remove gimple_location_ptr ()
[official-gcc.git] / gcc / expmed.c
blob93cf50822aeffd4983384929054f496a6d53d12d
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2015 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "predict.h"
27 #include "tree.h"
28 #include "rtl.h"
29 #include "df.h"
30 #include "diagnostic-core.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "stor-layout.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "insn-config.h"
37 #include "expmed.h"
38 #include "dojump.h"
39 #include "explow.h"
40 #include "calls.h"
41 #include "emit-rtl.h"
42 #include "varasm.h"
43 #include "stmt.h"
44 #include "expr.h"
45 #include "insn-codes.h"
46 #include "optabs.h"
47 #include "recog.h"
48 #include "langhooks.h"
49 #include "target.h"
51 struct target_expmed default_target_expmed;
52 #if SWITCHABLE_TARGET
53 struct target_expmed *this_target_expmed = &default_target_expmed;
54 #endif
56 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
57 unsigned HOST_WIDE_INT,
58 unsigned HOST_WIDE_INT,
59 unsigned HOST_WIDE_INT,
60 rtx);
61 static void store_fixed_bit_field_1 (rtx, unsigned HOST_WIDE_INT,
62 unsigned HOST_WIDE_INT,
63 rtx);
64 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
65 unsigned HOST_WIDE_INT,
66 unsigned HOST_WIDE_INT,
67 unsigned HOST_WIDE_INT,
68 rtx);
69 static rtx extract_fixed_bit_field (machine_mode, rtx,
70 unsigned HOST_WIDE_INT,
71 unsigned HOST_WIDE_INT, rtx, int);
72 static rtx extract_fixed_bit_field_1 (machine_mode, rtx,
73 unsigned HOST_WIDE_INT,
74 unsigned HOST_WIDE_INT, rtx, int);
75 static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
76 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
77 unsigned HOST_WIDE_INT, int);
78 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
79 static rtx expand_smod_pow2 (machine_mode, rtx, HOST_WIDE_INT);
80 static rtx expand_sdiv_pow2 (machine_mode, rtx, HOST_WIDE_INT);
82 /* Return a constant integer mask value of mode MODE with BITSIZE ones
83 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
84 The mask is truncated if necessary to the width of mode MODE. The
85 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
87 static inline rtx
88 mask_rtx (machine_mode mode, int bitpos, int bitsize, bool complement)
90 return immed_wide_int_const
91 (wi::shifted_mask (bitpos, bitsize, complement,
92 GET_MODE_PRECISION (mode)), mode);
95 /* Test whether a value is zero of a power of two. */
96 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
97 (((x) & ((x) - (unsigned HOST_WIDE_INT) 1)) == 0)
99 struct init_expmed_rtl
101 rtx reg;
102 rtx plus;
103 rtx neg;
104 rtx mult;
105 rtx sdiv;
106 rtx udiv;
107 rtx sdiv_32;
108 rtx smod_32;
109 rtx wide_mult;
110 rtx wide_lshr;
111 rtx wide_trunc;
112 rtx shift;
113 rtx shift_mult;
114 rtx shift_add;
115 rtx shift_sub0;
116 rtx shift_sub1;
117 rtx zext;
118 rtx trunc;
120 rtx pow2[MAX_BITS_PER_WORD];
121 rtx cint[MAX_BITS_PER_WORD];
124 static void
125 init_expmed_one_conv (struct init_expmed_rtl *all, machine_mode to_mode,
126 machine_mode from_mode, bool speed)
128 int to_size, from_size;
129 rtx which;
131 to_size = GET_MODE_PRECISION (to_mode);
132 from_size = GET_MODE_PRECISION (from_mode);
134 /* Most partial integers have a precision less than the "full"
135 integer it requires for storage. In case one doesn't, for
136 comparison purposes here, reduce the bit size by one in that
137 case. */
138 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
139 && exact_log2 (to_size) != -1)
140 to_size --;
141 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
142 && exact_log2 (from_size) != -1)
143 from_size --;
145 /* Assume cost of zero-extend and sign-extend is the same. */
146 which = (to_size < from_size ? all->trunc : all->zext);
148 PUT_MODE (all->reg, from_mode);
149 set_convert_cost (to_mode, from_mode, speed,
150 set_src_cost (which, to_mode, speed));
153 static void
154 init_expmed_one_mode (struct init_expmed_rtl *all,
155 machine_mode mode, int speed)
157 int m, n, mode_bitsize;
158 machine_mode mode_from;
160 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
162 PUT_MODE (all->reg, mode);
163 PUT_MODE (all->plus, mode);
164 PUT_MODE (all->neg, mode);
165 PUT_MODE (all->mult, mode);
166 PUT_MODE (all->sdiv, mode);
167 PUT_MODE (all->udiv, mode);
168 PUT_MODE (all->sdiv_32, mode);
169 PUT_MODE (all->smod_32, mode);
170 PUT_MODE (all->wide_trunc, mode);
171 PUT_MODE (all->shift, mode);
172 PUT_MODE (all->shift_mult, mode);
173 PUT_MODE (all->shift_add, mode);
174 PUT_MODE (all->shift_sub0, mode);
175 PUT_MODE (all->shift_sub1, mode);
176 PUT_MODE (all->zext, mode);
177 PUT_MODE (all->trunc, mode);
179 set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed));
180 set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed));
181 set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed));
182 set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed));
183 set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed));
185 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed)
186 <= 2 * add_cost (speed, mode)));
187 set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed)
188 <= 4 * add_cost (speed, mode)));
190 set_shift_cost (speed, mode, 0, 0);
192 int cost = add_cost (speed, mode);
193 set_shiftadd_cost (speed, mode, 0, cost);
194 set_shiftsub0_cost (speed, mode, 0, cost);
195 set_shiftsub1_cost (speed, mode, 0, cost);
198 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
199 for (m = 1; m < n; m++)
201 XEXP (all->shift, 1) = all->cint[m];
202 XEXP (all->shift_mult, 1) = all->pow2[m];
204 set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed));
205 set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode,
206 speed));
207 set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode,
208 speed));
209 set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode,
210 speed));
213 if (SCALAR_INT_MODE_P (mode))
215 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
216 mode_from = (machine_mode)(mode_from + 1))
217 init_expmed_one_conv (all, mode, mode_from, speed);
219 if (GET_MODE_CLASS (mode) == MODE_INT)
221 machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
222 if (wider_mode != VOIDmode)
224 PUT_MODE (all->zext, wider_mode);
225 PUT_MODE (all->wide_mult, wider_mode);
226 PUT_MODE (all->wide_lshr, wider_mode);
227 XEXP (all->wide_lshr, 1) = GEN_INT (mode_bitsize);
229 set_mul_widen_cost (speed, wider_mode,
230 set_src_cost (all->wide_mult, wider_mode, speed));
231 set_mul_highpart_cost (speed, mode,
232 set_src_cost (all->wide_trunc, mode, speed));
237 void
238 init_expmed (void)
240 struct init_expmed_rtl all;
241 machine_mode mode = QImode;
242 int m, speed;
244 memset (&all, 0, sizeof all);
245 for (m = 1; m < MAX_BITS_PER_WORD; m++)
247 all.pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
248 all.cint[m] = GEN_INT (m);
251 /* Avoid using hard regs in ways which may be unsupported. */
252 all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
253 all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
254 all.neg = gen_rtx_NEG (mode, all.reg);
255 all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
256 all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
257 all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
258 all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
259 all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
260 all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
261 all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
262 all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
263 all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
264 all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
265 all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
266 all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
267 all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
268 all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
269 all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
271 for (speed = 0; speed < 2; speed++)
273 crtl->maybe_hot_insn_p = speed;
274 set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed));
276 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
277 mode = (machine_mode)(mode + 1))
278 init_expmed_one_mode (&all, mode, speed);
280 if (MIN_MODE_PARTIAL_INT != VOIDmode)
281 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
282 mode = (machine_mode)(mode + 1))
283 init_expmed_one_mode (&all, mode, speed);
285 if (MIN_MODE_VECTOR_INT != VOIDmode)
286 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
287 mode = (machine_mode)(mode + 1))
288 init_expmed_one_mode (&all, mode, speed);
291 if (alg_hash_used_p ())
293 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
294 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
296 else
297 set_alg_hash_used_p (true);
298 default_rtl_profile ();
300 ggc_free (all.trunc);
301 ggc_free (all.shift_sub1);
302 ggc_free (all.shift_sub0);
303 ggc_free (all.shift_add);
304 ggc_free (all.shift_mult);
305 ggc_free (all.shift);
306 ggc_free (all.wide_trunc);
307 ggc_free (all.wide_lshr);
308 ggc_free (all.wide_mult);
309 ggc_free (all.zext);
310 ggc_free (all.smod_32);
311 ggc_free (all.sdiv_32);
312 ggc_free (all.udiv);
313 ggc_free (all.sdiv);
314 ggc_free (all.mult);
315 ggc_free (all.neg);
316 ggc_free (all.plus);
317 ggc_free (all.reg);
320 /* Return an rtx representing minus the value of X.
321 MODE is the intended mode of the result,
322 useful if X is a CONST_INT. */
325 negate_rtx (machine_mode mode, rtx x)
327 rtx result = simplify_unary_operation (NEG, mode, x, mode);
329 if (result == 0)
330 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
332 return result;
335 /* Adjust bitfield memory MEM so that it points to the first unit of mode
336 MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
337 If MODE is BLKmode, return a reference to every byte in the bitfield.
338 Set *NEW_BITNUM to the bit position of the field within the new memory. */
340 static rtx
341 narrow_bit_field_mem (rtx mem, machine_mode mode,
342 unsigned HOST_WIDE_INT bitsize,
343 unsigned HOST_WIDE_INT bitnum,
344 unsigned HOST_WIDE_INT *new_bitnum)
346 if (mode == BLKmode)
348 *new_bitnum = bitnum % BITS_PER_UNIT;
349 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
350 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
351 / BITS_PER_UNIT);
352 return adjust_bitfield_address_size (mem, mode, offset, size);
354 else
356 unsigned int unit = GET_MODE_BITSIZE (mode);
357 *new_bitnum = bitnum % unit;
358 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
359 return adjust_bitfield_address (mem, mode, offset);
363 /* The caller wants to perform insertion or extraction PATTERN on a
364 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
365 BITREGION_START and BITREGION_END are as for store_bit_field
366 and FIELDMODE is the natural mode of the field.
368 Search for a mode that is compatible with the memory access
369 restrictions and (where applicable) with a register insertion or
370 extraction. Return the new memory on success, storing the adjusted
371 bit position in *NEW_BITNUM. Return null otherwise. */
373 static rtx
374 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
375 rtx op0, HOST_WIDE_INT bitsize,
376 HOST_WIDE_INT bitnum,
377 unsigned HOST_WIDE_INT bitregion_start,
378 unsigned HOST_WIDE_INT bitregion_end,
379 machine_mode fieldmode,
380 unsigned HOST_WIDE_INT *new_bitnum)
382 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
383 bitregion_end, MEM_ALIGN (op0),
384 MEM_VOLATILE_P (op0));
385 machine_mode best_mode;
386 if (iter.next_mode (&best_mode))
388 /* We can use a memory in BEST_MODE. See whether this is true for
389 any wider modes. All other things being equal, we prefer to
390 use the widest mode possible because it tends to expose more
391 CSE opportunities. */
392 if (!iter.prefer_smaller_modes ())
394 /* Limit the search to the mode required by the corresponding
395 register insertion or extraction instruction, if any. */
396 machine_mode limit_mode = word_mode;
397 extraction_insn insn;
398 if (get_best_reg_extraction_insn (&insn, pattern,
399 GET_MODE_BITSIZE (best_mode),
400 fieldmode))
401 limit_mode = insn.field_mode;
403 machine_mode wider_mode;
404 while (iter.next_mode (&wider_mode)
405 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
406 best_mode = wider_mode;
408 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
409 new_bitnum);
411 return NULL_RTX;
414 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
415 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
416 offset is then BITNUM / BITS_PER_UNIT. */
418 static bool
419 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum,
420 unsigned HOST_WIDE_INT bitsize,
421 machine_mode struct_mode)
423 if (BYTES_BIG_ENDIAN)
424 return (bitnum % BITS_PER_UNIT == 0
425 && (bitnum + bitsize == GET_MODE_BITSIZE (struct_mode)
426 || (bitnum + bitsize) % BITS_PER_WORD == 0));
427 else
428 return bitnum % BITS_PER_WORD == 0;
431 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
432 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
433 Return false if the access would touch memory outside the range
434 BITREGION_START to BITREGION_END for conformance to the C++ memory
435 model. */
437 static bool
438 strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
439 unsigned HOST_WIDE_INT bitnum,
440 machine_mode fieldmode,
441 unsigned HOST_WIDE_INT bitregion_start,
442 unsigned HOST_WIDE_INT bitregion_end)
444 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
446 /* -fstrict-volatile-bitfields must be enabled and we must have a
447 volatile MEM. */
448 if (!MEM_P (op0)
449 || !MEM_VOLATILE_P (op0)
450 || flag_strict_volatile_bitfields <= 0)
451 return false;
453 /* Non-integral modes likely only happen with packed structures.
454 Punt. */
455 if (!SCALAR_INT_MODE_P (fieldmode))
456 return false;
458 /* The bit size must not be larger than the field mode, and
459 the field mode must not be larger than a word. */
460 if (bitsize > modesize || modesize > BITS_PER_WORD)
461 return false;
463 /* Check for cases of unaligned fields that must be split. */
464 if (bitnum % modesize + bitsize > modesize)
465 return false;
467 /* The memory must be sufficiently aligned for a MODESIZE access.
468 This condition guarantees, that the memory access will not
469 touch anything after the end of the structure. */
470 if (MEM_ALIGN (op0) < modesize)
471 return false;
473 /* Check for cases where the C++ memory model applies. */
474 if (bitregion_end != 0
475 && (bitnum - bitnum % modesize < bitregion_start
476 || bitnum - bitnum % modesize + modesize - 1 > bitregion_end))
477 return false;
479 return true;
482 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
483 bit number BITNUM can be treated as a simple value of mode MODE. */
485 static bool
486 simple_mem_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
487 unsigned HOST_WIDE_INT bitnum, machine_mode mode)
489 return (MEM_P (op0)
490 && bitnum % BITS_PER_UNIT == 0
491 && bitsize == GET_MODE_BITSIZE (mode)
492 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
493 || (bitnum % GET_MODE_ALIGNMENT (mode) == 0
494 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
497 /* Try to use instruction INSV to store VALUE into a field of OP0.
498 BITSIZE and BITNUM are as for store_bit_field. */
500 static bool
501 store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
502 unsigned HOST_WIDE_INT bitsize,
503 unsigned HOST_WIDE_INT bitnum,
504 rtx value)
506 struct expand_operand ops[4];
507 rtx value1;
508 rtx xop0 = op0;
509 rtx_insn *last = get_last_insn ();
510 bool copy_back = false;
512 machine_mode op_mode = insv->field_mode;
513 unsigned int unit = GET_MODE_BITSIZE (op_mode);
514 if (bitsize == 0 || bitsize > unit)
515 return false;
517 if (MEM_P (xop0))
518 /* Get a reference to the first byte of the field. */
519 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
520 &bitnum);
521 else
523 /* Convert from counting within OP0 to counting in OP_MODE. */
524 if (BYTES_BIG_ENDIAN)
525 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
527 /* If xop0 is a register, we need it in OP_MODE
528 to make it acceptable to the format of insv. */
529 if (GET_CODE (xop0) == SUBREG)
530 /* We can't just change the mode, because this might clobber op0,
531 and we will need the original value of op0 if insv fails. */
532 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
533 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
534 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
537 /* If the destination is a paradoxical subreg such that we need a
538 truncate to the inner mode, perform the insertion on a temporary and
539 truncate the result to the original destination. Note that we can't
540 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
541 X) 0)) is (reg:N X). */
542 if (GET_CODE (xop0) == SUBREG
543 && REG_P (SUBREG_REG (xop0))
544 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
545 op_mode))
547 rtx tem = gen_reg_rtx (op_mode);
548 emit_move_insn (tem, xop0);
549 xop0 = tem;
550 copy_back = true;
553 /* There are similar overflow check at the start of store_bit_field_1,
554 but that only check the situation where the field lies completely
555 outside the register, while there do have situation where the field
556 lies partialy in the register, we need to adjust bitsize for this
557 partial overflow situation. Without this fix, pr48335-2.c on big-endian
558 will broken on those arch support bit insert instruction, like arm, aarch64
559 etc. */
560 if (bitsize + bitnum > unit && bitnum < unit)
562 warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
563 "destination object, data truncated into %wu-bit",
564 bitsize, unit - bitnum);
565 bitsize = unit - bitnum;
568 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
569 "backwards" from the size of the unit we are inserting into.
570 Otherwise, we count bits from the most significant on a
571 BYTES/BITS_BIG_ENDIAN machine. */
573 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
574 bitnum = unit - bitsize - bitnum;
576 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
577 value1 = value;
578 if (GET_MODE (value) != op_mode)
580 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
582 /* Optimization: Don't bother really extending VALUE
583 if it has all the bits we will actually use. However,
584 if we must narrow it, be sure we do it correctly. */
586 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
588 rtx tmp;
590 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
591 if (! tmp)
592 tmp = simplify_gen_subreg (op_mode,
593 force_reg (GET_MODE (value),
594 value1),
595 GET_MODE (value), 0);
596 value1 = tmp;
598 else
599 value1 = gen_lowpart (op_mode, value1);
601 else if (CONST_INT_P (value))
602 value1 = gen_int_mode (INTVAL (value), op_mode);
603 else
604 /* Parse phase is supposed to make VALUE's data type
605 match that of the component reference, which is a type
606 at least as wide as the field; so VALUE should have
607 a mode that corresponds to that type. */
608 gcc_assert (CONSTANT_P (value));
611 create_fixed_operand (&ops[0], xop0);
612 create_integer_operand (&ops[1], bitsize);
613 create_integer_operand (&ops[2], bitnum);
614 create_input_operand (&ops[3], value1, op_mode);
615 if (maybe_expand_insn (insv->icode, 4, ops))
617 if (copy_back)
618 convert_move (op0, xop0, true);
619 return true;
621 delete_insns_since (last);
622 return false;
625 /* A subroutine of store_bit_field, with the same arguments. Return true
626 if the operation could be implemented.
628 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
629 no other way of implementing the operation. If FALLBACK_P is false,
630 return false instead. */
632 static bool
633 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
634 unsigned HOST_WIDE_INT bitnum,
635 unsigned HOST_WIDE_INT bitregion_start,
636 unsigned HOST_WIDE_INT bitregion_end,
637 machine_mode fieldmode,
638 rtx value, bool fallback_p)
640 rtx op0 = str_rtx;
641 rtx orig_value;
643 while (GET_CODE (op0) == SUBREG)
645 /* The following line once was done only if WORDS_BIG_ENDIAN,
646 but I think that is a mistake. WORDS_BIG_ENDIAN is
647 meaningful at a much higher level; when structures are copied
648 between memory and regs, the higher-numbered regs
649 always get higher addresses. */
650 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
651 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
652 int byte_offset = 0;
654 /* Paradoxical subregs need special handling on big endian machines. */
655 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
657 int difference = inner_mode_size - outer_mode_size;
659 if (WORDS_BIG_ENDIAN)
660 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
661 if (BYTES_BIG_ENDIAN)
662 byte_offset += difference % UNITS_PER_WORD;
664 else
665 byte_offset = SUBREG_BYTE (op0);
667 bitnum += byte_offset * BITS_PER_UNIT;
668 op0 = SUBREG_REG (op0);
671 /* No action is needed if the target is a register and if the field
672 lies completely outside that register. This can occur if the source
673 code contains an out-of-bounds access to a small array. */
674 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
675 return true;
677 /* Use vec_set patterns for inserting parts of vectors whenever
678 available. */
679 if (VECTOR_MODE_P (GET_MODE (op0))
680 && !MEM_P (op0)
681 && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
682 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
683 && bitsize == GET_MODE_UNIT_BITSIZE (GET_MODE (op0))
684 && !(bitnum % GET_MODE_UNIT_BITSIZE (GET_MODE (op0))))
686 struct expand_operand ops[3];
687 machine_mode outermode = GET_MODE (op0);
688 machine_mode innermode = GET_MODE_INNER (outermode);
689 enum insn_code icode = optab_handler (vec_set_optab, outermode);
690 int pos = bitnum / GET_MODE_BITSIZE (innermode);
692 create_fixed_operand (&ops[0], op0);
693 create_input_operand (&ops[1], value, innermode);
694 create_integer_operand (&ops[2], pos);
695 if (maybe_expand_insn (icode, 3, ops))
696 return true;
699 /* If the target is a register, overwriting the entire object, or storing
700 a full-word or multi-word field can be done with just a SUBREG. */
701 if (!MEM_P (op0)
702 && bitsize == GET_MODE_BITSIZE (fieldmode)
703 && ((bitsize == GET_MODE_BITSIZE (GET_MODE (op0)) && bitnum == 0)
704 || (bitsize % BITS_PER_WORD == 0 && bitnum % BITS_PER_WORD == 0)))
706 /* Use the subreg machinery either to narrow OP0 to the required
707 words or to cope with mode punning between equal-sized modes.
