2016-07-13 Thomas Preud'homme <thomas.preudhomme@arm.com>
[official-gcc.git] / libgo / runtime / malloc.h
blob065f74a9b58fe83e97a39c9e41534215fc248066
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Memory allocator, based on tcmalloc.
6 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html
8 // The main allocator works in runs of pages.
9 // Small allocation sizes (up to and including 32 kB) are
10 // rounded to one of about 100 size classes, each of which
11 // has its own free list of objects of exactly that size.
12 // Any free page of memory can be split into a set of objects
13 // of one size class, which are then managed using free list
14 // allocators.
16 // The allocator's data structures are:
18 // FixAlloc: a free-list allocator for fixed-size objects,
19 // used to manage storage used by the allocator.
20 // MHeap: the malloc heap, managed at page (4096-byte) granularity.
21 // MSpan: a run of pages managed by the MHeap.
22 // MCentral: a shared free list for a given size class.
23 // MCache: a per-thread (in Go, per-P) cache for small objects.
24 // MStats: allocation statistics.
26 // Allocating a small object proceeds up a hierarchy of caches:
28 // 1. Round the size up to one of the small size classes
29 // and look in the corresponding MCache free list.
30 // If the list is not empty, allocate an object from it.
31 // This can all be done without acquiring a lock.
33 // 2. If the MCache free list is empty, replenish it by
34 // taking a bunch of objects from the MCentral free list.
35 // Moving a bunch amortizes the cost of acquiring the MCentral lock.
37 // 3. If the MCentral free list is empty, replenish it by
38 // allocating a run of pages from the MHeap and then
39 // chopping that memory into a objects of the given size.
40 // Allocating many objects amortizes the cost of locking
41 // the heap.
43 // 4. If the MHeap is empty or has no page runs large enough,
44 // allocate a new group of pages (at least 1MB) from the
45 // operating system. Allocating a large run of pages
46 // amortizes the cost of talking to the operating system.
48 // Freeing a small object proceeds up the same hierarchy:
50 // 1. Look up the size class for the object and add it to
51 // the MCache free list.
53 // 2. If the MCache free list is too long or the MCache has
54 // too much memory, return some to the MCentral free lists.
56 // 3. If all the objects in a given span have returned to
57 // the MCentral list, return that span to the page heap.
59 // 4. If the heap has too much memory, return some to the
60 // operating system.
62 // TODO(rsc): Step 4 is not implemented.
64 // Allocating and freeing a large object uses the page heap
65 // directly, bypassing the MCache and MCentral free lists.
67 // The small objects on the MCache and MCentral free lists
68 // may or may not be zeroed. They are zeroed if and only if
69 // the second word of the object is zero. A span in the
70 // page heap is zeroed unless s->needzero is set. When a span
71 // is allocated to break into small objects, it is zeroed if needed
72 // and s->needzero is set. There are two main benefits to delaying the
73 // zeroing this way:
75 // 1. stack frames allocated from the small object lists
76 // or the page heap can avoid zeroing altogether.
77 // 2. the cost of zeroing when reusing a small object is
78 // charged to the mutator, not the garbage collector.
80 // This C code was written with an eye toward translating to Go
81 // in the future. Methods have the form Type_Method(Type *t, ...).
83 typedef struct MCentral MCentral;
84 typedef struct MHeap MHeap;
85 typedef struct MSpan MSpan;
86 typedef struct MStats MStats;
87 typedef struct MLink MLink;
88 typedef struct MTypes MTypes;
89 typedef struct GCStats GCStats;
91 enum
93 PageShift = 13,
94 PageSize = 1<<PageShift,
95 PageMask = PageSize - 1,
97 typedef uintptr PageID; // address >> PageShift
99 enum
101 // Computed constant. The definition of MaxSmallSize and the
102 // algorithm in msize.c produce some number of different allocation
103 // size classes. NumSizeClasses is that number. It's needed here
104 // because there are static arrays of this length; when msize runs its
105 // size choosing algorithm it double-checks that NumSizeClasses agrees.
106 NumSizeClasses = 67,
108 // Tunable constants.
109 MaxSmallSize = 32<<10,
111 // Tiny allocator parameters, see "Tiny allocator" comment in malloc.goc.
