* config/i386/netbsd-elf.h (TARGET_OS_CPP_BUILTINS): Define.
[official-gcc.git] / gcc / config / i386 / i386.h
blob970dfdfdf61608f96cbf18e4671ed4a9b4bfa084
1 /* Definitions of target machine for GNU compiler for IA-32.
2 Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* The purpose of this file is to define the characteristics of the i386,
23 independent of assembler syntax or operating system.
25 Three other files build on this one to describe a specific assembler syntax:
26 bsd386.h, att386.h, and sun386.h.
28 The actual tm.h file for a particular system should include
29 this file, and then the file for the appropriate assembler syntax.
31 Many macros that specify assembler syntax are omitted entirely from
32 this file because they really belong in the files for particular
33 assemblers. These include RP, IP, LPREFIX, PUT_OP_SIZE, USE_STAR,
34 ADDR_BEG, ADDR_END, PRINT_IREG, PRINT_SCALE, PRINT_B_I_S, and many
35 that start with ASM_ or end in ASM_OP. */
37 /* Stubs for half-pic support if not OSF/1 reference platform. */
39 #ifndef HALF_PIC_P
40 #define HALF_PIC_P() 0
41 #define HALF_PIC_NUMBER_PTRS 0
42 #define HALF_PIC_NUMBER_REFS 0
43 #define HALF_PIC_ENCODE(DECL)
44 #define HALF_PIC_DECLARE(NAME)
45 #define HALF_PIC_INIT() error ("half-pic init called on systems that don't support it")
46 #define HALF_PIC_ADDRESS_P(X) 0
47 #define HALF_PIC_PTR(X) (X)
48 #define HALF_PIC_FINISH(STREAM)
49 #endif
51 /* Define the specific costs for a given cpu */
53 struct processor_costs {
54 const int add; /* cost of an add instruction */
55 const int lea; /* cost of a lea instruction */
56 const int shift_var; /* variable shift costs */
57 const int shift_const; /* constant shift costs */
58 const int mult_init; /* cost of starting a multiply */
59 const int mult_bit; /* cost of multiply per each bit set */
60 const int divide; /* cost of a divide/mod */
61 int movsx; /* The cost of movsx operation. */
62 int movzx; /* The cost of movzx operation. */
63 const int large_insn; /* insns larger than this cost more */
64 const int move_ratio; /* The threshold of number of scalar
65 memory-to-memory move insns. */
66 const int movzbl_load; /* cost of loading using movzbl */
67 const int int_load[3]; /* cost of loading integer registers
68 in QImode, HImode and SImode relative
69 to reg-reg move (2). */
70 const int int_store[3]; /* cost of storing integer register
71 in QImode, HImode and SImode */
72 const int fp_move; /* cost of reg,reg fld/fst */
73 const int fp_load[3]; /* cost of loading FP register
74 in SFmode, DFmode and XFmode */
75 const int fp_store[3]; /* cost of storing FP register
76 in SFmode, DFmode and XFmode */
77 const int mmx_move; /* cost of moving MMX register. */
78 const int mmx_load[2]; /* cost of loading MMX register
79 in SImode and DImode */
80 const int mmx_store[2]; /* cost of storing MMX register
81 in SImode and DImode */
82 const int sse_move; /* cost of moving SSE register. */
83 const int sse_load[3]; /* cost of loading SSE register
84 in SImode, DImode and TImode*/
85 const int sse_store[3]; /* cost of storing SSE register
86 in SImode, DImode and TImode*/
87 const int mmxsse_to_integer; /* cost of moving mmxsse register to
88 integer and vice versa. */
89 const int prefetch_block; /* bytes moved to cache for prefetch. */
90 const int simultaneous_prefetches; /* number of parallel prefetch
91 operations. */
94 extern const struct processor_costs *ix86_cost;
96 /* Run-time compilation parameters selecting different hardware subsets. */
98 extern int target_flags;
100 /* Macros used in the machine description to test the flags. */
102 /* configure can arrange to make this 2, to force a 486. */
104 #ifndef TARGET_CPU_DEFAULT
105 #define TARGET_CPU_DEFAULT 0
106 #endif
108 /* Masks for the -m switches */
109 #define MASK_80387 0x00000001 /* Hardware floating point */
110 #define MASK_RTD 0x00000002 /* Use ret that pops args */
111 #define MASK_ALIGN_DOUBLE 0x00000004 /* align doubles to 2 word boundary */
112 #define MASK_SVR3_SHLIB 0x00000008 /* Uninit locals into bss */
113 #define MASK_IEEE_FP 0x00000010 /* IEEE fp comparisons */
114 #define MASK_FLOAT_RETURNS 0x00000020 /* Return float in st(0) */
115 #define MASK_NO_FANCY_MATH_387 0x00000040 /* Disable sin, cos, sqrt */
116 #define MASK_OMIT_LEAF_FRAME_POINTER 0x080 /* omit leaf frame pointers */
117 #define MASK_STACK_PROBE 0x00000100 /* Enable stack probing */
118 #define MASK_NO_ALIGN_STROPS 0x00000200 /* Enable aligning of string ops. */
119 #define MASK_INLINE_ALL_STROPS 0x00000400 /* Inline stringops in all cases */
120 #define MASK_NO_PUSH_ARGS 0x00000800 /* Use push instructions */
121 #define MASK_ACCUMULATE_OUTGOING_ARGS 0x00001000/* Accumulate outgoing args */
122 #define MASK_ACCUMULATE_OUTGOING_ARGS_SET 0x00002000
123 #define MASK_MMX 0x00004000 /* Support MMX regs/builtins */
124 #define MASK_MMX_SET 0x00008000
125 #define MASK_SSE 0x00010000 /* Support SSE regs/builtins */
126 #define MASK_SSE_SET 0x00020000
127 #define MASK_SSE2 0x00040000 /* Support SSE2 regs/builtins */
128 #define MASK_SSE2_SET 0x00080000
129 #define MASK_3DNOW 0x00100000 /* Support 3Dnow builtins */
130 #define MASK_3DNOW_SET 0x00200000
131 #define MASK_3DNOW_A 0x00400000 /* Support Athlon 3Dnow builtins */
132 #define MASK_3DNOW_A_SET 0x00800000
133 #define MASK_128BIT_LONG_DOUBLE 0x01000000 /* long double size is 128bit */
134 #define MASK_64BIT 0x02000000 /* Produce 64bit code */
135 /* ... overlap with subtarget options starts by 0x04000000. */
136 #define MASK_NO_RED_ZONE 0x04000000 /* Do not use red zone */
138 /* Use the floating point instructions */
139 #define TARGET_80387 (target_flags & MASK_80387)
141 /* Compile using ret insn that pops args.
142 This will not work unless you use prototypes at least
143 for all functions that can take varying numbers of args. */
144 #define TARGET_RTD (target_flags & MASK_RTD)
146 /* Align doubles to a two word boundary. This breaks compatibility with
147 the published ABI's for structures containing doubles, but produces
148 faster code on the pentium. */
149 #define TARGET_ALIGN_DOUBLE (target_flags & MASK_ALIGN_DOUBLE)
151 /* Use push instructions to save outgoing args. */
152 #define TARGET_PUSH_ARGS (!(target_flags & MASK_NO_PUSH_ARGS))
154 /* Accumulate stack adjustments to prologue/epilogue. */
155 #define TARGET_ACCUMULATE_OUTGOING_ARGS \
156 (target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)
158 /* Put uninitialized locals into bss, not data.
159 Meaningful only on svr3. */
160 #define TARGET_SVR3_SHLIB (target_flags & MASK_SVR3_SHLIB)
162 /* Use IEEE floating point comparisons. These handle correctly the cases
163 where the result of a comparison is unordered. Normally SIGFPE is
164 generated in such cases, in which case this isn't needed. */
165 #define TARGET_IEEE_FP (target_flags & MASK_IEEE_FP)
167 /* Functions that return a floating point value may return that value
168 in the 387 FPU or in 386 integer registers. If set, this flag causes
169 the 387 to be used, which is compatible with most calling conventions. */
170 #define TARGET_FLOAT_RETURNS_IN_80387 (target_flags & MASK_FLOAT_RETURNS)
172 /* Long double is 128bit instead of 96bit, even when only 80bits are used.
173 This mode wastes cache, but avoid misaligned data accesses and simplifies
174 address calculations. */
175 #define TARGET_128BIT_LONG_DOUBLE (target_flags & MASK_128BIT_LONG_DOUBLE)
177 /* Disable generation of FP sin, cos and sqrt operations for 387.
178 This is because FreeBSD lacks these in the math-emulator-code */
179 #define TARGET_NO_FANCY_MATH_387 (target_flags & MASK_NO_FANCY_MATH_387)
181 /* Don't create frame pointers for leaf functions */
182 #define TARGET_OMIT_LEAF_FRAME_POINTER \
183 (target_flags & MASK_OMIT_LEAF_FRAME_POINTER)
185 /* Debug GO_IF_LEGITIMATE_ADDRESS */
186 #define TARGET_DEBUG_ADDR (ix86_debug_addr_string != 0)
188 /* Debug FUNCTION_ARG macros */
189 #define TARGET_DEBUG_ARG (ix86_debug_arg_string != 0)
191 /* 64bit Sledgehammer mode */
192 #ifdef TARGET_BI_ARCH
193 #define TARGET_64BIT (target_flags & MASK_64BIT)
194 #else
195 #ifdef TARGET_64BIT_DEFAULT
196 #define TARGET_64BIT 1
197 #else
198 #define TARGET_64BIT 0
199 #endif
200 #endif
202 #define TARGET_386 (ix86_cpu == PROCESSOR_I386)
203 #define TARGET_486 (ix86_cpu == PROCESSOR_I486)
204 #define TARGET_PENTIUM (ix86_cpu == PROCESSOR_PENTIUM)
205 #define TARGET_PENTIUMPRO (ix86_cpu == PROCESSOR_PENTIUMPRO)
206 #define TARGET_K6 (ix86_cpu == PROCESSOR_K6)
207 #define TARGET_ATHLON (ix86_cpu == PROCESSOR_ATHLON)
208 #define TARGET_PENTIUM4 (ix86_cpu == PROCESSOR_PENTIUM4)
210 #define CPUMASK (1 << ix86_cpu)
211 extern const int x86_use_leave, x86_push_memory, x86_zero_extend_with_and;
212 extern const int x86_use_bit_test, x86_cmove, x86_deep_branch;
213 extern const int x86_branch_hints, x86_unroll_strlen;
214 extern const int x86_double_with_add, x86_partial_reg_stall, x86_movx;
215 extern const int x86_use_loop, x86_use_fiop, x86_use_mov0;
216 extern const int x86_use_cltd, x86_read_modify_write;
217 extern const int x86_read_modify, x86_split_long_moves;
218 extern const int x86_promote_QImode, x86_single_stringop;
219 extern const int x86_himode_math, x86_qimode_math, x86_promote_qi_regs;
220 extern const int x86_promote_hi_regs, x86_integer_DFmode_moves;
221 extern const int x86_add_esp_4, x86_add_esp_8, x86_sub_esp_4, x86_sub_esp_8;
222 extern const int x86_partial_reg_dependency, x86_memory_mismatch_stall;
223 extern const int x86_accumulate_outgoing_args, x86_prologue_using_move;
224 extern const int x86_epilogue_using_move, x86_decompose_lea;
225 extern const int x86_arch_always_fancy_math_387;
226 extern int x86_prefetch_sse;
228 #define TARGET_USE_LEAVE (x86_use_leave & CPUMASK)
229 #define TARGET_PUSH_MEMORY (x86_push_memory & CPUMASK)
230 #define TARGET_ZERO_EXTEND_WITH_AND (x86_zero_extend_with_and & CPUMASK)
231 #define TARGET_USE_BIT_TEST (x86_use_bit_test & CPUMASK)
232 #define TARGET_UNROLL_STRLEN (x86_unroll_strlen & CPUMASK)
233 /* For sane SSE instruction set generation we need fcomi instruction. It is
234 safe to enable all CMOVE instructions. */
235 #define TARGET_CMOVE ((x86_cmove & (1 << ix86_arch)) || TARGET_SSE)
236 #define TARGET_DEEP_BRANCH_PREDICTION (x86_deep_branch & CPUMASK)
237 #define TARGET_BRANCH_PREDICTION_HINTS (x86_branch_hints & CPUMASK)
238 #define TARGET_DOUBLE_WITH_ADD (x86_double_with_add & CPUMASK)
239 #define TARGET_USE_SAHF ((x86_use_sahf & CPUMASK) && !TARGET_64BIT)
240 #define TARGET_MOVX (x86_movx & CPUMASK)
241 #define TARGET_PARTIAL_REG_STALL (x86_partial_reg_stall & CPUMASK)
242 #define TARGET_USE_LOOP (x86_use_loop & CPUMASK)
243 #define TARGET_USE_FIOP (x86_use_fiop & CPUMASK)
244 #define TARGET_USE_MOV0 (x86_use_mov0 & CPUMASK)
245 #define TARGET_USE_CLTD (x86_use_cltd & CPUMASK)
246 #define TARGET_SPLIT_LONG_MOVES (x86_split_long_moves & CPUMASK)
247 #define TARGET_READ_MODIFY_WRITE (x86_read_modify_write & CPUMASK)
248 #define TARGET_READ_MODIFY (x86_read_modify & CPUMASK)
249 #define TARGET_PROMOTE_QImode (x86_promote_QImode & CPUMASK)
250 #define TARGET_SINGLE_STRINGOP (x86_single_stringop & CPUMASK)
251 #define TARGET_QIMODE_MATH (x86_qimode_math & CPUMASK)
252 #define TARGET_HIMODE_MATH (x86_himode_math & CPUMASK)
253 #define TARGET_PROMOTE_QI_REGS (x86_promote_qi_regs & CPUMASK)
254 #define TARGET_PROMOTE_HI_REGS (x86_promote_hi_regs & CPUMASK)
255 #define TARGET_ADD_ESP_4 (x86_add_esp_4 & CPUMASK)
256 #define TARGET_ADD_ESP_8 (x86_add_esp_8 & CPUMASK)
257 #define TARGET_SUB_ESP_4 (x86_sub_esp_4 & CPUMASK)
258 #define TARGET_SUB_ESP_8 (x86_sub_esp_8 & CPUMASK)
259 #define TARGET_INTEGER_DFMODE_MOVES (x86_integer_DFmode_moves & CPUMASK)
260 #define TARGET_PARTIAL_REG_DEPENDENCY (x86_partial_reg_dependency & CPUMASK)
261 #define TARGET_MEMORY_MISMATCH_STALL (x86_memory_mismatch_stall & CPUMASK)
262 #define TARGET_PROLOGUE_USING_MOVE (x86_prologue_using_move & CPUMASK)
263 #define TARGET_EPILOGUE_USING_MOVE (x86_epilogue_using_move & CPUMASK)
264 #define TARGET_DECOMPOSE_LEA (x86_decompose_lea & CPUMASK)
265 #define TARGET_PREFETCH_SSE (x86_prefetch_sse)
267 #define TARGET_STACK_PROBE (target_flags & MASK_STACK_PROBE)
269 #define TARGET_ALIGN_STRINGOPS (!(target_flags & MASK_NO_ALIGN_STROPS))
270 #define TARGET_INLINE_ALL_STRINGOPS (target_flags & MASK_INLINE_ALL_STROPS)
272 #define ASSEMBLER_DIALECT (ix86_asm_dialect)
274 #define TARGET_SSE ((target_flags & (MASK_SSE | MASK_SSE2)) != 0)
275 #define TARGET_SSE2 ((target_flags & MASK_SSE2) != 0)
276 #define TARGET_SSE_MATH ((ix86_fpmath & FPMATH_SSE) != 0)
277 #define TARGET_MIX_SSE_I387 ((ix86_fpmath & FPMATH_SSE) \
278 && (ix86_fpmath & FPMATH_387))
279 #define TARGET_MMX ((target_flags & MASK_MMX) != 0)
280 #define TARGET_3DNOW ((target_flags & MASK_3DNOW) != 0)
281 #define TARGET_3DNOW_A ((target_flags & MASK_3DNOW_A) != 0)
283 #define TARGET_RED_ZONE (!(target_flags & MASK_NO_RED_ZONE))
285 #define TARGET_GNU_TLS (ix86_tls_dialect == TLS_DIALECT_GNU)
286 #define TARGET_SUN_TLS (ix86_tls_dialect == TLS_DIALECT_SUN)
288 /* WARNING: Do not mark empty strings for translation, as calling
289 gettext on an empty string does NOT return an empty
290 string. */
293 #define TARGET_SWITCHES \
294 { { "80387", MASK_80387, N_("Use hardware fp") }, \
295 { "no-80387", -MASK_80387, N_("Do not use hardware fp") }, \
296 { "hard-float", MASK_80387, N_("Use hardware fp") }, \
297 { "soft-float", -MASK_80387, N_("Do not use hardware fp") }, \
298 { "no-soft-float", MASK_80387, N_("Use hardware fp") }, \
299 { "386", 0, "" /*Deprecated.*/}, \
300 { "486", 0, "" /*Deprecated.*/}, \
301 { "pentium", 0, "" /*Deprecated.*/}, \
302 { "pentiumpro", 0, "" /*Deprecated.*/}, \
303 { "intel-syntax", 0, "" /*Deprecated.*/}, \
304 { "no-intel-syntax", 0, "" /*Deprecated.*/}, \
305 { "rtd", MASK_RTD, \
306 N_("Alternate calling convention") }, \
307 { "no-rtd", -MASK_RTD, \
308 N_("Use normal calling convention") }, \
309 { "align-double", MASK_ALIGN_DOUBLE, \
310 N_("Align some doubles on dword boundary") }, \
311 { "no-align-double", -MASK_ALIGN_DOUBLE, \
312 N_("Align doubles on word boundary") }, \
313 { "svr3-shlib", MASK_SVR3_SHLIB, \
314 N_("Uninitialized locals in .bss") }, \
315 { "no-svr3-shlib", -MASK_SVR3_SHLIB, \
316 N_("Uninitialized locals in .data") }, \
317 { "ieee-fp", MASK_IEEE_FP, \
318 N_("Use IEEE math for fp comparisons") }, \
319 { "no-ieee-fp", -MASK_IEEE_FP, \
320 N_("Do not use IEEE math for fp comparisons") }, \
321 { "fp-ret-in-387", MASK_FLOAT_RETURNS, \
322 N_("Return values of functions in FPU registers") }, \
323 { "no-fp-ret-in-387", -MASK_FLOAT_RETURNS , \
324 N_("Do not return values of functions in FPU registers")}, \
325 { "no-fancy-math-387", MASK_NO_FANCY_MATH_387, \
326 N_("Do not generate sin, cos, sqrt for FPU") }, \
327 { "fancy-math-387", -MASK_NO_FANCY_MATH_387, \
328 N_("Generate sin, cos, sqrt for FPU")}, \
329 { "omit-leaf-frame-pointer", MASK_OMIT_LEAF_FRAME_POINTER, \
330 N_("Omit the frame pointer in leaf functions") }, \
331 { "no-omit-leaf-frame-pointer",-MASK_OMIT_LEAF_FRAME_POINTER, "" }, \
332 { "stack-arg-probe", MASK_STACK_PROBE, \
333 N_("Enable stack probing") }, \
334 { "no-stack-arg-probe", -MASK_STACK_PROBE, "" }, \
335 { "windows", 0, 0 /* undocumented */ }, \
336 { "dll", 0, 0 /* undocumented */ }, \
337 { "align-stringops", -MASK_NO_ALIGN_STROPS, \
338 N_("Align destination of the string operations") }, \
339 { "no-align-stringops", MASK_NO_ALIGN_STROPS, \
340 N_("Do not align destination of the string operations") }, \
341 { "inline-all-stringops", MASK_INLINE_ALL_STROPS, \
342 N_("Inline all known string operations") }, \
343 { "no-inline-all-stringops", -MASK_INLINE_ALL_STROPS, \
344 N_("Do not inline all known string operations") }, \
345 { "push-args", -MASK_NO_PUSH_ARGS, \
346 N_("Use push instructions to save outgoing arguments") }, \
347 { "no-push-args", MASK_NO_PUSH_ARGS, \
348 N_("Do not use push instructions to save outgoing arguments") }, \
349 { "accumulate-outgoing-args", (MASK_ACCUMULATE_OUTGOING_ARGS \
350 | MASK_ACCUMULATE_OUTGOING_ARGS_SET), \
351 N_("Use push instructions to save outgoing arguments") }, \
352 { "no-accumulate-outgoing-args",MASK_ACCUMULATE_OUTGOING_ARGS_SET, \
353 N_("Do not use push instructions to save outgoing arguments") }, \
354 { "mmx", MASK_MMX | MASK_MMX_SET, \
355 N_("Support MMX built-in functions") }, \
356 { "no-mmx", -MASK_MMX, \
357 N_("Do not support MMX built-in functions") }, \
358 { "no-mmx", MASK_MMX_SET, "" }, \
359 { "3dnow", MASK_3DNOW | MASK_3DNOW_SET, \
360 N_("Support 3DNow! built-in functions") }, \
361 { "no-3dnow", -MASK_3DNOW, "" }, \
362 { "no-3dnow", MASK_3DNOW_SET, \
363 N_("Do not support 3DNow! built-in functions") }, \
364 { "sse", MASK_SSE | MASK_SSE_SET, \
365 N_("Support MMX and SSE built-in functions and code generation") }, \
366 { "no-sse", -MASK_SSE, "" }, \
367 { "no-sse", MASK_SSE_SET, \
368 N_("Do not support MMX and SSE built-in functions and code generation") },\
369 { "sse2", MASK_SSE2 | MASK_SSE2_SET, \
370 N_("Support MMX, SSE and SSE2 built-in functions and code generation") }, \
371 { "no-sse2", -MASK_SSE2, "" }, \
372 { "no-sse2", MASK_SSE2_SET, \
373 N_("Do not support MMX, SSE and SSE2 built-in functions and code generation") }, \
374 { "128bit-long-double", MASK_128BIT_LONG_DOUBLE, \
375 N_("sizeof(long double) is 16") }, \
376 { "96bit-long-double", -MASK_128BIT_LONG_DOUBLE, \
377 N_("sizeof(long double) is 12") }, \
378 { "64", MASK_64BIT, \
379 N_("Generate 64bit x86-64 code") }, \
380 { "32", -MASK_64BIT, \
381 N_("Generate 32bit i386 code") }, \
382 { "red-zone", -MASK_NO_RED_ZONE, \
383 N_("Use red-zone in the x86-64 code") }, \
384 { "no-red-zone", MASK_NO_RED_ZONE, \
385 N_("Do not use red-zone in the x86-64 code") }, \
386 SUBTARGET_SWITCHES \
387 { "", TARGET_DEFAULT, 0 }}
389 #ifdef TARGET_64BIT_DEFAULT
390 #define TARGET_DEFAULT (MASK_64BIT | TARGET_SUBTARGET_DEFAULT)
391 #else
392 #define TARGET_DEFAULT TARGET_SUBTARGET_DEFAULT
393 #endif
395 /* This macro is similar to `TARGET_SWITCHES' but defines names of
396 command options that have values. Its definition is an
397 initializer with a subgrouping for each command option.
