1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2018 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep integer_nonzerop
30 real_zerop real_onep real_minus_onep
33 tree_expr_nonnegative_p
40 (define_operator_list tcc_comparison
41 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
42 (define_operator_list inverted_tcc_comparison
43 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
44 (define_operator_list inverted_tcc_comparison_with_nans
45 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
46 (define_operator_list swapped_tcc_comparison
47 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
48 (define_operator_list simple_comparison lt le eq ne ge gt)
49 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
51 #include "cfn-operators.pd"
53 /* Define operand lists for math rounding functions {,i,l,ll}FN,
54 where the versions prefixed with "i" return an int, those prefixed with
55 "l" return a long and those prefixed with "ll" return a long long.
57 Also define operand lists:
59 X<FN>F for all float functions, in the order i, l, ll
60 X<FN> for all double functions, in the same order
61 X<FN>L for all long double functions, in the same order. */
62 #define DEFINE_INT_AND_FLOAT_ROUND_FN(FN) \
63 (define_operator_list X##FN##F BUILT_IN_I##FN##F \
66 (define_operator_list X##FN BUILT_IN_I##FN \
69 (define_operator_list X##FN##L BUILT_IN_I##FN##L \
73 DEFINE_INT_AND_FLOAT_ROUND_FN (FLOOR)
74 DEFINE_INT_AND_FLOAT_ROUND_FN (CEIL)
75 DEFINE_INT_AND_FLOAT_ROUND_FN (ROUND)
76 DEFINE_INT_AND_FLOAT_ROUND_FN (RINT)
78 /* As opposed to convert?, this still creates a single pattern, so
79 it is not a suitable replacement for convert? in all cases. */
80 (match (nop_convert @0)
82 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))))
83 (match (nop_convert @0)
85 (if (VECTOR_TYPE_P (type) && VECTOR_TYPE_P (TREE_TYPE (@0))
86 && known_eq (TYPE_VECTOR_SUBPARTS (type),
87 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0)))
88 && tree_nop_conversion_p (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
89 /* This one has to be last, or it shadows the others. */
90 (match (nop_convert @0)
93 /* Simplifications of operations with one constant operand and
94 simplifications to constants or single values. */
96 (for op (plus pointer_plus minus bit_ior bit_xor)
101 /* 0 +p index -> (type)index */
103 (pointer_plus integer_zerop @1)
104 (non_lvalue (convert @1)))
106 /* ptr - 0 -> (type)ptr */
108 (pointer_diff @0 integer_zerop)
111 /* See if ARG1 is zero and X + ARG1 reduces to X.
112 Likewise if the operands are reversed. */
114 (plus:c @0 real_zerop@1)
115 (if (fold_real_zero_addition_p (type, @1, 0))
118 /* See if ARG1 is zero and X - ARG1 reduces to X. */
120 (minus @0 real_zerop@1)
121 (if (fold_real_zero_addition_p (type, @1, 1))
125 This is unsafe for certain floats even in non-IEEE formats.
126 In IEEE, it is unsafe because it does wrong for NaNs.
127 Also note that operand_equal_p is always false if an operand
131 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
132 { build_zero_cst (type); }))
134 (pointer_diff @@0 @0)
135 { build_zero_cst (type); })
138 (mult @0 integer_zerop@1)
141 /* Maybe fold x * 0 to 0. The expressions aren't the same
142 when x is NaN, since x * 0 is also NaN. Nor are they the
143 same in modes with signed zeros, since multiplying a
144 negative value by 0 gives -0, not +0. */
146 (mult @0 real_zerop@1)
147 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
150 /* In IEEE floating point, x*1 is not equivalent to x for snans.
151 Likewise for complex arithmetic with signed zeros. */
154 (if (!HONOR_SNANS (type)
155 && (!HONOR_SIGNED_ZEROS (type)
156 || !COMPLEX_FLOAT_TYPE_P (type)))
159 /* Transform x * -1.0 into -x. */
161 (mult @0 real_minus_onep)
162 (if (!HONOR_SNANS (type)
163 && (!HONOR_SIGNED_ZEROS (type)
164 || !COMPLEX_FLOAT_TYPE_P (type)))
167 (for cmp (gt ge lt le)
168 outp (convert convert negate negate)
169 outn (negate negate convert convert)
170 /* Transform (X > 0.0 ? 1.0 : -1.0) into copysign(1, X). */
171 /* Transform (X >= 0.0 ? 1.0 : -1.0) into copysign(1, X). */
172 /* Transform (X < 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
173 /* Transform (X <= 0.0 ? 1.0 : -1.0) into copysign(1,-X). */
175 (cond (cmp @0 real_zerop) real_onep@1 real_minus_onep)
176 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
177 && types_match (type, TREE_TYPE (@0)))
179 (if (types_match (type, float_type_node))
180 (BUILT_IN_COPYSIGNF @1 (outp @0)))
181 (if (types_match (type, double_type_node))
182 (BUILT_IN_COPYSIGN @1 (outp @0)))
183 (if (types_match (type, long_double_type_node))
184 (BUILT_IN_COPYSIGNL @1 (outp @0))))))
185 /* Transform (X > 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
186 /* Transform (X >= 0.0 ? -1.0 : 1.0) into copysign(1,-X). */
187 /* Transform (X < 0.0 ? -1.0 : 1.0) into copysign(1,X). */
188 /* Transform (X <= 0.0 ? -1.0 : 1.0) into copysign(1,X). */
190 (cond (cmp @0 real_zerop) real_minus_onep real_onep@1)
191 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type)
192 && types_match (type, TREE_TYPE (@0)))
194 (if (types_match (type, float_type_node))
195 (BUILT_IN_COPYSIGNF @1 (outn @0)))
196 (if (types_match (type, double_type_node))
197 (BUILT_IN_COPYSIGN @1 (outn @0)))
198 (if (types_match (type, long_double_type_node))
199 (BUILT_IN_COPYSIGNL @1 (outn @0)))))))
201 /* Transform X * copysign (1.0, X) into abs(X). */
203 (mult:c @0 (COPYSIGN_ALL real_onep @0))
204 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
207 /* Transform X * copysign (1.0, -X) into -abs(X). */
209 (mult:c @0 (COPYSIGN_ALL real_onep (negate @0)))
210 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
213 /* Transform copysign (CST, X) into copysign (ABS(CST), X). */
215 (COPYSIGN_ALL REAL_CST@0 @1)
216 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@0)))
217 (COPYSIGN_ALL (negate @0) @1)))
219 /* X * 1, X / 1 -> X. */
220 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
225 /* (A / (1 << B)) -> (A >> B).
226 Only for unsigned A. For signed A, this would not preserve rounding
228 For example: (-1 / ( 1 << B)) != -1 >> B. */
230 (trunc_div @0 (lshift integer_onep@1 @2))
231 (if ((TYPE_UNSIGNED (type) || tree_expr_nonnegative_p (@0))
232 && (!VECTOR_TYPE_P (type)
233 || target_supports_op_p (type, RSHIFT_EXPR, optab_vector)
234 || target_supports_op_p (type, RSHIFT_EXPR, optab_scalar)))
237 /* Preserve explicit divisions by 0: the C++ front-end wants to detect
238 undefined behavior in constexpr evaluation, and assuming that the division
239 traps enables better optimizations than these anyway. */
240 (for div (trunc_div ceil_div floor_div round_div exact_div)
241 /* 0 / X is always zero. */
243 (div integer_zerop@0 @1)
244 /* But not for 0 / 0 so that we can get the proper warnings and errors. */
245 (if (!integer_zerop (@1))
249 (div @0 integer_minus_onep@1)
250 (if (!TYPE_UNSIGNED (type))
255 /* But not for 0 / 0 so that we can get the proper warnings and errors.
256 And not for _Fract types where we can't build 1. */
257 (if (!integer_zerop (@0) && !ALL_FRACT_MODE_P (TYPE_MODE (type)))
258 { build_one_cst (type); }))
259 /* X / abs (X) is X < 0 ? -1 : 1. */
262 (if (INTEGRAL_TYPE_P (type)
263 && TYPE_OVERFLOW_UNDEFINED (type))
264 (cond (lt @0 { build_zero_cst (type); })
265 { build_minus_one_cst (type); } { build_one_cst (type); })))
268 (div:C @0 (negate @0))
269 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
270 && TYPE_OVERFLOW_UNDEFINED (type))
271 { build_minus_one_cst (type); })))
273 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
274 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
277 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
278 && TYPE_UNSIGNED (type))
281 /* Combine two successive divisions. Note that combining ceil_div
282 and floor_div is trickier and combining round_div even more so. */
283 (for div (trunc_div exact_div)
285 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
288 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
289 TYPE_SIGN (type), &overflow_p);
292 (div @0 { wide_int_to_tree (type, mul); })
293 (if (TYPE_UNSIGNED (type)
294 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED))
295 { build_zero_cst (type); })))))
297 /* Combine successive multiplications. Similar to above, but handling
298 overflow is different. */
300 (mult (mult @0 INTEGER_CST@1) INTEGER_CST@2)
303 wide_int mul = wi::mul (wi::to_wide (@1), wi::to_wide (@2),
304 TYPE_SIGN (type), &overflow_p);
306 /* Skip folding on overflow: the only special case is @1 * @2 == -INT_MIN,
307 otherwise undefined overflow implies that @0 must be zero. */
308 (if (!overflow_p || TYPE_OVERFLOW_WRAPS (type))
309 (mult @0 { wide_int_to_tree (type, mul); }))))
311 /* Optimize A / A to 1.0 if we don't care about
312 NaNs or Infinities. */
315 (if (FLOAT_TYPE_P (type)
316 && ! HONOR_NANS (type)
317 && ! HONOR_INFINITIES (type))
318 { build_one_cst (type); }))
320 /* Optimize -A / A to -1.0 if we don't care about
321 NaNs or Infinities. */
323 (rdiv:C @0 (negate @0))
324 (if (FLOAT_TYPE_P (type)
325 && ! HONOR_NANS (type)
326 && ! HONOR_INFINITIES (type))
327 { build_minus_one_cst (type); }))
329 /* PR71078: x / abs(x) -> copysign (1.0, x) */
331 (rdiv:C (convert? @0) (convert? (abs @0)))
332 (if (SCALAR_FLOAT_TYPE_P (type)
333 && ! HONOR_NANS (type)
334 && ! HONOR_INFINITIES (type))
336 (if (types_match (type, float_type_node))
337 (BUILT_IN_COPYSIGNF { build_one_cst (type); } (convert @0)))
338 (if (types_match (type, double_type_node))
339 (BUILT_IN_COPYSIGN { build_one_cst (type); } (convert @0)))
340 (if (types_match (type, long_double_type_node))
341 (BUILT_IN_COPYSIGNL { build_one_cst (type); } (convert @0))))))
343 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
346 (if (!HONOR_SNANS (type))
349 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
351 (rdiv @0 real_minus_onep)
352 (if (!HONOR_SNANS (type))
355 (if (flag_reciprocal_math)
356 /* Convert (A/B)/C to A/(B*C). */
358 (rdiv (rdiv:s @0 @1) @2)
359 (rdiv @0 (mult @1 @2)))
361 /* Canonicalize x / (C1 * y) to (x * C2) / y. */
363 (rdiv @0 (mult:s @1 REAL_CST@2))
365 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @2); }
367 (rdiv (mult @0 { tem; } ) @1))))
369 /* Convert A/(B/C) to (A/B)*C */
371 (rdiv @0 (rdiv:s @1 @2))
372 (mult (rdiv @0 @1) @2)))
374 /* Simplify x / (- y) to -x / y. */
376 (rdiv @0 (negate @1))
377 (rdiv (negate @0) @1))
379 /* Optimize (X & (-A)) / A where A is a power of 2, to X >> log2(A) */
380 (for div (trunc_div ceil_div floor_div round_div exact_div)
382 (div (convert? (bit_and @0 INTEGER_CST@1)) INTEGER_CST@2)
383 (if (integer_pow2p (@2)
384 && tree_int_cst_sgn (@2) > 0
385 && tree_nop_conversion_p (type, TREE_TYPE (@0))
386 && wi::to_wide (@2) + wi::to_wide (@1) == 0)
388 { build_int_cst (integer_type_node,
389 wi::exact_log2 (wi::to_wide (@2))); }))))
391 /* If ARG1 is a constant, we can convert this to a multiply by the
392 reciprocal. This does not have the same rounding properties,
393 so only do this if -freciprocal-math. We can actually
394 always safely do it if ARG1 is a power of two, but it's hard to
395 tell if it is or not in a portable manner. */
396 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
400 (if (flag_reciprocal_math
403 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
405 (mult @0 { tem; } )))
406 (if (cst != COMPLEX_CST)
407 (with { tree inverse = exact_inverse (type, @1); }
409 (mult @0 { inverse; } ))))))))
411 (for mod (ceil_mod floor_mod round_mod trunc_mod)
412 /* 0 % X is always zero. */
414 (mod integer_zerop@0 @1)
415 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
416 (if (!integer_zerop (@1))
418 /* X % 1 is always zero. */
420 (mod @0 integer_onep)
421 { build_zero_cst (type); })
422 /* X % -1 is zero. */
424 (mod @0 integer_minus_onep@1)
425 (if (!TYPE_UNSIGNED (type))
426 { build_zero_cst (type); }))
430 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
431 (if (!integer_zerop (@0))
432 { build_zero_cst (type); }))
433 /* (X % Y) % Y is just X % Y. */
435 (mod (mod@2 @0 @1) @1)
437 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
439 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
440 (if (ANY_INTEGRAL_TYPE_P (type)
441 && TYPE_OVERFLOW_UNDEFINED (type)
442 && wi::multiple_of_p (wi::to_wide (@1), wi::to_wide (@2),
444 { build_zero_cst (type); })))
446 /* X % -C is the same as X % C. */
448 (trunc_mod @0 INTEGER_CST@1)
449 (if (TYPE_SIGN (type) == SIGNED
450 && !TREE_OVERFLOW (@1)
451 && wi::neg_p (wi::to_wide (@1))
452 && !TYPE_OVERFLOW_TRAPS (type)
453 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
454 && !sign_bit_p (@1, @1))
455 (trunc_mod @0 (negate @1))))
457 /* X % -Y is the same as X % Y. */
459 (trunc_mod @0 (convert? (negate @1)))
460 (if (INTEGRAL_TYPE_P (type)
461 && !TYPE_UNSIGNED (type)
462 && !TYPE_OVERFLOW_TRAPS (type)
463 && tree_nop_conversion_p (type, TREE_TYPE (@1))
464 /* Avoid this transformation if X might be INT_MIN or
465 Y might be -1, because we would then change valid
466 INT_MIN % -(-1) into invalid INT_MIN % -1. */
467 && (expr_not_equal_to (@0, wi::to_wide (TYPE_MIN_VALUE (type)))
468 || expr_not_equal_to (@1, wi::minus_one (TYPE_PRECISION
470 (trunc_mod @0 (convert @1))))
472 /* X - (X / Y) * Y is the same as X % Y. */
474 (minus (convert1? @0) (convert2? (mult:c (trunc_div @@0 @@1) @1)))
475 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
476 (convert (trunc_mod @0 @1))))
478 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
479 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
480 Also optimize A % (C << N) where C is a power of 2,
481 to A & ((C << N) - 1). */
482 (match (power_of_two_cand @1)
484 (match (power_of_two_cand @1)
485 (lshift INTEGER_CST@1 @2))
486 (for mod (trunc_mod floor_mod)
488 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
489 (if ((TYPE_UNSIGNED (type)
490 || tree_expr_nonnegative_p (@0))
491 && tree_nop_conversion_p (type, TREE_TYPE (@3))
492 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
493 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
495 /* Simplify (unsigned t * 2)/2 -> unsigned t & 0x7FFFFFFF. */
497 (trunc_div (mult @0 integer_pow2p@1) @1)
498 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
499 (bit_and @0 { wide_int_to_tree
500 (type, wi::mask (TYPE_PRECISION (type)
501 - wi::exact_log2 (wi::to_wide (@1)),
502 false, TYPE_PRECISION (type))); })))
504 /* Simplify (unsigned t / 2) * 2 -> unsigned t & ~1. */
506 (mult (trunc_div @0 integer_pow2p@1) @1)
507 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
508 (bit_and @0 (negate @1))))
510 /* Simplify (t * 2) / 2) -> t. */
511 (for div (trunc_div ceil_div floor_div round_div exact_div)
513 (div (mult:c @0 @1) @1)
514 (if (ANY_INTEGRAL_TYPE_P (type)
515 && TYPE_OVERFLOW_UNDEFINED (type))
519 /* Simplify cos(-x) and cos(|x|) -> cos(x). Similarly for cosh. */
524 /* Simplify pow(-x, y) and pow(|x|,y) -> pow(x,y) if y is an even integer. */
527 (pows (op @0) REAL_CST@1)
528 (with { HOST_WIDE_INT n; }
529 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
531 /* Likewise for powi. */
534 (pows (op @0) INTEGER_CST@1)
535 (if ((wi::to_wide (@1) & 1) == 0)
537 /* Strip negate and abs from both operands of hypot. */
545 /* copysign(-x, y) and copysign(abs(x), y) -> copysign(x, y). */
546 (for copysigns (COPYSIGN_ALL)
548 (copysigns (op @0) @1)
551 /* abs(x)*abs(x) -> x*x. Should be valid for all types. */
556 /* cos(copysign(x, y)) -> cos(x). Similarly for cosh. */
560 (coss (copysigns @0 @1))
563 /* pow(copysign(x, y), z) -> pow(x, z) if z is an even integer. */
567 (pows (copysigns @0 @2) REAL_CST@1)
568 (with { HOST_WIDE_INT n; }
569 (if (real_isinteger (&TREE_REAL_CST (@1), &n) && (n & 1) == 0)
571 /* Likewise for powi. */
575 (pows (copysigns @0 @2) INTEGER_CST@1)
576 (if ((wi::to_wide (@1) & 1) == 0)
581 /* hypot(copysign(x, y), z) -> hypot(x, z). */
583 (hypots (copysigns @0 @1) @2)
585 /* hypot(x, copysign(y, z)) -> hypot(x, y). */
587 (hypots @0 (copysigns @1 @2))
590 /* copysign(x, CST) -> [-]abs (x). */
591 (for copysigns (COPYSIGN_ALL)
593 (copysigns @0 REAL_CST@1)
594 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
598 /* copysign(copysign(x, y), z) -> copysign(x, z). */
599 (for copysigns (COPYSIGN_ALL)
601 (copysigns (copysigns @0 @1) @2)
604 /* copysign(x,y)*copysign(x,y) -> x*x. */
605 (for copysigns (COPYSIGN_ALL)
607 (mult (copysigns@2 @0 @1) @2)
610 /* ccos(-x) -> ccos(x). Similarly for ccosh. */
611 (for ccoss (CCOS CCOSH)
616 /* cabs(-x) and cos(conj(x)) -> cabs(x). */
617 (for ops (conj negate)
623 /* Fold (a * (1 << b)) into (a << b) */
625 (mult:c @0 (convert? (lshift integer_onep@1 @2)))
626 (if (! FLOAT_TYPE_P (type)
627 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
630 /* Fold (1 << (C - x)) where C = precision(type) - 1
631 into ((1 << C) >> x). */
633 (lshift integer_onep@0 (minus@1 INTEGER_CST@2 @3))
634 (if (INTEGRAL_TYPE_P (type)
635 && wi::eq_p (wi::to_wide (@2), TYPE_PRECISION (type) - 1)
637 (if (TYPE_UNSIGNED (type))
638 (rshift (lshift @0 @2) @3)
640 { tree utype = unsigned_type_for (type); }
641 (convert (rshift (lshift (convert:utype @0) @2) @3))))))
643 /* Fold (C1/X)*C2 into (C1*C2)/X. */
645 (mult (rdiv@3 REAL_CST@0 @1) REAL_CST@2)
646 (if (flag_associative_math
649 { tree tem = const_binop (MULT_EXPR, type, @0, @2); }
651 (rdiv { tem; } @1)))))
653 /* Simplify ~X & X as zero. */
655 (bit_and:c (convert? @0) (convert? (bit_not @0)))
656 { build_zero_cst (type); })
658 /* PR71636: Transform x & ((1U << b) - 1) -> x & ~(~0U << b); */
660 (bit_and:c @0 (plus:s (lshift:s integer_onep @1) integer_minus_onep))
661 (if (TYPE_UNSIGNED (type))
662 (bit_and @0 (bit_not (lshift { build_all_ones_cst (type); } @1)))))
664 (for bitop (bit_and bit_ior)
666 /* PR35691: Transform
667 (x == 0 & y == 0) -> (x | typeof(x)(y)) == 0.
668 (x != 0 | y != 0) -> (x | typeof(x)(y)) != 0. */
670 (bitop (cmp @0 integer_zerop@2) (cmp @1 integer_zerop))
671 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
672 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
673 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
674 (cmp (bit_ior @0 (convert @1)) @2)))
676 (x == -1 & y == -1) -> (x & typeof(x)(y)) == -1.