112 TinySize = 16,
113 TinySizeClass = 2,
115 FixAllocChunk = 16<<10, // Chunk size for FixAlloc
116 MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap.
117 HeapAllocChunk = 1<<20, // Chunk size for heap growth
119 // Number of bits in page to span calculations (4k pages).
120 // On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason).
121 // On other 64-bit platforms, we limit the arena to 128GB, or 37 bits.
122 // On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
123 #if __SIZEOF_POINTER__ == 8
124 #ifdef GOOS_windows
125 // Windows counts memory used by page table into committed memory
126 // of the process, so we can't reserve too much memory.
127 // See http://golang.org/issue/5402 and http://golang.org/issue/5236.
128 MHeapMap_Bits = 35 - PageShift,
129 #else
130 MHeapMap_Bits = 37 - PageShift,
131 #endif
132 #else
133 MHeapMap_Bits = 32 - PageShift,
134 #endif
136 // Max number of threads to run garbage collection.
137 // 2, 3, and 4 are all plausible maximums depending
138 // on the hardware details of the machine. The garbage
139 // collector scales well to 8 cpus.
140 MaxGcproc = 8,
143 // Maximum memory allocation size, a hint for callers.
144 // This must be a #define instead of an enum because it
145 // is so large.
146 #if __SIZEOF_POINTER__ == 8
147 #define MaxMem (1ULL<<(MHeapMap_Bits+PageShift)) /* 128 GB or 32 GB */
148 #else
149 #define MaxMem ((uintptr)-1)
150 #endif
152 // A generic linked list of blocks. (Typically the block is bigger than sizeof(MLink).)
153 struct MLink
155 MLink *next;
158 // SysAlloc obtains a large chunk of zeroed memory from the
159 // operating system, typically on the order of a hundred kilobytes
160 // or a megabyte.
161 // NOTE: SysAlloc returns OS-aligned memory, but the heap allocator
162 // may use larger alignment, so the caller must be careful to realign the
163 // memory obtained by SysAlloc.
165 // SysUnused notifies the operating system that the contents
166 // of the memory region are no longer needed and can be reused
167 // for other purposes.
168 // SysUsed notifies the operating system that the contents
169 // of the memory region are needed again.
171 // SysFree returns it unconditionally; this is only used if
172 // an out-of-memory error has been detected midway through
173 // an allocation. It is okay if SysFree is a no-op.
175 // SysReserve reserves address space without allocating memory.
176 // If the pointer passed to it is non-nil, the caller wants the
177 // reservation there, but SysReserve can still choose another
178 // location if that one is unavailable. On some systems and in some
179 // cases SysReserve will simply check that the address space is
180 // available and not actually reserve it. If SysReserve returns
181 // non-nil, it sets *reserved to true if the address space is
182 // reserved, false if it has merely been checked.
183 // NOTE: SysReserve returns OS-aligned memory, but the heap allocator
184 // may use larger alignment, so the caller must be careful to realign the
185 // memory obtained by SysAlloc.
187 // SysMap maps previously reserved address space for use.
188 // The reserved argument is true if the address space was really
189 // reserved, not merely checked.
191 // SysFault marks a (already SysAlloc'd) region to fault
192 // if accessed. Used only for debugging the runtime.
194 void* runtime_SysAlloc(uintptr nbytes, uint64 *stat);
195 void runtime_SysFree(void *v, uintptr nbytes, uint64 *stat);
196 void runtime_SysUnused(void *v, uintptr nbytes);
197 void runtime_SysUsed(void *v, uintptr nbytes);
198 void runtime_SysMap(void *v, uintptr nbytes, bool reserved, uint64 *stat);
199 void* runtime_SysReserve(void *v, uintptr nbytes, bool *reserved);
200 void runtime_SysFault(void *v, uintptr nbytes);
202 // FixAlloc is a simple free-list allocator for fixed size objects.
203 // Malloc uses a FixAlloc wrapped around SysAlloc to manages its
204 // MCache and MSpan objects.
206 // Memory returned by FixAlloc_Alloc is not zeroed.
207 // The caller is responsible for locking around FixAlloc calls.
208 // Callers can keep state in the object but the first word is
209 // smashed by freeing and reallocating.
