2013-02-11 Sebastian Huber <sebastian.huber@embedded-brains.de>
[official-gcc.git] / libgo / runtime / malloc.h
bloba82077420315e765d0fe179ec1261889fbab069f
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Memory allocator, based on tcmalloc.
6 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html
8 // The main allocator works in runs of pages.
9 // Small allocation sizes (up to and including 32 kB) are
10 // rounded to one of about 100 size classes, each of which
11 // has its own free list of objects of exactly that size.
12 // Any free page of memory can be split into a set of objects
13 // of one size class, which are then managed using free list
14 // allocators.
16 // The allocator's data structures are:
18 // FixAlloc: a free-list allocator for fixed-size objects,
19 // used to manage storage used by the allocator.
20 // MHeap: the malloc heap, managed at page (4096-byte) granularity.
21 // MSpan: a run of pages managed by the MHeap.
22 // MCentral: a shared free list for a given size class.
23 // MCache: a per-thread (in Go, per-M) cache for small objects.
24 // MStats: allocation statistics.
26 // Allocating a small object proceeds up a hierarchy of caches:
28 // 1. Round the size up to one of the small size classes
29 // and look in the corresponding MCache free list.
30 // If the list is not empty, allocate an object from it.
31 // This can all be done without acquiring a lock.
33 // 2. If the MCache free list is empty, replenish it by
34 // taking a bunch of objects from the MCentral free list.
35 // Moving a bunch amortizes the cost of acquiring the MCentral lock.
37 // 3. If the MCentral free list is empty, replenish it by
38 // allocating a run of pages from the MHeap and then
39 // chopping that memory into a objects of the given size.
40 // Allocating many objects amortizes the cost of locking
41 // the heap.
43 // 4. If the MHeap is empty or has no page runs large enough,
44 // allocate a new group of pages (at least 1MB) from the
45 // operating system. Allocating a large run of pages
46 // amortizes the cost of talking to the operating system.
48 // Freeing a small object proceeds up the same hierarchy:
50 // 1. Look up the size class for the object and add it to
51 // the MCache free list.
53 // 2. If the MCache free list is too long or the MCache has
54 // too much memory, return some to the MCentral free lists.
56 // 3. If all the objects in a given span have returned to
57 // the MCentral list, return that span to the page heap.
59 // 4. If the heap has too much memory, return some to the
60 // operating system.
62 // TODO(rsc): Step 4 is not implemented.
64 // Allocating and freeing a large object uses the page heap
65 // directly, bypassing the MCache and MCentral free lists.
67 // The small objects on the MCache and MCentral free lists
68 // may or may not be zeroed. They are zeroed if and only if
69 // the second word of the object is zero. The spans in the
70 // page heap are always zeroed. When a span full of objects
71 // is returned to the page heap, the objects that need to be
72 // are zeroed first. There are two main benefits to delaying the
73 // zeroing this way:
75 // 1. stack frames allocated from the small object lists
76 // can avoid zeroing altogether.
77 // 2. the cost of zeroing when reusing a small object is
78 // charged to the mutator, not the garbage collector.
80 // This C code was written with an eye toward translating to Go
81 // in the future. Methods have the form Type_Method(Type *t, ...).
83 typedef struct MCentral MCentral;
84 typedef struct MHeap MHeap;
85 typedef struct MSpan MSpan;
86 typedef struct MStats MStats;
87 typedef struct MLink MLink;
88 typedef struct MTypes MTypes;
90 enum
92 PageShift = 12,
93 PageSize = 1<<PageShift,
94 PageMask = PageSize - 1,
96 typedef uintptr PageID; // address >> PageShift
98 enum
100 // Computed constant. The definition of MaxSmallSize and the
101 // algorithm in msize.c produce some number of different allocation
102 // size classes. NumSizeClasses is that number. It's needed here
103 // because there are static arrays of this length; when msize runs its
104 // size choosing algorithm it double-checks that NumSizeClasses agrees.
105 NumSizeClasses = 61,
107 // Tunable constants.
108 MaxSmallSize = 32<<10,
110 FixAllocChunk = 128<<10, // Chunk size for FixAlloc
111 MaxMCacheListLen = 256, // Maximum objects on MCacheList
112 MaxMCacheSize = 2<<20, // Maximum bytes in one MCache
113 MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap.
114 HeapAllocChunk = 1<<20, // Chunk size for heap growth
116 // Number of bits in page to span calculations (4k pages).
117 // On 64-bit, we limit the arena to 128GB, or 37 bits.
118 // On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
119 #if __SIZEOF_POINTER__ == 8
120 MHeapMap_Bits = 37 - PageShift,
121 #else
122 MHeapMap_Bits = 32 - PageShift,
123 #endif
125 // Max number of threads to run garbage collection.