677 (x != -1 | y != -1) -> (x & typeof(x)(y)) != -1. */
679 (bitop (cmp @0 integer_all_onesp@2) (cmp @1 integer_all_onesp))
680 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
681 && INTEGRAL_TYPE_P (TREE_TYPE (@1))
682 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
683 (cmp (bit_and @0 (convert @1)) @2))))
685 /* Fold (A & ~B) - (A & B) into (A ^ B) - B. */
687 (minus (bit_and:cs @0 (bit_not @1)) (bit_and:cs @0 @1))
688 (minus (bit_xor @0 @1) @1))
690 (minus (bit_and:s @0 INTEGER_CST@2) (bit_and:s @0 INTEGER_CST@1))
691 (if (~wi::to_wide (@2) == wi::to_wide (@1))
692 (minus (bit_xor @0 @1) @1)))
694 /* Fold (A & B) - (A & ~B) into B - (A ^ B). */
696 (minus (bit_and:cs @0 @1) (bit_and:cs @0 (bit_not @1)))
697 (minus @1 (bit_xor @0 @1)))
699 /* Simplify (X & ~Y) |^+ (~X & Y) -> X ^ Y. */
700 (for op (bit_ior bit_xor plus)
702 (op (bit_and:c @0 (bit_not @1)) (bit_and:c (bit_not @0) @1))
705 (op:c (bit_and @0 INTEGER_CST@2) (bit_and (bit_not @0) INTEGER_CST@1))
706 (if (~wi::to_wide (@2) == wi::to_wide (@1))
709 /* PR53979: Transform ((a ^ b) | a) -> (a | b) */
711 (bit_ior:c (bit_xor:c @0 @1) @0)
714 /* (a & ~b) | (a ^ b) --> a ^ b */
716 (bit_ior:c (bit_and:c @0 (bit_not @1)) (bit_xor:c@2 @0 @1))
719 /* (a & ~b) ^ ~a --> ~(a & b) */
721 (bit_xor:c (bit_and:cs @0 (bit_not @1)) (bit_not @0))
722 (bit_not (bit_and @0 @1)))
724 /* (a | b) & ~(a ^ b) --> a & b */
726 (bit_and:c (bit_ior @0 @1) (bit_not (bit_xor:c @0 @1)))
729 /* a | ~(a ^ b) --> a | ~b */
731 (bit_ior:c @0 (bit_not:s (bit_xor:c @0 @1)))
732 (bit_ior @0 (bit_not @1)))
734 /* (a | b) | (a &^ b) --> a | b */
735 (for op (bit_and bit_xor)
737 (bit_ior:c (bit_ior@2 @0 @1) (op:c @0 @1))
740 /* (a & b) | ~(a ^ b) --> ~(a ^ b) */
742 (bit_ior:c (bit_and:c @0 @1) (bit_not@2 (bit_xor @0 @1)))
745 /* ~(~a & b) --> a | ~b */
747 (bit_not (bit_and:cs (bit_not @0) @1))
748 (bit_ior @0 (bit_not @1)))
750 /* Simplify (~X & Y) to X ^ Y if we know that (X & ~Y) is 0. */
753 (bit_and (bit_not SSA_NAME@0) INTEGER_CST@1)
754 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
755 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
759 /* X % Y is smaller than Y. */
762 (cmp (trunc_mod @0 @1) @1)
763 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
764 { constant_boolean_node (cmp == LT_EXPR, type); })))
767 (cmp @1 (trunc_mod @0 @1))
768 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
769 { constant_boolean_node (cmp == GT_EXPR, type); })))
773 (bit_ior @0 integer_all_onesp@1)
778 (bit_ior @0 integer_zerop)
783 (bit_and @0 integer_zerop@1)
789 (for op (bit_ior bit_xor plus)
791 (op:c (convert? @0) (convert? (bit_not @0)))
792 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
797 { build_zero_cst (type); })
799 /* Canonicalize X ^ ~0 to ~X. */
801 (bit_xor @0 integer_all_onesp@1)
806 (bit_and @0 integer_all_onesp)
809 /* x & x -> x, x | x -> x */
810 (for bitop (bit_and bit_ior)
815 /* x & C -> x if we know that x & ~C == 0. */
818 (bit_and SSA_NAME@0 INTEGER_CST@1)
819 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
820 && wi::bit_and_not (get_nonzero_bits (@0), wi::to_wide (@1)) == 0)
824 /* x + (x & 1) -> (x + 1) & ~1 */
826 (plus:c @0 (bit_and:s @0 integer_onep@1))
827 (bit_and (plus @0 @1) (bit_not @1)))
829 /* x & ~(x & y) -> x & ~y */
830 /* x | ~(x | y) -> x | ~y */
831 (for bitop (bit_and bit_ior)
833 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
834 (bitop @0 (bit_not @1))))
836 /* (x | y) & ~x -> y & ~x */
837 /* (x & y) | ~x -> y | ~x */
838 (for bitop (bit_and bit_ior)
839 rbitop (bit_ior bit_and)
841 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
844 /* (x & y) ^ (x | y) -> x ^ y */
846 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
849 /* (x ^ y) ^ (x | y) -> x & y */
851 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
854 /* (x & y) + (x ^ y) -> x | y */
855 /* (x & y) | (x ^ y) -> x | y */
856 /* (x & y) ^ (x ^ y) -> x | y */
857 (for op (plus bit_ior bit_xor)
859 (op:c (bit_and @0 @1) (bit_xor @0 @1))
862 /* (x & y) + (x | y) -> x + y */
864 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
867 /* (x + y) - (x | y) -> x & y */
869 (minus (plus @0 @1) (bit_ior @0 @1))
870 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
871 && !TYPE_SATURATING (type))
874 /* (x + y) - (x & y) -> x | y */
876 (minus (plus @0 @1) (bit_and @0 @1))
877 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
878 && !TYPE_SATURATING (type))
881 /* (x | y) - (x ^ y) -> x & y */
883 (minus (bit_ior @0 @1) (bit_xor @0 @1))
886 /* (x | y) - (x & y) -> x ^ y */
888 (minus (bit_ior @0 @1) (bit_and @0 @1))
891 /* (x | y) & ~(x & y) -> x ^ y */
893 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
896 /* (x | y) & (~x ^ y) -> x & y */
898 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
901 /* ~x & ~y -> ~(x | y)
902 ~x | ~y -> ~(x & y) */
903 (for op (bit_and bit_ior)
904 rop (bit_ior bit_and)
906 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
907 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
908 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
909 (bit_not (rop (convert @0) (convert @1))))))
911 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
912 with a constant, and the two constants have no bits in common,
913 we should treat this as a BIT_IOR_EXPR since this may produce more
915 (for op (bit_xor plus)
917 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
918 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
919 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
920 && tree_nop_conversion_p (type, TREE_TYPE (@2))
921 && (wi::to_wide (@1) & wi::to_wide (@3)) == 0)
922 (bit_ior (convert @4) (convert @5)))))
924 /* (X | Y) ^ X -> Y & ~ X*/
926 (bit_xor:c (convert1? (bit_ior:c @@0 @1)) (convert2? @0))
927 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
928 (convert (bit_and @1 (bit_not @0)))))
930 /* Convert ~X ^ ~Y to X ^ Y. */
932 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
933 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
934 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
935 (bit_xor (convert @0) (convert @1))))
937 /* Convert ~X ^ C to X ^ ~C. */
939 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
940 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
941 (bit_xor (convert @0) (bit_not @1))))
943 /* Fold (X & Y) ^ Y and (X ^ Y) & Y as ~X & Y. */
944 (for opo (bit_and bit_xor)
945 opi (bit_xor bit_and)
947 (opo:c (opi:c @0 @1) @1)
948 (bit_and (bit_not @0) @1)))
950 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
951 operands are another bit-wise operation with a common input. If so,
952 distribute the bit operations to save an operation and possibly two if
953 constants are involved. For example, convert
954 (A | B) & (A | C) into A | (B & C)
955 Further simplification will occur if B and C are constants. */
956 (for op (bit_and bit_ior bit_xor)
957 rop (bit_ior bit_and bit_and)
959 (op (convert? (rop:c @@0 @1)) (convert? (rop:c @0 @2)))
960 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
961 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
962 (rop (convert @0) (op (convert @1) (convert @2))))))
964 /* Some simple reassociation for bit operations, also handled in reassoc. */
965 /* (X & Y) & Y -> X & Y
966 (X | Y) | Y -> X | Y */
967 (for op (bit_and bit_ior)
969 (op:c (convert1?@2 (op:c @0 @@1)) (convert2? @1))
971 /* (X ^ Y) ^ Y -> X */
973 (bit_xor:c (convert1? (bit_xor:c @0 @@1)) (convert2? @1))
975 /* (X & Y) & (X & Z) -> (X & Y) & Z
976 (X | Y) | (X | Z) -> (X | Y) | Z */
977 (for op (bit_and bit_ior)
979 (op (convert1?@3 (op:c@4 @0 @1)) (convert2?@5 (op:c@6 @0 @2)))
980 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
981 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
982 (if (single_use (@5) && single_use (@6))
984 (if (single_use (@3) && single_use (@4))
985 (op (convert @1) @5))))))
986 /* (X ^ Y) ^ (X ^ Z) -> Y ^ Z */
988 (bit_xor (convert1? (bit_xor:c @0 @1)) (convert2? (bit_xor:c @0 @2)))
989 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
990 && tree_nop_conversion_p (type, TREE_TYPE (@2)))
991 (bit_xor (convert @1) (convert @2))))
1000 (abs tree_expr_nonnegative_p@0)
1003 /* A few cases of fold-const.c negate_expr_p predicate. */
1004 (match negate_expr_p
1006 (if ((INTEGRAL_TYPE_P (type)
1007 && TYPE_UNSIGNED (type))
1008 || (!TYPE_OVERFLOW_SANITIZED (type)
1009 && may_negate_without_overflow_p (t)))))
1010 (match negate_expr_p
1012 (match negate_expr_p
1014 (if (!TYPE_OVERFLOW_SANITIZED (type))))
1015 (match negate_expr_p
1017 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)))))
1018 /* VECTOR_CST handling of non-wrapping types would recurse in unsupported
1020 (match negate_expr_p
1022 (if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))))
1023 (match negate_expr_p
1025 (if ((ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
1026 || (FLOAT_TYPE_P (type)
1027 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1028 && !HONOR_SIGNED_ZEROS (type)))))
1030 /* (-A) * (-B) -> A * B */
1032 (mult:c (convert1? (negate @0)) (convert2? negate_expr_p@1))
1033 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1034 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1035 (mult (convert @0) (convert (negate @1)))))
1037 /* -(A + B) -> (-B) - A. */
1039 (negate (plus:c @0 negate_expr_p@1))
1040 (if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
1041 && !HONOR_SIGNED_ZEROS (element_mode (type)))
1042 (minus (negate @1) @0)))
1044 /* -(A - B) -> B - A. */
1046 (negate (minus @0 @1))
1047 (if ((ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_SANITIZED (type))
1048 || (FLOAT_TYPE_P (type)
1049 && !HONOR_SIGN_DEPENDENT_ROUNDING (type)
1050 && !HONOR_SIGNED_ZEROS (type)))
1053 (negate (pointer_diff @0 @1))
1054 (if (TYPE_OVERFLOW_UNDEFINED (type))
1055 (pointer_diff @1 @0)))
1057 /* A - B -> A + (-B) if B is easily negatable. */
1059 (minus @0 negate_expr_p@1)
1060 (if (!FIXED_POINT_TYPE_P (type))
1061 (plus @0 (negate @1))))
1063 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
1065 For bitwise binary operations apply operand conversions to the
1066 binary operation result instead of to the operands. This allows
1067 to combine successive conversions and bitwise binary operations.
1068 We combine the above two cases by using a conditional convert. */
1069 (for bitop (bit_and bit_ior bit_xor)
1071 (bitop (convert @0) (convert? @1))
1072 (if (((TREE_CODE (@1) == INTEGER_CST
1073 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1074 && int_fits_type_p (@1, TREE_TYPE (@0)))
1075 || types_match (@0, @1))
1076 /* ??? This transform conflicts with fold-const.c doing
1077 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
1078 constants (if x has signed type, the sign bit cannot be set
1079 in c). This folds extension into the BIT_AND_EXPR.
1080 Restrict it to GIMPLE to avoid endless recursions. */
1081 && (bitop != BIT_AND_EXPR || GIMPLE)
1082 && (/* That's a good idea if the conversion widens the operand, thus
1083 after hoisting the conversion the operation will be narrower. */
1084 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
1085 /* It's also a good idea if the conversion is to a non-integer
1087 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
1088 /* Or if the precision of TO is not the same as the precision
1090 || !type_has_mode_precision_p (type)))
1091 (convert (bitop @0 (convert @1))))))
1093 (for bitop (bit_and bit_ior)
1094 rbitop (bit_ior bit_and)
1095 /* (x | y) & x -> x */
1096 /* (x & y) | x -> x */
1098 (bitop:c (rbitop:c @0 @1) @0)
1100 /* (~x | y) & x -> x & y */
1101 /* (~x & y) | x -> x | y */
1103 (bitop:c (rbitop:c (bit_not @0) @1) @0)
1106 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
1108 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1109 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
1111 /* Combine successive equal operations with constants. */
1112 (for bitop (bit_and bit_ior bit_xor)
1114 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
1115 (if (!CONSTANT_CLASS_P (@0))
1116 /* This is the canonical form regardless of whether (bitop @1 @2) can be
1117 folded to a constant. */
1118 (bitop @0 (bitop @1 @2))
1119 /* In this case we have three constants and (bitop @0 @1) doesn't fold
1120 to a constant. This can happen if @0 or @1 is a POLY_INT_CST and if
1121 the values involved are such that the operation can't be decided at
1122 compile time. Try folding one of @0 or @1 with @2 to see whether
1123 that combination can be decided at compile time.
1125 Keep the existing form if both folds fail, to avoid endless
1127 (with { tree cst1 = const_binop (bitop, type, @0, @2); }
1129 (bitop @1 { cst1; })
1130 (with { tree cst2 = const_binop (bitop, type, @1, @2); }
1132 (bitop @0 { cst2; }))))))))
1134 /* Try simple folding for X op !X, and X op X with the help
1135 of the truth_valued_p and logical_inverted_value predicates. */
1136 (match truth_valued_p
1138 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
1139 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
1140 (match truth_valued_p
1142 (match truth_valued_p
1145 (match (logical_inverted_value @0)
1147 (match (logical_inverted_value @0)
1148 (bit_not truth_valued_p@0))
1149 (match (logical_inverted_value @0)
1150 (eq @0 integer_zerop))
1151 (match (logical_inverted_value @0)
1152 (ne truth_valued_p@0 integer_truep))
1153 (match (logical_inverted_value @0)
1154 (bit_xor truth_valued_p@0 integer_truep))
1158 (bit_and:c @0 (logical_inverted_value @0))
1159 { build_zero_cst (type); })
1160 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
1161 (for op (bit_ior bit_xor)
1163 (op:c truth_valued_p@0 (logical_inverted_value @0))
1164 { constant_boolean_node (true, type); }))
1165 /* X ==/!= !X is false/true. */
1168 (op:c truth_valued_p@0 (logical_inverted_value @0))
1169 { constant_boolean_node (op == NE_EXPR ? true : false, type); }))
1173 (bit_not (bit_not @0))
1176 /* Convert ~ (-A) to A - 1. */
1178 (bit_not (convert? (negate @0)))
1179 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1180 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1181 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
1183 /* Convert - (~A) to A + 1. */
1185 (negate (nop_convert (bit_not @0)))
1186 (plus (view_convert @0) { build_each_one_cst (type); }))
1188 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
1190 (bit_not (convert? (minus @0 integer_each_onep)))
1191 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1192 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1193 (convert (negate @0))))
1195 (bit_not (convert? (plus @0 integer_all_onesp)))
1196 (if (element_precision (type) <= element_precision (TREE_TYPE (@0))
1197 || !TYPE_UNSIGNED (TREE_TYPE (@0)))
1198 (convert (negate @0))))
1200 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
1202 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
1203 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1204 (convert (bit_xor @0 (bit_not @1)))))
1206 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
1207 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1208 (convert (bit_xor @0 @1))))
1210 /* Otherwise prefer ~(X ^ Y) to ~X ^ Y as more canonical. */
1212 (bit_xor:c (nop_convert:s (bit_not:s @0)) @1)
1213 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1214 (bit_not (bit_xor (view_convert @0) @1))))
1216 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
1218 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
1219 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
1221 /* Fold A - (A & B) into ~B & A. */
1223 (minus (convert1? @0) (convert2?:s (bit_and:cs @@0 @1)))
1224 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
1225 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
1226 (convert (bit_and (bit_not @1) @0))))
1228 /* (m1 CMP m2) * d -> (m1 CMP m2) ? d : 0 */
1229 (for cmp (gt lt ge le)
1231 (mult (convert (cmp @0 @1)) @2)
1232 (cond (cmp @0 @1) @2 { build_zero_cst (type); })))
1234 /* For integral types with undefined overflow and C != 0 fold
1235 x * C EQ/NE y * C into x EQ/NE y. */
1238 (cmp (mult:c @0 @1) (mult:c @2 @1))
1239 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1240 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1241 && tree_expr_nonzero_p (@1))
1244 /* For integral types with wrapping overflow and C odd fold
1245 x * C EQ/NE y * C into x EQ/NE y. */
1248 (cmp (mult @0 INTEGER_CST@1) (mult @2 @1))
1249 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1250 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1251 && (TREE_INT_CST_LOW (@1) & 1) != 0)
1254 /* For integral types with undefined overflow and C != 0 fold
1255 x * C RELOP y * C into:
1257 x RELOP y for nonnegative C
1258 y RELOP x for negative C */
1259 (for cmp (lt gt le ge)
1261 (cmp (mult:c @0 @1) (mult:c @2 @1))
1262 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1263 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1264 (if (tree_expr_nonnegative_p (@1) && tree_expr_nonzero_p (@1))
1266 (if (TREE_CODE (@1) == INTEGER_CST
1267 && wi::neg_p (wi::to_wide (@1), TYPE_SIGN (TREE_TYPE (@1))))
1270 /* (X - 1U) <= INT_MAX-1U into (int) X > 0. */
1274 (cmp (plus @0 integer_minus_onep@1) INTEGER_CST@2)
1275 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1276 && TYPE_UNSIGNED (TREE_TYPE (@0))
1277 && TYPE_PRECISION (TREE_TYPE (@0)) > 1
1278 && (wi::to_wide (@2)
1279 == wi::max_value (TYPE_PRECISION (TREE_TYPE (@0)), SIGNED) - 1))
1280 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
1281 (icmp (convert:stype @0) { build_int_cst (stype, 0); })))))
1283 /* X / 4 < Y / 4 iff X < Y when the division is known to be exact. */
1284 (for cmp (simple_comparison)
1286 (cmp (exact_div @0 INTEGER_CST@2) (exact_div @1 @2))
1287 (if (wi::gt_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2))))
1290 /* X / C1 op C2 into a simple range test. */
1291 (for cmp (simple_comparison)
1293 (cmp (trunc_div:s @0 INTEGER_CST@1) INTEGER_CST@2)
1294 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
1295 && integer_nonzerop (@1)
1296 && !TREE_OVERFLOW (@1)
1297 && !TREE_OVERFLOW (@2))
1298 (with { tree lo, hi; bool neg_overflow;
1299 enum tree_code code = fold_div_compare (cmp, @1, @2, &lo, &hi,
1302 (if (code == LT_EXPR || code == GE_EXPR)
1303 (if (TREE_OVERFLOW (lo))
1304 { build_int_cst (type, (code == LT_EXPR) ^ neg_overflow); }
1305 (if (code == LT_EXPR)
1308 (if (code == LE_EXPR || code == GT_EXPR)
1309 (if (TREE_OVERFLOW (hi))
1310 { build_int_cst (type, (code == LE_EXPR) ^ neg_overflow); }
1311 (if (code == LE_EXPR)
1315 { build_int_cst (type, code == NE_EXPR); })
1316 (if (code == EQ_EXPR && !hi)
1318 (if (code == EQ_EXPR && !lo)
1320 (if (code == NE_EXPR && !hi)
1322 (if (code == NE_EXPR && !lo)
1325 { build_range_check (UNKNOWN_LOCATION, type, @0, code == EQ_EXPR,
1329 tree etype = range_check_type (TREE_TYPE (@0));
1332 if (! TYPE_UNSIGNED (etype))
1333 etype = unsigned_type_for (etype);
1334 hi = fold_convert (etype, hi);
1335 lo = fold_convert (etype, lo);
1336 hi = const_binop (MINUS_EXPR, etype, hi, lo);
1339 (if (etype && hi && !TREE_OVERFLOW (hi))
1340 (if (code == EQ_EXPR)
1341 (le (minus (convert:etype @0) { lo; }) { hi; })
1342 (gt (minus (convert:etype @0) { lo; }) { hi; })))))))))
1344 /* X + Z < Y + Z is the same as X < Y when there is no overflow. */
1345 (for op (lt le ge gt)
1347 (op (plus:c @0 @2) (plus:c @1 @2))
1348 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1349 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1351 /* For equality and subtraction, this is also true with wrapping overflow. */
1352 (for op (eq ne minus)
1354 (op (plus:c @0 @2) (plus:c @1 @2))
1355 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1356 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1357 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1360 /* X - Z < Y - Z is the same as X < Y when there is no overflow. */
1361 (for op (lt le ge gt)
1363 (op (minus @0 @2) (minus @1 @2))
1364 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1365 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1367 /* For equality and subtraction, this is also true with wrapping overflow. */
1368 (for op (eq ne minus)
1370 (op (minus @0 @2) (minus @1 @2))
1371 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1372 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1373 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1375 /* And for pointers... */
1376 (for op (simple_comparison)
1378 (op (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1379 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1382 (minus (pointer_diff@3 @0 @2) (pointer_diff @1 @2))
1383 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1384 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1385 (pointer_diff @0 @1)))
1387 /* Z - X < Z - Y is the same as Y < X when there is no overflow. */
1388 (for op (lt le ge gt)
1390 (op (minus @2 @0) (minus @2 @1))
1391 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1392 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1394 /* For equality and subtraction, this is also true with wrapping overflow. */
1395 (for op (eq ne minus)
1397 (op (minus @2 @0) (minus @2 @1))
1398 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1399 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1400 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1402 /* And for pointers... */
1403 (for op (simple_comparison)
1405 (op (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1406 (if (!TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1409 (minus (pointer_diff@3 @2 @0) (pointer_diff @2 @1))
1410 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@3))
1411 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@2)))
1412 (pointer_diff @1 @0)))
1414 /* X + Y < Y is the same as X < 0 when there is no overflow. */
1415 (for op (lt le gt ge)
1417 (op:c (plus:c@2 @0 @1) @1)
1418 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1419 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1420 && (CONSTANT_CLASS_P (@0) || single_use (@2)))
1421 (op @0 { build_zero_cst (TREE_TYPE (@0)); }))))
1422 /* For equality, this is also true with wrapping overflow. */
1425 (op:c (nop_convert@3 (plus:c@2 @0 (convert1? @1))) (convert2? @1))
1426 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1427 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1428 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1429 && (CONSTANT_CLASS_P (@0) || (single_use (@2) && single_use (@3)))
1430 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@2))
1431 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@1)))
1432 (op @0 { build_zero_cst (TREE_TYPE (@0)); })))
1434 (op:c (nop_convert@3 (pointer_plus@2 (convert1? @0) @1)) (convert2? @0))
1435 (if (tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0))
1436 && tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1437 && (CONSTANT_CLASS_P (@1) || (single_use (@2) && single_use (@3))))
1438 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1440 /* X - Y < X is the same as Y > 0 when there is no overflow.