399 Each subgrouping contains a string constant, that defines the
400 fixed part of the option name, and the address of a variable. The
401 variable, type `char *', is set to the variable part of the given
402 option if the fixed part matches. The actual option name is made
403 by appending `-m' to the specified name. */
404 #define TARGET_OPTIONS \
405 { { "cpu=", &ix86_cpu_string, \
406 N_("Schedule code for given CPU")}, \
407 { "fpmath=", &ix86_fpmath_string, \
408 N_("Generate floating point mathematics using given instruction set")},\
409 { "arch=", &ix86_arch_string, \
410 N_("Generate code for given CPU")}, \
411 { "regparm=", &ix86_regparm_string, \
412 N_("Number of registers used to pass integer arguments") }, \
413 { "align-loops=", &ix86_align_loops_string, \
414 N_("Loop code aligned to this power of 2") }, \
415 { "align-jumps=", &ix86_align_jumps_string, \
416 N_("Jump targets are aligned to this power of 2") }, \
417 { "align-functions=", &ix86_align_funcs_string, \
418 N_("Function starts are aligned to this power of 2") }, \
419 { "preferred-stack-boundary=", \
420 &ix86_preferred_stack_boundary_string, \
421 N_("Attempt to keep stack aligned to this power of 2") }, \
422 { "branch-cost=", &ix86_branch_cost_string, \
423 N_("Branches are this expensive (1-5, arbitrary units)") }, \
424 { "cmodel=", &ix86_cmodel_string, \
425 N_("Use given x86-64 code model") }, \
426 { "debug-arg", &ix86_debug_arg_string, \
427 "" /* Undocumented. */ }, \
428 { "debug-addr", &ix86_debug_addr_string, \
429 "" /* Undocumented. */ }, \
430 { "asm=", &ix86_asm_string, \
431 N_("Use given assembler dialect") }, \
432 { "tls-dialect=", &ix86_tls_dialect_string, \
433 N_("Use given thread-local storage dialect") }, \
434 SUBTARGET_OPTIONS \
437 /* Sometimes certain combinations of command options do not make
438 sense on a particular target machine. You can define a macro
439 `OVERRIDE_OPTIONS' to take account of this. This macro, if
440 defined, is executed once just after all the command options have
441 been parsed.
443 Don't use this macro to turn on various extra optimizations for
444 `-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
446 #define OVERRIDE_OPTIONS override_options ()
448 /* These are meant to be redefined in the host dependent files */
449 #define SUBTARGET_SWITCHES
450 #define SUBTARGET_OPTIONS
452 /* Define this to change the optimizations performed by default. */
453 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
454 optimization_options ((LEVEL), (SIZE))
456 /* Specs for the compiler proper */
458 #ifndef CC1_CPU_SPEC
459 #define CC1_CPU_SPEC "\
460 %{!mcpu*: \
461 %{m386:-mcpu=i386 \
462 %n`-m386' is deprecated. Use `-march=i386' or `-mcpu=i386' instead.\n} \
463 %{m486:-mcpu=i486 \
464 %n`-m486' is deprecated. Use `-march=i486' or `-mcpu=i486' instead.\n} \
465 %{mpentium:-mcpu=pentium \
466 %n`-mpentium' is deprecated. Use `-march=pentium' or `-mcpu=pentium' instead.\n} \
467 %{mpentiumpro:-mcpu=pentiumpro \
468 %n`-mpentiumpro' is deprecated. Use `-march=pentiumpro' or `-mcpu=pentiumpro' instead.\n}} \
469 %{mintel-syntax:-masm=intel \
470 %n`-mintel-syntax' is deprecated. Use `-masm=intel' instead.\n} \
471 %{mno-intel-syntax:-masm=att \
472 %n`-mno-intel-syntax' is deprecated. Use `-masm=att' instead.\n}"
473 #endif
475 #define TARGET_CPU_DEFAULT_i386 0
476 #define TARGET_CPU_DEFAULT_i486 1
477 #define TARGET_CPU_DEFAULT_pentium 2
478 #define TARGET_CPU_DEFAULT_pentium_mmx 3
479 #define TARGET_CPU_DEFAULT_pentiumpro 4
480 #define TARGET_CPU_DEFAULT_pentium2 5
481 #define TARGET_CPU_DEFAULT_pentium3 6
482 #define TARGET_CPU_DEFAULT_pentium4 7
483 #define TARGET_CPU_DEFAULT_k6 8
484 #define TARGET_CPU_DEFAULT_k6_2 9
485 #define TARGET_CPU_DEFAULT_k6_3 10
486 #define TARGET_CPU_DEFAULT_athlon 11
487 #define TARGET_CPU_DEFAULT_athlon_sse 12
489 #define TARGET_CPU_DEFAULT_NAMES {"i386", "i486", "pentium", "pentium-mmx",\
490 "pentiumpro", "pentium2", "pentium3", \
491 "pentium4", "k6", "k6-2", "k6-3",\
492 "athlon", "athlon-4"}
493 #ifndef CPP_CPU_DEFAULT_SPEC
494 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_i486
495 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i486__"
496 #endif
497 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium
498 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__"
499 #endif
500 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium_mmx
501 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__"
502 #endif
503 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentiumpro
504 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__"
505 #endif
506 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium2
507 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
508 -D__tune_pentium2__"
509 #endif
510 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium3
511 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i686__ -D__tune_pentiumpro__\
512 -D__tune_pentium2__ -D__tune_pentium3__"
513 #endif
514 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_pentium4
515 #define CPP_CPU_DEFAULT_SPEC "-D__tune_pentium4__"
516 #endif
517 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6
518 #define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__"
519 #endif
520 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_2
521 #define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_2__"
522 #endif
523 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_k6_3
524 #define CPP_CPU_DEFAULT_SPEC "-D__tune_k6__ -D__tune_k6_3__"
525 #endif
526 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon
527 #define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__"
528 #endif
529 #if TARGET_CPU_DEFAULT == TARGET_CPU_DEFAULT_athlon_sse
530 #define CPP_CPU_DEFAULT_SPEC "-D__tune_athlon__ -D__tune_athlon_sse__"
531 #endif
532 #ifndef CPP_CPU_DEFAULT_SPEC
533 #define CPP_CPU_DEFAULT_SPEC "-D__tune_i386__"
534 #endif
535 #endif /* CPP_CPU_DEFAULT_SPEC */
537 #define CPP_CPU32_SPEC \
538 "-Acpu=i386 -Amachine=i386 %{!ansi:%{!std=c*:%{!std=i*:-Di386}}} -D__i386 \
539 -D__i386__"
541 #define CPP_CPU64_SPEC \
542 "-Acpu=x86_64 -Amachine=x86_64 -D__x86_64 -D__x86_64__"
544 #define CPP_CPUCOMMON_SPEC "\
545 %{march=i386:%{!mcpu*:-D__tune_i386__ }}\
546 %{march=i486:-D__i486 -D__i486__ %{!mcpu*:-D__tune_i486__ }}\
547 %{march=pentium|march=i586:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
548 %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ }}\
549 %{march=pentium-mmx:-D__i586 -D__i586__ -D__pentium -D__pentium__ \
550 -D__pentium__mmx__ \
551 %{!mcpu*:-D__tune_i586__ -D__tune_pentium__ -D__tune_pentium_mmx__}}\
552 %{march=pentiumpro|march=i686:-D__i686 -D__i686__ \
553 -D__pentiumpro -D__pentiumpro__ \
554 %{!mcpu*:-D__tune_i686__ -D__tune_pentiumpro__ }}\
555 %{march=k6:-D__k6 -D__k6__ %{!mcpu*:-D__tune_k6__ }}\
556 %{march=k6-2:-D__k6 -D__k6__ -D__k6_2__ \
557 %{!mcpu*:-D__tune_k6__ -D__tune_k6_2__ }}\
558 %{march=k6-3:-D__k6 -D__k6__ -D__k6_3__ \
559 %{!mcpu*:-D__tune_k6__ -D__tune_k6_3__ }}\
560 %{march=athlon|march=athlon-tbird:-D__athlon -D__athlon__ \
561 %{!mcpu*:-D__tune_athlon__ }}\
562 %{march=athlon-4|march=athlon-xp|march=athlon-mp:-D__athlon -D__athlon__ \
563 -D__athlon_sse__ \
564 %{!mcpu*:-D__tune_athlon__ -D__tune_athlon_sse__ }}\
565 %{march=pentium4:-D__pentium4 -D__pentium4__ %{!mcpu*:-D__tune_pentium4__ }}\
566 %{m386|mcpu=i386:-D__tune_i386__ }\
567 %{m486|mcpu=i486:-D__tune_i486__ }\
568 %{mpentium|mcpu=pentium|mcpu=i586|mcpu=pentium-mmx:-D__tune_i586__ -D__tune_pentium__ }\
569 %{mpentiumpro|mcpu=pentiumpro|mcpu=i686|cpu=pentium2|cpu=pentium3:-D__tune_i686__ \
570 -D__tune_pentiumpro__ }\
571 %{mcpu=k6|mcpu=k6-2|mcpu=k6-3:-D__tune_k6__ }\
572 %{mcpu=athlon|mcpu=athlon-tbird|mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
573 -D__tune_athlon__ }\
574 %{mcpu=athlon-4|mcpu=athlon-xp|mcpu=athlon-mp:\
575 -D__tune_athlon_sse__ }\
576 %{mcpu=pentium4:-D__tune_pentium4__ }\
577 %{march=athlon-tbird|march=athlon-xp|march=athlon-mp|march=pentium3|march=pentium4:\
578 -D__SSE__ }\
579 %{march=pentium-mmx|march=k6|march=k6-2|march=k6-3\
580 |march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
581 |march=athlon-mp|march=pentium2|march=pentium3|march=pentium4: -D__MMX__ }\
582 %{march=k6-2|march=k6-3\
583 |march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
584 |march=athlon-mp: -D__3dNOW__ }\
585 %{march=athlon|march=athlon-tbird|march=athlon-4|march=athlon-xp\
586 |march=athlon-mp: -D__3dNOW_A__ }\
587 %{msse2: -D__SSE2__ }\
588 %{march=pentium4: -D__SSE2__ }\
589 %{!march*:%{!mcpu*:%{!m386:%{!m486:%{!mpentium*:%(cpp_cpu_default)}}}}}"
591 #ifndef CPP_CPU_SPEC
592 #ifdef TARGET_BI_ARCH
593 #ifdef TARGET_64BIT_DEFAULT
594 #define CPP_CPU_SPEC "%{m32:%(cpp_cpu32)}%{!m32:%(cpp_cpu64)} %(cpp_cpucommon)"
595 #else
596 #define CPP_CPU_SPEC "%{m64:%(cpp_cpu64)}%{!m64:%(cpp_cpu32)} %(cpp_cpucommon)"
597 #endif
598 #else
599 #ifdef TARGET_64BIT_DEFAULT
600 #define CPP_CPU_SPEC "%(cpp_cpu64) %(cpp_cpucommon)"
601 #else
602 #define CPP_CPU_SPEC "%(cpp_cpu32) %(cpp_cpucommon)"
603 #endif
604 #endif
605 #endif
607 #ifndef CC1_SPEC
608 #define CC1_SPEC "%(cc1_cpu) "
609 #endif
611 /* This macro defines names of additional specifications to put in the
612 specs that can be used in various specifications like CC1_SPEC. Its
613 definition is an initializer with a subgrouping for each command option.
615 Each subgrouping contains a string constant, that defines the
616 specification name, and a string constant that used by the GNU CC driver
617 program.
619 Do not define this macro if it does not need to do anything. */
621 #ifndef SUBTARGET_EXTRA_SPECS
622 #define SUBTARGET_EXTRA_SPECS
623 #endif
625 #define EXTRA_SPECS \
626 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
627 { "cpp_cpu", CPP_CPU_SPEC }, \
628 { "cpp_cpu32", CPP_CPU32_SPEC }, \
629 { "cpp_cpu64", CPP_CPU64_SPEC }, \
630 { "cpp_cpucommon", CPP_CPUCOMMON_SPEC }, \
631 { "cc1_cpu", CC1_CPU_SPEC }, \
632 SUBTARGET_EXTRA_SPECS
634 /* target machine storage layout */
636 /* Define for XFmode or TFmode extended real floating point support.
637 The XFmode is specified by i386 ABI, while TFmode may be faster
638 due to alignment and simplifications in the address calculations.
640 #define LONG_DOUBLE_TYPE_SIZE (TARGET_128BIT_LONG_DOUBLE ? 128 : 96)
641 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
642 #ifdef __x86_64__
643 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
644 #else
645 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 96
646 #endif
647 /* Tell real.c that this is the 80-bit Intel extended float format
648 packaged in a 128-bit or 96bit entity. */
649 #define INTEL_EXTENDED_IEEE_FORMAT 1
652 #define SHORT_TYPE_SIZE 16
653 #define INT_TYPE_SIZE 32
654 #define FLOAT_TYPE_SIZE 32
655 #define LONG_TYPE_SIZE BITS_PER_WORD
656 #define MAX_WCHAR_TYPE_SIZE 32
657 #define DOUBLE_TYPE_SIZE 64
658 #define LONG_LONG_TYPE_SIZE 64
660 #if defined (TARGET_BI_ARCH) || defined (TARGET_64BIT_DEFAULT)
661 #define MAX_BITS_PER_WORD 64
662 #define MAX_LONG_TYPE_SIZE 64
663 #else
664 #define MAX_BITS_PER_WORD 32
665 #define MAX_LONG_TYPE_SIZE 32
666 #endif
668 /* Define this if most significant byte of a word is the lowest numbered. */
669 /* That is true on the 80386. */
671 #define BITS_BIG_ENDIAN 0
673 /* Define this if most significant byte of a word is the lowest numbered. */
674 /* That is not true on the 80386. */
675 #define BYTES_BIG_ENDIAN 0
677 /* Define this if most significant word of a multiword number is the lowest
678 numbered. */
679 /* Not true for 80386 */
680 #define WORDS_BIG_ENDIAN 0
682 /* Width of a word, in units (bytes). */
683 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
684 #define MIN_UNITS_PER_WORD 4
686 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
687 #define PARM_BOUNDARY BITS_PER_WORD
689 /* Boundary (in *bits*) on which stack pointer should be aligned. */
690 #define STACK_BOUNDARY BITS_PER_WORD
692 /* Boundary (in *bits*) on which the stack pointer preferrs to be
693 aligned; the compiler cannot rely on having this alignment. */
694 #define PREFERRED_STACK_BOUNDARY ix86_preferred_stack_boundary
696 /* As of July 2001, many runtimes to not align the stack properly when
697 entering main. This causes expand_main_function to forcably align
698 the stack, which results in aligned frames for functions called from
699 main, though it does nothing for the alignment of main itself. */
700 #define FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN \
701 (ix86_preferred_stack_boundary > STACK_BOUNDARY && !TARGET_64BIT)
703 /* Allocation boundary for the code of a function. */
704 #define FUNCTION_BOUNDARY 16
706 /* Alignment of field after `int : 0' in a structure. */
708 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
710 /* Minimum size in bits of the largest boundary to which any
711 and all fundamental data types supported by the hardware
712 might need to be aligned. No data type wants to be aligned
713 rounder than this.