126 // 2, 3, and 4 are all plausible maximums depending
127 // on the hardware details of the machine. The garbage
128 // collector scales well to 8 cpus.
129 MaxGcproc = 8,
132 // Maximum memory allocation size, a hint for callers.
133 // This must be a #define instead of an enum because it
134 // is so large.
135 #if __SIZEOF_POINTER__ == 8
136 #define MaxMem (1ULL<<(MHeapMap_Bits+PageShift)) /* 128 GB */
137 #else
138 #define MaxMem ((uintptr)-1)
139 #endif
141 // A generic linked list of blocks. (Typically the block is bigger than sizeof(MLink).)
142 struct MLink
144 MLink *next;
147 // SysAlloc obtains a large chunk of zeroed memory from the
148 // operating system, typically on the order of a hundred kilobytes
149 // or a megabyte. If the pointer argument is non-nil, the caller
150 // wants a mapping there or nowhere.
152 // SysUnused notifies the operating system that the contents
153 // of the memory region are no longer needed and can be reused
154 // for other purposes. The program reserves the right to start
155 // accessing those pages in the future.
157 // SysFree returns it unconditionally; this is only used if
158 // an out-of-memory error has been detected midway through
159 // an allocation. It is okay if SysFree is a no-op.
161 // SysReserve reserves address space without allocating memory.
162 // If the pointer passed to it is non-nil, the caller wants the
163 // reservation there, but SysReserve can still choose another
164 // location if that one is unavailable.
166 // SysMap maps previously reserved address space for use.
168 void* runtime_SysAlloc(uintptr nbytes);
169 void runtime_SysFree(void *v, uintptr nbytes);
170 void runtime_SysUnused(void *v, uintptr nbytes);
171 void runtime_SysMap(void *v, uintptr nbytes);
172 void* runtime_SysReserve(void *v, uintptr nbytes);
174 // FixAlloc is a simple free-list allocator for fixed size objects.
175 // Malloc uses a FixAlloc wrapped around SysAlloc to manages its
176 // MCache and MSpan objects.
178 // Memory returned by FixAlloc_Alloc is not zeroed.
179 // The caller is responsible for locking around FixAlloc calls.
180 // Callers can keep state in the object but the first word is
181 // smashed by freeing and reallocating.
182 struct FixAlloc
184 uintptr size;
185 void *(*alloc)(uintptr);
186 void (*first)(void *arg, byte *p); // called first time p is returned
187 void *arg;
188 MLink *list;
189 byte *chunk;
190 uint32 nchunk;
191 uintptr inuse; // in-use bytes now
192 uintptr sys; // bytes obtained from system
195 void runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void *(*alloc)(uintptr), void (*first)(void*, byte*), void *arg);
196 void* runtime_FixAlloc_Alloc(FixAlloc *f);
197 void runtime_FixAlloc_Free(FixAlloc *f, void *p);
200 // Statistics.
201 // Shared with Go: if you edit this structure, also edit type MemStats in mem.go.
202 struct MStats
204 // General statistics.
205 uint64 alloc; // bytes allocated and still in use
206 uint64 total_alloc; // bytes allocated (even if freed)
207 uint64 sys; // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
208 uint64 nlookup; // number of pointer lookups
209 uint64 nmalloc; // number of mallocs
210 uint64 nfree; // number of frees
212 // Statistics about malloc heap.
213 // protected by mheap.Lock
214 uint64 heap_alloc; // bytes allocated and still in use
215 uint64 heap_sys; // bytes obtained from system
216 uint64 heap_idle; // bytes in idle spans
217 uint64 heap_inuse; // bytes in non-idle spans
218 uint64 heap_released; // bytes released to the OS
219 uint64 heap_objects; // total number of allocated objects
221 // Statistics about allocation of low-level fixed-size structures.
222 // Protected by FixAlloc locks.
223 uint64 stacks_inuse; // bootstrap stacks
224 uint64 stacks_sys;
225 uint64 mspan_inuse; // MSpan structures
226 uint64 mspan_sys;
227 uint64 mcache_inuse; // MCache structures
228 uint64 mcache_sys;
229 uint64 buckhash_sys; // profiling bucket hash table
231 // Statistics about garbage collector.
232 // Protected by stopping the world during GC.
233 uint64 next_gc; // next GC (in heap_alloc time)
234 uint64 last_gc; // last GC (in absolute time)
235 uint64 pause_total_ns;
236 uint64 pause_ns[256];
237 uint32 numgc;
238 bool enablegc;
239 bool debuggc;
241 // Statistics about allocation size classes.
242 struct {
243 uint32 size;
244 uint64 nmalloc;
245 uint64 nfree;
246 } by_size[NumSizeClasses];
249 extern MStats mstats
250 __asm__ (GOSYM_PREFIX "runtime.VmemStats");
253 // Size classes. Computed and initialized by InitSizes.