1441 For equality, this is also true with wrapping overflow. */
1442 (for op (simple_comparison)
1444 (op:c @0 (minus@2 @0 @1))
1445 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1446 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
1447 || ((op == EQ_EXPR || op == NE_EXPR)
1448 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))))
1449 && (CONSTANT_CLASS_P (@1) || single_use (@2)))
1450 (op @1 { build_zero_cst (TREE_TYPE (@1)); }))))
1453 * (X / Y) == 0 -> X < Y if X, Y are unsigned.
1454 * (X / Y) != 0 -> X >= Y, if X, Y are unsigned.
1459 (cmp (trunc_div @0 @1) integer_zerop)
1460 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
1461 && (VECTOR_TYPE_P (type) || !VECTOR_TYPE_P (TREE_TYPE (@0))))
1464 /* X == C - X can never be true if C is odd. */
1467 (cmp:c (convert? @0) (convert1? (minus INTEGER_CST@1 (convert2? @0))))
1468 (if (TREE_INT_CST_LOW (@1) & 1)
1469 { constant_boolean_node (cmp == NE_EXPR, type); })))
1471 /* Arguments on which one can call get_nonzero_bits to get the bits
1473 (match with_possible_nonzero_bits
1475 (match with_possible_nonzero_bits
1477 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))))
1478 /* Slightly extended version, do not make it recursive to keep it cheap. */
1479 (match (with_possible_nonzero_bits2 @0)
1480 with_possible_nonzero_bits@0)
1481 (match (with_possible_nonzero_bits2 @0)
1482 (bit_and:c with_possible_nonzero_bits@0 @2))
1484 /* Same for bits that are known to be set, but we do not have
1485 an equivalent to get_nonzero_bits yet. */
1486 (match (with_certain_nonzero_bits2 @0)
1488 (match (with_certain_nonzero_bits2 @0)
1489 (bit_ior @1 INTEGER_CST@0))
1491 /* X == C (or X & Z == Y | C) is impossible if ~nonzero(X) & C != 0. */
1494 (cmp:c (with_possible_nonzero_bits2 @0) (with_certain_nonzero_bits2 @1))
1495 (if (wi::bit_and_not (wi::to_wide (@1), get_nonzero_bits (@0)) != 0)
1496 { constant_boolean_node (cmp == NE_EXPR, type); })))
1498 /* ((X inner_op C0) outer_op C1)
1499 With X being a tree where value_range has reasoned certain bits to always be
1500 zero throughout its computed value range,
1501 inner_op = {|,^}, outer_op = {|,^} and inner_op != outer_op
1502 where zero_mask has 1's for all bits that are sure to be 0 in
1504 if (inner_op == '^') C0 &= ~C1;
1505 if ((C0 & ~zero_mask) == 0) then emit (X outer_op (C0 outer_op C1)
1506 if ((C1 & ~zero_mask) == 0) then emit (X inner_op (C0 outer_op C1)
1508 (for inner_op (bit_ior bit_xor)
1509 outer_op (bit_xor bit_ior)
1512 (inner_op:s @2 INTEGER_CST@0) INTEGER_CST@1)
1516 wide_int zero_mask_not;
1520 if (TREE_CODE (@2) == SSA_NAME)
1521 zero_mask_not = get_nonzero_bits (@2);
1525 if (inner_op == BIT_XOR_EXPR)
1527 C0 = wi::bit_and_not (wi::to_wide (@0), wi::to_wide (@1));
1528 cst_emit = C0 | wi::to_wide (@1);
1532 C0 = wi::to_wide (@0);
1533 cst_emit = C0 ^ wi::to_wide (@1);
1536 (if (!fail && (C0 & zero_mask_not) == 0)
1537 (outer_op @2 { wide_int_to_tree (type, cst_emit); })
1538 (if (!fail && (wi::to_wide (@1) & zero_mask_not) == 0)
1539 (inner_op @2 { wide_int_to_tree (type, cst_emit); }))))))
1541 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
1543 (pointer_plus (pointer_plus:s @0 @1) @3)
1544 (pointer_plus @0 (plus @1 @3)))
1550 tem4 = (unsigned long) tem3;
1555 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
1556 /* Conditionally look through a sign-changing conversion. */
1557 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
1558 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
1559 || (GENERIC && type == TREE_TYPE (@1))))
1562 (pointer_plus @0 (convert?@2 (pointer_diff@3 @1 @@0)))
1563 (if (TYPE_PRECISION (TREE_TYPE (@2)) >= TYPE_PRECISION (TREE_TYPE (@3)))
1567 tem = (sizetype) ptr;
1571 and produce the simpler and easier to analyze with respect to alignment
1572 ... = ptr & ~algn; */
1574 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
1575 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), ~wi::to_wide (@1)); }
1576 (bit_and @0 { algn; })))
1578 /* Try folding difference of addresses. */
1580 (minus (convert ADDR_EXPR@0) (convert @1))
1581 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1582 (with { poly_int64 diff; }
1583 (if (ptr_difference_const (@0, @1, &diff))
1584 { build_int_cst_type (type, diff); }))))
1586 (minus (convert @0) (convert ADDR_EXPR@1))
1587 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1588 (with { poly_int64 diff; }
1589 (if (ptr_difference_const (@0, @1, &diff))
1590 { build_int_cst_type (type, diff); }))))
1592 (pointer_diff (convert?@2 ADDR_EXPR@0) (convert?@3 @1))
1593 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1594 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1595 (with { poly_int64 diff; }
1596 (if (ptr_difference_const (@0, @1, &diff))
1597 { build_int_cst_type (type, diff); }))))
1599 (pointer_diff (convert?@2 @0) (convert?@3 ADDR_EXPR@1))
1600 (if (tree_nop_conversion_p (TREE_TYPE(@2), TREE_TYPE (@0))
1601 && tree_nop_conversion_p (TREE_TYPE(@3), TREE_TYPE (@1)))
1602 (with { poly_int64 diff; }
1603 (if (ptr_difference_const (@0, @1, &diff))
1604 { build_int_cst_type (type, diff); }))))
1606 /* If arg0 is derived from the address of an object or function, we may
1607 be able to fold this expression using the object or function's
1610 (bit_and (convert? @0) INTEGER_CST@1)
1611 (if (POINTER_TYPE_P (TREE_TYPE (@0))
1612 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1616 unsigned HOST_WIDE_INT bitpos;
1617 get_pointer_alignment_1 (@0, &align, &bitpos);
1619 (if (wi::ltu_p (wi::to_wide (@1), align / BITS_PER_UNIT))
1620 { wide_int_to_tree (type, (wi::to_wide (@1)
1621 & (bitpos / BITS_PER_UNIT))); }))))
1624 /* We can't reassociate at all for saturating types. */
1625 (if (!TYPE_SATURATING (type))
1627 /* Contract negates. */
1628 /* A + (-B) -> A - B */
1630 (plus:c @0 (convert? (negate @1)))
1631 /* Apply STRIP_NOPS on the negate. */
1632 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1633 && !TYPE_OVERFLOW_SANITIZED (type))
1637 if (INTEGRAL_TYPE_P (type)
1638 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1639 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1641 (convert (minus (convert:t1 @0) (convert:t1 @1))))))
1642 /* A - (-B) -> A + B */
1644 (minus @0 (convert? (negate @1)))
1645 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
1646 && !TYPE_OVERFLOW_SANITIZED (type))
1650 if (INTEGRAL_TYPE_P (type)
1651 && TYPE_OVERFLOW_WRAPS (type) != TYPE_OVERFLOW_WRAPS (TREE_TYPE (@1)))
1652 t1 = TYPE_OVERFLOW_WRAPS (type) ? type : TREE_TYPE (@1);
1654 (convert (plus (convert:t1 @0) (convert:t1 @1))))))
1656 Sign-extension is ok except for INT_MIN, which thankfully cannot
1657 happen without overflow. */
1659 (negate (convert (negate @1)))
1660 (if (INTEGRAL_TYPE_P (type)
1661 && (TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@1))
1662 || (!TYPE_UNSIGNED (TREE_TYPE (@1))
1663 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1664 && !TYPE_OVERFLOW_SANITIZED (type)
1665 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1668 (negate (convert negate_expr_p@1))
1669 (if (SCALAR_FLOAT_TYPE_P (type)
1670 && ((DECIMAL_FLOAT_TYPE_P (type)
1671 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))
1672 && TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (@1)))
1673 || !HONOR_SIGN_DEPENDENT_ROUNDING (type)))
1674 (convert (negate @1))))
1676 (negate (nop_convert (negate @1)))
1677 (if (!TYPE_OVERFLOW_SANITIZED (type)
1678 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@1)))
1681 /* We can't reassociate floating-point unless -fassociative-math
1682 or fixed-point plus or minus because of saturation to +-Inf. */
1683 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
1684 && !FIXED_POINT_TYPE_P (type))
1686 /* Match patterns that allow contracting a plus-minus pair
1687 irrespective of overflow issues. */
1688 /* (A +- B) - A -> +- B */
1689 /* (A +- B) -+ B -> A */
1690 /* A - (A +- B) -> -+ B */
1691 /* A +- (B -+ A) -> +- B */
1693 (minus (plus:c @0 @1) @0)
1696 (minus (minus @0 @1) @0)
1699 (plus:c (minus @0 @1) @1)
1702 (minus @0 (plus:c @0 @1))
1705 (minus @0 (minus @0 @1))
1707 /* (A +- B) + (C - A) -> C +- B */
1708 /* (A + B) - (A - C) -> B + C */
1709 /* More cases are handled with comparisons. */
1711 (plus:c (plus:c @0 @1) (minus @2 @0))
1714 (plus:c (minus @0 @1) (minus @2 @0))
1717 (plus:c (pointer_diff @0 @1) (pointer_diff @2 @0))
1718 (if (TYPE_OVERFLOW_UNDEFINED (type)
1719 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0)))
1720 (pointer_diff @2 @1)))
1722 (minus (plus:c @0 @1) (minus @0 @2))
1725 /* (A +- CST1) +- CST2 -> A + CST3
1726 Use view_convert because it is safe for vectors and equivalent for
1728 (for outer_op (plus minus)
1729 (for inner_op (plus minus)
1730 neg_inner_op (minus plus)
1732 (outer_op (nop_convert (inner_op @0 CONSTANT_CLASS_P@1))
1734 /* If one of the types wraps, use that one. */
1735 (if (!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
1736 /* If all 3 captures are CONSTANT_CLASS_P, punt, as we might recurse
1737 forever if something doesn't simplify into a constant. */
1738 (if (!CONSTANT_CLASS_P (@0))
1739 (if (outer_op == PLUS_EXPR)
1740 (plus (view_convert @0) (inner_op @2 (view_convert @1)))
1741 (minus (view_convert @0) (neg_inner_op @2 (view_convert @1)))))
1742 (if (!ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1743 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1744 (if (outer_op == PLUS_EXPR)
1745 (view_convert (plus @0 (inner_op (view_convert @2) @1)))
1746 (view_convert (minus @0 (neg_inner_op (view_convert @2) @1))))
1747 /* If the constant operation overflows we cannot do the transform
1748 directly as we would introduce undefined overflow, for example
1749 with (a - 1) + INT_MIN. */
1750 (if (types_match (type, @0))
1751 (with { tree cst = const_binop (outer_op == inner_op
1752 ? PLUS_EXPR : MINUS_EXPR,
1754 (if (cst && !TREE_OVERFLOW (cst))
1755 (inner_op @0 { cst; } )
1756 /* X+INT_MAX+1 is X-INT_MIN. */
1757 (if (INTEGRAL_TYPE_P (type) && cst
1758 && wi::to_wide (cst) == wi::min_value (type))
1759 (neg_inner_op @0 { wide_int_to_tree (type, wi::to_wide (cst)); })
1760 /* Last resort, use some unsigned type. */
1761 (with { tree utype = unsigned_type_for (type); }
1762 (view_convert (inner_op
1763 (view_convert:utype @0)
1765 { drop_tree_overflow (cst); })))))))))))))
1767 /* (CST1 - A) +- CST2 -> CST3 - A */
1768 (for outer_op (plus minus)
1770 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
1771 (with { tree cst = const_binop (outer_op, type, @1, @2); }
1772 (if (cst && !TREE_OVERFLOW (cst))
1773 (minus { cst; } @0)))))
1775 /* CST1 - (CST2 - A) -> CST3 + A */
1777 (minus CONSTANT_CLASS_P@1 (minus CONSTANT_CLASS_P@2 @0))
1778 (with { tree cst = const_binop (MINUS_EXPR, type, @1, @2); }
1779 (if (cst && !TREE_OVERFLOW (cst))
1780 (plus { cst; } @0))))
1784 (plus:c (bit_not @0) @0)
1785 (if (!TYPE_OVERFLOW_TRAPS (type))
1786 { build_all_ones_cst (type); }))
1790 (plus (convert? (bit_not @0)) integer_each_onep)
1791 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1792 (negate (convert @0))))
1796 (minus (convert? (negate @0)) integer_each_onep)
1797 (if (!TYPE_OVERFLOW_TRAPS (type)
1798 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
1799 (bit_not (convert @0))))
1803 (minus integer_all_onesp @0)
1806 /* (T)(P + A) - (T)P -> (T) A */
1808 (minus (convert (plus:c @@0 @1))
1810 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1811 /* For integer types, if A has a smaller type
1812 than T the result depends on the possible
1814 E.g. T=size_t, A=(unsigned)429497295, P>0.
1815 However, if an overflow in P + A would cause
1816 undefined behavior, we can assume that there
1818 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1819 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1822 (minus (convert (pointer_plus @@0 @1))
1824 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1825 /* For pointer types, if the conversion of A to the
1826 final type requires a sign- or zero-extension,
1827 then we have to punt - it is not defined which
1829 || (POINTER_TYPE_P (TREE_TYPE (@0))
1830 && TREE_CODE (@1) == INTEGER_CST
1831 && tree_int_cst_sign_bit (@1) == 0))
1834 (pointer_diff (pointer_plus @@0 @1) @0)
1835 /* The second argument of pointer_plus must be interpreted as signed, and
1836 thus sign-extended if necessary. */
1837 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1838 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1839 second arg is unsigned even when we need to consider it as signed,
1840 we don't want to diagnose overflow here. */
1841 (convert (view_convert:stype @1))))
1843 /* (T)P - (T)(P + A) -> -(T) A */
1845 (minus (convert? @0)
1846 (convert (plus:c @@0 @1)))
1847 (if (INTEGRAL_TYPE_P (type)
1848 && TYPE_OVERFLOW_UNDEFINED (type)
1849 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1850 (with { tree utype = unsigned_type_for (type); }
1851 (convert (negate (convert:utype @1))))
1852 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1853 /* For integer types, if A has a smaller type
1854 than T the result depends on the possible
1856 E.g. T=size_t, A=(unsigned)429497295, P>0.
1857 However, if an overflow in P + A would cause
1858 undefined behavior, we can assume that there
1860 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1861 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))))
1862 (negate (convert @1)))))
1865 (convert (pointer_plus @@0 @1)))
1866 (if (INTEGRAL_TYPE_P (type)
1867 && TYPE_OVERFLOW_UNDEFINED (type)
1868 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1869 (with { tree utype = unsigned_type_for (type); }
1870 (convert (negate (convert:utype @1))))
1871 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1872 /* For pointer types, if the conversion of A to the
1873 final type requires a sign- or zero-extension,
1874 then we have to punt - it is not defined which
1876 || (POINTER_TYPE_P (TREE_TYPE (@0))
1877 && TREE_CODE (@1) == INTEGER_CST
1878 && tree_int_cst_sign_bit (@1) == 0))
1879 (negate (convert @1)))))
1881 (pointer_diff @0 (pointer_plus @@0 @1))
1882 /* The second argument of pointer_plus must be interpreted as signed, and
1883 thus sign-extended if necessary. */
1884 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1885 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1886 second arg is unsigned even when we need to consider it as signed,
1887 we don't want to diagnose overflow here. */
1888 (negate (convert (view_convert:stype @1)))))
1890 /* (T)(P + A) - (T)(P + B) -> (T)A - (T)B */
1892 (minus (convert (plus:c @@0 @1))
1893 (convert (plus:c @0 @2)))
1894 (if (INTEGRAL_TYPE_P (type)
1895 && TYPE_OVERFLOW_UNDEFINED (type)
1896 && element_precision (type) <= element_precision (TREE_TYPE (@1))
1897 && element_precision (type) <= element_precision (TREE_TYPE (@2)))
1898 (with { tree utype = unsigned_type_for (type); }
1899 (convert (minus (convert:utype @1) (convert:utype @2))))
1900 (if (((element_precision (type) <= element_precision (TREE_TYPE (@1)))
1901 == (element_precision (type) <= element_precision (TREE_TYPE (@2))))
1902 && (element_precision (type) <= element_precision (TREE_TYPE (@1))
1903 /* For integer types, if A has a smaller type
1904 than T the result depends on the possible
1906 E.g. T=size_t, A=(unsigned)429497295, P>0.
1907 However, if an overflow in P + A would cause
1908 undefined behavior, we can assume that there
1910 || (INTEGRAL_TYPE_P (TREE_TYPE (@1))
1911 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1912 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@1))
1913 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@2)))))
1914 (minus (convert @1) (convert @2)))))
1916 (minus (convert (pointer_plus @@0 @1))
1917 (convert (pointer_plus @0 @2)))
1918 (if (INTEGRAL_TYPE_P (type)
1919 && TYPE_OVERFLOW_UNDEFINED (type)
1920 && element_precision (type) <= element_precision (TREE_TYPE (@1)))
1921 (with { tree utype = unsigned_type_for (type); }
1922 (convert (minus (convert:utype @1) (convert:utype @2))))
1923 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
1924 /* For pointer types, if the conversion of A to the
1925 final type requires a sign- or zero-extension,
1926 then we have to punt - it is not defined which
1928 || (POINTER_TYPE_P (TREE_TYPE (@0))
1929 && TREE_CODE (@1) == INTEGER_CST
1930 && tree_int_cst_sign_bit (@1) == 0
1931 && TREE_CODE (@2) == INTEGER_CST
1932 && tree_int_cst_sign_bit (@2) == 0))
1933 (minus (convert @1) (convert @2)))))
1935 (pointer_diff (pointer_plus @@0 @1) (pointer_plus @0 @2))
1936 /* The second argument of pointer_plus must be interpreted as signed, and
1937 thus sign-extended if necessary. */
1938 (with { tree stype = signed_type_for (TREE_TYPE (@1)); }
1939 /* Use view_convert instead of convert here, as POINTER_PLUS_EXPR
1940 second arg is unsigned even when we need to consider it as signed,
1941 we don't want to diagnose overflow here. */
1942 (minus (convert (view_convert:stype @1))
1943 (convert (view_convert:stype @2)))))))
1945 /* (A * C) +- (B * C) -> (A+-B) * C and (A * C) +- A -> A * (C+-1).