715 Pentium+ preferrs DFmode values to be aligned to 64 bit boundary
716 and Pentium Pro XFmode values at 128 bit boundaries. */
718 #define BIGGEST_ALIGNMENT 128
720 /* Decide whether a variable of mode MODE must be 128 bit aligned. */
721 #define ALIGN_MODE_128(MODE) \
722 ((MODE) == XFmode || (MODE) == TFmode || ((MODE) == TImode) \
723 || (MODE) == V4SFmode || (MODE) == V4SImode)
725 /* The published ABIs say that doubles should be aligned on word
726 boundaries, so lower the aligment for structure fields unless
727 -malign-double is set. */
728 /* BIGGEST_FIELD_ALIGNMENT is also used in libobjc, where it must be
729 constant. Use the smaller value in that context. */
730 #ifndef IN_TARGET_LIBS
731 #define BIGGEST_FIELD_ALIGNMENT (TARGET_64BIT ? 128 : (TARGET_ALIGN_DOUBLE ? 64 : 32))
732 #else
733 #define BIGGEST_FIELD_ALIGNMENT 32
734 #endif
736 /* If defined, a C expression to compute the alignment given to a
737 constant that is being placed in memory. EXP is the constant
738 and ALIGN is the alignment that the object would ordinarily have.
739 The value of this macro is used instead of that alignment to align
740 the object.
742 If this macro is not defined, then ALIGN is used.
744 The typical use of this macro is to increase alignment for string
745 constants to be word aligned so that `strcpy' calls that copy
746 constants can be done inline. */
748 #define CONSTANT_ALIGNMENT(EXP, ALIGN) ix86_constant_alignment ((EXP), (ALIGN))
750 /* If defined, a C expression to compute the alignment for a static
751 variable. TYPE is the data type, and ALIGN is the alignment that
752 the object would ordinarily have. The value of this macro is used
753 instead of that alignment to align the object.
755 If this macro is not defined, then ALIGN is used.
757 One use of this macro is to increase alignment of medium-size
758 data to make it all fit in fewer cache lines. Another is to
759 cause character arrays to be word-aligned so that `strcpy' calls
760 that copy constants to character arrays can be done inline. */
762 #define DATA_ALIGNMENT(TYPE, ALIGN) ix86_data_alignment ((TYPE), (ALIGN))
764 /* If defined, a C expression to compute the alignment for a local
765 variable. TYPE is the data type, and ALIGN is the alignment that
766 the object would ordinarily have. The value of this macro is used
767 instead of that alignment to align the object.
769 If this macro is not defined, then ALIGN is used.
771 One use of this macro is to increase alignment of medium-size
772 data to make it all fit in fewer cache lines. */
774 #define LOCAL_ALIGNMENT(TYPE, ALIGN) ix86_local_alignment ((TYPE), (ALIGN))
776 /* If defined, a C expression that gives the alignment boundary, in
777 bits, of an argument with the specified mode and type. If it is
778 not defined, `PARM_BOUNDARY' is used for all arguments. */
780 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
781 ix86_function_arg_boundary ((MODE), (TYPE))
783 /* Set this non-zero if move instructions will actually fail to work
784 when given unaligned data. */
785 #define STRICT_ALIGNMENT 0
787 /* If bit field type is int, don't let it cross an int,
788 and give entire struct the alignment of an int. */
789 /* Required on the 386 since it doesn't have bitfield insns. */
790 #define PCC_BITFIELD_TYPE_MATTERS 1
792 /* Standard register usage. */
794 /* This processor has special stack-like registers. See reg-stack.c
795 for details. */
797 #define STACK_REGS
798 #define IS_STACK_MODE(MODE) \
799 ((MODE) == DFmode || (MODE) == SFmode || (MODE) == XFmode \
800 || (MODE) == TFmode)
802 /* Number of actual hardware registers.
803 The hardware registers are assigned numbers for the compiler
804 from 0 to just below FIRST_PSEUDO_REGISTER.
805 All registers that the compiler knows about must be given numbers,
806 even those that are not normally considered general registers.
808 In the 80386 we give the 8 general purpose registers the numbers 0-7.
809 We number the floating point registers 8-15.
810 Note that registers 0-7 can be accessed as a short or int,
811 while only 0-3 may be used with byte `mov' instructions.
813 Reg 16 does not correspond to any hardware register, but instead
814 appears in the RTL as an argument pointer prior to reload, and is
815 eliminated during reloading in favor of either the stack or frame
816 pointer. */
818 #define FIRST_PSEUDO_REGISTER 53
820 /* Number of hardware registers that go into the DWARF-2 unwind info.
821 If not defined, equals FIRST_PSEUDO_REGISTER. */
823 #define DWARF_FRAME_REGISTERS 17
825 /* 1 for registers that have pervasive standard uses
826 and are not available for the register allocator.
827 On the 80386, the stack pointer is such, as is the arg pointer.
829 The value is an mask - bit 1 is set for fixed registers
830 for 32bit target, while 2 is set for fixed registers for 64bit.
831 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
833 #define FIXED_REGISTERS \
834 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
835 { 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, \
836 /*arg,flags,fpsr,dir,frame*/ \
837 3, 3, 3, 3, 3, \
838 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
839 0, 0, 0, 0, 0, 0, 0, 0, \
840 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
841 0, 0, 0, 0, 0, 0, 0, 0, \
842 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
843 1, 1, 1, 1, 1, 1, 1, 1, \
844 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
845 1, 1, 1, 1, 1, 1, 1, 1}
848 /* 1 for registers not available across function calls.
849 These must include the FIXED_REGISTERS and also any
850 registers that can be used without being saved.
851 The latter must include the registers where values are returned
852 and the register where structure-value addresses are passed.
853 Aside from that, you can include as many other registers as you like.
855 The value is an mask - bit 1 is set for call used
856 for 32bit target, while 2 is set for call used for 64bit.
857 Proper value is computed in the CONDITIONAL_REGISTER_USAGE.
859 #define CALL_USED_REGISTERS \
860 /*ax,dx,cx,bx,si,di,bp,sp,st,st1,st2,st3,st4,st5,st6,st7*/ \
861 { 3, 3, 3, 0, 2, 2, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, \
862 /*arg,flags,fpsr,dir,frame*/ \
863 3, 3, 3, 3, 3, \
864 /*xmm0,xmm1,xmm2,xmm3,xmm4,xmm5,xmm6,xmm7*/ \
865 3, 3, 3, 3, 3, 3, 3, 3, \
866 /*mmx0,mmx1,mmx2,mmx3,mmx4,mmx5,mmx6,mmx7*/ \
867 3, 3, 3, 3, 3, 3, 3, 3, \
868 /* r8, r9, r10, r11, r12, r13, r14, r15*/ \
869 3, 3, 3, 3, 1, 1, 1, 1, \
870 /*xmm8,xmm9,xmm10,xmm11,xmm12,xmm13,xmm14,xmm15*/ \
871 3, 3, 3, 3, 3, 3, 3, 3} \
873 /* Order in which to allocate registers. Each register must be
874 listed once, even those in FIXED_REGISTERS. List frame pointer
875 late and fixed registers last. Note that, in general, we prefer
876 registers listed in CALL_USED_REGISTERS, keeping the others
877 available for storage of persistent values.
879 The ORDER_REGS_FOR_LOCAL_ALLOC actually overwrite the order,
880 so this is just empty initializer for array. */
882 #define REG_ALLOC_ORDER \
883 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,\
884 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, \
885 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, \
886 48, 49, 50, 51, 52 }
888 /* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
889 to be rearranged based on a particular function. When using sse math,
890 we want to allocase SSE before x87 registers and vice vera. */
892 #define ORDER_REGS_FOR_LOCAL_ALLOC x86_order_regs_for_local_alloc ()
895 /* Macro to conditionally modify fixed_regs/call_used_regs. */
896 #define CONDITIONAL_REGISTER_USAGE \
897 do { \
898 int i; \
899 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
901 fixed_regs[i] = (fixed_regs[i] & (TARGET_64BIT ? 2 : 1)) != 0; \
902 call_used_regs[i] = (call_used_regs[i] \
903 & (TARGET_64BIT ? 2 : 1)) != 0; \
905 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
907 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
908 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
910 if (! TARGET_MMX) \
912 int i; \
913 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
914 if (TEST_HARD_REG_BIT (reg_class_contents[(int)MMX_REGS], i)) \
915 fixed_regs[i] = call_used_regs[i] = 1; \
917 if (! TARGET_SSE) \
919 int i; \
920 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
921 if (TEST_HARD_REG_BIT (reg_class_contents[(int)SSE_REGS], i)) \
922 fixed_regs[i] = call_used_regs[i] = 1; \
924 if (! TARGET_80387 && ! TARGET_FLOAT_RETURNS_IN_80387) \
926 int i; \
927 HARD_REG_SET x; \
928 COPY_HARD_REG_SET (x, reg_class_contents[(int)FLOAT_REGS]); \
929 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) \
930 if (TEST_HARD_REG_BIT (x, i)) \
931 fixed_regs[i] = call_used_regs[i] = 1; \
933 } while (0)
935 /* Return number of consecutive hard regs needed starting at reg REGNO
936 to hold something of mode MODE.
937 This is ordinarily the length in words of a value of mode MODE
938 but can be less for certain modes in special long registers.
940 Actually there are no two word move instructions for consecutive
941 registers. And only registers 0-3 may have mov byte instructions
942 applied to them.
945 #define HARD_REGNO_NREGS(REGNO, MODE) \
946 (FP_REGNO_P (REGNO) || SSE_REGNO_P (REGNO) || MMX_REGNO_P (REGNO) \
947 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
948 : ((MODE) == TFmode \
949 ? (TARGET_64BIT ? 2 : 3) \
950 : (MODE) == TCmode \
951 ? (TARGET_64BIT ? 4 : 6) \
952 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
954 #define VALID_SSE2_REG_MODE(MODE) \
955 ((MODE) == V16QImode || (MODE) == V8HImode || (MODE) == V2DFmode \
956 || (MODE) == V2DImode)
958 #define VALID_SSE_REG_MODE(MODE) \
959 ((MODE) == TImode || (MODE) == V4SFmode || (MODE) == V4SImode \
960 || (MODE) == SFmode \
961 /* Always accept SSE2 modes so that xmmintrin.h compiles. */ \
962 || VALID_SSE2_REG_MODE (MODE) \
963 || (TARGET_SSE2 && ((MODE) == DFmode || VALID_MMX_REG_MODE (MODE))))
965 #define VALID_MMX_REG_MODE_3DNOW(MODE) \
966 ((MODE) == V2SFmode || (MODE) == SFmode)
968 #define VALID_MMX_REG_MODE(MODE) \
969 ((MODE) == DImode || (MODE) == V8QImode || (MODE) == V4HImode \
970 || (MODE) == V2SImode || (MODE) == SImode)
972 #define VECTOR_MODE_SUPPORTED_P(MODE) \
973 (VALID_SSE_REG_MODE (MODE) && TARGET_SSE ? 1 \
974 : VALID_MMX_REG_MODE (MODE) && TARGET_MMX ? 1 \
975 : VALID_MMX_REG_MODE_3DNOW (MODE) && TARGET_3DNOW ? 1 : 0)
977 #define VALID_FP_MODE_P(MODE) \
978 ((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
979 || (!TARGET_64BIT && (MODE) == XFmode) \
980 || (MODE) == SCmode || (MODE) == DCmode || (MODE) == TCmode \
981 || (!TARGET_64BIT && (MODE) == XCmode))
983 #define VALID_INT_MODE_P(MODE) \
984 ((MODE) == QImode || (MODE) == HImode || (MODE) == SImode \
985 || (MODE) == DImode \
986 || (MODE) == CQImode || (MODE) == CHImode || (MODE) == CSImode \
987 || (MODE) == CDImode \
988 || (TARGET_64BIT && ((MODE) == TImode || (MODE) == CTImode)))
990 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
992 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
993 ix86_hard_regno_mode_ok ((REGNO), (MODE))
995 /* Value is 1 if it is a good idea to tie two pseudo registers
996 when one has mode MODE1 and one has mode MODE2.
997 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
998 for any hard reg, then this must be 0 for correct output. */
1000 #define MODES_TIEABLE_P(MODE1, MODE2) \
1001 ((MODE1) == (MODE2) \
1002 || (((MODE1) == HImode || (MODE1) == SImode \
1003 || ((MODE1) == QImode \
1004 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1005 || ((MODE1) == DImode && TARGET_64BIT)) \
1006 && ((MODE2) == HImode || (MODE2) == SImode \
1007 || ((MODE1) == QImode \
1008 && (TARGET_64BIT || !TARGET_PARTIAL_REG_STALL)) \
1009 || ((MODE2) == DImode && TARGET_64BIT))))
1012 /* Specify the modes required to caller save a given hard regno.
1013 We do this on i386 to prevent flags from being saved at all.
1015 Kill any attempts to combine saving of modes. */
1017 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1018 (CC_REGNO_P (REGNO) ? VOIDmode \
1019 : (MODE) == VOIDmode && (NREGS) != 1 ? VOIDmode \
1020 : (MODE) == VOIDmode ? choose_hard_reg_mode ((REGNO), (NREGS)) \
1021 : (MODE) == HImode && !TARGET_PARTIAL_REG_STALL ? SImode \
1022 : (MODE) == QImode && (REGNO) >= 4 && !TARGET_64BIT ? SImode \
1023 : (MODE))
1024 /* Specify the registers used for certain standard purposes.
1025 The values of these macros are register numbers. */
1027 /* on the 386 the pc register is %eip, and is not usable as a general
1028 register. The ordinary mov instructions won't work */
1029 /* #define PC_REGNUM */
1031 /* Register to use for pushing function arguments. */
1032 #define STACK_POINTER_REGNUM 7
1034 /* Base register for access to local variables of the function. */
1035 #define HARD_FRAME_POINTER_REGNUM 6
1037 /* Base register for access to local variables of the function. */
1038 #define FRAME_POINTER_REGNUM 20
1040 /* First floating point reg */
1041 #define FIRST_FLOAT_REG 8
1043 /* First & last stack-like regs */
1044 #define FIRST_STACK_REG FIRST_FLOAT_REG
1045 #define LAST_STACK_REG (FIRST_FLOAT_REG + 7)
1047 #define FLAGS_REG 17
1048 #define FPSR_REG 18
1049 #define DIRFLAG_REG 19
1051 #define FIRST_SSE_REG (FRAME_POINTER_REGNUM + 1)
1052 #define LAST_SSE_REG (FIRST_SSE_REG + 7)
1054 #define FIRST_MMX_REG (LAST_SSE_REG + 1)
1055 #define LAST_MMX_REG (FIRST_MMX_REG + 7)
1057 #define FIRST_REX_INT_REG (LAST_MMX_REG + 1)
1058 #define LAST_REX_INT_REG (FIRST_REX_INT_REG + 7)
1060 #define FIRST_REX_SSE_REG (LAST_REX_INT_REG + 1)
1061 #define LAST_REX_SSE_REG (FIRST_REX_SSE_REG + 7)
1063 /* Value should be nonzero if functions must have frame pointers.
1064 Zero means the frame pointer need not be set up (and parms
1065 may be accessed via the stack pointer) in functions that seem suitable.
1066 This is computed in `reload', in reload1.c. */
1067 #define FRAME_POINTER_REQUIRED ix86_frame_pointer_required ()
1069 /* Override this in other tm.h files to cope with various OS losage
1070 requiring a frame pointer. */
1071 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1072 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1073 #endif
1075 /* Make sure we can access arbitrary call frames. */
1076 #define SETUP_FRAME_ADDRESSES() ix86_setup_frame_addresses ()
1078 /* Base register for access to arguments of the function. */
1079 #define ARG_POINTER_REGNUM 16
1081 /* Register in which static-chain is passed to a function.
1082 We do use ECX as static chain register for 32 bit ABI. On the
1083 64bit ABI, ECX is an argument register, so we use R10 instead. */
1084 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? FIRST_REX_INT_REG + 10 - 8 : 2)
1086 /* Register to hold the addressing base for position independent
1087 code access to data items. We don't use PIC pointer for 64bit
1088 mode. Define the regnum to dummy value to prevent gcc from
1089 pessimizing code dealing with EBX. */
1090 #define PIC_OFFSET_TABLE_REGNUM \
1091 (TARGET_64BIT || !flag_pic ? INVALID_REGNUM : 3)
1093 /* Register in which address to store a structure value
1094 arrives in the function. On the 386, the prologue
1095 copies this from the stack to register %eax. */
1096 #define STRUCT_VALUE_INCOMING 0
1098 /* Place in which caller passes the structure value address.
1099 0 means push the value on the stack like an argument. */
1100 #define STRUCT_VALUE 0
1102 /* A C expression which can inhibit the returning of certain function
1103 values in registers, based on the type of value. A nonzero value
1104 says to return the function value in memory, just as large
1105 structures are always returned. Here TYPE will be a C expression
1106 of type `tree', representing the data type of the value.
1108 Note that values of mode `BLKmode' must be explicitly handled by
1109 this macro. Also, the option `-fpcc-struct-return' takes effect
1110 regardless of this macro. On most systems, it is possible to
1111 leave the macro undefined; this causes a default definition to be
1112 used, whose value is the constant 1 for `BLKmode' values, and 0
1113 otherwise.
1115 Do not use this macro to indicate that structures and unions
1116 should always be returned in memory. You should instead use
1117 `DEFAULT_PCC_STRUCT_RETURN' to indicate this. */
1119 #define RETURN_IN_MEMORY(TYPE) \
1120 ix86_return_in_memory (TYPE)
1123 /* Define the classes of registers for register constraints in the
1124 machine description. Also define ranges of constants.
1126 One of the classes must always be named ALL_REGS and include all hard regs.
1127 If there is more than one class, another class must be named NO_REGS
1128 and contain no registers.
1130 The name GENERAL_REGS must be the name of a class (or an alias for
1131 another name such as ALL_REGS). This is the class of registers
1132 that is allowed by "g" or "r" in a register constraint.
1133 Also, registers outside this class are allocated only when
1134 instructions express preferences for them.
1136 The classes must be numbered in nondecreasing order; that is,
1137 a larger-numbered class must never be contained completely
1138 in a smaller-numbered class.
1140 For any two classes, it is very desirable that there be another
1141 class that represents their union.
1143 It might seem that class BREG is unnecessary, since no useful 386
1144 opcode needs reg %ebx. But some systems pass args to the OS in ebx,
1145 and the "b" register constraint is useful in asms for syscalls.