255 // SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
256 // 1 <= sizeclass < NumSizeClasses, for n.
257 // Size class 0 is reserved to mean "not small".
259 // class_to_size[i] = largest size in class i
260 // class_to_allocnpages[i] = number of pages to allocate when
261 // making new objects in class i
262 // class_to_transfercount[i] = number of objects to move when
263 // taking a bunch of objects out of the central lists
264 // and putting them in the thread free list.
266 int32 runtime_SizeToClass(int32);
267 extern int32 runtime_class_to_size[NumSizeClasses];
268 extern int32 runtime_class_to_allocnpages[NumSizeClasses];
269 extern int32 runtime_class_to_transfercount[NumSizeClasses];
270 extern void runtime_InitSizes(void);
273 // Per-thread (in Go, per-M) cache for small objects.
274 // No locking needed because it is per-thread (per-M).
275 typedef struct MCacheList MCacheList;
276 struct MCacheList
278 MLink *list;
279 uint32 nlist;
280 uint32 nlistmin;
283 struct MCache
285 MCacheList list[NumSizeClasses];
286 uintptr size;
287 intptr local_cachealloc; // bytes allocated (or freed) from cache since last lock of heap
288 intptr local_objects; // objects allocated (or freed) from cache since last lock of heap
289 intptr local_alloc; // bytes allocated (or freed) since last lock of heap
290 uintptr local_total_alloc; // bytes allocated (even if freed) since last lock of heap
291 uintptr local_nmalloc; // number of mallocs since last lock of heap
292 uintptr local_nfree; // number of frees since last lock of heap
293 uintptr local_nlookup; // number of pointer lookups since last lock of heap
294 int32 next_sample; // trigger heap sample after allocating this many bytes
295 // Statistics about allocation size classes since last lock of heap
296 struct {
297 uintptr nmalloc;
298 uintptr nfree;
299 } local_by_size[NumSizeClasses];
303 void* runtime_MCache_Alloc(MCache *c, int32 sizeclass, uintptr size, int32 zeroed);
304 void runtime_MCache_Free(MCache *c, void *p, int32 sizeclass, uintptr size);
305 void runtime_MCache_ReleaseAll(MCache *c);
307 // MTypes describes the types of blocks allocated within a span.
308 // The compression field describes the layout of the data.
310 // MTypes_Empty:
311 // All blocks are free, or no type information is available for
312 // allocated blocks.
313 // The data field has no meaning.
314 // MTypes_Single:
315 // The span contains just one block.
316 // The data field holds the type information.
317 // The sysalloc field has no meaning.
318 // MTypes_Words:
319 // The span contains multiple blocks.
320 // The data field points to an array of type [NumBlocks]uintptr,
321 // and each element of the array holds the type of the corresponding
322 // block.
323 // MTypes_Bytes:
324 // The span contains at most seven different types of blocks.
325 // The data field points to the following structure:
326 // struct {
327 // type [8]uintptr // type[0] is always 0
328 // index [NumBlocks]byte
329 // }
330 // The type of the i-th block is: data.type[data.index[i]]
331 enum
333 MTypes_Empty = 0,
334 MTypes_Single = 1,
335 MTypes_Words = 2,
336 MTypes_Bytes = 3,
338 struct MTypes
340 byte compression; // one of MTypes_*
341 bool sysalloc; // whether (void*)data is from runtime_SysAlloc
342 uintptr data;
345 // An MSpan is a run of pages.
346 enum
348 MSpanInUse = 0,
349 MSpanFree,
350 MSpanListHead,
351 MSpanDead,
353 struct MSpan
355 MSpan *next; // in a span linked list
356 MSpan *prev; // in a span linked list
357 PageID start; // starting page number
358 uintptr npages; // number of pages in span
359 MLink *freelist; // list of free objects
360 uint32 ref; // number of allocated objects in this span
361 int32 sizeclass; // size class
362 uintptr elemsize; // computed from sizeclass or from npages
363 uint32 state; // MSpanInUse etc
364 int64 unusedsince; // First time spotted by GC in MSpanFree state
365 uintptr npreleased; // number of pages released to the OS
366 byte *limit; // end of data in span
367 MTypes types; // types of allocated objects in this span
370 void runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages);
372 // Every MSpan is in one doubly-linked list,
373 // either one of the MHeap's free lists or one of the
374 // MCentral's span lists. We use empty MSpan structures as list heads.
375 void runtime_MSpanList_Init(MSpan *list);
376 bool runtime_MSpanList_IsEmpty(MSpan *list);
377 void runtime_MSpanList_Insert(MSpan *list, MSpan *span);
378 void runtime_MSpanList_Remove(MSpan *span); // from whatever list it is in
381 // Central list of free objects of a given size.