210 struct FixAlloc
212 uintptr size;
213 void (*first)(void *arg, byte *p); // called first time p is returned
214 void* arg;
215 MLink* list;
216 byte* chunk;
217 uint32 nchunk;
218 uintptr inuse; // in-use bytes now
219 uint64* stat;
222 void runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*), void *arg, uint64 *stat);
223 void* runtime_FixAlloc_Alloc(FixAlloc *f);
224 void runtime_FixAlloc_Free(FixAlloc *f, void *p);
227 // Statistics.
228 // Shared with Go: if you edit this structure, also edit type MemStats in mem.go.
229 struct MStats
231 // General statistics.
232 uint64 alloc; // bytes allocated and still in use
233 uint64 total_alloc; // bytes allocated (even if freed)
234 uint64 sys; // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
235 uint64 nlookup; // number of pointer lookups
236 uint64 nmalloc; // number of mallocs
237 uint64 nfree; // number of frees
239 // Statistics about malloc heap.
240 // protected by mheap.Lock
241 uint64 heap_alloc; // bytes allocated and still in use
242 uint64 heap_sys; // bytes obtained from system
243 uint64 heap_idle; // bytes in idle spans
244 uint64 heap_inuse; // bytes in non-idle spans
245 uint64 heap_released; // bytes released to the OS
246 uint64 heap_objects; // total number of allocated objects
248 // Statistics about allocation of low-level fixed-size structures.
249 // Protected by FixAlloc locks.
250 uint64 stacks_inuse; // bootstrap stacks
251 uint64 stacks_sys;
252 uint64 mspan_inuse; // MSpan structures
253 uint64 mspan_sys;
254 uint64 mcache_inuse; // MCache structures
255 uint64 mcache_sys;
256 uint64 buckhash_sys; // profiling bucket hash table
257 uint64 gc_sys;
258 uint64 other_sys;
260 // Statistics about garbage collector.
261 // Protected by mheap or stopping the world during GC.
262 uint64 next_gc; // next GC (in heap_alloc time)
263 uint64 last_gc; // last GC (in absolute time)
264 uint64 pause_total_ns;
265 uint64 pause_ns[256];
266 uint64 pause_end[256];
267 uint32 numgc;
268 float64 gc_cpu_fraction;
269 bool enablegc;
270 bool debuggc;
272 // Statistics about allocation size classes.
273 struct {
274 uint32 size;
275 uint64 nmalloc;
276 uint64 nfree;
277 } by_size[NumSizeClasses];
280 extern MStats mstats
281 __asm__ (GOSYM_PREFIX "runtime.memStats");
282 void runtime_updatememstats(GCStats *stats);
284 // Size classes. Computed and initialized by InitSizes.
286 // SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
287 // 1 <= sizeclass < NumSizeClasses, for n.
288 // Size class 0 is reserved to mean "not small".
290 // class_to_size[i] = largest size in class i
291 // class_to_allocnpages[i] = number of pages to allocate when
292 // making new objects in class i
294 int32 runtime_SizeToClass(int32);
295 uintptr runtime_roundupsize(uintptr);
296 extern int32 runtime_class_to_size[NumSizeClasses];
297 extern int32 runtime_class_to_allocnpages[NumSizeClasses];
298 extern int8 runtime_size_to_class8[1024/8 + 1];
299 extern int8 runtime_size_to_class128[(MaxSmallSize-1024)/128 + 1];
300 extern void runtime_InitSizes(void);
303 typedef struct MCacheList MCacheList;
304 struct MCacheList
306 MLink *list;
307 uint32 nlist;
310 // Per-thread (in Go, per-P) cache for small objects.
311 // No locking needed because it is per-thread (per-P).
312 struct MCache
314 // The following members are accessed on every malloc,
315 // so they are grouped here for better caching.
316 int32 next_sample; // trigger heap sample after allocating this many bytes
317 intptr local_cachealloc; // bytes allocated (or freed) from cache since last lock of heap
318 // Allocator cache for tiny objects w/o pointers.
319 // See "Tiny allocator" comment in malloc.goc.
320 byte* tiny;
321 uintptr tinysize;
322 // The rest is not accessed on every malloc.
323 MSpan* alloc[NumSizeClasses]; // spans to allocate from
324 MCacheList free[NumSizeClasses];// lists of explicitly freed objects
325 // Local allocator stats, flushed during GC.
326 uintptr local_nlookup; // number of pointer lookups
327 uintptr local_largefree; // bytes freed for large objects (>MaxSmallSize)
328 uintptr local_nlargefree; // number of frees for large objects (>MaxSmallSize)
329 uintptr local_nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize)
332 MSpan* runtime_MCache_Refill(MCache *c, int32 sizeclass);
333 void runtime_MCache_Free(MCache *c, MLink *p, int32 sizeclass, uintptr size);
334 void runtime_MCache_ReleaseAll(MCache *c);
336 // MTypes describes the types of blocks allocated within a span.
337 // The compression field describes the layout of the data.
339 // MTypes_Empty:
340 // All blocks are free, or no type information is available for
341 // allocated blocks.
342 // The data field has no meaning.
343 // MTypes_Single:
344 // The span contains just one block.
345 // The data field holds the type information.
346 // The sysalloc field has no meaning.
347 // MTypes_Words:
348 // The span contains multiple blocks.
349 // The data field points to an array of type [NumBlocks]uintptr,
350 // and each element of the array holds the type of the corresponding
351 // block.
352 // MTypes_Bytes:
353 // The span contains at most seven different types of blocks.
354 // The data field points to the following structure:
355 // struct {
356 // type [8]uintptr // type[0] is always 0
357 // index [NumBlocks]byte
358 // }
359 // The type of the i-th block is: data.type[data.index[i]]
360 enum
362 MTypes_Empty = 0,
363 MTypes_Single = 1,
364 MTypes_Words = 2,
365 MTypes_Bytes = 3,
367 struct MTypes
369 byte compression; // one of MTypes_*
370 uintptr data;
373 enum
375 KindSpecialFinalizer = 1,
376 KindSpecialProfile = 2,
377 // Note: The finalizer special must be first because if we're freeing
378 // an object, a finalizer special will cause the freeing operation
379 // to abort, and we want to keep the other special records around
380 // if that happens.
383 typedef struct Special Special;
384 struct Special
386 Special* next; // linked list in span
387 uint16 offset; // span offset of object
388 byte kind; // kind of Special
391 // The described object has a finalizer set for it.
392 typedef struct SpecialFinalizer SpecialFinalizer;
393 struct SpecialFinalizer
395 Special;
396 FuncVal* fn;
397 const FuncType* ft;
398 const PtrType* ot;
401 // The described object is being heap profiled.
402 typedef struct Bucket Bucket; // from mprof.goc
403 typedef struct SpecialProfile SpecialProfile;
404 struct SpecialProfile
406 Special;
407 Bucket* b;
410 // An MSpan is a run of pages.
411 enum
413 MSpanInUse = 0,
414 MSpanFree,
415 MSpanListHead,
416 MSpanDead,
418 struct MSpan
420 MSpan *next; // in a span linked list
421 MSpan *prev; // in a span linked list
422 PageID start; // starting page number
423 uintptr npages; // number of pages in span
424 MLink *freelist; // list of free objects
425 // sweep generation:
426 // if sweepgen == h->sweepgen - 2, the span needs sweeping
427 // if sweepgen == h->sweepgen - 1, the span is currently being swept
428 // if sweepgen == h->sweepgen, the span is swept and ready to use
429 // h->sweepgen is incremented by 2 after every GC
430 uint32 sweepgen;
431 uint16 ref; // capacity - number of objects in freelist
432 uint8 sizeclass; // size class
433 bool incache; // being used by an MCache
434 uint8 state; // MSpanInUse etc
435 uint8 needzero; // needs to be zeroed before allocation
436 uintptr elemsize; // computed from sizeclass or from npages
437 int64 unusedsince; // First time spotted by GC in MSpanFree state
438 uintptr npreleased; // number of pages released to the OS
439 byte *limit; // end of data in span
440 MTypes types; // types of allocated objects in this span
441 Lock specialLock; // guards specials list
442 Special *specials; // linked list of special records sorted by offset.
443 MLink *freebuf; // objects freed explicitly, not incorporated into freelist yet
446 void runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages);
447 void runtime_MSpan_EnsureSwept(MSpan *span);
448 bool runtime_MSpan_Sweep(MSpan *span);
450 // Every MSpan is in one doubly-linked list,
451 // either one of the MHeap's free lists or one of the
452 // MCentral's span lists. We use empty MSpan structures as list heads.