1147 The flags and fpsr registers are in no class. */
1149 enum reg_class
1151 NO_REGS,
1152 AREG, DREG, CREG, BREG, SIREG, DIREG,
1153 AD_REGS, /* %eax/%edx for DImode */
1154 Q_REGS, /* %eax %ebx %ecx %edx */
1155 NON_Q_REGS, /* %esi %edi %ebp %esp */
1156 INDEX_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp */
1157 LEGACY_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp */
1158 GENERAL_REGS, /* %eax %ebx %ecx %edx %esi %edi %ebp %esp %r8 - %r15*/
1159 FP_TOP_REG, FP_SECOND_REG, /* %st(0) %st(1) */
1160 FLOAT_REGS,
1161 SSE_REGS,
1162 MMX_REGS,
1163 FP_TOP_SSE_REGS,
1164 FP_SECOND_SSE_REGS,
1165 FLOAT_SSE_REGS,
1166 FLOAT_INT_REGS,
1167 INT_SSE_REGS,
1168 FLOAT_INT_SSE_REGS,
1169 ALL_REGS, LIM_REG_CLASSES
1172 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1174 #define INTEGER_CLASS_P(CLASS) \
1175 reg_class_subset_p ((CLASS), GENERAL_REGS)
1176 #define FLOAT_CLASS_P(CLASS) \
1177 reg_class_subset_p ((CLASS), FLOAT_REGS)
1178 #define SSE_CLASS_P(CLASS) \
1179 reg_class_subset_p ((CLASS), SSE_REGS)
1180 #define MMX_CLASS_P(CLASS) \
1181 reg_class_subset_p ((CLASS), MMX_REGS)
1182 #define MAYBE_INTEGER_CLASS_P(CLASS) \
1183 reg_classes_intersect_p ((CLASS), GENERAL_REGS)
1184 #define MAYBE_FLOAT_CLASS_P(CLASS) \
1185 reg_classes_intersect_p ((CLASS), FLOAT_REGS)
1186 #define MAYBE_SSE_CLASS_P(CLASS) \
1187 reg_classes_intersect_p (SSE_REGS, (CLASS))
1188 #define MAYBE_MMX_CLASS_P(CLASS) \
1189 reg_classes_intersect_p (MMX_REGS, (CLASS))
1191 #define Q_CLASS_P(CLASS) \
1192 reg_class_subset_p ((CLASS), Q_REGS)
1194 /* Give names of register classes as strings for dump file. */
1196 #define REG_CLASS_NAMES \
1197 { "NO_REGS", \
1198 "AREG", "DREG", "CREG", "BREG", \
1199 "SIREG", "DIREG", \
1200 "AD_REGS", \
1201 "Q_REGS", "NON_Q_REGS", \
1202 "INDEX_REGS", \
1203 "LEGACY_REGS", \
1204 "GENERAL_REGS", \
1205 "FP_TOP_REG", "FP_SECOND_REG", \
1206 "FLOAT_REGS", \
1207 "SSE_REGS", \
1208 "MMX_REGS", \
1209 "FP_TOP_SSE_REGS", \
1210 "FP_SECOND_SSE_REGS", \
1211 "FLOAT_SSE_REGS", \
1212 "FLOAT_INT_REGS", \
1213 "INT_SSE_REGS", \
1214 "FLOAT_INT_SSE_REGS", \
1215 "ALL_REGS" }
1217 /* Define which registers fit in which classes.
1218 This is an initializer for a vector of HARD_REG_SET
1219 of length N_REG_CLASSES. */
1221 #define REG_CLASS_CONTENTS \
1222 { { 0x00, 0x0 }, \
1223 { 0x01, 0x0 }, { 0x02, 0x0 }, /* AREG, DREG */ \
1224 { 0x04, 0x0 }, { 0x08, 0x0 }, /* CREG, BREG */ \
1225 { 0x10, 0x0 }, { 0x20, 0x0 }, /* SIREG, DIREG */ \
1226 { 0x03, 0x0 }, /* AD_REGS */ \
1227 { 0x0f, 0x0 }, /* Q_REGS */ \
1228 { 0x1100f0, 0x1fe0 }, /* NON_Q_REGS */ \
1229 { 0x7f, 0x1fe0 }, /* INDEX_REGS */ \
1230 { 0x1100ff, 0x0 }, /* LEGACY_REGS */ \
1231 { 0x1100ff, 0x1fe0 }, /* GENERAL_REGS */ \
1232 { 0x100, 0x0 }, { 0x0200, 0x0 },/* FP_TOP_REG, FP_SECOND_REG */\
1233 { 0xff00, 0x0 }, /* FLOAT_REGS */ \
1234 { 0x1fe00000,0x1fe000 }, /* SSE_REGS */ \
1235 { 0xe0000000, 0x1f }, /* MMX_REGS */ \
1236 { 0x1fe00100,0x1fe000 }, /* FP_TOP_SSE_REG */ \
1237 { 0x1fe00200,0x1fe000 }, /* FP_SECOND_SSE_REG */ \
1238 { 0x1fe0ff00,0x1fe000 }, /* FLOAT_SSE_REGS */ \
1239 { 0x1ffff, 0x1fe0 }, /* FLOAT_INT_REGS */ \
1240 { 0x1fe100ff,0x1fffe0 }, /* INT_SSE_REGS */ \
1241 { 0x1fe1ffff,0x1fffe0 }, /* FLOAT_INT_SSE_REGS */ \
1242 { 0xffffffff,0x1fffff } \
1245 /* The same information, inverted:
1246 Return the class number of the smallest class containing
1247 reg number REGNO. This could be a conditional expression
1248 or could index an array. */
1250 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
1252 /* When defined, the compiler allows registers explicitly used in the
1253 rtl to be used as spill registers but prevents the compiler from
1254 extending the lifetime of these registers. */
1256 #define SMALL_REGISTER_CLASSES 1
1258 #define QI_REG_P(X) \
1259 (REG_P (X) && REGNO (X) < 4)
1261 #define GENERAL_REGNO_P(N) \
1262 ((N) < 8 || REX_INT_REGNO_P (N))
1264 #define GENERAL_REG_P(X) \
1265 (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
1267 #define ANY_QI_REG_P(X) (TARGET_64BIT ? GENERAL_REG_P(X) : QI_REG_P (X))
1269 #define NON_QI_REG_P(X) \
1270 (REG_P (X) && REGNO (X) >= 4 && REGNO (X) < FIRST_PSEUDO_REGISTER)
1272 #define REX_INT_REGNO_P(N) ((N) >= FIRST_REX_INT_REG && (N) <= LAST_REX_INT_REG)
1273 #define REX_INT_REG_P(X) (REG_P (X) && REX_INT_REGNO_P (REGNO (X)))
1275 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
1276 #define FP_REGNO_P(N) ((N) >= FIRST_STACK_REG && (N) <= LAST_STACK_REG)
1277 #define ANY_FP_REG_P(X) (REG_P (X) && ANY_FP_REGNO_P (REGNO (X)))
1278 #define ANY_FP_REGNO_P(N) (FP_REGNO_P (N) || SSE_REGNO_P (N))
1280 #define SSE_REGNO_P(N) \
1281 (((N) >= FIRST_SSE_REG && (N) <= LAST_SSE_REG) \
1282 || ((N) >= FIRST_REX_SSE_REG && (N) <= LAST_REX_SSE_REG))
1284 #define SSE_REGNO(N) \
1285 ((N) < 8 ? FIRST_SSE_REG + (N) : FIRST_REX_SSE_REG + (N) - 8)
1286 #define SSE_REG_P(N) (REG_P (N) && SSE_REGNO_P (REGNO (N)))
1288 #define SSE_FLOAT_MODE_P(MODE) \
1289 ((TARGET_SSE && (MODE) == SFmode) || (TARGET_SSE2 && (MODE) == DFmode))
1291 #define MMX_REGNO_P(N) ((N) >= FIRST_MMX_REG && (N) <= LAST_MMX_REG)
1292 #define MMX_REG_P(XOP) (REG_P (XOP) && MMX_REGNO_P (REGNO (XOP)))
1294 #define STACK_REG_P(XOP) \
1295 (REG_P (XOP) && \
1296 REGNO (XOP) >= FIRST_STACK_REG && \
1297 REGNO (XOP) <= LAST_STACK_REG)
1299 #define NON_STACK_REG_P(XOP) (REG_P (XOP) && ! STACK_REG_P (XOP))
1301 #define STACK_TOP_P(XOP) (REG_P (XOP) && REGNO (XOP) == FIRST_STACK_REG)
1303 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
1304 #define CC_REGNO_P(X) ((X) == FLAGS_REG || (X) == FPSR_REG)
1306 /* Indicate whether hard register numbered REG_NO should be converted
1307 to SSA form. */
1308 #define CONVERT_HARD_REGISTER_TO_SSA_P(REG_NO) \
1309 ((REG_NO) == FLAGS_REG || (REG_NO) == ARG_POINTER_REGNUM)
1311 /* The class value for index registers, and the one for base regs. */
1313 #define INDEX_REG_CLASS INDEX_REGS
1314 #define BASE_REG_CLASS GENERAL_REGS
1316 /* Get reg_class from a letter such as appears in the machine description. */
1318 #define REG_CLASS_FROM_LETTER(C) \
1319 ((C) == 'r' ? GENERAL_REGS : \
1320 (C) == 'R' ? LEGACY_REGS : \
1321 (C) == 'q' ? TARGET_64BIT ? GENERAL_REGS : Q_REGS : \
1322 (C) == 'Q' ? Q_REGS : \
1323 (C) == 'f' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1324 ? FLOAT_REGS \
1325 : NO_REGS) : \
1326 (C) == 't' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1327 ? FP_TOP_REG \
1328 : NO_REGS) : \
1329 (C) == 'u' ? (TARGET_80387 || TARGET_FLOAT_RETURNS_IN_80387 \
1330 ? FP_SECOND_REG \
1331 : NO_REGS) : \
1332 (C) == 'a' ? AREG : \
1333 (C) == 'b' ? BREG : \
1334 (C) == 'c' ? CREG : \
1335 (C) == 'd' ? DREG : \
1336 (C) == 'x' ? TARGET_SSE ? SSE_REGS : NO_REGS : \
1337 (C) == 'Y' ? TARGET_SSE2? SSE_REGS : NO_REGS : \
1338 (C) == 'y' ? TARGET_MMX ? MMX_REGS : NO_REGS : \
1339 (C) == 'A' ? AD_REGS : \
1340 (C) == 'D' ? DIREG : \
1341 (C) == 'S' ? SIREG : NO_REGS)
1343 /* The letters I, J, K, L and M in a register constraint string
1344 can be used to stand for particular ranges of immediate operands.
1345 This macro defines what the ranges are.
1346 C is the letter, and VALUE is a constant value.
1347 Return 1 if VALUE is in the range specified by C.
1349 I is for non-DImode shifts.
1350 J is for DImode shifts.
1351 K is for signed imm8 operands.
1352 L is for andsi as zero-extending move.
1353 M is for shifts that can be executed by the "lea" opcode.
1354 N is for immedaite operands for out/in instructions (0-255)
1357 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1358 ((C) == 'I' ? (VALUE) >= 0 && (VALUE) <= 31 \
1359 : (C) == 'J' ? (VALUE) >= 0 && (VALUE) <= 63 \
1360 : (C) == 'K' ? (VALUE) >= -128 && (VALUE) <= 127 \
1361 : (C) == 'L' ? (VALUE) == 0xff || (VALUE) == 0xffff \
1362 : (C) == 'M' ? (VALUE) >= 0 && (VALUE) <= 3 \
1363 : (C) == 'N' ? (VALUE) >= 0 && (VALUE) <= 255 \
1364 : 0)
1366 /* Similar, but for floating constants, and defining letters G and H.
1367 Here VALUE is the CONST_DOUBLE rtx itself. We allow constants even if
1368 TARGET_387 isn't set, because the stack register converter may need to
1369 load 0.0 into the function value register. */
1371 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1372 ((C) == 'G' ? standard_80387_constant_p (VALUE) \
1373 : ((C) == 'H' ? standard_sse_constant_p (VALUE) : 0))
1375 /* A C expression that defines the optional machine-dependent
1376 constraint letters that can be used to segregate specific types of
1377 operands, usually memory references, for the target machine. Any
1378 letter that is not elsewhere defined and not matched by
1379 `REG_CLASS_FROM_LETTER' may be used. Normally this macro will not
1380 be defined.
1382 If it is required for a particular target machine, it should
1383 return 1 if VALUE corresponds to the operand type represented by
1384 the constraint letter C. If C is not defined as an extra
1385 constraint, the value returned should be 0 regardless of VALUE. */
1387 #define EXTRA_CONSTRAINT(VALUE, C) \
1388 ((C) == 'e' ? x86_64_sign_extended_value (VALUE) \
1389 : (C) == 'Z' ? x86_64_zero_extended_value (VALUE) \
1390 : 0)
1392 /* Place additional restrictions on the register class to use when it
1393 is necessary to be able to hold a value of mode MODE in a reload
1394 register for which class CLASS would ordinarily be used. */
1396 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
1397 ((MODE) == QImode && !TARGET_64BIT \
1398 && ((CLASS) == ALL_REGS || (CLASS) == GENERAL_REGS \
1399 || (CLASS) == LEGACY_REGS || (CLASS) == INDEX_REGS) \
1400 ? Q_REGS : (CLASS))
1402 /* Given an rtx X being reloaded into a reg required to be
1403 in class CLASS, return the class of reg to actually use.
1404 In general this is just CLASS; but on some machines
1405 in some cases it is preferable to use a more restrictive class.
1406 On the 80386 series, we prevent floating constants from being
1407 reloaded into floating registers (since no move-insn can do that)
1408 and we ensure that QImodes aren't reloaded into the esi or edi reg. */
1410 /* Put float CONST_DOUBLE in the constant pool instead of fp regs.
1411 QImode must go into class Q_REGS.
1412 Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
1413 movdf to do mem-to-mem moves through integer regs. */
1415 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
1416 ix86_preferred_reload_class ((X), (CLASS))
1418 /* If we are copying between general and FP registers, we need a memory
1419 location. The same is true for SSE and MMX registers. */
1420 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
1421 ix86_secondary_memory_needed ((CLASS1), (CLASS2), (MODE), 1)
1423 /* QImode spills from non-QI registers need a scratch. This does not
1424 happen often -- the only example so far requires an uninitialized
1425 pseudo. */
1427 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, OUT) \
1428 (((CLASS) == GENERAL_REGS || (CLASS) == LEGACY_REGS \
1429 || (CLASS) == INDEX_REGS) && !TARGET_64BIT && (MODE) == QImode \
1430 ? Q_REGS : NO_REGS)
1432 /* Return the maximum number of consecutive registers
1433 needed to represent mode MODE in a register of class CLASS. */
1434 /* On the 80386, this is the size of MODE in words,
1435 except in the FP regs, where a single reg is always enough.
1436 The TFmodes are really just 80bit values, so we use only 3 registers
1437 to hold them, instead of 4, as the size would suggest.
1439 #define CLASS_MAX_NREGS(CLASS, MODE) \
1440 (!MAYBE_INTEGER_CLASS_P (CLASS) \
1441 ? (COMPLEX_MODE_P (MODE) ? 2 : 1) \
1442 : ((GET_MODE_SIZE ((MODE) == TFmode ? XFmode : (MODE)) \
1443 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1445 /* A C expression whose value is nonzero if pseudos that have been
1446 assigned to registers of class CLASS would likely be spilled
1447 because registers of CLASS are needed for spill registers.
1449 The default value of this macro returns 1 if CLASS has exactly one
1450 register and zero otherwise. On most machines, this default
1451 should be used. Only define this macro to some other expression
1452 if pseudo allocated by `local-alloc.c' end up in memory because
1453 their hard registers were needed for spill registers. If this
1454 macro returns nonzero for those classes, those pseudos will only
1455 be allocated by `global.c', which knows how to reallocate the
1456 pseudo to another register. If there would not be another
1457 register available for reallocation, you should not change the
1458 definition of this macro since the only effect of such a
1459 definition would be to slow down register allocation. */
1461 #define CLASS_LIKELY_SPILLED_P(CLASS) \
1462 (((CLASS) == AREG) \
1463 || ((CLASS) == DREG) \
1464 || ((CLASS) == CREG) \
1465 || ((CLASS) == BREG) \
1466 || ((CLASS) == AD_REGS) \
1467 || ((CLASS) == SIREG) \
1468 || ((CLASS) == DIREG))
1470 /* A C statement that adds to CLOBBERS any hard regs the port wishes
1471 to automatically clobber for all asms.
1473 We do this in the new i386 backend to maintain source compatibility
1474 with the old cc0-based compiler. */
1476 #define MD_ASM_CLOBBERS(CLOBBERS) \
1477 do { \
1478 (CLOBBERS) = tree_cons (NULL_TREE, build_string (5, "flags"), \
1479 (CLOBBERS)); \
1480 (CLOBBERS) = tree_cons (NULL_TREE, build_string (4, "fpsr"), \
1481 (CLOBBERS)); \
1482 (CLOBBERS) = tree_cons (NULL_TREE, build_string (7, "dirflag"), \
1483 (CLOBBERS)); \
1484 } while (0)
1486 /* Stack layout; function entry, exit and calling. */
1488 /* Define this if pushing a word on the stack
1489 makes the stack pointer a smaller address. */
1490 #define STACK_GROWS_DOWNWARD
1492 /* Define this if the nominal address of the stack frame
1493 is at the high-address end of the local variables;
1494 that is, each additional local variable allocated
1495 goes at a more negative offset in the frame. */
1496 #define FRAME_GROWS_DOWNWARD
1498 /* Offset within stack frame to start allocating local variables at.
1499 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1500 first local allocated. Otherwise, it is the offset to the BEGINNING
1501 of the first local allocated. */
1502 #define STARTING_FRAME_OFFSET 0
1504 /* If we generate an insn to push BYTES bytes,
1505 this says how many the stack pointer really advances by.
1506 On 386 pushw decrements by exactly 2 no matter what the position was.
1507 On the 386 there is no pushb; we use pushw instead, and this
1508 has the effect of rounding up to 2.
1510 For 64bit ABI we round up to 8 bytes.
1513 #define PUSH_ROUNDING(BYTES) \
1514 (TARGET_64BIT \
1515 ? (((BYTES) + 7) & (-8)) \
1516 : (((BYTES) + 1) & (-2)))
1518 /* If defined, the maximum amount of space required for outgoing arguments will
1519 be computed and placed into the variable
1520 `current_function_outgoing_args_size'. No space will be pushed onto the
1521 stack for each call; instead, the function prologue should increase the stack
1522 frame size by this amount. */
1524 #define ACCUMULATE_OUTGOING_ARGS TARGET_ACCUMULATE_OUTGOING_ARGS
1526 /* If defined, a C expression whose value is nonzero when we want to use PUSH
1527 instructions to pass outgoing arguments. */
1529 #define PUSH_ARGS (TARGET_PUSH_ARGS && !ACCUMULATE_OUTGOING_ARGS)
1531 /* Offset of first parameter from the argument pointer register value. */
1532 #define FIRST_PARM_OFFSET(FNDECL) 0
1534 /* Define this macro if functions should assume that stack space has been
1535 allocated for arguments even when their values are passed in registers.
1537 The value of this macro is the size, in bytes, of the area reserved for
1538 arguments passed in registers for the function represented by FNDECL.
1540 This space can be allocated by the caller, or be a part of the
1541 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says
1542 which. */
1543 #define REG_PARM_STACK_SPACE(FNDECL) 0
1545 /* Define as a C expression that evaluates to nonzero if we do not know how
1546 to pass TYPE solely in registers. The file expr.h defines a
1547 definition that is usually appropriate, refer to expr.h for additional
1548 documentation. If `REG_PARM_STACK_SPACE' is defined, the argument will be
1549 computed in the stack and then loaded into a register. */
1550 #define MUST_PASS_IN_STACK(MODE, TYPE) \
1551 ((TYPE) != 0 \
1552 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
1553 || TREE_ADDRESSABLE (TYPE) \
1554 || ((MODE) == TImode) \
1555 || ((MODE) == BLKmode \
1556 && ! ((TYPE) != 0 \
1557 && TREE_CODE (TYPE_SIZE (TYPE)) == INTEGER_CST \
1558 && 0 == (int_size_in_bytes (TYPE) \
1559 % (PARM_BOUNDARY / BITS_PER_UNIT))) \
1560 && (FUNCTION_ARG_PADDING (MODE, TYPE) \
1561 == (BYTES_BIG_ENDIAN ? upward : downward)))))
1563 /* Value is the number of bytes of arguments automatically
1564 popped when returning from a subroutine call.