382 struct MCentral
384 Lock;
385 int32 sizeclass;
386 MSpan nonempty;
387 MSpan empty;
388 int32 nfree;
391 void runtime_MCentral_Init(MCentral *c, int32 sizeclass);
392 int32 runtime_MCentral_AllocList(MCentral *c, int32 n, MLink **first);
393 void runtime_MCentral_FreeList(MCentral *c, int32 n, MLink *first);
394 void runtime_MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end);
396 // Main malloc heap.
397 // The heap itself is the "free[]" and "large" arrays,
398 // but all the other global data is here too.
399 struct MHeap
401 Lock;
402 MSpan free[MaxMHeapList]; // free lists of given length
403 MSpan large; // free lists length >= MaxMHeapList
404 MSpan **allspans;
405 uint32 nspan;
406 uint32 nspancap;
408 // span lookup
409 MSpan *map[1<<MHeapMap_Bits];
411 // range of addresses we might see in the heap
412 byte *bitmap;
413 uintptr bitmap_mapped;
414 byte *arena_start;
415 byte *arena_used;
416 byte *arena_end;
418 // central free lists for small size classes.
419 // the union makes sure that the MCentrals are
420 // spaced CacheLineSize bytes apart, so that each MCentral.Lock
421 // gets its own cache line.
422 union {
423 MCentral;
424 byte pad[CacheLineSize];
425 } central[NumSizeClasses];
427 FixAlloc spanalloc; // allocator for Span*
428 FixAlloc cachealloc; // allocator for MCache*
430 extern MHeap runtime_mheap;
432 void runtime_MHeap_Init(MHeap *h, void *(*allocator)(uintptr));
433 MSpan* runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, int32 acct, int32 zeroed);
434 void runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct);
435 MSpan* runtime_MHeap_Lookup(MHeap *h, void *v);
436 MSpan* runtime_MHeap_LookupMaybe(MHeap *h, void *v);
437 void runtime_MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj);
438 void* runtime_MHeap_SysAlloc(MHeap *h, uintptr n);
439 void runtime_MHeap_MapBits(MHeap *h);
440 void runtime_MHeap_Scavenger(void*);
442 void* runtime_mallocgc(uintptr size, uint32 flag, int32 dogc, int32 zeroed);
443 int32 runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **s);
444 void runtime_gc(int32 force);
445 void runtime_markallocated(void *v, uintptr n, bool noptr);
446 void runtime_checkallocated(void *v, uintptr n);
447 void runtime_markfreed(void *v, uintptr n);
448 void runtime_checkfreed(void *v, uintptr n);
449 extern int32 runtime_checking;
450 void runtime_markspan(void *v, uintptr size, uintptr n, bool leftover);
451 void runtime_unmarkspan(void *v, uintptr size);
452 bool runtime_blockspecial(void*);
453 void runtime_setblockspecial(void*, bool);
454 void runtime_purgecachedstats(MCache*);
455 void* runtime_new(const Type *);
456 #define runtime_cnew(T) runtime_new(T)
458 void runtime_settype(void*, uintptr);
459 void runtime_settype_flush(M*, bool);
460 void runtime_settype_sysfree(MSpan*);
461 uintptr runtime_gettype(void*);
463 enum
465 // flags to malloc
466 FlagNoPointers = 1<<0, // no pointers here
467 FlagNoProfiling = 1<<1, // must not profile
468 FlagNoGC = 1<<2, // must not free or scan for pointers
471 typedef struct Obj Obj;
472 struct Obj
474 byte *p; // data pointer
475 uintptr n; // size of data in bytes
476 uintptr ti; // type info
479 void runtime_MProf_Malloc(void*, uintptr);
480 void runtime_MProf_Free(void*, uintptr);
481 void runtime_MProf_GC(void);
482 void runtime_MProf_Mark(void (*addroot)(Obj));
483 int32 runtime_gcprocs(void);
484 void runtime_helpgc(int32 nproc);
485 void runtime_gchelper(void);
487 struct __go_func_type;
488 bool runtime_getfinalizer(void *p, bool del, void (**fn)(void*), const struct __go_func_type **ft);
489 void runtime_walkfintab(void (*fn)(void*), void (*scan)(Obj));
491 enum
493 TypeInfo_SingleObject = 0,
494 TypeInfo_Array = 1,
495 TypeInfo_Map = 2,
497 // Enables type information at the end of blocks allocated from heap
498 DebugTypeAtBlockEnd = 0,
501 // defined in mgc0.go
502 void runtime_gc_m_ptr(Eface*);
503 void runtime_gc_itab_ptr(Eface*);
505 void runtime_memorydump(void);
507 void runtime_time_scan(void (*)(Obj));
508 void runtime_trampoline_scan(void (*)(Obj));