453 void runtime_MSpanList_Init(MSpan *list);
454 bool runtime_MSpanList_IsEmpty(MSpan *list);
455 void runtime_MSpanList_Insert(MSpan *list, MSpan *span);
456 void runtime_MSpanList_InsertBack(MSpan *list, MSpan *span);
457 void runtime_MSpanList_Remove(MSpan *span); // from whatever list it is in
460 // Central list of free objects of a given size.
461 struct MCentral
463 Lock;
464 int32 sizeclass;
465 MSpan nonempty; // list of spans with a free object
466 MSpan empty; // list of spans with no free objects (or cached in an MCache)
467 int32 nfree; // # of objects available in nonempty spans
470 void runtime_MCentral_Init(MCentral *c, int32 sizeclass);
471 MSpan* runtime_MCentral_CacheSpan(MCentral *c);
472 void runtime_MCentral_UncacheSpan(MCentral *c, MSpan *s);
473 bool runtime_MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end);
474 void runtime_MCentral_FreeList(MCentral *c, MLink *start); // TODO: need this?
476 // Main malloc heap.
477 // The heap itself is the "free[]" and "large" arrays,
478 // but all the other global data is here too.
479 struct MHeap
481 Lock;
482 MSpan free[MaxMHeapList]; // free lists of given length
483 MSpan freelarge; // free lists length >= MaxMHeapList
484 MSpan busy[MaxMHeapList]; // busy lists of large objects of given length
485 MSpan busylarge; // busy lists of large objects length >= MaxMHeapList
486 MSpan **allspans; // all spans out there
487 MSpan **sweepspans; // copy of allspans referenced by sweeper
488 uint32 nspan;
489 uint32 nspancap;
490 uint32 sweepgen; // sweep generation, see comment in MSpan
491 uint32 sweepdone; // all spans are swept
493 // span lookup
494 MSpan** spans;
495 uintptr spans_mapped;
497 // range of addresses we might see in the heap
498 byte *bitmap;
499 uintptr bitmap_mapped;
500 byte *arena_start;
501 byte *arena_used;
502 byte *arena_end;
503 bool arena_reserved;
505 // central free lists for small size classes.
506 // the padding makes sure that the MCentrals are
507 // spaced CacheLineSize bytes apart, so that each MCentral.Lock
508 // gets its own cache line.
509 struct {
510 MCentral;
511 byte pad[64];
512 } central[NumSizeClasses];
514 FixAlloc spanalloc; // allocator for Span*
515 FixAlloc cachealloc; // allocator for MCache*
516 FixAlloc specialfinalizeralloc; // allocator for SpecialFinalizer*
517 FixAlloc specialprofilealloc; // allocator for SpecialProfile*
518 Lock speciallock; // lock for sepcial record allocators.
520 // Malloc stats.
521 uint64 largefree; // bytes freed for large objects (>MaxSmallSize)
522 uint64 nlargefree; // number of frees for large objects (>MaxSmallSize)
523 uint64 nsmallfree[NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize)
525 extern MHeap runtime_mheap;
527 void runtime_MHeap_Init(MHeap *h);
528 MSpan* runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero);
529 void runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct);
530 MSpan* runtime_MHeap_Lookup(MHeap *h, void *v);
531 MSpan* runtime_MHeap_LookupMaybe(MHeap *h, void *v);
532 void runtime_MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj);
533 void* runtime_MHeap_SysAlloc(MHeap *h, uintptr n);
534 void runtime_MHeap_MapBits(MHeap *h);
535 void runtime_MHeap_MapSpans(MHeap *h);
536 void runtime_MHeap_Scavenger(void*);
537 void runtime_MHeap_SplitSpan(MHeap *h, MSpan *s);
539 void* runtime_mallocgc(uintptr size, uintptr typ, uint32 flag);
540 void* runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat);
541 int32 runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **s);
542 void runtime_gc(int32 force);
543 uintptr runtime_sweepone(void);
544 void runtime_markscan(void *v);
545 void runtime_marknogc(void *v);
546 void runtime_checkallocated(void *v, uintptr n);
547 void runtime_markfreed(void *v);
548 void runtime_checkfreed(void *v, uintptr n);
549 extern int32 runtime_checking;
550 void runtime_markspan(void *v, uintptr size, uintptr n, bool leftover);
551 void runtime_unmarkspan(void *v, uintptr size);
552 void runtime_purgecachedstats(MCache*);
553 void* runtime_cnew(const Type*);
554 void* runtime_cnewarray(const Type*, intgo);
555 void runtime_tracealloc(void*, uintptr, uintptr);
556 void runtime_tracefree(void*, uintptr);
557 void runtime_tracegc(void);
559 uintptr runtime_gettype(void*);
561 enum
563 // flags to malloc
564 FlagNoScan = 1<<0, // GC doesn't have to scan object
565 FlagNoProfiling = 1<<1, // must not profile
566 FlagNoGC = 1<<2, // must not free or scan for pointers
567 FlagNoZero = 1<<3, // don't zero memory
568 FlagNoInvokeGC = 1<<4, // don't invoke GC
571 typedef struct Obj Obj;
572 struct Obj
574 byte *p; // data pointer
575 uintptr n; // size of data in bytes
576 uintptr ti; // type info
579 void runtime_MProf_Malloc(void*, uintptr);
580 void runtime_MProf_Free(Bucket*, uintptr, bool);
581 void runtime_MProf_GC(void);
582 void runtime_iterate_memprof(void (*callback)(Bucket*, uintptr, Location*, uintptr, uintptr, uintptr));
583 int32 runtime_gcprocs(void);
584 void runtime_helpgc(int32 nproc);
585 void runtime_gchelper(void);
586 void runtime_createfing(void);
587 G* runtime_wakefing(void);
588 extern bool runtime_fingwait;
589 extern bool runtime_fingwake;
591 void runtime_setprofilebucket(void *p, Bucket *b);
593 struct __go_func_type;
594 struct __go_ptr_type;
595 bool runtime_addfinalizer(void *p, FuncVal *fn, const struct __go_func_type*, const struct __go_ptr_type*);
596 void runtime_removefinalizer(void*);
597 void runtime_queuefinalizer(void *p, FuncVal *fn, const struct __go_func_type *ft, const struct __go_ptr_type *ot);
599 void runtime_freeallspecials(MSpan *span, void *p, uintptr size);
600 bool runtime_freespecial(Special *s, void *p, uintptr size, bool freed);
602 enum
604 TypeInfo_SingleObject = 0,
605 TypeInfo_Array = 1,
606 TypeInfo_Chan = 2,
608 // Enables type information at the end of blocks allocated from heap
609 DebugTypeAtBlockEnd = 0,
612 // Information from the compiler about the layout of stack frames.
613 typedef struct BitVector BitVector;
614 struct BitVector
616 int32 n; // # of bits
617 uint32 *data;
619 typedef struct StackMap StackMap;
620 struct StackMap
622 int32 n; // number of bitmaps
623 int32 nbit; // number of bits in each bitmap
624 uint32 data[];
626 enum {
627 // Pointer map
628 BitsPerPointer = 2,
629 BitsDead = 0,
630 BitsScalar = 1,
631 BitsPointer = 2,
632 BitsMultiWord = 3,
633 // BitsMultiWord will be set for the first word of a multi-word item.
634 // When it is set, one of the following will be set for the second word.
635 BitsString = 0,
636 BitsSlice = 1,
637 BitsIface = 2,
638 BitsEface = 3,
640 // Returns pointer map data for the given stackmap index
641 // (the index is encoded in PCDATA_StackMapIndex).
642 BitVector runtime_stackmapdata(StackMap *stackmap, int32 n);
644 // defined in mgc0.go
645 void runtime_gc_m_ptr(Eface*);
646 void runtime_gc_g_ptr(Eface*);
647 void runtime_gc_itab_ptr(Eface*);
649 void runtime_memorydump(void);
650 int32 runtime_setgcpercent(int32);
652 // Value we use to mark dead pointers when GODEBUG=gcdead=1.
653 #define PoisonGC ((uintptr)0xf969696969696969ULL)
654 #define PoisonStack ((uintptr)0x6868686868686868ULL)
656 struct Workbuf;
657 void runtime_MProf_Mark(struct Workbuf**, void (*)(struct Workbuf**, Obj));
658 void runtime_proc_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
659 void runtime_time_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));
660 void runtime_netpoll_scan(struct Workbuf**, void (*)(struct Workbuf**, Obj));