708 In the latter case, use subreg on the rhs side, not lhs. */
709 rtx sub;
711 if (bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
713 sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
714 if (sub)
716 emit_move_insn (op0, sub);
717 return true;
720 else
722 sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
723 bitnum / BITS_PER_UNIT);
724 if (sub)
726 emit_move_insn (sub, value);
727 return true;
732 /* If the target is memory, storing any naturally aligned field can be
733 done with a simple store. For targets that support fast unaligned
734 memory, any naturally sized, unit aligned field can be done directly. */
735 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode))
737 op0 = adjust_bitfield_address (op0, fieldmode, bitnum / BITS_PER_UNIT);
738 emit_move_insn (op0, value);
739 return true;
742 /* Make sure we are playing with integral modes. Pun with subregs
743 if we aren't. This must come after the entire register case above,
744 since that case is valid for any mode. The following cases are only
745 valid for integral modes. */
747 machine_mode imode = int_mode_for_mode (GET_MODE (op0));
748 if (imode != GET_MODE (op0))
750 if (MEM_P (op0))
751 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
752 else
754 gcc_assert (imode != BLKmode);
755 op0 = gen_lowpart (imode, op0);
760 /* Storing an lsb-aligned field in a register
761 can be done with a movstrict instruction. */
763 if (!MEM_P (op0)
764 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
765 && bitsize == GET_MODE_BITSIZE (fieldmode)
766 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
768 struct expand_operand ops[2];
769 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
770 rtx arg0 = op0;
771 unsigned HOST_WIDE_INT subreg_off;
773 if (GET_CODE (arg0) == SUBREG)
775 /* Else we've got some float mode source being extracted into
776 a different float mode destination -- this combination of
777 subregs results in Severe Tire Damage. */
778 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
779 || GET_MODE_CLASS (fieldmode) == MODE_INT
780 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
781 arg0 = SUBREG_REG (arg0);
784 subreg_off = bitnum / BITS_PER_UNIT;
785 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
787 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
789 create_fixed_operand (&ops[0], arg0);
790 /* Shrink the source operand to FIELDMODE. */
791 create_convert_operand_to (&ops[1], value, fieldmode, false);
792 if (maybe_expand_insn (icode, 2, ops))
793 return true;
797 /* Handle fields bigger than a word. */
799 if (bitsize > BITS_PER_WORD)
801 /* Here we transfer the words of the field
802 in the order least significant first.
803 This is because the most significant word is the one which may
804 be less than full.
805 However, only do that if the value is not BLKmode. */
807 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
808 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
809 unsigned int i;
810 rtx_insn *last;
812 /* This is the mode we must force value to, so that there will be enough
813 subwords to extract. Note that fieldmode will often (always?) be
814 VOIDmode, because that is what store_field uses to indicate that this
815 is a bit field, but passing VOIDmode to operand_subword_force
816 is not allowed. */
817 fieldmode = GET_MODE (value);
818 if (fieldmode == VOIDmode)
819 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
821 last = get_last_insn ();
822 for (i = 0; i < nwords; i++)
824 /* If I is 0, use the low-order word in both field and target;
825 if I is 1, use the next to lowest word; and so on. */
826 unsigned int wordnum = (backwards
827 ? GET_MODE_SIZE (fieldmode) / UNITS_PER_WORD
828 - i - 1
829 : i);
830 unsigned int bit_offset = (backwards
831 ? MAX ((int) bitsize - ((int) i + 1)
832 * BITS_PER_WORD,
834 : (int) i * BITS_PER_WORD);
835 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
836 unsigned HOST_WIDE_INT new_bitsize =
837 MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
839 /* If the remaining chunk doesn't have full wordsize we have
840 to make sure that for big endian machines the higher order
841 bits are used. */
842 if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
843 value_word = simplify_expand_binop (word_mode, lshr_optab,
844 value_word,
845 GEN_INT (BITS_PER_WORD
846 - new_bitsize),
847 NULL_RTX, true,
848 OPTAB_LIB_WIDEN);
850 if (!store_bit_field_1 (op0, new_bitsize,
851 bitnum + bit_offset,
852 bitregion_start, bitregion_end,
853 word_mode,
854 value_word, fallback_p))
856 delete_insns_since (last);
857 return false;
860 return true;
863 /* If VALUE has a floating-point or complex mode, access it as an
864 integer of the corresponding size. This can occur on a machine
865 with 64 bit registers that uses SFmode for float. It can also
866 occur for unaligned float or complex fields. */
867 orig_value = value;
868 if (GET_MODE (value) != VOIDmode
869 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
870 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
872 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
873 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
876 /* If OP0 is a multi-word register, narrow it to the affected word.
877 If the region spans two words, defer to store_split_bit_field. */
878 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
880 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
881 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
882 gcc_assert (op0);
883 bitnum %= BITS_PER_WORD;
884 if (bitnum + bitsize > BITS_PER_WORD)
886 if (!fallback_p)
887 return false;
889 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
890 bitregion_end, value);
891 return true;
895 /* From here on we can assume that the field to be stored in fits
896 within a word. If the destination is a register, it too fits
897 in a word. */
899 extraction_insn insv;
900 if (!MEM_P (op0)
901 && get_best_reg_extraction_insn (&insv, EP_insv,
902 GET_MODE_BITSIZE (GET_MODE (op0)),
903 fieldmode)
904 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
905 return true;
907 /* If OP0 is a memory, try copying it to a register and seeing if a
908 cheap register alternative is available. */
909 if (MEM_P (op0))
911 if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
912 fieldmode)
913 && store_bit_field_using_insv (&insv, op0, bitsize, bitnum, value))
914 return true;
916 rtx_insn *last = get_last_insn ();
918 /* Try loading part of OP0 into a register, inserting the bitfield
919 into that, and then copying the result back to OP0. */
920 unsigned HOST_WIDE_INT bitpos;
921 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
922 bitregion_start, bitregion_end,
923 fieldmode, &bitpos);
924 if (xop0)
926 rtx tempreg = copy_to_reg (xop0);
927 if (store_bit_field_1 (tempreg, bitsize, bitpos,
928 bitregion_start, bitregion_end,
929 fieldmode, orig_value, false))
931 emit_move_insn (xop0, tempreg);
932 return true;
934 delete_insns_since (last);
938 if (!fallback_p)
939 return false;
941 store_fixed_bit_field (op0, bitsize, bitnum, bitregion_start,
942 bitregion_end, value);
943 return true;
946 /* Generate code to store value from rtx VALUE
947 into a bit-field within structure STR_RTX
948 containing BITSIZE bits starting at bit BITNUM.
950 BITREGION_START is bitpos of the first bitfield in this region.
951 BITREGION_END is the bitpos of the ending bitfield in this region.
952 These two fields are 0, if the C++ memory model does not apply,
953 or we are not interested in keeping track of bitfield regions.
955 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
957 void
958 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
959 unsigned HOST_WIDE_INT bitnum,
960 unsigned HOST_WIDE_INT bitregion_start,
961 unsigned HOST_WIDE_INT bitregion_end,
962 machine_mode fieldmode,
963 rtx value)
965 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
966 if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, fieldmode,
967 bitregion_start, bitregion_end))
969 /* Storing of a full word can be done with a simple store.
970 We know here that the field can be accessed with one single
971 instruction. For targets that support unaligned memory,
972 an unaligned access may be necessary. */
973 if (bitsize == GET_MODE_BITSIZE (fieldmode))
975 str_rtx = adjust_bitfield_address (str_rtx, fieldmode,
976 bitnum / BITS_PER_UNIT);
977 gcc_assert (bitnum % BITS_PER_UNIT == 0);
978 emit_move_insn (str_rtx, value);
980 else
982 rtx temp;
984 str_rtx = narrow_bit_field_mem (str_rtx, fieldmode, bitsize, bitnum,
985 &bitnum);
986 gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (fieldmode));
987 temp = copy_to_reg (str_rtx);
988 if (!store_bit_field_1 (temp, bitsize, bitnum, 0, 0,
989 fieldmode, value, true))
990 gcc_unreachable ();
992 emit_move_insn (str_rtx, temp);
995 return;
998 /* Under the C++0x memory model, we must not touch bits outside the
999 bit region. Adjust the address to start at the beginning of the
1000 bit region. */
1001 if (MEM_P (str_rtx) && bitregion_start > 0)
1003 machine_mode bestmode;
1004 HOST_WIDE_INT offset, size;
1006 gcc_assert ((bitregion_start % BITS_PER_UNIT) == 0);
1008 offset = bitregion_start / BITS_PER_UNIT;
1009 bitnum -= bitregion_start;
1010 size = (bitnum + bitsize + BITS_PER_UNIT - 1) / BITS_PER_UNIT;
1011 bitregion_end -= bitregion_start;
1012 bitregion_start = 0;
1013 bestmode = get_best_mode (bitsize, bitnum,
1014 bitregion_start, bitregion_end,
1015 MEM_ALIGN (str_rtx), VOIDmode,
1016 MEM_VOLATILE_P (str_rtx));
1017 str_rtx = adjust_bitfield_address_size (str_rtx, bestmode, offset, size);
1020 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1021 bitregion_start, bitregion_end,
1022 fieldmode, value, true))
1023 gcc_unreachable ();
1026 /* Use shifts and boolean operations to store VALUE into a bit field of
1027 width BITSIZE in OP0, starting at bit BITNUM. */
1029 static void
1030 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1031 unsigned HOST_WIDE_INT bitnum,
1032 unsigned HOST_WIDE_INT bitregion_start,
1033 unsigned HOST_WIDE_INT bitregion_end,
1034 rtx value)
1036 /* There is a case not handled here:
1037 a structure with a known alignment of just a halfword
1038 and a field split across two aligned halfwords within the structure.
1039 Or likewise a structure with a known alignment of just a byte
1040 and a field split across two bytes.
1041 Such cases are not supposed to be able to occur. */
1043 if (MEM_P (op0))
1045 machine_mode mode = GET_MODE (op0);
1046 if (GET_MODE_BITSIZE (mode) == 0
1047 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
1048 mode = word_mode;
1049 mode = get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1050 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
1052 if (mode == VOIDmode)
1054 /* The only way this should occur is if the field spans word
1055 boundaries. */
1056 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
1057 bitregion_end, value);
1058 return;
1061 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1064 store_fixed_bit_field_1 (op0, bitsize, bitnum, value);
1067 /* Helper function for store_fixed_bit_field, stores
1068 the bit field always using the MODE of OP0. */
1070 static void
1071 store_fixed_bit_field_1 (rtx op0, unsigned HOST_WIDE_INT bitsize,
1072 unsigned HOST_WIDE_INT bitnum,
1073 rtx value)
1075 machine_mode mode;
1076 rtx temp;
1077 int all_zero = 0;
1078 int all_one = 0;
1080 mode = GET_MODE (op0);
1081 gcc_assert (SCALAR_INT_MODE_P (mode));
1083 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1084 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1086 if (BYTES_BIG_ENDIAN)
1087 /* BITNUM is the distance between our msb
1088 and that of the containing datum.
1089 Convert it to the distance from the lsb. */
1090 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1092 /* Now BITNUM is always the distance between our lsb
1093 and that of OP0. */
1095 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1096 we must first convert its mode to MODE. */
1098 if (CONST_INT_P (value))
1100 unsigned HOST_WIDE_INT v = UINTVAL (value);
1102 if (bitsize < HOST_BITS_PER_WIDE_INT)
1103 v &= ((unsigned HOST_WIDE_INT) 1 << bitsize) - 1;
1105 if (v == 0)
1106 all_zero = 1;
1107 else if ((bitsize < HOST_BITS_PER_WIDE_INT
1108 && v == ((unsigned HOST_WIDE_INT) 1 << bitsize) - 1)
1109 || (bitsize == HOST_BITS_PER_WIDE_INT
1110 && v == (unsigned HOST_WIDE_INT) -1))
1111 all_one = 1;
1113 value = lshift_value (mode, v, bitnum);
1115 else
1117 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
1118 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1120 if (GET_MODE (value) != mode)
1121 value = convert_to_mode (mode, value, 1);
1123 if (must_and)
1124 value = expand_binop (mode, and_optab, value,
1125 mask_rtx (mode, 0, bitsize, 0),
1126 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1127 if (bitnum > 0)
1128 value = expand_shift (LSHIFT_EXPR, mode, value,
1129 bitnum, NULL_RTX, 1);
1132 /* Now clear the chosen bits in OP0,
1133 except that if VALUE is -1 we need not bother. */
1134 /* We keep the intermediates in registers to allow CSE to combine
1135 consecutive bitfield assignments. */
1137 temp = force_reg (mode, op0);
1139 if (! all_one)
1141 temp = expand_binop (mode, and_optab, temp,
1142 mask_rtx (mode, bitnum, bitsize, 1),
1143 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1144 temp = force_reg (mode, temp);
1147 /* Now logical-or VALUE into OP0, unless it is zero. */
1149 if (! all_zero)
1151 temp = expand_binop (mode, ior_optab, temp, value,
1152 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1153 temp = force_reg (mode, temp);
1156 if (op0 != temp)
1158 op0 = copy_rtx (op0);
1159 emit_move_insn (op0, temp);
1163 /* Store a bit field that is split across multiple accessible memory objects.
1165 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1166 BITSIZE is the field width; BITPOS the position of its first bit
1167 (within the word).
1168 VALUE is the value to store.
1170 This does not yet handle fields wider than BITS_PER_WORD. */
1172 static void
1173 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1174 unsigned HOST_WIDE_INT bitpos,
1175 unsigned HOST_WIDE_INT bitregion_start,
1176 unsigned HOST_WIDE_INT bitregion_end,
1177 rtx value)
1179 unsigned int unit;
1180 unsigned int bitsdone = 0;
1182 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1183 much at a time. */
1184 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1185 unit = BITS_PER_WORD;
1186 else
1187 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1189 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1190 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1191 again, and we will mutually recurse forever. */
1192 if (MEM_P (op0) && GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
1193 unit = MIN (unit, GET_MODE_BITSIZE (GET_MODE (op0)));
1195 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1196 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1197 that VALUE might be a floating-point constant. */
1198 if (CONSTANT_P (value) && !CONST_INT_P (value))
1200 rtx word = gen_lowpart_common (word_mode, value);
1202 if (word && (value != word))
1203 value = word;
1204 else
1205 value = gen_lowpart_common (word_mode,
1206 force_reg (GET_MODE (value) != VOIDmode
1207 ? GET_MODE (value)
1208 : word_mode, value));
1211 while (bitsdone < bitsize)
1213 unsigned HOST_WIDE_INT thissize;
1214 rtx part, word;
1215 unsigned HOST_WIDE_INT thispos;
1216 unsigned HOST_WIDE_INT offset;
1218 offset = (bitpos + bitsdone) / unit;
1219 thispos = (bitpos + bitsdone) % unit;
1221 /* When region of bytes we can touch is restricted, decrease
1222 UNIT close to the end of the region as needed. If op0 is a REG
1223 or SUBREG of REG, don't do this, as there can't be data races
1224 on a register and we can expand shorter code in some cases. */
1225 if (bitregion_end
1226 && unit > BITS_PER_UNIT
1227 && bitpos + bitsdone - thispos + unit > bitregion_end + 1
1228 && !REG_P (op0)
1229 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
1231 unit = unit / 2;
1232 continue;
1235 /* THISSIZE must not overrun a word boundary. Otherwise,
1236 store_fixed_bit_field will call us again, and we will mutually
1237 recurse forever. */
1238 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1239 thissize = MIN (thissize, unit - thispos);
1241 if (BYTES_BIG_ENDIAN)
1243 /* Fetch successively less significant portions. */
1244 if (CONST_INT_P (value))
1245 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1246 >> (bitsize - bitsdone - thissize))
1247 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1248 else
1250 int total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1251 /* The args are chosen so that the last part includes the
1252 lsb. Give extract_bit_field the value it needs (with
1253 endianness compensation) to fetch the piece we want. */
1254 part = extract_fixed_bit_field (word_mode, value, thissize,
1255 total_bits - bitsize + bitsdone,
1256 NULL_RTX, 1);
1259 else
1261 /* Fetch successively more significant portions. */
1262 if (CONST_INT_P (value))
1263 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1264 >> bitsdone)
1265 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1266 else
1267 part = extract_fixed_bit_field (word_mode, value, thissize,
1268 bitsdone, NULL_RTX, 1);
1271 /* If OP0 is a register, then handle OFFSET here.
1273 When handling multiword bitfields, extract_bit_field may pass
1274 down a word_mode SUBREG of a larger REG for a bitfield that actually
1275 crosses a word boundary. Thus, for a SUBREG, we must find
1276 the current word starting from the base register. */
1277 if (GET_CODE (op0) == SUBREG)
1279 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD)
1280 + (offset * unit / BITS_PER_WORD);
1281 machine_mode sub_mode = GET_MODE (SUBREG_REG (op0));
1282 if (sub_mode != BLKmode && GET_MODE_SIZE (sub_mode) < UNITS_PER_WORD)
1283 word = word_offset ? const0_rtx : op0;
1284 else
1285 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1286 GET_MODE (SUBREG_REG (op0)));
1287 offset &= BITS_PER_WORD / unit - 1;
1289 else if (REG_P (op0))
1291 machine_mode op0_mode = GET_MODE (op0);
1292 if (op0_mode != BLKmode && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD)
1293 word = offset ? const0_rtx : op0;
1294 else
1295 word = operand_subword_force (op0, offset * unit / BITS_PER_WORD,
1296 GET_MODE (op0));
1297 offset &= BITS_PER_WORD / unit - 1;
1299 else
1300 word = op0;
1302 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1303 it is just an out-of-bounds access. Ignore it. */
1304 if (word != const0_rtx)
1305 store_fixed_bit_field (word, thissize, offset * unit + thispos,
1306 bitregion_start, bitregion_end, part);
1307 bitsdone += thissize;
1311 /* A subroutine of extract_bit_field_1 that converts return value X
1312 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1313 to extract_bit_field. */
1315 static rtx
1316 convert_extracted_bit_field (rtx x, machine_mode mode,
1317 machine_mode tmode, bool unsignedp)
1319 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1320 return x;
1322 /* If the x mode is not a scalar integral, first convert to the
1323 integer mode of that size and then access it as a floating-point
1324 value via a SUBREG. */
1325 if (!SCALAR_INT_MODE_P (tmode))
1327 machine_mode smode;
1329 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1330 x = convert_to_mode (smode, x, unsignedp);
1331 x = force_reg (smode, x);
1332 return gen_lowpart (tmode, x);
1335 return convert_to_mode (tmode, x, unsignedp);
1338 /* Try to use an ext(z)v pattern to extract a field from OP0.
1339 Return the extracted value on success, otherwise return null.
1340 EXT_MODE is the mode of the extraction and the other arguments
1341 are as for extract_bit_field. */
1343 static rtx
1344 extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1345 unsigned HOST_WIDE_INT bitsize,
1346 unsigned HOST_WIDE_INT bitnum,
1347 int unsignedp, rtx target,
1348 machine_mode mode, machine_mode tmode)
1350 struct expand_operand ops[4];
1351 rtx spec_target = target;
1352 rtx spec_target_subreg = 0;
1353 machine_mode ext_mode = extv->field_mode;
1354 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1356 if (bitsize == 0 || unit < bitsize)
1357 return NULL_RTX;
1359 if (MEM_P (op0))
1360 /* Get a reference to the first byte of the field. */
1361 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1362 &bitnum);
1363 else
1365 /* Convert from counting within OP0 to counting in EXT_MODE. */
1366 if (BYTES_BIG_ENDIAN)
1367 bitnum += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1369 /* If op0 is a register, we need it in EXT_MODE to make it
1370 acceptable to the format of ext(z)v. */
1371 if (GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1372 return NULL_RTX;
1373 if (REG_P (op0) && GET_MODE (op0) != ext_mode)
1374 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1377 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1378 "backwards" from the size of the unit we are extracting from.
1379 Otherwise, we count bits from the most significant on a
1380 BYTES/BITS_BIG_ENDIAN machine. */
1382 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1383 bitnum = unit - bitsize - bitnum;
1385 if (target == 0)
1386 target = spec_target = gen_reg_rtx (tmode);
1388 if (GET_MODE (target) != ext_mode)
1390 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1391 between the mode of the extraction (word_mode) and the target
1392 mode. Instead, create a temporary and use convert_move to set
1393 the target. */
1394 if (REG_P (target)
1395 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode))
1397 target = gen_lowpart (ext_mode, target);
1398 if (GET_MODE_PRECISION (ext_mode)
1399 > GET_MODE_PRECISION (GET_MODE (spec_target)))
1400 spec_target_subreg = target;
1402 else
1403 target = gen_reg_rtx (ext_mode);
1406 create_output_operand (&ops[0], target, ext_mode);
1407 create_fixed_operand (&ops[1], op0);
1408 create_integer_operand (&ops[2], bitsize);
1409 create_integer_operand (&ops[3], bitnum);
1410 if (maybe_expand_insn (extv->icode, 4, ops))
1412 target = ops[0].value;
1413 if (target == spec_target)
1414 return target;
1415 if (target == spec_target_subreg)
1416 return spec_target;
1417 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1419 return NULL_RTX;
1422 /* A subroutine of extract_bit_field, with the same arguments.
1423 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1424 if we can find no other means of implementing the operation.
1425 if FALLBACK_P is false, return NULL instead. */
1427 static rtx
1428 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1429 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1430 machine_mode mode, machine_mode tmode,
1431 bool fallback_p)
1433 rtx op0 = str_rtx;
1434 machine_mode int_mode;
1435 machine_mode mode1;
1437 if (tmode == VOIDmode)
1438 tmode = mode;
1440 while (GET_CODE (op0) == SUBREG)
1442 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1443 op0 = SUBREG_REG (op0);
1446 /* If we have an out-of-bounds access to a register, just return an
1447 uninitialized register of the required mode. This can occur if the
1448 source code contains an out-of-bounds access to a small array. */
1449 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1450 return gen_reg_rtx (tmode);
1452 if (REG_P (op0)
1453 && mode == GET_MODE (op0)
1454 && bitnum == 0
1455 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1457 /* We're trying to extract a full register from itself. */
1458 return op0;
1461 /* See if we can get a better vector mode before extracting. */
1462 if (VECTOR_MODE_P (GET_MODE (op0))
1463 && !MEM_P (op0)
1464 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1466 machine_mode new_mode;
1468 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1469 new_mode = MIN_MODE_VECTOR_FLOAT;
1470 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1471 new_mode = MIN_MODE_VECTOR_FRACT;
1472 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1473 new_mode = MIN_MODE_VECTOR_UFRACT;
1474 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1475 new_mode = MIN_MODE_VECTOR_ACCUM;
1476 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1477 new_mode = MIN_MODE_VECTOR_UACCUM;
1478 else
1479 new_mode = MIN_MODE_VECTOR_INT;
1481 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1482 if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1483 && targetm.vector_mode_supported_p (new_mode))
1484 break;
1485 if (new_mode != VOIDmode)
1486 op0 = gen_lowpart (new_mode, op0);
1489 /* Use vec_extract patterns for extracting parts of vectors whenever
1490 available. */
1491 if (VECTOR_MODE_P (GET_MODE (op0))
1492 && !MEM_P (op0)
1493 && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
1494 && ((bitnum + bitsize - 1) / GET_MODE_UNIT_BITSIZE (GET_MODE (op0))
1495 == bitnum / GET_MODE_UNIT_BITSIZE (GET_MODE (op0))))
1497 struct expand_operand ops[3];
1498 machine_mode outermode = GET_MODE (op0);
1499 machine_mode innermode = GET_MODE_INNER (outermode);
1500 enum insn_code icode = optab_handler (vec_extract_optab, outermode);
1501 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1503 create_output_operand (&ops[0], target, innermode);
1504 create_input_operand (&ops[1], op0, outermode);
1505 create_integer_operand (&ops[2], pos);
1506 if (maybe_expand_insn (icode, 3, ops))
1508 target = ops[0].value;
1509 if (GET_MODE (target) != mode)
1510 return gen_lowpart (tmode, target);
1511 return target;
1515 /* Make sure we are playing with integral modes. Pun with subregs
1516 if we aren't. */
1518 machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1519 if (imode != GET_MODE (op0))
1521 if (MEM_P (op0))
1522 op0 = adjust_bitfield_address_size (op0, imode, 0, MEM_SIZE (op0));
1523 else if (imode != BLKmode)
1525 op0 = gen_lowpart (imode, op0);
1527 /* If we got a SUBREG, force it into a register since we
1528 aren't going to be able to do another SUBREG on it. */
1529 if (GET_CODE (op0) == SUBREG)
1530 op0 = force_reg (imode, op0);
1532 else if (REG_P (op0))
1534 rtx reg, subreg;
1535 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1536 MODE_INT);
1537 reg = gen_reg_rtx (imode);
1538 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1539 emit_move_insn (subreg, op0);
1540 op0 = reg;
1541 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1543 else
1545 HOST_WIDE_INT size = GET_MODE_SIZE (GET_MODE (op0));
1546 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1547 emit_move_insn (mem, op0);
1548 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1553 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1554 If that's wrong, the solution is to test for it and set TARGET to 0
1555 if needed. */
1557 /* Get the mode of the field to use for atomic access or subreg
1558 conversion. */
1559 mode1 = mode;
1560 if (SCALAR_INT_MODE_P (tmode))
1562 machine_mode try_mode = mode_for_size (bitsize,
1563 GET_MODE_CLASS (tmode), 0);
1564 if (try_mode != BLKmode)
1565 mode1 = try_mode;
1567 gcc_assert (mode1 != BLKmode);
1569 /* Extraction of a full MODE1 value can be done with a subreg as long
1570 as the least significant bit of the value is the least significant
1571 bit of either OP0 or a word of OP0. */
1572 if (!MEM_P (op0)
1573 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1574 && bitsize == GET_MODE_BITSIZE (mode1)
1575 && TRULY_NOOP_TRUNCATION_MODES_P (mode1, GET_MODE (op0)))
1577 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1578 bitnum / BITS_PER_UNIT);
1579 if (sub)
1580 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1583 /* Extraction of a full MODE1 value can be done with a load as long as
1584 the field is on a byte boundary and is sufficiently aligned. */
1585 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1))
1587 op0 = adjust_bitfield_address (op0, mode1, bitnum / BITS_PER_UNIT);
1588 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1591 /* Handle fields bigger than a word. */
1593 if (bitsize > BITS_PER_WORD)
1595 /* Here we transfer the words of the field
1596 in the order least significant first.
1597 This is because the most significant word is the one which may
1598 be less than full. */
1600 unsigned int backwards = WORDS_BIG_ENDIAN;
1601 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1602 unsigned int i;
1603 rtx_insn *last;
1605 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1606 target = gen_reg_rtx (mode);
1608 /* In case we're about to clobber a base register or something
1609 (see gcc.c-torture/execute/20040625-1.c). */
1610 if (reg_mentioned_p (target, str_rtx))
1611 target = gen_reg_rtx (mode);
1613 /* Indicate for flow that the entire target reg is being set. */
1614 emit_clobber (target);
1616 last = get_last_insn ();
1617 for (i = 0; i < nwords; i++)
1619 /* If I is 0, use the low-order word in both field and target;
1620 if I is 1, use the next to lowest word; and so on. */
1621 /* Word number in TARGET to use. */
1622 unsigned int wordnum
1623 = (backwards
1624 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1625 : i);
1626 /* Offset from start of field in OP0. */
1627 unsigned int bit_offset = (backwards
1628 ? MAX ((int) bitsize - ((int) i + 1)
1629 * BITS_PER_WORD,
1631 : (int) i * BITS_PER_WORD);
1632 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1633 rtx result_part
1634 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1635 bitsize - i * BITS_PER_WORD),
1636 bitnum + bit_offset, 1, target_part,
1637 mode, word_mode, fallback_p);
1639 gcc_assert (target_part);
1640 if (!result_part)
1642 delete_insns_since (last);
1643 return NULL;
1646 if (result_part != target_part)
1647 emit_move_insn (target_part, result_part);
1650 if (unsignedp)
1652 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1653 need to be zero'd out. */
1654 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1656 unsigned int i, total_words;
1658 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1659 for (i = nwords; i < total_words; i++)
1660 emit_move_insn
1661 (operand_subword (target,
1662 backwards ? total_words - i - 1 : i,
1663 1, VOIDmode),
1664 const0_rtx);
1666 return target;
1669 /* Signed bit field: sign-extend with two arithmetic shifts. */
1670 target = expand_shift (LSHIFT_EXPR, mode, target,
1671 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1672 return expand_shift (RSHIFT_EXPR, mode, target,
1673 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1676 /* If OP0 is a multi-word register, narrow it to the affected word.
1677 If the region spans two words, defer to extract_split_bit_field. */
1678 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1680 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
1681 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1682 bitnum %= BITS_PER_WORD;
1683 if (bitnum + bitsize > BITS_PER_WORD)
1685 if (!fallback_p)
1686 return NULL_RTX;
1687 target = extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1688 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1692 /* From here on we know the desired field is smaller than a word.
1693 If OP0 is a register, it too fits within a word. */
1694 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1695 extraction_insn extv;
1696 if (!MEM_P (op0)
1697 /* ??? We could limit the structure size to the part of OP0 that
1698 contains the field, with appropriate checks for endianness
1699 and TRULY_NOOP_TRUNCATION. */
1700 && get_best_reg_extraction_insn (&extv, pattern,
1701 GET_MODE_BITSIZE (GET_MODE (op0)),
1702 tmode))
1704 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize, bitnum,
1705 unsignedp, target, mode,
1706 tmode);
1707 if (result)
1708 return result;
1711 /* If OP0 is a memory, try copying it to a register and seeing if a
1712 cheap register alternative is available. */
1713 if (MEM_P (op0))
1715 if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
1716 tmode))
1718 rtx result = extract_bit_field_using_extv (&extv, op0, bitsize,
1719 bitnum, unsignedp,
1720 target, mode,
1721 tmode);
1722 if (result)
1723 return result;
1726 rtx_insn *last = get_last_insn ();
1728 /* Try loading part of OP0 into a register and extracting the
1729 bitfield from that. */
1730 unsigned HOST_WIDE_INT bitpos;
1731 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
1732 0, 0, tmode, &bitpos);
1733 if (xop0)
1735 xop0 = copy_to_reg (xop0);
1736 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
1737 unsignedp, target,
1738 mode, tmode, false);
1739 if (result)
1740 return result;
1741 delete_insns_since (last);
1745 if (!fallback_p)
1746 return NULL;
1748 /* Find a correspondingly-sized integer field, so we can apply
1749 shifts and masks to it. */
1750 int_mode = int_mode_for_mode (tmode);
1751 if (int_mode == BLKmode)
1752 int_mode = int_mode_for_mode (mode);
1753 /* Should probably push op0 out to memory and then do a load. */
1754 gcc_assert (int_mode != BLKmode);
1756 target = extract_fixed_bit_field (int_mode, op0, bitsize, bitnum,
1757 target, unsignedp);
1758 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1761 /* Generate code to extract a byte-field from STR_RTX
1762 containing BITSIZE bits, starting at BITNUM,
1763 and put it in TARGET if possible (if TARGET is nonzero).
1764 Regardless of TARGET, we return the rtx for where the value is placed.
1766 STR_RTX is the structure containing the byte (a REG or MEM).
1767 UNSIGNEDP is nonzero if this is an unsigned bit field.
1768 MODE is the natural mode of the field value once extracted.
1769 TMODE is the mode the caller would like the value to have;
1770 but the value may be returned with type MODE instead.
1772 If a TARGET is specified and we can store in it at no extra cost,
1773 we do so, and return TARGET.
1774 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1775 if they are equally easy. */
1778 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1779 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1780 machine_mode mode, machine_mode tmode)
1782 machine_mode mode1;
1784 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1785 if (GET_MODE_BITSIZE (GET_MODE (str_rtx)) > 0)
1786 mode1 = GET_MODE (str_rtx);
1787 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1788 mode1 = GET_MODE (target);
1789 else
1790 mode1 = tmode;
1792 if (strict_volatile_bitfield_p (str_rtx, bitsize, bitnum, mode1, 0, 0))
1794 /* Extraction of a full MODE1 value can be done with a simple load.
1795 We know here that the field can be accessed with one single
1796 instruction. For targets that support unaligned memory,
1797 an unaligned access may be necessary. */
1798 if (bitsize == GET_MODE_BITSIZE (mode1))
1800 rtx result = adjust_bitfield_address (str_rtx, mode1,
1801 bitnum / BITS_PER_UNIT);
1802 gcc_assert (bitnum % BITS_PER_UNIT == 0);
1803 return convert_extracted_bit_field (result, mode, tmode, unsignedp);
1806 str_rtx = narrow_bit_field_mem (str_rtx, mode1, bitsize, bitnum,
1807 &bitnum);
1808 gcc_assert (bitnum + bitsize <= GET_MODE_BITSIZE (mode1));
1809 str_rtx = copy_to_reg (str_rtx);
1812 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1813 target, mode, tmode, true);
1816 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1817 from bit BITNUM of OP0.
1819 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1820 If TARGET is nonzero, attempts to store the value there
1821 and return TARGET, but this is not guaranteed.
1822 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1824 static rtx
1825 extract_fixed_bit_field (machine_mode tmode, rtx op0,
1826 unsigned HOST_WIDE_INT bitsize,
1827 unsigned HOST_WIDE_INT bitnum, rtx target,
1828 int unsignedp)
1830 if (MEM_P (op0))
1832 machine_mode mode
1833 = get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0), word_mode,
1834 MEM_VOLATILE_P (op0));
1836 if (mode == VOIDmode)
1837 /* The only way this should occur is if the field spans word
1838 boundaries. */
1839 return extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1841 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
1844 return extract_fixed_bit_field_1 (tmode, op0, bitsize, bitnum,
1845 target, unsignedp);
1848 /* Helper function for extract_fixed_bit_field, extracts
1849 the bit field always using the MODE of OP0. */
1851 static rtx
1852 extract_fixed_bit_field_1 (machine_mode tmode, rtx op0,
1853 unsigned HOST_WIDE_INT bitsize,
1854 unsigned HOST_WIDE_INT bitnum, rtx target,
1855 int unsignedp)
1857 machine_mode mode = GET_MODE (op0);
1858 gcc_assert (SCALAR_INT_MODE_P (mode));
1860 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1861 for invalid input, such as extract equivalent of f5 from
1862 gcc.dg/pr48335-2.c. */
1864 if (BYTES_BIG_ENDIAN)
1865 /* BITNUM is the distance between our msb and that of OP0.
1866 Convert it to the distance from the lsb. */
1867 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1869 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
1870 We have reduced the big-endian case to the little-endian case. */
1872 if (unsignedp)
1874 if (bitnum)
1876 /* If the field does not already start at the lsb,
1877 shift it so it does. */
1878 /* Maybe propagate the target for the shift. */
1879 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1880 if (tmode != mode)
1881 subtarget = 0;
1882 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
1884 /* Convert the value to the desired mode. */
1885 if (mode != tmode)
1886 op0 = convert_to_mode (tmode, op0, 1);
1888 /* Unless the msb of the field used to be the msb when we shifted,
1889 mask out the upper bits. */
1891 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
1892 return expand_binop (GET_MODE (op0), and_optab, op0,
1893 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1894 target, 1, OPTAB_LIB_WIDEN);
1895 return op0;
1898 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1899 then arithmetic-shift its lsb to the lsb of the word. */
1900 op0 = force_reg (mode, op0);
1902 /* Find the narrowest integer mode that contains the field. */
1904 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1905 mode = GET_MODE_WIDER_MODE (mode))
1906 if (GET_MODE_BITSIZE (mode) >= bitsize + bitnum)
1908 op0 = convert_to_mode (mode, op0, 0);
1909 break;
1912 if (mode != tmode)
1913 target = 0;
1915 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
1917 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
1918 /* Maybe propagate the target for the shift. */
1919 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1920 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1923 return expand_shift (RSHIFT_EXPR, mode, op0,
1924 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
1927 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1928 VALUE << BITPOS. */
1930 static rtx
1931 lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
1932 int bitpos)
1934 return immed_wide_int_const (wi::lshift (value, bitpos), mode);
1937 /* Extract a bit field that is split across two words
1938 and return an RTX for the result.
1940 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1941 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1942 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1944 static rtx
1945 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1946 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1948 unsigned int unit;
1949 unsigned int bitsdone = 0;
1950 rtx result = NULL_RTX;
1951 int first = 1;
1953 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1954 much at a time. */
1955 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1956 unit = BITS_PER_WORD;
1957 else
1958 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1960 while (bitsdone < bitsize)
1962 unsigned HOST_WIDE_INT thissize;
1963 rtx part, word;
1964 unsigned HOST_WIDE_INT thispos;
1965 unsigned HOST_WIDE_INT offset;
1967 offset = (bitpos + bitsdone) / unit;
1968 thispos = (bitpos + bitsdone) % unit;
1970 /* THISSIZE must not overrun a word boundary. Otherwise,
1971 extract_fixed_bit_field will call us again, and we will mutually
1972 recurse forever. */
1973 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1974 thissize = MIN (thissize, unit - thispos);
1976 /* If OP0 is a register, then handle OFFSET here.
1978 When handling multiword bitfields, extract_bit_field may pass
1979 down a word_mode SUBREG of a larger REG for a bitfield that actually
1980 crosses a word boundary. Thus, for a SUBREG, we must find
1981 the current word starting from the base register. */
1982 if (GET_CODE (op0) == SUBREG)
1984 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1985 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1986 GET_MODE (SUBREG_REG (op0)));
1987 offset = 0;
1989 else if (REG_P (op0))
1991 word = operand_subword_force (op0, offset, GET_MODE (op0));
1992 offset = 0;
1994 else
1995 word = op0;
1997 /* Extract the parts in bit-counting order,
1998 whose meaning is determined by BYTES_PER_UNIT.
1999 OFFSET is in UNITs, and UNIT is in bits. */
2000 part = extract_fixed_bit_field (word_mode, word, thissize,
2001 offset * unit + thispos, 0, 1);
2002 bitsdone += thissize;
2004 /* Shift this part into place for the result. */
2005 if (BYTES_BIG_ENDIAN)
2007 if (bitsize != bitsdone)
2008 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2009 bitsize - bitsdone, 0, 1);
2011 else
2013 if (bitsdone != thissize)
2014 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2015 bitsdone - thissize, 0, 1);
2018 if (first)
2019 result = part;
2020 else
2021 /* Combine the parts with bitwise or. This works
2022 because we extracted each part as an unsigned bit field. */
2023 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2024 OPTAB_LIB_WIDEN);
2026 first = 0;
2029 /* Unsigned bit field: we are done. */
2030 if (unsignedp)
2031 return result;
2032 /* Signed bit field: sign-extend with two arithmetic shifts. */
2033 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2034 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2035 return expand_shift (RSHIFT_EXPR, word_mode, result,
2036 BITS_PER_WORD - bitsize, NULL_RTX, 0);
2039 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2040 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2041 MODE, fill the upper bits with zeros. Fail if the layout of either
2042 mode is unknown (as for CC modes) or if the extraction would involve
2043 unprofitable mode punning. Return the value on success, otherwise
2044 return null.
2046 This is different from gen_lowpart* in these respects:
2048 - the returned value must always be considered an rvalue
2050 - when MODE is wider than SRC_MODE, the extraction involves
2051 a zero extension
2053 - when MODE is smaller than SRC_MODE, the extraction involves
2054 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2056 In other words, this routine performs a computation, whereas the
2057 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2058 operations. */
2061 extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
2063 machine_mode int_mode, src_int_mode;
2065 if (mode == src_mode)
2066 return src;
2068 if (CONSTANT_P (src))
2070 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2071 fails, it will happily create (subreg (symbol_ref)) or similar
2072 invalid SUBREGs. */
2073 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2074 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2075 if (ret)
2076 return ret;
2078 if (GET_MODE (src) == VOIDmode
2079 || !validate_subreg (mode, src_mode, src, byte))
2080 return NULL_RTX;
2082 src = force_reg (GET_MODE (src), src);
2083 return gen_rtx_SUBREG (mode, src, byte);
2086 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2087 return NULL_RTX;
2089 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2090 && MODES_TIEABLE_P (mode, src_mode))
2092 rtx x = gen_lowpart_common (mode, src);
2093 if (x)
2094 return x;
2097 src_int_mode = int_mode_for_mode (src_mode);
2098 int_mode = int_mode_for_mode (mode);
2099 if (src_int_mode == BLKmode || int_mode == BLKmode)
2100 return NULL_RTX;
2102 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2103 return NULL_RTX;
2104 if (!MODES_TIEABLE_P (int_mode, mode))
2105 return NULL_RTX;
2107 src = gen_lowpart (src_int_mode, src);
2108 src = convert_modes (int_mode, src_int_mode, src, true);
2109 src = gen_lowpart (mode, src);
2110 return src;
2113 /* Add INC into TARGET. */
2115 void
2116 expand_inc (rtx target, rtx inc)
2118 rtx value = expand_binop (GET_MODE (target), add_optab,
2119 target, inc,
2120 target, 0, OPTAB_LIB_WIDEN);
2121 if (value != target)
2122 emit_move_insn (target, value);
2125 /* Subtract DEC from TARGET. */
2127 void
2128 expand_dec (rtx target, rtx dec)
2130 rtx value = expand_binop (GET_MODE (target), sub_optab,
2131 target, dec,
2132 target, 0, OPTAB_LIB_WIDEN);
2133 if (value != target)
2134 emit_move_insn (target, value);
2137 /* Output a shift instruction for expression code CODE,
2138 with SHIFTED being the rtx for the value to shift,
2139 and AMOUNT the rtx for the amount to shift by.
2140 Store the result in the rtx TARGET, if that is convenient.
2141 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2142 Return the rtx for where the value is. */
2144 static rtx
2145 expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
2146 rtx amount, rtx target, int unsignedp)
2148 rtx op1, temp = 0;
2149 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2150 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2151 optab lshift_optab = ashl_optab;
2152 optab rshift_arith_optab = ashr_optab;
2153 optab rshift_uns_optab = lshr_optab;
2154 optab lrotate_optab = rotl_optab;
2155 optab rrotate_optab = rotr_optab;
2156 machine_mode op1_mode;
2157 machine_mode scalar_mode = mode;
2158 int attempt;
2159 bool speed = optimize_insn_for_speed_p ();
2161 if (VECTOR_MODE_P (mode))
2162 scalar_mode = GET_MODE_INNER (mode);
2163 op1 = amount;
2164 op1_mode = GET_MODE (op1);
2166 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2167 shift amount is a vector, use the vector/vector shift patterns. */
2168 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2170 lshift_optab = vashl_optab;
2171 rshift_arith_optab = vashr_optab;
2172 rshift_uns_optab = vlshr_optab;
2173 lrotate_optab = vrotl_optab;
2174 rrotate_optab = vrotr_optab;
2177 /* Previously detected shift-counts computed by NEGATE_EXPR
2178 and shifted in the other direction; but that does not work
2179 on all machines. */
2181 if (SHIFT_COUNT_TRUNCATED)
2183 if (CONST_INT_P (op1)
2184 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2185 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
2186 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2187 % GET_MODE_BITSIZE (scalar_mode));
2188 else if (GET_CODE (op1) == SUBREG
2189 && subreg_lowpart_p (op1)
2190 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2191 && SCALAR_INT_MODE_P (GET_MODE (op1)))
2192 op1 = SUBREG_REG (op1);
2195 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2196 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2197 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2198 amount instead. */
2199 if (rotate
2200 && CONST_INT_P (op1)
2201 && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
2202 GET_MODE_BITSIZE (scalar_mode) - 1))
2204 op1 = GEN_INT (GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
2205 left = !left;
2206 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2209 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2210 Note that this is not the case for bigger values. For instance a rotation
2211 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2212 0x04030201 (bswapsi). */
2213 if (rotate
2214 && CONST_INT_P (op1)
2215 && INTVAL (op1) == BITS_PER_UNIT
2216 && GET_MODE_SIZE (scalar_mode) == 2
2217 && optab_handler (bswap_optab, HImode) != CODE_FOR_nothing)
2218 return expand_unop (HImode, bswap_optab, shifted, NULL_RTX,
2219 unsignedp);
2221 if (op1 == const0_rtx)
2222 return shifted;
2224 /* Check whether its cheaper to implement a left shift by a constant
2225 bit count by a sequence of additions. */
2226 if (code == LSHIFT_EXPR
2227 && CONST_INT_P (op1)
2228 && INTVAL (op1) > 0
2229 && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
2230 && INTVAL (op1) < MAX_BITS_PER_WORD
2231 && (shift_cost (speed, mode, INTVAL (op1))
2232 > INTVAL (op1) * add_cost (speed, mode))
2233 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2235 int i;
2236 for (i = 0; i < INTVAL (op1); i++)
2238 temp = force_reg (mode, shifted);
2239 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2240 unsignedp, OPTAB_LIB_WIDEN);
2242 return shifted;
2245 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2247 enum optab_methods methods;
2249 if (attempt == 0)
2250 methods = OPTAB_DIRECT;
2251 else if (attempt == 1)
2252 methods = OPTAB_WIDEN;
2253 else
2254 methods = OPTAB_LIB_WIDEN;
2256 if (rotate)
2258 /* Widening does not work for rotation. */
2259 if (methods == OPTAB_WIDEN)
2260 continue;
2261 else if (methods == OPTAB_LIB_WIDEN)
2263 /* If we have been unable to open-code this by a rotation,
2264 do it as the IOR of two shifts. I.e., to rotate A
2265 by N bits, compute
2266 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2267 where C is the bitsize of A.
2269 It is theoretically possible that the target machine might
2270 not be able to perform either shift and hence we would
2271 be making two libcalls rather than just the one for the
2272 shift (similarly if IOR could not be done). We will allow
2273 this extremely unlikely lossage to avoid complicating the
2274 code below. */
2276 rtx subtarget = target == shifted ? 0 : target;
2277 rtx new_amount, other_amount;
2278 rtx temp1;
2280 new_amount = op1;
2281 if (op1 == const0_rtx)
2282 return shifted;
2283 else if (CONST_INT_P (op1))
2284 other_amount = GEN_INT (GET_MODE_BITSIZE (scalar_mode)
2285 - INTVAL (op1));
2286 else
2288 other_amount
2289 = simplify_gen_unary (NEG, GET_MODE (op1),
2290 op1, GET_MODE (op1));
2291 HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
2292 other_amount
2293 = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2294 gen_int_mode (mask, GET_MODE (op1)));
2297 shifted = force_reg (mode, shifted);
2299 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2300 mode, shifted, new_amount, 0, 1);
2301 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2302 mode, shifted, other_amount,
2303 subtarget, 1);
2304 return expand_binop (mode, ior_optab, temp, temp1, target,
2305 unsignedp, methods);
2308 temp = expand_binop (mode,
2309 left ? lrotate_optab : rrotate_optab,
2310 shifted, op1, target, unsignedp, methods);
2312 else if (unsignedp)
2313 temp = expand_binop (mode,
2314 left ? lshift_optab : rshift_uns_optab,
2315 shifted, op1, target, unsignedp, methods);
2317 /* Do arithmetic shifts.
2318 Also, if we are going to widen the operand, we can just as well
2319 use an arithmetic right-shift instead of a logical one. */
2320 if (temp == 0 && ! rotate
2321 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2323 enum optab_methods methods1 = methods;
2325 /* If trying to widen a log shift to an arithmetic shift,
2326 don't accept an arithmetic shift of the same size. */
2327 if (unsignedp)
2328 methods1 = OPTAB_MUST_WIDEN;
2330 /* Arithmetic shift */
2332 temp = expand_binop (mode,
2333 left ? lshift_optab : rshift_arith_optab,
2334 shifted, op1, target, unsignedp, methods1);
2337 /* We used to try extzv here for logical right shifts, but that was
2338 only useful for one machine, the VAX, and caused poor code
2339 generation there for lshrdi3, so the code was deleted and a
2340 define_expand for lshrsi3 was added to vax.md. */
2343 gcc_assert (temp);
2344 return temp;
2347 /* Output a shift instruction for expression code CODE,
2348 with SHIFTED being the rtx for the value to shift,
2349 and AMOUNT the amount to shift by.
2350 Store the result in the rtx TARGET, if that is convenient.
2351 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2352 Return the rtx for where the value is. */
2355 expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2356 int amount, rtx target, int unsignedp)
2358 return expand_shift_1 (code, mode,
2359 shifted, GEN_INT (amount), target, unsignedp);
2362 /* Output a shift instruction for expression code CODE,
2363 with SHIFTED being the rtx for the value to shift,
2364 and AMOUNT the tree for the amount to shift by.
2365 Store the result in the rtx TARGET, if that is convenient.
2366 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2367 Return the rtx for where the value is. */
2370 expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
2371 tree amount, rtx target, int unsignedp)
2373 return expand_shift_1 (code, mode,
2374 shifted, expand_normal (amount), target, unsignedp);
2378 /* Indicates the type of fixup needed after a constant multiplication.
2379 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2380 the result should be negated, and ADD_VARIANT means that the
2381 multiplicand should be added to the result. */
2382 enum mult_variant {basic_variant, negate_variant, add_variant};
2384 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2385 const struct mult_cost *, machine_mode mode);
2386 static bool choose_mult_variant (machine_mode, HOST_WIDE_INT,
2387 struct algorithm *, enum mult_variant *, int);
2388 static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
2389 const struct algorithm *, enum mult_variant);
2390 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2391 static rtx extract_high_half (machine_mode, rtx);
2392 static rtx expmed_mult_highpart (machine_mode, rtx, rtx, rtx, int, int);
2393 static rtx expmed_mult_highpart_optab (machine_mode, rtx, rtx, rtx,
2394 int, int);
2395 /* Compute and return the best algorithm for multiplying by T.
2396 The algorithm must cost less than cost_limit
2397 If retval.cost >= COST_LIMIT, no algorithm was found and all
2398 other field of the returned struct are undefined.
2399 MODE is the machine mode of the multiplication. */
2401 static void
2402 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2403 const struct mult_cost *cost_limit, machine_mode mode)
2405 int m;
2406 struct algorithm *alg_in, *best_alg;
2407 struct mult_cost best_cost;
2408 struct mult_cost new_limit;
2409 int op_cost, op_latency;
2410 unsigned HOST_WIDE_INT orig_t = t;
2411 unsigned HOST_WIDE_INT q;
2412 int maxm, hash_index;
2413 bool cache_hit = false;
2414 enum alg_code cache_alg = alg_zero;
2415 bool speed = optimize_insn_for_speed_p ();
2416 machine_mode imode;
2417 struct alg_hash_entry *entry_ptr;
2419 /* Indicate that no algorithm is yet found. If no algorithm
2420 is found, this value will be returned and indicate failure. */
2421 alg_out->cost.cost = cost_limit->cost + 1;
2422 alg_out->cost.latency = cost_limit->latency + 1;
2424 if (cost_limit->cost < 0
2425 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2426 return;
2428 /* Be prepared for vector modes. */
2429 imode = GET_MODE_INNER (mode);
2431 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2433 /* Restrict the bits of "t" to the multiplication's mode. */
2434 t &= GET_MODE_MASK (imode);
2436 /* t == 1 can be done in zero cost. */
2437 if (t == 1)
2439 alg_out->ops = 1;
2440 alg_out->cost.cost = 0;
2441 alg_out->cost.latency = 0;
2442 alg_out->op[0] = alg_m;
2443 return;
2446 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2447 fail now. */
2448 if (t == 0)
2450 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2451 return;
2452 else
2454 alg_out->ops = 1;
2455 alg_out->cost.cost = zero_cost (speed);
2456 alg_out->cost.latency = zero_cost (speed);
2457 alg_out->op[0] = alg_zero;
2458 return;
2462 /* We'll be needing a couple extra algorithm structures now. */
2464 alg_in = XALLOCA (struct algorithm);
2465 best_alg = XALLOCA (struct algorithm);
2466 best_cost = *cost_limit;
2468 /* Compute the hash index. */
2469 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2471 /* See if we already know what to do for T. */
2472 entry_ptr = alg_hash_entry_ptr (hash_index);
2473 if (entry_ptr->t == t
2474 && entry_ptr->mode == mode
2475 && entry_ptr->mode == mode
2476 && entry_ptr->speed == speed
2477 && entry_ptr->alg != alg_unknown)
2479 cache_alg = entry_ptr->alg;
2481 if (cache_alg == alg_impossible)
2483 /* The cache tells us that it's impossible to synthesize
2484 multiplication by T within entry_ptr->cost. */
2485 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2486 /* COST_LIMIT is at least as restrictive as the one
2487 recorded in the hash table, in which case we have no
2488 hope of synthesizing a multiplication. Just
2489 return. */
2490 return;
2492 /* If we get here, COST_LIMIT is less restrictive than the
2493 one recorded in the hash table, so we may be able to
2494 synthesize a multiplication. Proceed as if we didn't
2495 have the cache entry. */
2497 else
2499 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2500 /* The cached algorithm shows that this multiplication
2501 requires more cost than COST_LIMIT. Just return. This
2502 way, we don't clobber this cache entry with
2503 alg_impossible but retain useful information. */
2504 return;
2506 cache_hit = true;
2508 switch (cache_alg)
2510 case alg_shift:
2511 goto do_alg_shift;
2513 case alg_add_t_m2:
2514 case alg_sub_t_m2:
2515 goto do_alg_addsub_t_m2;
2517 case alg_add_factor:
2518 case alg_sub_factor:
2519 goto do_alg_addsub_factor;
2521 case alg_add_t2_m:
2522 goto do_alg_add_t2_m;
2524 case alg_sub_t2_m:
2525 goto do_alg_sub_t2_m;
2527 default:
2528 gcc_unreachable ();
2533 /* If we have a group of zero bits at the low-order part of T, try
2534 multiplying by the remaining bits and then doing a shift. */
2536 if ((t & 1) == 0)
2538 do_alg_shift:
2539 m = floor_log2 (t & -t); /* m = number of low zero bits */
2540 if (m < maxm)
2542 q = t >> m;
2543 /* The function expand_shift will choose between a shift and
2544 a sequence of additions, so the observed cost is given as
2545 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2546 op_cost = m * add_cost (speed, mode);
2547 if (shift_cost (speed, mode, m) < op_cost)
2548 op_cost = shift_cost (speed, mode, m);
2549 new_limit.cost = best_cost.cost - op_cost;
2550 new_limit.latency = best_cost.latency - op_cost;
2551 synth_mult (alg_in, q, &new_limit, mode);
2553 alg_in->cost.cost += op_cost;
2554 alg_in->cost.latency += op_cost;
2555 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2557 best_cost = alg_in->cost;
2558 std::swap (alg_in, best_alg);
2559 best_alg->log[best_alg->ops] = m;
2560 best_alg->op[best_alg->ops] = alg_shift;
2563 /* See if treating ORIG_T as a signed number yields a better
2564 sequence. Try this sequence only for a negative ORIG_T
2565 as it would be useless for a non-negative ORIG_T. */
2566 if ((HOST_WIDE_INT) orig_t < 0)
2568 /* Shift ORIG_T as follows because a right shift of a
2569 negative-valued signed type is implementation
2570 defined. */
2571 q = ~(~orig_t >> m);
2572 /* The function expand_shift will choose between a shift
2573 and a sequence of additions, so the observed cost is
2574 given as MIN (m * add_cost(speed, mode),
2575 shift_cost(speed, mode, m)). */
2576 op_cost = m * add_cost (speed, mode);
2577 if (shift_cost (speed, mode, m) < op_cost)
2578 op_cost = shift_cost (speed, mode, m);
2579 new_limit.cost = best_cost.cost - op_cost;
2580 new_limit.latency = best_cost.latency - op_cost;
2581 synth_mult (alg_in, q, &new_limit, mode);
2583 alg_in->cost.cost += op_cost;
2584 alg_in->cost.latency += op_cost;
2585 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2587 best_cost = alg_in->cost;
2588 std::swap (alg_in, best_alg);
2589 best_alg->log[best_alg->ops] = m;
2590 best_alg->op[best_alg->ops] = alg_shift;
2594 if (cache_hit)
2595 goto done;
2598 /* If we have an odd number, add or subtract one. */
2599 if ((t & 1) != 0)
2601 unsigned HOST_WIDE_INT w;
2603 do_alg_addsub_t_m2:
2604 for (w = 1; (w & t) != 0; w <<= 1)
2606 /* If T was -1, then W will be zero after the loop. This is another
2607 case where T ends with ...111. Handling this with (T + 1) and
2608 subtract 1 produces slightly better code and results in algorithm
2609 selection much faster than treating it like the ...0111 case
2610 below. */
2611 if (w == 0
2612 || (w > 2
2613 /* Reject the case where t is 3.
2614 Thus we prefer addition in that case. */
2615 && t != 3))
2617 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2619 op_cost = add_cost (speed, mode);
2620 new_limit.cost = best_cost.cost - op_cost;
2621 new_limit.latency = best_cost.latency - op_cost;
2622 synth_mult (alg_in, t + 1, &new_limit, mode);
2624 alg_in->cost.cost += op_cost;
2625 alg_in->cost.latency += op_cost;
2626 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2628 best_cost = alg_in->cost;
2629 std::swap (alg_in, best_alg);
2630 best_alg->log[best_alg->ops] = 0;
2631 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2634 else
2636 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2638 op_cost = add_cost (speed, mode);
2639 new_limit.cost = best_cost.cost - op_cost;
2640 new_limit.latency = best_cost.latency - op_cost;
2641 synth_mult (alg_in, t - 1, &new_limit, mode);
2643 alg_in->cost.cost += op_cost;
2644 alg_in->cost.latency += op_cost;
2645 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2647 best_cost = alg_in->cost;
2648 std::swap (alg_in, best_alg);
2649 best_alg->log[best_alg->ops] = 0;
2650 best_alg->op[best_alg->ops] = alg_add_t_m2;
2654 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2655 quickly with a - a * n for some appropriate constant n. */
2656 m = exact_log2 (-orig_t + 1);
2657 if (m >= 0 && m < maxm)
2659 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2660 /* If the target has a cheap shift-and-subtract insn use
2661 that in preference to a shift insn followed by a sub insn.
2662 Assume that the shift-and-sub is "atomic" with a latency
2663 equal to it's cost, otherwise assume that on superscalar
2664 hardware the shift may be executed concurrently with the
2665 earlier steps in the algorithm. */
2666 if (shiftsub1_cost (speed, mode, m) <= op_cost)
2668 op_cost = shiftsub1_cost (speed, mode, m);
2669 op_latency = op_cost;
2671 else
2672 op_latency = add_cost (speed, mode);
2674 new_limit.cost = best_cost.cost - op_cost;
2675 new_limit.latency = best_cost.latency - op_latency;
2676 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2677 &new_limit, mode);
2679 alg_in->cost.cost += op_cost;
2680 alg_in->cost.latency += op_latency;
2681 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2683 best_cost = alg_in->cost;
2684 std::swap (alg_in, best_alg);
2685 best_alg->log[best_alg->ops] = m;
2686 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2690 if (cache_hit)
2691 goto done;
2694 /* Look for factors of t of the form
2695 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2696 If we find such a factor, we can multiply by t using an algorithm that
2697 multiplies by q, shift the result by m and add/subtract it to itself.
2699 We search for large factors first and loop down, even if large factors
2700 are less probable than small; if we find a large factor we will find a
2701 good sequence quickly, and therefore be able to prune (by decreasing
2702 COST_LIMIT) the search. */
2704 do_alg_addsub_factor:
2705 for (m = floor_log2 (t - 1); m >= 2; m--)
2707 unsigned HOST_WIDE_INT d;
2709 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2710 if (t % d == 0 && t > d && m < maxm
2711 && (!cache_hit || cache_alg == alg_add_factor))
2713 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2714 if (shiftadd_cost (speed, mode, m) <= op_cost)
2715 op_cost = shiftadd_cost (speed, mode, m);
2717 op_latency = op_cost;
2720 new_limit.cost = best_cost.cost - op_cost;
2721 new_limit.latency = best_cost.latency - op_latency;
2722 synth_mult (alg_in, t / d, &new_limit, mode);
2724 alg_in->cost.cost += op_cost;
2725 alg_in->cost.latency += op_latency;
2726 if (alg_in->cost.latency < op_cost)
2727 alg_in->cost.latency = op_cost;
2728 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2730 best_cost = alg_in->cost;
2731 std::swap (alg_in, best_alg);
2732 best_alg->log[best_alg->ops] = m;
2733 best_alg->op[best_alg->ops] = alg_add_factor;
2735 /* Other factors will have been taken care of in the recursion. */
2736 break;
2739 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2740 if (t % d == 0 && t > d && m < maxm
2741 && (!cache_hit || cache_alg == alg_sub_factor))
2743 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2744 if (shiftsub0_cost (speed, mode, m) <= op_cost)
2745 op_cost = shiftsub0_cost (speed, mode, m);
2747 op_latency = op_cost;
2749 new_limit.cost = best_cost.cost - op_cost;
2750 new_limit.latency = best_cost.latency - op_latency;
2751 synth_mult (alg_in, t / d, &new_limit, mode);
2753 alg_in->cost.cost += op_cost;
2754 alg_in->cost.latency += op_latency;
2755 if (alg_in->cost.latency < op_cost)
2756 alg_in->cost.latency = op_cost;
2757 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2759 best_cost = alg_in->cost;
2760 std::swap (alg_in, best_alg);
2761 best_alg->log[best_alg->ops] = m;
2762 best_alg->op[best_alg->ops] = alg_sub_factor;
2764 break;
2767 if (cache_hit)
2768 goto done;
2770 /* Try shift-and-add (load effective address) instructions,
2771 i.e. do a*3, a*5, a*9. */
2772 if ((t & 1) != 0)
2774 do_alg_add_t2_m:
2775 q = t - 1;
2776 q = q & -q;
2777 m = exact_log2 (q);
2778 if (m >= 0 && m < maxm)
2780 op_cost = shiftadd_cost (speed, mode, m);
2781 new_limit.cost = best_cost.cost - op_cost;
2782 new_limit.latency = best_cost.latency - op_cost;
2783 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2785 alg_in->cost.cost += op_cost;
2786 alg_in->cost.latency += op_cost;
2787 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2789 best_cost = alg_in->cost;
2790 std::swap (alg_in, best_alg);
2791 best_alg->log[best_alg->ops] = m;
2792 best_alg->op[best_alg->ops] = alg_add_t2_m;
2795 if (cache_hit)
2796 goto done;
2798 do_alg_sub_t2_m:
2799 q = t + 1;
2800 q = q & -q;
2801 m = exact_log2 (q);
2802 if (m >= 0 && m < maxm)
2804 op_cost = shiftsub0_cost (speed, mode, m);
2805 new_limit.cost = best_cost.cost - op_cost;
2806 new_limit.latency = best_cost.latency - op_cost;
2807 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2809 alg_in->cost.cost += op_cost;
2810 alg_in->cost.latency += op_cost;
2811 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2813 best_cost = alg_in->cost;
2814 std::swap (alg_in, best_alg);
2815 best_alg->log[best_alg->ops] = m;
2816 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2819 if (cache_hit)
2820 goto done;
2823 done:
2824 /* If best_cost has not decreased, we have not found any algorithm. */
2825 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2827 /* We failed to find an algorithm. Record alg_impossible for
2828 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2829 we are asked to find an algorithm for T within the same or
2830 lower COST_LIMIT, we can immediately return to the
2831 caller. */
2832 entry_ptr->t = t;
2833 entry_ptr->mode = mode;
2834 entry_ptr->speed = speed;
2835 entry_ptr->alg = alg_impossible;
2836 entry_ptr->cost = *cost_limit;
2837 return;
2840 /* Cache the result. */
2841 if (!cache_hit)
2843 entry_ptr->t = t;
2844 entry_ptr->mode = mode;
2845 entry_ptr->speed = speed;
2846 entry_ptr->alg = best_alg->op[best_alg->ops];
2847 entry_ptr->cost.cost = best_cost.cost;
2848 entry_ptr->cost.latency = best_cost.latency;
2851 /* If we are getting a too long sequence for `struct algorithm'
2852 to record, make this search fail. */
2853 if (best_alg->ops == MAX_BITS_PER_WORD)
2854 return;
2856 /* Copy the algorithm from temporary space to the space at alg_out.
2857 We avoid using structure assignment because the majority of
2858 best_alg is normally undefined, and this is a critical function. */
2859 alg_out->ops = best_alg->ops + 1;
2860 alg_out->cost = best_cost;
2861 memcpy (alg_out->op, best_alg->op,
2862 alg_out->ops * sizeof *alg_out->op);
2863 memcpy (alg_out->log, best_alg->log,
2864 alg_out->ops * sizeof *alg_out->log);
2867 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2868 Try three variations:
2870 - a shift/add sequence based on VAL itself
2871 - a shift/add sequence based on -VAL, followed by a negation
2872 - a shift/add sequence based on VAL - 1, followed by an addition.
2874 Return true if the cheapest of these cost less than MULT_COST,
2875 describing the algorithm in *ALG and final fixup in *VARIANT. */
2877 static bool
2878 choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
2879 struct algorithm *alg, enum mult_variant *variant,
2880 int mult_cost)
2882 struct algorithm alg2;
2883 struct mult_cost limit;
2884 int op_cost;
2885 bool speed = optimize_insn_for_speed_p ();
2887 /* Fail quickly for impossible bounds. */
2888 if (mult_cost < 0)
2889 return false;
2891 /* Ensure that mult_cost provides a reasonable upper bound.
2892 Any constant multiplication can be performed with less
2893 than 2 * bits additions. */
2894 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
2895 if (mult_cost > op_cost)
2896 mult_cost = op_cost;
2898 *variant = basic_variant;
2899 limit.cost = mult_cost;
2900 limit.latency = mult_cost;
2901 synth_mult (alg, val, &limit, mode);
2903 /* This works only if the inverted value actually fits in an
2904 `unsigned int' */
2905 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
2907 op_cost = neg_cost (speed, mode);
2908 if (MULT_COST_LESS (&alg->cost, mult_cost))
2910 limit.cost = alg->cost.cost - op_cost;
2911 limit.latency = alg->cost.latency - op_cost;
2913 else
2915 limit.cost = mult_cost - op_cost;
2916 limit.latency = mult_cost - op_cost;
2919 synth_mult (&alg2, -val, &limit, mode);
2920 alg2.cost.cost += op_cost;
2921 alg2.cost.latency += op_cost;
2922 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2923 *alg = alg2, *variant = negate_variant;
2926 /* This proves very useful for division-by-constant. */
2927 op_cost = add_cost (speed, mode);
2928 if (MULT_COST_LESS (&alg->cost, mult_cost))
2930 limit.cost = alg->cost.cost - op_cost;
2931 limit.latency = alg->cost.latency - op_cost;
2933 else
2935 limit.cost = mult_cost - op_cost;
2936 limit.latency = mult_cost - op_cost;
2939 synth_mult (&alg2, val - 1, &limit, mode);
2940 alg2.cost.cost += op_cost;
2941 alg2.cost.latency += op_cost;
2942 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2943 *alg = alg2, *variant = add_variant;
2945 return MULT_COST_LESS (&alg->cost, mult_cost);
2948 /* A subroutine of expand_mult, used for constant multiplications.
2949 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2950 convenient. Use the shift/add sequence described by ALG and apply
2951 the final fixup specified by VARIANT. */
2953 static rtx
2954 expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
2955 rtx target, const struct algorithm *alg,
2956 enum mult_variant variant)
2958 HOST_WIDE_INT val_so_far;
2959 rtx_insn *insn;
2960 rtx accum, tem;
2961 int opno;
2962 machine_mode nmode;
2964 /* Avoid referencing memory over and over and invalid sharing
2965 on SUBREGs. */
2966 op0 = force_reg (mode, op0);
2968 /* ACCUM starts out either as OP0 or as a zero, depending on
2969 the first operation. */
2971 if (alg->op[0] == alg_zero)
2973 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
2974 val_so_far = 0;
2976 else if (alg->op[0] == alg_m)
2978 accum = copy_to_mode_reg (mode, op0);
2979 val_so_far = 1;
2981 else
2982 gcc_unreachable ();
2984 for (opno = 1; opno < alg->ops; opno++)
2986 int log = alg->log[opno];
2987 rtx shift_subtarget = optimize ? 0 : accum;
2988 rtx add_target
2989 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2990 && !optimize)
2991 ? target : 0;
2992 rtx accum_target = optimize ? 0 : accum;
2993 rtx accum_inner;
2995 switch (alg->op[opno])
2997 case alg_shift:
2998 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
2999 /* REG_EQUAL note will be attached to the following insn. */
3000 emit_move_insn (accum, tem);
3001 val_so_far <<= log;
3002 break;
3004 case alg_add_t_m2:
3005 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3006 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3007 add_target ? add_target : accum_target);
3008 val_so_far += (HOST_WIDE_INT) 1 << log;
3009 break;
3011 case alg_sub_t_m2:
3012 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
3013 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3014 add_target ? add_target : accum_target);
3015 val_so_far -= (HOST_WIDE_INT) 1 << log;
3016 break;
3018 case alg_add_t2_m:
3019 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3020 log, shift_subtarget, 0);
3021 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3022 add_target ? add_target : accum_target);
3023 val_so_far = (val_so_far << log) + 1;
3024 break;
3026 case alg_sub_t2_m:
3027 accum = expand_shift (LSHIFT_EXPR, mode, accum,
3028 log, shift_subtarget, 0);
3029 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3030 add_target ? add_target : accum_target);
3031 val_so_far = (val_so_far << log) - 1;
3032 break;
3034 case alg_add_factor:
3035 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3036 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3037 add_target ? add_target : accum_target);
3038 val_so_far += val_so_far << log;
3039 break;
3041 case alg_sub_factor:
3042 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
3043 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
3044 (add_target
3045 ? add_target : (optimize ? 0 : tem)));
3046 val_so_far = (val_so_far << log) - val_so_far;
3047 break;
3049 default:
3050 gcc_unreachable ();
3053 if (SCALAR_INT_MODE_P (mode))
3055 /* Write a REG_EQUAL note on the last insn so that we can cse
3056 multiplication sequences. Note that if ACCUM is a SUBREG,
3057 we've set the inner register and must properly indicate that. */
3058 tem = op0, nmode = mode;
3059 accum_inner = accum;
3060 if (GET_CODE (accum) == SUBREG)
3062 accum_inner = SUBREG_REG (accum);
3063 nmode = GET_MODE (accum_inner);
3064 tem = gen_lowpart (nmode, op0);
3067 insn = get_last_insn ();
3068 set_dst_reg_note (insn, REG_EQUAL,
3069 gen_rtx_MULT (nmode, tem,
3070 gen_int_mode (val_so_far, nmode)),
3071 accum_inner);
3075 if (variant == negate_variant)
3077 val_so_far = -val_so_far;
3078 accum = expand_unop (mode, neg_optab, accum, target, 0);
3080 else if (variant == add_variant)
3082 val_so_far = val_so_far + 1;
3083 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3086 /* Compare only the bits of val and val_so_far that are significant
3087 in the result mode, to avoid sign-/zero-extension confusion. */
3088 nmode = GET_MODE_INNER (mode);
3089 val &= GET_MODE_MASK (nmode);
3090 val_so_far &= GET_MODE_MASK (nmode);
3091 gcc_assert (val == val_so_far);
3093 return accum;
3096 /* Perform a multiplication and return an rtx for the result.
3097 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3098 TARGET is a suggestion for where to store the result (an rtx).
3100 We check specially for a constant integer as OP1.
3101 If you want this check for OP0 as well, then before calling
3102 you should swap the two operands if OP0 would be constant. */
3105 expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3106 int unsignedp)
3108 enum mult_variant variant;
3109 struct algorithm algorithm;
3110 rtx scalar_op1;
3111 int max_cost;
3112 bool speed = optimize_insn_for_speed_p ();
3113 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3115 if (CONSTANT_P (op0))
3116 std::swap (op0, op1);
3118 /* For vectors, there are several simplifications that can be made if
3119 all elements of the vector constant are identical. */
3120 scalar_op1 = unwrap_const_vec_duplicate (op1);
3122 if (INTEGRAL_MODE_P (mode))
3124 rtx fake_reg;
3125 HOST_WIDE_INT coeff;
3126 bool is_neg;
3127 int mode_bitsize;
3129 if (op1 == CONST0_RTX (mode))
3130 return op1;
3131 if (op1 == CONST1_RTX (mode))
3132 return op0;
3133 if (op1 == CONSTM1_RTX (mode))
3134 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3135 op0, target, 0);
3137 if (do_trapv)
3138 goto skip_synth;
3140 /* If mode is integer vector mode, check if the backend supports
3141 vector lshift (by scalar or vector) at all. If not, we can't use
3142 synthetized multiply. */
3143 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3144 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
3145 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
3146 goto skip_synth;
3148 /* These are the operations that are potentially turned into
3149 a sequence of shifts and additions. */
3150 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3152 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3153 less than or equal in size to `unsigned int' this doesn't matter.
3154 If the mode is larger than `unsigned int', then synth_mult works
3155 only if the constant value exactly fits in an `unsigned int' without
3156 any truncation. This means that multiplying by negative values does
3157 not work; results are off by 2^32 on a 32 bit machine. */
3158 if (CONST_INT_P (scalar_op1))
3160 coeff = INTVAL (scalar_op1);
3161 is_neg = coeff < 0;
3163 #if TARGET_SUPPORTS_WIDE_INT
3164 else if (CONST_WIDE_INT_P (scalar_op1))
3165 #else
3166 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3167 #endif
3169 int shift = wi::exact_log2 (std::make_pair (scalar_op1, mode));
3170 /* Perfect power of 2 (other than 1, which is handled above). */
3171 if (shift > 0)
3172 return expand_shift (LSHIFT_EXPR, mode, op0,
3173 shift, target, unsignedp);
3174 else
3175 goto skip_synth;
3177 else
3178 goto skip_synth;
3180 /* We used to test optimize here, on the grounds that it's better to
3181 produce a smaller program when -O is not used. But this causes
3182 such a terrible slowdown sometimes that it seems better to always
3183 use synth_mult. */
3185 /* Special case powers of two. */
3186 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3187 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
3188 return expand_shift (LSHIFT_EXPR, mode, op0,
3189 floor_log2 (coeff), target, unsignedp);
3191 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3193 /* Attempt to handle multiplication of DImode values by negative
3194 coefficients, by performing the multiplication by a positive
3195 multiplier and then inverting the result. */
3196 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3198 /* Its safe to use -coeff even for INT_MIN, as the
3199 result is interpreted as an unsigned coefficient.
3200 Exclude cost of op0 from max_cost to match the cost
3201 calculation of the synth_mult. */
3202 coeff = -(unsigned HOST_WIDE_INT) coeff;
3203 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
3204 mode, speed)
3205 - neg_cost (speed, mode));
3206 if (max_cost <= 0)
3207 goto skip_synth;
3209 /* Special case powers of two. */
3210 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3212 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3213 floor_log2 (coeff), target, unsignedp);
3214 return expand_unop (mode, neg_optab, temp, target, 0);
3217 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3218 max_cost))
3220 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
3221 &algorithm, variant);
3222 return expand_unop (mode, neg_optab, temp, target, 0);
3224 goto skip_synth;
3227 /* Exclude cost of op0 from max_cost to match the cost
3228 calculation of the synth_mult. */
3229 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed);
3230 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3231 return expand_mult_const (mode, op0, coeff, target,
3232 &algorithm, variant);
3234 skip_synth:
3236 /* Expand x*2.0 as x+x. */
3237 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1)
3238 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1), &dconst2))
3240 op0 = force_reg (GET_MODE (op0), op0);
3241 return expand_binop (mode, add_optab, op0, op0,
3242 target, unsignedp, OPTAB_LIB_WIDEN);
3245 /* This used to use umul_optab if unsigned, but for non-widening multiply
3246 there is no difference between signed and unsigned. */
3247 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3248 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3249 gcc_assert (op0);
3250 return op0;
3253 /* Return a cost estimate for multiplying a register by the given
3254 COEFFicient in the given MODE and SPEED. */
3257 mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
3259 int max_cost;
3260 struct algorithm algorithm;
3261 enum mult_variant variant;
3263 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3264 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg),
3265 mode, speed);
3266 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3267 return algorithm.cost.cost;
3268 else
3269 return max_cost;
3272 /* Perform a widening multiplication and return an rtx for the result.
3273 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3274 TARGET is a suggestion for where to store the result (an rtx).
3275 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3276 or smul_widen_optab.
3278 We check specially for a constant integer as OP1, comparing the
3279 cost of a widening multiply against the cost of a sequence of shifts
3280 and adds. */
3283 expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
3284 int unsignedp, optab this_optab)
3286 bool speed = optimize_insn_for_speed_p ();
3287 rtx cop1;
3289 if (CONST_INT_P (op1)
3290 && GET_MODE (op0) != VOIDmode
3291 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3292 this_optab == umul_widen_optab))
3293 && CONST_INT_P (cop1)
3294 && (INTVAL (cop1) >= 0
3295 || HWI_COMPUTABLE_MODE_P (mode)))
3297 HOST_WIDE_INT coeff = INTVAL (cop1);
3298 int max_cost;
3299 enum mult_variant variant;
3300 struct algorithm algorithm;
3302 if (coeff == 0)
3303 return CONST0_RTX (mode);
3305 /* Special case powers of two. */
3306 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3308 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3309 return expand_shift (LSHIFT_EXPR, mode, op0,
3310 floor_log2 (coeff), target, unsignedp);
3313 /* Exclude cost of op0 from max_cost to match the cost
3314 calculation of the synth_mult. */
3315 max_cost = mul_widen_cost (speed, mode);
3316 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3317 max_cost))
3319 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3320 return expand_mult_const (mode, op0, coeff, target,
3321 &algorithm, variant);
3324 return expand_binop (mode, this_optab, op0, op1, target,
3325 unsignedp, OPTAB_LIB_WIDEN);
3328 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3329 replace division by D, and put the least significant N bits of the result
3330 in *MULTIPLIER_PTR and return the most significant bit.
3332 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3333 needed precision is in PRECISION (should be <= N).
3335 PRECISION should be as small as possible so this function can choose
3336 multiplier more freely.
3338 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3339 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3341 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3342 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3344 unsigned HOST_WIDE_INT
3345 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3346 unsigned HOST_WIDE_INT *multiplier_ptr,
3347 int *post_shift_ptr, int *lgup_ptr)
3349 int lgup, post_shift;
3350 int pow, pow2;
3352 /* lgup = ceil(log2(divisor)); */
3353 lgup = ceil_log2 (d);
3355 gcc_assert (lgup <= n);
3357 pow = n + lgup;
3358 pow2 = n + lgup - precision;
3360 /* mlow = 2^(N + lgup)/d */
3361 wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
3362 wide_int mlow = wi::udiv_trunc (val, d);
3364 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3365 val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
3366 wide_int mhigh = wi::udiv_trunc (val, d);
3368 /* If precision == N, then mlow, mhigh exceed 2^N
3369 (but they do not exceed 2^(N+1)). */
3371 /* Reduce to lowest terms. */
3372 for (post_shift = lgup; post_shift > 0; post_shift--)
3374 unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
3375 HOST_BITS_PER_WIDE_INT);
3376 unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
3377 HOST_BITS_PER_WIDE_INT);
3378 if (ml_lo >= mh_lo)
3379 break;
3381 mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
3382 mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
3385 *post_shift_ptr = post_shift;
3386 *lgup_ptr = lgup;
3387 if (n < HOST_BITS_PER_WIDE_INT)
3389 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3390 *multiplier_ptr = mhigh.to_uhwi () & mask;
3391 return mhigh.to_uhwi () >= mask;
3393 else
3395 *multiplier_ptr = mhigh.to_uhwi ();
3396 return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
3400 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3401 congruent to 1 (mod 2**N). */
3403 static unsigned HOST_WIDE_INT
3404 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3406 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3408 /* The algorithm notes that the choice y = x satisfies
3409 x*y == 1 mod 2^3, since x is assumed odd.
3410 Each iteration doubles the number of bits of significance in y. */
3412 unsigned HOST_WIDE_INT mask;
3413 unsigned HOST_WIDE_INT y = x;
3414 int nbit = 3;
3416 mask = (n == HOST_BITS_PER_WIDE_INT
3417 ? ~(unsigned HOST_WIDE_INT) 0
3418 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3420 while (nbit < n)
3422 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3423 nbit *= 2;
3425 return y;
3428 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3429 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3430 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3431 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3432 become signed.
3434 The result is put in TARGET if that is convenient.
3436 MODE is the mode of operation. */
3439 expand_mult_highpart_adjust (machine_mode mode, rtx adj_operand, rtx op0,
3440 rtx op1, rtx target, int unsignedp)
3442 rtx tem;
3443 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3445 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3446 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3447 tem = expand_and (mode, tem, op1, NULL_RTX);
3448 adj_operand
3449 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3450 adj_operand);
3452 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3453 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3454 tem = expand_and (mode, tem, op0, NULL_RTX);
3455 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3456 target);
3458 return target;
3461 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3463 static rtx
3464 extract_high_half (machine_mode mode, rtx op)
3466 machine_mode wider_mode;
3468 if (mode == word_mode)
3469 return gen_highpart (mode, op);
3471 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3473 wider_mode = GET_MODE_WIDER_MODE (mode);
3474 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3475 GET_MODE_BITSIZE (mode), 0, 1);
3476 return convert_modes (mode, wider_mode, op, 0);
3479 /* Like expmed_mult_highpart, but only consider using a multiplication
3480 optab. OP1 is an rtx for the constant operand. */
3482 static rtx
3483 expmed_mult_highpart_optab (machine_mode mode, rtx op0, rtx op1,
3484 rtx target, int unsignedp, int max_cost)
3486 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3487 machine_mode wider_mode;
3488 optab moptab;
3489 rtx tem;
3490 int size;
3491 bool speed = optimize_insn_for_speed_p ();
3493 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3495 wider_mode = GET_MODE_WIDER_MODE (mode);
3496 size = GET_MODE_BITSIZE (mode);
3498 /* Firstly, try using a multiplication insn that only generates the needed
3499 high part of the product, and in the sign flavor of unsignedp. */
3500 if (mul_highpart_cost (speed, mode) < max_cost)
3502 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3503 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3504 unsignedp, OPTAB_DIRECT);
3505 if (tem)
3506 return tem;
3509 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3510 Need to adjust the result after the multiplication. */
3511 if (size - 1 < BITS_PER_WORD
3512 && (mul_highpart_cost (speed, mode)
3513 + 2 * shift_cost (speed, mode, size-1)
3514 + 4 * add_cost (speed, mode) < max_cost))
3516 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3517 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3518 unsignedp, OPTAB_DIRECT);
3519 if (tem)
3520 /* We used the wrong signedness. Adjust the result. */
3521 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3522 tem, unsignedp);
3525 /* Try widening multiplication. */
3526 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3527 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3528 && mul_widen_cost (speed, wider_mode) < max_cost)
3530 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3531 unsignedp, OPTAB_WIDEN);
3532 if (tem)
3533 return extract_high_half (mode, tem);
3536 /* Try widening the mode and perform a non-widening multiplication. */
3537 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3538 && size - 1 < BITS_PER_WORD
3539 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3540 < max_cost))
3542 rtx_insn *insns;
3543 rtx wop0, wop1;
3545 /* We need to widen the operands, for example to ensure the
3546 constant multiplier is correctly sign or zero extended.
3547 Use a sequence to clean-up any instructions emitted by
3548 the conversions if things don't work out. */
3549 start_sequence ();
3550 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3551 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3552 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3553 unsignedp, OPTAB_WIDEN);
3554 insns = get_insns ();
3555 end_sequence ();
3557 if (tem)
3559 emit_insn (insns);
3560 return extract_high_half (mode, tem);
3564 /* Try widening multiplication of opposite signedness, and adjust. */
3565 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3566 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3567 && size - 1 < BITS_PER_WORD
3568 && (mul_widen_cost (speed, wider_mode)
3569 + 2 * shift_cost (speed, mode, size-1)
3570 + 4 * add_cost (speed, mode) < max_cost))
3572 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3573 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3574 if (tem != 0)
3576 tem = extract_high_half (mode, tem);
3577 /* We used the wrong signedness. Adjust the result. */
3578 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3579 target, unsignedp);
3583 return 0;
3586 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3587 putting the high half of the result in TARGET if that is convenient,
3588 and return where the result is. If the operation can not be performed,
3589 0 is returned.
3591 MODE is the mode of operation and result.
3593 UNSIGNEDP nonzero means unsigned multiply.
3595 MAX_COST is the total allowed cost for the expanded RTL. */
3597 static rtx
3598 expmed_mult_highpart (machine_mode mode, rtx op0, rtx op1,
3599 rtx target, int unsignedp, int max_cost)
3601 machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3602 unsigned HOST_WIDE_INT cnst1;
3603 int extra_cost;
3604 bool sign_adjust = false;
3605 enum mult_variant variant;
3606 struct algorithm alg;
3607 rtx tem;
3608 bool speed = optimize_insn_for_speed_p ();
3610 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3611 /* We can't support modes wider than HOST_BITS_PER_INT. */
3612 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3614 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3616 /* We can't optimize modes wider than BITS_PER_WORD.
3617 ??? We might be able to perform double-word arithmetic if
3618 mode == word_mode, however all the cost calculations in
3619 synth_mult etc. assume single-word operations. */
3620 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3621 return expmed_mult_highpart_optab (mode, op0, op1, target,
3622 unsignedp, max_cost);
3624 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3626 /* Check whether we try to multiply by a negative constant. */
3627 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3629 sign_adjust = true;
3630 extra_cost += add_cost (speed, mode);
3633 /* See whether shift/add multiplication is cheap enough. */
3634 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3635 max_cost - extra_cost))
3637 /* See whether the specialized multiplication optabs are
3638 cheaper than the shift/add version. */
3639 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3640 alg.cost.cost + extra_cost);
3641 if (tem)
3642 return tem;
3644 tem = convert_to_mode (wider_mode, op0, unsignedp);
3645 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3646 tem = extract_high_half (mode, tem);
3648 /* Adjust result for signedness. */
3649 if (sign_adjust)
3650 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3652 return tem;
3654 return expmed_mult_highpart_optab (mode, op0, op1, target,
3655 unsignedp, max_cost);
3659 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3661 static rtx
3662 expand_smod_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3664 rtx result, temp, shift;
3665 rtx_code_label *label;
3666 int logd;
3667 int prec = GET_MODE_PRECISION (mode);
3669 logd = floor_log2 (d);
3670 result = gen_reg_rtx (mode);
3672 /* Avoid conditional branches when they're expensive. */
3673 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3674 && optimize_insn_for_speed_p ())
3676 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3677 mode, 0, -1);
3678 if (signmask)
3680 HOST_WIDE_INT masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3681 signmask = force_reg (mode, signmask);
3682 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3684 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3685 which instruction sequence to use. If logical right shifts
3686 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3687 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3689 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3690 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3691 || (set_src_cost (temp, mode, optimize_insn_for_speed_p ())
3692 > COSTS_N_INSNS (2)))
3694 temp = expand_binop (mode, xor_optab, op0, signmask,
3695 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3696 temp = expand_binop (mode, sub_optab, temp, signmask,
3697 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3698 temp = expand_binop (mode, and_optab, temp,
3699 gen_int_mode (masklow, mode),
3700 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3701 temp = expand_binop (mode, xor_optab, temp, signmask,
3702 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3703 temp = expand_binop (mode, sub_optab, temp, signmask,
3704 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3706 else
3708 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3709 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3710 signmask = force_reg (mode, signmask);
3712 temp = expand_binop (mode, add_optab, op0, signmask,
3713 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3714 temp = expand_binop (mode, and_optab, temp,
3715 gen_int_mode (masklow, mode),
3716 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3717 temp = expand_binop (mode, sub_optab, temp, signmask,
3718 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3720 return temp;
3724 /* Mask contains the mode's signbit and the significant bits of the
3725 modulus. By including the signbit in the operation, many targets
3726 can avoid an explicit compare operation in the following comparison
3727 against zero. */
3728 wide_int mask = wi::mask (logd, false, prec);
3729 mask = wi::set_bit (mask, prec - 1);
3731 temp = expand_binop (mode, and_optab, op0,
3732 immed_wide_int_const (mask, mode),
3733 result, 1, OPTAB_LIB_WIDEN);
3734 if (temp != result)
3735 emit_move_insn (result, temp);
3737 label = gen_label_rtx ();
3738 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3740 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3741 0, OPTAB_LIB_WIDEN);
3743 mask = wi::mask (logd, true, prec);
3744 temp = expand_binop (mode, ior_optab, temp,
3745 immed_wide_int_const (mask, mode),
3746 result, 1, OPTAB_LIB_WIDEN);
3747 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3748 0, OPTAB_LIB_WIDEN);
3749 if (temp != result)
3750 emit_move_insn (result, temp);
3751 emit_label (label);
3752 return result;
3755 /* Expand signed division of OP0 by a power of two D in mode MODE.
3756 This routine is only called for positive values of D. */
3758 static rtx
3759 expand_sdiv_pow2 (machine_mode mode, rtx op0, HOST_WIDE_INT d)
3761 rtx temp;
3762 rtx_code_label *label;
3763 int logd;
3765 logd = floor_log2 (d);
3767 if (d == 2
3768 && BRANCH_COST (optimize_insn_for_speed_p (),
3769 false) >= 1)
3771 temp = gen_reg_rtx (mode);
3772 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3773 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3774 0, OPTAB_LIB_WIDEN);
3775 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3778 if (HAVE_conditional_move
3779 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
3781 rtx temp2;
3783 start_sequence ();
3784 temp2 = copy_to_mode_reg (mode, op0);
3785 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
3786 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3787 temp = force_reg (mode, temp);
3789 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3790 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3791 mode, temp, temp2, mode, 0);
3792 if (temp2)
3794 rtx_insn *seq = get_insns ();
3795 end_sequence ();
3796 emit_insn (seq);
3797 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
3799 end_sequence ();
3802 if (BRANCH_COST (optimize_insn_for_speed_p (),
3803 false) >= 2)
3805 int ushift = GET_MODE_BITSIZE (mode) - logd;
3807 temp = gen_reg_rtx (mode);
3808 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3809 if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
3810 || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
3811 > COSTS_N_INSNS (1))
3812 temp = expand_binop (mode, and_optab, temp, gen_int_mode (d - 1, mode),
3813 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3814 else
3815 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3816 ushift, NULL_RTX, 1);
3817 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3818 0, OPTAB_LIB_WIDEN);
3819 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3822 label = gen_label_rtx ();
3823 temp = copy_to_mode_reg (mode, op0);
3824 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3825 expand_inc (temp, gen_int_mode (d - 1, mode));
3826 emit_label (label);
3827 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3830 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3831 if that is convenient, and returning where the result is.
3832 You may request either the quotient or the remainder as the result;
3833 specify REM_FLAG nonzero to get the remainder.
3835 CODE is the expression code for which kind of division this is;
3836 it controls how rounding is done. MODE is the machine mode to use.
3837 UNSIGNEDP nonzero means do unsigned division. */
3839 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3840 and then correct it by or'ing in missing high bits
3841 if result of ANDI is nonzero.
3842 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3843 This could optimize to a bfexts instruction.
3844 But C doesn't use these operations, so their optimizations are
3845 left for later. */
3846 /* ??? For modulo, we don't actually need the highpart of the first product,
3847 the low part will do nicely. And for small divisors, the second multiply
3848 can also be a low-part only multiply or even be completely left out.
3849 E.g. to calculate the remainder of a division by 3 with a 32 bit
3850 multiply, multiply with 0x55555556 and extract the upper two bits;
3851 the result is exact for inputs up to 0x1fffffff.
3852 The input range can be reduced by using cross-sum rules.
3853 For odd divisors >= 3, the following table gives right shift counts
3854 so that if a number is shifted by an integer multiple of the given
3855 amount, the remainder stays the same:
3856 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3857 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3858 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3859 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3860 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3862 Cross-sum rules for even numbers can be derived by leaving as many bits
3863 to the right alone as the divisor has zeros to the right.
3864 E.g. if x is an unsigned 32 bit number:
3865 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3869 expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
3870 rtx op0, rtx op1, rtx target, int unsignedp)
3872 machine_mode compute_mode;
3873 rtx tquotient;
3874 rtx quotient = 0, remainder = 0;
3875 rtx_insn *last;
3876 int size;
3877 rtx_insn *insn;
3878 optab optab1, optab2;
3879 int op1_is_constant, op1_is_pow2 = 0;
3880 int max_cost, extra_cost;
3881 static HOST_WIDE_INT last_div_const = 0;
3882 bool speed = optimize_insn_for_speed_p ();
3884 op1_is_constant = CONST_INT_P (op1);
3885 if (op1_is_constant)
3887 unsigned HOST_WIDE_INT ext_op1 = UINTVAL (op1);
3888 if (unsignedp)
3889 ext_op1 &= GET_MODE_MASK (mode);
3890 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3891 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3895 This is the structure of expand_divmod:
3897 First comes code to fix up the operands so we can perform the operations
3898 correctly and efficiently.
3900 Second comes a switch statement with code specific for each rounding mode.
3901 For some special operands this code emits all RTL for the desired
3902 operation, for other cases, it generates only a quotient and stores it in
3903 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3904 to indicate that it has not done anything.
3906 Last comes code that finishes the operation. If QUOTIENT is set and
3907 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3908 QUOTIENT is not set, it is computed using trunc rounding.
3910 We try to generate special code for division and remainder when OP1 is a
3911 constant. If |OP1| = 2**n we can use shifts and some other fast
3912 operations. For other values of OP1, we compute a carefully selected
3913 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3914 by m.
3916 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3917 half of the product. Different strategies for generating the product are
3918 implemented in expmed_mult_highpart.
3920 If what we actually want is the remainder, we generate that by another
3921 by-constant multiplication and a subtraction. */
3923 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3924 code below will malfunction if we are, so check here and handle
3925 the special case if so. */
3926 if (op1 == const1_rtx)
3927 return rem_flag ? const0_rtx : op0;
3929 /* When dividing by -1, we could get an overflow.
3930 negv_optab can handle overflows. */
3931 if (! unsignedp && op1 == constm1_rtx)
3933 if (rem_flag)
3934 return const0_rtx;
3935 return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
3936 ? negv_optab : neg_optab, op0, target, 0);
3939 if (target
3940 /* Don't use the function value register as a target
3941 since we have to read it as well as write it,
3942 and function-inlining gets confused by this. */
3943 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3944 /* Don't clobber an operand while doing a multi-step calculation. */
3945 || ((rem_flag || op1_is_constant)
3946 && (reg_mentioned_p (target, op0)
3947 || (MEM_P (op0) && MEM_P (target))))
3948 || reg_mentioned_p (target, op1)
3949 || (MEM_P (op1) && MEM_P (target))))
3950 target = 0;
3952 /* Get the mode in which to perform this computation. Normally it will
3953 be MODE, but sometimes we can't do the desired operation in MODE.
3954 If so, pick a wider mode in which we can do the operation. Convert
3955 to that mode at the start to avoid repeated conversions.
3957 First see what operations we need. These depend on the expression
3958 we are evaluating. (We assume that divxx3 insns exist under the
3959 same conditions that modxx3 insns and that these insns don't normally
3960 fail. If these assumptions are not correct, we may generate less
3961 efficient code in some cases.)
3963 Then see if we find a mode in which we can open-code that operation
3964 (either a division, modulus, or shift). Finally, check for the smallest
3965 mode for which we can do the operation with a library call. */
3967 /* We might want to refine this now that we have division-by-constant
3968 optimization. Since expmed_mult_highpart tries so many variants, it is
3969 not straightforward to generalize this. Maybe we should make an array
3970 of possible modes in init_expmed? Save this for GCC 2.7. */
3972 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3973 ? (unsignedp ? lshr_optab : ashr_optab)
3974 : (unsignedp ? udiv_optab : sdiv_optab));
3975 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3976 ? optab1
3977 : (unsignedp ? udivmod_optab : sdivmod_optab));
3979 for (compute_mode = mode; compute_mode != VOIDmode;
3980 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3981 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
3982 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
3983 break;
3985 if (compute_mode == VOIDmode)
3986 for (compute_mode = mode; compute_mode != VOIDmode;
3987 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3988 if (optab_libfunc (optab1, compute_mode)
3989 || optab_libfunc (optab2, compute_mode))
3990 break;
3992 /* If we still couldn't find a mode, use MODE, but expand_binop will
3993 probably die. */
3994 if (compute_mode == VOIDmode)
3995 compute_mode = mode;
3997 if (target && GET_MODE (target) == compute_mode)
3998 tquotient = target;
3999 else
4000 tquotient = gen_reg_rtx (compute_mode);
4002 size = GET_MODE_BITSIZE (compute_mode);
4003 #if 0
4004 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4005 (mode), and thereby get better code when OP1 is a constant. Do that
4006 later. It will require going over all usages of SIZE below. */
4007 size = GET_MODE_BITSIZE (mode);
4008 #endif
4010 /* Only deduct something for a REM if the last divide done was
4011 for a different constant. Then set the constant of the last
4012 divide. */
4013 max_cost = (unsignedp
4014 ? udiv_cost (speed, compute_mode)
4015 : sdiv_cost (speed, compute_mode));
4016 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4017 && INTVAL (op1) == last_div_const))
4018 max_cost -= (mul_cost (speed, compute_mode)
4019 + add_cost (speed, compute_mode));
4021 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
4023 /* Now convert to the best mode to use. */
4024 if (compute_mode != mode)
4026 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
4027 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
4029 /* convert_modes may have placed op1 into a register, so we
4030 must recompute the following. */
4031 op1_is_constant = CONST_INT_P (op1);
4032 op1_is_pow2 = (op1_is_constant
4033 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4034 || (! unsignedp
4035 && EXACT_POWER_OF_2_OR_ZERO_P (-UINTVAL (op1))))));
4038 /* If one of the operands is a volatile MEM, copy it into a register. */
4040 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4041 op0 = force_reg (compute_mode, op0);
4042 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4043 op1 = force_reg (compute_mode, op1);
4045 /* If we need the remainder or if OP1 is constant, we need to
4046 put OP0 in a register in case it has any queued subexpressions. */
4047 if (rem_flag || op1_is_constant)
4048 op0 = force_reg (compute_mode, op0);
4050 last = get_last_insn ();
4052 /* Promote floor rounding to trunc rounding for unsigned operations. */
4053 if (unsignedp)
4055 if (code == FLOOR_DIV_EXPR)
4056 code = TRUNC_DIV_EXPR;
4057 if (code == FLOOR_MOD_EXPR)
4058 code = TRUNC_MOD_EXPR;
4059 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4060 code = TRUNC_DIV_EXPR;
4063 if (op1 != const0_rtx)
4064 switch (code)
4066 case TRUNC_MOD_EXPR:
4067 case TRUNC_DIV_EXPR:
4068 if (op1_is_constant)
4070 if (unsignedp)
4072 unsigned HOST_WIDE_INT mh, ml;
4073 int pre_shift, post_shift;
4074 int dummy;
4075 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4076 & GET_MODE_MASK (compute_mode));
4078 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4080 pre_shift = floor_log2 (d);
4081 if (rem_flag)
4083 unsigned HOST_WIDE_INT mask
4084 = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4085 remainder
4086 = expand_binop (compute_mode, and_optab, op0,
4087 gen_int_mode (mask, compute_mode),
4088 remainder, 1,
4089 OPTAB_LIB_WIDEN);
4090 if (remainder)
4091 return gen_lowpart (mode, remainder);
4093 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4094 pre_shift, tquotient, 1);
4096 else if (size <= HOST_BITS_PER_WIDE_INT)
4098 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4100 /* Most significant bit of divisor is set; emit an scc
4101 insn. */
4102 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4103 compute_mode, 1, 1);
4105 else
4107 /* Find a suitable multiplier and right shift count
4108 instead of multiplying with D. */
4110 mh = choose_multiplier (d, size, size,
4111 &ml, &post_shift, &dummy);
4113 /* If the suggested multiplier is more than SIZE bits,
4114 we can do better for even divisors, using an
4115 initial right shift. */
4116 if (mh != 0 && (d & 1) == 0)
4118 pre_shift = floor_log2 (d & -d);
4119 mh = choose_multiplier (d >> pre_shift, size,
4120 size - pre_shift,
4121 &ml, &post_shift, &dummy);
4122 gcc_assert (!mh);
4124 else
4125 pre_shift = 0;
4127 if (mh != 0)
4129 rtx t1, t2, t3, t4;
4131 if (post_shift - 1 >= BITS_PER_WORD)
4132 goto fail1;
4134 extra_cost
4135 = (shift_cost (speed, compute_mode, post_shift - 1)
4136 + shift_cost (speed, compute_mode, 1)
4137 + 2 * add_cost (speed, compute_mode));
4138 t1 = expmed_mult_highpart
4139 (compute_mode, op0,
4140 gen_int_mode (ml, compute_mode),
4141 NULL_RTX, 1, max_cost - extra_cost);
4142 if (t1 == 0)
4143 goto fail1;
4144 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4145 op0, t1),
4146 NULL_RTX);
4147 t3 = expand_shift (RSHIFT_EXPR, compute_mode,
4148 t2, 1, NULL_RTX, 1);
4149 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4150 t1, t3),
4151 NULL_RTX);
4152 quotient = expand_shift
4153 (RSHIFT_EXPR, compute_mode, t4,
4154 post_shift - 1, tquotient, 1);
4156 else
4158 rtx t1, t2;
4160 if (pre_shift >= BITS_PER_WORD
4161 || post_shift >= BITS_PER_WORD)
4162 goto fail1;
4164 t1 = expand_shift
4165 (RSHIFT_EXPR, compute_mode, op0,
4166 pre_shift, NULL_RTX, 1);
4167 extra_cost
4168 = (shift_cost (speed, compute_mode, pre_shift)
4169 + shift_cost (speed, compute_mode, post_shift));
4170 t2 = expmed_mult_highpart
4171 (compute_mode, t1,
4172 gen_int_mode (ml, compute_mode),
4173 NULL_RTX, 1, max_cost - extra_cost);
4174 if (t2 == 0)
4175 goto fail1;
4176 quotient = expand_shift
4177 (RSHIFT_EXPR, compute_mode, t2,
4178 post_shift, tquotient, 1);
4182 else /* Too wide mode to use tricky code */
4183 break;
4185 insn = get_last_insn ();
4186 if (insn != last)
4187 set_dst_reg_note (insn, REG_EQUAL,
4188 gen_rtx_UDIV (compute_mode, op0, op1),
4189 quotient);
4191 else /* TRUNC_DIV, signed */
4193 unsigned HOST_WIDE_INT ml;
4194 int lgup, post_shift;
4195 rtx mlr;
4196 HOST_WIDE_INT d = INTVAL (op1);
4197 unsigned HOST_WIDE_INT abs_d;
4199 /* Since d might be INT_MIN, we have to cast to
4200 unsigned HOST_WIDE_INT before negating to avoid
4201 undefined signed overflow. */
4202 abs_d = (d >= 0
4203 ? (unsigned HOST_WIDE_INT) d
4204 : - (unsigned HOST_WIDE_INT) d);
4206 /* n rem d = n rem -d */
4207 if (rem_flag && d < 0)
4209 d = abs_d;
4210 op1 = gen_int_mode (abs_d, compute_mode);
4213 if (d == 1)
4214 quotient = op0;
4215 else if (d == -1)
4216 quotient = expand_unop (compute_mode, neg_optab, op0,
4217 tquotient, 0);
4218 else if (HOST_BITS_PER_WIDE_INT >= size
4219 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4221 /* This case is not handled correctly below. */
4222 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4223 compute_mode, 1, 1);
4224 if (quotient == 0)
4225 goto fail1;
4227 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4228 && (rem_flag
4229 ? smod_pow2_cheap (speed, compute_mode)
4230 : sdiv_pow2_cheap (speed, compute_mode))
4231 /* We assume that cheap metric is true if the
4232 optab has an expander for this mode. */
4233 && ((optab_handler ((rem_flag ? smod_optab
4234 : sdiv_optab),
4235 compute_mode)
4236 != CODE_FOR_nothing)
4237 || (optab_handler (sdivmod_optab,
4238 compute_mode)
4239 != CODE_FOR_nothing)))
4241 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4243 if (rem_flag)
4245 remainder = expand_smod_pow2 (compute_mode, op0, d);
4246 if (remainder)
4247 return gen_lowpart (mode, remainder);
4250 if (sdiv_pow2_cheap (speed, compute_mode)
4251 && ((optab_handler (sdiv_optab, compute_mode)
4252 != CODE_FOR_nothing)
4253 || (optab_handler (sdivmod_optab, compute_mode)
4254 != CODE_FOR_nothing)))
4255 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4256 compute_mode, op0,
4257 gen_int_mode (abs_d,
4258 compute_mode),
4259 NULL_RTX, 0);
4260 else
4261 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4263 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4264 negate the quotient. */
4265 if (d < 0)
4267 insn = get_last_insn ();
4268 if (insn != last
4269 && abs_d < ((unsigned HOST_WIDE_INT) 1
4270 << (HOST_BITS_PER_WIDE_INT - 1)))
4271 set_dst_reg_note (insn, REG_EQUAL,
4272 gen_rtx_DIV (compute_mode, op0,
4273 gen_int_mode
4274 (abs_d,
4275 compute_mode)),
4276 quotient);
4278 quotient = expand_unop (compute_mode, neg_optab,
4279 quotient, quotient, 0);
4282 else if (size <= HOST_BITS_PER_WIDE_INT)
4284 choose_multiplier (abs_d, size, size - 1,
4285 &ml, &post_shift, &lgup);
4286 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4288 rtx t1, t2, t3;
4290 if (post_shift >= BITS_PER_WORD
4291 || size - 1 >= BITS_PER_WORD)
4292 goto fail1;
4294 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4295 + shift_cost (speed, compute_mode, size - 1)
4296 + add_cost (speed, compute_mode));
4297 t1 = expmed_mult_highpart
4298 (compute_mode, op0, gen_int_mode (ml, compute_mode),
4299 NULL_RTX, 0, max_cost - extra_cost);
4300 if (t1 == 0)
4301 goto fail1;
4302 t2 = expand_shift
4303 (RSHIFT_EXPR, compute_mode, t1,
4304 post_shift, NULL_RTX, 0);
4305 t3 = expand_shift
4306 (RSHIFT_EXPR, compute_mode, op0,
4307 size - 1, NULL_RTX, 0);
4308 if (d < 0)
4309 quotient
4310 = force_operand (gen_rtx_MINUS (compute_mode,
4311 t3, t2),
4312 tquotient);
4313 else
4314 quotient
4315 = force_operand (gen_rtx_MINUS (compute_mode,
4316 t2, t3),
4317 tquotient);
4319 else
4321 rtx t1, t2, t3, t4;
4323 if (post_shift >= BITS_PER_WORD
4324 || size - 1 >= BITS_PER_WORD)
4325 goto fail1;
4327 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4328 mlr = gen_int_mode (ml, compute_mode);
4329 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4330 + shift_cost (speed, compute_mode, size - 1)
4331 + 2 * add_cost (speed, compute_mode));
4332 t1 = expmed_mult_highpart (compute_mode, op0, mlr,
4333 NULL_RTX, 0,
4334 max_cost - extra_cost);
4335 if (t1 == 0)
4336 goto fail1;
4337 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4338 t1, op0),
4339 NULL_RTX);
4340 t3 = expand_shift
4341 (RSHIFT_EXPR, compute_mode, t2,
4342 post_shift, NULL_RTX, 0);
4343 t4 = expand_shift
4344 (RSHIFT_EXPR, compute_mode, op0,
4345 size - 1, NULL_RTX, 0);
4346 if (d < 0)
4347 quotient
4348 = force_operand (gen_rtx_MINUS (compute_mode,
4349 t4, t3),
4350 tquotient);
4351 else
4352 quotient
4353 = force_operand (gen_rtx_MINUS (compute_mode,
4354 t3, t4),
4355 tquotient);
4358 else /* Too wide mode to use tricky code */
4359 break;
4361 insn = get_last_insn ();
4362 if (insn != last)
4363 set_dst_reg_note (insn, REG_EQUAL,
4364 gen_rtx_DIV (compute_mode, op0, op1),
4365 quotient);
4367 break;
4369 fail1:
4370 delete_insns_since (last);
4371 break;
4373 case FLOOR_DIV_EXPR:
4374 case FLOOR_MOD_EXPR:
4375 /* We will come here only for signed operations. */
4376 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4378 unsigned HOST_WIDE_INT mh, ml;
4379 int pre_shift, lgup, post_shift;
4380 HOST_WIDE_INT d = INTVAL (op1);
4382 if (d > 0)
4384 /* We could just as easily deal with negative constants here,
4385 but it does not seem worth the trouble for GCC 2.6. */
4386 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4388 pre_shift = floor_log2 (d);
4389 if (rem_flag)
4391 unsigned HOST_WIDE_INT mask
4392 = ((unsigned HOST_WIDE_INT) 1 << pre_shift) - 1;
4393 remainder = expand_binop
4394 (compute_mode, and_optab, op0,
4395 gen_int_mode (mask, compute_mode),
4396 remainder, 0, OPTAB_LIB_WIDEN);
4397 if (remainder)
4398 return gen_lowpart (mode, remainder);
4400 quotient = expand_shift
4401 (RSHIFT_EXPR, compute_mode, op0,
4402 pre_shift, tquotient, 0);
4404 else
4406 rtx t1, t2, t3, t4;
4408 mh = choose_multiplier (d, size, size - 1,
4409 &ml, &post_shift, &lgup);
4410 gcc_assert (!mh);
4412 if (post_shift < BITS_PER_WORD
4413 && size - 1 < BITS_PER_WORD)
4415 t1 = expand_shift
4416 (RSHIFT_EXPR, compute_mode, op0,
4417 size - 1, NULL_RTX, 0);
4418 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4419 NULL_RTX, 0, OPTAB_WIDEN);
4420 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4421 + shift_cost (speed, compute_mode, size - 1)
4422 + 2 * add_cost (speed, compute_mode));
4423 t3 = expmed_mult_highpart
4424 (compute_mode, t2, gen_int_mode (ml, compute_mode),
4425 NULL_RTX, 1, max_cost - extra_cost);
4426 if (t3 != 0)
4428 t4 = expand_shift
4429 (RSHIFT_EXPR, compute_mode, t3,
4430 post_shift, NULL_RTX, 1);
4431 quotient = expand_binop (compute_mode, xor_optab,
4432 t4, t1, tquotient, 0,
4433 OPTAB_WIDEN);
4438 else
4440 rtx nsign, t1, t2, t3, t4;
4441 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4442 op0, constm1_rtx), NULL_RTX);
4443 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4444 0, OPTAB_WIDEN);
4445 nsign = expand_shift
4446 (RSHIFT_EXPR, compute_mode, t2,
4447 size - 1, NULL_RTX, 0);
4448 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4449 NULL_RTX);
4450 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4451 NULL_RTX, 0);
4452 if (t4)
4454 rtx t5;
4455 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4456 NULL_RTX, 0);
4457 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4458 t4, t5),
4459 tquotient);
4464 if (quotient != 0)
4465 break;
4466 delete_insns_since (last);
4468 /* Try using an instruction that produces both the quotient and
4469 remainder, using truncation. We can easily compensate the quotient
4470 or remainder to get floor rounding, once we have the remainder.
