know the size in the
9974 -- front end to activate possible packed array processing where the
9975 -- component type is a record.
9977 -- At this stage Hbit + 1 represents the first unused bit from all the
9978 -- component clauses processed, so if the component clauses are
9979 -- complete, then this is the length of the record.
9981 -- For records longer than System.Storage_Unit, and for those where not
9982 -- all components have component clauses, the back end determines the
9983 -- length (it may for example be appropriate to round up the size
9984 -- to some convenient boundary, based on alignment considerations, etc).
9986 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
9988 -- Nothing to do if at least one component has no component clause
9990 Comp := First_Component_Or_Discriminant (Rectype);
9991 while Present (Comp) loop
9992 exit when No (Component_Clause (Comp));
9993 Next_Component_Or_Discriminant (Comp);
9994 end loop;
9996 -- If we fall out of loop, all components have component clauses
9997 -- and so we can set the size to the maximum value.
9999 if No (Comp) then
10000 Set_RM_Size (Rectype, Hbit + 1);
10001 end if;
10002 end if;
10003 end Check_Record_Representation_Clause;
10005 ----------------
10006 -- Check_Size --
10007 ----------------
10009 procedure Check_Size
10010 (N : Node_Id;
10011 T : Entity_Id;
10012 Siz : Uint;
10013 Biased : out Boolean)
10015 UT : constant Entity_Id := Underlying_Type (T);
10016 M : Uint;
10018 begin
10019 Biased := False;
10021 -- Reject patently improper size values.
10023 if Is_Elementary_Type (T)
10024 and then Siz > UI_From_Int (Int'Last)
10025 then
10026 Error_Msg_N ("Size value too large for elementary type", N);
10028 if Nkind (Original_Node (N)) = N_Op_Expon then
10029 Error_Msg_N
10030 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10031 end if;
10032 end if;
10034 -- Dismiss generic types
10036 if Is_Generic_Type (T)
10037 or else
10038 Is_Generic_Type (UT)
10039 or else
10040 Is_Generic_Type (Root_Type (UT))
10041 then
10042 return;
10044 -- Guard against previous errors
10046 elsif No (UT) or else UT = Any_Type then
10047 Check_Error_Detected;
10048 return;
10050 -- Check case of bit packed array
10052 elsif Is_Array_Type (UT)
10053 and then Known_Static_Component_Size (UT)
10054 and then Is_Bit_Packed_Array (UT)
10055 then
10056 declare
10057 Asiz : Uint;
10058 Indx : Node_Id;
10059 Ityp : Entity_Id;
10061 begin
10062 Asiz := Component_Size (UT);
10063 Indx := First_Index (UT);
10064 loop
10065 Ityp := Etype (Indx);
10067 -- If non-static bound, then we are not in the business of
10068 -- trying to check the length, and indeed an error will be
10069 -- issued elsewhere, since sizes of non-static array types
10070 -- cannot be set implicitly or explicitly.
10072 if not Is_OK_Static_Subtype (Ityp) then
10073 return;
10074 end if;
10076 -- Otherwise accumulate next dimension
10078 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10079 Expr_Value (Type_Low_Bound (Ityp)) +
10080 Uint_1);
10082 Next_Index (Indx);
10083 exit when No (Indx);
10084 end loop;
10086 if Asiz <= Siz then
10087 return;
10089 else
10090 Error_Msg_Uint_1 := Asiz;
10091 Error_Msg_NE
10092 ("size for& too small, minimum allowed is ^", N, T);
10093 Set_Esize (T, Asiz);
10094 Set_RM_Size (T, Asiz);
10095 end if;
10096 end;
10098 -- All other composite types are ignored
10100 elsif Is_Composite_Type (UT) then
10101 return;
10103 -- For fixed-point types, don't check minimum if type is not frozen,
10104 -- since we don't know all the characteristics of the type that can
10105 -- affect the size (e.g. a specified small) till freeze time.
10107 elsif Is_Fixed_Point_Type (UT)
10108 and then not Is_Frozen (UT)
10109 then
10110 null;
10112 -- Cases for which a minimum check is required
10114 else
10115 -- Ignore if specified size is correct for the type
10117 if Known_Esize (UT) and then Siz = Esize (UT) then
10118 return;
10119 end if;
10121 -- Otherwise get minimum size
10123 M := UI_From_Int (Minimum_Size (UT));
10125 if Siz < M then
10127 -- Size is less than minimum size, but one possibility remains
10128 -- that we can manage with the new size if we bias the type.
10130 M := UI_From_Int (Minimum_Size (UT, Biased => True));
10132 if Siz < M then
10133 Error_Msg_Uint_1 := M;
10134 Error_Msg_NE
10135 ("size for& too small, minimum allowed is ^", N, T);
10136 Set_Esize (T, M);
10137 Set_RM_Size (T, M);
10138 else
10139 Biased := True;
10140 end if;
10141 end if;
10142 end if;
10143 end Check_Size;
10145 --------------------------
10146 -- Freeze_Entity_Checks --
10147 --------------------------
10149 procedure Freeze_Entity_Checks (N : Node_Id) is
10150 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10151 -- Inspect the primitive operations of type Typ and hide all pairs of
10152 -- implicitly declared non-overridden non-fully conformant homographs
10153 -- (Ada RM 8.3 12.3/2).
10155 -------------------------------------
10156 -- Hide_Non_Overridden_Subprograms --
10157 -------------------------------------
10159 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10160 procedure Hide_Matching_Homographs
10161 (Subp_Id : Entity_Id;
10162 Start_Elmt : Elmt_Id);
10163 -- Inspect a list of primitive operations starting with Start_Elmt
10164 -- and find matching implicitly declared non-overridden non-fully
10165 -- conformant homographs of Subp_Id. If found, all matches along
10166 -- with Subp_Id are hidden from all visibility.
10168 function Is_Non_Overridden_Or_Null_Procedure
10169 (Subp_Id : Entity_Id) return Boolean;
10170 -- Determine whether subprogram Subp_Id is implicitly declared non-
10171 -- overridden subprogram or an implicitly declared null procedure.
10173 ------------------------------
10174 -- Hide_Matching_Homographs --
10175 ------------------------------
10177 procedure Hide_Matching_Homographs
10178 (Subp_Id : Entity_Id;
10179 Start_Elmt : Elmt_Id)
10181 Prim : Entity_Id;
10182 Prim_Elmt : Elmt_Id;
10184 begin
10185 Prim_Elmt := Start_Elmt;
10186 while Present (Prim_Elmt) loop
10187 Prim := Node (Prim_Elmt);
10189 -- The current primitive is implicitly declared non-overridden
10190 -- non-fully conformant homograph of Subp_Id. Both subprograms
10191 -- must be hidden from visibility.
10193 if Chars (Prim) = Chars (Subp_Id)
10194 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
10195 and then not Fully_Conformant (Prim, Subp_Id)
10196 then
10197 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10198 Set_Is_Immediately_Visible (Prim, False);
10199 Set_Is_Potentially_Use_Visible (Prim, False);
10201 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10202 Set_Is_Immediately_Visible (Subp_Id, False);
10203 Set_Is_Potentially_Use_Visible (Subp_Id, False);
10204 end if;
10206 Next_Elmt (Prim_Elmt);
10207 end loop;
10208 end Hide_Matching_Homographs;
10210 -----------------------------------------
10211 -- Is_Non_Overridden_Or_Null_Procedure --
10212 -----------------------------------------
10214 function Is_Non_Overridden_Or_Null_Procedure
10215 (Subp_Id : Entity_Id) return Boolean
10217 Alias_Id : Entity_Id;
10219 begin
10220 -- The subprogram is inherited (implicitly declared), it does not
10221 -- override and does not cover a primitive of an interface.
10223 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10224 and then Present (Alias (Subp_Id))
10225 and then No (Interface_Alias (Subp_Id))
10226 and then No (Overridden_Operation (Subp_Id))
10227 then
10228 Alias_Id := Alias (Subp_Id);
10230 if Requires_Overriding (Alias_Id) then
10231 return True;
10233 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10234 and then Null_Present (Parent (Alias_Id))
10235 then
10236 return True;
10237 end if;
10238 end if;
10240 return False;
10241 end Is_Non_Overridden_Or_Null_Procedure;
10243 -- Local variables
10245 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10246 Prim : Entity_Id;
10247 Prim_Elmt : Elmt_Id;
10249 -- Start of processing for Hide_Non_Overridden_Subprograms
10251 begin
10252 -- Inspect the list of primitives looking for non-overridden
10253 -- subprograms.
10255 if Present (Prim_Ops) then
10256 Prim_Elmt := First_Elmt (Prim_Ops);
10257 while Present (Prim_Elmt) loop
10258 Prim := Node (Prim_Elmt);
10259 Next_Elmt (Prim_Elmt);
10261 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10262 Hide_Matching_Homographs
10263 (Subp_Id => Prim,
10264 Start_Elmt => Prim_Elmt);
10265 end if;
10266 end loop;
10267 end if;
10268 end Hide_Non_Overridden_Subprograms;
10270 ---------------------
10271 -- Local variables --
10272 ---------------------
10274 E : constant Entity_Id := Entity (N);
10276 Non_Generic_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10277 -- True in non-generic case. Some of the processing here is skipped
10278 -- for the generic case since it is not needed. Basically in the
10279 -- generic case, we only need to do stuff that might generate error
10280 -- messages or warnings.
10282 -- Start of processing for Freeze_Entity_Checks
10284 begin
10285 -- Remember that we are processing a freezing entity. Required to
10286 -- ensure correct decoration of internal entities associated with
10287 -- interfaces (see New_Overloaded_Entity).
10289 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
10291 -- For tagged types covering interfaces add internal entities that link
10292 -- the primitives of the interfaces with the primitives that cover them.
10293 -- Note: These entities were originally generated only when generating
10294 -- code because their main purpose was to provide support to initialize
10295 -- the secondary dispatch tables. They are now generated also when
10296 -- compiling with no code generation to provide ASIS the relationship
10297 -- between interface primitives and tagged type primitives. They are
10298 -- also used to locate primitives covering interfaces when processing
10299 -- generics (see Derive_Subprograms).
10301 -- This is not needed in the generic case
10303 if Ada_Version >= Ada_2005
10304 and then Non_Generic_Case
10305 and then Ekind (E) = E_Record_Type
10306 and then Is_Tagged_Type (E)
10307 and then not Is_Interface (E)
10308 and then Has_Interfaces (E)
10309 then
10310 -- This would be a good common place to call the routine that checks
10311 -- overriding of interface primitives (and thus factorize calls to
10312 -- Check_Abstract_Overriding located at different contexts in the
10313 -- compiler). However, this is not possible because it causes
10314 -- spurious errors in case of late overriding.
10316 Add_Internal_Interface_Entities (E);
10317 end if;
10319 -- After all forms of overriding have been resolved, a tagged type may
10320 -- be left with a set of implicitly declared and possibly erroneous
10321 -- abstract subprograms, null procedures and subprograms that require
10322 -- overriding. If this set contains fully conformat homographs, then one
10323 -- is chosen arbitrarily (already done during resolution), otherwise all
10324 -- remaining non-fully conformant homographs are hidden from visibility
10325 -- (Ada RM 8.3 12.3/2).
10327 if Is_Tagged_Type (E) then
10328 Hide_Non_Overridden_Subprograms (E);
10329 end if;
10331 -- Check CPP types
10333 if Ekind (E) = E_Record_Type
10334 and then Is_CPP_Class (E)
10335 and then Is_Tagged_Type (E)
10336 and then Tagged_Type_Expansion
10337 then
10338 if CPP_Num_Prims (E) = 0 then
10340 -- If the CPP type has user defined components then it must import
10341 -- primitives from C++. This is required because if the C++ class
10342 -- has no primitives then the C++ compiler does not added the _tag
10343 -- component to the type.
10345 if First_Entity (E) /= Last_Entity (E) then
10346 Error_Msg_N
10347 ("'C'P'P type must import at least one primitive from C++??",
10349 end if;
10350 end if;
10352 -- Check that all its primitives are abstract or imported from C++.
10353 -- Check also availability of the C++ constructor.
10355 declare
10356 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
10357 Elmt : Elmt_Id;
10358 Error_Reported : Boolean := False;
10359 Prim : Node_Id;
10361 begin
10362 Elmt := First_Elmt (Primitive_Operations (E));
10363 while Present (Elmt) loop
10364 Prim := Node (Elmt);
10366 if Comes_From_Source (Prim) then
10367 if Is_Abstract_Subprogram (Prim) then
10368 null;
10370 elsif not Is_Imported (Prim)
10371 or else Convention (Prim) /= Convention_CPP
10372 then
10373 Error_Msg_N
10374 ("primitives of 'C'P'P types must be imported from C++ "
10375 & "or abstract??", Prim);
10377 elsif not Has_Constructors
10378 and then not Error_Reported
10379 then
10380 Error_Msg_Name_1 := Chars (E);
10381 Error_Msg_N
10382 ("??'C'P'P constructor required for type %", Prim);
10383 Error_Reported := True;
10384 end if;
10385 end if;
10387 Next_Elmt (Elmt);
10388 end loop;
10389 end;
10390 end if;
10392 -- Check Ada derivation of CPP type
10394 if Expander_Active -- why? losing errors in -gnatc mode???
10395 and then Present (Etype (E)) -- defend against errors
10396 and then Tagged_Type_Expansion
10397 and then Ekind (E) = E_Record_Type
10398 and then Etype (E) /= E
10399 and then Is_CPP_Class (Etype (E))
10400 and then CPP_Num_Prims (Etype (E)) > 0
10401 and then not Is_CPP_Class (E)
10402 and then not Has_CPP_Constructors (Etype (E))
10403 then
10404 -- If the parent has C++ primitives but it has no constructor then
10405 -- check that all the primitives are overridden in this derivation;
10406 -- otherwise the constructor of the parent is needed to build the
10407 -- dispatch table.
10409 declare
10410 Elmt : Elmt_Id;
10411 Prim : Node_Id;
10413 begin
10414 Elmt := First_Elmt (Primitive_Operations (E));
10415 while Present (Elmt) loop
10416 Prim := Node (Elmt);
10418 if not Is_Abstract_Subprogram (Prim)
10419 and then No (Interface_Alias (Prim))
10420 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
10421 then
10422 Error_Msg_Name_1 := Chars (Etype (E));
10423 Error_Msg_N
10424 ("'C'P'P constructor required for parent type %", E);
10425 exit;
10426 end if;
10428 Next_Elmt (Elmt);
10429 end loop;
10430 end;
10431 end if;
10433 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
10435 -- If we have a type with predicates, build predicate function. This
10436 -- is not needed in the generic case, and is not needed within TSS
10437 -- subprograms and other predefined primitives.
10439 if Non_Generic_Case
10440 and then Is_Type (E)
10441 and then Has_Predicates (E)
10442 and then not Within_Internal_Subprogram
10443 then
10444 Build_Predicate_Functions (E, N);
10445 end if;
10447 -- If type has delayed aspects, this is where we do the preanalysis at
10448 -- the freeze point, as part of the consistent visibility check. Note
10449 -- that this must be done after calling Build_Predicate_Functions or
10450 -- Build_Invariant_Procedure since these subprograms fix occurrences of
10451 -- the subtype name in the saved expression so that they will not cause
10452 -- trouble in the preanalysis.
10454 -- This is also not needed in the generic case
10456 if Non_Generic_Case
10457 and then Has_Delayed_Aspects (E)
10458 and then Scope (E) = Current_Scope
10459 then
10460 -- Retrieve the visibility to the discriminants in order to properly
10461 -- analyze the aspects.
10463 Push_Scope_And_Install_Discriminants (E);
10465 declare
10466 Ritem : Node_Id;
10468 begin
10469 -- Look for aspect specification entries for this entity
10471 Ritem := First_Rep_Item (E);
10472 while Present (Ritem) loop
10473 if Nkind (Ritem) = N_Aspect_Specification
10474 and then Entity (Ritem) = E
10475 and then Is_Delayed_Aspect (Ritem)
10476 then
10477 Check_Aspect_At_Freeze_Point (Ritem);
10478 end if;
10480 Next_Rep_Item (Ritem);
10481 end loop;
10482 end;
10484 Uninstall_Discriminants_And_Pop_Scope (E);
10485 end if;
10487 -- For a record type, deal with variant parts. This has to be delayed
10488 -- to this point, because of the issue of statically predicated
10489 -- subtypes, which we have to ensure are frozen before checking
10490 -- choices, since we need to have the static choice list set.
10492 if Is_Record_Type (E) then
10493 Check_Variant_Part : declare
10494 D : constant Node_Id := Declaration_Node (E);
10495 T : Node_Id;
10496 C : Node_Id;
10497 VP : Node_Id;
10499 Others_Present : Boolean;
10500 pragma Warnings (Off, Others_Present);
10501 -- Indicates others present, not used in this case
10503 procedure Non_Static_Choice_Error (Choice : Node_Id);
10504 -- Error routine invoked by the generic instantiation below when
10505 -- the variant part has a non static choice.
10507 procedure Process_Declarations (Variant : Node_Id);
10508 -- Processes declarations associated with a variant. We analyzed
10509 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
10510 -- but we still need the recursive call to Check_Choices for any
10511 -- nested variant to get its choices properly processed. This is
10512 -- also where we expand out the choices if expansion is active.
10514 package Variant_Choices_Processing is new
10515 Generic_Check_Choices
10516 (Process_Empty_Choice => No_OP,
10517 Process_Non_Static_Choice => Non_Static_Choice_Error,
10518 Process_Associated_Node => Process_Declarations);
10519 use Variant_Choices_Processing;
10521 -----------------------------
10522 -- Non_Static_Choice_Error --
10523 -----------------------------
10525 procedure Non_Static_Choice_Error (Choice : Node_Id) is
10526 begin
10527 Flag_Non_Static_Expr
10528 ("choice given in variant part is not static!", Choice);
10529 end Non_Static_Choice_Error;
10531 --------------------------
10532 -- Process_Declarations --
10533 --------------------------
10535 procedure Process_Declarations (Variant : Node_Id) is
10536 CL : constant Node_Id := Component_List (Variant);
10537 VP : Node_Id;
10539 begin
10540 -- Check for static predicate present in this variant
10542 if Has_SP_Choice (Variant) then
10544 -- Here we expand. You might expect to find this call in
10545 -- Expand_N_Variant_Part, but that is called when we first
10546 -- see the variant part, and we cannot do this expansion
10547 -- earlier than the freeze point, since for statically
10548 -- predicated subtypes, the predicate is not known till
10549 -- the freeze point.
10551 -- Furthermore, we do this expansion even if the expander
10552 -- is not active, because other semantic processing, e.g.
10553 -- for aggregates, requires the expanded list of choices.
10555 -- If the expander is not active, then we can't just clobber
10556 -- the list since it would invalidate the ASIS -gnatct tree.
10557 -- So we have to rewrite the variant part with a Rewrite
10558 -- call that replaces it with a copy and clobber the copy.
10560 if not Expander_Active then
10561 declare
10562 NewV : constant Node_Id := New_Copy (Variant);
10563 begin
10564 Set_Discrete_Choices
10565 (NewV, New_Copy_List (Discrete_Choices (Variant)));
10566 Rewrite (Variant, NewV);
10567 end;
10568 end if;
10570 Expand_Static_Predicates_In_Choices (Variant);
10571 end if;
10573 -- We don't need to worry about the declarations in the variant
10574 -- (since they were analyzed by Analyze_Choices when we first
10575 -- encountered the variant), but we do need to take care of
10576 -- expansion of any nested variants.
10578 if not Null_Present (CL) then
10579 VP := Variant_Part (CL);
10581 if Present (VP) then
10582 Check_Choices
10583 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
10584 end if;
10585 end if;
10586 end Process_Declarations;
10588 -- Start of processing for Check_Variant_Part
10590 begin
10591 -- Find component list
10593 C := Empty;
10595 if Nkind (D) = N_Full_Type_Declaration then
10596 T := Type_Definition (D);
10598 if Nkind (T) = N_Record_Definition then
10599 C := Component_List (T);
10601 elsif Nkind (T) = N_Derived_Type_Definition
10602 and then Present (Record_Extension_Part (T))
10603 then
10604 C := Component_List (Record_Extension_Part (T));
10605 end if;
10606 end if;
10608 -- Case of variant part present
10610 if Present (C) and then Present (Variant_Part (C)) then
10611 VP := Variant_Part (C);
10613 -- Check choices
10615 Check_Choices
10616 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
10618 -- If the last variant does not contain the Others choice,
10619 -- replace it with an N_Others_Choice node since Gigi always
10620 -- wants an Others. Note that we do not bother to call Analyze
10621 -- on the modified variant part, since its only effect would be
10622 -- to compute the Others_Discrete_Choices node laboriously, and
10623 -- of course we already know the list of choices corresponding
10624 -- to the others choice (it's the list we're replacing).
10626 -- We only want to do this if the expander is active, since
10627 -- we do not want to clobber the ASIS tree.
10629 if Expander_Active then
10630 declare
10631 Last_Var : constant Node_Id :=
10632 Last_Non_Pragma (Variants (VP));
10634 Others_Node : Node_Id;
10636 begin
10637 if Nkind (First (Discrete_Choices (Last_Var))) /=
10638 N_Others_Choice
10639 then
10640 Others_Node := Make_Others_Choice (Sloc (Last_Var));
10641 Set_Others_Discrete_Choices
10642 (Others_Node, Discrete_Choices (Last_Var));
10643 Set_Discrete_Choices
10644 (Last_Var, New_List (Others_Node));
10645 end if;
10646 end;
10647 end if;
10648 end if;
10649 end Check_Variant_Part;
10650 end if;
10651 end Freeze_Entity_Checks;
10653 -------------------------
10654 -- Get_Alignment_Value --
10655 -------------------------
10657 function Get_Alignment_Value (Expr : Node_Id) return Uint is
10658 Align : constant Uint := Static_Integer (Expr);
10660 begin
10661 if Align = No_Uint then
10662 return No_Uint;
10664 elsif Align <= 0 then
10665 Error_Msg_N ("alignment value must be positive", Expr);
10666 return No_Uint;
10668 else
10669 for J in Int range 0 .. 64 loop
10670 declare
10671 M : constant Uint := Uint_2 ** J;
10673 begin
10674 exit when M = Align;
10676 if M > Align then
10677 Error_Msg_N
10678 ("alignment value must be power of 2", Expr);
10679 return No_Uint;
10680 end if;
10681 end;
10682 end loop;
10684 return Align;
10685 end if;
10686 end Get_Alignment_Value;
10688 -------------------------------------
10689 -- Inherit_Aspects_At_Freeze_Point --
10690 -------------------------------------
10692 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
10693 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10694 (Rep_Item : Node_Id) return Boolean;
10695 -- This routine checks if Rep_Item is either a pragma or an aspect
10696 -- specification node whose correponding pragma (if any) is present in
10697 -- the Rep Item chain of the entity it has been specified to.
10699 --------------------------------------------------
10700 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
10701 --------------------------------------------------
10703 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10704 (Rep_Item : Node_Id) return Boolean
10706 begin
10707 return
10708 Nkind (Rep_Item) = N_Pragma
10709 or else Present_In_Rep_Item
10710 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
10711 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
10713 -- Start of processing for Inherit_Aspects_At_Freeze_Point
10715 begin
10716 -- A representation item is either subtype-specific (Size and Alignment
10717 -- clauses) or type-related (all others). Subtype-specific aspects may
10718 -- differ for different subtypes of the same type (RM 13.1.8).
10720 -- A derived type inherits each type-related representation aspect of
10721 -- its parent type that was directly specified before the declaration of
10722 -- the derived type (RM 13.1.15).
10724 -- A derived subtype inherits each subtype-specific representation
10725 -- aspect of its parent subtype that was directly specified before the
10726 -- declaration of the derived type (RM 13.1.15).
10728 -- The general processing involves inheriting a representation aspect
10729 -- from a parent type whenever the first rep item (aspect specification,
10730 -- attribute definition clause, pragma) corresponding to the given
10731 -- representation aspect in the rep item chain of Typ, if any, isn't
10732 -- directly specified to Typ but to one of its parents.
10734 -- ??? Note that, for now, just a limited number of representation
10735 -- aspects have been inherited here so far. Many of them are
10736 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
10737 -- a non- exhaustive list of aspects that likely also need to
10738 -- be moved to this routine: Alignment, Component_Alignment,
10739 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
10740 -- Preelaborable_Initialization, RM_Size and Small.
10742 -- In addition, Convention must be propagated from base type to subtype,
10743 -- because the subtype may have been declared on an incomplete view.
10745 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
10746 return;
10747 end if;
10749 -- Ada_05/Ada_2005
10751 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
10752 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
10753 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10754 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
10755 then
10756 Set_Is_Ada_2005_Only (Typ);
10757 end if;
10759 -- Ada_12/Ada_2012
10761 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
10762 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
10763 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10764 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
10765 then
10766 Set_Is_Ada_2012_Only (Typ);
10767 end if;
10769 -- Atomic/Shared
10771 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
10772 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
10773 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10774 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
10775 then
10776 Set_Is_Atomic (Typ);
10777 Set_Treat_As_Volatile (Typ);
10778 Set_Is_Volatile (Typ);
10779 end if;
10781 -- Convention
10783 if Is_Record_Type (Typ)
10784 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
10785 then
10786 Set_Convention (Typ, Convention (Base_Type (Typ)));
10787 end if;
10789 -- Default_Component_Value
10791 if Is_Array_Type (Typ)
10792 and then Is_Base_Type (Typ)
10793 and then Has_Rep_Item (Typ, Name_Default_Component_Value, False)
10794 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
10795 then
10796 Set_Default_Aspect_Component_Value (Typ,
10797 Default_Aspect_Component_Value
10798 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
10799 end if;
10801 -- Default_Value
10803 if Is_Scalar_Type (Typ)
10804 and then Is_Base_Type (Typ)
10805 and then Has_Rep_Item (Typ, Name_Default_Value, False)
10806 and then Has_Rep_Item (Typ, Name_Default_Value)
10807 then
10808 Set_Default_Aspect_Value (Typ,
10809 Default_Aspect_Value
10810 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
10811 end if;
10813 -- Discard_Names
10815 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
10816 and then Has_Rep_Item (Typ, Name_Discard_Names)
10817 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10818 (Get_Rep_Item (Typ, Name_Discard_Names))
10819 then
10820 Set_Discard_Names (Typ);
10821 end if;
10823 -- Invariants
10825 if not Has_Rep_Item (Typ, Name_Invariant, False)
10826 and then Has_Rep_Item (Typ, Name_Invariant)
10827 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10828 (Get_Rep_Item (Typ, Name_Invariant))
10829 then
10830 Set_Has_Invariants (Typ);
10832 if Class_Present (Get_Rep_Item (Typ, Name_Invariant)) then
10833 Set_Has_Inheritable_Invariants (Typ);
10834 end if;
10836 -- If we have a subtype with invariants, whose base type does not have
10837 -- invariants, copy these invariants to the base type. This happens for
10838 -- the case of implicit base types created for scalar and array types.
10840 elsif Has_Invariants (Typ)
10841 and then not Has_Invariants (Base_Type (Typ))
10842 then
10843 Set_Has_Invariants (Base_Type (Typ));
10844 Set_Invariant_Procedure (Base_Type (Typ), Invariant_Procedure (Typ));
10845 end if;
10847 -- Volatile
10849 if not Has_Rep_Item (Typ, Name_Volatile, False)
10850 and then Has_Rep_Item (Typ, Name_Volatile)
10851 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10852 (Get_Rep_Item (Typ, Name_Volatile))
10853 then
10854 Set_Treat_As_Volatile (Typ);
10855 Set_Is_Volatile (Typ);
10856 end if;
10858 -- Inheritance for derived types only
10860 if Is_Derived_Type (Typ) then
10861 declare
10862 Bas_Typ : constant Entity_Id := Base_Type (Typ);
10863 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
10865 begin
10866 -- Atomic_Components
10868 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
10869 and then Has_Rep_Item (Typ, Name_Atomic_Components)
10870 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10871 (Get_Rep_Item (Typ, Name_Atomic_Components))
10872 then
10873 Set_Has_Atomic_Components (Imp_Bas_Typ);
10874 end if;
10876 -- Volatile_Components
10878 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
10879 and then Has_Rep_Item (Typ, Name_Volatile_Components)
10880 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10881 (Get_Rep_Item (Typ, Name_Volatile_Components))
10882 then
10883 Set_Has_Volatile_Components (Imp_Bas_Typ);
10884 end if;
10886 -- Finalize_Storage_Only
10888 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
10889 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
10890 then
10891 Set_Finalize_Storage_Only (Bas_Typ);
10892 end if;
10894 -- Universal_Aliasing
10896 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
10897 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
10898 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
10899 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
10900 then
10901 Set_Universal_Aliasing (Imp_Bas_Typ);
10902 end if;
10904 -- Bit_Order
10906 if Is_Record_Type (Typ) then
10907 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
10908 and then Has_Rep_Item (Typ, Name_Bit_Order)
10909 then
10910 Set_Reverse_Bit_Order (Bas_Typ,
10911 Reverse_Bit_Order (Entity (Name
10912 (Get_Rep_Item (Typ, Name_Bit_Order)))));
10913 end if;
10914 end if;
10916 -- Scalar_Storage_Order
10918 -- Note: the aspect is specified on a first subtype, but recorded
10919 -- in a flag of the base type!
10921 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
10922 and then
10923 Typ = Bas_Typ
10924 then
10926 -- For a type extension, always inherit from parent; otherwise
10927 -- inherit if no default applies. Note: we do not check for
10928 -- an explicit rep item on the parent type when inheriting,
10929 -- because the parent SSO may itself have been set by default.
10931 if not Has_Rep_Item (First_Subtype (Typ),
10932 Name_Scalar_Storage_Order, False)
10933 and then (Is_Tagged_Type (Bas_Typ)
10934 or else
10935 not (SSO_Set_Low_By_Default (Bas_Typ)
10936 or else
10937 SSO_Set_High_By_Default (Bas_Typ)))
10938 then
10939 Set_Reverse_Storage_Order (Bas_Typ,
10940 Reverse_Storage_Order
10941 (Implementation_Base_Type (Etype (Bas_Typ))));
10943 -- Clear default SSO indications, since the inherited aspect
10944 -- which was set explicitly overrides the default.
10946 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
10947 Set_SSO_Set_High_By_Default (Bas_Typ, False);
10948 end if;
10949 end if;
10950 end;
10951 end if;
10952 end Inherit_Aspects_At_Freeze_Point;
10954 ----------------
10955 -- Initialize --
10956 ----------------
10958 procedure Initialize is
10959 begin
10960 Address_Clause_Checks.Init;
10961 Independence_Checks.Init;
10962 Unchecked_Conversions.Init;
10963 end Initialize;
10965 ---------------------------
10966 -- Install_Discriminants --
10967 ---------------------------
10969 procedure Install_Discriminants (E : Entity_Id) is
10970 Disc : Entity_Id;
10971 Prev : Entity_Id;
10972 begin
10973 Disc := First_Discriminant (E);
10974 while Present (Disc) loop
10975 Prev := Current_Entity (Disc);
10976 Set_Current_Entity (Disc);
10977 Set_Is_Immediately_Visible (Disc);
10978 Set_Homonym (Disc, Prev);
10979 Next_Discriminant (Disc);
10980 end loop;
10981 end Install_Discriminants;
10983 -------------------------
10984 -- Is_Operational_Item --
10985 -------------------------
10987 function Is_Operational_Item (N : Node_Id) return Boolean is
10988 begin
10989 if Nkind (N) /= N_Attribute_Definition_Clause then
10990 return False;
10992 else
10993 declare
10994 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
10995 begin
10996 return Id = Attribute_Input
10997 or else Id = Attribute_Output
10998 or else Id = Attribute_Read
10999 or else Id = Attribute_Write
11000 or else Id = Attribute_External_Tag;
11001 end;
11002 end if;
11003 end Is_Operational_Item;
11005 -------------------------
11006 -- Is_Predicate_Static --
11007 -------------------------
11009 -- Note: the basic legality of the expression has already been checked, so
11010 -- we don't need to worry about cases or ranges on strings for example.
11012 function Is_Predicate_Static
11013 (Expr : Node_Id;
11014 Nam : Name_Id) return Boolean
11016 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
11017 -- Given a list of case expression alternatives, returns True if all
11018 -- the alternatives are static (have all static choices, and a static
11019 -- expression).
11021 function All_Static_Choices (L : List_Id) return Boolean;
11022 -- Returns true if all elements of the list are OK static choices
11023 -- as defined below for Is_Static_Choice. Used for case expression
11024 -- alternatives and for the right operand of a membership test. An
11025 -- others_choice is static if the corresponding expression is static.
11026 -- The staticness of the bounds is checked separately.
11028 function Is_Static_Choice (N : Node_Id) return Boolean;
11029 -- Returns True if N represents a static choice (static subtype, or
11030 -- static subtype indication, or static expression, or static range).
11032 -- Note that this is a bit more inclusive than we actually need
11033 -- (in particular membership tests do not allow the use of subtype
11034 -- indications). But that doesn't matter, we have already checked
11035 -- that the construct is legal to get this far.
11037 function Is_Type_Ref (N : Node_Id) return Boolean;
11038 pragma Inline (Is_Type_Ref);
11039 -- Returns True if N is a reference to the type for the predicate in the
11040 -- expression (i.e. if it is an identifier whose Chars field matches the
11041 -- Nam given in the call). N must not be parenthesized, if the type name
11042 -- appears in parens, this routine will return False.
11044 ----------------------------------
11045 -- All_Static_Case_Alternatives --
11046 ----------------------------------
11048 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11049 N : Node_Id;
11051 begin
11052 N := First (L);
11053 while Present (N) loop
11054 if not (All_Static_Choices (Discrete_Choices (N))
11055 and then Is_OK_Static_Expression (Expression (N)))
11056 then
11057 return False;
11058 end if;
11060 Next (N);
11061 end loop;
11063 return True;
11064 end All_Static_Case_Alternatives;
11066 ------------------------
11067 -- All_Static_Choices --
11068 ------------------------
11070 function All_Static_Choices (L : List_Id) return Boolean is
11071 N : Node_Id;
11073 begin
11074 N := First (L);
11075 while Present (N) loop
11076 if not Is_Static_Choice (N) then
11077 return False;
11078 end if;
11080 Next (N);
11081 end loop;
11083 return True;
11084 end All_Static_Choices;
11086 ----------------------
11087 -- Is_Static_Choice --
11088 ----------------------
11090 function Is_Static_Choice (N : Node_Id) return Boolean is
11091 begin
11092 return Nkind (N) = N_Others_Choice
11093 or else Is_OK_Static_Expression (N)
11094 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11095 and then Is_OK_Static_Subtype (Entity (N)))
11096 or else (Nkind (N) = N_Subtype_Indication
11097 and then Is_OK_Static_Subtype (Entity (N)))
11098 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11099 end Is_Static_Choice;
11101 -----------------
11102 -- Is_Type_Ref --
11103 -----------------
11105 function Is_Type_Ref (N : Node_Id) return Boolean is
11106 begin
11107 return Nkind (N) = N_Identifier
11108 and then Chars (N) = Nam
11109 and then Paren_Count (N) = 0;
11110 end Is_Type_Ref;
11112 -- Start of processing for Is_Predicate_Static
11114 begin
11115 -- Predicate_Static means one of the following holds. Numbers are the
11116 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11118 -- 16: A static expression
11120 if Is_OK_Static_Expression (Expr) then
11121 return True;
11123 -- 17: A membership test whose simple_expression is the current
11124 -- instance, and whose membership_choice_list meets the requirements
11125 -- for a static membership test.
11127 elsif Nkind (Expr) in N_Membership_Test
11128 and then ((Present (Right_Opnd (Expr))
11129 and then Is_Static_Choice (Right_Opnd (Expr)))
11130 or else
11131 (Present (Alternatives (Expr))
11132 and then All_Static_Choices (Alternatives (Expr))))
11133 then
11134 return True;
11136 -- 18. A case_expression whose selecting_expression is the current
11137 -- instance, and whose dependent expressions are static expressions.
11139 elsif Nkind (Expr) = N_Case_Expression
11140 and then Is_Type_Ref (Expression (Expr))
11141 and then All_Static_Case_Alternatives (Alternatives (Expr))
11142 then
11143 return True;
11145 -- 19. A call to a predefined equality or ordering operator, where one
11146 -- operand is the current instance, and the other is a static
11147 -- expression.
11149 -- Note: the RM is clearly wrong here in not excluding string types.
11150 -- Without this exclusion, we would allow expressions like X > "ABC"
11151 -- to be considered as predicate-static, which is clearly not intended,
11152 -- since the idea is for predicate-static to be a subset of normal
11153 -- static expressions (and "DEF" > "ABC" is not a static expression).
11155 -- However, we do allow internally generated (not from source) equality
11156 -- and inequality operations to be valid on strings (this helps deal
11157 -- with cases where we transform A in "ABC" to A = "ABC).
11159 elsif Nkind (Expr) in N_Op_Compare
11160 and then ((not Is_String_Type (Etype (Left_Opnd (Expr))))
11161 or else (Nkind_In (Expr, N_Op_Eq, N_Op_Ne)
11162 and then not Comes_From_Source (Expr)))
11163 and then ((Is_Type_Ref (Left_Opnd (Expr))
11164 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11165 or else
11166 (Is_Type_Ref (Right_Opnd (Expr))
11167 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11168 then
11169 return True;
11171 -- 20. A call to a predefined boolean logical operator, where each
11172 -- operand is predicate-static.
11174 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11175 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11176 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11177 or else
11178 (Nkind (Expr) = N_Op_Not
11179 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11180 then
11181 return True;
11183 -- 21. A short-circuit control form where both operands are
11184 -- predicate-static.
11186 elsif Nkind (Expr) in N_Short_Circuit
11187 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11188 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11189 then
11190 return True;
11192 -- 22. A parenthesized predicate-static expression. This does not
11193 -- require any special test, since we just ignore paren levels in
11194 -- all the cases above.
11196 -- One more test that is an implementation artifact caused by the fact
11197 -- that we are analyzing not the original expression, but the generated
11198 -- expression in the body of the predicate function. This can include
11199 -- references to inherited predicates, so that the expression we are
11200 -- processing looks like:
11202 -- expression and then xxPredicate (typ (Inns))
11204 -- Where the call is to a Predicate function for an inherited predicate.
11205 -- We simply ignore such a call (which could be to either a dynamic or
11206 -- a static predicate, but remember that we can have a Static_Predicate
11207 -- for a non-static subtype).
11209 elsif Nkind (Expr) = N_Function_Call
11210 and then Is_Predicate_Function (Entity (Name (Expr)))
11211 then
11212 return True;
11214 -- That's an exhaustive list of tests, all other cases are not
11215 -- predicate-static, so we return False.
11217 else
11218 return False;
11219 end if;
11220 end Is_Predicate_Static;
11222 ---------------------
11223 -- Kill_Rep_Clause --
11224 ---------------------
11226 procedure Kill_Rep_Clause (N : Node_Id) is
11227 begin
11228 pragma Assert (Ignore_Rep_Clauses);
11230 -- Note: we use Replace rather than Rewrite, because we don't want
11231 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11232 -- rep clause that is being replaced.
11234 Replace (N, Make_Null_Statement (Sloc (N)));
11236 -- The null statement must be marked as not coming from source. This is
11237 -- so that ASIS ignores it, and also the back end does not expect bogus
11238 -- "from source" null statements in weird places (e.g. in declarative
11239 -- regions where such null statements are not allowed).
11241 Set_Comes_From_Source (N, False);
11242 end Kill_Rep_Clause;
11244 ------------------
11245 -- Minimum_Size --
11246 ------------------
11248 function Minimum_Size
11249 (T : Entity_Id;
11250 Biased : Boolean := False) return Nat
11252 Lo : Uint := No_Uint;
11253 Hi : Uint := No_Uint;
11254 LoR : Ureal := No_Ureal;
11255 HiR : Ureal := No_Ureal;
11256 LoSet : Boolean := False;
11257 HiSet : Boolean := False;
11258 B : Uint;
11259 S : Nat;
11260 Ancest : Entity_Id;
11261 R_Typ : constant Entity_Id := Root_Type (T);
11263 begin
11264 -- If bad type, return 0
11266 if T = Any_Type then
11267 return 0;
11269 -- For generic types, just return zero. There cannot be any legitimate
11270 -- need to know such a size, but this routine may be called with a
11271 -- generic type as part of normal processing.
11273 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
11274 return 0;
11276 -- Access types (cannot have size smaller than System.Address)
11278 elsif Is_Access_Type (T) then
11279 return System_Address_Size;
11281 -- Floating-point types
11283 elsif Is_Floating_Point_Type (T) then
11284 return UI_To_Int (Esize (R_Typ));
11286 -- Discrete types
11288 elsif Is_Discrete_Type (T) then
11290 -- The following loop is looking for the nearest compile time known
11291 -- bounds following the ancestor subtype chain. The idea is to find
11292 -- the most restrictive known bounds information.
11294 Ancest := T;
11295 loop
11296 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11297 return 0;
11298 end if;
11300 if not LoSet then
11301 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
11302 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
11303 LoSet := True;
11304 exit when HiSet;
11305 end if;
11306 end if;
11308 if not HiSet then
11309 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
11310 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
11311 HiSet := True;
11312 exit when LoSet;
11313 end if;
11314 end if;
11316 Ancest := Ancestor_Subtype (Ancest);
11318 if No (Ancest) then
11319 Ancest := Base_Type (T);
11321 if Is_Generic_Type (Ancest) then
11322 return 0;
11323 end if;
11324 end if;
11325 end loop;
11327 -- Fixed-point types. We can't simply use Expr_Value to get the
11328 -- Corresponding_Integer_Value values of the bounds, since these do not
11329 -- get set till the type is frozen, and this routine can be called
11330 -- before the type is frozen. Similarly the test for bounds being static
11331 -- needs to include the case where we have unanalyzed real literals for
11332 -- the same reason.
11334 elsif Is_Fixed_Point_Type (T) then
11336 -- The following loop is looking for the nearest compile time known
11337 -- bounds following the ancestor subtype chain. The idea is to find
11338 -- the most restrictive known bounds information.
11340 Ancest := T;
11341 loop
11342 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
11343 return 0;
11344 end if;
11346 -- Note: In the following two tests for LoSet and HiSet, it may
11347 -- seem redundant to test for N_Real_Literal here since normally
11348 -- one would assume that the test for the value being known at
11349 -- compile time includes this case. However, there is a glitch.
11350 -- If the real literal comes from folding a non-static expression,
11351 -- then we don't consider any non- static expression to be known
11352 -- at compile time if we are in configurable run time mode (needed
11353 -- in some cases to give a clearer definition of what is and what
11354 -- is not accepted). So the test is indeed needed. Without it, we
11355 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
11357 if not LoSet then
11358 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
11359 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
11360 then
11361 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
11362 LoSet := True;
11363 exit when HiSet;
11364 end if;
11365 end if;
11367 if not HiSet then
11368 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
11369 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
11370 then
11371 HiR := Expr_Value_R (Type_High_Bound (Ancest));
11372 HiSet := True;
11373 exit when LoSet;
11374 end if;
11375 end if;
11377 Ancest := Ancestor_Subtype (Ancest);
11379 if No (Ancest) then
11380 Ancest := Base_Type (T);
11382 if Is_Generic_Type (Ancest) then
11383 return 0;
11384 end if;
11385 end if;
11386 end loop;
11388 Lo := UR_To_Uint (LoR / Small_Value (T));
11389 Hi := UR_To_Uint (HiR / Small_Value (T));
11391 -- No other types allowed
11393 else
11394 raise Program_Error;
11395 end if;
11397 -- Fall through with Hi and Lo set. Deal with biased case
11399 if (Biased
11400 and then not Is_Fixed_Point_Type (T)
11401 and then not (Is_Enumeration_Type (T)
11402 and then Has_Non_Standard_Rep (T)))
11403 or else Has_Biased_Representation (T)
11404 then
11405 Hi := Hi - Lo;
11406 Lo := Uint_0;
11407 end if;
11409 -- Signed case. Note that we consider types like range 1 .. -1 to be
11410 -- signed for the purpose of computing the size, since the bounds have
11411 -- to be accommodated in the base type.
11413 if Lo < 0 or else Hi < 0 then
11414 S := 1;
11415 B := Uint_1;
11417 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
11418 -- Note that we accommodate the case where the bounds cross. This
11419 -- can happen either because of the way the bounds are declared
11420 -- or because of the algorithm in Freeze_Fixed_Point_Type.
11422 while Lo < -B
11423 or else Hi < -B
11424 or else Lo >= B
11425 or else Hi >= B
11426 loop
11427 B := Uint_2 ** S;
11428 S := S + 1;
11429 end loop;
11431 -- Unsigned case
11433 else
11434 -- If both bounds are positive, make sure that both are represen-
11435 -- table in the case where the bounds are crossed. This can happen
11436 -- either because of the way the bounds are declared, or because of
11437 -- the algorithm in Freeze_Fixed_Point_Type.
11439 if Lo > Hi then
11440 Hi := Lo;
11441 end if;
11443 -- S = size, (can accommodate 0 .. (2**size - 1))
11445 S := 0;
11446 while Hi >= Uint_2 ** S loop
11447 S := S + 1;
11448 end loop;
11449 end if;
11451 return S;
11452 end Minimum_Size;
11454 ---------------------------
11455 -- New_Stream_Subprogram --
11456 ---------------------------
11458 procedure New_Stream_Subprogram
11459 (N : Node_Id;
11460 Ent : Entity_Id;
11461 Subp : Entity_Id;
11462 Nam : TSS_Name_Type)
11464 Loc : constant Source_Ptr := Sloc (N);
11465 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
11466 Subp_Id : Entity_Id;
11467 Subp_Decl : Node_Id;
11468 F : Entity_Id;
11469 Etyp : Entity_Id;
11471 Defer_Declaration : constant Boolean :=
11472 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
11473 -- For a tagged type, there is a declaration for each stream attribute
11474 -- at the freeze point, and we must generate only a completion of this
11475 -- declaration. We do the same for private types, because the full view
11476 -- might be tagged. Otherwise we generate a declaration at the point of
11477 -- the attribute definition clause.
11479 function Build_Spec return Node_Id;
11480 -- Used for declaration and renaming declaration, so that this is
11481 -- treated as a renaming_as_body.
11483 ----------------
11484 -- Build_Spec --
11485 ----------------
11487 function Build_Spec return Node_Id is
11488 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
11489 Formals : List_Id;
11490 Spec : Node_Id;
11491 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
11493 begin
11494 Subp_Id := Make_Defining_Identifier (Loc, Sname);
11496 -- S : access Root_Stream_Type'Class
11498 Formals := New_List (
11499 Make_Parameter_Specification (Loc,
11500 Defining_Identifier =>
11501 Make_Defining_Identifier (Loc, Name_S),
11502 Parameter_Type =>
11503 Make_Access_Definition (Loc,
11504 Subtype_Mark =>
11505 New_Occurrence_Of (
11506 Designated_Type (Etype (F)), Loc))));
11508 if Nam = TSS_Stream_Input then
11509 Spec :=
11510 Make_Function_Specification (Loc,
11511 Defining_Unit_Name => Subp_Id,
11512 Parameter_Specifications => Formals,
11513 Result_Definition => T_Ref);
11514 else
11515 -- V : [out] T
11517 Append_To (Formals,
11518 Make_Parameter_Specification (Loc,
11519 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
11520 Out_Present => Out_P,
11521 Parameter_Type => T_Ref));
11523 Spec :=
11524 Make_Procedure_Specification (Loc,
11525 Defining_Unit_Name => Subp_Id,
11526 Parameter_Specifications => Formals);
11527 end if;
11529 return Spec;
11530 end Build_Spec;
11532 -- Start of processing for New_Stream_Subprogram
11534 begin
11535 F := First_Formal (Subp);
11537 if Ekind (Subp) = E_Procedure then
11538 Etyp := Etype (Next_Formal (F));
11539 else
11540 Etyp := Etype (Subp);
11541 end if;
11543 -- Prepare subprogram declaration and insert it as an action on the
11544 -- clause node. The visibility for this entity is used to test for
11545 -- visibility of the attribute definition clause (in the sense of
11546 -- 8.3(23) as amended by AI-195).
11548 if not Defer_Declaration then
11549 Subp_Decl :=
11550 Make_Subprogram_Declaration (Loc,
11551 Specification => Build_Spec);
11553 -- For a tagged type, there is always a visible declaration for each
11554 -- stream TSS (it is a predefined primitive operation), and the
11555 -- completion of this declaration occurs at the freeze point, which is
11556 -- not always visible at places where the attribute definition clause is
11557 -- visible. So, we create a dummy entity here for the purpose of
11558 -- tracking the visibility of the attribute definition clause itself.
11560 else
11561 Subp_Id :=
11562 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
11563 Subp_Decl :=
11564 Make_Object_Declaration (Loc,
11565 Defining_Identifier => Subp_Id,
11566 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
11567 end if;
11569 Insert_Action (N, Subp_Decl);
11570 Set_Entity (N, Subp_Id);
11572 Subp_Decl :=
11573 Make_Subprogram_Renaming_Declaration (Loc,
11574 Specification => Build_Spec,
11575 Name => New_Occurrence_Of (Subp, Loc));
11577 if Defer_Declaration then
11578 Set_TSS (Base_Type (Ent), Subp_Id);
11579 else
11580 Insert_Action (N, Subp_Decl);
11581 Copy_TSS (Subp_Id, Base_Type (Ent));
11582 end if;
11583 end New_Stream_Subprogram;
11585 ------------------------------------------
11586 -- Push_Scope_And_Install_Discriminants --
11587 ------------------------------------------
11589 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
11590 begin
11591 if Has_Discriminants (E) then
11592 Push_Scope (E);
11594 -- Make discriminants visible for type declarations and protected
11595 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
11597 if Nkind (Parent (E)) /= N_Subtype_Declaration then
11598 Install_Discriminants (E);
11599 end if;
11600 end if;
11601 end Push_Scope_And_Install_Discriminants;
11603 ------------------------
11604 -- Rep_Item_Too_Early --
11605 ------------------------
11607 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
11608 begin
11609 -- Cannot apply non-operational rep items to generic types
11611 if Is_Operational_Item (N) then
11612 return False;
11614 elsif Is_Type (T)
11615 and then Is_Generic_Type (Root_Type (T))
11616 then
11617 Error_Msg_N ("representation item not allowed for generic type", N);
11618 return True;
11619 end if;
11621 -- Otherwise check for incomplete type
11623 if Is_Incomplete_Or_Private_Type (T)
11624 and then No (Underlying_Type (T))
11625 and then
11626 (Nkind (N) /= N_Pragma
11627 or else Get_Pragma_Id (N) /= Pragma_Import)
11628 then
11629 Error_Msg_N
11630 ("representation item must be after full type declaration", N);
11631 return True;
11633 -- If the type has incomplete components, a representation clause is
11634 -- illegal but stream attributes and Convention pragmas are correct.
11636 elsif Has_Private_Component (T) then
11637 if Nkind (N) = N_Pragma then
11638 return False;
11640 else
11641 Error_Msg_N
11642 ("representation item must appear after type is fully defined",
11644 return True;
11645 end if;
11646 else
11647 return False;
11648 end if;
11649 end Rep_Item_Too_Early;
11651 -----------------------
11652 -- Rep_Item_Too_Late --
11653 -----------------------
11655 function Rep_Item_Too_Late
11656 (T : Entity_Id;
11657 N : Node_Id;
11658 FOnly : Boolean := False) return Boolean
11660 S : Entity_Id;
11661 Parent_Type : Entity_Id;
11663 procedure No_Type_Rep_Item;
11664 -- Output message indicating that no type-related aspects can be
11665 -- specified due to some property of the parent type.
11667 procedure Too_Late;
11668 -- Output message for an aspect being specified too late
11670 -- Note that neither of the above errors is considered a serious one,
11671 -- since the effect is simply that we ignore the representation clause
11672 -- in these cases.
11673 -- Is this really true? In any case if we make this change we must
11674 -- document the requirement in the spec of Rep_Item_Too_Late that
11675 -- if True is returned, then the rep item must be completely ignored???
11677 ----------------------
11678 -- No_Type_Rep_Item --
11679 ----------------------
11681 procedure No_Type_Rep_Item is
11682 begin
11683 Error_Msg_N ("|type-related representation item not permitted!", N);
11684 end No_Type_Rep_Item;
11686 --------------
11687 -- Too_Late --
11688 --------------
11690 procedure Too_Late is
11691 begin
11692 -- Other compilers seem more relaxed about rep items appearing too
11693 -- late. Since analysis tools typically don't care about rep items
11694 -- anyway, no reason to be too strict about this.
11696 if not Relaxed_RM_Semantics then
11697 Error_Msg_N ("|representation item appears too late!", N);
11698 end if;
11699 end Too_Late;
11701 -- Start of processing for Rep_Item_Too_Late
11703 begin
11704 -- First make sure entity is not frozen (RM 13.1(9))
11706 if Is_Frozen (T)
11708 -- Exclude imported types, which may be frozen if they appear in a
11709 -- representation clause for a local type.
11711 and then not From_Limited_With (T)
11713 -- Exclude generated entities (not coming from source). The common
11714 -- case is when we generate a renaming which prematurely freezes the
11715 -- renamed internal entity, but we still want to be able to set copies
11716 -- of attribute values such as Size/Alignment.
11718 and then Comes_From_Source (T)
11719 then
11720 Too_Late;
11721 S := First_Subtype (T);
11723 if Present (Freeze_Node (S)) then
11724 if not Relaxed_RM_Semantics then
11725 Error_Msg_NE
11726 ("??no more representation items for }", Freeze_Node (S), S);
11727 end if;
11728 end if;
11730 return True;
11732 -- Check for case of untagged derived type whose parent either has
11733 -- primitive operations, or is a by reference type (RM 13.1(10)). In
11734 -- this case we do not output a Too_Late message, since there is no
11735 -- earlier point where the rep item could be placed to make it legal.
11737 elsif Is_Type (T)
11738 and then not FOnly
11739 and then Is_Derived_Type (T)
11740 and then not Is_Tagged_Type (T)
11741 then
11742 Parent_Type := Etype (Base_Type (T));
11744 if Has_Primitive_Operations (Parent_Type) then
11745 No_Type_Rep_Item;
11747 if not Relaxed_RM_Semantics then
11748 Error_Msg_NE
11749 ("\parent type & has primitive operations!", N, Parent_Type);
11750 end if;
11752 return True;
11754 elsif Is_By_Reference_Type (Parent_Type) then
11755 No_Type_Rep_Item;
11757 if not Relaxed_RM_Semantics then
11758 Error_Msg_NE
11759 ("\parent type & is a by reference type!", N, Parent_Type);
11760 end if;
11762 return True;
11763 end if;
11764 end if;
11766 -- No error, but one more warning to consider. The RM (surprisingly)
11767 -- allows this pattern:
11769 -- type S is ...
11770 -- primitive operations for S
11771 -- type R is new S;
11772 -- rep clause for S
11774 -- Meaning that calls on the primitive operations of S for values of
11775 -- type R may require possibly expensive implicit conversion operations.
11776 -- This is not an error, but is worth a warning.
11778 if not Relaxed_RM_Semantics and then Is_Type (T) then
11779 declare
11780 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
11782 begin
11783 if Present (DTL)
11784 and then Has_Primitive_Operations (Base_Type (T))
11786 -- For now, do not generate this warning for the case of aspect
11787 -- specification using Ada 2012 syntax, since we get wrong
11788 -- messages we do not understand. The whole business of derived
11789 -- types and rep items seems a bit confused when aspects are
11790 -- used, since the aspects are not evaluated till freeze time.
11792 and then not From_Aspect_Specification (N)
11793 then
11794 Error_Msg_Sloc := Sloc (DTL);
11795 Error_Msg_N
11796 ("representation item for& appears after derived type "
11797 & "declaration#??", N);
11798 Error_Msg_NE
11799 ("\may result in implicit conversions for primitive "
11800 & "operations of&??", N, T);
11801 Error_Msg_NE
11802 ("\to change representations when called with arguments "
11803 & "of type&??", N, DTL);
11804 end if;
11805 end;
11806 end if;
11808 -- No error, link item into head of chain of rep items for the entity,
11809 -- but avoid chaining if we have an overloadable entity, and the pragma
11810 -- is one that can apply to multiple overloaded entities.
11812 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
11813 declare
11814 Pname : constant Name_Id := Pragma_Name (N);
11815 begin
11816 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
11817 Name_External, Name_Interface)
11818 then
11819 return False;
11820 end if;
11821 end;
11822 end if;
11824 Record_Rep_Item (T, N);
11825 return False;
11826 end Rep_Item_Too_Late;
11828 -------------------------------------
11829 -- Replace_Type_References_Generic --
11830 -------------------------------------
11832 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
11833 TName : constant Name_Id := Chars (T);
11835 function Replace_Node (N : Node_Id) return Traverse_Result;
11836 -- Processes a single node in the traversal procedure below, checking
11837 -- if node N should be replaced, and if so, doing the replacement.
11839 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Node);
11840 -- This instantiation provides the body of Replace_Type_References
11842 ------------------
11843 -- Replace_Node --
11844 ------------------
11846 function Replace_Node (N : Node_Id) return Traverse_Result is
11847 S : Entity_Id;
11848 P : Node_Id;
11850 begin
11851 -- Case of identifier
11853 if Nkind (N) = N_Identifier then
11855 -- If not the type name, check whether it is a reference to
11856 -- some other type, which must be frozen before the predicate
11857 -- function is analyzed, i.e. before the freeze node of the
11858 -- type to which the predicate applies.
11860 if Chars (N) /= TName then
11861 if Present (Current_Entity (N))
11862 and then Is_Type (Current_Entity (N))
11863 then
11864 Freeze_Before (Freeze_Node (T), Current_Entity (N));
11865 end if;
11867 return Skip;
11869 -- Otherwise do the replacement and we are done with this node
11871 else
11872 Replace_Type_Reference (N);
11873 return Skip;
11874 end if;
11876 -- Case of selected component (which is what a qualification
11877 -- looks like in the unanalyzed tree, which is what we have.
11879 elsif Nkind (N) = N_Selected_Component then
11881 -- If selector name is not our type, keeping going (we might
11882 -- still have an occurrence of the type in the prefix).
11884 if Nkind (Selector_Name (N)) /= N_Identifier
11885 or else Chars (Selector_Name (N)) /= TName
11886 then
11887 return OK;
11889 -- Selector name is our type, check qualification
11891 else
11892 -- Loop through scopes and prefixes, doing comparison
11894 S := Current_Scope;
11895 P := Prefix (N);
11896 loop
11897 -- Continue if no more scopes or scope with no name
11899 if No (S) or else Nkind (S) not in N_Has_Chars then
11900 return OK;
11901 end if;
11903 -- Do replace if prefix is an identifier matching the
11904 -- scope that we are currently looking at.
11906 if Nkind (P) = N_Identifier
11907 and then Chars (P) = Chars (S)
11908 then
11909 Replace_Type_Reference (N);
11910 return Skip;
11911 end if;
11913 -- Go check scope above us if prefix is itself of the
11914 -- form of a selected component, whose selector matches
11915 -- the scope we are currently looking at.
11917 if Nkind (P) = N_Selected_Component
11918 and then Nkind (Selector_Name (P)) = N_Identifier
11919 and then Chars (Selector_Name (P)) = Chars (S)
11920 then
11921 S := Scope (S);
11922 P := Prefix (P);
11924 -- For anything else, we don't have a match, so keep on
11925 -- going, there are still some weird cases where we may
11926 -- still have a replacement within the prefix.
11928 else
11929 return OK;
11930 end if;
11931 end loop;
11932 end if;
11934 -- Continue for any other node kind
11936 else
11937 return OK;
11938 end if;
11939 end Replace_Node;
11941 begin
11942 Replace_Type_Refs (N);
11943 end Replace_Type_References_Generic;
11945 -------------------------
11946 -- Same_Representation --
11947 -------------------------
11949 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
11950 T1 : constant Entity_Id := Underlying_Type (Typ1);
11951 T2 : constant Entity_Id := Underlying_Type (Typ2);
11953 begin
11954 -- A quick check, if base types are the same, then we definitely have
11955 -- the same representation, because the subtype specific representation
11956 -- attributes (Size and Alignment) do not affect representation from
11957 -- the point of view of this test.
11959 if Base_Type (T1) = Base_Type (T2) then
11960 return True;
11962 elsif Is_Private_Type (Base_Type (T2))
11963 and then Base_Type (T1) = Full_View (Base_Type (T2))
11964 then
11965 return True;
11966 end if;
11968 -- Tagged types never have differing representations
11970 if Is_Tagged_Type (T1) then
11971 return True;
11972 end if;
11974 -- Representations are definitely different if conventions differ
11976 if Convention (T1) /= Convention (T2) then
11977 return False;
11978 end if;
11980 -- Representations are different if component alignments or scalar
11981 -- storage orders differ.
11983 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
11984 and then
11985 (Is_Record_Type (T2) or else Is_Array_Type (T2))
11986 and then
11987 (Component_Alignment (T1) /= Component_Alignment (T2)
11988 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
11989 then
11990 return False;
11991 end if;
11993 -- For arrays, the only real issue is component size. If we know the
11994 -- component size for both arrays, and it is the same, then that's
11995 -- good enough to know we don't have a change of representation.
11997 if Is_Array_Type (T1) then
11998 if Known_Component_Size (T1)
11999 and then Known_Component_Size (T2)
12000 and then Component_Size (T1) = Component_Size (T2)
12001 then
12002 if VM_Target = No_VM then
12003 return True;
12005 -- In VM targets the representation of arrays with aliased
12006 -- components differs from arrays with non-aliased components
12008 else
12009 return Has_Aliased_Components (Base_Type (T1))
12011 Has_Aliased_Components (Base_Type (T2));
12012 end if;
12013 end if;
12014 end if;
12016 -- Types definitely have same representation if neither has non-standard
12017 -- representation since default representations are always consistent.
12018 -- If only one has non-standard representation, and the other does not,
12019 -- then we consider that they do not have the same representation. They
12020 -- might, but there is no way of telling early enough.
12022 if Has_Non_Standard_Rep (T1) then
12023 if not Has_Non_Standard_Rep (T2) then
12024 return False;
12025 end if;
12026 else
12027 return not Has_Non_Standard_Rep (T2);
12028 end if;
12030 -- Here the two types both have non-standard representation, and we need
12031 -- to determine if they have the same non-standard representation.
12033 -- For arrays, we simply need to test if the component sizes are the
12034 -- same. Pragma Pack is reflected in modified component sizes, so this
12035 -- check also deals with pragma Pack.
12037 if Is_Array_Type (T1) then
12038 return Component_Size (T1) = Component_Size (T2);
12040 -- Tagged types always have the same representation, because it is not
12041 -- possible to specify different representations for common fields.
12043 elsif Is_Tagged_Type (T1) then
12044 return True;
12046 -- Case of record types
12048 elsif Is_Record_Type (T1) then
12050 -- Packed status must conform
12052 if Is_Packed (T1) /= Is_Packed (T2) then
12053 return False;
12055 -- Otherwise we must check components. Typ2 maybe a constrained
12056 -- subtype with fewer components, so we compare the components
12057 -- of the base types.
12059 else
12060 Record_Case : declare
12061 CD1, CD2 : Entity_Id;
12063 function Same_Rep return Boolean;
12064 -- CD1 and CD2 are either components or discriminants. This
12065 -- function tests whether they have the same representation.
12067 --------------
12068 -- Same_Rep --
12069 --------------
12071 function Same_Rep return Boolean is
12072 begin
12073 if No (Component_Clause (CD1)) then
12074 return No (Component_Clause (CD2));
12075 else
12076 -- Note: at this point, component clauses have been
12077 -- normalized to the default bit order, so that the
12078 -- comparison of Component_Bit_Offsets is meaningful.
12080 return
12081 Present (Component_Clause (CD2))
12082 and then
12083 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
12084 and then
12085 Esize (CD1) = Esize (CD2);
12086 end if;
12087 end Same_Rep;
12089 -- Start of processing for Record_Case
12091 begin
12092 if Has_Discriminants (T1) then
12094 -- The number of discriminants may be different if the
12095 -- derived type has fewer (constrained by values). The
12096 -- invisible discriminants retain the representation of
12097 -- the original, so the discrepancy does not per se
12098 -- indicate a different representation.
12100 CD1 := First_Discriminant (T1);
12101 CD2 := First_Discriminant (T2);
12102 while Present (CD1) and then Present (CD2) loop
12103 if not Same_Rep then
12104 return False;
12105 else
12106 Next_Discriminant (CD1);
12107 Next_Discriminant (CD2);
12108 end if;
12109 end loop;
12110 end if;
12112 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
12113 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
12114 while Present (CD1) loop
12115 if not Same_Rep then
12116 return False;
12117 else
12118 Next_Component (CD1);
12119 Next_Component (CD2);
12120 end if;
12121 end loop;
12123 return True;
12124 end Record_Case;
12125 end if;
12127 -- For enumeration types, we must check each literal to see if the
12128 -- representation is the same. Note that we do not permit enumeration
12129 -- representation clauses for Character and Wide_Character, so these
12130 -- cases were already dealt with.
12132 elsif Is_Enumeration_Type (T1) then
12133 Enumeration_Case : declare
12134 L1, L2 : Entity_Id;
12136 begin
12137 L1 := First_Literal (T1);
12138 L2 := First_Literal (T2);
12139 while Present (L1) loop
12140 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
12141 return False;
12142 else
12143 Next_Literal (L1);
12144 Next_Literal (L2);
12145 end if;
12146 end loop;
12148 return True;
12149 end Enumeration_Case;
12151 -- Any other types have the same representation for these purposes
12153 else
12154 return True;
12155 end if;
12156 end Same_Representation;
12158 --------------------------------
12159 -- Resolve_Iterable_Operation --
12160 --------------------------------
12162 procedure Resolve_Iterable_Operation
12163 (N : Node_Id;
12164 Cursor : Entity_Id;
12165 Typ : Entity_Id;
12166 Nam : Name_Id)
12168 Ent : Entity_Id;
12169 F1 : Entity_Id;
12170 F2 : Entity_Id;
12172 begin
12173 if not Is_Overloaded (N) then
12174 if not Is_Entity_Name (N)
12175 or else Ekind (Entity (N)) /= E_Function
12176 or else Scope (Entity (N)) /= Scope (Typ)
12177 or else No (First_Formal (Entity (N)))
12178 or else Etype (First_Formal (Entity (N))) /= Typ
12179 then
12180 Error_Msg_N ("iterable primitive must be local function name "
12181 & "whose first formal is an iterable type", N);
12182 return;
12183 end if;
12185 Ent := Entity (N);
12186 F1 := First_Formal (Ent);
12187 if Nam = Name_First then
12189 -- First (Container) => Cursor
12191 if Etype (Ent) /= Cursor then
12192 Error_Msg_N ("primitive for First must yield a curosr", N);
12193 end if;
12195 elsif Nam = Name_Next then
12197 -- Next (Container, Cursor) => Cursor
12199 F2 := Next_Formal (F1);
12201 if Etype (F2) /= Cursor
12202 or else Etype (Ent) /= Cursor
12203 or else Present (Next_Formal (F2))
12204 then
12205 Error_Msg_N ("no match for Next iterable primitive", N);
12206 end if;
12208 elsif Nam = Name_Has_Element then
12210 -- Has_Element (Container, Cursor) => Boolean
12212 F2 := Next_Formal (F1);
12213 if Etype (F2) /= Cursor
12214 or else Etype (Ent) /= Standard_Boolean
12215 or else Present (Next_Formal (F2))
12216 then
12217 Error_Msg_N ("no match for Has_Element iterable primitive", N);
12218 end if;
12220 elsif Nam = Name_Element then
12221 F2 := Next_Formal (F1);
12223 if No (F2)
12224 or else Etype (F2) /= Cursor
12225 or else Present (Next_Formal (F2))
12226 then
12227 Error_Msg_N ("no match for Element iterable primitive", N);
12228 end if;
12229 null;
12231 else
12232 raise Program_Error;
12233 end if;
12235 else
12236 -- Overloaded case: find subprogram with proper signature.
12237 -- Caller will report error if no match is found.
12239 declare
12240 I : Interp_Index;
12241 It : Interp;
12243 begin
12244 Get_First_Interp (N, I, It);
12245 while Present (It.Typ) loop
12246 if Ekind (It.Nam) = E_Function
12247 and then Scope (It.Nam) = Scope (Typ)
12248 and then Etype (First_Formal (It.Nam)) = Typ
12249 then
12250 F1 := First_Formal (It.Nam);
12252 if Nam = Name_First then
12253 if Etype (It.Nam) = Cursor
12254 and then No (Next_Formal (F1))
12255 then
12256 Set_Entity (N, It.Nam);
12257 exit;
12258 end if;
12260 elsif Nam = Name_Next then
12261 F2 := Next_Formal (F1);
12263 if Present (F2)
12264 and then No (Next_Formal (F2))
12265 and then Etype (F2) = Cursor
12266 and then Etype (It.Nam) = Cursor
12267 then
12268 Set_Entity (N, It.Nam);
12269 exit;
12270 end if;
12272 elsif Nam = Name_Has_Element then
12273 F2 := Next_Formal (F1);
12275 if Present (F2)
12276 and then No (Next_Formal (F2))
12277 and then Etype (F2) = Cursor
12278 and then Etype (It.Nam) = Standard_Boolean
12279 then
12280 Set_Entity (N, It.Nam);
12281 F2 := Next_Formal (F1);
12282 exit;
12283 end if;
12285 elsif Nam = Name_Element then
12286 F2 := Next_Formal (F1);
12288 if Present (F2)
12289 and then No (Next_Formal (F2))
12290 and then Etype (F2) = Cursor
12291 then
12292 Set_Entity (N, It.Nam);
12293 exit;
12294 end if;
12295 end if;
12296 end if;
12298 Get_Next_Interp (I, It);
12299 end loop;
12300 end;
12301 end if;
12302 end Resolve_Iterable_Operation;
12304 ----------------
12305 -- Set_Biased --
12306 ----------------
12308 procedure Set_Biased
12309 (E : Entity_Id;
12310 N : Node_Id;
12311 Msg : String;
12312 Biased : Boolean := True)
12314 begin
12315 if Biased then
12316 Set_Has_Biased_Representation (E);
12318 if Warn_On_Biased_Representation then
12319 Error_Msg_NE
12320 ("?B?" & Msg & " forces biased representation for&", N, E);
12321 end if;
12322 end if;
12323 end Set_Biased;
12325 --------------------
12326 -- Set_Enum_Esize --
12327 --------------------
12329 procedure Set_Enum_Esize (T : Entity_Id) is
12330 Lo : Uint;
12331 Hi : Uint;
12332 Sz : Nat;
12334 begin
12335 Init_Alignment (T);
12337 -- Find the minimum standard size (8,16,32,64) that fits
12339 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
12340 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
12342 if Lo < 0 then
12343 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
12344 Sz := Standard_Character_Size; -- May be > 8 on some targets
12346 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
12347 Sz := 16;
12349 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
12350 Sz := 32;
12352 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
12353 Sz := 64;
12354 end if;
12356 else
12357 if Hi < Uint_2**08 then
12358 Sz := Standard_Character_Size; -- May be > 8 on some targets
12360 elsif Hi < Uint_2**16 then
12361 Sz := 16;
12363 elsif Hi < Uint_2**32 then
12364 Sz := 32;
12366 else pragma Assert (Hi < Uint_2**63);
12367 Sz := 64;
12368 end if;
12369 end if;
12371 -- That minimum is the proper size unless we have a foreign convention
12372 -- and the size required is 32 or less, in which case we bump the size
12373 -- up to 32. This is required for C and C++ and seems reasonable for
12374 -- all other foreign conventions.
12376 if Has_Foreign_Convention (T)
12377 and then Esize (T) < Standard_Integer_Size
12379 -- Don't do this if Short_Enums on target
12381 and then not Target_Short_Enums
12382 then
12383 Init_Esize (T, Standard_Integer_Size);
12384 else
12385 Init_Esize (T, Sz);
12386 end if;
12387 end Set_Enum_Esize;
12389 -----------------------------
12390 -- Uninstall_Discriminants --
12391 -----------------------------
12393 procedure Uninstall_Discriminants (E : Entity_Id) is
12394 Disc : Entity_Id;
12395 Prev : Entity_Id;
12396 Outer : Entity_Id;
12398 begin
12399 -- Discriminants have been made visible for type declarations and
12400 -- protected type declarations, not for subtype declarations.
12402 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12403 Disc := First_Discriminant (E);
12404 while Present (Disc) loop
12405 if Disc /= Current_Entity (Disc) then
12406 Prev := Current_Entity (Disc);
12407 while Present (Prev)
12408 and then Present (Homonym (Prev))
12409 and then Homonym (Prev) /= Disc
12410 loop
12411 Prev := Homonym (Prev);
12412 end loop;
12413 else
12414 Prev := Empty;
12415 end if;
12417 Set_Is_Immediately_Visible (Disc, False);
12419 Outer := Homonym (Disc);
12420 while Present (Outer) and then Scope (Outer) = E loop
12421 Outer := Homonym (Outer);
12422 end loop;
12424 -- Reset homonym link of other entities, but do not modify link
12425 -- between entities in current scope, so that the back-end can
12426 -- have a proper count of local overloadings.
12428 if No (Prev) then
12429 Set_Name_Entity_Id (Chars (Disc), Outer);
12431 elsif Scope (Prev) /= Scope (Disc) then
12432 Set_Homonym (Prev, Outer);
12433 end if;
12435 Next_Discriminant (Disc);
12436 end loop;
12437 end if;
12438 end Uninstall_Discriminants;
12440 -------------------------------------------
12441 -- Uninstall_Discriminants_And_Pop_Scope --
12442 -------------------------------------------
12444 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
12445 begin
12446 if Has_Discriminants (E) then
12447 Uninstall_Discriminants (E);
12448 Pop_Scope;
12449 end if;
12450 end Uninstall_Discriminants_And_Pop_Scope;
12452 ------------------------------
12453 -- Validate_Address_Clauses --
12454 ------------------------------
12456 procedure Validate_Address_Clauses is
12457 begin
12458 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
12459 declare
12460 ACCR : Address_Clause_Check_Record
12461 renames Address_Clause_Checks.Table (J);
12463 Expr : Node_Id;
12465 X_Alignment : Uint;
12466 Y_Alignment : Uint;
12468 X_Size : Uint;
12469 Y_Size : Uint;
12471 begin
12472 -- Skip processing of this entry if warning already posted
12474 if not Address_Warning_Posted (ACCR.N) then
12475 Expr := Original_Node (Expression (ACCR.N));
12477 -- Get alignments
12479 X_Alignment := Alignment (ACCR.X);
12480 Y_Alignment := Alignment (ACCR.Y);
12482 -- Similarly obtain sizes
12484 X_Size := Esize (ACCR.X);
12485 Y_Size := Esize (ACCR.Y);
12487 -- Check for large object overlaying smaller one
12489 if Y_Size > Uint_0
12490 and then X_Size > Uint_0
12491 and then X_Size > Y_Size
12492 then
12493 Error_Msg_NE
12494 ("??& overlays smaller object", ACCR.N, ACCR.X);
12495 Error_Msg_N
12496 ("\??program execution may be erroneous", ACCR.N);
12497 Error_Msg_Uint_1 := X_Size;
12498 Error_Msg_NE
12499 ("\??size of & is ^", ACCR.N, ACCR.X);
12500 Error_Msg_Uint_1 := Y_Size;
12501 Error_Msg_NE
12502 ("\??size of & is ^", ACCR.N, ACCR.Y);
12504 -- Check for inadequate alignment, both of the base object
12505 -- and of the offset, if any.
12507 -- Note: we do not check the alignment if we gave a size
12508 -- warning, since it would likely be redundant.
12510 elsif Y_Alignment /= Uint_0
12511 and then (Y_Alignment < X_Alignment
12512 or else (ACCR.Off
12513 and then
12514 Nkind (Expr) = N_Attribute_Reference
12515 and then
12516 Attribute_Name (Expr) = Name_Address
12517 and then
12518 Has_Compatible_Alignment
12519 (ACCR.X, Prefix (Expr))
12520 /= Known_Compatible))
12521 then
12522 Error_Msg_NE
12523 ("??specified address for& may be inconsistent "
12524 & "with alignment", ACCR.N, ACCR.X);
12525 Error_Msg_N
12526 ("\??program execution may be erroneous (RM 13.3(27))",
12527 ACCR.N);
12528 Error_Msg_Uint_1 := X_Alignment;
12529 Error_Msg_NE
12530 ("\??alignment of & is ^", ACCR.N, ACCR.X);
12531 Error_Msg_Uint_1 := Y_Alignment;
12532 Error_Msg_NE
12533 ("\??alignment of & is ^", ACCR.N, ACCR.Y);
12534 if Y_Alignment >= X_Alignment then
12535 Error_Msg_N
12536 ("\??but offset is not multiple of alignment", ACCR.N);
12537 end if;
12538 end if;
12539 end if;
12540 end;
12541 end loop;
12542 end Validate_Address_Clauses;
12544 ---------------------------
12545 -- Validate_Independence --
12546 ---------------------------
12548 procedure Validate_Independence is
12549 SU : constant Uint := UI_From_Int (System_Storage_Unit);
12550 N : Node_Id;
12551 E : Entity_Id;
12552 IC : Boolean;
12553 Comp : Entity_Id;
12554 Addr : Node_Id;
12555 P : Node_Id;
12557 procedure Check_Array_Type (Atyp : Entity_Id);
12558 -- Checks if the array type Atyp has independent components, and
12559 -- if not, outputs an appropriate set of error messages.
12561 procedure No_Independence;
12562 -- Output message that independence cannot be guaranteed
12564 function OK_Component (C : Entity_Id) return Boolean;
12565 -- Checks one component to see if it is independently accessible, and
12566 -- if so yields True, otherwise yields False if independent access
12567 -- cannot be guaranteed. This is a conservative routine, it only
12568 -- returns True if it knows for sure, it returns False if it knows
12569 -- there is a problem, or it cannot be sure there is no problem.
12571 procedure Reason_Bad_Component (C : Entity_Id);
12572 -- Outputs continuation message if a reason can be determined for
12573 -- the component C being bad.
12575 ----------------------
12576 -- Check_Array_Type --
12577 ----------------------
12579 procedure Check_Array_Type (Atyp : Entity_Id) is
12580 Ctyp : constant Entity_Id := Component_Type (Atyp);
12582 begin
12583 -- OK if no alignment clause, no pack, and no component size
12585 if not Has_Component_Size_Clause (Atyp)
12586 and then not Has_Alignment_Clause (Atyp)
12587 and then not Is_Packed (Atyp)
12588 then
12589 return;
12590 end if;
12592 -- Case of component size is greater than or equal to 64 and the
12593 -- alignment of the array is at least as large as the alignment
12594 -- of the component. We are definitely OK in this situation.
12596 if Known_Component_Size (Atyp)
12597 and then Component_Size (Atyp) >= 64
12598 and then Known_Alignment (Atyp)
12599 and then Known_Alignment (Ctyp)
12600 and then Alignment (Atyp) >= Alignment (Ctyp)
12601 then
12602 return;
12603 end if;
12605 -- Check actual component size
12607 if not Known_Component_Size (Atyp)
12608 or else not (Addressable (Component_Size (Atyp))
12609 and then Component_Size (Atyp) < 64)
12610 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
12611 then
12612 No_Independence;
12614 -- Bad component size, check reason
12616 if Has_Component_Size_Clause (Atyp) then
12617 P := Get_Attribute_Definition_Clause
12618 (Atyp, Attribute_Component_Size);
12620 if Present (P) then
12621 Error_Msg_Sloc := Sloc (P);
12622 Error_Msg_N ("\because of Component_Size clause#", N);
12623 return;
12624 end if;
12625 end if;
12627 if Is_Packed (Atyp) then
12628 P := Get_Rep_Pragma (Atyp, Name_Pack);
12630 if Present (P) then
12631 Error_Msg_Sloc := Sloc (P);
12632 Error_Msg_N ("\because of pragma Pack#", N);
12633 return;
12634 end if;
12635 end if;
12637 -- No reason found, just return
12639 return;
12640 end if;
12642 -- Array type is OK independence-wise
12644 return;
12645 end Check_Array_Type;
12647 ---------------------
12648 -- No_Independence --
12649 ---------------------
12651 procedure No_Independence is
12652 begin
12653 if Pragma_Name (N) = Name_Independent then
12654 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
12655 else
12656 Error_Msg_NE
12657 ("independent components cannot be guaranteed for&", N, E);
12658 end if;
12659 end No_Independence;
12661 ------------------
12662 -- OK_Component --
12663 ------------------
12665 function OK_Component (C : Entity_Id) return Boolean is
12666 Rec : constant Entity_Id := Scope (C);
12667 Ctyp : constant Entity_Id := Etype (C);
12669 begin
12670 -- OK if no component clause, no Pack, and no alignment clause
12672 if No (Component_Clause (C))
12673 and then not Is_Packed (Rec)
12674 and then not Has_Alignment_Clause (Rec)
12675 then
12676 return True;
12677 end if;
12679 -- Here we look at the actual component layout. A component is
12680 -- addressable if its size is a multiple of the Esize of the
12681 -- component type, and its starting position in the record has
12682 -- appropriate alignment, and the record itself has appropriate
12683 -- alignment to guarantee the component alignment.
12685 -- Make sure sizes are static, always assume the worst for any
12686 -- cases where we cannot check static values.
12688 if not (Known_Static_Esize (C)
12689 and then
12690 Known_Static_Esize (Ctyp))
12691 then
12692 return False;
12693 end if;
12695 -- Size of component must be addressable or greater than 64 bits
12696 -- and a multiple of bytes.
12698 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
12699 return False;
12700 end if;
12702 -- Check size is proper multiple
12704 if Esize (C) mod Esize (Ctyp) /= 0 then
12705 return False;
12706 end if;
12708 -- Check alignment of component is OK
12710 if not Known_Component_Bit_Offset (C)
12711 or else Component_Bit_Offset (C) < Uint_0
12712 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
12713 then
12714 return False;
12715 end if;
12717 -- Check alignment of record type is OK
12719 if not Known_Alignment (Rec)
12720 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
12721 then
12722 return False;
12723 end if;
12725 -- All tests passed, component is addressable
12727 return True;
12728 end OK_Component;
12730 --------------------------
12731 -- Reason_Bad_Component --
12732 --------------------------
12734 procedure Reason_Bad_Component (C : Entity_Id) is
12735 Rec : constant Entity_Id := Scope (C);
12736 Ctyp : constant Entity_Id := Etype (C);
12738 begin
12739 -- If component clause present assume that's the problem
12741 if Present (Component_Clause (C)) then
12742 Error_Msg_Sloc := Sloc (Component_Clause (C));
12743 Error_Msg_N ("\because of Component_Clause#", N);
12744 return;
12745 end if;
12747 -- If pragma Pack clause present, assume that's the problem
12749 if Is_Packed (Rec) then
12750 P := Get_Rep_Pragma (Rec, Name_Pack);
12752 if Present (P) then
12753 Error_Msg_Sloc := Sloc (P);
12754 Error_Msg_N ("\because of pragma Pack#", N);
12755 return;
12756 end if;
12757 end if;
12759 -- See if record has bad alignment clause
12761 if Has_Alignment_Clause (Rec)
12762 and then Known_Alignment (Rec)
12763 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
12764 then
12765 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
12767 if Present (P) then
12768 Error_Msg_Sloc := Sloc (P);
12769 Error_Msg_N ("\because of Alignment clause#", N);
12770 end if;
12771 end if;
12773 -- Couldn't find a reason, so return without a message
12775 return;
12776 end Reason_Bad_Component;
12778 -- Start of processing for Validate_Independence
12780 begin
12781 for J in Independence_Checks.First .. Independence_Checks.Last loop
12782 N := Independence_Checks.Table (J).N;
12783 E := Independence_Checks.Table (J).E;
12784 IC := Pragma_Name (N) = Name_Independent_Components;
12786 -- Deal with component case
12788 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
12789 if not OK_Component (E) then
12790 No_Independence;
12791 Reason_Bad_Component (E);
12792 goto Continue;
12793 end if;
12794 end if;
12796 -- Deal with record with Independent_Components
12798 if IC and then Is_Record_Type (E) then
12799 Comp := First_Component_Or_Discriminant (E);
12800 while Present (Comp) loop
12801 if not OK_Component (Comp) then
12802 No_Independence;
12803 Reason_Bad_Component (Comp);
12804 goto Continue;
12805 end if;
12807 Next_Component_Or_Discriminant (Comp);
12808 end loop;
12809 end if;
12811 -- Deal with address clause case
12813 if Is_Object (E) then
12814 Addr := Address_Clause (E);
12816 if Present (Addr) then
12817 No_Independence;
12818 Error_Msg_Sloc := Sloc (Addr);
12819 Error_Msg_N ("\because of Address clause#", N);
12820 goto Continue;
12821 end if;
12822 end if;
12824 -- Deal with independent components for array type
12826 if IC and then Is_Array_Type (E) then
12827 Check_Array_Type (E);
12828 end if;
12830 -- Deal with independent components for array object
12832 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
12833 Check_Array_Type (Etype (E));
12834 end if;
12836 <<Continue>> null;
12837 end loop;
12838 end Validate_Independence;
12840 ------------------------------
12841 -- Validate_Iterable_Aspect --
12842 ------------------------------
12844 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
12845 Assoc : Node_Id;
12846 Expr : Node_Id;
12848 Prim : Node_Id;
12849 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
12851 First_Id : Entity_Id;
12852 Next_Id : Entity_Id;
12853 Has_Element_Id : Entity_Id;
12854 Element_Id : Entity_Id;
12856 begin
12857 -- If previous error aspect is unusable
12859 if Cursor = Any_Type then
12860 return;
12861 end if;
12863 First_Id := Empty;
12864 Next_Id := Empty;
12865 Has_Element_Id := Empty;
12866 Element_Id := Empty;
12868 -- Each expression must resolve to a function with the proper signature
12870 Assoc := First (Component_Associations (Expression (ASN)));
12871 while Present (Assoc) loop
12872 Expr := Expression (Assoc);
12873 Analyze (Expr);
12875 Prim := First (Choices (Assoc));
12877 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
12878 Error_Msg_N ("illegal name in association", Prim);
12880 elsif Chars (Prim) = Name_First then
12881 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
12882 First_Id := Entity (Expr);
12884 elsif Chars (Prim) = Name_Next then
12885 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
12886 Next_Id := Entity (Expr);
12888 elsif Chars (Prim) = Name_Has_Element then
12889 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
12890 Has_Element_Id := Entity (Expr);
12892 elsif Chars (Prim) = Name_Element then
12893 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
12894 Element_Id := Entity (Expr);
12896 else
12897 Error_Msg_N ("invalid name for iterable function", Prim);
12898 end if;
12900 Next (Assoc);
12901 end loop;
12903 if No (First_Id) then
12904 Error_Msg_N ("match for First primitive not found", ASN);
12906 elsif No (Next_Id) then
12907 Error_Msg_N ("match for Next primitive not found", ASN);
12909 elsif No (Has_Element_Id) then
12910 Error_Msg_N ("match for Has_Element primitive not found", ASN);
12912 elsif No (Element_Id) then
12913 null; -- Optional.