1946 Modeled after fold_plusminus_mult_expr. */
1947 (if (!TYPE_SATURATING (type)
1948 && (!FLOAT_TYPE_P (type) || flag_associative_math))
1949 (for plusminus (plus minus)
1951 (plusminus (mult:cs@3 @0 @1) (mult:cs@4 @0 @2))
1952 (if ((!ANY_INTEGRAL_TYPE_P (type)
1953 || TYPE_OVERFLOW_WRAPS (type)
1954 || (INTEGRAL_TYPE_P (type)
1955 && tree_expr_nonzero_p (@0)
1956 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1957 /* If @1 +- @2 is constant require a hard single-use on either
1958 original operand (but not on both). */
1959 && (single_use (@3) || single_use (@4)))
1960 (mult (plusminus @1 @2) @0)))
1961 /* We cannot generate constant 1 for fract. */
1962 (if (!ALL_FRACT_MODE_P (TYPE_MODE (type)))
1964 (plusminus @0 (mult:c@3 @0 @2))
1965 (if ((!ANY_INTEGRAL_TYPE_P (type)
1966 || TYPE_OVERFLOW_WRAPS (type)
1967 || (INTEGRAL_TYPE_P (type)
1968 && tree_expr_nonzero_p (@0)
1969 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1971 (mult (plusminus { build_one_cst (type); } @2) @0)))
1973 (plusminus (mult:c@3 @0 @2) @0)
1974 (if ((!ANY_INTEGRAL_TYPE_P (type)
1975 || TYPE_OVERFLOW_WRAPS (type)
1976 || (INTEGRAL_TYPE_P (type)
1977 && tree_expr_nonzero_p (@0)
1978 && expr_not_equal_to (@0, wi::minus_one (TYPE_PRECISION (type)))))
1980 (mult (plusminus @2 { build_one_cst (type); }) @0))))))
1982 /* Simplifications of MIN_EXPR, MAX_EXPR, fmin() and fmax(). */
1984 (for minmax (min max FMIN_ALL FMAX_ALL)
1988 /* min(max(x,y),y) -> y. */
1990 (min:c (max:c @0 @1) @1)
1992 /* max(min(x,y),y) -> y. */
1994 (max:c (min:c @0 @1) @1)
1996 /* max(a,-a) -> abs(a). */
1998 (max:c @0 (negate @0))
1999 (if (TREE_CODE (type) != COMPLEX_TYPE
2000 && (! ANY_INTEGRAL_TYPE_P (type)
2001 || TYPE_OVERFLOW_UNDEFINED (type)))
2003 /* min(a,-a) -> -abs(a). */
2005 (min:c @0 (negate @0))
2006 (if (TREE_CODE (type) != COMPLEX_TYPE
2007 && (! ANY_INTEGRAL_TYPE_P (type)
2008 || TYPE_OVERFLOW_UNDEFINED (type)))
2013 (if (INTEGRAL_TYPE_P (type)
2014 && TYPE_MIN_VALUE (type)
2015 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2017 (if (INTEGRAL_TYPE_P (type)
2018 && TYPE_MAX_VALUE (type)
2019 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2024 (if (INTEGRAL_TYPE_P (type)
2025 && TYPE_MAX_VALUE (type)
2026 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
2028 (if (INTEGRAL_TYPE_P (type)
2029 && TYPE_MIN_VALUE (type)
2030 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
2033 /* max (a, a + CST) -> a + CST where CST is positive. */
2034 /* max (a, a + CST) -> a where CST is negative. */
2036 (max:c @0 (plus@2 @0 INTEGER_CST@1))
2037 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2038 (if (tree_int_cst_sgn (@1) > 0)
2042 /* min (a, a + CST) -> a where CST is positive. */
2043 /* min (a, a + CST) -> a + CST where CST is negative. */
2045 (min:c @0 (plus@2 @0 INTEGER_CST@1))
2046 (if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
2047 (if (tree_int_cst_sgn (@1) > 0)
2051 /* (convert (minmax ((convert (x) c)))) -> minmax (x c) if x is promoted
2052 and the outer convert demotes the expression back to x's type. */
2053 (for minmax (min max)
2055 (convert (minmax@0 (convert @1) INTEGER_CST@2))
2056 (if (INTEGRAL_TYPE_P (type)
2057 && types_match (@1, type) && int_fits_type_p (@2, type)
2058 && TYPE_SIGN (TREE_TYPE (@0)) == TYPE_SIGN (type)
2059 && TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type))
2060 (minmax @1 (convert @2)))))
2062 (for minmax (FMIN_ALL FMAX_ALL)
2063 /* If either argument is NaN, return the other one. Avoid the
2064 transformation if we get (and honor) a signalling NaN. */
2066 (minmax:c @0 REAL_CST@1)
2067 (if (real_isnan (TREE_REAL_CST_PTR (@1))
2068 && (!HONOR_SNANS (@1) || !TREE_REAL_CST (@1).signalling))
2070 /* Convert fmin/fmax to MIN_EXPR/MAX_EXPR. C99 requires these
2071 functions to return the numeric arg if the other one is NaN.
2072 MIN and MAX don't honor that, so only transform if -ffinite-math-only
2073 is set. C99 doesn't require -0.0 to be handled, so we don't have to
2074 worry about it either. */
2075 (if (flag_finite_math_only)
2082 /* min (-A, -B) -> -max (A, B) */
2083 (for minmax (min max FMIN_ALL FMAX_ALL)
2084 maxmin (max min FMAX_ALL FMIN_ALL)
2086 (minmax (negate:s@2 @0) (negate:s@3 @1))
2087 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
2088 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2089 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
2090 (negate (maxmin @0 @1)))))
2091 /* MIN (~X, ~Y) -> ~MAX (X, Y)
2092 MAX (~X, ~Y) -> ~MIN (X, Y) */
2093 (for minmax (min max)
2096 (minmax (bit_not:s@2 @0) (bit_not:s@3 @1))
2097 (bit_not (maxmin @0 @1))))
2099 /* MIN (X, Y) == X -> X <= Y */
2100 (for minmax (min min max max)
2104 (cmp:c (minmax:c @0 @1) @0)
2105 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0)))
2107 /* MIN (X, 5) == 0 -> X == 0
2108 MIN (X, 5) == 7 -> false */
2111 (cmp (min @0 INTEGER_CST@1) INTEGER_CST@2)
2112 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2113 TYPE_SIGN (TREE_TYPE (@0))))
2114 { constant_boolean_node (cmp == NE_EXPR, type); }
2115 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2116 TYPE_SIGN (TREE_TYPE (@0))))
2120 (cmp (max @0 INTEGER_CST@1) INTEGER_CST@2)
2121 (if (wi::gt_p (wi::to_wide (@1), wi::to_wide (@2),
2122 TYPE_SIGN (TREE_TYPE (@0))))
2123 { constant_boolean_node (cmp == NE_EXPR, type); }
2124 (if (wi::lt_p (wi::to_wide (@1), wi::to_wide (@2),
2125 TYPE_SIGN (TREE_TYPE (@0))))
2127 /* MIN (X, C1) < C2 -> X < C2 || C1 < C2 */
2128 (for minmax (min min max max min min max max )
2129 cmp (lt le gt ge gt ge lt le )
2130 comb (bit_ior bit_ior bit_ior bit_ior bit_and bit_and bit_and bit_and)
2132 (cmp (minmax @0 INTEGER_CST@1) INTEGER_CST@2)
2133 (comb (cmp @0 @2) (cmp @1 @2))))
2135 /* Simplifications of shift and rotates. */
2137 (for rotate (lrotate rrotate)
2139 (rotate integer_all_onesp@0 @1)
2142 /* Optimize -1 >> x for arithmetic right shifts. */
2144 (rshift integer_all_onesp@0 @1)
2145 (if (!TYPE_UNSIGNED (type)
2146 && tree_expr_nonnegative_p (@1))
2149 /* Optimize (x >> c) << c into x & (-1<<c). */
2151 (lshift (rshift @0 INTEGER_CST@1) @1)
2152 (if (wi::ltu_p (wi::to_wide (@1), element_precision (type)))
2153 (bit_and @0 (lshift { build_minus_one_cst (type); } @1))))
2155 /* Optimize (x << c) >> c into x & ((unsigned)-1 >> c) for unsigned
2158 (rshift (lshift @0 INTEGER_CST@1) @1)
2159 (if (TYPE_UNSIGNED (type)
2160 && (wi::ltu_p (wi::to_wide (@1), element_precision (type))))
2161 (bit_and @0 (rshift { build_minus_one_cst (type); } @1))))
2163 (for shiftrotate (lrotate rrotate lshift rshift)
2165 (shiftrotate @0 integer_zerop)
2168 (shiftrotate integer_zerop@0 @1)
2170 /* Prefer vector1 << scalar to vector1 << vector2
2171 if vector2 is uniform. */
2172 (for vec (VECTOR_CST CONSTRUCTOR)
2174 (shiftrotate @0 vec@1)
2175 (with { tree tem = uniform_vector_p (@1); }
2177 (shiftrotate @0 { tem; }))))))
2179 /* Simplify X << Y where Y's low width bits are 0 to X, as only valid
2180 Y is 0. Similarly for X >> Y. */
2182 (for shift (lshift rshift)
2184 (shift @0 SSA_NAME@1)
2185 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
2187 int width = ceil_log2 (element_precision (TREE_TYPE (@0)));
2188 int prec = TYPE_PRECISION (TREE_TYPE (@1));
2190 (if ((get_nonzero_bits (@1) & wi::mask (width, false, prec)) == 0)
2194 /* Rewrite an LROTATE_EXPR by a constant into an
2195 RROTATE_EXPR by a new constant. */
2197 (lrotate @0 INTEGER_CST@1)
2198 (rrotate @0 { const_binop (MINUS_EXPR, TREE_TYPE (@1),
2199 build_int_cst (TREE_TYPE (@1),
2200 element_precision (type)), @1); }))
2202 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
2203 (for op (lrotate rrotate rshift lshift)
2205 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
2206 (with { unsigned int prec = element_precision (type); }
2207 (if (wi::ge_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1)))
2208 && wi::lt_p (wi::to_wide (@1), prec, TYPE_SIGN (TREE_TYPE (@1)))
2209 && wi::ge_p (wi::to_wide (@2), 0, TYPE_SIGN (TREE_TYPE (@2)))
2210 && wi::lt_p (wi::to_wide (@2), prec, TYPE_SIGN (TREE_TYPE (@2))))
2211 (with { unsigned int low = (tree_to_uhwi (@1)
2212 + tree_to_uhwi (@2)); }
2213 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
2214 being well defined. */
2216 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
2217 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); })
2218 (if (TYPE_UNSIGNED (type) || op == LSHIFT_EXPR)
2219 { build_zero_cst (type); }
2220 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); })))
2221 (op @0 { build_int_cst (TREE_TYPE (@1), low); })))))))
2224 /* ((1 << A) & 1) != 0 -> A == 0
2225 ((1 << A) & 1) == 0 -> A != 0 */
2229 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
2230 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
2232 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
2233 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
2237 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
2238 (with { int cand = wi::ctz (wi::to_wide (@2)) - wi::ctz (wi::to_wide (@0)); }
2240 || (!integer_zerop (@2)
2241 && wi::lshift (wi::to_wide (@0), cand) != wi::to_wide (@2)))
2242 { constant_boolean_node (cmp == NE_EXPR, type); }
2243 (if (!integer_zerop (@2)
2244 && wi::lshift (wi::to_wide (@0), cand) == wi::to_wide (@2))
2245 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); }))))))
2247 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
2248 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
2249 if the new mask might be further optimized. */
2250 (for shift (lshift rshift)
2252 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
2254 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
2255 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
2256 && tree_fits_uhwi_p (@1)
2257 && tree_to_uhwi (@1) > 0
2258 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
2261 unsigned int shiftc = tree_to_uhwi (@1);
2262 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
2263 unsigned HOST_WIDE_INT newmask, zerobits = 0;
2264 tree shift_type = TREE_TYPE (@3);
2267 if (shift == LSHIFT_EXPR)
2268 zerobits = ((HOST_WIDE_INT_1U << shiftc) - 1);
2269 else if (shift == RSHIFT_EXPR
2270 && type_has_mode_precision_p (shift_type))
2272 prec = TYPE_PRECISION (TREE_TYPE (@3));
2274 /* See if more bits can be proven as zero because of
2277 && TYPE_UNSIGNED (TREE_TYPE (@0)))
2279 tree inner_type = TREE_TYPE (@0);
2280 if (type_has_mode_precision_p (inner_type)
2281 && TYPE_PRECISION (inner_type) < prec)
2283 prec = TYPE_PRECISION (inner_type);
2284 /* See if we can shorten the right shift. */
2286 shift_type = inner_type;
2287 /* Otherwise X >> C1 is all zeros, so we'll optimize
2288 it into (X, 0) later on by making sure zerobits
2292 zerobits = HOST_WIDE_INT_M1U;
2295 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
2296 zerobits <<= prec - shiftc;
2298 /* For arithmetic shift if sign bit could be set, zerobits
2299 can contain actually sign bits, so no transformation is
2300 possible, unless MASK masks them all away. In that
2301 case the shift needs to be converted into logical shift. */
2302 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
2303 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
2305 if ((mask & zerobits) == 0)
2306 shift_type = unsigned_type_for (TREE_TYPE (@3));
2312 /* ((X << 16) & 0xff00) is (X, 0). */
2313 (if ((mask & zerobits) == mask)
2314 { build_int_cst (type, 0); }
2315 (with { newmask = mask | zerobits; }
2316 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
2319 /* Only do the transformation if NEWMASK is some integer
2321 for (prec = BITS_PER_UNIT;
2322 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
2323 if (newmask == (HOST_WIDE_INT_1U << prec) - 1)
2326 (if (prec < HOST_BITS_PER_WIDE_INT
2327 || newmask == HOST_WIDE_INT_M1U)
2329 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
2330 (if (!tree_int_cst_equal (newmaskt, @2))
2331 (if (shift_type != TREE_TYPE (@3))
2332 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; })
2333 (bit_and @4 { newmaskt; })))))))))))))
2335 /* Fold (X {&,^,|} C2) << C1 into (X << C1) {&,^,|} (C2 << C1)
2336 (X {&,^,|} C2) >> C1 into (X >> C1) & (C2 >> C1). */
2337 (for shift (lshift rshift)
2338 (for bit_op (bit_and bit_xor bit_ior)
2340 (shift (convert?:s (bit_op:s @0 INTEGER_CST@2)) INTEGER_CST@1)
2341 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
2342 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
2343 (bit_op (shift (convert @0) @1) { mask; }))))))
2345 /* ~(~X >> Y) -> X >> Y (for arithmetic shift). */
2347 (bit_not (convert1?:s (rshift:s (convert2?@0 (bit_not @1)) @2)))
2348 (if (!TYPE_UNSIGNED (TREE_TYPE (@0))
2349 && (element_precision (TREE_TYPE (@0))
2350 <= element_precision (TREE_TYPE (@1))
2351 || !TYPE_UNSIGNED (TREE_TYPE (@1))))
2353 { tree shift_type = TREE_TYPE (@0); }
2354 (convert (rshift (convert:shift_type @1) @2)))))
2356 /* ~(~X >>r Y) -> X >>r Y
2357 ~(~X <<r Y) -> X <<r Y */
2358 (for rotate (lrotate rrotate)
2360 (bit_not (convert1?:s (rotate:s (convert2?@0 (bit_not @1)) @2)))
2361 (if ((element_precision (TREE_TYPE (@0))
2362 <= element_precision (TREE_TYPE (@1))
2363 || !TYPE_UNSIGNED (TREE_TYPE (@1)))
2364 && (element_precision (type) <= element_precision (TREE_TYPE (@0))
2365 || !TYPE_UNSIGNED (TREE_TYPE (@0))))
2367 { tree rotate_type = TREE_TYPE (@0); }
2368 (convert (rotate (convert:rotate_type @1) @2))))))
2370 /* Simplifications of conversions. */
2372 /* Basic strip-useless-type-conversions / strip_nops. */
2373 (for cvt (convert view_convert float fix_trunc)
2376 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
2377 || (GENERIC && type == TREE_TYPE (@0)))
2380 /* Contract view-conversions. */
2382 (view_convert (view_convert @0))
2385 /* For integral conversions with the same precision or pointer
2386 conversions use a NOP_EXPR instead. */
2389 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
2390 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2391 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
2394 /* Strip inner integral conversions that do not change precision or size, or
2395 zero-extend while keeping the same size (for bool-to-char). */
2397 (view_convert (convert@0 @1))
2398 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
2399 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
2400 && TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))
2401 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1))
2402 || (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@1))
2403 && TYPE_UNSIGNED (TREE_TYPE (@1)))))
2406 /* Re-association barriers around constants and other re-association
2407 barriers can be removed. */
2409 (paren CONSTANT_CLASS_P@0)
2412 (paren (paren@1 @0))
2415 /* Handle cases of two conversions in a row. */
2416 (for ocvt (convert float fix_trunc)
2417 (for icvt (convert float)
2422 tree inside_type = TREE_TYPE (@0);
2423 tree inter_type = TREE_TYPE (@1);
2424 int inside_int = INTEGRAL_TYPE_P (inside_type);
2425 int inside_ptr = POINTER_TYPE_P (inside_type);
2426 int inside_float = FLOAT_TYPE_P (inside_type);
2427 int inside_vec = VECTOR_TYPE_P (inside_type);
2428 unsigned int inside_prec = TYPE_PRECISION (inside_type);
2429 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
2430 int inter_int = INTEGRAL_TYPE_P (inter_type);
2431 int inter_ptr = POINTER_TYPE_P (inter_type);
2432 int inter_float = FLOAT_TYPE_P (inter_type);
2433 int inter_vec = VECTOR_TYPE_P (inter_type);
2434 unsigned int inter_prec = TYPE_PRECISION (inter_type);
2435 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
2436 int final_int = INTEGRAL_TYPE_P (type);
2437 int final_ptr = POINTER_TYPE_P (type);
2438 int final_float = FLOAT_TYPE_P (type);
2439 int final_vec = VECTOR_TYPE_P (type);
2440 unsigned int final_prec = TYPE_PRECISION (type);
2441 int final_unsignedp = TYPE_UNSIGNED (type);
2444 /* In addition to the cases of two conversions in a row
2445 handled below, if we are converting something to its own
2446 type via an object of identical or wider precision, neither
2447 conversion is needed. */
2448 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
2450 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
2451 && (((inter_int || inter_ptr) && final_int)
2452 || (inter_float && final_float))
2453 && inter_prec >= final_prec)
2456 /* Likewise, if the intermediate and initial types are either both
2457 float or both integer, we don't need the middle conversion if the
2458 former is wider than the latter and doesn't change the signedness
2459 (for integers). Avoid this if the final type is a pointer since
2460 then we sometimes need the middle conversion. */
2461 (if (((inter_int && inside_int) || (inter_float && inside_float))
2462 && (final_int || final_float)
2463 && inter_prec >= inside_prec
2464 && (inter_float || inter_unsignedp == inside_unsignedp))
2467 /* If we have a sign-extension of a zero-extended value, we can
2468 replace that by a single zero-extension. Likewise if the
2469 final conversion does not change precision we can drop the
2470 intermediate conversion. */
2471 (if (inside_int && inter_int && final_int
2472 && ((inside_prec < inter_prec && inter_prec < final_prec
2473 && inside_unsignedp && !inter_unsignedp)
2474 || final_prec == inter_prec))
2477 /* Two conversions in a row are not needed unless:
2478 - some conversion is floating-point (overstrict for now), or
2479 - some conversion is a vector (overstrict for now), or
2480 - the intermediate type is narrower than both initial and
2482 - the intermediate type and innermost type differ in signedness,
2483 and the outermost type is wider than the intermediate, or
2484 - the initial type is a pointer type and the precisions of the
2485 intermediate and final types differ, or
2486 - the final type is a pointer type and the precisions of the
2487 initial and intermediate types differ. */
2488 (if (! inside_float && ! inter_float && ! final_float
2489 && ! inside_vec && ! inter_vec && ! final_vec
2490 && (inter_prec >= inside_prec || inter_prec >= final_prec)
2491 && ! (inside_int && inter_int
2492 && inter_unsignedp != inside_unsignedp
2493 && inter_prec < final_prec)
2494 && ((inter_unsignedp && inter_prec > inside_prec)
2495 == (final_unsignedp && final_prec > inter_prec))
2496 && ! (inside_ptr && inter_prec != final_prec)
2497 && ! (final_ptr && inside_prec != inter_prec))
2500 /* A truncation to an unsigned type (a zero-extension) should be
2501 canonicalized as bitwise and of a mask. */
2502 (if (GIMPLE /* PR70366: doing this in GENERIC breaks -Wconversion. */
2503 && final_int && inter_int && inside_int
2504 && final_prec == inside_prec
2505 && final_prec > inter_prec
2507 (convert (bit_and @0 { wide_int_to_tree
2509 wi::mask (inter_prec, false,
2510 TYPE_PRECISION (inside_type))); })))
2512 /* If we are converting an integer to a floating-point that can
2513 represent it exactly and back to an integer, we can skip the
2514 floating-point conversion. */
2515 (if (GIMPLE /* PR66211 */
2516 && inside_int && inter_float && final_int &&
2517 (unsigned) significand_size (TYPE_MODE (inter_type))
2518 >= inside_prec - !inside_unsignedp)
2521 /* If we have a narrowing conversion to an integral type that is fed by a
2522 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
2523 masks off bits outside the final type (and nothing else). */
2525 (convert (bit_and @0 INTEGER_CST@1))
2526 (if (INTEGRAL_TYPE_P (type)
2527 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
2528 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
2529 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
2530 TYPE_PRECISION (type)), 0))
2534 /* (X /[ex] A) * A -> X. */
2536 (mult (convert1? (exact_div @0 @@1)) (convert2? @1))
2539 /* Canonicalization of binary operations. */
2541 /* Convert X + -C into X - C. */
2543 (plus @0 REAL_CST@1)
2544 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
2545 (with { tree tem = const_unop (NEGATE_EXPR, type, @1); }
2546 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
2547 (minus @0 { tem; })))))
2549 /* Convert x+x into x*2. */
2552 (if (SCALAR_FLOAT_TYPE_P (type))
2553 (mult @0 { build_real (type, dconst2); })
2554 (if (INTEGRAL_TYPE_P (type))
2555 (mult @0 { build_int_cst (type, 2); }))))
2559 (minus integer_zerop @1)
2562 (pointer_diff integer_zerop @1)
2563 (negate (convert @1)))
2565 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
2566 ARG0 is zero and X + ARG0 reduces to X, since that would mean
2567 (-ARG1 + ARG0) reduces to -ARG1. */
2569 (minus real_zerop@0 @1)
2570 (if (fold_real_zero_addition_p (type, @0, 0))
2573 /* Transform x * -1 into -x. */
2575 (mult @0 integer_minus_onep)
2578 /* Reassociate (X * CST) * Y to (X * Y) * CST. This does not introduce
2579 signed overflow for CST != 0 && CST != -1. */
2581 (mult:c (mult:s@3 @0 INTEGER_CST@1) @2)
2582 (if (TREE_CODE (@2) != INTEGER_CST
2584 && !integer_zerop (@1) && !integer_minus_onep (@1))
2585 (mult (mult @0 @2) @1)))
2587 /* True if we can easily extract the real and imaginary parts of a complex
2589 (match compositional_complex
2590 (convert? (complex @0 @1)))
2592 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
2594 (complex (realpart @0) (imagpart @0))
2597 (realpart (complex @0 @1))
2600 (imagpart (complex @0 @1))
2603 /* Sometimes we only care about half of a complex expression. */
2605 (realpart (convert?:s (conj:s @0)))
2606 (convert (realpart @0)))
2608 (imagpart (convert?:s (conj:s @0)))
2609 (convert (negate (imagpart @0))))
2610 (for part (realpart imagpart)
2611 (for op (plus minus)
2613 (part (convert?:s@2 (op:s @0 @1)))
2614 (convert (op (part @0) (part @1))))))
2616 (realpart (convert?:s (CEXPI:s @0)))
2619 (imagpart (convert?:s (CEXPI:s @0)))
2622 /* conj(conj(x)) -> x */
2624 (conj (convert? (conj @0)))
2625 (if (tree_nop_conversion_p (TREE_TYPE (@0), type))
2628 /* conj({x,y}) -> {x,-y} */
2630 (conj (convert?:s (complex:s @0 @1)))
2631 (with { tree itype = TREE_TYPE (type); }
2632 (complex (convert:itype @0) (negate (convert:itype @1)))))
2634 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
2635 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
2640 (bswap (bit_not (bswap @0)))
2642 (for bitop (bit_xor bit_ior bit_and)
2644 (bswap (bitop:c (bswap @0) @1))
2645 (bitop @0 (bswap @1)))))
2648 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
2650 /* Simplify constant conditions.
2651 Only optimize constant conditions when the selected branch
2652 has the same type as the COND_EXPR. This avoids optimizing
2653 away "c ? x : throw", where the throw has a void type.
2654 Note that we cannot throw away the fold-const.c variant nor
2655 this one as we depend on doing this transform before possibly
2656 A ? B : B -> B triggers and the fold-const.c one can optimize
2657 0 ? A : B to B even if A has side-effects. Something
2658 genmatch cannot handle. */
2660 (cond INTEGER_CST@0 @1 @2)
2661 (if (integer_zerop (@0))
2662 (if (!VOID_TYPE_P (TREE_TYPE (@2)) || VOID_TYPE_P (type))
2664 (if (!VOID_TYPE_P (TREE_TYPE (@1)) || VOID_TYPE_P (type))
2667 (vec_cond VECTOR_CST@0 @1 @2)
2668 (if (integer_all_onesp (@0))
2670 (if (integer_zerop (@0))
2673 /* Simplification moved from fold_cond_expr_with_comparison. It may also
2675 /* This pattern implements two kinds simplification:
2678 (cond (cmp (convert1? x) c1) (convert2? x) c2) -> (minmax (x c)) if:
2679 1) Conversions are type widening from smaller type.
2680 2) Const c1 equals to c2 after canonicalizing comparison.
2681 3) Comparison has tree code LT, LE, GT or GE.
2682 This specific pattern is needed when (cmp (convert x) c) may not
2683 be simplified by comparison patterns because of multiple uses of
2684 x. It also makes sense here because simplifying across multiple
2685 referred var is always benefitial for complicated cases.
2688 (cond (eq (convert1? x) c1) (convert2? x) c2) -> (cond (eq x c1) c1 c2). */
2689 (for cmp (lt le gt ge eq)
2691 (cond (cmp (convert1? @1) INTEGER_CST@3) (convert2? @1) INTEGER_CST@2)
2694 tree from_type = TREE_TYPE (@1);
2695 tree c1_type = TREE_TYPE (@3), c2_type = TREE_TYPE (@2);
2696 enum tree_code code = ERROR_MARK;
2698 if (INTEGRAL_TYPE_P (from_type)
2699 && int_fits_type_p (@2, from_type)
2700 && (types_match (c1_type, from_type)
2701 || (TYPE_PRECISION (c1_type) > TYPE_PRECISION (from_type)
2702 && (TYPE_UNSIGNED (from_type)
2703 || TYPE_SIGN (c1_type) == TYPE_SIGN (from_type))))
2704 && (types_match (c2_type, from_type)
2705 || (TYPE_PRECISION (c2_type) > TYPE_PRECISION (from_type)
2706 && (TYPE_UNSIGNED (from_type)
2707 || TYPE_SIGN (c2_type) == TYPE_SIGN (from_type)))))
2711 if (wi::to_widest (@3) == (wi::to_widest (@2) - 1))
2713 /* X <= Y - 1 equals to X < Y. */
2716 /* X > Y - 1 equals to X >= Y. */
2720 if (wi::to_widest (@3) == (wi::to_widest (@2) + 1))
2722 /* X < Y + 1 equals to X <= Y. */
2725 /* X >= Y + 1 equals to X > Y. */
2729 if (code != ERROR_MARK
2730 || wi::to_widest (@2) == wi::to_widest (@3))
2732 if (cmp == LT_EXPR || cmp == LE_EXPR)
2734 if (cmp == GT_EXPR || cmp == GE_EXPR)
2738 /* Can do A == C1 ? A : C2 -> A == C1 ? C1 : C2? */
2739 else if (int_fits_type_p (@3, from_type))
2743 (if (code == MAX_EXPR)
2744 (convert (max @1 (convert @2)))
2745 (if (code == MIN_EXPR)
2746 (convert (min @1 (convert @2)))
2747 (if (code == EQ_EXPR)
2748 (convert (cond (eq @1 (convert @3))
2749 (convert:from_type @3) (convert:from_type @2)))))))))
2751 /* (cond (cmp (convert? x) c1) (op x c2) c3) -> (op (minmax x c1) c2) if:
2753 1) OP is PLUS or MINUS.
2754 2) CMP is LT, LE, GT or GE.
2755 3) C3 == (C1 op C2), and computation doesn't have undefined behavior.
2757 This pattern also handles special cases like:
2759 A) Operand x is a unsigned to signed type conversion and c1 is
2760 integer zero. In this case,
2761 (signed type)x < 0 <=> x > MAX_VAL(signed type)
2762 (signed type)x >= 0 <=> x <= MAX_VAL(signed type)
2763 B) Const c1 may not equal to (C3 op' C2). In this case we also
2764 check equality for (c1+1) and (c1-1) by adjusting comparison
2767 TODO: Though signed type is handled by this pattern, it cannot be
2768 simplified at the moment because C standard requires additional
2769 type promotion. In order to match&simplify it here, the IR needs
2770 to be cleaned up by other optimizers, i.e, VRP. */
2771 (for op (plus minus)
2772 (for cmp (lt le gt ge)
2774 (cond (cmp (convert? @X) INTEGER_CST@1) (op @X INTEGER_CST@2) INTEGER_CST@3)
2775 (with { tree from_type = TREE_TYPE (@X), to_type = TREE_TYPE (@1); }
2776 (if (types_match (from_type, to_type)
2777 /* Check if it is special case A). */
2778 || (TYPE_UNSIGNED (from_type)
2779 && !TYPE_UNSIGNED (to_type)
2780 && TYPE_PRECISION (from_type) == TYPE_PRECISION (to_type)
2781 && integer_zerop (@1)
2782 && (cmp == LT_EXPR || cmp == GE_EXPR)))
2785 bool overflow = false;
2786 enum tree_code code, cmp_code = cmp;
2788 wide_int c1 = wi::to_wide (@1);
2789 wide_int c2 = wi::to_wide (@2);
2790 wide_int c3 = wi::to_wide (@3);
2791 signop sgn = TYPE_SIGN (from_type);
2793 /* Handle special case A), given x of unsigned type:
2794 ((signed type)x < 0) <=> (x > MAX_VAL(signed type))
2795 ((signed type)x >= 0) <=> (x <= MAX_VAL(signed type)) */
2796 if (!types_match (from_type, to_type))
2798 if (cmp_code == LT_EXPR)
2800 if (cmp_code == GE_EXPR)
2802 c1 = wi::max_value (to_type);
2804 /* To simplify this pattern, we require c3 = (c1 op c2). Here we
2805 compute (c3 op' c2) and check if it equals to c1 with op' being
2806 the inverted operator of op. Make sure overflow doesn't happen
2807 if it is undefined. */
2808 if (op == PLUS_EXPR)
2809 real_c1 = wi::sub (c3, c2, sgn, &overflow);
2811 real_c1 = wi::add (c3, c2, sgn, &overflow);
2814 if (!overflow || !TYPE_OVERFLOW_UNDEFINED (from_type))
2816 /* Check if c1 equals to real_c1. Boundary condition is handled
2817 by adjusting comparison operation if necessary. */
2818 if (!wi::cmp (wi::sub (real_c1, 1, sgn, &overflow), c1, sgn)
2821 /* X <= Y - 1 equals to X < Y. */
2822 if (cmp_code == LE_EXPR)
2824 /* X > Y - 1 equals to X >= Y. */
2825 if (cmp_code == GT_EXPR)
2828 if (!wi::cmp (wi::add (real_c1, 1, sgn, &overflow), c1, sgn)
2831 /* X < Y + 1 equals to X <= Y. */
2832 if (cmp_code == LT_EXPR)
2834 /* X >= Y + 1 equals to X > Y. */
2835 if (cmp_code == GE_EXPR)
2838 if (code != cmp_code || !wi::cmp (real_c1, c1, sgn))
2840 if (cmp_code == LT_EXPR || cmp_code == LE_EXPR)
2842 if (cmp_code == GT_EXPR || cmp_code == GE_EXPR)
2847 (if (code == MAX_EXPR)
2848 (op (max @X { wide_int_to_tree (from_type, real_c1); })
2849 { wide_int_to_tree (from_type, c2); })
2850 (if (code == MIN_EXPR)
2851 (op (min @X { wide_int_to_tree (from_type, real_c1); })
2852 { wide_int_to_tree (from_type, c2); })))))))))
2854 (for cnd (cond vec_cond)
2855 /* A ? B : (A ? X : C) -> A ? B : C. */
2857 (cnd @0 (cnd @0 @1 @2) @3)
2860 (cnd @0 @1 (cnd @0 @2 @3))
2862 /* A ? B : (!A ? C : X) -> A ? B : C. */
2863 /* ??? This matches embedded conditions open-coded because genmatch
2864 would generate matching code for conditions in separate stmts only.
2865 The following is still important to merge then and else arm cases
2866 from if-conversion. */
2868 (cnd @0 @1 (cnd @2 @3 @4))
2869 (if (COMPARISON_CLASS_P (@0)
2870 && COMPARISON_CLASS_P (@2)
2871 && invert_tree_comparison
2872 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@2)
2873 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@2, 0), 0)
2874 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@2, 1), 0))
2877 (cnd @0 (cnd @1 @2 @3) @4)
2878 (if (COMPARISON_CLASS_P (@0)
2879 && COMPARISON_CLASS_P (@1)
2880 && invert_tree_comparison
2881 (TREE_CODE (@0), HONOR_NANS (TREE_OPERAND (@0, 0))) == TREE_CODE (@1)
2882 && operand_equal_p (TREE_OPERAND (@0, 0), TREE_OPERAND (@1, 0), 0)
2883 && operand_equal_p (TREE_OPERAND (@0, 1), TREE_OPERAND (@1, 1), 0))
2886 /* A ? B : B -> B. */
2891 /* !A ? B : C -> A ? C : B. */
2893 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
2896 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C ? -1 : 0), since vector comparisons
2897 return all -1 or all 0 results. */
2898 /* ??? We could instead convert all instances of the vec_cond to negate,
2899 but that isn't necessarily a win on its own. */
2901 (plus:c @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2902 (if (VECTOR_TYPE_P (type)
2903 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2904 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2905 && (TYPE_MODE (TREE_TYPE (type))
2906 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2907 (minus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2909 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C ? -1 : 0). */
2911 (minus @3 (view_convert? (vec_cond:s @0 integer_each_onep@1 integer_zerop@2)))
2912 (if (VECTOR_TYPE_P (type)
2913 && known_eq (TYPE_VECTOR_SUBPARTS (type),
2914 TYPE_VECTOR_SUBPARTS (TREE_TYPE (@1)))
2915 && (TYPE_MODE (TREE_TYPE (type))
2916 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@1)))))
2917 (plus @3 (view_convert (vec_cond @0 (negate @1) @2)))))
2920 /* Simplifications of comparisons. */
2922 /* See if we can reduce the magnitude of a constant involved in a
2923 comparison by changing the comparison code. This is a canonicalization
2924 formerly done by maybe_canonicalize_comparison_1. */
2928 (cmp @0 INTEGER_CST@1)
2929 (if (tree_int_cst_sgn (@1) == -1)
2930 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
2934 (cmp @0 INTEGER_CST@1)
2935 (if (tree_int_cst_sgn (@1) == 1)
2936 (acmp @0 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
2939 /* We can simplify a logical negation of a comparison to the
2940 inverted comparison. As we cannot compute an expression
2941 operator using invert_tree_comparison we have to simulate
2942 that with expression code iteration. */
2943 (for cmp (tcc_comparison)
2944 icmp (inverted_tcc_comparison)
2945 ncmp (inverted_tcc_comparison_with_nans)
2946 /* Ideally we'd like to combine the following two patterns
2947 and handle some more cases by using
2948 (logical_inverted_value (cmp @0 @1))
2949 here but for that genmatch would need to "inline" that.
2950 For now implement what forward_propagate_comparison did. */
2952 (bit_not (cmp @0 @1))
2953 (if (VECTOR_TYPE_P (type)
2954 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
2955 /* Comparison inversion may be impossible for trapping math,
2956 invert_tree_comparison will tell us. But we can't use
2957 a computed operator in the replacement tree thus we have
2958 to play the trick below. */
2959 (with { enum tree_code ic = invert_tree_comparison
2960 (cmp, HONOR_NANS (@0)); }
2966 (bit_xor (cmp @0 @1) integer_truep)
2967 (with { enum tree_code ic = invert_tree_comparison
2968 (cmp, HONOR_NANS (@0)); }
2974 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
2975 ??? The transformation is valid for the other operators if overflow
2976 is undefined for the type, but performing it here badly interacts
2977 with the transformation in fold_cond_expr_with_comparison which
2978 attempts to synthetize ABS_EXPR. */
2980 (for sub (minus pointer_diff)
2982 (cmp (sub@2 @0 @1) integer_zerop)
2983 (if (single_use (@2))
2986 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
2987 signed arithmetic case. That form is created by the compiler
2988 often enough for folding it to be of value. One example is in
2989 computing loop trip counts after Operator Strength Reduction. */
2990 (for cmp (simple_comparison)
2991 scmp (swapped_simple_comparison)
2993 (cmp (mult@3 @0 INTEGER_CST@1) integer_zerop@2)
2994 /* Handle unfolded multiplication by zero. */
2995 (if (integer_zerop (@1))
2997 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
2998 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3000 /* If @1 is negative we swap the sense of the comparison. */
3001 (if (tree_int_cst_sgn (@1) < 0)
3005 /* Simplify comparison of something with itself. For IEEE
3006 floating-point, we can only do some of these simplifications. */
3010 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
3011 || ! HONOR_NANS (@0))
3012 { constant_boolean_node (true, type); }
3013 (if (cmp != EQ_EXPR)
3019 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
3020 || ! HONOR_NANS (@0))
3021 { constant_boolean_node (false, type); })))
3022 (for cmp (unle unge uneq)
3025 { constant_boolean_node (true, type); }))
3026 (for cmp (unlt ungt)
3032 (if (!flag_trapping_math)
3033 { constant_boolean_node (false, type); }))
3035 /* Fold ~X op ~Y as Y op X. */
3036 (for cmp (simple_comparison)
3038 (cmp (bit_not@2 @0) (bit_not@3 @1))
3039 (if (single_use (@2) && single_use (@3))
3042 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
3043 (for cmp (simple_comparison)
3044 scmp (swapped_simple_comparison)
3046 (cmp (bit_not@2 @0) CONSTANT_CLASS_P@1)
3047 (if (single_use (@2)
3048 && (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST))
3049 (scmp @0 (bit_not @1)))))
3051 (for cmp (simple_comparison)
3052 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
3054 (cmp (convert@2 @0) (convert? @1))
3055 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3056 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3057 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
3058 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
3059 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
3062 tree type1 = TREE_TYPE (@1);
3063 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
3065 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
3066 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
3067 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
3068 type1 = float_type_node;
3069 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
3070 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
3071 type1 = double_type_node;
3074 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
3075 ? TREE_TYPE (@0) : type1);
3077 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
3078 (cmp (convert:newtype @0) (convert:newtype @1))))))
3082 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
3084 /* a CMP (-0) -> a CMP 0 */
3085 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
3086 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
3087 /* x != NaN is always true, other ops are always false. */
3088 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3089 && ! HONOR_SNANS (@1))
3090 { constant_boolean_node (cmp == NE_EXPR, type); })
3091 /* Fold comparisons against infinity. */
3092 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
3093 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
3096 REAL_VALUE_TYPE max;
3097 enum tree_code code = cmp;
3098 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
3100 code = swap_tree_comparison (code);
3103 /* x > +Inf is always false, if we ignore NaNs or exceptions. */
3104 (if (code == GT_EXPR
3105 && !(HONOR_NANS (@0) && flag_trapping_math))
3106 { constant_boolean_node (false, type); })
3107 (if (code == LE_EXPR)
3108 /* x <= +Inf is always true, if we don't care about NaNs. */
3109 (if (! HONOR_NANS (@0))
3110 { constant_boolean_node (true, type); }
3111 /* x <= +Inf is the same as x == x, i.e. !isnan(x), but this loses
3112 an "invalid" exception. */
3113 (if (!flag_trapping_math)
3115 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX, but
3116 for == this introduces an exception for x a NaN. */
3117 (if ((code == EQ_EXPR && !(HONOR_NANS (@0) && flag_trapping_math))
3119 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3121 (lt @0 { build_real (TREE_TYPE (@0), max); })
3122 (gt @0 { build_real (TREE_TYPE (@0), max); }))))
3123 /* x < +Inf is always equal to x <= DBL_MAX. */
3124 (if (code == LT_EXPR)
3125 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3127 (ge @0 { build_real (TREE_TYPE (@0), max); })
3128 (le @0 { build_real (TREE_TYPE (@0), max); }))))
3129 /* x != +Inf is always equal to !(x > DBL_MAX), but this introduces
3130 an exception for x a NaN so use an unordered comparison. */
3131 (if (code == NE_EXPR)
3132 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
3133 (if (! HONOR_NANS (@0))
3135 (ge @0 { build_real (TREE_TYPE (@0), max); })
3136 (le @0 { build_real (TREE_TYPE (@0), max); }))
3138 (unge @0 { build_real (TREE_TYPE (@0), max); })
3139 (unle @0 { build_real (TREE_TYPE (@0), max); }))))))))))
3141 /* If this is a comparison of a real constant with a PLUS_EXPR
3142 or a MINUS_EXPR of a real constant, we can convert it into a
3143 comparison with a revised real constant as long as no overflow
3144 occurs when unsafe_math_optimizations are enabled. */
3145 (if (flag_unsafe_math_optimizations)
3146 (for op (plus minus)
3148 (cmp (op @0 REAL_CST@1) REAL_CST@2)
3151 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
3152 TREE_TYPE (@1), @2, @1);
3154 (if (tem && !TREE_OVERFLOW (tem))
3155 (cmp @0 { tem; }))))))
3157 /* Likewise, we can simplify a comparison of a real constant with
3158 a MINUS_EXPR whose first operand is also a real constant, i.e.