1565 FUNDECL is the declaration node of the function (as a tree),
1566 FUNTYPE is the data type of the function (as a tree),
1567 or for a library call it is an identifier node for the subroutine name.
1568 SIZE is the number of bytes of arguments passed on the stack.
1570 On the 80386, the RTD insn may be used to pop them if the number
1571 of args is fixed, but if the number is variable then the caller
1572 must pop them all. RTD can't be used for library calls now
1573 because the library is compiled with the Unix compiler.
1574 Use of RTD is a selectable option, since it is incompatible with
1575 standard Unix calling sequences. If the option is not selected,
1576 the caller must always pop the args.
1578 The attribute stdcall is equivalent to RTD on a per module basis. */
1580 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) \
1581 ix86_return_pops_args ((FUNDECL), (FUNTYPE), (SIZE))
1583 /* Define how to find the value returned by a function.
1584 VALTYPE is the data type of the value (as a tree).
1585 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1586 otherwise, FUNC is 0. */
1587 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1588 ix86_function_value (VALTYPE)
1590 #define FUNCTION_VALUE_REGNO_P(N) \
1591 ix86_function_value_regno_p (N)
1593 /* Define how to find the value returned by a library function
1594 assuming the value has mode MODE. */
1596 #define LIBCALL_VALUE(MODE) \
1597 ix86_libcall_value (MODE)
1599 /* Define the size of the result block used for communication between
1600 untyped_call and untyped_return. The block contains a DImode value
1601 followed by the block used by fnsave and frstor. */
1603 #define APPLY_RESULT_SIZE (8+108)
1605 /* 1 if N is a possible register number for function argument passing. */
1606 #define FUNCTION_ARG_REGNO_P(N) ix86_function_arg_regno_p (N)
1608 /* Define a data type for recording info about an argument list
1609 during the scan of that argument list. This data type should
1610 hold all necessary information about the function itself
1611 and about the args processed so far, enough to enable macros
1612 such as FUNCTION_ARG to determine where the next arg should go. */
1614 typedef struct ix86_args {
1615 int words; /* # words passed so far */
1616 int nregs; /* # registers available for passing */
1617 int regno; /* next available register number */
1618 int sse_words; /* # sse words passed so far */
1619 int sse_nregs; /* # sse registers available for passing */
1620 int sse_regno; /* next available sse register number */
1621 int maybe_vaarg; /* true for calls to possibly vardic fncts. */
1622 } CUMULATIVE_ARGS;
1624 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1625 for a call to a function whose data type is FNTYPE.
1626 For a library call, FNTYPE is 0. */
1628 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
1629 init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME))
1631 /* Update the data in CUM to advance over an argument
1632 of mode MODE and data type TYPE.
1633 (TYPE is null for libcalls where that information may not be available.) */
1635 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1636 function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
1638 /* Define where to put the arguments to a function.
1639 Value is zero to push the argument on the stack,
1640 or a hard register in which to store the argument.
1642 MODE is the argument's machine mode.
1643 TYPE is the data type of the argument (as a tree).
1644 This is null for libcalls where that information may
1645 not be available.
1646 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1647 the preceding args and about the function being called.
1648 NAMED is nonzero if this argument is a named parameter
1649 (otherwise it is an extra parameter matching an ellipsis). */
1651 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1652 function_arg (&(CUM), (MODE), (TYPE), (NAMED))
1654 /* For an arg passed partly in registers and partly in memory,
1655 this is the number of registers used.
1656 For args passed entirely in registers or entirely in memory, zero. */
1658 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
1660 /* If PIC, we cannot make sibling calls to global functions
1661 because the PLT requires %ebx live.
1662 If we are returning floats on the register stack, we cannot make
1663 sibling calls to functions that return floats. (The stack adjust
1664 instruction will wind up after the sibcall jump, and not be executed.) */
1665 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1666 ((DECL) \
1667 && (! flag_pic || ! TREE_PUBLIC (DECL)) \
1668 && (! TARGET_FLOAT_RETURNS_IN_80387 \
1669 || ! FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (DECL)))) \
1670 || FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (TREE_TYPE (cfun->decl))))))
1672 /* Perform any needed actions needed for a function that is receiving a
1673 variable number of arguments.
1675 CUM is as above.
1677 MODE and TYPE are the mode and type of the current parameter.
1679 PRETEND_SIZE is a variable that should be set to the amount of stack
1680 that must be pushed by the prolog to pretend that our caller pushed
1683 Normally, this macro will push all remaining incoming registers on the
1684 stack and set PRETEND_SIZE to the length of the registers pushed. */
1686 #define SETUP_INCOMING_VARARGS(CUM, MODE, TYPE, PRETEND_SIZE, NO_RTL) \
1687 ix86_setup_incoming_varargs (&(CUM), (MODE), (TYPE), &(PRETEND_SIZE), \
1688 (NO_RTL))
1690 /* Define the `__builtin_va_list' type for the ABI. */
1691 #define BUILD_VA_LIST_TYPE(VALIST) \
1692 ((VALIST) = ix86_build_va_list ())
1694 /* Implement `va_start' for varargs and stdarg. */
1695 #define EXPAND_BUILTIN_VA_START(STDARG, VALIST, NEXTARG) \
1696 ix86_va_start ((STDARG), (VALIST), (NEXTARG))
1698 /* Implement `va_arg'. */
1699 #define EXPAND_BUILTIN_VA_ARG(VALIST, TYPE) \
1700 ix86_va_arg ((VALIST), (TYPE))
1702 /* This macro is invoked at the end of compilation. It is used here to
1703 output code for -fpic that will load the return address into %ebx. */
1705 #undef ASM_FILE_END
1706 #define ASM_FILE_END(FILE) ix86_asm_file_end (FILE)
1708 /* Output assembler code to FILE to increment profiler label # LABELNO
1709 for profiling a function entry. */
1711 #define FUNCTION_PROFILER(FILE, LABELNO) \
1712 do { \
1713 if (flag_pic) \
1715 fprintf ((FILE), "\tleal\t%sP%d@GOTOFF(%%ebx),%%edx\n", \
1716 LPREFIX, (LABELNO)); \
1717 fprintf ((FILE), "\tcall\t*_mcount@GOT(%%ebx)\n"); \
1719 else \
1721 fprintf ((FILE), "\tmovl\t$%sP%d,%%edx\n", LPREFIX, (LABELNO)); \
1722 fprintf ((FILE), "\tcall\t_mcount\n"); \
1724 } while (0)
1726 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1727 the stack pointer does not matter. The value is tested only in
1728 functions that have frame pointers.
1729 No definition is equivalent to always zero. */
1730 /* Note on the 386 it might be more efficient not to define this since
1731 we have to restore it ourselves from the frame pointer, in order to
1732 use pop */
1734 #define EXIT_IGNORE_STACK 1
1736 /* Output assembler code for a block containing the constant parts
1737 of a trampoline, leaving space for the variable parts. */
1739 /* On the 386, the trampoline contains two instructions:
1740 mov #STATIC,ecx
1741 jmp FUNCTION
1742 The trampoline is generated entirely at runtime. The operand of JMP
1743 is the address of FUNCTION relative to the instruction following the
1744 JMP (which is 5 bytes long). */
1746 /* Length in units of the trampoline for entering a nested function. */
1748 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 23 : 10)
1750 /* Emit RTL insns to initialize the variable parts of a trampoline.
1751 FNADDR is an RTX for the address of the function's pure code.
1752 CXT is an RTX for the static chain value for the function. */
1754 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1755 x86_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
1757 /* Definitions for register eliminations.
1759 This is an array of structures. Each structure initializes one pair
1760 of eliminable registers. The "from" register number is given first,
1761 followed by "to". Eliminations of the same "from" register are listed
1762 in order of preference.
1764 There are two registers that can always be eliminated on the i386.
1765 The frame pointer and the arg pointer can be replaced by either the
1766 hard frame pointer or to the stack pointer, depending upon the
1767 circumstances. The hard frame pointer is not used before reload and
1768 so it is not eligible for elimination. */
1770 #define ELIMINABLE_REGS \
1771 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1772 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1773 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1774 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} \
1776 /* Given FROM and TO register numbers, say whether this elimination is
1777 allowed. Frame pointer elimination is automatically handled.
1779 All other eliminations are valid. */
1781 #define CAN_ELIMINATE(FROM, TO) \
1782 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
1784 /* Define the offset between two registers, one to be eliminated, and the other
1785 its replacement, at the start of a routine. */
1787 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1788 ((OFFSET) = ix86_initial_elimination_offset ((FROM), (TO)))
1790 /* Addressing modes, and classification of registers for them. */
1792 /* #define HAVE_POST_INCREMENT 0 */
1793 /* #define HAVE_POST_DECREMENT 0 */
1795 /* #define HAVE_PRE_DECREMENT 0 */
1796 /* #define HAVE_PRE_INCREMENT 0 */
1798 /* Macros to check register numbers against specific register classes. */
1800 /* These assume that REGNO is a hard or pseudo reg number.
1801 They give nonzero only if REGNO is a hard reg of the suitable class
1802 or a pseudo reg currently allocated to a suitable hard reg.
1803 Since they use reg_renumber, they are safe only once reg_renumber
1804 has been allocated, which happens in local-alloc.c. */
1806 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1807 ((REGNO) < STACK_POINTER_REGNUM \
1808 || (REGNO >= FIRST_REX_INT_REG \
1809 && (REGNO) <= LAST_REX_INT_REG) \
1810 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1811 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1812 || (unsigned) reg_renumber[(REGNO)] < STACK_POINTER_REGNUM)
1814 #define REGNO_OK_FOR_BASE_P(REGNO) \
1815 ((REGNO) <= STACK_POINTER_REGNUM \
1816 || (REGNO) == ARG_POINTER_REGNUM \
1817 || (REGNO) == FRAME_POINTER_REGNUM \
1818 || (REGNO >= FIRST_REX_INT_REG \
1819 && (REGNO) <= LAST_REX_INT_REG) \
1820 || ((unsigned) reg_renumber[(REGNO)] >= FIRST_REX_INT_REG \
1821 && (unsigned) reg_renumber[(REGNO)] <= LAST_REX_INT_REG) \
1822 || (unsigned) reg_renumber[(REGNO)] <= STACK_POINTER_REGNUM)
1824 #define REGNO_OK_FOR_SIREG_P(REGNO) \
1825 ((REGNO) == 4 || reg_renumber[(REGNO)] == 4)
1826 #define REGNO_OK_FOR_DIREG_P(REGNO) \
1827 ((REGNO) == 5 || reg_renumber[(REGNO)] == 5)
1829 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1830 and check its validity for a certain class.
1831 We have two alternate definitions for each of them.
1832 The usual definition accepts all pseudo regs; the other rejects
1833 them unless they have been allocated suitable hard regs.
1834 The symbol REG_OK_STRICT causes the latter definition to be used.
1836 Most source files want to accept pseudo regs in the hope that
1837 they will get allocated to the class that the insn wants them to be in.
1838 Source files for reload pass need to be strict.
1839 After reload, it makes no difference, since pseudo regs have
1840 been eliminated by then. */
1843 /* Non strict versions, pseudos are ok */
1844 #define REG_OK_FOR_INDEX_NONSTRICT_P(X) \
1845 (REGNO (X) < STACK_POINTER_REGNUM \
1846 || (REGNO (X) >= FIRST_REX_INT_REG \
1847 && REGNO (X) <= LAST_REX_INT_REG) \
1848 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1850 #define REG_OK_FOR_BASE_NONSTRICT_P(X) \
1851 (REGNO (X) <= STACK_POINTER_REGNUM \
1852 || REGNO (X) == ARG_POINTER_REGNUM \
1853 || REGNO (X) == FRAME_POINTER_REGNUM \
1854 || (REGNO (X) >= FIRST_REX_INT_REG \
1855 && REGNO (X) <= LAST_REX_INT_REG) \
1856 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1858 /* Strict versions, hard registers only */
1859 #define REG_OK_FOR_INDEX_STRICT_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1860 #define REG_OK_FOR_BASE_STRICT_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1862 #ifndef REG_OK_STRICT
1863 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_NONSTRICT_P (X)
1864 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_NONSTRICT_P (X)
1866 #else
1867 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_INDEX_STRICT_P (X)
1868 #define REG_OK_FOR_BASE_P(X) REG_OK_FOR_BASE_STRICT_P (X)
1869 #endif
1871 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1872 that is a valid memory address for an instruction.
1873 The MODE argument is the machine mode for the MEM expression
1874 that wants to use this address.
1876 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
1877 except for CONSTANT_ADDRESS_P which is usually machine-independent.
1879 See legitimize_pic_address in i386.c for details as to what
1880 constitutes a legitimate address when -fpic is used. */
1882 #define MAX_REGS_PER_ADDRESS 2
1884 #define CONSTANT_ADDRESS_P(X) constant_address_p (X)
1886 /* Nonzero if the constant value X is a legitimate general operand.
1887 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1889 #define LEGITIMATE_CONSTANT_P(X) legitimate_constant_p (X)
1891 #ifdef REG_OK_STRICT
1892 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1893 do { \
1894 if (legitimate_address_p ((MODE), (X), 1)) \
1895 goto ADDR; \
1896 } while (0)
1898 #else
1899 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1900 do { \
1901 if (legitimate_address_p ((MODE), (X), 0)) \
1902 goto ADDR; \
1903 } while (0)
1905 #endif
1907 /* If defined, a C expression to determine the base term of address X.
1908 This macro is used in only one place: `find_base_term' in alias.c.
1910 It is always safe for this macro to not be defined. It exists so
1911 that alias analysis can understand machine-dependent addresses.
1913 The typical use of this macro is to handle addresses containing
1914 a label_ref or symbol_ref within an UNSPEC. */
1916 #define FIND_BASE_TERM(X) ix86_find_base_term (X)
1918 /* Try machine-dependent ways of modifying an illegitimate address
1919 to be legitimate. If we find one, return the new, valid address.
1920 This macro is used in only one place: `memory_address' in explow.c.
1922 OLDX is the address as it was before break_out_memory_refs was called.
1923 In some cases it is useful to look at this to decide what needs to be done.
1925 MODE and WIN are passed so that this macro can use
1926 GO_IF_LEGITIMATE_ADDRESS.
1928 It is always safe for this macro to do nothing. It exists to recognize
1929 opportunities to optimize the output.
1931 For the 80386, we handle X+REG by loading X into a register R and
1932 using R+REG. R will go in a general reg and indexing will be used.
1933 However, if REG is a broken-out memory address or multiplication,
1934 nothing needs to be done because REG can certainly go in a general reg.
1936 When -fpic is used, special handling is needed for symbolic references.
1937 See comments by legitimize_pic_address in i386.c for details. */
1939 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1940 do { \
1941 (X) = legitimize_address ((X), (OLDX), (MODE)); \
1942 if (memory_address_p ((MODE), (X))) \
1943 goto WIN; \
1944 } while (0)
1946 #define REWRITE_ADDRESS(X) rewrite_address (X)
1948 /* Nonzero if the constant value X is a legitimate general operand
1949 when generating PIC code. It is given that flag_pic is on and
1950 that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1952 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
1954 #define SYMBOLIC_CONST(X) \
1955 (GET_CODE (X) == SYMBOL_REF \
1956 || GET_CODE (X) == LABEL_REF \
1957 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
1959 /* Go to LABEL if ADDR (a legitimate address expression)
1960 has an effect that depends on the machine mode it is used for.