12914 end if;
12915 end Validate_Iterable_Aspect;
12917 -----------------------------------
12918 -- Validate_Unchecked_Conversion --
12919 -----------------------------------
12921 procedure Validate_Unchecked_Conversion
12922 (N : Node_Id;
12923 Act_Unit : Entity_Id)
12925 Source : Entity_Id;
12926 Target : Entity_Id;
12927 Vnode : Node_Id;
12929 begin
12930 -- Obtain source and target types. Note that we call Ancestor_Subtype
12931 -- here because the processing for generic instantiation always makes
12932 -- subtypes, and we want the original frozen actual types.
12934 -- If we are dealing with private types, then do the check on their
12935 -- fully declared counterparts if the full declarations have been
12936 -- encountered (they don't have to be visible, but they must exist).
12938 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
12940 if Is_Private_Type (Source)
12941 and then Present (Underlying_Type (Source))
12942 then
12943 Source := Underlying_Type (Source);
12944 end if;
12946 Target := Ancestor_Subtype (Etype (Act_Unit));
12948 -- If either type is generic, the instantiation happens within a generic
12949 -- unit, and there is nothing to check. The proper check will happen
12950 -- when the enclosing generic is instantiated.
12952 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
12953 return;
12954 end if;
12956 if Is_Private_Type (Target)
12957 and then Present (Underlying_Type (Target))
12958 then
12959 Target := Underlying_Type (Target);
12960 end if;
12962 -- Source may be unconstrained array, but not target
12964 if Is_Array_Type (Target) and then not Is_Constrained (Target) then
12965 Error_Msg_N
12966 ("unchecked conversion to unconstrained array not allowed", N);
12967 return;
12968 end if;
12970 -- Warn if conversion between two different convention pointers
12972 if Is_Access_Type (Target)
12973 and then Is_Access_Type (Source)
12974 and then Convention (Target) /= Convention (Source)
12975 and then Warn_On_Unchecked_Conversion
12976 then
12977 -- Give warnings for subprogram pointers only on most targets
12979 if Is_Access_Subprogram_Type (Target)
12980 or else Is_Access_Subprogram_Type (Source)
12981 then
12982 Error_Msg_N
12983 ("?z?conversion between pointers with different conventions!",
12985 end if;
12986 end if;
12988 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
12989 -- warning when compiling GNAT-related sources.
12991 if Warn_On_Unchecked_Conversion
12992 and then not In_Predefined_Unit (N)
12993 and then RTU_Loaded (Ada_Calendar)
12994 and then (Chars (Source) = Name_Time
12995 or else
12996 Chars (Target) = Name_Time)
12997 then
12998 -- If Ada.Calendar is loaded and the name of one of the operands is
12999 -- Time, there is a good chance that this is Ada.Calendar.Time.
13001 declare
13002 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
13003 begin
13004 pragma Assert (Present (Calendar_Time));
13006 if Source = Calendar_Time or else Target = Calendar_Time then
13007 Error_Msg_N
13008 ("?z?representation of 'Time values may change between "
13009 & "'G'N'A'T versions", N);
13010 end if;
13011 end;
13012 end if;
13014 -- Make entry in unchecked conversion table for later processing by
13015 -- Validate_Unchecked_Conversions, which will check sizes and alignments
13016 -- (using values set by the back-end where possible). This is only done
13017 -- if the appropriate warning is active.
13019 if Warn_On_Unchecked_Conversion then
13020 Unchecked_Conversions.Append
13021 (New_Val => UC_Entry'(Eloc => Sloc (N),
13022 Source => Source,
13023 Target => Target,
13024 Act_Unit => Act_Unit));
13026 -- If both sizes are known statically now, then back end annotation
13027 -- is not required to do a proper check but if either size is not
13028 -- known statically, then we need the annotation.
13030 if Known_Static_RM_Size (Source)
13031 and then
13032 Known_Static_RM_Size (Target)
13033 then
13034 null;
13035 else
13036 Back_Annotate_Rep_Info := True;
13037 end if;
13038 end if;
13040 -- If unchecked conversion to access type, and access type is declared
13041 -- in the same unit as the unchecked conversion, then set the flag
13042 -- No_Strict_Aliasing (no strict aliasing is implicit here)
13044 if Is_Access_Type (Target) and then
13045 In_Same_Source_Unit (Target, N)
13046 then
13047 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
13048 end if;
13050 -- Generate N_Validate_Unchecked_Conversion node for back end in case
13051 -- the back end needs to perform special validation checks.
13053 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
13054 -- have full expansion and the back end is called ???
13056 Vnode :=
13057 Make_Validate_Unchecked_Conversion (Sloc (N));
13058 Set_Source_Type (Vnode, Source);
13059 Set_Target_Type (Vnode, Target);
13061 -- If the unchecked conversion node is in a list, just insert before it.
13062 -- If not we have some strange case, not worth bothering about.
13064 if Is_List_Member (N) then
13065 Insert_After (N, Vnode);
13066 end if;
13067 end Validate_Unchecked_Conversion;
13069 ------------------------------------
13070 -- Validate_Unchecked_Conversions --
13071 ------------------------------------
13073 procedure Validate_Unchecked_Conversions is
13074 begin
13075 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
13076 declare
13077 T : UC_Entry renames Unchecked_Conversions.Table (N);
13079 Eloc : constant Source_Ptr := T.Eloc;
13080 Source : constant Entity_Id := T.Source;
13081 Target : constant Entity_Id := T.Target;
13082 Act_Unit : constant Entity_Id := T.Act_Unit;
13084 Source_Siz : Uint;
13085 Target_Siz : Uint;
13087 begin
13088 -- Skip if function marked as warnings off
13090 if Warnings_Off (Act_Unit) then
13091 goto Continue;
13092 end if;
13094 -- This validation check, which warns if we have unequal sizes for
13095 -- unchecked conversion, and thus potentially implementation
13096 -- dependent semantics, is one of the few occasions on which we
13097 -- use the official RM size instead of Esize. See description in
13098 -- Einfo "Handling of Type'Size Values" for details.
13100 if Serious_Errors_Detected = 0
13101 and then Known_Static_RM_Size (Source)
13102 and then Known_Static_RM_Size (Target)
13104 -- Don't do the check if warnings off for either type, note the
13105 -- deliberate use of OR here instead of OR ELSE to get the flag
13106 -- Warnings_Off_Used set for both types if appropriate.
13108 and then not (Has_Warnings_Off (Source)
13110 Has_Warnings_Off (Target))
13111 then
13112 Source_Siz := RM_Size (Source);
13113 Target_Siz := RM_Size (Target);
13115 if Source_Siz /= Target_Siz then
13116 Error_Msg
13117 ("?z?types for unchecked conversion have different sizes!",
13118 Eloc);
13120 if All_Errors_Mode then
13121 Error_Msg_Name_1 := Chars (Source);
13122 Error_Msg_Uint_1 := Source_Siz;
13123 Error_Msg_Name_2 := Chars (Target);
13124 Error_Msg_Uint_2 := Target_Siz;
13125 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
13127 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
13129 if Is_Discrete_Type (Source)
13130 and then
13131 Is_Discrete_Type (Target)
13132 then
13133 if Source_Siz > Target_Siz then
13134 Error_Msg
13135 ("\?z?^ high order bits of source will "
13136 & "be ignored!", Eloc);
13138 elsif Is_Unsigned_Type (Source) then
13139 Error_Msg
13140 ("\?z?source will be extended with ^ high order "
13141 & "zero bits!", Eloc);
13143 else
13144 Error_Msg
13145 ("\?z?source will be extended with ^ high order "
13146 & "sign bits!", Eloc);
13147 end if;
13149 elsif Source_Siz < Target_Siz then
13150 if Is_Discrete_Type (Target) then
13151 if Bytes_Big_Endian then
13152 Error_Msg
13153 ("\?z?target value will include ^ undefined "
13154 & "low order bits!", Eloc);
13155 else
13156 Error_Msg
13157 ("\?z?target value will include ^ undefined "
13158 & "high order bits!", Eloc);
13159 end if;
13161 else
13162 Error_Msg
13163 ("\?z?^ trailing bits of target value will be "
13164 & "undefined!", Eloc);
13165 end if;
13167 else pragma Assert (Source_Siz > Target_Siz);
13168 Error_Msg
13169 ("\?z?^ trailing bits of source will be ignored!",
13170 Eloc);
13171 end if;
13172 end if;
13173 end if;
13174 end if;
13176 -- If both types are access types, we need to check the alignment.
13177 -- If the alignment of both is specified, we can do it here.
13179 if Serious_Errors_Detected = 0
13180 and then Is_Access_Type (Source)
13181 and then Is_Access_Type (Target)
13182 and then Target_Strict_Alignment
13183 and then Present (Designated_Type (Source))
13184 and then Present (Designated_Type (Target))
13185 then
13186 declare
13187 D_Source : constant Entity_Id := Designated_Type (Source);
13188 D_Target : constant Entity_Id := Designated_Type (Target);
13190 begin
13191 if Known_Alignment (D_Source)
13192 and then
13193 Known_Alignment (D_Target)
13194 then
13195 declare
13196 Source_Align : constant Uint := Alignment (D_Source);
13197 Target_Align : constant Uint := Alignment (D_Target);
13199 begin
13200 if Source_Align < Target_Align
13201 and then not Is_Tagged_Type (D_Source)
13203 -- Suppress warning if warnings suppressed on either
13204 -- type or either designated type. Note the use of
13205 -- OR here instead of OR ELSE. That is intentional,
13206 -- we would like to set flag Warnings_Off_Used in
13207 -- all types for which warnings are suppressed.
13209 and then not (Has_Warnings_Off (D_Source)
13211 Has_Warnings_Off (D_Target)
13213 Has_Warnings_Off (Source)
13215 Has_Warnings_Off (Target))
13216 then
13217 Error_Msg_Uint_1 := Target_Align;
13218 Error_Msg_Uint_2 := Source_Align;
13219 Error_Msg_Node_1 := D_Target;
13220 Error_Msg_Node_2 := D_Source;
13221 Error_Msg
13222 ("?z?alignment of & (^) is stricter than "
13223 & "alignment of & (^)!", Eloc);
13224 Error_Msg
13225 ("\?z?resulting access value may have invalid "
13226 & "alignment!", Eloc);
13227 end if;
13228 end;
13229 end if;
13230 end;
13231 end if;
13232 end;
13234 <<Continue>>
13235 null;
13236 end loop;
13237 end Validate_Unchecked_Conversions;
13239 end Sem_Ch13;