3159 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
3160 floating-point types only if -fassociative-math is set. */
3161 (if (flag_associative_math)
3163 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
3164 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
3165 (if (tem && !TREE_OVERFLOW (tem))
3166 (cmp { tem; } @1)))))
3168 /* Fold comparisons against built-in math functions. */
3169 (if (flag_unsafe_math_optimizations
3170 && ! flag_errno_math)
3173 (cmp (sq @0) REAL_CST@1)
3175 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
3177 /* sqrt(x) < y is always false, if y is negative. */
3178 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
3179 { constant_boolean_node (false, type); })
3180 /* sqrt(x) > y is always true, if y is negative and we
3181 don't care about NaNs, i.e. negative values of x. */
3182 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
3183 { constant_boolean_node (true, type); })
3184 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
3185 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })))
3186 (if (real_equal (TREE_REAL_CST_PTR (@1), &dconst0))
3188 /* sqrt(x) < 0 is always false. */
3189 (if (cmp == LT_EXPR)
3190 { constant_boolean_node (false, type); })
3191 /* sqrt(x) >= 0 is always true if we don't care about NaNs. */
3192 (if (cmp == GE_EXPR && !HONOR_NANS (@0))
3193 { constant_boolean_node (true, type); })
3194 /* sqrt(x) <= 0 -> x == 0. */
3195 (if (cmp == LE_EXPR)
3197 /* Otherwise sqrt(x) cmp 0 -> x cmp 0. Here cmp can be >=, >,
3198 == or !=. In the last case:
3200 (sqrt(x) != 0) == (NaN != 0) == true == (x != 0)
3202 if x is negative or NaN. Due to -funsafe-math-optimizations,
3203 the results for other x follow from natural arithmetic. */
3205 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3209 real_arithmetic (&c2, MULT_EXPR,
3210 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3211 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3213 (if (REAL_VALUE_ISINF (c2))
3214 /* sqrt(x) > y is x == +Inf, when y is very large. */
3215 (if (HONOR_INFINITIES (@0))
3216 (eq @0 { build_real (TREE_TYPE (@0), c2); })
3217 { constant_boolean_node (false, type); })
3218 /* sqrt(x) > c is the same as x > c*c. */
3219 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))))
3220 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3224 real_arithmetic (&c2, MULT_EXPR,
3225 &TREE_REAL_CST (@1), &TREE_REAL_CST (@1));
3226 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
3228 (if (REAL_VALUE_ISINF (c2))
3230 /* sqrt(x) < y is always true, when y is a very large
3231 value and we don't care about NaNs or Infinities. */
3232 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
3233 { constant_boolean_node (true, type); })
3234 /* sqrt(x) < y is x != +Inf when y is very large and we
3235 don't care about NaNs. */
3236 (if (! HONOR_NANS (@0))
3237 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
3238 /* sqrt(x) < y is x >= 0 when y is very large and we
3239 don't care about Infinities. */
3240 (if (! HONOR_INFINITIES (@0))
3241 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
3242 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
3245 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3246 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
3247 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
3248 (if (! HONOR_NANS (@0))
3249 (cmp @0 { build_real (TREE_TYPE (@0), c2); })
3250 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
3253 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
3254 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
3255 /* Transform sqrt(x) cmp sqrt(y) -> x cmp y. */
3257 (cmp (sq @0) (sq @1))
3258 (if (! HONOR_NANS (@0))
3261 /* Optimize various special cases of (FTYPE) N CMP CST. */
3262 (for cmp (lt le eq ne ge gt)
3263 icmp (le le eq ne ge ge)
3265 (cmp (float @0) REAL_CST@1)
3266 (if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (@1))
3267 && ! DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1)))
3270 tree itype = TREE_TYPE (@0);
3271 signop isign = TYPE_SIGN (itype);
3272 format_helper fmt (REAL_MODE_FORMAT (TYPE_MODE (TREE_TYPE (@1))));
3273 const REAL_VALUE_TYPE *cst = TREE_REAL_CST_PTR (@1);
3274 /* Be careful to preserve any potential exceptions due to
3275 NaNs. qNaNs are ok in == or != context.
3276 TODO: relax under -fno-trapping-math or
3277 -fno-signaling-nans. */
3279 = real_isnan (cst) && (cst->signalling
3280 || (cmp != EQ_EXPR && cmp != NE_EXPR));
3281 /* INT?_MIN is power-of-two so it takes
3282 only one mantissa bit. */
3283 bool signed_p = isign == SIGNED;
3284 bool itype_fits_ftype_p
3285 = TYPE_PRECISION (itype) - signed_p <= significand_size (fmt);
3287 /* TODO: allow non-fitting itype and SNaNs when
3288 -fno-trapping-math. */
3289 (if (itype_fits_ftype_p && ! exception_p)
3292 REAL_VALUE_TYPE imin, imax;
3293 real_from_integer (&imin, fmt, wi::min_value (itype), isign);
3294 real_from_integer (&imax, fmt, wi::max_value (itype), isign);
3296 REAL_VALUE_TYPE icst;
3297 if (cmp == GT_EXPR || cmp == GE_EXPR)
3298 real_ceil (&icst, fmt, cst);
3299 else if (cmp == LT_EXPR || cmp == LE_EXPR)
3300 real_floor (&icst, fmt, cst);
3302 real_trunc (&icst, fmt, cst);
3304 bool cst_int_p = !real_isnan (cst) && real_identical (&icst, cst);
3306 bool overflow_p = false;
3308 = real_to_integer (&icst, &overflow_p, TYPE_PRECISION (itype));
3311 /* Optimize cases when CST is outside of ITYPE's range. */
3312 (if (real_compare (LT_EXPR, cst, &imin))
3313 { constant_boolean_node (cmp == GT_EXPR || cmp == GE_EXPR || cmp == NE_EXPR,
3315 (if (real_compare (GT_EXPR, cst, &imax))
3316 { constant_boolean_node (cmp == LT_EXPR || cmp == LE_EXPR || cmp == NE_EXPR,
3318 /* Remove cast if CST is an integer representable by ITYPE. */
3320 (cmp @0 { gcc_assert (!overflow_p);
3321 wide_int_to_tree (itype, icst_val); })
3323 /* When CST is fractional, optimize
3324 (FTYPE) N == CST -> 0
3325 (FTYPE) N != CST -> 1. */
3326 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3327 { constant_boolean_node (cmp == NE_EXPR, type); })
3328 /* Otherwise replace with sensible integer constant. */
3331 gcc_checking_assert (!overflow_p);
3333 (icmp @0 { wide_int_to_tree (itype, icst_val); })))))))))
3335 /* Fold A /[ex] B CMP C to A CMP B * C. */
3338 (cmp (exact_div @0 @1) INTEGER_CST@2)
3339 (if (!integer_zerop (@1))
3340 (if (wi::to_wide (@2) == 0)
3342 (if (TREE_CODE (@1) == INTEGER_CST)
3346 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3347 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3350 { constant_boolean_node (cmp == NE_EXPR, type); }
3351 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))))
3352 (for cmp (lt le gt ge)
3354 (cmp (exact_div @0 INTEGER_CST@1) INTEGER_CST@2)
3355 (if (wi::gt_p (wi::to_wide (@1), 0, TYPE_SIGN (TREE_TYPE (@1))))
3359 wide_int prod = wi::mul (wi::to_wide (@2), wi::to_wide (@1),
3360 TYPE_SIGN (TREE_TYPE (@1)), &ovf);
3363 { constant_boolean_node (wi::lt_p (wi::to_wide (@2), 0,
3364 TYPE_SIGN (TREE_TYPE (@2)))
3365 != (cmp == LT_EXPR || cmp == LE_EXPR), type); }
3366 (cmp @0 { wide_int_to_tree (TREE_TYPE (@0), prod); }))))))
3368 /* Unordered tests if either argument is a NaN. */
3370 (bit_ior (unordered @0 @0) (unordered @1 @1))
3371 (if (types_match (@0, @1))
3374 (bit_and (ordered @0 @0) (ordered @1 @1))
3375 (if (types_match (@0, @1))
3378 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
3381 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
3384 /* Simple range test simplifications. */
3385 /* A < B || A >= B -> true. */
3386 (for test1 (lt le le le ne ge)
3387 test2 (ge gt ge ne eq ne)
3389 (bit_ior:c (test1 @0 @1) (test2 @0 @1))
3390 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3391 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3392 { constant_boolean_node (true, type); })))
3393 /* A < B && A >= B -> false. */
3394 (for test1 (lt lt lt le ne eq)
3395 test2 (ge gt eq gt eq gt)
3397 (bit_and:c (test1 @0 @1) (test2 @0 @1))
3398 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3399 || VECTOR_INTEGER_TYPE_P (TREE_TYPE (@0)))
3400 { constant_boolean_node (false, type); })))
3402 /* A & (2**N - 1) <= 2**K - 1 -> A & (2**N - 2**K) == 0
3403 A & (2**N - 1) > 2**K - 1 -> A & (2**N - 2**K) != 0
3405 Note that comparisons
3406 A & (2**N - 1) < 2**K -> A & (2**N - 2**K) == 0
3407 A & (2**N - 1) >= 2**K -> A & (2**N - 2**K) != 0
3408 will be canonicalized to above so there's no need to
3415 (cmp (bit_and@0 @1 INTEGER_CST@2) INTEGER_CST@3)
3416 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0)))
3419 tree ty = TREE_TYPE (@0);
3420 unsigned prec = TYPE_PRECISION (ty);
3421 wide_int mask = wi::to_wide (@2, prec);
3422 wide_int rhs = wi::to_wide (@3, prec);
3423 signop sgn = TYPE_SIGN (ty);
3425 (if ((mask & (mask + 1)) == 0 && wi::gt_p (rhs, 0, sgn)
3426 && (rhs & (rhs + 1)) == 0 && wi::ge_p (mask, rhs, sgn))
3427 (eqcmp (bit_and @1 { wide_int_to_tree (ty, mask - rhs); })
3428 { build_zero_cst (ty); }))))))
3430 /* -A CMP -B -> B CMP A. */
3431 (for cmp (tcc_comparison)
3432 scmp (swapped_tcc_comparison)
3434 (cmp (negate @0) (negate @1))
3435 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3436 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3437 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3440 (cmp (negate @0) CONSTANT_CLASS_P@1)
3441 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
3442 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3443 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
3444 (with { tree tem = const_unop (NEGATE_EXPR, TREE_TYPE (@0), @1); }
3445 (if (tem && !TREE_OVERFLOW (tem))
3446 (scmp @0 { tem; }))))))
3448 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
3451 (op (abs @0) zerop@1)
3454 /* From fold_sign_changed_comparison and fold_widened_comparison.
3455 FIXME: the lack of symmetry is disturbing. */
3456 (for cmp (simple_comparison)
3458 (cmp (convert@0 @00) (convert?@1 @10))
3459 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3460 /* Disable this optimization if we're casting a function pointer
3461 type on targets that require function pointer canonicalization. */
3462 && !(targetm.have_canonicalize_funcptr_for_compare ()
3463 && TREE_CODE (TREE_TYPE (@00)) == POINTER_TYPE
3464 && TREE_CODE (TREE_TYPE (TREE_TYPE (@00))) == FUNCTION_TYPE)
3466 (if (TYPE_PRECISION (TREE_TYPE (@00)) == TYPE_PRECISION (TREE_TYPE (@0))
3467 && (TREE_CODE (@10) == INTEGER_CST
3469 && (TYPE_UNSIGNED (TREE_TYPE (@00)) == TYPE_UNSIGNED (TREE_TYPE (@0))
3472 && !POINTER_TYPE_P (TREE_TYPE (@00)))
3473 /* ??? The special-casing of INTEGER_CST conversion was in the original
3474 code and here to avoid a spurious overflow flag on the resulting
3475 constant which fold_convert produces. */
3476 (if (TREE_CODE (@1) == INTEGER_CST)
3477 (cmp @00 { force_fit_type (TREE_TYPE (@00), wi::to_widest (@1), 0,
3478 TREE_OVERFLOW (@1)); })
3479 (cmp @00 (convert @1)))
3481 (if (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (TREE_TYPE (@00)))
3482 /* If possible, express the comparison in the shorter mode. */
3483 (if ((cmp == EQ_EXPR || cmp == NE_EXPR
3484 || TYPE_UNSIGNED (TREE_TYPE (@0)) == TYPE_UNSIGNED (TREE_TYPE (@00))
3485 || (!TYPE_UNSIGNED (TREE_TYPE (@0))
3486 && TYPE_UNSIGNED (TREE_TYPE (@00))))
3487 && (types_match (TREE_TYPE (@10), TREE_TYPE (@00))
3488 || ((TYPE_PRECISION (TREE_TYPE (@00))
3489 >= TYPE_PRECISION (TREE_TYPE (@10)))
3490 && (TYPE_UNSIGNED (TREE_TYPE (@00))
3491 == TYPE_UNSIGNED (TREE_TYPE (@10))))
3492 || (TREE_CODE (@10) == INTEGER_CST
3493 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3494 && int_fits_type_p (@10, TREE_TYPE (@00)))))
3495 (cmp @00 (convert @10))
3496 (if (TREE_CODE (@10) == INTEGER_CST
3497 && INTEGRAL_TYPE_P (TREE_TYPE (@00))
3498 && !int_fits_type_p (@10, TREE_TYPE (@00)))
3501 tree min = lower_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3502 tree max = upper_bound_in_type (TREE_TYPE (@10), TREE_TYPE (@00));
3503 bool above = integer_nonzerop (const_binop (LT_EXPR, type, max, @10));
3504 bool below = integer_nonzerop (const_binop (LT_EXPR, type, @10, min));
3506 (if (above || below)
3507 (if (cmp == EQ_EXPR || cmp == NE_EXPR)
3508 { constant_boolean_node (cmp == EQ_EXPR ? false : true, type); }
3509 (if (cmp == LT_EXPR || cmp == LE_EXPR)
3510 { constant_boolean_node (above ? true : false, type); }
3511 (if (cmp == GT_EXPR || cmp == GE_EXPR)
3512 { constant_boolean_node (above ? false : true, type); }))))))))))))
3515 /* A local variable can never be pointed to by
3516 the default SSA name of an incoming parameter.
3517 SSA names are canonicalized to 2nd place. */
3519 (cmp addr@0 SSA_NAME@1)
3520 (if (SSA_NAME_IS_DEFAULT_DEF (@1)
3521 && TREE_CODE (SSA_NAME_VAR (@1)) == PARM_DECL)
3522 (with { tree base = get_base_address (TREE_OPERAND (@0, 0)); }
3523 (if (TREE_CODE (base) == VAR_DECL
3524 && auto_var_in_fn_p (base, current_function_decl))
3525 (if (cmp == NE_EXPR)
3526 { constant_boolean_node (true, type); }
3527 { constant_boolean_node (false, type); }))))))
3529 /* Equality compare simplifications from fold_binary */
3532 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
3533 Similarly for NE_EXPR. */
3535 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
3536 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
3537 && wi::bit_and_not (wi::to_wide (@1), wi::to_wide (@2)) != 0)
3538 { constant_boolean_node (cmp == NE_EXPR, type); }))
3540 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
3542 (cmp (bit_xor @0 @1) integer_zerop)
3545 /* (X ^ Y) == Y becomes X == 0.
3546 Likewise (X ^ Y) == X becomes Y == 0. */
3548 (cmp:c (bit_xor:c @0 @1) @0)
3549 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
3551 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
3553 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
3554 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
3555 (cmp @0 (bit_xor @1 (convert @2)))))
3558 (cmp (convert? addr@0) integer_zerop)
3559 (if (tree_single_nonzero_warnv_p (@0, NULL))
3560 { constant_boolean_node (cmp == NE_EXPR, type); })))
3562 /* If we have (A & C) == C where C is a power of 2, convert this into
3563 (A & C) != 0. Similarly for NE_EXPR. */
3567 (cmp (bit_and@2 @0 integer_pow2p@1) @1)
3568 (icmp @2 { build_zero_cst (TREE_TYPE (@0)); })))
3570 /* If we have (A & C) != 0 ? D : 0 where C and D are powers of 2,
3571 convert this into a shift followed by ANDing with D. */
3574 (ne (bit_and @0 integer_pow2p@1) integer_zerop)
3575 INTEGER_CST@2 integer_zerop)
3576 (if (integer_pow2p (@2))
3578 int shift = (wi::exact_log2 (wi::to_wide (@2))
3579 - wi::exact_log2 (wi::to_wide (@1)));
3583 (lshift (convert @0) { build_int_cst (integer_type_node, shift); }) @2)
3585 (convert (rshift @0 { build_int_cst (integer_type_node, -shift); }))
3588 /* If we have (A & C) != 0 where C is the sign bit of A, convert
3589 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
3593 (cmp (bit_and (convert?@2 @0) integer_pow2p@1) integer_zerop)
3594 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3595 && type_has_mode_precision_p (TREE_TYPE (@0))
3596 && element_precision (@2) >= element_precision (@0)
3597 && wi::only_sign_bit_p (wi::to_wide (@1), element_precision (@0)))
3598 (with { tree stype = signed_type_for (TREE_TYPE (@0)); }
3599 (ncmp (convert:stype @0) { build_zero_cst (stype); })))))
3601 /* If we have A < 0 ? C : 0 where C is a power of 2, convert
3602 this into a right shift or sign extension followed by ANDing with C. */
3605 (lt @0 integer_zerop)
3606 INTEGER_CST@1 integer_zerop)
3607 (if (integer_pow2p (@1)
3608 && !TYPE_UNSIGNED (TREE_TYPE (@0)))
3610 int shift = element_precision (@0) - wi::exact_log2 (wi::to_wide (@1)) - 1;
3614 (convert (rshift @0 { build_int_cst (integer_type_node, shift); }))
3616 /* Otherwise ctype must be wider than TREE_TYPE (@0) and pure
3617 sign extension followed by AND with C will achieve the effect. */
3618 (bit_and (convert @0) @1)))))
3620 /* When the addresses are not directly of decls compare base and offset.
3621 This implements some remaining parts of fold_comparison address
3622 comparisons but still no complete part of it. Still it is good
3623 enough to make fold_stmt not regress when not dispatching to fold_binary. */
3624 (for cmp (simple_comparison)
3626 (cmp (convert1?@2 addr@0) (convert2? addr@1))
3629 poly_int64 off0, off1;
3630 tree base0 = get_addr_base_and_unit_offset (TREE_OPERAND (@0, 0), &off0);
3631 tree base1 = get_addr_base_and_unit_offset (TREE_OPERAND (@1, 0), &off1);
3632 if (base0 && TREE_CODE (base0) == MEM_REF)
3634 off0 += mem_ref_offset (base0).force_shwi ();
3635 base0 = TREE_OPERAND (base0, 0);
3637 if (base1 && TREE_CODE (base1) == MEM_REF)
3639 off1 += mem_ref_offset (base1).force_shwi ();
3640 base1 = TREE_OPERAND (base1, 0);
3643 (if (base0 && base1)
3647 /* Punt in GENERIC on variables with value expressions;
3648 the value expressions might point to fields/elements
3649 of other vars etc. */
3651 && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0))
3652 || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1))))
3654 else if (decl_in_symtab_p (base0)
3655 && decl_in_symtab_p (base1))
3656 equal = symtab_node::get_create (base0)
3657 ->equal_address_to (symtab_node::get_create (base1));
3658 else if ((DECL_P (base0)
3659 || TREE_CODE (base0) == SSA_NAME
3660 || TREE_CODE (base0) == STRING_CST)
3662 || TREE_CODE (base1) == SSA_NAME
3663 || TREE_CODE (base1) == STRING_CST))
3664 equal = (base0 == base1);
3667 && (cmp == EQ_EXPR || cmp == NE_EXPR
3668 /* If the offsets are equal we can ignore overflow. */
3669 || known_eq (off0, off1)
3670 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))
3671 /* Or if we compare using pointers to decls or strings. */
3672 || (POINTER_TYPE_P (TREE_TYPE (@2))
3673 && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))))
3675 (if (cmp == EQ_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3676 { constant_boolean_node (known_eq (off0, off1), type); })
3677 (if (cmp == NE_EXPR && (known_eq (off0, off1) || known_ne (off0, off1)))
3678 { constant_boolean_node (known_ne (off0, off1), type); })
3679 (if (cmp == LT_EXPR && (known_lt (off0, off1) || known_ge (off0, off1)))
3680 { constant_boolean_node (known_lt (off0, off1), type); })
3681 (if (cmp == LE_EXPR && (known_le (off0, off1) || known_gt (off0, off1)))
3682 { constant_boolean_node (known_le (off0, off1), type); })
3683 (if (cmp == GE_EXPR && (known_ge (off0, off1) || known_lt (off0, off1)))
3684 { constant_boolean_node (known_ge (off0, off1), type); })
3685 (if (cmp == GT_EXPR && (known_gt (off0, off1) || known_le (off0, off1)))
3686 { constant_boolean_node (known_gt (off0, off1), type); }))
3688 && DECL_P (base0) && DECL_P (base1)
3689 /* If we compare this as integers require equal offset. */
3690 && (!INTEGRAL_TYPE_P (TREE_TYPE (@2))
3691 || known_eq (off0, off1)))
3693 (if (cmp == EQ_EXPR)
3694 { constant_boolean_node (false, type); })
3695 (if (cmp == NE_EXPR)
3696 { constant_boolean_node (true, type); })))))))))
3698 /* Simplify pointer equality compares using PTA. */
3702 (if (POINTER_TYPE_P (TREE_TYPE (@0))
3703 && ptrs_compare_unequal (@0, @1))
3704 { constant_boolean_node (neeq != EQ_EXPR, type); })))
3706 /* PR70920: Transform (intptr_t)x eq/ne CST to x eq/ne (typeof x) CST.
3707 and (typeof ptr_cst) x eq/ne ptr_cst to x eq/ne (typeof x) CST.
3708 Disable the transform if either operand is pointer to function.
3709 This broke pr22051-2.c for arm where function pointer
3710 canonicalizaion is not wanted. */
3714 (cmp (convert @0) INTEGER_CST@1)
3715 (if (((POINTER_TYPE_P (TREE_TYPE (@0))
3716 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@0)))
3717 && INTEGRAL_TYPE_P (TREE_TYPE (@1)))
3718 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
3719 && POINTER_TYPE_P (TREE_TYPE (@1))
3720 && !FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (@1)))))
3721 && TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
3722 (cmp @0 (convert @1)))))
3724 /* Non-equality compare simplifications from fold_binary */
3725 (for cmp (lt gt le ge)
3726 /* Comparisons with the highest or lowest possible integer of
3727 the specified precision will have known values. */
3729 (cmp (convert?@2 @0) INTEGER_CST@1)
3730 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
3731 && tree_nop_conversion_p (TREE_TYPE (@2), TREE_TYPE (@0)))
3734 tree arg1_type = TREE_TYPE (@1);
3735 unsigned int prec = TYPE_PRECISION (arg1_type);
3736 wide_int max = wi::max_value (arg1_type);
3737 wide_int signed_max = wi::max_value (prec, SIGNED);
3738 wide_int min = wi::min_value (arg1_type);
3741 (if (wi::to_wide (@1) == max)
3743 (if (cmp == GT_EXPR)
3744 { constant_boolean_node (false, type); })
3745 (if (cmp == GE_EXPR)
3747 (if (cmp == LE_EXPR)
3748 { constant_boolean_node (true, type); })
3749 (if (cmp == LT_EXPR)
3751 (if (wi::to_wide (@1) == min)
3753 (if (cmp == LT_EXPR)
3754 { constant_boolean_node (false, type); })
3755 (if (cmp == LE_EXPR)
3757 (if (cmp == GE_EXPR)
3758 { constant_boolean_node (true, type); })
3759 (if (cmp == GT_EXPR)
3761 (if (wi::to_wide (@1) == max - 1)
3763 (if (cmp == GT_EXPR)
3764 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))
3765 (if (cmp == LE_EXPR)
3766 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) + 1); }))))
3767 (if (wi::to_wide (@1) == min + 1)
3769 (if (cmp == GE_EXPR)
3770 (ne @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))
3771 (if (cmp == LT_EXPR)
3772 (eq @2 { wide_int_to_tree (TREE_TYPE (@1), wi::to_wide (@1) - 1); }))))
3773 (if (wi::to_wide (@1) == signed_max
3774 && TYPE_UNSIGNED (arg1_type)
3775 /* We will flip the signedness of the comparison operator
3776 associated with the mode of @1, so the sign bit is
3777 specified by this mode. Check that @1 is the signed
3778 max associated with this sign bit. */
3779 && prec == GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (arg1_type))
3780 /* signed_type does not work on pointer types. */
3781 && INTEGRAL_TYPE_P (arg1_type))
3782 /* The following case also applies to X < signed_max+1
3783 and X >= signed_max+1 because previous transformations. */
3784 (if (cmp == LE_EXPR || cmp == GT_EXPR)
3785 (with { tree st = signed_type_for (arg1_type); }
3786 (if (cmp == LE_EXPR)
3787 (ge (convert:st @0) { build_zero_cst (st); })
3788 (lt (convert:st @0) { build_zero_cst (st); }))))))))))
3790 (for cmp (unordered ordered unlt unle ungt unge uneq ltgt)
3791 /* If the second operand is NaN, the result is constant. */
3794 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
3795 && (cmp != LTGT_EXPR || ! flag_trapping_math))
3796 { constant_boolean_node (cmp == ORDERED_EXPR || cmp == LTGT_EXPR
3797 ? false : true, type); })))
3799 /* bool_var != 0 becomes bool_var. */
3801 (ne @0 integer_zerop)
3802 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3803 && types_match (type, TREE_TYPE (@0)))
3805 /* bool_var == 1 becomes bool_var. */
3807 (eq @0 integer_onep)
3808 (if (TREE_CODE (TREE_TYPE (@0)) == BOOLEAN_TYPE
3809 && types_match (type, TREE_TYPE (@0)))
3812 bool_var == 0 becomes !bool_var or
3813 bool_var != 1 becomes !bool_var
3814 here because that only is good in assignment context as long
3815 as we require a tcc_comparison in GIMPLE_CONDs where we'd
3816 replace if (x == 0) with tem = ~x; if (tem != 0) which is
3817 clearly less optimal and which we'll transform again in forwprop. */
3819 /* When one argument is a constant, overflow detection can be simplified.
3820 Currently restricted to single use so as not to interfere too much with
3821 ADD_OVERFLOW detection in tree-ssa-math-opts.c.
3822 A + CST CMP A -> A CMP' CST' */
3823 (for cmp (lt le ge gt)
3826 (cmp:c (plus@2 @0 INTEGER_CST@1) @0)
3827 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3828 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
3829 && wi::to_wide (@1) != 0
3831 (with { unsigned int prec = TYPE_PRECISION (TREE_TYPE (@0)); }
3832 (out @0 { wide_int_to_tree (TREE_TYPE (@0),
3833 wi::max_value (prec, UNSIGNED)
3834 - wi::to_wide (@1)); })))))
3836 /* To detect overflow in unsigned A - B, A < B is simpler than A - B > A.
3837 However, the detection logic for SUB_OVERFLOW in tree-ssa-math-opts.c
3838 expects the long form, so we restrict the transformation for now. */
3841 (cmp:c (minus@2 @0 @1) @0)
3842 (if (single_use (@2)
3843 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
3844 && TYPE_UNSIGNED (TREE_TYPE (@0))
3845 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
3848 /* Testing for overflow is unnecessary if we already know the result. */
3853 (cmp:c (realpart (IFN_SUB_OVERFLOW@2 @0 @1)) @0)
3854 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3855 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3856 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3861 (cmp:c (realpart (IFN_ADD_OVERFLOW:c@2 @0 @1)) @0)
3862 (if (TYPE_UNSIGNED (TREE_TYPE (@0))
3863 && types_match (TREE_TYPE (@0), TREE_TYPE (@1)))
3864 (out (imagpart @2) { build_zero_cst (TREE_TYPE (@0)); }))))
3866 /* For unsigned operands, -1 / B < A checks whether A * B would overflow.
3867 Simplify it to __builtin_mul_overflow (A, B, <unused>). */
3871 (cmp:c (trunc_div:s integer_all_onesp @1) @0)
3872 (if (TYPE_UNSIGNED (TREE_TYPE (@0)) && !VECTOR_TYPE_P (TREE_TYPE (@0)))
3873 (with { tree t = TREE_TYPE (@0), cpx = build_complex_type (t); }
3874 (out (imagpart (IFN_MUL_OVERFLOW:cpx @0 @1)) { build_zero_cst (t); })))))
3876 /* Simplification of math builtins. These rules must all be optimizations
3877 as well as IL simplifications. If there is a possibility that the new
3878 form could be a pessimization, the rule should go in the canonicalization
3879 section that follows this one.
3881 Rules can generally go in this section if they satisfy one of
3884 - the rule describes an identity
3886 - the rule replaces calls with something as simple as addition or
3889 - the rule contains unary calls only and simplifies the surrounding
3890 arithmetic. (The idea here is to exclude non-unary calls in which
3891 one operand is constant and in which the call is known to be cheap
3892 when the operand has that value.) */
3894 (if (flag_unsafe_math_optimizations)
3895 /* Simplify sqrt(x) * sqrt(x) -> x. */
3897 (mult (SQRT_ALL@1 @0) @1)
3898 (if (!HONOR_SNANS (type))
3901 (for op (plus minus)
3902 /* Simplify (A / C) +- (B / C) -> (A +- B) / C. */
3906 (rdiv (op @0 @2) @1)))
3908 /* Simplify sqrt(x) * sqrt(y) -> sqrt(x*y). */
3909 (for root (SQRT CBRT)
3911 (mult (root:s @0) (root:s @1))
3912 (root (mult @0 @1))))
3914 /* Simplify expN(x) * expN(y) -> expN(x+y). */
3915 (for exps (EXP EXP2 EXP10 POW10)
3917 (mult (exps:s @0) (exps:s @1))
3918 (exps (plus @0 @1))))
3920 /* Simplify a/root(b/c) into a*root(c/b). */
3921 (for root (SQRT CBRT)
3923 (rdiv @0 (root:s (rdiv:s @1 @2)))
3924 (mult @0 (root (rdiv @2 @1)))))
3926 /* Simplify x/expN(y) into x*expN(-y). */
3927 (for exps (EXP EXP2 EXP10 POW10)
3929 (rdiv @0 (exps:s @1))
3930 (mult @0 (exps (negate @1)))))
3932 (for logs (LOG LOG2 LOG10 LOG10)
3933 exps (EXP EXP2 EXP10 POW10)
3934 /* logN(expN(x)) -> x. */
3938 /* expN(logN(x)) -> x. */
3943 /* Optimize logN(func()) for various exponential functions. We
3944 want to determine the value "x" and the power "exponent" in
3945 order to transform logN(x**exponent) into exponent*logN(x). */
3946 (for logs (LOG LOG LOG LOG2 LOG2 LOG2 LOG10 LOG10)
3947 exps (EXP2 EXP10 POW10 EXP EXP10 POW10 EXP EXP2)
3950 (if (SCALAR_FLOAT_TYPE_P (type))
3956 /* Prepare to do logN(exp(exponent)) -> exponent*logN(e). */
3957 x = build_real_truncate (type, dconst_e ());
3960 /* Prepare to do logN(exp2(exponent)) -> exponent*logN(2). */
3961 x = build_real (type, dconst2);
3965 /* Prepare to do logN(exp10(exponent)) -> exponent*logN(10). */
3967 REAL_VALUE_TYPE dconst10;
3968 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
3969 x = build_real (type, dconst10);
3976 (mult (logs { x; }) @0)))))
3984 (if (SCALAR_FLOAT_TYPE_P (type))
3990 /* Prepare to do logN(sqrt(x)) -> 0.5*logN(x). */
3991 x = build_real (type, dconsthalf);
3994 /* Prepare to do logN(cbrt(x)) -> (1/3)*logN(x). */
3995 x = build_real_truncate (type, dconst_third ());
4001 (mult { x; } (logs @0))))))
4003 /* logN(pow(x,exponent)) -> exponent*logN(x). */
4004 (for logs (LOG LOG2 LOG10)
4008 (mult @1 (logs @0))))
4010 /* pow(C,x) -> exp(log(C)*x) if C > 0,
4011 or if C is a positive power of 2,
4012 pow(C,x) -> exp2(log2(C)*x). */
4020 (pows REAL_CST@0 @1)
4021 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4022 && real_isfinite (TREE_REAL_CST_PTR (@0))
4023 /* As libmvec doesn't have a vectorized exp2, defer optimizing
4024 the use_exp2 case until after vectorization. It seems actually
4025 beneficial for all constants to postpone this until later,
4026 because exp(log(C)*x), while faster, will have worse precision
4027 and if x folds into a constant too, that is unnecessary
4029 && canonicalize_math_after_vectorization_p ())
4031 const REAL_VALUE_TYPE *const value = TREE_REAL_CST_PTR (@0);
4032 bool use_exp2 = false;
4033 if (targetm.libc_has_function (function_c99_misc)
4034 && value->cl == rvc_normal)
4036 REAL_VALUE_TYPE frac_rvt = *value;
4037 SET_REAL_EXP (&frac_rvt, 1);
4038 if (real_equal (&frac_rvt, &dconst1))
4043 (if (optimize_pow_to_exp (@0, @1))
4044 (exps (mult (logs @0) @1)))
4045 (exp2s (mult (log2s @0) @1)))))))
4048 /* pow(C,x)*expN(y) -> expN(logN(C)*x+y) if C > 0. */
4050 exps (EXP EXP2 EXP10 POW10)
4051 logs (LOG LOG2 LOG10 LOG10)
4053 (mult:c (pows:s REAL_CST@0 @1) (exps:s @2))
4054 (if (real_compare (GT_EXPR, TREE_REAL_CST_PTR (@0), &dconst0)
4055 && real_isfinite (TREE_REAL_CST_PTR (@0)))
4056 (exps (plus (mult (logs @0) @1) @2)))))
4061 exps (EXP EXP2 EXP10 POW10)
4062 /* sqrt(expN(x)) -> expN(x*0.5). */
4065 (exps (mult @0 { build_real (type, dconsthalf); })))
4066 /* cbrt(expN(x)) -> expN(x/3). */
4069 (exps (mult @0 { build_real_truncate (type, dconst_third ()); })))
4070 /* pow(expN(x), y) -> expN(x*y). */
4073 (exps (mult @0 @1))))
4075 /* tan(atan(x)) -> x. */
4082 /* cabs(x+0i) or cabs(0+xi) -> abs(x). */
4084 (CABS (complex:C @0 real_zerop@1))
4087 /* trunc(trunc(x)) -> trunc(x), etc. */
4088 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4092 /* f(x) -> x if x is integer valued and f does nothing for such values. */
4093 (for fns (TRUNC_ALL FLOOR_ALL CEIL_ALL ROUND_ALL NEARBYINT_ALL RINT_ALL)
4095 (fns integer_valued_real_p@0)
4098 /* hypot(x,0) and hypot(0,x) -> abs(x). */
4100 (HYPOT:c @0 real_zerop@1)
4103 /* pow(1,x) -> 1. */
4105 (POW real_onep@0 @1)
4109 /* copysign(x,x) -> x. */
4110 (COPYSIGN_ALL @0 @0)
4114 /* copysign(x,y) -> fabs(x) if y is nonnegative. */
4115 (COPYSIGN_ALL @0 tree_expr_nonnegative_p@1)
4118 (for scale (LDEXP SCALBN SCALBLN)
4119 /* ldexp(0, x) -> 0. */
4121 (scale real_zerop@0 @1)
4123 /* ldexp(x, 0) -> x. */
4125 (scale @0 integer_zerop@1)
4127 /* ldexp(x, y) -> x if x is +-Inf or NaN. */
4129 (scale REAL_CST@0 @1)
4130 (if (!real_isfinite (TREE_REAL_CST_PTR (@0)))
4133 /* Canonicalization of sequences of math builtins. These rules represent
4134 IL simplifications but are not necessarily optimizations.
4136 The sincos pass is responsible for picking "optimal" implementations
4137 of math builtins, which may be more complicated and can sometimes go
4138 the other way, e.g. converting pow into a sequence of sqrts.
4139 We only want to do these canonicalizations before the pass has run. */
4141 (if (flag_unsafe_math_optimizations && canonicalize_math_p ())
4142 /* Simplify tan(x) * cos(x) -> sin(x). */
4144 (mult:c (TAN:s @0) (COS:s @0))
4147 /* Simplify x * pow(x,c) -> pow(x,c+1). */
4149 (mult:c @0 (POW:s @0 REAL_CST@1))
4150 (if (!TREE_OVERFLOW (@1))
4151 (POW @0 (plus @1 { build_one_cst (type); }))))
4153 /* Simplify sin(x) / cos(x) -> tan(x). */
4155 (rdiv (SIN:s @0) (COS:s @0))
4158 /* Simplify cos(x) / sin(x) -> 1 / tan(x). */
4160 (rdiv (COS:s @0) (SIN:s @0))
4161 (rdiv { build_one_cst (type); } (TAN @0)))
4163 /* Simplify sin(x) / tan(x) -> cos(x). */
4165 (rdiv (SIN:s @0) (TAN:s @0))
4166 (if (! HONOR_NANS (@0)
4167 && ! HONOR_INFINITIES (@0))
4170 /* Simplify tan(x) / sin(x) -> 1.0 / cos(x). */
4172 (rdiv (TAN:s @0) (SIN:s @0))
4173 (if (! HONOR_NANS (@0)
4174 && ! HONOR_INFINITIES (@0))
4175 (rdiv { build_one_cst (type); } (COS @0))))
4177 /* Simplify pow(x,y) * pow(x,z) -> pow(x,y+z). */
4179 (mult (POW:s @0 @1) (POW:s @0 @2))
4180 (POW @0 (plus @1 @2)))
4182 /* Simplify pow(x,y) * pow(z,y) -> pow(x*z,y). */
4184 (mult (POW:s @0 @1) (POW:s @2 @1))
4185 (POW (mult @0 @2) @1))
4187 /* Simplify powi(x,y) * powi(z,y) -> powi(x*z,y). */
4189 (mult (POWI:s @0 @1) (POWI:s @2 @1))
4190 (POWI (mult @0 @2) @1))
4192 /* Simplify pow(x,c) / x -> pow(x,c-1). */
4194 (rdiv (POW:s @0 REAL_CST@1) @0)
4195 (if (!TREE_OVERFLOW (@1))
4196 (POW @0 (minus @1 { build_one_cst (type); }))))
4198 /* Simplify x / pow (y,z) -> x * pow(y,-z). */
4200 (rdiv @0 (POW:s @1 @2))
4201 (mult @0 (POW @1 (negate @2))))
4206 /* sqrt(sqrt(x)) -> pow(x,1/4). */
4209 (pows @0 { build_real (type, dconst_quarter ()); }))
4210 /* sqrt(cbrt(x)) -> pow(x,1/6). */
4213 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4214 /* cbrt(sqrt(x)) -> pow(x,1/6). */
4217 (pows @0 { build_real_truncate (type, dconst_sixth ()); }))
4218 /* cbrt(cbrt(x)) -> pow(x,1/9), iff x is nonnegative. */
4220 (cbrts (cbrts tree_expr_nonnegative_p@0))
4221 (pows @0 { build_real_truncate (type, dconst_ninth ()); }))
4222 /* sqrt(pow(x,y)) -> pow(|x|,y*0.5). */
4224 (sqrts (pows @0 @1))
4225 (pows (abs @0) (mult @1 { build_real (type, dconsthalf); })))
4226 /* cbrt(pow(x,y)) -> pow(x,y/3), iff x is nonnegative. */
4228 (cbrts (pows tree_expr_nonnegative_p@0 @1))
4229 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4230 /* pow(sqrt(x),y) -> pow(x,y*0.5). */
4232 (pows (sqrts @0) @1)
4233 (pows @0 (mult @1 { build_real (type, dconsthalf); })))
4234 /* pow(cbrt(x),y) -> pow(x,y/3) iff x is nonnegative. */
4236 (pows (cbrts tree_expr_nonnegative_p@0) @1)
4237 (pows @0 (mult @1 { build_real_truncate (type, dconst_third ()); })))
4238 /* pow(pow(x,y),z) -> pow(x,y*z) iff x is nonnegative. */
4240 (pows (pows tree_expr_nonnegative_p@0 @1) @2)
4241 (pows @0 (mult @1 @2))))
4243 /* cabs(x+xi) -> fabs(x)*sqrt(2). */
4245 (CABS (complex @0 @0))
4246 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4248 /* hypot(x,x) -> fabs(x)*sqrt(2). */
4251 (mult (abs @0) { build_real_truncate (type, dconst_sqrt2 ()); }))
4253 /* cexp(x+yi) -> exp(x)*cexpi(y). */
4258 (cexps compositional_complex@0)
4259 (if (targetm.libc_has_function (function_c99_math_complex))
4261 (mult (exps@1 (realpart @0)) (realpart (cexpis:type@2 (imagpart @0))))
4262 (mult @1 (imagpart @2)))))))
4264 (if (canonicalize_math_p ())
4265 /* floor(x) -> trunc(x) if x is nonnegative. */
4266 (for floors (FLOOR_ALL)
4269 (floors tree_expr_nonnegative_p@0)
4272 (match double_value_p
4274 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == double_type_node)))
4275 (for froms (BUILT_IN_TRUNCL
4287 /* truncl(extend(x)) -> extend(trunc(x)), etc., if x is a double. */
4288 (if (optimize && canonicalize_math_p ())
4290 (froms (convert double_value_p@0))
4291 (convert (tos @0)))))
4293 (match float_value_p
4295 (if (TYPE_MAIN_VARIANT (TREE_TYPE (@0)) == float_type_node)))
4296 (for froms (BUILT_IN_TRUNCL BUILT_IN_TRUNC
4297 BUILT_IN_FLOORL BUILT_IN_FLOOR
4298 BUILT_IN_CEILL BUILT_IN_CEIL
4299 BUILT_IN_ROUNDL BUILT_IN_ROUND
4300 BUILT_IN_NEARBYINTL BUILT_IN_NEARBYINT
4301 BUILT_IN_RINTL BUILT_IN_RINT)
4302 tos (BUILT_IN_TRUNCF BUILT_IN_TRUNCF
4303 BUILT_IN_FLOORF BUILT_IN_FLOORF
4304 BUILT_IN_CEILF BUILT_IN_CEILF
4305 BUILT_IN_ROUNDF BUILT_IN_ROUNDF
4306 BUILT_IN_NEARBYINTF BUILT_IN_NEARBYINTF
4307 BUILT_IN_RINTF BUILT_IN_RINTF)
4308 /* truncl(extend(x)) and trunc(extend(x)) -> extend(truncf(x)), etc.,
4310 (if (optimize && canonicalize_math_p ()
4311 && targetm.libc_has_function (function_c99_misc))
4313 (froms (convert float_value_p@0))
4314 (convert (tos @0)))))
4316 (for froms (XFLOORL XCEILL XROUNDL XRINTL)
4317 tos (XFLOOR XCEIL XROUND XRINT)
4318 /* llfloorl(extend(x)) -> llfloor(x), etc., if x is a double. */
4319 (if (optimize && canonicalize_math_p ())
4321 (froms (convert double_value_p@0))
4324 (for froms (XFLOORL XCEILL XROUNDL XRINTL
4325 XFLOOR XCEIL XROUND XRINT)
4326 tos (XFLOORF XCEILF XROUNDF XRINTF)
4327 /* llfloorl(extend(x)) and llfloor(extend(x)) -> llfloorf(x), etc.,
4329 (if (optimize && canonicalize_math_p ())
4331 (froms (convert float_value_p@0))
4334 (if (canonicalize_math_p ())
4335 /* xfloor(x) -> fix_trunc(x) if x is nonnegative. */
4336 (for floors (IFLOOR LFLOOR LLFLOOR)
4338 (floors tree_expr_nonnegative_p@0)
4341 (if (canonicalize_math_p ())
4342 /* xfloor(x) -> fix_trunc(x), etc., if x is integer valued. */
4343 (for fns (IFLOOR LFLOOR LLFLOOR
4345 IROUND LROUND LLROUND)
4347 (fns integer_valued_real_p@0)
4349 (if (!flag_errno_math)
4350 /* xrint(x) -> fix_trunc(x), etc., if x is integer valued. */
4351 (for rints (IRINT LRINT LLRINT)
4353 (rints integer_valued_real_p@0)
4356 (if (canonicalize_math_p ())
4357 (for ifn (IFLOOR ICEIL IROUND IRINT)
4358 lfn (LFLOOR LCEIL LROUND LRINT)
4359 llfn (LLFLOOR LLCEIL LLROUND LLRINT)
4360 /* Canonicalize iround (x) to lround (x) on ILP32 targets where
4361 sizeof (int) == sizeof (long). */
4362 (if (TYPE_PRECISION (integer_type_node)
4363 == TYPE_PRECISION (long_integer_type_node))
4366 (lfn:long_integer_type_node @0)))
4367 /* Canonicalize llround (x) to lround (x) on LP64 targets where
4368 sizeof (long long) == sizeof (long). */
4369 (if (TYPE_PRECISION (long_long_integer_type_node)
4370 == TYPE_PRECISION (long_integer_type_node))
4373 (lfn:long_integer_type_node @0)))))
4375 /* cproj(x) -> x if we're ignoring infinities. */
4378 (if (!HONOR_INFINITIES (type))
4381 /* If the real part is inf and the imag part is known to be
4382 nonnegative, return (inf + 0i). */
4384 (CPROJ (complex REAL_CST@0 tree_expr_nonnegative_p@1))
4385 (if (real_isinf (TREE_REAL_CST_PTR (@0)))
4386 { build_complex_inf (type, false); }))
4388 /* If the imag part is inf, return (inf+I*copysign(0,imag)). */
4390 (CPROJ (complex @0 REAL_CST@1))
4391 (if (real_isinf (TREE_REAL_CST_PTR (@1)))
4392 { build_complex_inf (type, TREE_REAL_CST_PTR (@1)->sign); }))
4398 (pows @0 REAL_CST@1)
4400 const REAL_VALUE_TYPE *value = TREE_REAL_CST_PTR (@1);
4401 REAL_VALUE_TYPE tmp;
4404 /* pow(x,0) -> 1. */
4405 (if (real_equal (value, &dconst0))
4406 { build_real (type, dconst1); })
4407 /* pow(x,1) -> x. */
4408 (if (real_equal (value, &dconst1))
4410 /* pow(x,-1) -> 1/x. */
4411 (if (real_equal (value, &dconstm1))
4412 (rdiv { build_real (type, dconst1); } @0))
4413 /* pow(x,0.5) -> sqrt(x). */
4414 (if (flag_unsafe_math_optimizations
4415 && canonicalize_math_p ()
4416 && real_equal (value, &dconsthalf))
4418 /* pow(x,1/3) -> cbrt(x). */
4419 (if (flag_unsafe_math_optimizations
4420 && canonicalize_math_p ()
4421 && (tmp = real_value_truncate (TYPE_MODE (type), dconst_third ()),
4422 real_equal (value, &tmp)))
4425 /* powi(1,x) -> 1. */
4427 (POWI real_onep@0 @1)
4431 (POWI @0 INTEGER_CST@1)
4433 /* powi(x,0) -> 1. */
4434 (if (wi::to_wide (@1) == 0)
4435 { build_real (type, dconst1); })
4436 /* powi(x,1) -> x. */
4437 (if (wi::to_wide (@1) == 1)
4439 /* powi(x,-1) -> 1/x. */
4440 (if (wi::to_wide (@1) == -1)
4441 (rdiv { build_real (type, dconst1); } @0))))
4443 /* Narrowing of arithmetic and logical operations.
4445 These are conceptually similar to the transformations performed for
4446 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
4447 term we want to move all that code out of the front-ends into here. */
4449 /* If we have a narrowing conversion of an arithmetic operation where
4450 both operands are widening conversions from the same type as the outer
4451 narrowing conversion. Then convert the innermost operands to a suitable
4452 unsigned type (to avoid introducing undefined behavior), perform the
4453 operation and convert the result to the desired type. */
4454 (for op (plus minus)
4456 (convert (op:s (convert@2 @0) (convert?@3 @1)))
4457 (if (INTEGRAL_TYPE_P (type)
4458 /* We check for type compatibility between @0 and @1 below,
4459 so there's no need to check that @1/@3 are integral types. */
4460 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4461 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4462 /* The precision of the type of each operand must match the
4463 precision of the mode of each operand, similarly for the
4465 && type_has_mode_precision_p (TREE_TYPE (@0))
4466 && type_has_mode_precision_p (TREE_TYPE (@1))
4467 && type_has_mode_precision_p (type)
4468 /* The inner conversion must be a widening conversion. */
4469 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4470 && types_match (@0, type)
4471 && (types_match (@0, @1)
4472 /* Or the second operand is const integer or converted const
4473 integer from valueize. */
4474 || TREE_CODE (@1) == INTEGER_CST))
4475 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4476 (op @0 (convert @1))
4477 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4478 (convert (op (convert:utype @0)
4479 (convert:utype @1))))))))
4481 /* This is another case of narrowing, specifically when there's an outer
4482 BIT_AND_EXPR which masks off bits outside the type of the innermost
4483 operands. Like the previous case we have to convert the operands
4484 to unsigned types to avoid introducing undefined behavior for the
4485 arithmetic operation. */
4486 (for op (minus plus)
4488 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
4489 (if (INTEGRAL_TYPE_P (type)
4490 /* We check for type compatibility between @0 and @1 below,
4491 so there's no need to check that @1/@3 are integral types. */
4492 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
4493 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
4494 /* The precision of the type of each operand must match the
4495 precision of the mode of each operand, similarly for the
4497 && type_has_mode_precision_p (TREE_TYPE (@0))
4498 && type_has_mode_precision_p (TREE_TYPE (@1))
4499 && type_has_mode_precision_p (type)
4500 /* The inner conversion must be a widening conversion. */
4501 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
4502 && types_match (@0, @1)
4503 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
4504 <= TYPE_PRECISION (TREE_TYPE (@0)))
4505 && (wi::to_wide (@4)
4506 & wi::mask (TYPE_PRECISION (TREE_TYPE (@0)),
4507 true, TYPE_PRECISION (type))) == 0)
4508 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
4509 (with { tree ntype = TREE_TYPE (@0); }
4510 (convert (bit_and (op @0 @1) (convert:ntype @4))))
4511 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
4512 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
4513 (convert:utype @4))))))))
4515 /* Transform (@0 < @1 and @0 < @2) to use min,
4516 (@0 > @1 and @0 > @2) to use max */
4517 (for logic (bit_and bit_and bit_and bit_and bit_ior bit_ior bit_ior bit_ior)
4518 op (lt le gt ge lt le gt ge )
4519 ext (min min max max max max min min )
4521 (logic (op:cs @0 @1) (op:cs @0 @2))
4522 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4523 && TREE_CODE (@0) != INTEGER_CST)
4524 (op @0 (ext @1 @2)))))
4527 /* signbit(x) -> 0 if x is nonnegative. */
4528 (SIGNBIT tree_expr_nonnegative_p@0)
4529 { integer_zero_node; })
4532 /* signbit(x) -> x<0 if x doesn't have signed zeros. */
4534 (if (!HONOR_SIGNED_ZEROS (@0))
4535 (convert (lt @0 { build_real (TREE_TYPE (@0), dconst0); }))))
4537 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 -+ C1. */
4539 (for op (plus minus)
4542 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4543 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4544 && !TYPE_OVERFLOW_SANITIZED (TREE_TYPE (@0))
4545 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (@0))
4546 && !TYPE_SATURATING (TREE_TYPE (@0)))
4547 (with { tree res = int_const_binop (rop, @2, @1); }
4548 (if (TREE_OVERFLOW (res)
4549 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4550 { constant_boolean_node (cmp == NE_EXPR, type); }
4551 (if (single_use (@3))
4552 (cmp @0 { TREE_OVERFLOW (res)
4553 ? drop_tree_overflow (res) : res; }))))))))
4554 (for cmp (lt le gt ge)
4555 (for op (plus minus)
4558 (cmp (op@3 @0 INTEGER_CST@1) INTEGER_CST@2)
4559 (if (!TREE_OVERFLOW (@1) && !TREE_OVERFLOW (@2)
4560 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
4561 (with { tree res = int_const_binop (rop, @2, @1); }
4562 (if (TREE_OVERFLOW (res))
4564 fold_overflow_warning (("assuming signed overflow does not occur "
4565 "when simplifying conditional to constant"),
4566 WARN_STRICT_OVERFLOW_CONDITIONAL);
4567 bool less = cmp == LE_EXPR || cmp == LT_EXPR;
4568 /* wi::ges_p (@2, 0) should be sufficient for a signed type. */
4569 bool ovf_high = wi::lt_p (wi::to_wide (@1), 0,
4570 TYPE_SIGN (TREE_TYPE (@1)))
4571 != (op == MINUS_EXPR);
4572 constant_boolean_node (less == ovf_high, type);
4574 (if (single_use (@3))
4577 fold_overflow_warning (("assuming signed overflow does not occur "
4578 "when changing X +- C1 cmp C2 to "
4580 WARN_STRICT_OVERFLOW_COMPARISON);
4582 (cmp @0 { res; })))))))))
4584 /* Canonicalizations of BIT_FIELD_REFs. */
4587 (BIT_FIELD_REF @0 @1 @2)
4589 (if (TREE_CODE (TREE_TYPE (@0)) == COMPLEX_TYPE
4590 && tree_int_cst_equal (@1, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4592 (if (integer_zerop (@2))
4593 (view_convert (realpart @0)))
4594 (if (tree_int_cst_equal (@2, TYPE_SIZE (TREE_TYPE (TREE_TYPE (@0)))))
4595 (view_convert (imagpart @0)))))
4596 (if (INTEGRAL_TYPE_P (TREE_TYPE (@0))
4597 && INTEGRAL_TYPE_P (type)
4598 /* On GIMPLE this should only apply to register arguments. */
4599 && (! GIMPLE || is_gimple_reg (@0))
4600 /* A bit-field-ref that referenced the full argument can be stripped. */
4601 && ((compare_tree_int (@1, TYPE_PRECISION (TREE_TYPE (@0))) == 0
4602 && integer_zerop (@2))
4603 /* Low-parts can be reduced to integral conversions.
4604 ??? The following doesn't work for PDP endian. */
4605 || (BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN
4606 /* Don't even think about BITS_BIG_ENDIAN. */
4607 && TYPE_PRECISION (TREE_TYPE (@0)) % BITS_PER_UNIT == 0
4608 && TYPE_PRECISION (type) % BITS_PER_UNIT == 0
4609 && compare_tree_int (@2, (BYTES_BIG_ENDIAN
4610 ? (TYPE_PRECISION (TREE_TYPE (@0))
4611 - TYPE_PRECISION (type))
4615 /* Simplify vector extracts. */
4618 (BIT_FIELD_REF CONSTRUCTOR@0 @1 @2)
4619 (if (VECTOR_TYPE_P (TREE_TYPE (@0))
4620 && (types_match (type, TREE_TYPE (TREE_TYPE (@0)))
4621 || (VECTOR_TYPE_P (type)
4622 && types_match (TREE_TYPE (type), TREE_TYPE (TREE_TYPE (@0))))))
4625 tree ctor = (TREE_CODE (@0) == SSA_NAME
4626 ? gimple_assign_rhs1 (SSA_NAME_DEF_STMT (@0)) : @0);
4627 tree eltype = TREE_TYPE (TREE_TYPE (ctor));
4628 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
4629 unsigned HOST_WIDE_INT n = tree_to_uhwi (@1);
4630 unsigned HOST_WIDE_INT idx = tree_to_uhwi (@2);
4633 && (idx % width) == 0
4635 && known_le ((idx + n) / width,
4636 TYPE_VECTOR_SUBPARTS (TREE_TYPE (ctor))))
4641 /* Constructor elements can be subvectors. */
4643 if (CONSTRUCTOR_NELTS (ctor) != 0)
4645 tree cons_elem = TREE_TYPE (CONSTRUCTOR_ELT (ctor, 0)->value);
4646 if (TREE_CODE (cons_elem) == VECTOR_TYPE)
4647 k = TYPE_VECTOR_SUBPARTS (cons_elem);
4649 unsigned HOST_WIDE_INT elt, count, const_k;
4652 /* We keep an exact subset of the constructor elements. */
4653 (if (multiple_p (idx, k, &elt) && multiple_p (n, k, &count))
4654 (if (CONSTRUCTOR_NELTS (ctor) == 0)
4655 { build_constructor (type, NULL); }
4657 (if (elt < CONSTRUCTOR_NELTS (ctor))
4658 (view_convert { CONSTRUCTOR_ELT (ctor, elt)->value; })
4659 { build_zero_cst (type); })
4661 vec<constructor_elt, va_gc> *vals;
4662 vec_alloc (vals, count);
4663 for (unsigned i = 0;
4664 i < count && elt + i < CONSTRUCTOR_NELTS (ctor); ++i)
4665 CONSTRUCTOR_APPEND_ELT (vals, NULL_TREE,
4666 CONSTRUCTOR_ELT (ctor, elt + i)->value);
4667 build_constructor (type, vals);
4669 /* The bitfield references a single constructor element. */
4670 (if (k.is_constant (&const_k)
4671 && idx + n <= (idx / const_k + 1) * const_k)
4673 (if (CONSTRUCTOR_NELTS (ctor) <= idx / const_k)
4674 { build_zero_cst (type); })
4676 (view_convert { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }))
4677 (BIT_FIELD_REF { CONSTRUCTOR_ELT (ctor, idx / const_k)->value; }
4678 @1 { bitsize_int ((idx % const_k) * width); })))))))))
4680 /* Simplify a bit extraction from a bit insertion for the cases with
4681 the inserted element fully covering the extraction or the insertion
4682 not touching the extraction. */
4684 (BIT_FIELD_REF (bit_insert @0 @1 @ipos) @rsize @rpos)
4687 unsigned HOST_WIDE_INT isize;
4688 if (INTEGRAL_TYPE_P (TREE_TYPE (@1)))
4689 isize = TYPE_PRECISION (TREE_TYPE (@1));
4691 isize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (@1)));
4694 (if (wi::leu_p (wi::to_wide (@ipos), wi::to_wide (@rpos))
4695 && wi::leu_p (wi::to_wide (@rpos) + wi::to_wide (@rsize),
4696 wi::to_wide (@ipos) + isize))
4697 (BIT_FIELD_REF @1 @rsize { wide_int_to_tree (bitsizetype,
4699 - wi::to_wide (@ipos)); }))
4700 (if (wi::geu_p (wi::to_wide (@ipos),
4701 wi::to_wide (@rpos) + wi::to_wide (@rsize))
4702 || wi::geu_p (wi::to_wide (@rpos),
4703 wi::to_wide (@ipos) + isize))
4704 (BIT_FIELD_REF @0 @rsize @rpos)))))
4708 (fmas:c (negate @0) @1 @2)
4709 (IFN_FNMA @0 @1 @2))
4711 (fmas @0 @1 (negate @2))
4714 (fmas:c (negate @0) @1 (negate @2))
4715 (IFN_FNMS @0 @1 @2))
4717 (negate (fmas@3 @0 @1 @2))
4718 (if (single_use (@3))
4719 (IFN_FNMS @0 @1 @2))))
4722 (IFN_FMS:c (negate @0) @1 @2)
4723 (IFN_FNMS @0 @1 @2))
4725 (IFN_FMS @0 @1 (negate @2))
4728 (IFN_FMS:c (negate @0) @1 (negate @2))
4729 (IFN_FNMA @0 @1 @2))
4731 (negate (IFN_FMS@3 @0 @1 @2))
4732 (if (single_use (@3))
4733 (IFN_FNMA @0 @1 @2)))
4736 (IFN_FNMA:c (negate @0) @1 @2)
4739 (IFN_FNMA @0 @1 (negate @2))
4740 (IFN_FNMS @0 @1 @2))
4742 (IFN_FNMA:c (negate @0) @1 (negate @2))
4745 (negate (IFN_FNMA@3 @0 @1 @2))
4746 (if (single_use (@3))
4747 (IFN_FMS @0 @1 @2)))
4750 (IFN_FNMS:c (negate @0) @1 @2)
4753 (IFN_FNMS @0 @1 (negate @2))
4754 (IFN_FNMA @0 @1 @2))
4756 (IFN_FNMS:c (negate @0) @1 (negate @2))
4759 (negate (IFN_FNMS@3 @0 @1 @2))
4760 (if (single_use (@3))
4761 (IFN_FMA @0 @1 @2)))