1961 On the 80386, only postdecrement and postincrement address depend thus
1962 (the amount of decrement or increment being the length of the operand). */
1963 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1964 do { \
1965 if (GET_CODE (ADDR) == POST_INC \
1966 || GET_CODE (ADDR) == POST_DEC) \
1967 goto LABEL; \
1968 } while (0)
1970 /* Codes for all the SSE/MMX builtins. */
1971 enum ix86_builtins
1973 IX86_BUILTIN_ADDPS,
1974 IX86_BUILTIN_ADDSS,
1975 IX86_BUILTIN_DIVPS,
1976 IX86_BUILTIN_DIVSS,
1977 IX86_BUILTIN_MULPS,
1978 IX86_BUILTIN_MULSS,
1979 IX86_BUILTIN_SUBPS,
1980 IX86_BUILTIN_SUBSS,
1982 IX86_BUILTIN_CMPEQPS,
1983 IX86_BUILTIN_CMPLTPS,
1984 IX86_BUILTIN_CMPLEPS,
1985 IX86_BUILTIN_CMPGTPS,
1986 IX86_BUILTIN_CMPGEPS,
1987 IX86_BUILTIN_CMPNEQPS,
1988 IX86_BUILTIN_CMPNLTPS,
1989 IX86_BUILTIN_CMPNLEPS,
1990 IX86_BUILTIN_CMPNGTPS,
1991 IX86_BUILTIN_CMPNGEPS,
1992 IX86_BUILTIN_CMPORDPS,
1993 IX86_BUILTIN_CMPUNORDPS,
1994 IX86_BUILTIN_CMPNEPS,
1995 IX86_BUILTIN_CMPEQSS,
1996 IX86_BUILTIN_CMPLTSS,
1997 IX86_BUILTIN_CMPLESS,
1998 IX86_BUILTIN_CMPGTSS,
1999 IX86_BUILTIN_CMPGESS,
2000 IX86_BUILTIN_CMPNEQSS,
2001 IX86_BUILTIN_CMPNLTSS,
2002 IX86_BUILTIN_CMPNLESS,
2003 IX86_BUILTIN_CMPNGTSS,
2004 IX86_BUILTIN_CMPNGESS,
2005 IX86_BUILTIN_CMPORDSS,
2006 IX86_BUILTIN_CMPUNORDSS,
2007 IX86_BUILTIN_CMPNESS,
2009 IX86_BUILTIN_COMIEQSS,
2010 IX86_BUILTIN_COMILTSS,
2011 IX86_BUILTIN_COMILESS,
2012 IX86_BUILTIN_COMIGTSS,
2013 IX86_BUILTIN_COMIGESS,
2014 IX86_BUILTIN_COMINEQSS,
2015 IX86_BUILTIN_UCOMIEQSS,
2016 IX86_BUILTIN_UCOMILTSS,
2017 IX86_BUILTIN_UCOMILESS,
2018 IX86_BUILTIN_UCOMIGTSS,
2019 IX86_BUILTIN_UCOMIGESS,
2020 IX86_BUILTIN_UCOMINEQSS,
2022 IX86_BUILTIN_CVTPI2PS,
2023 IX86_BUILTIN_CVTPS2PI,
2024 IX86_BUILTIN_CVTSI2SS,
2025 IX86_BUILTIN_CVTSS2SI,
2026 IX86_BUILTIN_CVTTPS2PI,
2027 IX86_BUILTIN_CVTTSS2SI,
2029 IX86_BUILTIN_MAXPS,
2030 IX86_BUILTIN_MAXSS,
2031 IX86_BUILTIN_MINPS,
2032 IX86_BUILTIN_MINSS,
2034 IX86_BUILTIN_LOADAPS,
2035 IX86_BUILTIN_LOADUPS,
2036 IX86_BUILTIN_STOREAPS,
2037 IX86_BUILTIN_STOREUPS,
2038 IX86_BUILTIN_LOADSS,
2039 IX86_BUILTIN_STORESS,
2040 IX86_BUILTIN_MOVSS,
2042 IX86_BUILTIN_MOVHLPS,
2043 IX86_BUILTIN_MOVLHPS,
2044 IX86_BUILTIN_LOADHPS,
2045 IX86_BUILTIN_LOADLPS,
2046 IX86_BUILTIN_STOREHPS,
2047 IX86_BUILTIN_STORELPS,
2049 IX86_BUILTIN_MASKMOVQ,
2050 IX86_BUILTIN_MOVMSKPS,
2051 IX86_BUILTIN_PMOVMSKB,
2053 IX86_BUILTIN_MOVNTPS,
2054 IX86_BUILTIN_MOVNTQ,
2056 IX86_BUILTIN_PACKSSWB,
2057 IX86_BUILTIN_PACKSSDW,
2058 IX86_BUILTIN_PACKUSWB,
2060 IX86_BUILTIN_PADDB,
2061 IX86_BUILTIN_PADDW,
2062 IX86_BUILTIN_PADDD,
2063 IX86_BUILTIN_PADDSB,
2064 IX86_BUILTIN_PADDSW,
2065 IX86_BUILTIN_PADDUSB,
2066 IX86_BUILTIN_PADDUSW,
2067 IX86_BUILTIN_PSUBB,
2068 IX86_BUILTIN_PSUBW,
2069 IX86_BUILTIN_PSUBD,
2070 IX86_BUILTIN_PSUBSB,
2071 IX86_BUILTIN_PSUBSW,
2072 IX86_BUILTIN_PSUBUSB,
2073 IX86_BUILTIN_PSUBUSW,
2075 IX86_BUILTIN_PAND,
2076 IX86_BUILTIN_PANDN,
2077 IX86_BUILTIN_POR,
2078 IX86_BUILTIN_PXOR,
2080 IX86_BUILTIN_PAVGB,
2081 IX86_BUILTIN_PAVGW,
2083 IX86_BUILTIN_PCMPEQB,
2084 IX86_BUILTIN_PCMPEQW,
2085 IX86_BUILTIN_PCMPEQD,
2086 IX86_BUILTIN_PCMPGTB,
2087 IX86_BUILTIN_PCMPGTW,
2088 IX86_BUILTIN_PCMPGTD,
2090 IX86_BUILTIN_PEXTRW,
2091 IX86_BUILTIN_PINSRW,
2093 IX86_BUILTIN_PMADDWD,
2095 IX86_BUILTIN_PMAXSW,
2096 IX86_BUILTIN_PMAXUB,
2097 IX86_BUILTIN_PMINSW,
2098 IX86_BUILTIN_PMINUB,
2100 IX86_BUILTIN_PMULHUW,
2101 IX86_BUILTIN_PMULHW,
2102 IX86_BUILTIN_PMULLW,
2104 IX86_BUILTIN_PSADBW,
2105 IX86_BUILTIN_PSHUFW,
2107 IX86_BUILTIN_PSLLW,
2108 IX86_BUILTIN_PSLLD,
2109 IX86_BUILTIN_PSLLQ,
2110 IX86_BUILTIN_PSRAW,
2111 IX86_BUILTIN_PSRAD,
2112 IX86_BUILTIN_PSRLW,
2113 IX86_BUILTIN_PSRLD,
2114 IX86_BUILTIN_PSRLQ,
2115 IX86_BUILTIN_PSLLWI,
2116 IX86_BUILTIN_PSLLDI,
2117 IX86_BUILTIN_PSLLQI,
2118 IX86_BUILTIN_PSRAWI,
2119 IX86_BUILTIN_PSRADI,
2120 IX86_BUILTIN_PSRLWI,
2121 IX86_BUILTIN_PSRLDI,
2122 IX86_BUILTIN_PSRLQI,
2124 IX86_BUILTIN_PUNPCKHBW,
2125 IX86_BUILTIN_PUNPCKHWD,
2126 IX86_BUILTIN_PUNPCKHDQ,
2127 IX86_BUILTIN_PUNPCKLBW,
2128 IX86_BUILTIN_PUNPCKLWD,
2129 IX86_BUILTIN_PUNPCKLDQ,
2131 IX86_BUILTIN_SHUFPS,
2133 IX86_BUILTIN_RCPPS,
2134 IX86_BUILTIN_RCPSS,
2135 IX86_BUILTIN_RSQRTPS,
2136 IX86_BUILTIN_RSQRTSS,
2137 IX86_BUILTIN_SQRTPS,
2138 IX86_BUILTIN_SQRTSS,
2140 IX86_BUILTIN_UNPCKHPS,
2141 IX86_BUILTIN_UNPCKLPS,
2143 IX86_BUILTIN_ANDPS,
2144 IX86_BUILTIN_ANDNPS,
2145 IX86_BUILTIN_ORPS,
2146 IX86_BUILTIN_XORPS,
2148 IX86_BUILTIN_EMMS,
2149 IX86_BUILTIN_LDMXCSR,
2150 IX86_BUILTIN_STMXCSR,
2151 IX86_BUILTIN_SFENCE,
2153 /* 3DNow! Original */
2154 IX86_BUILTIN_FEMMS,
2155 IX86_BUILTIN_PAVGUSB,
2156 IX86_BUILTIN_PF2ID,
2157 IX86_BUILTIN_PFACC,
2158 IX86_BUILTIN_PFADD,
2159 IX86_BUILTIN_PFCMPEQ,
2160 IX86_BUILTIN_PFCMPGE,
2161 IX86_BUILTIN_PFCMPGT,
2162 IX86_BUILTIN_PFMAX,
2163 IX86_BUILTIN_PFMIN,
2164 IX86_BUILTIN_PFMUL,
2165 IX86_BUILTIN_PFRCP,
2166 IX86_BUILTIN_PFRCPIT1,
2167 IX86_BUILTIN_PFRCPIT2,
2168 IX86_BUILTIN_PFRSQIT1,
2169 IX86_BUILTIN_PFRSQRT,
2170 IX86_BUILTIN_PFSUB,
2171 IX86_BUILTIN_PFSUBR,
2172 IX86_BUILTIN_PI2FD,
2173 IX86_BUILTIN_PMULHRW,
2175 /* 3DNow! Athlon Extensions */
2176 IX86_BUILTIN_PF2IW,
2177 IX86_BUILTIN_PFNACC,
2178 IX86_BUILTIN_PFPNACC,
2179 IX86_BUILTIN_PI2FW,
2180 IX86_BUILTIN_PSWAPDSI,
2181 IX86_BUILTIN_PSWAPDSF,
2183 IX86_BUILTIN_SSE_ZERO,
2184 IX86_BUILTIN_MMX_ZERO,
2186 /* SSE2 */
2187 IX86_BUILTIN_ADDPD,
2188 IX86_BUILTIN_ADDSD,
2189 IX86_BUILTIN_DIVPD,
2190 IX86_BUILTIN_DIVSD,
2191 IX86_BUILTIN_MULPD,
2192 IX86_BUILTIN_MULSD,
2193 IX86_BUILTIN_SUBPD,
2194 IX86_BUILTIN_SUBSD,
2196 IX86_BUILTIN_CMPEQPD,
2197 IX86_BUILTIN_CMPLTPD,
2198 IX86_BUILTIN_CMPLEPD,
2199 IX86_BUILTIN_CMPGTPD,
2200 IX86_BUILTIN_CMPGEPD,
2201 IX86_BUILTIN_CMPNEQPD,
2202 IX86_BUILTIN_CMPNLTPD,
2203 IX86_BUILTIN_CMPNLEPD,
2204 IX86_BUILTIN_CMPNGTPD,
2205 IX86_BUILTIN_CMPNGEPD,
2206 IX86_BUILTIN_CMPORDPD,
2207 IX86_BUILTIN_CMPUNORDPD,
2208 IX86_BUILTIN_CMPNEPD,
2209 IX86_BUILTIN_CMPEQSD,
2210 IX86_BUILTIN_CMPLTSD,
2211 IX86_BUILTIN_CMPLESD,
2212 IX86_BUILTIN_CMPGTSD,
2213 IX86_BUILTIN_CMPGESD,
2214 IX86_BUILTIN_CMPNEQSD,
2215 IX86_BUILTIN_CMPNLTSD,
2216 IX86_BUILTIN_CMPNLESD,
2217 IX86_BUILTIN_CMPNGTSD,
2218 IX86_BUILTIN_CMPNGESD,
2219 IX86_BUILTIN_CMPORDSD,
2220 IX86_BUILTIN_CMPUNORDSD,
2221 IX86_BUILTIN_CMPNESD,
2223 IX86_BUILTIN_COMIEQSD,
2224 IX86_BUILTIN_COMILTSD,
2225 IX86_BUILTIN_COMILESD,
2226 IX86_BUILTIN_COMIGTSD,
2227 IX86_BUILTIN_COMIGESD,
2228 IX86_BUILTIN_COMINEQSD,
2229 IX86_BUILTIN_UCOMIEQSD,
2230 IX86_BUILTIN_UCOMILTSD,
2231 IX86_BUILTIN_UCOMILESD,
2232 IX86_BUILTIN_UCOMIGTSD,
2233 IX86_BUILTIN_UCOMIGESD,
2234 IX86_BUILTIN_UCOMINEQSD,
2236 IX86_BUILTIN_MAXPD,
2237 IX86_BUILTIN_MAXSD,
2238 IX86_BUILTIN_MINPD,
2239 IX86_BUILTIN_MINSD,
2241 IX86_BUILTIN_ANDPD,
2242 IX86_BUILTIN_ANDNPD,
2243 IX86_BUILTIN_ORPD,
2244 IX86_BUILTIN_XORPD,
2246 IX86_BUILTIN_SQRTPD,
2247 IX86_BUILTIN_SQRTSD,
2249 IX86_BUILTIN_UNPCKHPD,
2250 IX86_BUILTIN_UNPCKLPD,
2252 IX86_BUILTIN_SHUFPD,
2254 IX86_BUILTIN_LOADAPD,
2255 IX86_BUILTIN_LOADUPD,
2256 IX86_BUILTIN_STOREAPD,
2257 IX86_BUILTIN_STOREUPD,
2258 IX86_BUILTIN_LOADSD,
2259 IX86_BUILTIN_STORESD,
2260 IX86_BUILTIN_MOVSD,
2262 IX86_BUILTIN_LOADHPD,
2263 IX86_BUILTIN_LOADLPD,
2264 IX86_BUILTIN_STOREHPD,
2265 IX86_BUILTIN_STORELPD,
2267 IX86_BUILTIN_CVTDQ2PD,
2268 IX86_BUILTIN_CVTDQ2PS,
2270 IX86_BUILTIN_CVTPD2DQ,
2271 IX86_BUILTIN_CVTPD2PI,
2272 IX86_BUILTIN_CVTPD2PS,
2273 IX86_BUILTIN_CVTTPD2DQ,
2274 IX86_BUILTIN_CVTTPD2PI,
2276 IX86_BUILTIN_CVTPI2PD,
2277 IX86_BUILTIN_CVTSI2SD,
2279 IX86_BUILTIN_CVTSD2SI,
2280 IX86_BUILTIN_CVTSD2SS,
2281 IX86_BUILTIN_CVTSS2SD,
2282 IX86_BUILTIN_CVTTSD2SI,
2284 IX86_BUILTIN_CVTPS2DQ,
2285 IX86_BUILTIN_CVTPS2PD,
2286 IX86_BUILTIN_CVTTPS2DQ,
2288 IX86_BUILTIN_MOVNTI,
2289 IX86_BUILTIN_MOVNTPD,
2290 IX86_BUILTIN_MOVNTDQ,
2292 IX86_BUILTIN_SETPD1,
2293 IX86_BUILTIN_SETPD,
2294 IX86_BUILTIN_CLRPD,
2295 IX86_BUILTIN_SETRPD,
2296 IX86_BUILTIN_LOADPD1,
2297 IX86_BUILTIN_LOADRPD,
2298 IX86_BUILTIN_STOREPD1,
2299 IX86_BUILTIN_STORERPD,
2301 /* SSE2 MMX */
2302 IX86_BUILTIN_MASKMOVDQU,
2303 IX86_BUILTIN_MOVMSKPD,
2304 IX86_BUILTIN_PMOVMSKB128,
2305 IX86_BUILTIN_MOVQ2DQ,
2307 IX86_BUILTIN_PACKSSWB128,
2308 IX86_BUILTIN_PACKSSDW128,
2309 IX86_BUILTIN_PACKUSWB128,
2311 IX86_BUILTIN_PADDB128,
2312 IX86_BUILTIN_PADDW128,
2313 IX86_BUILTIN_PADDD128,
2314 IX86_BUILTIN_PADDQ128,
2315 IX86_BUILTIN_PADDSB128,
2316 IX86_BUILTIN_PADDSW128,
2317 IX86_BUILTIN_PADDUSB128,
2318 IX86_BUILTIN_PADDUSW128,
2319 IX86_BUILTIN_PSUBB128,
2320 IX86_BUILTIN_PSUBW128,
2321 IX86_BUILTIN_PSUBD128,
2322 IX86_BUILTIN_PSUBQ128,
2323 IX86_BUILTIN_PSUBSB128,
2324 IX86_BUILTIN_PSUBSW128,
2325 IX86_BUILTIN_PSUBUSB128,
2326 IX86_BUILTIN_PSUBUSW128,
2328 IX86_BUILTIN_PAND128,
2329 IX86_BUILTIN_PANDN128,
2330 IX86_BUILTIN_POR128,
2331 IX86_BUILTIN_PXOR128,
2333 IX86_BUILTIN_PAVGB128,
2334 IX86_BUILTIN_PAVGW128,
2336 IX86_BUILTIN_PCMPEQB128,
2337 IX86_BUILTIN_PCMPEQW128,
2338 IX86_BUILTIN_PCMPEQD128,
2339 IX86_BUILTIN_PCMPGTB128,
2340 IX86_BUILTIN_PCMPGTW128,
2341 IX86_BUILTIN_PCMPGTD128,
2343 IX86_BUILTIN_PEXTRW128,
2344 IX86_BUILTIN_PINSRW128,
2346 IX86_BUILTIN_PMADDWD128,
2348 IX86_BUILTIN_PMAXSW128,
2349 IX86_BUILTIN_PMAXUB128,
2350 IX86_BUILTIN_PMINSW128,
2351 IX86_BUILTIN_PMINUB128,
2353 IX86_BUILTIN_PMULUDQ,
2354 IX86_BUILTIN_PMULUDQ128,
2355 IX86_BUILTIN_PMULHUW128,
2356 IX86_BUILTIN_PMULHW128,
2357 IX86_BUILTIN_PMULLW128,
2359 IX86_BUILTIN_PSADBW128,
2360 IX86_BUILTIN_PSHUFHW,
2361 IX86_BUILTIN_PSHUFLW,
2362 IX86_BUILTIN_PSHUFD,
2364 IX86_BUILTIN_PSLLW128,
2365 IX86_BUILTIN_PSLLD128,
2366 IX86_BUILTIN_PSLLQ128,
2367 IX86_BUILTIN_PSRAW128,
2368 IX86_BUILTIN_PSRAD128,
2369 IX86_BUILTIN_PSRLW128,
2370 IX86_BUILTIN_PSRLD128,
2371 IX86_BUILTIN_PSRLQ128,
2372 IX86_BUILTIN_PSLLWI128,
2373 IX86_BUILTIN_PSLLDI128,
2374 IX86_BUILTIN_PSLLQI128,
2375 IX86_BUILTIN_PSRAWI128,
2376 IX86_BUILTIN_PSRADI128,
2377 IX86_BUILTIN_PSRLWI128,
2378 IX86_BUILTIN_PSRLDI128,
2379 IX86_BUILTIN_PSRLQI128,
2381 IX86_BUILTIN_PUNPCKHBW128,
2382 IX86_BUILTIN_PUNPCKHWD128,
2383 IX86_BUILTIN_PUNPCKHDQ128,
2384 IX86_BUILTIN_PUNPCKLBW128,
2385 IX86_BUILTIN_PUNPCKLWD128,
2386 IX86_BUILTIN_PUNPCKLDQ128,
2388 IX86_BUILTIN_CLFLUSH,
2389 IX86_BUILTIN_MFENCE,
2390 IX86_BUILTIN_LFENCE,
2392 IX86_BUILTIN_MAX
2395 #define TARGET_ENCODE_SECTION_INFO ix86_encode_section_info
2396 #define TARGET_STRIP_NAME_ENCODING ix86_strip_name_encoding
2398 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
2399 do { \
2400 const char *xname = (NAME); \
2401 if (xname[0] == '%') \
2402 xname += 2; \
2403 if (xname[0] == '*') \
2404 xname += 1; \
2405 else \
2406 fputs (user_label_prefix, FILE); \
2407 fputs (xname, FILE); \
2408 } while (0)
2410 /* Max number of args passed in registers. If this is more than 3, we will
2411 have problems with ebx (register #4), since it is a caller save register and
2412 is also used as the pic register in ELF. So for now, don't allow more than
2413 3 registers to be passed in registers. */
2415 #define REGPARM_MAX (TARGET_64BIT ? 6 : 3)
2417 #define SSE_REGPARM_MAX (TARGET_64BIT ? 8 : 0)
2420 /* Specify the machine mode that this machine uses
2421 for the index in the tablejump instruction. */
2422 #define CASE_VECTOR_MODE (!TARGET_64BIT || flag_pic ? SImode : DImode)
2424 /* Define as C expression which evaluates to nonzero if the tablejump
2425 instruction expects the table to contain offsets from the address of the
2426 table.
2427 Do not define this if the table should contain absolute addresses. */
2428 /* #define CASE_VECTOR_PC_RELATIVE 1 */
2430 /* Define this as 1 if `char' should by default be signed; else as 0. */
2431 #define DEFAULT_SIGNED_CHAR 1
2433 /* Number of bytes moved into a data cache for a single prefetch operation. */
2434 #define PREFETCH_BLOCK ix86_cost->prefetch_block
2436 /* Number of prefetch operations that can be done in parallel. */
2437 #define SIMULTANEOUS_PREFETCHES ix86_cost->simultaneous_prefetches
2439 /* Max number of bytes we can move from memory to memory
2440 in one reasonably fast instruction. */
2441 #define MOVE_MAX 16
2443 /* MOVE_MAX_PIECES is the number of bytes at a time which we can
2444 move efficiently, as opposed to MOVE_MAX which is the maximum
2445 number of bytes we can move with a single instruction. */
2446 #define MOVE_MAX_PIECES (TARGET_64BIT ? 8 : 4)
2448 /* If a memory-to-memory move would take MOVE_RATIO or more simple
2449 move-instruction pairs, we will do a movstr or libcall instead.
2450 Increasing the value will always make code faster, but eventually
2451 incurs high cost in increased code size.