4471 Notice that we compute also the final remainder value here,
4472 and return the result right away. */
4473 if (target == 0 || GET_MODE (target) != compute_mode)
4474 target = gen_reg_rtx (compute_mode);
4476 if (rem_flag)
4478 remainder
4479 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4480 quotient = gen_reg_rtx (compute_mode);
4482 else
4484 quotient
4485 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4486 remainder = gen_reg_rtx (compute_mode);
4489 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4490 quotient, remainder, 0))
4492 /* This could be computed with a branch-less sequence.
4493 Save that for later. */
4494 rtx tem;
4495 rtx_code_label *label = gen_label_rtx ();
4496 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4497 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4498 NULL_RTX, 0, OPTAB_WIDEN);
4499 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4500 expand_dec (quotient, const1_rtx);
4501 expand_inc (remainder, op1);
4502 emit_label (label);
4503 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4506 /* No luck with division elimination or divmod. Have to do it
4507 by conditionally adjusting op0 *and* the result. */
4509 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4510 rtx adjusted_op0;
4511 rtx tem;
4513 quotient = gen_reg_rtx (compute_mode);
4514 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4515 label1 = gen_label_rtx ();
4516 label2 = gen_label_rtx ();
4517 label3 = gen_label_rtx ();
4518 label4 = gen_label_rtx ();
4519 label5 = gen_label_rtx ();
4520 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4521 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4522 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4523 quotient, 0, OPTAB_LIB_WIDEN);
4524 if (tem != quotient)
4525 emit_move_insn (quotient, tem);
4526 emit_jump_insn (targetm.gen_jump (label5));
4527 emit_barrier ();
4528 emit_label (label1);
4529 expand_inc (adjusted_op0, const1_rtx);
4530 emit_jump_insn (targetm.gen_jump (label4));
4531 emit_barrier ();
4532 emit_label (label2);
4533 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4534 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4535 quotient, 0, OPTAB_LIB_WIDEN);
4536 if (tem != quotient)
4537 emit_move_insn (quotient, tem);
4538 emit_jump_insn (targetm.gen_jump (label5));
4539 emit_barrier ();
4540 emit_label (label3);
4541 expand_dec (adjusted_op0, const1_rtx);
4542 emit_label (label4);
4543 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4544 quotient, 0, OPTAB_LIB_WIDEN);
4545 if (tem != quotient)
4546 emit_move_insn (quotient, tem);
4547 expand_dec (quotient, const1_rtx);
4548 emit_label (label5);
4550 break;
4552 case CEIL_DIV_EXPR:
4553 case CEIL_MOD_EXPR:
4554 if (unsignedp)
4556 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4558 rtx t1, t2, t3;
4559 unsigned HOST_WIDE_INT d = INTVAL (op1);
4560 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4561 floor_log2 (d), tquotient, 1);
4562 t2 = expand_binop (compute_mode, and_optab, op0,
4563 gen_int_mode (d - 1, compute_mode),
4564 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4565 t3 = gen_reg_rtx (compute_mode);
4566 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4567 compute_mode, 1, 1);
4568 if (t3 == 0)
4570 rtx_code_label *lab;
4571 lab = gen_label_rtx ();
4572 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4573 expand_inc (t1, const1_rtx);
4574 emit_label (lab);
4575 quotient = t1;
4577 else
4578 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4579 t1, t3),
4580 tquotient);
4581 break;
4584 /* Try using an instruction that produces both the quotient and
4585 remainder, using truncation. We can easily compensate the
4586 quotient or remainder to get ceiling rounding, once we have the
4587 remainder. Notice that we compute also the final remainder
4588 value here, and return the result right away. */
4589 if (target == 0 || GET_MODE (target) != compute_mode)
4590 target = gen_reg_rtx (compute_mode);
4592 if (rem_flag)
4594 remainder = (REG_P (target)
4595 ? target : gen_reg_rtx (compute_mode));
4596 quotient = gen_reg_rtx (compute_mode);
4598 else
4600 quotient = (REG_P (target)
4601 ? target : gen_reg_rtx (compute_mode));
4602 remainder = gen_reg_rtx (compute_mode);
4605 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4606 remainder, 1))
4608 /* This could be computed with a branch-less sequence.
4609 Save that for later. */
4610 rtx_code_label *label = gen_label_rtx ();
4611 do_cmp_and_jump (remainder, const0_rtx, EQ,
4612 compute_mode, label);
4613 expand_inc (quotient, const1_rtx);
4614 expand_dec (remainder, op1);
4615 emit_label (label);
4616 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4619 /* No luck with division elimination or divmod. Have to do it
4620 by conditionally adjusting op0 *and* the result. */
4622 rtx_code_label *label1, *label2;
4623 rtx adjusted_op0, tem;
4625 quotient = gen_reg_rtx (compute_mode);
4626 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4627 label1 = gen_label_rtx ();
4628 label2 = gen_label_rtx ();
4629 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4630 compute_mode, label1);
4631 emit_move_insn (quotient, const0_rtx);
4632 emit_jump_insn (targetm.gen_jump (label2));
4633 emit_barrier ();
4634 emit_label (label1);
4635 expand_dec (adjusted_op0, const1_rtx);
4636 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4637 quotient, 1, OPTAB_LIB_WIDEN);
4638 if (tem != quotient)
4639 emit_move_insn (quotient, tem);
4640 expand_inc (quotient, const1_rtx);
4641 emit_label (label2);
4644 else /* signed */
4646 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4647 && INTVAL (op1) >= 0)
4649 /* This is extremely similar to the code for the unsigned case
4650 above. For 2.7 we should merge these variants, but for
4651 2.6.1 I don't want to touch the code for unsigned since that
4652 get used in C. The signed case will only be used by other
4653 languages (Ada). */
4655 rtx t1, t2, t3;
4656 unsigned HOST_WIDE_INT d = INTVAL (op1);
4657 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4658 floor_log2 (d), tquotient, 0);
4659 t2 = expand_binop (compute_mode, and_optab, op0,
4660 gen_int_mode (d - 1, compute_mode),
4661 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4662 t3 = gen_reg_rtx (compute_mode);
4663 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4664 compute_mode, 1, 1);
4665 if (t3 == 0)
4667 rtx_code_label *lab;
4668 lab = gen_label_rtx ();
4669 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4670 expand_inc (t1, const1_rtx);
4671 emit_label (lab);
4672 quotient = t1;
4674 else
4675 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4676 t1, t3),
4677 tquotient);
4678 break;
4681 /* Try using an instruction that produces both the quotient and
4682 remainder, using truncation. We can easily compensate the
4683 quotient or remainder to get ceiling rounding, once we have the
4684 remainder. Notice that we compute also the final remainder
4685 value here, and return the result right away. */
4686 if (target == 0 || GET_MODE (target) != compute_mode)
4687 target = gen_reg_rtx (compute_mode);
4688 if (rem_flag)
4690 remainder= (REG_P (target)
4691 ? target : gen_reg_rtx (compute_mode));
4692 quotient = gen_reg_rtx (compute_mode);
4694 else
4696 quotient = (REG_P (target)
4697 ? target : gen_reg_rtx (compute_mode));
4698 remainder = gen_reg_rtx (compute_mode);
4701 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4702 remainder, 0))
4704 /* This could be computed with a branch-less sequence.
4705 Save that for later. */
4706 rtx tem;
4707 rtx_code_label *label = gen_label_rtx ();
4708 do_cmp_and_jump (remainder, const0_rtx, EQ,
4709 compute_mode, label);
4710 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4711 NULL_RTX, 0, OPTAB_WIDEN);
4712 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4713 expand_inc (quotient, const1_rtx);
4714 expand_dec (remainder, op1);
4715 emit_label (label);
4716 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4719 /* No luck with division elimination or divmod. Have to do it
4720 by conditionally adjusting op0 *and* the result. */
4722 rtx_code_label *label1, *label2, *label3, *label4, *label5;
4723 rtx adjusted_op0;
4724 rtx tem;
4726 quotient = gen_reg_rtx (compute_mode);
4727 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4728 label1 = gen_label_rtx ();
4729 label2 = gen_label_rtx ();
4730 label3 = gen_label_rtx ();
4731 label4 = gen_label_rtx ();
4732 label5 = gen_label_rtx ();
4733 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4734 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4735 compute_mode, label1);
4736 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4737 quotient, 0, OPTAB_LIB_WIDEN);
4738 if (tem != quotient)
4739 emit_move_insn (quotient, tem);
4740 emit_jump_insn (targetm.gen_jump (label5));
4741 emit_barrier ();
4742 emit_label (label1);
4743 expand_dec (adjusted_op0, const1_rtx);
4744 emit_jump_insn (targetm.gen_jump (label4));
4745 emit_barrier ();
4746 emit_label (label2);
4747 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4748 compute_mode, label3);
4749 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4750 quotient, 0, OPTAB_LIB_WIDEN);
4751 if (tem != quotient)
4752 emit_move_insn (quotient, tem);
4753 emit_jump_insn (targetm.gen_jump (label5));
4754 emit_barrier ();
4755 emit_label (label3);
4756 expand_inc (adjusted_op0, const1_rtx);
4757 emit_label (label4);
4758 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4759 quotient, 0, OPTAB_LIB_WIDEN);
4760 if (tem != quotient)
4761 emit_move_insn (quotient, tem);
4762 expand_inc (quotient, const1_rtx);
4763 emit_label (label5);
4766 break;
4768 case EXACT_DIV_EXPR:
4769 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4771 HOST_WIDE_INT d = INTVAL (op1);
4772 unsigned HOST_WIDE_INT ml;
4773 int pre_shift;
4774 rtx t1;
4776 pre_shift = floor_log2 (d & -d);
4777 ml = invert_mod2n (d >> pre_shift, size);
4778 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4779 pre_shift, NULL_RTX, unsignedp);
4780 quotient = expand_mult (compute_mode, t1,
4781 gen_int_mode (ml, compute_mode),
4782 NULL_RTX, 1);
4784 insn = get_last_insn ();
4785 set_dst_reg_note (insn, REG_EQUAL,
4786 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4787 compute_mode, op0, op1),
4788 quotient);
4790 break;
4792 case ROUND_DIV_EXPR:
4793 case ROUND_MOD_EXPR:
4794 if (unsignedp)
4796 rtx tem;
4797 rtx_code_label *label;
4798 label = gen_label_rtx ();
4799 quotient = gen_reg_rtx (compute_mode);
4800 remainder = gen_reg_rtx (compute_mode);
4801 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4803 rtx tem;
4804 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4805 quotient, 1, OPTAB_LIB_WIDEN);
4806 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4807 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4808 remainder, 1, OPTAB_LIB_WIDEN);
4810 tem = plus_constant (compute_mode, op1, -1);
4811 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem, 1, NULL_RTX, 1);
4812 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4813 expand_inc (quotient, const1_rtx);
4814 expand_dec (remainder, op1);
4815 emit_label (label);
4817 else
4819 rtx abs_rem, abs_op1, tem, mask;
4820 rtx_code_label *label;
4821 label = gen_label_rtx ();
4822 quotient = gen_reg_rtx (compute_mode);
4823 remainder = gen_reg_rtx (compute_mode);
4824 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4826 rtx tem;
4827 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4828 quotient, 0, OPTAB_LIB_WIDEN);
4829 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4830 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4831 remainder, 0, OPTAB_LIB_WIDEN);
4833 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4834 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4835 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4836 1, NULL_RTX, 1);
4837 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4838 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4839 NULL_RTX, 0, OPTAB_WIDEN);
4840 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4841 size - 1, NULL_RTX, 0);
4842 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4843 NULL_RTX, 0, OPTAB_WIDEN);
4844 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4845 NULL_RTX, 0, OPTAB_WIDEN);
4846 expand_inc (quotient, tem);
4847 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4848 NULL_RTX, 0, OPTAB_WIDEN);
4849 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4850 NULL_RTX, 0, OPTAB_WIDEN);
4851 expand_dec (remainder, tem);
4852 emit_label (label);
4854 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4856 default:
4857 gcc_unreachable ();
4860 if (quotient == 0)
4862 if (target && GET_MODE (target) != compute_mode)
4863 target = 0;
4865 if (rem_flag)
4867 /* Try to produce the remainder without producing the quotient.
4868 If we seem to have a divmod pattern that does not require widening,
4869 don't try widening here. We should really have a WIDEN argument
4870 to expand_twoval_binop, since what we'd really like to do here is
4871 1) try a mod insn in compute_mode
4872 2) try a divmod insn in compute_mode
4873 3) try a div insn in compute_mode and multiply-subtract to get
4874 remainder
4875 4) try the same things with widening allowed. */
4876 remainder
4877 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4878 op0, op1, target,
4879 unsignedp,
4880 ((optab_handler (optab2, compute_mode)
4881 != CODE_FOR_nothing)
4882 ? OPTAB_DIRECT : OPTAB_WIDEN));
4883 if (remainder == 0)
4885 /* No luck there. Can we do remainder and divide at once
4886 without a library call? */
4887 remainder = gen_reg_rtx (compute_mode);
4888 if (! expand_twoval_binop ((unsignedp
4889 ? udivmod_optab
4890 : sdivmod_optab),
4891 op0, op1,
4892 NULL_RTX, remainder, unsignedp))
4893 remainder = 0;
4896 if (remainder)
4897 return gen_lowpart (mode, remainder);
4900 /* Produce the quotient. Try a quotient insn, but not a library call.
4901 If we have a divmod in this mode, use it in preference to widening
4902 the div (for this test we assume it will not fail). Note that optab2
4903 is set to the one of the two optabs that the call below will use. */
4904 quotient
4905 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4906 op0, op1, rem_flag ? NULL_RTX : target,
4907 unsignedp,
4908 ((optab_handler (optab2, compute_mode)
4909 != CODE_FOR_nothing)
4910 ? OPTAB_DIRECT : OPTAB_WIDEN));
4912 if (quotient == 0)
4914 /* No luck there. Try a quotient-and-remainder insn,
4915 keeping the quotient alone. */
4916 quotient = gen_reg_rtx (compute_mode);
4917 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4918 op0, op1,
4919 quotient, NULL_RTX, unsignedp))
4921 quotient = 0;
4922 if (! rem_flag)
4923 /* Still no luck. If we are not computing the remainder,
4924 use a library call for the quotient. */
4925 quotient = sign_expand_binop (compute_mode,
4926 udiv_optab, sdiv_optab,
4927 op0, op1, target,
4928 unsignedp, OPTAB_LIB_WIDEN);
4933 if (rem_flag)
4935 if (target && GET_MODE (target) != compute_mode)
4936 target = 0;
4938 if (quotient == 0)
4940 /* No divide instruction either. Use library for remainder. */
4941 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4942 op0, op1, target,
4943 unsignedp, OPTAB_LIB_WIDEN);
4944 /* No remainder function. Try a quotient-and-remainder
4945 function, keeping the remainder. */
4946 if (!remainder)
4948 remainder = gen_reg_rtx (compute_mode);
4949 if (!expand_twoval_binop_libfunc
4950 (unsignedp ? udivmod_optab : sdivmod_optab,
4951 op0, op1,
4952 NULL_RTX, remainder,
4953 unsignedp ? UMOD : MOD))
4954 remainder = NULL_RTX;
4957 else
4959 /* We divided. Now finish doing X - Y * (X / Y). */
4960 remainder = expand_mult (compute_mode, quotient, op1,
4961 NULL_RTX, unsignedp);
4962 remainder = expand_binop (compute_mode, sub_optab, op0,
4963 remainder, target, unsignedp,
4964 OPTAB_LIB_WIDEN);
4968 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4971 /* Return a tree node with data type TYPE, describing the value of X.