2453 If you don't define this, a reasonable default is used. */
2455 #define MOVE_RATIO (optimize_size ? 3 : ix86_cost->move_ratio)
2457 /* Define if shifts truncate the shift count
2458 which implies one can omit a sign-extension or zero-extension
2459 of a shift count. */
2460 /* On i386, shifts do truncate the count. But bit opcodes don't. */
2462 /* #define SHIFT_COUNT_TRUNCATED */
2464 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2465 is done just by pretending it is already truncated. */
2466 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2468 /* We assume that the store-condition-codes instructions store 0 for false
2469 and some other value for true. This is the value stored for true. */
2471 #define STORE_FLAG_VALUE 1
2473 /* When a prototype says `char' or `short', really pass an `int'.
2474 (The 386 can't easily push less than an int.) */
2476 #define PROMOTE_PROTOTYPES 1
2478 /* A macro to update M and UNSIGNEDP when an object whose type is
2479 TYPE and which has the specified mode and signedness is to be
2480 stored in a register. This macro is only called when TYPE is a
2481 scalar type.
2483 On i386 it is sometimes useful to promote HImode and QImode
2484 quantities to SImode. The choice depends on target type. */
2486 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
2487 do { \
2488 if (((MODE) == HImode && TARGET_PROMOTE_HI_REGS) \
2489 || ((MODE) == QImode && TARGET_PROMOTE_QI_REGS)) \
2490 (MODE) = SImode; \
2491 } while (0)
2493 /* Specify the machine mode that pointers have.
2494 After generation of rtl, the compiler makes no further distinction
2495 between pointers and any other objects of this machine mode. */
2496 #define Pmode (TARGET_64BIT ? DImode : SImode)
2498 /* A function address in a call instruction
2499 is a byte address (for indexing purposes)
2500 so give the MEM rtx a byte's mode. */
2501 #define FUNCTION_MODE QImode
2503 /* A part of a C `switch' statement that describes the relative costs
2504 of constant RTL expressions. It must contain `case' labels for
2505 expression codes `const_int', `const', `symbol_ref', `label_ref'
2506 and `const_double'. Each case must ultimately reach a `return'
2507 statement to return the relative cost of the use of that kind of
2508 constant value in an expression. The cost may depend on the
2509 precise value of the constant, which is available for examination
2510 in X, and the rtx code of the expression in which it is contained,
2511 found in OUTER_CODE.
2513 CODE is the expression code--redundant, since it can be obtained
2514 with `GET_CODE (X)'. */
2516 #define CONST_COSTS(RTX, CODE, OUTER_CODE) \
2517 case CONST_INT: \
2518 case CONST: \
2519 case LABEL_REF: \
2520 case SYMBOL_REF: \
2521 if (TARGET_64BIT && !x86_64_sign_extended_value (RTX)) \
2522 return 3; \
2523 if (TARGET_64BIT && !x86_64_zero_extended_value (RTX)) \
2524 return 2; \
2525 return flag_pic && SYMBOLIC_CONST (RTX) ? 1 : 0; \
2527 case CONST_DOUBLE: \
2528 if (GET_MODE (RTX) == VOIDmode) \
2529 return 0; \
2530 switch (standard_80387_constant_p (RTX)) \
2532 case 1: /* 0.0 */ \
2533 return 1; \
2534 case 2: /* 1.0 */ \
2535 return 2; \
2536 default: \
2537 /* Start with (MEM (SYMBOL_REF)), since that's where \
2538 it'll probably end up. Add a penalty for size. */ \
2539 return (COSTS_N_INSNS (1) + (flag_pic != 0) \
2540 + (GET_MODE (RTX) == SFmode ? 0 \
2541 : GET_MODE (RTX) == DFmode ? 1 : 2)); \
2544 /* Delete the definition here when TOPLEVEL_COSTS_N_INSNS gets added to cse.c */
2545 #define TOPLEVEL_COSTS_N_INSNS(N) \
2546 do { total = COSTS_N_INSNS (N); goto egress_rtx_costs; } while (0)
2548 /* Like `CONST_COSTS' but applies to nonconstant RTL expressions.
2549 This can be used, for example, to indicate how costly a multiply
2550 instruction is. In writing this macro, you can use the construct
2551 `COSTS_N_INSNS (N)' to specify a cost equal to N fast
2552 instructions. OUTER_CODE is the code of the expression in which X
2553 is contained.
2555 This macro is optional; do not define it if the default cost
2556 assumptions are adequate for the target machine. */
2558 #define RTX_COSTS(X, CODE, OUTER_CODE) \
2559 case ZERO_EXTEND: \
2560 /* The zero extensions is often completely free on x86_64, so make \
2561 it as cheap as possible. */ \
2562 if (TARGET_64BIT && GET_MODE (X) == DImode \
2563 && GET_MODE (XEXP (X, 0)) == SImode) \
2565 total = 1; goto egress_rtx_costs; \
2567 else \
2568 TOPLEVEL_COSTS_N_INSNS (TARGET_ZERO_EXTEND_WITH_AND ? \
2569 ix86_cost->add : ix86_cost->movzx); \
2570 break; \
2571 case SIGN_EXTEND: \
2572 TOPLEVEL_COSTS_N_INSNS (ix86_cost->movsx); \
2573 break; \
2574 case ASHIFT: \
2575 if (GET_CODE (XEXP (X, 1)) == CONST_INT \
2576 && (GET_MODE (XEXP (X, 0)) != DImode || TARGET_64BIT)) \
2578 HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2579 if (value == 1) \
2580 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2581 if ((value == 2 || value == 3) \
2582 && !TARGET_DECOMPOSE_LEA \
2583 && ix86_cost->lea <= ix86_cost->shift_const) \
2584 TOPLEVEL_COSTS_N_INSNS (ix86_cost->lea); \
2586 /* fall through */ \
2588 case ROTATE: \
2589 case ASHIFTRT: \
2590 case LSHIFTRT: \
2591 case ROTATERT: \
2592 if (!TARGET_64BIT && GET_MODE (XEXP (X, 0)) == DImode) \
2594 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2596 if (INTVAL (XEXP (X, 1)) > 32) \
2597 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const + 2); \
2598 else \
2599 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_const * 2); \
2601 else \
2603 if (GET_CODE (XEXP (X, 1)) == AND) \
2604 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 2); \
2605 else \
2606 TOPLEVEL_COSTS_N_INSNS(ix86_cost->shift_var * 6 + 2); \
2609 else \
2611 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2612 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_const); \
2613 else \
2614 TOPLEVEL_COSTS_N_INSNS (ix86_cost->shift_var); \
2616 break; \
2618 case MULT: \
2619 if (GET_CODE (XEXP (X, 1)) == CONST_INT) \
2621 unsigned HOST_WIDE_INT value = INTVAL (XEXP (X, 1)); \
2622 int nbits = 0; \
2624 while (value != 0) \
2626 nbits++; \
2627 value >>= 1; \
2630 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2631 + nbits * ix86_cost->mult_bit); \
2633 else /* This is arbitrary */ \
2634 TOPLEVEL_COSTS_N_INSNS (ix86_cost->mult_init \
2635 + 7 * ix86_cost->mult_bit); \
2637 case DIV: \
2638 case UDIV: \
2639 case MOD: \
2640 case UMOD: \
2641 TOPLEVEL_COSTS_N_INSNS (ix86_cost->divide); \
2643 case PLUS: \
2644 if (!TARGET_DECOMPOSE_LEA \
2645 && INTEGRAL_MODE_P (GET_MODE (X)) \
2646 && GET_MODE_BITSIZE (GET_MODE (X)) <= GET_MODE_BITSIZE (Pmode)) \
2648 if (GET_CODE (XEXP (X, 0)) == PLUS \
2649 && GET_CODE (XEXP (XEXP (X, 0), 0)) == MULT \
2650 && GET_CODE (XEXP (XEXP (XEXP (X, 0), 0), 1)) == CONST_INT \
2651 && CONSTANT_P (XEXP (X, 1))) \
2653 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (XEXP (X, 0), 0), 1));\
2654 if (val == 2 || val == 4 || val == 8) \
2656 return (COSTS_N_INSNS (ix86_cost->lea) \
2657 + rtx_cost (XEXP (XEXP (X, 0), 1), \
2658 (OUTER_CODE)) \
2659 + rtx_cost (XEXP (XEXP (XEXP (X, 0), 0), 0), \
2660 (OUTER_CODE)) \
2661 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
2664 else if (GET_CODE (XEXP (X, 0)) == MULT \
2665 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT) \
2667 HOST_WIDE_INT val = INTVAL (XEXP (XEXP (X, 0), 1)); \
2668 if (val == 2 || val == 4 || val == 8) \
2670 return (COSTS_N_INSNS (ix86_cost->lea) \
2671 + rtx_cost (XEXP (XEXP (X, 0), 0), \
2672 (OUTER_CODE)) \
2673 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
2676 else if (GET_CODE (XEXP (X, 0)) == PLUS) \
2678 return (COSTS_N_INSNS (ix86_cost->lea) \
2679 + rtx_cost (XEXP (XEXP (X, 0), 0), (OUTER_CODE)) \
2680 + rtx_cost (XEXP (XEXP (X, 0), 1), (OUTER_CODE)) \
2681 + rtx_cost (XEXP (X, 1), (OUTER_CODE))); \
2685 /* fall through */ \
2686 case AND: \
2687 case IOR: \
2688 case XOR: \
2689 case MINUS: \
2690 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
2691 return (COSTS_N_INSNS (ix86_cost->add) * 2 \
2692 + (rtx_cost (XEXP (X, 0), (OUTER_CODE)) \
2693 << (GET_MODE (XEXP (X, 0)) != DImode)) \
2694 + (rtx_cost (XEXP (X, 1), (OUTER_CODE)) \
2695 << (GET_MODE (XEXP (X, 1)) != DImode))); \
2697 /* fall through */ \
2698 case NEG: \
2699 case NOT: \
2700 if (!TARGET_64BIT && GET_MODE (X) == DImode) \
2701 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add * 2); \
2702 TOPLEVEL_COSTS_N_INSNS (ix86_cost->add); \
2704 case FLOAT_EXTEND: \
2705 TOPLEVEL_COSTS_N_INSNS (0); \
2707 egress_rtx_costs: \
2708 break;
2711 /* An expression giving the cost of an addressing mode that contains
2712 ADDRESS. If not defined, the cost is computed from the ADDRESS
2713 expression and the `CONST_COSTS' values.
2715 For most CISC machines, the default cost is a good approximation
2716 of the true cost of the addressing mode. However, on RISC
2717 machines, all instructions normally have the same length and
2718 execution time. Hence all addresses will have equal costs.
2720 In cases where more than one form of an address is known, the form
2721 with the lowest cost will be used. If multiple forms have the
2722 same, lowest, cost, the one that is the most complex will be used.
2724 For example, suppose an address that is equal to the sum of a
2725 register and a constant is used twice in the same basic block.
2726 When this macro is not defined, the address will be computed in a
2727 register and memory references will be indirect through that
2728 register. On machines where the cost of the addressing mode
2729 containing the sum is no higher than that of a simple indirect
2730 reference, this will produce an additional instruction and
2731 possibly require an additional register. Proper specification of
2732 this macro eliminates this overhead for such machines.
2734 Similar use of this macro is made in strength reduction of loops.
2736 ADDRESS need not be valid as an address. In such a case, the cost
2737 is not relevant and can be any value; invalid addresses need not be
2738 assigned a different cost.
2740 On machines where an address involving more than one register is as
2741 cheap as an address computation involving only one register,
2742 defining `ADDRESS_COST' to reflect this can cause two registers to
2743 be live over a region of code where only one would have been if
2744 `ADDRESS_COST' were not defined in that manner. This effect should
2745 be considered in the definition of this macro. Equivalent costs
2746 should probably only be given to addresses with different numbers
2747 of registers on machines with lots of registers.
2749 This macro will normally either not be defined or be defined as a
2750 constant.
2752 For i386, it is better to use a complex address than let gcc copy
2753 the address into a reg and make a new pseudo. But not if the address
2754 requires to two regs - that would mean more pseudos with longer
2755 lifetimes. */
2757 #define ADDRESS_COST(RTX) \
2758 ix86_address_cost (RTX)
2760 /* A C expression for the cost of moving data from a register in class FROM to
2761 one in class TO. The classes are expressed using the enumeration values
2762 such as `GENERAL_REGS'. A value of 2 is the default; other values are
2763 interpreted relative to that.
2765 It is not required that the cost always equal 2 when FROM is the same as TO;
2766 on some machines it is expensive to move between registers if they are not
2767 general registers. */
2769 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
2770 ix86_register_move_cost ((MODE), (CLASS1), (CLASS2))
2772 /* A C expression for the cost of moving data of mode M between a
2773 register and memory. A value of 2 is the default; this cost is
2774 relative to those in `REGISTER_MOVE_COST'.
2776 If moving between registers and memory is more expensive than
2777 between two registers, you should define this macro to express the
2778 relative cost. */
2780 #define MEMORY_MOVE_COST(MODE, CLASS, IN) \
2781 ix86_memory_move_cost ((MODE), (CLASS), (IN))
2783 /* A C expression for the cost of a branch instruction. A value of 1
2784 is the default; other values are interpreted relative to that. */
2786 #define BRANCH_COST ix86_branch_cost
2788 /* Define this macro as a C expression which is nonzero if accessing
2789 less than a word of memory (i.e. a `char' or a `short') is no
2790 faster than accessing a word of memory, i.e., if such access
2791 require more than one instruction or if there is no difference in
2792 cost between byte and (aligned) word loads.
2794 When this macro is not defined, the compiler will access a field by
2795 finding the smallest containing object; when it is defined, a
2796 fullword load will be used if alignment permits. Unless bytes
2797 accesses are faster than word accesses, using word accesses is
2798 preferable since it may eliminate subsequent memory access if
2799 subsequent accesses occur to other fields in the same word of the
2800 structure, but to different bytes. */
2802 #define SLOW_BYTE_ACCESS 0
2804 /* Nonzero if access to memory by shorts is slow and undesirable. */
2805 #define SLOW_SHORT_ACCESS 0
2807 /* Define this macro to be the value 1 if unaligned accesses have a
2808 cost many times greater than aligned accesses, for example if they
2809 are emulated in a trap handler.
2811 When this macro is non-zero, the compiler will act as if
2812 `STRICT_ALIGNMENT' were non-zero when generating code for block
2813 moves. This can cause significantly more instructions to be
2814 produced. Therefore, do not set this macro non-zero if unaligned
2815 accesses only add a cycle or two to the time for a memory access.
2817 If the value of this macro is always zero, it need not be defined. */
2819 /* #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 0 */
2821 /* Define this macro to inhibit strength reduction of memory
2822 addresses. (On some machines, such strength reduction seems to do
2823 harm rather than good.) */
2825 /* #define DONT_REDUCE_ADDR */
2827 /* Define this macro if it is as good or better to call a constant
2828 function address than to call an address kept in a register.
2830 Desirable on the 386 because a CALL with a constant address is
2831 faster than one with a register address. */
2833 #define NO_FUNCTION_CSE
2835 /* Define this macro if it is as good or better for a function to call
2836 itself with an explicit address than to call an address kept in a
2837 register. */
2839 #define NO_RECURSIVE_FUNCTION_CSE
2841 /* Add any extra modes needed to represent the condition code.
2843 For the i386, we need separate modes when floating-point
2844 equality comparisons are being done.
2846 Add CCNO to indicate comparisons against zero that requires
2847 Overflow flag to be unset. Sign bit test is used instead and
2848 thus can be used to form "a&b>0" type of tests.
2850 Add CCGC to indicate comparisons agains zero that allows
2851 unspecified garbage in the Carry flag. This mode is used
2852 by inc/dec instructions.
2854 Add CCGOC to indicate comparisons agains zero that allows
2855 unspecified garbage in the Carry and Overflow flag. This
2856 mode is used to simulate comparisons of (a-b) and (a+b)
2857 against zero using sub/cmp/add operations.
2859 Add CCZ to indicate that only the Zero flag is valid. */
2861 #define EXTRA_CC_MODES \
2862 CC (CCGCmode, "CCGC") \
2863 CC (CCGOCmode, "CCGOC") \
2864 CC (CCNOmode, "CCNO") \
2865 CC (CCZmode, "CCZ") \
2866 CC (CCFPmode, "CCFP") \
2867 CC (CCFPUmode, "CCFPU")
2869 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2870 return the mode to be used for the comparison.
2872 For floating-point equality comparisons, CCFPEQmode should be used.
2873 VOIDmode should be used in all other cases.
2875 For integer comparisons against zero, reduce to CCNOmode or CCZmode if
2876 possible, to allow for more combinations. */
2878 #define SELECT_CC_MODE(OP, X, Y) ix86_cc_mode ((OP), (X), (Y))
2880 /* Return non-zero if MODE implies a floating point inequality can be
2881 reversed. */
2883 #define REVERSIBLE_CC_MODE(MODE) 1
2885 /* A C expression whose value is reversed condition code of the CODE for
2886 comparison done in CC_MODE mode. */
2887 #define REVERSE_CONDITION(CODE, MODE) \
2888 ((MODE) != CCFPmode && (MODE) != CCFPUmode ? reverse_condition (CODE) \
2889 : reverse_condition_maybe_unordered (CODE))
2892 /* Control the assembler format that we output, to the extent
2893 this does not vary between assemblers. */
2895 /* How to refer to registers in assembler output.
2896 This sequence is indexed by compiler's hard-register-number (see above). */
2898 /* In order to refer to the first 8 regs as 32 bit regs prefix an "e"
2899 For non floating point regs, the following are the HImode names.
2901 For float regs, the stack top is sometimes referred to as "%st(0)"
2902 instead of just "%st". PRINT_REG handles this with the "y" code. */
2904 #undef HI_REGISTER_NAMES
2905 #define HI_REGISTER_NAMES \
2906 {"ax","dx","cx","bx","si","di","bp","sp", \
2907 "st","st(1)","st(2)","st(3)","st(4)","st(5)","st(6)","st(7)","", \
2908 "flags","fpsr", "dirflag", "frame", \
2909 "xmm0","xmm1","xmm2","xmm3","xmm4","xmm5","xmm6","xmm7", \
2910 "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" , \
2911 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2912 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"}
2914 #define REGISTER_NAMES HI_REGISTER_NAMES
2916 /* Table of additional register names to use in user input. */
2918 #define ADDITIONAL_REGISTER_NAMES \
2919 { { "eax", 0 }, { "edx", 1 }, { "ecx", 2 }, { "ebx", 3 }, \
2920 { "esi", 4 }, { "edi", 5 }, { "ebp", 6 }, { "esp", 7 }, \
2921 { "rax", 0 }, { "rdx", 1 }, { "rcx", 2 }, { "rbx", 3 }, \
2922 { "rsi", 4 }, { "rdi", 5 }, { "rbp", 6 }, { "rsp", 7 }, \
2923 { "al", 0 }, { "dl", 1 }, { "cl", 2 }, { "bl", 3 }, \
2924 { "ah", 0 }, { "dh", 1 }, { "ch", 2 }, { "bh", 3 }, \
2925 { "mm0", 8}, { "mm1", 9}, { "mm2", 10}, { "mm3", 11}, \
2926 { "mm4", 12}, { "mm5", 13}, { "mm6", 14}, { "mm7", 15} }
2928 /* Note we are omitting these since currently I don't know how
2929 to get gcc to use these, since they want the same but different
2930 number as al, and ax.