4972 Usually this is an VAR_DECL, if there is no obvious better choice.
4973 X may be an expression, however we only support those expressions
4974 generated by loop.c. */
4976 tree
4977 make_tree (tree type, rtx x)
4979 tree t;
4981 switch (GET_CODE (x))
4983 case CONST_INT:
4984 case CONST_WIDE_INT:
4985 t = wide_int_to_tree (type, std::make_pair (x, TYPE_MODE (type)));
4986 return t;
4988 case CONST_DOUBLE:
4989 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
4990 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
4991 t = wide_int_to_tree (type,
4992 wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
4993 HOST_BITS_PER_WIDE_INT * 2));
4994 else
4995 t = build_real (type, *CONST_DOUBLE_REAL_VALUE (x));
4997 return t;
4999 case CONST_VECTOR:
5001 int units = CONST_VECTOR_NUNITS (x);
5002 tree itype = TREE_TYPE (type);
5003 tree *elts;
5004 int i;
5006 /* Build a tree with vector elements. */
5007 elts = XALLOCAVEC (tree, units);
5008 for (i = units - 1; i >= 0; --i)
5010 rtx elt = CONST_VECTOR_ELT (x, i);
5011 elts[i] = make_tree (itype, elt);
5014 return build_vector (type, elts);
5017 case PLUS:
5018 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5019 make_tree (type, XEXP (x, 1)));
5021 case MINUS:
5022 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5023 make_tree (type, XEXP (x, 1)));
5025 case NEG:
5026 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
5028 case MULT:
5029 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5030 make_tree (type, XEXP (x, 1)));
5032 case ASHIFT:
5033 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5034 make_tree (type, XEXP (x, 1)));
5036 case LSHIFTRT:
5037 t = unsigned_type_for (type);
5038 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5039 make_tree (t, XEXP (x, 0)),
5040 make_tree (type, XEXP (x, 1))));
5042 case ASHIFTRT:
5043 t = signed_type_for (type);
5044 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5045 make_tree (t, XEXP (x, 0)),
5046 make_tree (type, XEXP (x, 1))));
5048 case DIV:
5049 if (TREE_CODE (type) != REAL_TYPE)
5050 t = signed_type_for (type);
5051 else
5052 t = type;
5054 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5055 make_tree (t, XEXP (x, 0)),
5056 make_tree (t, XEXP (x, 1))));
5057 case UDIV:
5058 t = unsigned_type_for (type);
5059 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5060 make_tree (t, XEXP (x, 0)),
5061 make_tree (t, XEXP (x, 1))));
5063 case SIGN_EXTEND:
5064 case ZERO_EXTEND:
5065 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5066 GET_CODE (x) == ZERO_EXTEND);
5067 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5069 case CONST:
5070 return make_tree (type, XEXP (x, 0));
5072 case SYMBOL_REF:
5073 t = SYMBOL_REF_DECL (x);
5074 if (t)
5075 return fold_convert (type, build_fold_addr_expr (t));
5076 /* else fall through. */
5078 default:
5079 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5081 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5082 address mode to pointer mode. */
5083 if (POINTER_TYPE_P (type))
5084 x = convert_memory_address_addr_space
5085 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5087 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5088 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5089 t->decl_with_rtl.rtl = x;
5091 return t;
5095 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5096 and returning TARGET.
5098 If TARGET is 0, a pseudo-register or constant is returned. */
5101 expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
5103 rtx tem = 0;
5105 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5106 tem = simplify_binary_operation (AND, mode, op0, op1);
5107 if (tem == 0)
5108 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5110 if (target == 0)
5111 target = tem;
5112 else if (tem != target)
5113 emit_move_insn (target, tem);
5114 return target;
5117 /* Helper function for emit_store_flag. */
5119 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5120 machine_mode mode, machine_mode compare_mode,
5121 int unsignedp, rtx x, rtx y, int normalizep,
5122 machine_mode target_mode)
5124 struct expand_operand ops[4];
5125 rtx op0, comparison, subtarget;
5126 rtx_insn *last;
5127 machine_mode result_mode = targetm.cstore_mode (icode);
5129 last = get_last_insn ();
5130 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5131 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5132 if (!x || !y)
5134 delete_insns_since (last);
5135 return NULL_RTX;
5138 if (target_mode == VOIDmode)
5139 target_mode = result_mode;
5140 if (!target)
5141 target = gen_reg_rtx (target_mode);
5143 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5145 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5146 create_fixed_operand (&ops[1], comparison);
5147 create_fixed_operand (&ops[2], x);
5148 create_fixed_operand (&ops[3], y);
5149 if (!maybe_expand_insn (icode, 4, ops))
5151 delete_insns_since (last);
5152 return NULL_RTX;
5154 subtarget = ops[0].value;
5156 /* If we are converting to a wider mode, first convert to
5157 TARGET_MODE, then normalize. This produces better combining
5158 opportunities on machines that have a SIGN_EXTRACT when we are
5159 testing a single bit. This mostly benefits the 68k.
5161 If STORE_FLAG_VALUE does not have the sign bit set when
5162 interpreted in MODE, we can do this conversion as unsigned, which
5163 is usually more efficient. */
5164 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5166 convert_move (target, subtarget,
5167 val_signbit_known_clear_p (result_mode,
5168 STORE_FLAG_VALUE));
5169 op0 = target;
5170 result_mode = target_mode;
5172 else
5173 op0 = subtarget;
5175 /* If we want to keep subexpressions around, don't reuse our last
5176 target. */
5177 if (optimize)
5178 subtarget = 0;
5180 /* Now normalize to the proper value in MODE. Sometimes we don't
5181 have to do anything. */
5182 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5184 /* STORE_FLAG_VALUE might be the most negative number, so write
5185 the comparison this way to avoid a compiler-time warning. */
5186 else if (- normalizep == STORE_FLAG_VALUE)
5187 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5189 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5190 it hard to use a value of just the sign bit due to ANSI integer
5191 constant typing rules. */
5192 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5193 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5194 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5195 normalizep == 1);
5196 else
5198 gcc_assert (STORE_FLAG_VALUE & 1);
5200 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5201 if (normalizep == -1)
5202 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5205 /* If we were converting to a smaller mode, do the conversion now. */
5206 if (target_mode != result_mode)
5208 convert_move (target, op0, 0);
5209 return target;
5211 else
5212 return op0;
5216 /* A subroutine of emit_store_flag only including "tricks" that do not
5217 need a recursive call. These are kept separate to avoid infinite
5218 loops. */
5220 static rtx
5221 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5222 machine_mode mode, int unsignedp, int normalizep,
5223 machine_mode target_mode)
5225 rtx subtarget;
5226 enum insn_code icode;
5227 machine_mode compare_mode;
5228 enum mode_class mclass;
5229 enum rtx_code scode;
5231 if (unsignedp)
5232 code = unsigned_condition (code);
5233 scode = swap_condition (code);
5235 /* If one operand is constant, make it the second one. Only do this
5236 if the other operand is not constant as well. */
5238 if (swap_commutative_operands_p (op0, op1))
5240 std::swap (op0, op1);
5241 code = swap_condition (code);
5244 if (mode == VOIDmode)
5245 mode = GET_MODE (op0);
5247 /* For some comparisons with 1 and -1, we can convert this to
5248 comparisons with zero. This will often produce more opportunities for
5249 store-flag insns. */
5251 switch (code)
5253 case LT:
5254 if (op1 == const1_rtx)
5255 op1 = const0_rtx, code = LE;
5256 break;
5257 case LE:
5258 if (op1 == constm1_rtx)
5259 op1 = const0_rtx, code = LT;
5260 break;
5261 case GE:
5262 if (op1 == const1_rtx)
5263 op1 = const0_rtx, code = GT;
5264 break;
5265 case GT:
5266 if (op1 == constm1_rtx)
5267 op1 = const0_rtx, code = GE;
5268 break;
5269 case GEU:
5270 if (op1 == const1_rtx)
5271 op1 = const0_rtx, code = NE;
5272 break;
5273 case LTU:
5274 if (op1 == const1_rtx)
5275 op1 = const0_rtx, code = EQ;
5276 break;
5277 default:
5278 break;
5281 /* If we are comparing a double-word integer with zero or -1, we can
5282 convert the comparison into one involving a single word. */
5283 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5284 && GET_MODE_CLASS (mode) == MODE_INT
5285 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5287 rtx tem;
5288 if ((code == EQ || code == NE)
5289 && (op1 == const0_rtx || op1 == constm1_rtx))
5291 rtx op00, op01;
5293 /* Do a logical OR or AND of the two words and compare the
5294 result. */
5295 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5296 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5297 tem = expand_binop (word_mode,
5298 op1 == const0_rtx ? ior_optab : and_optab,
5299 op00, op01, NULL_RTX, unsignedp,
5300 OPTAB_DIRECT);
5302 if (tem != 0)
5303 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5304 unsignedp, normalizep);
5306 else if ((code == LT || code == GE) && op1 == const0_rtx)
5308 rtx op0h;
5310 /* If testing the sign bit, can just test on high word. */
5311 op0h = simplify_gen_subreg (word_mode, op0, mode,
5312 subreg_highpart_offset (word_mode,
5313 mode));
5314 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5315 unsignedp, normalizep);
5317 else
5318 tem = NULL_RTX;
5320 if (tem)
5322 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5323 return tem;
5324 if (!target)
5325 target = gen_reg_rtx (target_mode);
5327 convert_move (target, tem,
5328 !val_signbit_known_set_p (word_mode,
5329 (normalizep ? normalizep
5330 : STORE_FLAG_VALUE)));
5331 return target;
5335 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5336 complement of A (for GE) and shifting the sign bit to the low bit. */
5337 if (op1 == const0_rtx && (code == LT || code == GE)
5338 && GET_MODE_CLASS (mode) == MODE_INT
5339 && (normalizep || STORE_FLAG_VALUE == 1
5340 || val_signbit_p (mode, STORE_FLAG_VALUE)))
5342 subtarget = target;
5344 if (!target)
5345 target_mode = mode;
5347 /* If the result is to be wider than OP0, it is best to convert it
5348 first. If it is to be narrower, it is *incorrect* to convert it
5349 first. */
5350 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5352 op0 = convert_modes (target_mode, mode, op0, 0);
5353 mode = target_mode;
5356 if (target_mode != mode)
5357 subtarget = 0;
5359 if (code == GE)
5360 op0 = expand_unop (mode, one_cmpl_optab, op0,
5361 ((STORE_FLAG_VALUE == 1 || normalizep)
5362 ? 0 : subtarget), 0);
5364 if (STORE_FLAG_VALUE == 1 || normalizep)
5365 /* If we are supposed to produce a 0/1 value, we want to do
5366 a logical shift from the sign bit to the low-order bit; for
5367 a -1/0 value, we do an arithmetic shift. */
5368 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5369 GET_MODE_BITSIZE (mode) - 1,
5370 subtarget, normalizep != -1);
5372 if (mode != target_mode)
5373 op0 = convert_modes (target_mode, mode, op0, 0);
5375 return op0;
5378 mclass = GET_MODE_CLASS (mode);
5379 for (compare_mode = mode; compare_mode != VOIDmode;
5380 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5382 machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5383 icode = optab_handler (cstore_optab, optab_mode);
5384 if (icode != CODE_FOR_nothing)
5386 do_pending_stack_adjust ();
5387 rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
5388 unsignedp, op0, op1, normalizep, target_mode);
5389 if (tem)
5390 return tem;
5392 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5394 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5395 unsignedp, op1, op0, normalizep, target_mode);
5396 if (tem)
5397 return tem;
5399 break;
5403 return 0;
5406 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5407 and storing in TARGET. Normally return TARGET.
5408 Return 0 if that cannot be done.
5410 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5411 it is VOIDmode, they cannot both be CONST_INT.
5413 UNSIGNEDP is for the case where we have to widen the operands
5414 to perform the operation. It says to use zero-extension.
5416 NORMALIZEP is 1 if we should convert the result to be either zero
5417 or one. Normalize is -1 if we should convert the result to be
5418 either zero or -1. If NORMALIZEP is zero, the result will be left
5419 "raw" out of the scc insn. */
5422 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5423 machine_mode mode, int unsignedp, int normalizep)
5425 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5426 enum rtx_code rcode;
5427 rtx subtarget;
5428 rtx tem, trueval;
5429 rtx_insn *last;
5431 /* If we compare constants, we shouldn't use a store-flag operation,
5432 but a constant load. We can get there via the vanilla route that
5433 usually generates a compare-branch sequence, but will in this case
5434 fold the comparison to a constant, and thus elide the branch. */
5435 if (CONSTANT_P (op0) && CONSTANT_P (op1))
5436 return NULL_RTX;
5438 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5439 target_mode);
5440 if (tem)
5441 return tem;
5443 /* If we reached here, we can't do this with a scc insn, however there
5444 are some comparisons that can be done in other ways. Don't do any
5445 of these cases if branches are very cheap. */
5446 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5447 return 0;
5449 /* See what we need to return. We can only return a 1, -1, or the
5450 sign bit. */
5452 if (normalizep == 0)
5454 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5455 normalizep = STORE_FLAG_VALUE;
5457 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
5459 else
5460 return 0;
5463 last = get_last_insn ();
5465 /* If optimizing, use different pseudo registers for each insn, instead
5466 of reusing the same pseudo. This leads to better CSE, but slows
5467 down the compiler, since there are more pseudos */
5468 subtarget = (!optimize
5469 && (target_mode == mode)) ? target : NULL_RTX;
5470 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5472 /* For floating-point comparisons, try the reverse comparison or try
5473 changing the "orderedness" of the comparison. */
5474 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5476 enum rtx_code first_code;
5477 bool and_them;
5479 rcode = reverse_condition_maybe_unordered (code);
5480 if (can_compare_p (rcode, mode, ccp_store_flag)
5481 && (code == ORDERED || code == UNORDERED
5482 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5483 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5485 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5486 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5488 /* For the reverse comparison, use either an addition or a XOR. */
5489 if (want_add
5490 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5491 optimize_insn_for_speed_p ()) == 0)
5493 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5494 STORE_FLAG_VALUE, target_mode);
5495 if (tem)
5496 return expand_binop (target_mode, add_optab, tem,
5497 gen_int_mode (normalizep, target_mode),
5498 target, 0, OPTAB_WIDEN);
5500 else if (!want_add
5501 && rtx_cost (trueval, mode, XOR, 1,
5502 optimize_insn_for_speed_p ()) == 0)
5504 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5505 normalizep, target_mode);
5506 if (tem)
5507 return expand_binop (target_mode, xor_optab, tem, trueval,
5508 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5512 delete_insns_since (last);
5514 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5515 if (code == ORDERED || code == UNORDERED)
5516 return 0;
5518 and_them = split_comparison (code, mode, &first_code, &code);
5520 /* If there are no NaNs, the first comparison should always fall through.
5521 Effectively change the comparison to the other one. */
5522 if (!HONOR_NANS (mode))
5524 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5525 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5526 target_mode);
5529 if (!HAVE_conditional_move)
5530 return 0;
5532 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5533 conditional move. */
5534 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5535 normalizep, target_mode);
5536 if (tem == 0)
5537 return 0;
5539 if (and_them)
5540 tem = emit_conditional_move (target, code, op0, op1, mode,
5541 tem, const0_rtx, GET_MODE (tem), 0);
5542 else
5543 tem = emit_conditional_move (target, code, op0, op1, mode,
5544 trueval, tem, GET_MODE (tem), 0);
5546 if (tem == 0)
5547 delete_insns_since (last);
5548 return tem;
5551 /* The remaining tricks only apply to integer comparisons. */
5553 if (GET_MODE_CLASS (mode) != MODE_INT)
5554 return 0;
5556 /* If this is an equality comparison of integers, we can try to exclusive-or
5557 (or subtract) the two operands and use a recursive call to try the
5558 comparison with zero. Don't do any of these cases if branches are
5559 very cheap. */
5561 if ((code == EQ || code == NE) && op1 != const0_rtx)
5563 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5564 OPTAB_WIDEN);
5566 if (tem == 0)
5567 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5568 OPTAB_WIDEN);
5569 if (tem != 0)
5570 tem = emit_store_flag (target, code, tem, const0_rtx,
5571 mode, unsignedp, normalizep);
5572 if (tem != 0)
5573 return tem;
5575 delete_insns_since (last);
5578 /* For integer comparisons, try the reverse comparison. However, for
5579 small X and if we'd have anyway to extend, implementing "X != 0"
5580 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5581 rcode = reverse_condition (code);
5582 if (can_compare_p (rcode, mode, ccp_store_flag)
5583 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5584 && code == NE
5585 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5586 && op1 == const0_rtx))
5588 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5589 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5591 /* Again, for the reverse comparison, use either an addition or a XOR. */
5592 if (want_add
5593 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
5594 optimize_insn_for_speed_p ()) == 0)
5596 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5597 STORE_FLAG_VALUE, target_mode);
5598 if (tem != 0)
5599 tem = expand_binop (target_mode, add_optab, tem,
5600 gen_int_mode (normalizep, target_mode),
5601 target, 0, OPTAB_WIDEN);
5603 else if (!want_add
5604 && rtx_cost (trueval, mode, XOR, 1,
5605 optimize_insn_for_speed_p ()) == 0)
5607 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5608 normalizep, target_mode);
5609 if (tem != 0)
5610 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5611 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5614 if (tem != 0)
5615 return tem;
5616 delete_insns_since (last);
5619 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5620 the constant zero. Reject all other comparisons at this point. Only
5621 do LE and GT if branches are expensive since they are expensive on
5622 2-operand machines. */
5624 if (op1 != const0_rtx
5625 || (code != EQ && code != NE
5626 && (BRANCH_COST (optimize_insn_for_speed_p (),
5627 false) <= 1 || (code != LE && code != GT))))
5628 return 0;
5630 /* Try to put the result of the comparison in the sign bit. Assume we can't
5631 do the necessary operation below. */
5633 tem = 0;
5635 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5636 the sign bit set. */
5638 if (code == LE)
5640 /* This is destructive, so SUBTARGET can't be OP0. */
5641 if (rtx_equal_p (subtarget, op0))
5642 subtarget = 0;
5644 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5645 OPTAB_WIDEN);
5646 if (tem)
5647 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5648 OPTAB_WIDEN);
5651 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5652 number of bits in the mode of OP0, minus one. */
5654 if (code == GT)
5656 if (rtx_equal_p (subtarget, op0))
5657 subtarget = 0;
5659 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5660 GET_MODE_BITSIZE (mode) - 1,
5661 subtarget, 0);
5662 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5663 OPTAB_WIDEN);
5666 if (code == EQ || code == NE)
5668 /* For EQ or NE, one way to do the comparison is to apply an operation
5669 that converts the operand into a positive number if it is nonzero
5670 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5671 for NE we negate. This puts the result in the sign bit. Then we
5672 normalize with a shift, if needed.
5674 Two operations that can do the above actions are ABS and FFS, so try
5675 them. If that doesn't work, and MODE is smaller than a full word,
5676 we can use zero-extension to the wider mode (an unsigned conversion)
5677 as the operation. */
5679 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5680 that is compensated by the subsequent overflow when subtracting
5681 one / negating. */
5683 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5684 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5685 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5686 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5687 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5689 tem = convert_modes (word_mode, mode, op0, 1);
5690 mode = word_mode;
5693 if (tem != 0)
5695 if (code == EQ)
5696 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5697 0, OPTAB_WIDEN);
5698 else
5699 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5702 /* If we couldn't do it that way, for NE we can "or" the two's complement
5703 of the value with itself. For EQ, we take the one's complement of
5704 that "or", which is an extra insn, so we only handle EQ if branches
5705 are expensive. */
5707 if (tem == 0
5708 && (code == NE
5709 || BRANCH_COST (optimize_insn_for_speed_p (),
5710 false) > 1))
5712 if (rtx_equal_p (subtarget, op0))
5713 subtarget = 0;
5715 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5716 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5717 OPTAB_WIDEN);
5719 if (tem && code == EQ)
5720 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5724 if (tem && normalizep)
5725 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5726 GET_MODE_BITSIZE (mode) - 1,
5727 subtarget, normalizep == 1);
5729 if (tem)
5731 if (!target)
5733 else if (GET_MODE (tem) != target_mode)
5735 convert_move (target, tem, 0);
5736 tem = target;
5738 else if (!subtarget)
5740 emit_move_insn (target, tem);
5741 tem = target;
5744 else
5745 delete_insns_since (last);
5747 return tem;
5750 /* Like emit_store_flag, but always succeeds. */
5753 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5754 machine_mode mode, int unsignedp, int normalizep)
5756 rtx tem;
5757 rtx_code_label *label;
5758 rtx trueval, falseval;
5760 /* First see if emit_store_flag can do the job. */
5761 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5762 if (tem != 0)
5763 return tem;
5765 if (!target)
5766 target = gen_reg_rtx (word_mode);
5768 /* If this failed, we have to do this with set/compare/jump/set code.
5769 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5770 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5771 if (code == NE
5772 && GET_MODE_CLASS (mode) == MODE_INT
5773 && REG_P (target)
5774 && op0 == target
5775 && op1 == const0_rtx)
5777 label = gen_label_rtx ();
5778 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
5779 NULL_RTX, NULL, label, -1);
5780 emit_move_insn (target, trueval);
5781 emit_label (label);
5782 return target;
5785 if (!REG_P (target)
5786 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5787 target = gen_reg_rtx (GET_MODE (target));
5789 /* Jump in the right direction if the target cannot implement CODE
5790 but can jump on its reverse condition. */
5791 falseval = const0_rtx;
5792 if (! can_compare_p (code, mode, ccp_jump)
5793 && (! FLOAT_MODE_P (mode)
5794 || code == ORDERED || code == UNORDERED
5795 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5796 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5798 enum rtx_code rcode;
5799 if (FLOAT_MODE_P (mode))
5800 rcode = reverse_condition_maybe_unordered (code);
5801 else
5802 rcode = reverse_condition (code);
5804 /* Canonicalize to UNORDERED for the libcall. */
5805 if (can_compare_p (rcode, mode, ccp_jump)
5806 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5808 falseval = trueval;
5809 trueval = const0_rtx;
5810 code = rcode;
5814 emit_move_insn (target, trueval);
5815 label = gen_label_rtx ();
5816 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
5817 label, -1);
5819 emit_move_insn (target, falseval);
5820 emit_label (label);
5822 return target;
5825 /* Perform possibly multi-word comparison and conditional jump to LABEL
5826 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5827 now a thin wrapper around do_compare_rtx_and_jump. */
5829 static void
5830 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
5831 rtx_code_label *label)
5833 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5834 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
5835 NULL, label, -1);