2933 #define QI_REGISTER_NAMES \
2934 {"al", "dl", "cl", "bl", "sil", "dil", "bpl", "spl",}
2936 /* These parallel the array above, and can be used to access bits 8:15
2937 of regs 0 through 3. */
2939 #define QI_HIGH_REGISTER_NAMES \
2940 {"ah", "dh", "ch", "bh", }
2942 /* How to renumber registers for dbx and gdb. */
2944 #define DBX_REGISTER_NUMBER(N) \
2945 (TARGET_64BIT ? dbx64_register_map[(N)] : dbx_register_map[(N)])
2947 extern int const dbx_register_map[FIRST_PSEUDO_REGISTER];
2948 extern int const dbx64_register_map[FIRST_PSEUDO_REGISTER];
2949 extern int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER];
2951 /* Before the prologue, RA is at 0(%esp). */
2952 #define INCOMING_RETURN_ADDR_RTX \
2953 gen_rtx_MEM (VOIDmode, gen_rtx_REG (VOIDmode, STACK_POINTER_REGNUM))
2955 /* After the prologue, RA is at -4(AP) in the current frame. */
2956 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2957 ((COUNT) == 0 \
2958 ? gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -UNITS_PER_WORD)) \
2959 : gen_rtx_MEM (Pmode, plus_constant (FRAME, UNITS_PER_WORD)))
2961 /* PC is dbx register 8; let's use that column for RA. */
2962 #define DWARF_FRAME_RETURN_COLUMN (TARGET_64BIT ? 16 : 8)
2964 /* Before the prologue, the top of the frame is at 4(%esp). */
2965 #define INCOMING_FRAME_SP_OFFSET UNITS_PER_WORD
2967 /* Describe how we implement __builtin_eh_return. */
2968 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
2969 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 2)
2972 /* Select a format to encode pointers in exception handling data. CODE
2973 is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is
2974 true if the symbol may be affected by dynamic relocations.
2976 ??? All x86 object file formats are capable of representing this.
2977 After all, the relocation needed is the same as for the call insn.
2978 Whether or not a particular assembler allows us to enter such, I
2979 guess we'll have to see. */
2980 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
2981 (flag_pic \
2982 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4\
2983 : DW_EH_PE_absptr)
2985 /* This is how to output the definition of a user-level label named NAME,
2986 such as the label on a static function or variable NAME. */
2988 #define ASM_OUTPUT_LABEL(FILE, NAME) \
2989 (assemble_name ((FILE), (NAME)), fputs (":\n", (FILE)))
2991 /* Store in OUTPUT a string (made with alloca) containing
2992 an assembler-name for a local static variable named NAME.
2993 LABELNO is an integer which is different for each call. */
2995 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
2996 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
2997 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
2999 /* This is how to output an insn to push a register on the stack.
3000 It need not be very fast code. */
3002 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) \
3003 asm_fprintf ((FILE), "\tpush{l}\t%%e%s\n", reg_names[(REGNO)])
3005 /* This is how to output an insn to pop a register from the stack.
3006 It need not be very fast code. */
3008 #define ASM_OUTPUT_REG_POP(FILE, REGNO) \
3009 asm_fprintf ((FILE), "\tpop{l}\t%%e%s\n", reg_names[(REGNO)])
3011 /* This is how to output an element of a case-vector that is absolute. */
3013 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
3014 ix86_output_addr_vec_elt ((FILE), (VALUE))
3016 /* This is how to output an element of a case-vector that is relative. */
3018 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
3019 ix86_output_addr_diff_elt ((FILE), (VALUE), (REL))
3021 /* Under some conditions we need jump tables in the text section, because
3022 the assembler cannot handle label differences between sections. */
3024 #define JUMP_TABLES_IN_TEXT_SECTION \
3025 (!TARGET_64BIT && flag_pic && !HAVE_AS_GOTOFF_IN_DATA)
3027 /* A C statement that outputs an address constant appropriate to
3028 for DWARF debugging. */
3030 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE, X) \
3031 i386_dwarf_output_addr_const ((FILE), (X))
3033 /* Either simplify a location expression, or return the original. */
3035 #define ASM_SIMPLIFY_DWARF_ADDR(X) \
3036 i386_simplify_dwarf_addr (X)
3038 /* Switch to init or fini section via SECTION_OP, emit a call to FUNC,
3039 and switch back. For x86 we do this only to save a few bytes that
3040 would otherwise be unused in the text section. */
3041 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
3042 asm (SECTION_OP "\n\t" \
3043 "call " USER_LABEL_PREFIX #FUNC "\n" \
3044 TEXT_SECTION_ASM_OP);
3046 /* Print operand X (an rtx) in assembler syntax to file FILE.
3047 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
3048 Effect of various CODE letters is described in i386.c near
3049 print_operand function. */
3051 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
3052 ((CODE) == '*' || (CODE) == '+' || (CODE) == '&')
3054 /* Print the name of a register based on its machine mode and number.
3055 If CODE is 'w', pretend the mode is HImode.
3056 If CODE is 'b', pretend the mode is QImode.
3057 If CODE is 'k', pretend the mode is SImode.
3058 If CODE is 'q', pretend the mode is DImode.
3059 If CODE is 'h', pretend the reg is the `high' byte register.
3060 If CODE is 'y', print "st(0)" instead of "st", if the reg is stack op. */
3062 #define PRINT_REG(X, CODE, FILE) \
3063 print_reg ((X), (CODE), (FILE))
3065 #define PRINT_OPERAND(FILE, X, CODE) \
3066 print_operand ((FILE), (X), (CODE))
3068 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
3069 print_operand_address ((FILE), (ADDR))
3071 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
3072 do { \
3073 if (! output_addr_const_extra (FILE, (X))) \
3074 goto FAIL; \
3075 } while (0);
3077 /* Print the name of a register for based on its machine mode and number.
3078 This macro is used to print debugging output.
3079 This macro is different from PRINT_REG in that it may be used in
3080 programs that are not linked with aux-output.o. */
3082 #define DEBUG_PRINT_REG(X, CODE, FILE) \
3083 do { static const char * const hi_name[] = HI_REGISTER_NAMES; \
3084 static const char * const qi_name[] = QI_REGISTER_NAMES; \
3085 fprintf ((FILE), "%d ", REGNO (X)); \
3086 if (REGNO (X) == FLAGS_REG) \
3087 { fputs ("flags", (FILE)); break; } \
3088 if (REGNO (X) == DIRFLAG_REG) \
3089 { fputs ("dirflag", (FILE)); break; } \
3090 if (REGNO (X) == FPSR_REG) \
3091 { fputs ("fpsr", (FILE)); break; } \
3092 if (REGNO (X) == ARG_POINTER_REGNUM) \
3093 { fputs ("argp", (FILE)); break; } \
3094 if (REGNO (X) == FRAME_POINTER_REGNUM) \
3095 { fputs ("frame", (FILE)); break; } \
3096 if (STACK_TOP_P (X)) \
3097 { fputs ("st(0)", (FILE)); break; } \
3098 if (FP_REG_P (X)) \
3099 { fputs (hi_name[REGNO(X)], (FILE)); break; } \
3100 if (REX_INT_REG_P (X)) \
3102 switch (GET_MODE_SIZE (GET_MODE (X))) \
3104 default: \
3105 case 8: \
3106 fprintf ((FILE), "r%i", REGNO (X) \
3107 - FIRST_REX_INT_REG + 8); \
3108 break; \
3109 case 4: \
3110 fprintf ((FILE), "r%id", REGNO (X) \
3111 - FIRST_REX_INT_REG + 8); \
3112 break; \
3113 case 2: \
3114 fprintf ((FILE), "r%iw", REGNO (X) \
3115 - FIRST_REX_INT_REG + 8); \
3116 break; \
3117 case 1: \
3118 fprintf ((FILE), "r%ib", REGNO (X) \
3119 - FIRST_REX_INT_REG + 8); \
3120 break; \
3122 break; \
3124 switch (GET_MODE_SIZE (GET_MODE (X))) \
3126 case 8: \
3127 fputs ("r", (FILE)); \
3128 fputs (hi_name[REGNO (X)], (FILE)); \
3129 break; \
3130 default: \
3131 fputs ("e", (FILE)); \
3132 case 2: \
3133 fputs (hi_name[REGNO (X)], (FILE)); \
3134 break; \
3135 case 1: \
3136 fputs (qi_name[REGNO (X)], (FILE)); \
3137 break; \
3139 } while (0)
3141 /* a letter which is not needed by the normal asm syntax, which
3142 we can use for operand syntax in the extended asm */
3144 #define ASM_OPERAND_LETTER '#'
3145 #define RET return ""
3146 #define AT_SP(MODE) (gen_rtx_MEM ((MODE), stack_pointer_rtx))
3148 /* Define the codes that are matched by predicates in i386.c. */
3150 #define PREDICATE_CODES \
3151 {"x86_64_immediate_operand", {CONST_INT, SUBREG, REG, \
3152 SYMBOL_REF, LABEL_REF, CONST}}, \
3153 {"x86_64_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3154 SYMBOL_REF, LABEL_REF, CONST}}, \
3155 {"x86_64_movabs_operand", {CONST_INT, SUBREG, REG, \
3156 SYMBOL_REF, LABEL_REF, CONST}}, \
3157 {"x86_64_szext_nonmemory_operand", {CONST_INT, SUBREG, REG, \
3158 SYMBOL_REF, LABEL_REF, CONST}}, \
3159 {"x86_64_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3160 SYMBOL_REF, LABEL_REF, CONST}}, \
3161 {"x86_64_szext_general_operand", {CONST_INT, SUBREG, REG, MEM, \
3162 SYMBOL_REF, LABEL_REF, CONST}}, \
3163 {"x86_64_zext_immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3164 SYMBOL_REF, LABEL_REF}}, \
3165 {"shiftdi_operand", {SUBREG, REG, MEM}}, \
3166 {"const_int_1_operand", {CONST_INT}}, \
3167 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
3168 {"aligned_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3169 LABEL_REF, SUBREG, REG, MEM}}, \
3170 {"pic_symbolic_operand", {CONST}}, \
3171 {"call_insn_operand", {REG, SUBREG, MEM, SYMBOL_REF}}, \
3172 {"constant_call_address_operand", {SYMBOL_REF, CONST}}, \
3173 {"const0_operand", {CONST_INT, CONST_DOUBLE}}, \
3174 {"const1_operand", {CONST_INT}}, \
3175 {"const248_operand", {CONST_INT}}, \
3176 {"incdec_operand", {CONST_INT}}, \
3177 {"mmx_reg_operand", {REG}}, \
3178 {"reg_no_sp_operand", {SUBREG, REG}}, \
3179 {"general_no_elim_operand", {CONST_INT, CONST_DOUBLE, CONST, \
3180 SYMBOL_REF, LABEL_REF, SUBREG, REG, MEM}}, \
3181 {"nonmemory_no_elim_operand", {CONST_INT, REG, SUBREG}}, \
3182 {"q_regs_operand", {SUBREG, REG}}, \
3183 {"non_q_regs_operand", {SUBREG, REG}}, \
3184 {"fcmov_comparison_operator", {EQ, NE, LTU, GTU, LEU, GEU, UNORDERED, \
3185 ORDERED, LT, UNLT, GT, UNGT, LE, UNLE, \
3186 GE, UNGE, LTGT, UNEQ}}, \
3187 {"sse_comparison_operator", {EQ, LT, LE, UNORDERED, NE, UNGE, UNGT, \
3188 ORDERED, UNEQ, UNLT, UNLE, LTGT, GE, GT \
3189 }}, \
3190 {"ix86_comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, \
3191 GTU, UNORDERED, ORDERED, UNLE, UNLT, \
3192 UNGE, UNGT, LTGT, UNEQ }}, \
3193 {"cmp_fp_expander_operand", {CONST_DOUBLE, SUBREG, REG, MEM}}, \
3194 {"ext_register_operand", {SUBREG, REG}}, \
3195 {"binary_fp_operator", {PLUS, MINUS, MULT, DIV}}, \
3196 {"mult_operator", {MULT}}, \
3197 {"div_operator", {DIV}}, \
3198 {"arith_or_logical_operator", {PLUS, MULT, AND, IOR, XOR, SMIN, SMAX, \
3199 UMIN, UMAX, COMPARE, MINUS, DIV, MOD, \
3200 UDIV, UMOD, ASHIFT, ROTATE, ASHIFTRT, \
3201 LSHIFTRT, ROTATERT}}, \
3202 {"promotable_binary_operator", {PLUS, MULT, AND, IOR, XOR, ASHIFT}}, \
3203 {"memory_displacement_operand", {MEM}}, \
3204 {"cmpsi_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
3205 LABEL_REF, SUBREG, REG, MEM, AND}}, \
3206 {"long_memory_operand", {MEM}}, \
3207 {"tls_symbolic_operand", {SYMBOL_REF}}, \
3208 {"global_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3209 {"local_dynamic_symbolic_operand", {SYMBOL_REF}}, \
3210 {"initial_exec_symbolic_operand", {SYMBOL_REF}}, \
3211 {"local_exec_symbolic_operand", {SYMBOL_REF}},
3213 /* A list of predicates that do special things with modes, and so
3214 should not elicit warnings for VOIDmode match_operand. */
3216 #define SPECIAL_MODE_PREDICATES \
3217 "ext_register_operand",
3219 /* Which processor to schedule for. The cpu attribute defines a list that
3220 mirrors this list, so changes to i386.md must be made at the same time. */
3222 enum processor_type
3224 PROCESSOR_I386, /* 80386 */
3225 PROCESSOR_I486, /* 80486DX, 80486SX, 80486DX[24] */
3226 PROCESSOR_PENTIUM,
3227 PROCESSOR_PENTIUMPRO,
3228 PROCESSOR_K6,
3229 PROCESSOR_ATHLON,
3230 PROCESSOR_PENTIUM4,
3231 PROCESSOR_max
3234 extern enum processor_type ix86_cpu;
3235 extern const char *ix86_cpu_string;
3237 extern enum processor_type ix86_arch;
3238 extern const char *ix86_arch_string;
3240 enum fpmath_unit
3242 FPMATH_387 = 1,
3243 FPMATH_SSE = 2
3246 extern enum fpmath_unit ix86_fpmath;
3247 extern const char *ix86_fpmath_string;
3249 enum tls_dialect
3251 TLS_DIALECT_GNU,
3252 TLS_DIALECT_SUN
3255 extern enum tls_dialect ix86_tls_dialect;
3256 extern const char *ix86_tls_dialect_string;
3258 enum cmodel {
3259 CM_32, /* The traditional 32-bit ABI. */
3260 CM_SMALL, /* Assumes all code and data fits in the low 31 bits. */
3261 CM_KERNEL, /* Assumes all code and data fits in the high 31 bits. */
3262 CM_MEDIUM, /* Assumes code fits in the low 31 bits; data unlimited. */
3263 CM_LARGE, /* No assumptions. */
3264 CM_SMALL_PIC /* Assumes code+data+got/plt fits in a 31 bit region. */
3267 extern enum cmodel ix86_cmodel;
3268 extern const char *ix86_cmodel_string;
3270 /* Size of the RED_ZONE area. */
3271 #define RED_ZONE_SIZE 128
3272 /* Reserved area of the red zone for temporaries. */
3273 #define RED_ZONE_RESERVE 8
3275 enum asm_dialect {
3276 ASM_ATT,
3277 ASM_INTEL
3280 extern const char *ix86_asm_string;
3281 extern enum asm_dialect ix86_asm_dialect;
3283 extern int ix86_regparm;
3284 extern const char *ix86_regparm_string;
3286 extern int ix86_preferred_stack_boundary;
3287 extern const char *ix86_preferred_stack_boundary_string;
3289 extern int ix86_branch_cost;
3290 extern const char *ix86_branch_cost_string;
3292 extern const char *ix86_debug_arg_string;
3293 extern const char *ix86_debug_addr_string;
3295 /* Obsoleted by -f options. Remove before 3.2 ships. */
3296 extern const char *ix86_align_loops_string;
3297 extern const char *ix86_align_jumps_string;
3298 extern const char *ix86_align_funcs_string;
3300 /* Smallest class containing REGNO. */
3301 extern enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER];
3303 extern rtx ix86_compare_op0; /* operand 0 for comparisons */
3304 extern rtx ix86_compare_op1; /* operand 1 for comparisons */
3306 /* To properly truncate FP values into integers, we need to set i387 control
3307 word. We can't emit proper mode switching code before reload, as spills
3308 generated by reload may truncate values incorrectly, but we still can avoid
3309 redundant computation of new control word by the mode switching pass.
3310 The fldcw instructions are still emitted redundantly, but this is probably
3311 not going to be noticeable problem, as most CPUs do have fast path for
3312 the sequence.
3314 The machinery is to emit simple truncation instructions and split them
3315 before reload to instructions having USEs of two memory locations that
3316 are filled by this code to old and new control word.
3318 Post-reload pass may be later used to eliminate the redundant fildcw if
3319 needed. */
3321 enum fp_cw_mode {FP_CW_STORED, FP_CW_UNINITIALIZED, FP_CW_ANY};
3323 /* Define this macro if the port needs extra instructions inserted
3324 for mode switching in an optimizing compilation. */
3326 #define OPTIMIZE_MODE_SWITCHING(ENTITY) 1
3328 /* If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as
3329 initializer for an array of integers. Each initializer element N
3330 refers to an entity that needs mode switching, and specifies the
3331 number of different modes that might need to be set for this
3332 entity. The position of the initializer in the initializer -
3333 starting counting at zero - determines the integer that is used to
3334 refer to the mode-switched entity in question. */
3336 #define NUM_MODES_FOR_MODE_SWITCHING { FP_CW_ANY }
3338 /* ENTITY is an integer specifying a mode-switched entity. If
3339 `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to
3340 return an integer value not larger than the corresponding element
3341 in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY
3342 must be switched into prior to the execution of INSN. */
3344 #define MODE_NEEDED(ENTITY, I) \
3345 (GET_CODE (I) == CALL_INSN \
3346 || (GET_CODE (I) == INSN && (asm_noperands (PATTERN (I)) >= 0 \
3347 || GET_CODE (PATTERN (I)) == ASM_INPUT))\
3348 ? FP_CW_UNINITIALIZED \
3349 : recog_memoized (I) < 0 || get_attr_type (I) != TYPE_FISTP \
3350 ? FP_CW_ANY \
3351 : FP_CW_STORED)
3353 /* This macro specifies the order in which modes for ENTITY are
3354 processed. 0 is the highest priority. */
3356 #define MODE_PRIORITY_TO_MODE(ENTITY, N) (N)
3358 /* Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE
3359 is the set of hard registers live at the point where the insn(s)
3360 are to be inserted. */
3362 #define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
3363 ((MODE) == FP_CW_STORED \
3364 ? emit_i387_cw_initialization (assign_386_stack_local (HImode, 1), \
3365 assign_386_stack_local (HImode, 2)), 0\
3366 : 0)
3368 /* Avoid renaming of stack registers, as doing so in combination with
3369 scheduling just increases amount of live registers at time and in
3370 the turn amount of fxch instructions needed.
3372 ??? Maybe Pentium chips benefits from renaming, someone can try... */
3374 #define HARD_REGNO_RENAME_OK(SRC, TARGET) \
3375 ((SRC) < FIRST_STACK_REG || (SRC) > LAST_STACK_REG)
3379 Local variables:
3380 version-control: t
3381 End: