tree-inline.c (estimate_num_insns_1): Handle VEC_COND_EXPR.
[official-gcc.git] / gcc / reload.c
blob9f10321d9c6b76c34026faf3f81ed31289079e37
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "coretypes.h"
93 #include "tm.h"
94 #include "rtl.h"
95 #include "tm_p.h"
96 #include "insn-config.h"
97 #include "expr.h"
98 #include "optabs.h"
99 #include "recog.h"
100 #include "reload.h"
101 #include "regs.h"
102 #include "hard-reg-set.h"
103 #include "flags.h"
104 #include "real.h"
105 #include "output.h"
106 #include "function.h"
107 #include "toplev.h"
108 #include "params.h"
109 #include "target.h"
111 /* True if X is a constant that can be forced into the constant pool. */
112 #define CONST_POOL_OK_P(X) \
113 (CONSTANT_P (X) \
114 && GET_CODE (X) != HIGH \
115 && !targetm.cannot_force_const_mem (X))
117 /* True if C is a non-empty register class that has too few registers
118 to be safely used as a reload target class. */
119 #define SMALL_REGISTER_CLASS_P(C) \
120 (reg_class_size [(C)] == 1 \
121 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
124 /* All reloads of the current insn are recorded here. See reload.h for
125 comments. */
126 int n_reloads;
127 struct reload rld[MAX_RELOADS];
129 /* All the "earlyclobber" operands of the current insn
130 are recorded here. */
131 int n_earlyclobbers;
132 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
134 int reload_n_operands;
136 /* Replacing reloads.
138 If `replace_reloads' is nonzero, then as each reload is recorded
139 an entry is made for it in the table `replacements'.
140 Then later `subst_reloads' can look through that table and
141 perform all the replacements needed. */
143 /* Nonzero means record the places to replace. */
144 static int replace_reloads;
146 /* Each replacement is recorded with a structure like this. */
147 struct replacement
149 rtx *where; /* Location to store in */
150 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
151 a SUBREG; 0 otherwise. */
152 int what; /* which reload this is for */
153 enum machine_mode mode; /* mode it must have */
156 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
158 /* Number of replacements currently recorded. */
159 static int n_replacements;
161 /* Used to track what is modified by an operand. */
162 struct decomposition
164 int reg_flag; /* Nonzero if referencing a register. */
165 int safe; /* Nonzero if this can't conflict with anything. */
166 rtx base; /* Base address for MEM. */
167 HOST_WIDE_INT start; /* Starting offset or register number. */
168 HOST_WIDE_INT end; /* Ending offset or register number. */
171 #ifdef SECONDARY_MEMORY_NEEDED
173 /* Save MEMs needed to copy from one class of registers to another. One MEM
174 is used per mode, but normally only one or two modes are ever used.
176 We keep two versions, before and after register elimination. The one
177 after register elimination is record separately for each operand. This
178 is done in case the address is not valid to be sure that we separately
179 reload each. */
181 static rtx secondary_memlocs[NUM_MACHINE_MODES];
182 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
183 static int secondary_memlocs_elim_used = 0;
184 #endif
186 /* The instruction we are doing reloads for;
187 so we can test whether a register dies in it. */
188 static rtx this_insn;
190 /* Nonzero if this instruction is a user-specified asm with operands. */
191 static int this_insn_is_asm;
193 /* If hard_regs_live_known is nonzero,
194 we can tell which hard regs are currently live,
195 at least enough to succeed in choosing dummy reloads. */
196 static int hard_regs_live_known;
198 /* Indexed by hard reg number,
199 element is nonnegative if hard reg has been spilled.
200 This vector is passed to `find_reloads' as an argument
201 and is not changed here. */
202 static short *static_reload_reg_p;
204 /* Set to 1 in subst_reg_equivs if it changes anything. */
205 static int subst_reg_equivs_changed;
207 /* On return from push_reload, holds the reload-number for the OUT
208 operand, which can be different for that from the input operand. */
209 static int output_reloadnum;
211 /* Compare two RTX's. */
212 #define MATCHES(x, y) \
213 (x == y || (x != 0 && (REG_P (x) \
214 ? REG_P (y) && REGNO (x) == REGNO (y) \
215 : rtx_equal_p (x, y) && ! side_effects_p (x))))
217 /* Indicates if two reloads purposes are for similar enough things that we
218 can merge their reloads. */
219 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
220 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
221 || ((when1) == (when2) && (op1) == (op2)) \
222 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
223 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
224 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
225 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
226 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
228 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
229 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
230 ((when1) != (when2) \
231 || ! ((op1) == (op2) \
232 || (when1) == RELOAD_FOR_INPUT \
233 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
234 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
236 /* If we are going to reload an address, compute the reload type to
237 use. */
238 #define ADDR_TYPE(type) \
239 ((type) == RELOAD_FOR_INPUT_ADDRESS \
240 ? RELOAD_FOR_INPADDR_ADDRESS \
241 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
242 ? RELOAD_FOR_OUTADDR_ADDRESS \
243 : (type)))
245 #ifdef HAVE_SECONDARY_RELOADS
246 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
247 enum machine_mode, enum reload_type,
248 enum insn_code *);
249 #endif
250 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
251 int, unsigned int);
252 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253 static void push_replacement (rtx *, int, enum machine_mode);
254 static void dup_replacements (rtx *, rtx *);
255 static void combine_reloads (void);
256 static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 enum reload_type, int, int);
258 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 enum machine_mode, enum reg_class, int, int);
260 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
261 static struct decomposition decompose (rtx);
262 static int immune_p (rtx, rtx, struct decomposition);
263 static int alternative_allows_memconst (const char *, int);
264 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
265 int *);
266 static rtx make_memloc (rtx, int);
267 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 int, enum reload_type, int, rtx);
270 static rtx subst_reg_equivs (rtx, rtx);
271 static rtx subst_indexed_address (rtx);
272 static void update_auto_inc_notes (rtx, int, int);
273 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
274 int, enum reload_type,int, rtx);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 enum machine_mode, int,
277 enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
279 int, rtx);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static int find_inc_amount (rtx, rtx);
282 static int refers_to_mem_for_reload_p (rtx);
283 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
284 rtx, rtx *);
286 #ifdef HAVE_SECONDARY_RELOADS
288 /* Determine if any secondary reloads are needed for loading (if IN_P is
289 nonzero) or storing (if IN_P is zero) X to or from a reload register of
290 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
291 are needed, push them.
293 Return the reload number of the secondary reload we made, or -1 if
294 we didn't need one. *PICODE is set to the insn_code to use if we do
295 need a secondary reload. */
297 static int
298 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
299 enum reg_class reload_class,
300 enum machine_mode reload_mode, enum reload_type type,
301 enum insn_code *picode)
303 enum reg_class class = NO_REGS;
304 enum machine_mode mode = reload_mode;
305 enum insn_code icode = CODE_FOR_nothing;
306 enum reg_class t_class = NO_REGS;
307 enum machine_mode t_mode = VOIDmode;
308 enum insn_code t_icode = CODE_FOR_nothing;
309 enum reload_type secondary_type;
310 int s_reload, t_reload = -1;
312 if (type == RELOAD_FOR_INPUT_ADDRESS
313 || type == RELOAD_FOR_OUTPUT_ADDRESS
314 || type == RELOAD_FOR_INPADDR_ADDRESS
315 || type == RELOAD_FOR_OUTADDR_ADDRESS)
316 secondary_type = type;
317 else
318 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
320 *picode = CODE_FOR_nothing;
322 /* If X is a paradoxical SUBREG, use the inner value to determine both the
323 mode and object being reloaded. */
324 if (GET_CODE (x) == SUBREG
325 && (GET_MODE_SIZE (GET_MODE (x))
326 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
328 x = SUBREG_REG (x);
329 reload_mode = GET_MODE (x);
332 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
333 is still a pseudo-register by now, it *must* have an equivalent MEM
334 but we don't want to assume that), use that equivalent when seeing if
335 a secondary reload is needed since whether or not a reload is needed
336 might be sensitive to the form of the MEM. */
338 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
339 && reg_equiv_mem[REGNO (x)] != 0)
340 x = reg_equiv_mem[REGNO (x)];
342 #ifdef SECONDARY_INPUT_RELOAD_CLASS
343 if (in_p)
344 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
345 #endif
347 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
348 if (! in_p)
349 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
350 #endif
352 /* If we don't need any secondary registers, done. */
353 if (class == NO_REGS)
354 return -1;
356 /* Get a possible insn to use. If the predicate doesn't accept X, don't
357 use the insn. */
359 icode = (in_p ? reload_in_optab[(int) reload_mode]
360 : reload_out_optab[(int) reload_mode]);
362 if (icode != CODE_FOR_nothing
363 && insn_data[(int) icode].operand[in_p].predicate
364 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
365 icode = CODE_FOR_nothing;
367 /* If we will be using an insn, see if it can directly handle the reload
368 register we will be using. If it can, the secondary reload is for a
369 scratch register. If it can't, we will use the secondary reload for
370 an intermediate register and require a tertiary reload for the scratch
371 register. */
373 if (icode != CODE_FOR_nothing)
375 /* If IN_P is nonzero, the reload register will be the output in
376 operand 0. If IN_P is zero, the reload register will be the input
377 in operand 1. Outputs should have an initial "=", which we must
378 skip. */
380 enum reg_class insn_class;
382 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
383 insn_class = ALL_REGS;
384 else
386 const char *insn_constraint
387 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
388 char insn_letter = *insn_constraint;
389 insn_class
390 = (insn_letter == 'r' ? GENERAL_REGS
391 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
392 insn_constraint));
394 gcc_assert (insn_class != NO_REGS);
395 gcc_assert (!in_p
396 || insn_data[(int) icode].operand[!in_p].constraint[0]
397 == '=');
400 /* The scratch register's constraint must start with "=&". */
401 gcc_assert (insn_data[(int) icode].operand[2].constraint[0] == '='
402 && insn_data[(int) icode].operand[2].constraint[1] == '&');
404 if (reg_class_subset_p (reload_class, insn_class))
405 mode = insn_data[(int) icode].operand[2].mode;
406 else
408 const char *t_constraint
409 = &insn_data[(int) icode].operand[2].constraint[2];
410 char t_letter = *t_constraint;
411 class = insn_class;
412 t_mode = insn_data[(int) icode].operand[2].mode;
413 t_class = (t_letter == 'r' ? GENERAL_REGS
414 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
415 t_constraint));
416 t_icode = icode;
417 icode = CODE_FOR_nothing;
421 /* This case isn't valid, so fail. Reload is allowed to use the same
422 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
423 in the case of a secondary register, we actually need two different
424 registers for correct code. We fail here to prevent the possibility of
425 silently generating incorrect code later.
427 The convention is that secondary input reloads are valid only if the
428 secondary_class is different from class. If you have such a case, you
429 can not use secondary reloads, you must work around the problem some
430 other way.
432 Allow this when a reload_in/out pattern is being used. I.e. assume
433 that the generated code handles this case. */
435 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
436 || t_icode != CODE_FOR_nothing);
438 /* If we need a tertiary reload, see if we have one we can reuse or else
439 make a new one. */
441 if (t_class != NO_REGS)
443 for (t_reload = 0; t_reload < n_reloads; t_reload++)
444 if (rld[t_reload].secondary_p
445 && (reg_class_subset_p (t_class, rld[t_reload].class)
446 || reg_class_subset_p (rld[t_reload].class, t_class))
447 && ((in_p && rld[t_reload].inmode == t_mode)
448 || (! in_p && rld[t_reload].outmode == t_mode))
449 && ((in_p && (rld[t_reload].secondary_in_icode
450 == CODE_FOR_nothing))
451 || (! in_p &&(rld[t_reload].secondary_out_icode
452 == CODE_FOR_nothing)))
453 && (SMALL_REGISTER_CLASS_P (t_class) || SMALL_REGISTER_CLASSES)
454 && MERGABLE_RELOADS (secondary_type,
455 rld[t_reload].when_needed,
456 opnum, rld[t_reload].opnum))
458 if (in_p)
459 rld[t_reload].inmode = t_mode;
460 if (! in_p)
461 rld[t_reload].outmode = t_mode;
463 if (reg_class_subset_p (t_class, rld[t_reload].class))
464 rld[t_reload].class = t_class;
466 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
467 rld[t_reload].optional &= optional;
468 rld[t_reload].secondary_p = 1;
469 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
470 opnum, rld[t_reload].opnum))
471 rld[t_reload].when_needed = RELOAD_OTHER;
474 if (t_reload == n_reloads)
476 /* We need to make a new tertiary reload for this register class. */
477 rld[t_reload].in = rld[t_reload].out = 0;
478 rld[t_reload].class = t_class;
479 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
480 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
481 rld[t_reload].reg_rtx = 0;
482 rld[t_reload].optional = optional;
483 rld[t_reload].inc = 0;
484 /* Maybe we could combine these, but it seems too tricky. */
485 rld[t_reload].nocombine = 1;
486 rld[t_reload].in_reg = 0;
487 rld[t_reload].out_reg = 0;
488 rld[t_reload].opnum = opnum;
489 rld[t_reload].when_needed = secondary_type;
490 rld[t_reload].secondary_in_reload = -1;
491 rld[t_reload].secondary_out_reload = -1;
492 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
493 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
494 rld[t_reload].secondary_p = 1;
496 n_reloads++;
500 /* See if we can reuse an existing secondary reload. */
501 for (s_reload = 0; s_reload < n_reloads; s_reload++)
502 if (rld[s_reload].secondary_p
503 && (reg_class_subset_p (class, rld[s_reload].class)
504 || reg_class_subset_p (rld[s_reload].class, class))
505 && ((in_p && rld[s_reload].inmode == mode)
506 || (! in_p && rld[s_reload].outmode == mode))
507 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
508 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
509 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
510 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
511 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
512 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
513 opnum, rld[s_reload].opnum))
515 if (in_p)
516 rld[s_reload].inmode = mode;
517 if (! in_p)
518 rld[s_reload].outmode = mode;
520 if (reg_class_subset_p (class, rld[s_reload].class))
521 rld[s_reload].class = class;
523 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
524 rld[s_reload].optional &= optional;
525 rld[s_reload].secondary_p = 1;
526 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
527 opnum, rld[s_reload].opnum))
528 rld[s_reload].when_needed = RELOAD_OTHER;
531 if (s_reload == n_reloads)
533 #ifdef SECONDARY_MEMORY_NEEDED
534 /* If we need a memory location to copy between the two reload regs,
535 set it up now. Note that we do the input case before making
536 the reload and the output case after. This is due to the
537 way reloads are output. */
539 if (in_p && icode == CODE_FOR_nothing
540 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
542 get_secondary_mem (x, reload_mode, opnum, type);
544 /* We may have just added new reloads. Make sure we add
545 the new reload at the end. */
546 s_reload = n_reloads;
548 #endif
550 /* We need to make a new secondary reload for this register class. */
551 rld[s_reload].in = rld[s_reload].out = 0;
552 rld[s_reload].class = class;
554 rld[s_reload].inmode = in_p ? mode : VOIDmode;
555 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
556 rld[s_reload].reg_rtx = 0;
557 rld[s_reload].optional = optional;
558 rld[s_reload].inc = 0;
559 /* Maybe we could combine these, but it seems too tricky. */
560 rld[s_reload].nocombine = 1;
561 rld[s_reload].in_reg = 0;
562 rld[s_reload].out_reg = 0;
563 rld[s_reload].opnum = opnum;
564 rld[s_reload].when_needed = secondary_type;
565 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
566 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
567 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
568 rld[s_reload].secondary_out_icode
569 = ! in_p ? t_icode : CODE_FOR_nothing;
570 rld[s_reload].secondary_p = 1;
572 n_reloads++;
574 #ifdef SECONDARY_MEMORY_NEEDED
575 if (! in_p && icode == CODE_FOR_nothing
576 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
577 get_secondary_mem (x, mode, opnum, type);
578 #endif
581 *picode = icode;
582 return s_reload;
584 #endif /* HAVE_SECONDARY_RELOADS */
586 #ifdef SECONDARY_MEMORY_NEEDED
588 /* Return a memory location that will be used to copy X in mode MODE.
589 If we haven't already made a location for this mode in this insn,
590 call find_reloads_address on the location being returned. */
593 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
594 int opnum, enum reload_type type)
596 rtx loc;
597 int mem_valid;
599 /* By default, if MODE is narrower than a word, widen it to a word.
600 This is required because most machines that require these memory
601 locations do not support short load and stores from all registers
602 (e.g., FP registers). */
604 #ifdef SECONDARY_MEMORY_NEEDED_MODE
605 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
606 #else
607 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
608 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
609 #endif
611 /* If we already have made a MEM for this operand in MODE, return it. */
612 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
613 return secondary_memlocs_elim[(int) mode][opnum];
615 /* If this is the first time we've tried to get a MEM for this mode,
616 allocate a new one. `something_changed' in reload will get set
617 by noticing that the frame size has changed. */
619 if (secondary_memlocs[(int) mode] == 0)
621 #ifdef SECONDARY_MEMORY_NEEDED_RTX
622 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
623 #else
624 secondary_memlocs[(int) mode]
625 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
626 #endif
629 /* Get a version of the address doing any eliminations needed. If that
630 didn't give us a new MEM, make a new one if it isn't valid. */
632 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
633 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
635 if (! mem_valid && loc == secondary_memlocs[(int) mode])
636 loc = copy_rtx (loc);
638 /* The only time the call below will do anything is if the stack
639 offset is too large. In that case IND_LEVELS doesn't matter, so we
640 can just pass a zero. Adjust the type to be the address of the
641 corresponding object. If the address was valid, save the eliminated
642 address. If it wasn't valid, we need to make a reload each time, so
643 don't save it. */
645 if (! mem_valid)
647 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
648 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
649 : RELOAD_OTHER);
651 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
652 opnum, type, 0, 0);
655 secondary_memlocs_elim[(int) mode][opnum] = loc;
656 if (secondary_memlocs_elim_used <= (int)mode)
657 secondary_memlocs_elim_used = (int)mode + 1;
658 return loc;
661 /* Clear any secondary memory locations we've made. */
663 void
664 clear_secondary_mem (void)
666 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
668 #endif /* SECONDARY_MEMORY_NEEDED */
671 /* Find the largest class which has at least one register valid in
672 mode INNER, and which for every such register, that register number
673 plus N is also valid in OUTER (if in range) and is cheap to move
674 into REGNO. Such a class must exist. */
676 static enum reg_class
677 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
678 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
679 unsigned int dest_regno ATTRIBUTE_UNUSED)
681 int best_cost = -1;
682 int class;
683 int regno;
684 enum reg_class best_class = NO_REGS;
685 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
686 unsigned int best_size = 0;
687 int cost;
689 for (class = 1; class < N_REG_CLASSES; class++)
691 int bad = 0;
692 int good = 0;
693 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
694 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
696 if (HARD_REGNO_MODE_OK (regno, inner))
698 good = 1;
699 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
700 || ! HARD_REGNO_MODE_OK (regno + n, outer))
701 bad = 1;
705 if (bad || !good)
706 continue;
707 cost = REGISTER_MOVE_COST (outer, class, dest_class);
709 if ((reg_class_size[class] > best_size
710 && (best_cost < 0 || best_cost >= cost))
711 || best_cost > cost)
713 best_class = class;
714 best_size = reg_class_size[class];
715 best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
719 gcc_assert (best_size != 0);
721 return best_class;
724 /* Return the number of a previously made reload that can be combined with
725 a new one, or n_reloads if none of the existing reloads can be used.
726 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
727 push_reload, they determine the kind of the new reload that we try to
728 combine. P_IN points to the corresponding value of IN, which can be
729 modified by this function.
730 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
732 static int
733 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
734 enum reload_type type, int opnum, int dont_share)
736 rtx in = *p_in;
737 int i;
738 /* We can't merge two reloads if the output of either one is
739 earlyclobbered. */
741 if (earlyclobber_operand_p (out))
742 return n_reloads;
744 /* We can use an existing reload if the class is right
745 and at least one of IN and OUT is a match
746 and the other is at worst neutral.
747 (A zero compared against anything is neutral.)
749 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
750 for the same thing since that can cause us to need more reload registers
751 than we otherwise would. */
753 for (i = 0; i < n_reloads; i++)
754 if ((reg_class_subset_p (class, rld[i].class)
755 || reg_class_subset_p (rld[i].class, class))
756 /* If the existing reload has a register, it must fit our class. */
757 && (rld[i].reg_rtx == 0
758 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
759 true_regnum (rld[i].reg_rtx)))
760 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
761 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
762 || (out != 0 && MATCHES (rld[i].out, out)
763 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
764 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
765 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
766 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
767 return i;
769 /* Reloading a plain reg for input can match a reload to postincrement
770 that reg, since the postincrement's value is the right value.
771 Likewise, it can match a preincrement reload, since we regard
772 the preincrementation as happening before any ref in this insn
773 to that register. */
774 for (i = 0; i < n_reloads; i++)
775 if ((reg_class_subset_p (class, rld[i].class)
776 || reg_class_subset_p (rld[i].class, class))
777 /* If the existing reload has a register, it must fit our
778 class. */
779 && (rld[i].reg_rtx == 0
780 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
781 true_regnum (rld[i].reg_rtx)))
782 && out == 0 && rld[i].out == 0 && rld[i].in != 0
783 && ((REG_P (in)
784 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
785 && MATCHES (XEXP (rld[i].in, 0), in))
786 || (REG_P (rld[i].in)
787 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
788 && MATCHES (XEXP (in, 0), rld[i].in)))
789 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
790 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
791 && MERGABLE_RELOADS (type, rld[i].when_needed,
792 opnum, rld[i].opnum))
794 /* Make sure reload_in ultimately has the increment,
795 not the plain register. */
796 if (REG_P (in))
797 *p_in = rld[i].in;
798 return i;
800 return n_reloads;
803 /* Return nonzero if X is a SUBREG which will require reloading of its
804 SUBREG_REG expression. */
806 static int
807 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
809 rtx inner;
811 /* Only SUBREGs are problematical. */
812 if (GET_CODE (x) != SUBREG)
813 return 0;
815 inner = SUBREG_REG (x);
817 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
818 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
819 return 1;
821 /* If INNER is not a hard register, then INNER will not need to
822 be reloaded. */
823 if (!REG_P (inner)
824 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
825 return 0;
827 /* If INNER is not ok for MODE, then INNER will need reloading. */
828 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
829 return 1;
831 /* If the outer part is a word or smaller, INNER larger than a
832 word and the number of regs for INNER is not the same as the
833 number of words in INNER, then INNER will need reloading. */
834 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
835 && output
836 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
837 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
838 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
841 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
842 requiring an extra reload register. The caller has already found that
843 IN contains some reference to REGNO, so check that we can produce the
844 new value in a single step. E.g. if we have
845 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
846 instruction that adds one to a register, this should succeed.
847 However, if we have something like
848 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
849 needs to be loaded into a register first, we need a separate reload
850 register.
851 Such PLUS reloads are generated by find_reload_address_part.
852 The out-of-range PLUS expressions are usually introduced in the instruction
853 patterns by register elimination and substituting pseudos without a home
854 by their function-invariant equivalences. */
855 static int
856 can_reload_into (rtx in, int regno, enum machine_mode mode)
858 rtx dst, test_insn;
859 int r = 0;
860 struct recog_data save_recog_data;
862 /* For matching constraints, we often get notional input reloads where
863 we want to use the original register as the reload register. I.e.
864 technically this is a non-optional input-output reload, but IN is
865 already a valid register, and has been chosen as the reload register.
866 Speed this up, since it trivially works. */
867 if (REG_P (in))
868 return 1;
870 /* To test MEMs properly, we'd have to take into account all the reloads
871 that are already scheduled, which can become quite complicated.
872 And since we've already handled address reloads for this MEM, it
873 should always succeed anyway. */
874 if (MEM_P (in))
875 return 1;
877 /* If we can make a simple SET insn that does the job, everything should
878 be fine. */
879 dst = gen_rtx_REG (mode, regno);
880 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
881 save_recog_data = recog_data;
882 if (recog_memoized (test_insn) >= 0)
884 extract_insn (test_insn);
885 r = constrain_operands (1);
887 recog_data = save_recog_data;
888 return r;
891 /* Record one reload that needs to be performed.
892 IN is an rtx saying where the data are to be found before this instruction.
893 OUT says where they must be stored after the instruction.
894 (IN is zero for data not read, and OUT is zero for data not written.)
895 INLOC and OUTLOC point to the places in the instructions where
896 IN and OUT were found.
897 If IN and OUT are both nonzero, it means the same register must be used
898 to reload both IN and OUT.
900 CLASS is a register class required for the reloaded data.
901 INMODE is the machine mode that the instruction requires
902 for the reg that replaces IN and OUTMODE is likewise for OUT.
904 If IN is zero, then OUT's location and mode should be passed as
905 INLOC and INMODE.
907 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
909 OPTIONAL nonzero means this reload does not need to be performed:
910 it can be discarded if that is more convenient.
912 OPNUM and TYPE say what the purpose of this reload is.
914 The return value is the reload-number for this reload.
916 If both IN and OUT are nonzero, in some rare cases we might
917 want to make two separate reloads. (Actually we never do this now.)
918 Therefore, the reload-number for OUT is stored in
919 output_reloadnum when we return; the return value applies to IN.
920 Usually (presently always), when IN and OUT are nonzero,
921 the two reload-numbers are equal, but the caller should be careful to
922 distinguish them. */
925 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
926 enum reg_class class, enum machine_mode inmode,
927 enum machine_mode outmode, int strict_low, int optional,
928 int opnum, enum reload_type type)
930 int i;
931 int dont_share = 0;
932 int dont_remove_subreg = 0;
933 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
934 int secondary_in_reload = -1, secondary_out_reload = -1;
935 enum insn_code secondary_in_icode = CODE_FOR_nothing;
936 enum insn_code secondary_out_icode = CODE_FOR_nothing;
938 /* INMODE and/or OUTMODE could be VOIDmode if no mode
939 has been specified for the operand. In that case,
940 use the operand's mode as the mode to reload. */
941 if (inmode == VOIDmode && in != 0)
942 inmode = GET_MODE (in);
943 if (outmode == VOIDmode && out != 0)
944 outmode = GET_MODE (out);
946 /* If IN is a pseudo register everywhere-equivalent to a constant, and
947 it is not in a hard register, reload straight from the constant,
948 since we want to get rid of such pseudo registers.
949 Often this is done earlier, but not always in find_reloads_address. */
950 if (in != 0 && REG_P (in))
952 int regno = REGNO (in);
954 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
955 && reg_equiv_constant[regno] != 0)
956 in = reg_equiv_constant[regno];
959 /* Likewise for OUT. Of course, OUT will never be equivalent to
960 an actual constant, but it might be equivalent to a memory location
961 (in the case of a parameter). */
962 if (out != 0 && REG_P (out))
964 int regno = REGNO (out);
966 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
967 && reg_equiv_constant[regno] != 0)
968 out = reg_equiv_constant[regno];
971 /* If we have a read-write operand with an address side-effect,
972 change either IN or OUT so the side-effect happens only once. */
973 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
974 switch (GET_CODE (XEXP (in, 0)))
976 case POST_INC: case POST_DEC: case POST_MODIFY:
977 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
978 break;
980 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
981 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
982 break;
984 default:
985 break;
988 /* If we are reloading a (SUBREG constant ...), really reload just the
989 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
990 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
991 a pseudo and hence will become a MEM) with M1 wider than M2 and the
992 register is a pseudo, also reload the inside expression.
993 For machines that extend byte loads, do this for any SUBREG of a pseudo
994 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
995 M2 is an integral mode that gets extended when loaded.
996 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
997 either M1 is not valid for R or M2 is wider than a word but we only
998 need one word to store an M2-sized quantity in R.
999 (However, if OUT is nonzero, we need to reload the reg *and*
1000 the subreg, so do nothing here, and let following statement handle it.)
1002 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1003 we can't handle it here because CONST_INT does not indicate a mode.
1005 Similarly, we must reload the inside expression if we have a
1006 STRICT_LOW_PART (presumably, in == out in the cas).
1008 Also reload the inner expression if it does not require a secondary
1009 reload but the SUBREG does.
1011 Finally, reload the inner expression if it is a register that is in
1012 the class whose registers cannot be referenced in a different size
1013 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1014 cannot reload just the inside since we might end up with the wrong
1015 register class. But if it is inside a STRICT_LOW_PART, we have
1016 no choice, so we hope we do get the right register class there. */
1018 if (in != 0 && GET_CODE (in) == SUBREG
1019 && (subreg_lowpart_p (in) || strict_low)
1020 #ifdef CANNOT_CHANGE_MODE_CLASS
1021 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1022 #endif
1023 && (CONSTANT_P (SUBREG_REG (in))
1024 || GET_CODE (SUBREG_REG (in)) == PLUS
1025 || strict_low
1026 || (((REG_P (SUBREG_REG (in))
1027 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1028 || MEM_P (SUBREG_REG (in)))
1029 && ((GET_MODE_SIZE (inmode)
1030 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1031 #ifdef LOAD_EXTEND_OP
1032 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1033 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1034 <= UNITS_PER_WORD)
1035 && (GET_MODE_SIZE (inmode)
1036 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1037 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1038 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1039 #endif
1040 #ifdef WORD_REGISTER_OPERATIONS
1041 || ((GET_MODE_SIZE (inmode)
1042 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1043 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1044 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1045 / UNITS_PER_WORD)))
1046 #endif
1048 || (REG_P (SUBREG_REG (in))
1049 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1050 /* The case where out is nonzero
1051 is handled differently in the following statement. */
1052 && (out == 0 || subreg_lowpart_p (in))
1053 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1054 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1055 > UNITS_PER_WORD)
1056 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1057 / UNITS_PER_WORD)
1058 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1059 [GET_MODE (SUBREG_REG (in))]))
1060 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1061 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1062 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1063 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1064 GET_MODE (SUBREG_REG (in)),
1065 SUBREG_REG (in))
1066 == NO_REGS))
1067 #endif
1068 #ifdef CANNOT_CHANGE_MODE_CLASS
1069 || (REG_P (SUBREG_REG (in))
1070 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1071 && REG_CANNOT_CHANGE_MODE_P
1072 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1073 #endif
1076 in_subreg_loc = inloc;
1077 inloc = &SUBREG_REG (in);
1078 in = *inloc;
1079 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1080 if (MEM_P (in))
1081 /* This is supposed to happen only for paradoxical subregs made by
1082 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1083 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1084 #endif
1085 inmode = GET_MODE (in);
1088 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1089 either M1 is not valid for R or M2 is wider than a word but we only
1090 need one word to store an M2-sized quantity in R.
1092 However, we must reload the inner reg *as well as* the subreg in
1093 that case. */
1095 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1096 code above. This can happen if SUBREG_BYTE != 0. */
1098 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1100 enum reg_class in_class = class;
1102 if (REG_P (SUBREG_REG (in)))
1103 in_class
1104 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1105 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1106 GET_MODE (SUBREG_REG (in)),
1107 SUBREG_BYTE (in),
1108 GET_MODE (in)),
1109 REGNO (SUBREG_REG (in)));
1111 /* This relies on the fact that emit_reload_insns outputs the
1112 instructions for input reloads of type RELOAD_OTHER in the same
1113 order as the reloads. Thus if the outer reload is also of type
1114 RELOAD_OTHER, we are guaranteed that this inner reload will be
1115 output before the outer reload. */
1116 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1117 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1118 dont_remove_subreg = 1;
1121 /* Similarly for paradoxical and problematical SUBREGs on the output.
1122 Note that there is no reason we need worry about the previous value
1123 of SUBREG_REG (out); even if wider than out,
1124 storing in a subreg is entitled to clobber it all
1125 (except in the case of STRICT_LOW_PART,
1126 and in that case the constraint should label it input-output.) */
1127 if (out != 0 && GET_CODE (out) == SUBREG
1128 && (subreg_lowpart_p (out) || strict_low)
1129 #ifdef CANNOT_CHANGE_MODE_CLASS
1130 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1131 #endif
1132 && (CONSTANT_P (SUBREG_REG (out))
1133 || strict_low
1134 || (((REG_P (SUBREG_REG (out))
1135 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1136 || MEM_P (SUBREG_REG (out)))
1137 && ((GET_MODE_SIZE (outmode)
1138 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1139 #ifdef WORD_REGISTER_OPERATIONS
1140 || ((GET_MODE_SIZE (outmode)
1141 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1142 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1143 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1144 / UNITS_PER_WORD)))
1145 #endif
1147 || (REG_P (SUBREG_REG (out))
1148 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1149 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1150 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1151 > UNITS_PER_WORD)
1152 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1153 / UNITS_PER_WORD)
1154 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1155 [GET_MODE (SUBREG_REG (out))]))
1156 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1157 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1158 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1159 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1160 GET_MODE (SUBREG_REG (out)),
1161 SUBREG_REG (out))
1162 == NO_REGS))
1163 #endif
1164 #ifdef CANNOT_CHANGE_MODE_CLASS
1165 || (REG_P (SUBREG_REG (out))
1166 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1167 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1168 GET_MODE (SUBREG_REG (out)),
1169 outmode))
1170 #endif
1173 out_subreg_loc = outloc;
1174 outloc = &SUBREG_REG (out);
1175 out = *outloc;
1176 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1177 gcc_assert (!MEM_P (out)
1178 || GET_MODE_SIZE (GET_MODE (out))
1179 <= GET_MODE_SIZE (outmode));
1180 #endif
1181 outmode = GET_MODE (out);
1184 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1185 either M1 is not valid for R or M2 is wider than a word but we only
1186 need one word to store an M2-sized quantity in R.
1188 However, we must reload the inner reg *as well as* the subreg in
1189 that case. In this case, the inner reg is an in-out reload. */
1191 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1193 /* This relies on the fact that emit_reload_insns outputs the
1194 instructions for output reloads of type RELOAD_OTHER in reverse
1195 order of the reloads. Thus if the outer reload is also of type
1196 RELOAD_OTHER, we are guaranteed that this inner reload will be
1197 output after the outer reload. */
1198 dont_remove_subreg = 1;
1199 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1200 &SUBREG_REG (out),
1201 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1202 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1203 GET_MODE (SUBREG_REG (out)),
1204 SUBREG_BYTE (out),
1205 GET_MODE (out)),
1206 REGNO (SUBREG_REG (out))),
1207 VOIDmode, VOIDmode, 0, 0,
1208 opnum, RELOAD_OTHER);
1211 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1212 if (in != 0 && out != 0 && MEM_P (out)
1213 && (REG_P (in) || MEM_P (in))
1214 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1215 dont_share = 1;
1217 /* If IN is a SUBREG of a hard register, make a new REG. This
1218 simplifies some of the cases below. */
1220 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1221 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1222 && ! dont_remove_subreg)
1223 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1225 /* Similarly for OUT. */
1226 if (out != 0 && GET_CODE (out) == SUBREG
1227 && REG_P (SUBREG_REG (out))
1228 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1229 && ! dont_remove_subreg)
1230 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1232 /* Narrow down the class of register wanted if that is
1233 desirable on this machine for efficiency. */
1234 if (in != 0)
1235 class = PREFERRED_RELOAD_CLASS (in, class);
1237 /* Output reloads may need analogous treatment, different in detail. */
1238 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1239 if (out != 0)
1240 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1241 #endif
1243 /* Make sure we use a class that can handle the actual pseudo
1244 inside any subreg. For example, on the 386, QImode regs
1245 can appear within SImode subregs. Although GENERAL_REGS
1246 can handle SImode, QImode needs a smaller class. */
1247 #ifdef LIMIT_RELOAD_CLASS
1248 if (in_subreg_loc)
1249 class = LIMIT_RELOAD_CLASS (inmode, class);
1250 else if (in != 0 && GET_CODE (in) == SUBREG)
1251 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1253 if (out_subreg_loc)
1254 class = LIMIT_RELOAD_CLASS (outmode, class);
1255 if (out != 0 && GET_CODE (out) == SUBREG)
1256 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1257 #endif
1259 /* Verify that this class is at least possible for the mode that
1260 is specified. */
1261 if (this_insn_is_asm)
1263 enum machine_mode mode;
1264 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1265 mode = inmode;
1266 else
1267 mode = outmode;
1268 if (mode == VOIDmode)
1270 error_for_asm (this_insn, "cannot reload integer constant "
1271 "operand in %<asm%>");
1272 mode = word_mode;
1273 if (in != 0)
1274 inmode = word_mode;
1275 if (out != 0)
1276 outmode = word_mode;
1278 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1279 if (HARD_REGNO_MODE_OK (i, mode)
1280 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1282 int nregs = hard_regno_nregs[i][mode];
1284 int j;
1285 for (j = 1; j < nregs; j++)
1286 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1287 break;
1288 if (j == nregs)
1289 break;
1291 if (i == FIRST_PSEUDO_REGISTER)
1293 error_for_asm (this_insn, "impossible register constraint "
1294 "in %<asm%>");
1295 class = ALL_REGS;
1299 /* Optional output reloads are always OK even if we have no register class,
1300 since the function of these reloads is only to have spill_reg_store etc.
1301 set, so that the storing insn can be deleted later. */
1302 gcc_assert (class != NO_REGS
1303 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1305 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1307 if (i == n_reloads)
1309 /* See if we need a secondary reload register to move between CLASS
1310 and IN or CLASS and OUT. Get the icode and push any required reloads
1311 needed for each of them if so. */
1313 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1314 if (in != 0)
1315 secondary_in_reload
1316 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1317 &secondary_in_icode);
1318 #endif
1320 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1321 if (out != 0 && GET_CODE (out) != SCRATCH)
1322 secondary_out_reload
1323 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1324 type, &secondary_out_icode);
1325 #endif
1327 /* We found no existing reload suitable for re-use.
1328 So add an additional reload. */
1330 #ifdef SECONDARY_MEMORY_NEEDED
1331 /* If a memory location is needed for the copy, make one. */
1332 if (in != 0 && (REG_P (in) || GET_CODE (in) == SUBREG)
1333 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1334 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1335 class, inmode))
1336 get_secondary_mem (in, inmode, opnum, type);
1337 #endif
1339 i = n_reloads;
1340 rld[i].in = in;
1341 rld[i].out = out;
1342 rld[i].class = class;
1343 rld[i].inmode = inmode;
1344 rld[i].outmode = outmode;
1345 rld[i].reg_rtx = 0;
1346 rld[i].optional = optional;
1347 rld[i].inc = 0;
1348 rld[i].nocombine = 0;
1349 rld[i].in_reg = inloc ? *inloc : 0;
1350 rld[i].out_reg = outloc ? *outloc : 0;
1351 rld[i].opnum = opnum;
1352 rld[i].when_needed = type;
1353 rld[i].secondary_in_reload = secondary_in_reload;
1354 rld[i].secondary_out_reload = secondary_out_reload;
1355 rld[i].secondary_in_icode = secondary_in_icode;
1356 rld[i].secondary_out_icode = secondary_out_icode;
1357 rld[i].secondary_p = 0;
1359 n_reloads++;
1361 #ifdef SECONDARY_MEMORY_NEEDED
1362 if (out != 0 && (REG_P (out) || GET_CODE (out) == SUBREG)
1363 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1364 && SECONDARY_MEMORY_NEEDED (class,
1365 REGNO_REG_CLASS (reg_or_subregno (out)),
1366 outmode))
1367 get_secondary_mem (out, outmode, opnum, type);
1368 #endif
1370 else
1372 /* We are reusing an existing reload,
1373 but we may have additional information for it.
1374 For example, we may now have both IN and OUT
1375 while the old one may have just one of them. */
1377 /* The modes can be different. If they are, we want to reload in
1378 the larger mode, so that the value is valid for both modes. */
1379 if (inmode != VOIDmode
1380 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1381 rld[i].inmode = inmode;
1382 if (outmode != VOIDmode
1383 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1384 rld[i].outmode = outmode;
1385 if (in != 0)
1387 rtx in_reg = inloc ? *inloc : 0;
1388 /* If we merge reloads for two distinct rtl expressions that
1389 are identical in content, there might be duplicate address
1390 reloads. Remove the extra set now, so that if we later find
1391 that we can inherit this reload, we can get rid of the
1392 address reloads altogether.
1394 Do not do this if both reloads are optional since the result
1395 would be an optional reload which could potentially leave
1396 unresolved address replacements.
1398 It is not sufficient to call transfer_replacements since
1399 choose_reload_regs will remove the replacements for address
1400 reloads of inherited reloads which results in the same
1401 problem. */
1402 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1403 && ! (rld[i].optional && optional))
1405 /* We must keep the address reload with the lower operand
1406 number alive. */
1407 if (opnum > rld[i].opnum)
1409 remove_address_replacements (in);
1410 in = rld[i].in;
1411 in_reg = rld[i].in_reg;
1413 else
1414 remove_address_replacements (rld[i].in);
1416 rld[i].in = in;
1417 rld[i].in_reg = in_reg;
1419 if (out != 0)
1421 rld[i].out = out;
1422 rld[i].out_reg = outloc ? *outloc : 0;
1424 if (reg_class_subset_p (class, rld[i].class))
1425 rld[i].class = class;
1426 rld[i].optional &= optional;
1427 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1428 opnum, rld[i].opnum))
1429 rld[i].when_needed = RELOAD_OTHER;
1430 rld[i].opnum = MIN (rld[i].opnum, opnum);
1433 /* If the ostensible rtx being reloaded differs from the rtx found
1434 in the location to substitute, this reload is not safe to combine
1435 because we cannot reliably tell whether it appears in the insn. */
1437 if (in != 0 && in != *inloc)
1438 rld[i].nocombine = 1;
1440 #if 0
1441 /* This was replaced by changes in find_reloads_address_1 and the new
1442 function inc_for_reload, which go with a new meaning of reload_inc. */
1444 /* If this is an IN/OUT reload in an insn that sets the CC,
1445 it must be for an autoincrement. It doesn't work to store
1446 the incremented value after the insn because that would clobber the CC.
1447 So we must do the increment of the value reloaded from,
1448 increment it, store it back, then decrement again. */
1449 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1451 out = 0;
1452 rld[i].out = 0;
1453 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1454 /* If we did not find a nonzero amount-to-increment-by,
1455 that contradicts the belief that IN is being incremented
1456 in an address in this insn. */
1457 gcc_assert (rld[i].inc != 0);
1459 #endif
1461 /* If we will replace IN and OUT with the reload-reg,
1462 record where they are located so that substitution need
1463 not do a tree walk. */
1465 if (replace_reloads)
1467 if (inloc != 0)
1469 struct replacement *r = &replacements[n_replacements++];
1470 r->what = i;
1471 r->subreg_loc = in_subreg_loc;
1472 r->where = inloc;
1473 r->mode = inmode;
1475 if (outloc != 0 && outloc != inloc)
1477 struct replacement *r = &replacements[n_replacements++];
1478 r->what = i;
1479 r->where = outloc;
1480 r->subreg_loc = out_subreg_loc;
1481 r->mode = outmode;
1485 /* If this reload is just being introduced and it has both
1486 an incoming quantity and an outgoing quantity that are
1487 supposed to be made to match, see if either one of the two
1488 can serve as the place to reload into.
1490 If one of them is acceptable, set rld[i].reg_rtx
1491 to that one. */
1493 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1495 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1496 inmode, outmode,
1497 rld[i].class, i,
1498 earlyclobber_operand_p (out));
1500 /* If the outgoing register already contains the same value
1501 as the incoming one, we can dispense with loading it.
1502 The easiest way to tell the caller that is to give a phony
1503 value for the incoming operand (same as outgoing one). */
1504 if (rld[i].reg_rtx == out
1505 && (REG_P (in) || CONSTANT_P (in))
1506 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1507 static_reload_reg_p, i, inmode))
1508 rld[i].in = out;
1511 /* If this is an input reload and the operand contains a register that
1512 dies in this insn and is used nowhere else, see if it is the right class
1513 to be used for this reload. Use it if so. (This occurs most commonly
1514 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1515 this if it is also an output reload that mentions the register unless
1516 the output is a SUBREG that clobbers an entire register.
1518 Note that the operand might be one of the spill regs, if it is a
1519 pseudo reg and we are in a block where spilling has not taken place.
1520 But if there is no spilling in this block, that is OK.
1521 An explicitly used hard reg cannot be a spill reg. */
1523 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1525 rtx note;
1526 int regno;
1527 enum machine_mode rel_mode = inmode;
1529 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1530 rel_mode = outmode;
1532 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1533 if (REG_NOTE_KIND (note) == REG_DEAD
1534 && REG_P (XEXP (note, 0))
1535 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1536 && reg_mentioned_p (XEXP (note, 0), in)
1537 /* Check that we don't use a hardreg for an uninitialized
1538 pseudo. See also find_dummy_reload(). */
1539 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1540 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->global_live_at_end,
1541 ORIGINAL_REGNO (XEXP (note, 0))))
1542 && ! refers_to_regno_for_reload_p (regno,
1543 (regno
1544 + hard_regno_nregs[regno]
1545 [rel_mode]),
1546 PATTERN (this_insn), inloc)
1547 /* If this is also an output reload, IN cannot be used as
1548 the reload register if it is set in this insn unless IN
1549 is also OUT. */
1550 && (out == 0 || in == out
1551 || ! hard_reg_set_here_p (regno,
1552 (regno
1553 + hard_regno_nregs[regno]
1554 [rel_mode]),
1555 PATTERN (this_insn)))
1556 /* ??? Why is this code so different from the previous?
1557 Is there any simple coherent way to describe the two together?
1558 What's going on here. */
1559 && (in != out
1560 || (GET_CODE (in) == SUBREG
1561 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1562 / UNITS_PER_WORD)
1563 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1564 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1565 /* Make sure the operand fits in the reg that dies. */
1566 && (GET_MODE_SIZE (rel_mode)
1567 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1568 && HARD_REGNO_MODE_OK (regno, inmode)
1569 && HARD_REGNO_MODE_OK (regno, outmode))
1571 unsigned int offs;
1572 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1573 hard_regno_nregs[regno][outmode]);
1575 for (offs = 0; offs < nregs; offs++)
1576 if (fixed_regs[regno + offs]
1577 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1578 regno + offs))
1579 break;
1581 if (offs == nregs
1582 && (! (refers_to_regno_for_reload_p
1583 (regno, (regno + hard_regno_nregs[regno][inmode]),
1584 in, (rtx *)0))
1585 || can_reload_into (in, regno, inmode)))
1587 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1588 break;
1593 if (out)
1594 output_reloadnum = i;
1596 return i;
1599 /* Record an additional place we must replace a value
1600 for which we have already recorded a reload.
1601 RELOADNUM is the value returned by push_reload
1602 when the reload was recorded.
1603 This is used in insn patterns that use match_dup. */
1605 static void
1606 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1608 if (replace_reloads)
1610 struct replacement *r = &replacements[n_replacements++];
1611 r->what = reloadnum;
1612 r->where = loc;
1613 r->subreg_loc = 0;
1614 r->mode = mode;
1618 /* Duplicate any replacement we have recorded to apply at
1619 location ORIG_LOC to also be performed at DUP_LOC.
1620 This is used in insn patterns that use match_dup. */
1622 static void
1623 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1625 int i, n = n_replacements;
1627 for (i = 0; i < n; i++)
1629 struct replacement *r = &replacements[i];
1630 if (r->where == orig_loc)
1631 push_replacement (dup_loc, r->what, r->mode);
1635 /* Transfer all replacements that used to be in reload FROM to be in
1636 reload TO. */
1638 void
1639 transfer_replacements (int to, int from)
1641 int i;
1643 for (i = 0; i < n_replacements; i++)
1644 if (replacements[i].what == from)
1645 replacements[i].what = to;
1648 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1649 or a subpart of it. If we have any replacements registered for IN_RTX,
1650 cancel the reloads that were supposed to load them.
1651 Return nonzero if we canceled any reloads. */
1653 remove_address_replacements (rtx in_rtx)
1655 int i, j;
1656 char reload_flags[MAX_RELOADS];
1657 int something_changed = 0;
1659 memset (reload_flags, 0, sizeof reload_flags);
1660 for (i = 0, j = 0; i < n_replacements; i++)
1662 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1663 reload_flags[replacements[i].what] |= 1;
1664 else
1666 replacements[j++] = replacements[i];
1667 reload_flags[replacements[i].what] |= 2;
1670 /* Note that the following store must be done before the recursive calls. */
1671 n_replacements = j;
1673 for (i = n_reloads - 1; i >= 0; i--)
1675 if (reload_flags[i] == 1)
1677 deallocate_reload_reg (i);
1678 remove_address_replacements (rld[i].in);
1679 rld[i].in = 0;
1680 something_changed = 1;
1683 return something_changed;
1686 /* If there is only one output reload, and it is not for an earlyclobber
1687 operand, try to combine it with a (logically unrelated) input reload
1688 to reduce the number of reload registers needed.
1690 This is safe if the input reload does not appear in
1691 the value being output-reloaded, because this implies
1692 it is not needed any more once the original insn completes.
1694 If that doesn't work, see we can use any of the registers that
1695 die in this insn as a reload register. We can if it is of the right
1696 class and does not appear in the value being output-reloaded. */
1698 static void
1699 combine_reloads (void)
1701 int i;
1702 int output_reload = -1;
1703 int secondary_out = -1;
1704 rtx note;
1706 /* Find the output reload; return unless there is exactly one
1707 and that one is mandatory. */
1709 for (i = 0; i < n_reloads; i++)
1710 if (rld[i].out != 0)
1712 if (output_reload >= 0)
1713 return;
1714 output_reload = i;
1717 if (output_reload < 0 || rld[output_reload].optional)
1718 return;
1720 /* An input-output reload isn't combinable. */
1722 if (rld[output_reload].in != 0)
1723 return;
1725 /* If this reload is for an earlyclobber operand, we can't do anything. */
1726 if (earlyclobber_operand_p (rld[output_reload].out))
1727 return;
1729 /* If there is a reload for part of the address of this operand, we would
1730 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1731 its life to the point where doing this combine would not lower the
1732 number of spill registers needed. */
1733 for (i = 0; i < n_reloads; i++)
1734 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1735 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1736 && rld[i].opnum == rld[output_reload].opnum)
1737 return;
1739 /* Check each input reload; can we combine it? */
1741 for (i = 0; i < n_reloads; i++)
1742 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1743 /* Life span of this reload must not extend past main insn. */
1744 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1745 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1746 && rld[i].when_needed != RELOAD_OTHER
1747 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1748 == CLASS_MAX_NREGS (rld[output_reload].class,
1749 rld[output_reload].outmode))
1750 && rld[i].inc == 0
1751 && rld[i].reg_rtx == 0
1752 #ifdef SECONDARY_MEMORY_NEEDED
1753 /* Don't combine two reloads with different secondary
1754 memory locations. */
1755 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1756 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1757 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1758 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1759 #endif
1760 && (SMALL_REGISTER_CLASSES
1761 ? (rld[i].class == rld[output_reload].class)
1762 : (reg_class_subset_p (rld[i].class,
1763 rld[output_reload].class)
1764 || reg_class_subset_p (rld[output_reload].class,
1765 rld[i].class)))
1766 && (MATCHES (rld[i].in, rld[output_reload].out)
1767 /* Args reversed because the first arg seems to be
1768 the one that we imagine being modified
1769 while the second is the one that might be affected. */
1770 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1771 rld[i].in)
1772 /* However, if the input is a register that appears inside
1773 the output, then we also can't share.
1774 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1775 If the same reload reg is used for both reg 69 and the
1776 result to be stored in memory, then that result
1777 will clobber the address of the memory ref. */
1778 && ! (REG_P (rld[i].in)
1779 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1780 rld[output_reload].out))))
1781 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1782 rld[i].when_needed != RELOAD_FOR_INPUT)
1783 && (reg_class_size[(int) rld[i].class]
1784 || SMALL_REGISTER_CLASSES)
1785 /* We will allow making things slightly worse by combining an
1786 input and an output, but no worse than that. */
1787 && (rld[i].when_needed == RELOAD_FOR_INPUT
1788 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1790 int j;
1792 /* We have found a reload to combine with! */
1793 rld[i].out = rld[output_reload].out;
1794 rld[i].out_reg = rld[output_reload].out_reg;
1795 rld[i].outmode = rld[output_reload].outmode;
1796 /* Mark the old output reload as inoperative. */
1797 rld[output_reload].out = 0;
1798 /* The combined reload is needed for the entire insn. */
1799 rld[i].when_needed = RELOAD_OTHER;
1800 /* If the output reload had a secondary reload, copy it. */
1801 if (rld[output_reload].secondary_out_reload != -1)
1803 rld[i].secondary_out_reload
1804 = rld[output_reload].secondary_out_reload;
1805 rld[i].secondary_out_icode
1806 = rld[output_reload].secondary_out_icode;
1809 #ifdef SECONDARY_MEMORY_NEEDED
1810 /* Copy any secondary MEM. */
1811 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1812 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1813 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1814 #endif
1815 /* If required, minimize the register class. */
1816 if (reg_class_subset_p (rld[output_reload].class,
1817 rld[i].class))
1818 rld[i].class = rld[output_reload].class;
1820 /* Transfer all replacements from the old reload to the combined. */
1821 for (j = 0; j < n_replacements; j++)
1822 if (replacements[j].what == output_reload)
1823 replacements[j].what = i;
1825 return;
1828 /* If this insn has only one operand that is modified or written (assumed
1829 to be the first), it must be the one corresponding to this reload. It
1830 is safe to use anything that dies in this insn for that output provided
1831 that it does not occur in the output (we already know it isn't an
1832 earlyclobber. If this is an asm insn, give up. */
1834 if (INSN_CODE (this_insn) == -1)
1835 return;
1837 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1838 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1839 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1840 return;
1842 /* See if some hard register that dies in this insn and is not used in
1843 the output is the right class. Only works if the register we pick
1844 up can fully hold our output reload. */
1845 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1846 if (REG_NOTE_KIND (note) == REG_DEAD
1847 && REG_P (XEXP (note, 0))
1848 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1849 rld[output_reload].out)
1850 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1851 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1852 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1853 REGNO (XEXP (note, 0)))
1854 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1855 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1856 /* Ensure that a secondary or tertiary reload for this output
1857 won't want this register. */
1858 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1859 || (! (TEST_HARD_REG_BIT
1860 (reg_class_contents[(int) rld[secondary_out].class],
1861 REGNO (XEXP (note, 0))))
1862 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1863 || ! (TEST_HARD_REG_BIT
1864 (reg_class_contents[(int) rld[secondary_out].class],
1865 REGNO (XEXP (note, 0)))))))
1866 && ! fixed_regs[REGNO (XEXP (note, 0))])
1868 rld[output_reload].reg_rtx
1869 = gen_rtx_REG (rld[output_reload].outmode,
1870 REGNO (XEXP (note, 0)));
1871 return;
1875 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1876 See if one of IN and OUT is a register that may be used;
1877 this is desirable since a spill-register won't be needed.
1878 If so, return the register rtx that proves acceptable.
1880 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1881 CLASS is the register class required for the reload.
1883 If FOR_REAL is >= 0, it is the number of the reload,
1884 and in some cases when it can be discovered that OUT doesn't need
1885 to be computed, clear out rld[FOR_REAL].out.
1887 If FOR_REAL is -1, this should not be done, because this call
1888 is just to see if a register can be found, not to find and install it.
1890 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1891 puts an additional constraint on being able to use IN for OUT since
1892 IN must not appear elsewhere in the insn (it is assumed that IN itself
1893 is safe from the earlyclobber). */
1895 static rtx
1896 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1897 enum machine_mode inmode, enum machine_mode outmode,
1898 enum reg_class class, int for_real, int earlyclobber)
1900 rtx in = real_in;
1901 rtx out = real_out;
1902 int in_offset = 0;
1903 int out_offset = 0;
1904 rtx value = 0;
1906 /* If operands exceed a word, we can't use either of them
1907 unless they have the same size. */
1908 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1909 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1910 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1911 return 0;
1913 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1914 respectively refers to a hard register. */
1916 /* Find the inside of any subregs. */
1917 while (GET_CODE (out) == SUBREG)
1919 if (REG_P (SUBREG_REG (out))
1920 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1921 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1922 GET_MODE (SUBREG_REG (out)),
1923 SUBREG_BYTE (out),
1924 GET_MODE (out));
1925 out = SUBREG_REG (out);
1927 while (GET_CODE (in) == SUBREG)
1929 if (REG_P (SUBREG_REG (in))
1930 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1931 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1932 GET_MODE (SUBREG_REG (in)),
1933 SUBREG_BYTE (in),
1934 GET_MODE (in));
1935 in = SUBREG_REG (in);
1938 /* Narrow down the reg class, the same way push_reload will;
1939 otherwise we might find a dummy now, but push_reload won't. */
1940 class = PREFERRED_RELOAD_CLASS (in, class);
1942 /* See if OUT will do. */
1943 if (REG_P (out)
1944 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1946 unsigned int regno = REGNO (out) + out_offset;
1947 unsigned int nwords = hard_regno_nregs[regno][outmode];
1948 rtx saved_rtx;
1950 /* When we consider whether the insn uses OUT,
1951 ignore references within IN. They don't prevent us
1952 from copying IN into OUT, because those refs would
1953 move into the insn that reloads IN.
1955 However, we only ignore IN in its role as this reload.
1956 If the insn uses IN elsewhere and it contains OUT,
1957 that counts. We can't be sure it's the "same" operand
1958 so it might not go through this reload. */
1959 saved_rtx = *inloc;
1960 *inloc = const0_rtx;
1962 if (regno < FIRST_PSEUDO_REGISTER
1963 && HARD_REGNO_MODE_OK (regno, outmode)
1964 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1965 PATTERN (this_insn), outloc))
1967 unsigned int i;
1969 for (i = 0; i < nwords; i++)
1970 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1971 regno + i))
1972 break;
1974 if (i == nwords)
1976 if (REG_P (real_out))
1977 value = real_out;
1978 else
1979 value = gen_rtx_REG (outmode, regno);
1983 *inloc = saved_rtx;
1986 /* Consider using IN if OUT was not acceptable
1987 or if OUT dies in this insn (like the quotient in a divmod insn).
1988 We can't use IN unless it is dies in this insn,
1989 which means we must know accurately which hard regs are live.
1990 Also, the result can't go in IN if IN is used within OUT,
1991 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1992 if (hard_regs_live_known
1993 && REG_P (in)
1994 && REGNO (in) < FIRST_PSEUDO_REGISTER
1995 && (value == 0
1996 || find_reg_note (this_insn, REG_UNUSED, real_out))
1997 && find_reg_note (this_insn, REG_DEAD, real_in)
1998 && !fixed_regs[REGNO (in)]
1999 && HARD_REGNO_MODE_OK (REGNO (in),
2000 /* The only case where out and real_out might
2001 have different modes is where real_out
2002 is a subreg, and in that case, out
2003 has a real mode. */
2004 (GET_MODE (out) != VOIDmode
2005 ? GET_MODE (out) : outmode))
2006 /* But only do all this if we can be sure, that this input
2007 operand doesn't correspond with an uninitialized pseudoreg.
2008 global can assign some hardreg to it, which is the same as
2009 a different pseudo also currently live (as it can ignore the
2010 conflict). So we never must introduce writes to such hardregs,
2011 as they would clobber the other live pseudo using the same.
2012 See also PR20973. */
2013 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2014 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->global_live_at_end,
2015 ORIGINAL_REGNO (in))))
2017 unsigned int regno = REGNO (in) + in_offset;
2018 unsigned int nwords = hard_regno_nregs[regno][inmode];
2020 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2021 && ! hard_reg_set_here_p (regno, regno + nwords,
2022 PATTERN (this_insn))
2023 && (! earlyclobber
2024 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2025 PATTERN (this_insn), inloc)))
2027 unsigned int i;
2029 for (i = 0; i < nwords; i++)
2030 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2031 regno + i))
2032 break;
2034 if (i == nwords)
2036 /* If we were going to use OUT as the reload reg
2037 and changed our mind, it means OUT is a dummy that
2038 dies here. So don't bother copying value to it. */
2039 if (for_real >= 0 && value == real_out)
2040 rld[for_real].out = 0;
2041 if (REG_P (real_in))
2042 value = real_in;
2043 else
2044 value = gen_rtx_REG (inmode, regno);
2049 return value;
2052 /* This page contains subroutines used mainly for determining
2053 whether the IN or an OUT of a reload can serve as the
2054 reload register. */
2056 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2059 earlyclobber_operand_p (rtx x)
2061 int i;
2063 for (i = 0; i < n_earlyclobbers; i++)
2064 if (reload_earlyclobbers[i] == x)
2065 return 1;
2067 return 0;
2070 /* Return 1 if expression X alters a hard reg in the range
2071 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2072 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2073 X should be the body of an instruction. */
2075 static int
2076 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2078 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2080 rtx op0 = SET_DEST (x);
2082 while (GET_CODE (op0) == SUBREG)
2083 op0 = SUBREG_REG (op0);
2084 if (REG_P (op0))
2086 unsigned int r = REGNO (op0);
2088 /* See if this reg overlaps range under consideration. */
2089 if (r < end_regno
2090 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2091 return 1;
2094 else if (GET_CODE (x) == PARALLEL)
2096 int i = XVECLEN (x, 0) - 1;
2098 for (; i >= 0; i--)
2099 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2100 return 1;
2103 return 0;
2106 /* Return 1 if ADDR is a valid memory address for mode MODE,
2107 and check that each pseudo reg has the proper kind of
2108 hard reg. */
2111 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2113 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2114 return 0;
2116 win:
2117 return 1;
2120 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2121 if they are the same hard reg, and has special hacks for
2122 autoincrement and autodecrement.
2123 This is specifically intended for find_reloads to use
2124 in determining whether two operands match.
2125 X is the operand whose number is the lower of the two.
2127 The value is 2 if Y contains a pre-increment that matches
2128 a non-incrementing address in X. */
2130 /* ??? To be completely correct, we should arrange to pass
2131 for X the output operand and for Y the input operand.
2132 For now, we assume that the output operand has the lower number
2133 because that is natural in (SET output (... input ...)). */
2136 operands_match_p (rtx x, rtx y)
2138 int i;
2139 RTX_CODE code = GET_CODE (x);
2140 const char *fmt;
2141 int success_2;
2143 if (x == y)
2144 return 1;
2145 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2146 && (REG_P (y) || (GET_CODE (y) == SUBREG
2147 && REG_P (SUBREG_REG (y)))))
2149 int j;
2151 if (code == SUBREG)
2153 i = REGNO (SUBREG_REG (x));
2154 if (i >= FIRST_PSEUDO_REGISTER)
2155 goto slow;
2156 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2157 GET_MODE (SUBREG_REG (x)),
2158 SUBREG_BYTE (x),
2159 GET_MODE (x));
2161 else
2162 i = REGNO (x);
2164 if (GET_CODE (y) == SUBREG)
2166 j = REGNO (SUBREG_REG (y));
2167 if (j >= FIRST_PSEUDO_REGISTER)
2168 goto slow;
2169 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2170 GET_MODE (SUBREG_REG (y)),
2171 SUBREG_BYTE (y),
2172 GET_MODE (y));
2174 else
2175 j = REGNO (y);
2177 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2178 multiple hard register group of scalar integer registers, so that
2179 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2180 register. */
2181 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2182 && SCALAR_INT_MODE_P (GET_MODE (x))
2183 && i < FIRST_PSEUDO_REGISTER)
2184 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2185 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2186 && SCALAR_INT_MODE_P (GET_MODE (y))
2187 && j < FIRST_PSEUDO_REGISTER)
2188 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2190 return i == j;
2192 /* If two operands must match, because they are really a single
2193 operand of an assembler insn, then two postincrements are invalid
2194 because the assembler insn would increment only once.
2195 On the other hand, a postincrement matches ordinary indexing
2196 if the postincrement is the output operand. */
2197 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2198 return operands_match_p (XEXP (x, 0), y);
2199 /* Two preincrements are invalid
2200 because the assembler insn would increment only once.
2201 On the other hand, a preincrement matches ordinary indexing
2202 if the preincrement is the input operand.
2203 In this case, return 2, since some callers need to do special
2204 things when this happens. */
2205 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2206 || GET_CODE (y) == PRE_MODIFY)
2207 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2209 slow:
2211 /* Now we have disposed of all the cases
2212 in which different rtx codes can match. */
2213 if (code != GET_CODE (y))
2214 return 0;
2215 if (code == LABEL_REF)
2216 return XEXP (x, 0) == XEXP (y, 0);
2217 if (code == SYMBOL_REF)
2218 return XSTR (x, 0) == XSTR (y, 0);
2220 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2222 if (GET_MODE (x) != GET_MODE (y))
2223 return 0;
2225 /* Compare the elements. If any pair of corresponding elements
2226 fail to match, return 0 for the whole things. */
2228 success_2 = 0;
2229 fmt = GET_RTX_FORMAT (code);
2230 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2232 int val, j;
2233 switch (fmt[i])
2235 case 'w':
2236 if (XWINT (x, i) != XWINT (y, i))
2237 return 0;
2238 break;
2240 case 'i':
2241 if (XINT (x, i) != XINT (y, i))
2242 return 0;
2243 break;
2245 case 'e':
2246 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2247 if (val == 0)
2248 return 0;
2249 /* If any subexpression returns 2,
2250 we should return 2 if we are successful. */
2251 if (val == 2)
2252 success_2 = 1;
2253 break;
2255 case '0':
2256 break;
2258 case 'E':
2259 if (XVECLEN (x, i) != XVECLEN (y, i))
2260 return 0;
2261 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2263 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2264 if (val == 0)
2265 return 0;
2266 if (val == 2)
2267 success_2 = 1;
2269 break;
2271 /* It is believed that rtx's at this level will never
2272 contain anything but integers and other rtx's,
2273 except for within LABEL_REFs and SYMBOL_REFs. */
2274 default:
2275 gcc_unreachable ();
2278 return 1 + success_2;
2281 /* Describe the range of registers or memory referenced by X.
2282 If X is a register, set REG_FLAG and put the first register
2283 number into START and the last plus one into END.
2284 If X is a memory reference, put a base address into BASE
2285 and a range of integer offsets into START and END.
2286 If X is pushing on the stack, we can assume it causes no trouble,
2287 so we set the SAFE field. */
2289 static struct decomposition
2290 decompose (rtx x)
2292 struct decomposition val;
2293 int all_const = 0;
2295 memset (&val, 0, sizeof (val));
2297 switch (GET_CODE (x))
2299 case MEM:
2301 rtx base = NULL_RTX, offset = 0;
2302 rtx addr = XEXP (x, 0);
2304 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2305 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2307 val.base = XEXP (addr, 0);
2308 val.start = -GET_MODE_SIZE (GET_MODE (x));
2309 val.end = GET_MODE_SIZE (GET_MODE (x));
2310 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2311 return val;
2314 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2316 if (GET_CODE (XEXP (addr, 1)) == PLUS
2317 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2318 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2320 val.base = XEXP (addr, 0);
2321 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2322 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2323 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2324 return val;
2328 if (GET_CODE (addr) == CONST)
2330 addr = XEXP (addr, 0);
2331 all_const = 1;
2333 if (GET_CODE (addr) == PLUS)
2335 if (CONSTANT_P (XEXP (addr, 0)))
2337 base = XEXP (addr, 1);
2338 offset = XEXP (addr, 0);
2340 else if (CONSTANT_P (XEXP (addr, 1)))
2342 base = XEXP (addr, 0);
2343 offset = XEXP (addr, 1);
2347 if (offset == 0)
2349 base = addr;
2350 offset = const0_rtx;
2352 if (GET_CODE (offset) == CONST)
2353 offset = XEXP (offset, 0);
2354 if (GET_CODE (offset) == PLUS)
2356 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2358 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2359 offset = XEXP (offset, 0);
2361 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2363 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2364 offset = XEXP (offset, 1);
2366 else
2368 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2369 offset = const0_rtx;
2372 else if (GET_CODE (offset) != CONST_INT)
2374 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2375 offset = const0_rtx;
2378 if (all_const && GET_CODE (base) == PLUS)
2379 base = gen_rtx_CONST (GET_MODE (base), base);
2381 gcc_assert (GET_CODE (offset) == CONST_INT);
2383 val.start = INTVAL (offset);
2384 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2385 val.base = base;
2387 break;
2389 case REG:
2390 val.reg_flag = 1;
2391 val.start = true_regnum (x);
2392 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2394 /* A pseudo with no hard reg. */
2395 val.start = REGNO (x);
2396 val.end = val.start + 1;
2398 else
2399 /* A hard reg. */
2400 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2401 break;
2403 case SUBREG:
2404 if (!REG_P (SUBREG_REG (x)))
2405 /* This could be more precise, but it's good enough. */
2406 return decompose (SUBREG_REG (x));
2407 val.reg_flag = 1;
2408 val.start = true_regnum (x);
2409 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2410 return decompose (SUBREG_REG (x));
2411 else
2412 /* A hard reg. */
2413 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2414 break;
2416 case SCRATCH:
2417 /* This hasn't been assigned yet, so it can't conflict yet. */
2418 val.safe = 1;
2419 break;
2421 default:
2422 gcc_assert (CONSTANT_P (x));
2423 val.safe = 1;
2424 break;
2426 return val;
2429 /* Return 1 if altering Y will not modify the value of X.
2430 Y is also described by YDATA, which should be decompose (Y). */
2432 static int
2433 immune_p (rtx x, rtx y, struct decomposition ydata)
2435 struct decomposition xdata;
2437 if (ydata.reg_flag)
2438 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2439 if (ydata.safe)
2440 return 1;
2442 gcc_assert (MEM_P (y));
2443 /* If Y is memory and X is not, Y can't affect X. */
2444 if (!MEM_P (x))
2445 return 1;
2447 xdata = decompose (x);
2449 if (! rtx_equal_p (xdata.base, ydata.base))
2451 /* If bases are distinct symbolic constants, there is no overlap. */
2452 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2453 return 1;
2454 /* Constants and stack slots never overlap. */
2455 if (CONSTANT_P (xdata.base)
2456 && (ydata.base == frame_pointer_rtx
2457 || ydata.base == hard_frame_pointer_rtx
2458 || ydata.base == stack_pointer_rtx))
2459 return 1;
2460 if (CONSTANT_P (ydata.base)
2461 && (xdata.base == frame_pointer_rtx
2462 || xdata.base == hard_frame_pointer_rtx
2463 || xdata.base == stack_pointer_rtx))
2464 return 1;
2465 /* If either base is variable, we don't know anything. */
2466 return 0;
2469 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2472 /* Similar, but calls decompose. */
2475 safe_from_earlyclobber (rtx op, rtx clobber)
2477 struct decomposition early_data;
2479 early_data = decompose (clobber);
2480 return immune_p (op, clobber, early_data);
2483 /* Main entry point of this file: search the body of INSN
2484 for values that need reloading and record them with push_reload.
2485 REPLACE nonzero means record also where the values occur
2486 so that subst_reloads can be used.
2488 IND_LEVELS says how many levels of indirection are supported by this
2489 machine; a value of zero means that a memory reference is not a valid
2490 memory address.
2492 LIVE_KNOWN says we have valid information about which hard
2493 regs are live at each point in the program; this is true when
2494 we are called from global_alloc but false when stupid register
2495 allocation has been done.
2497 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2498 which is nonnegative if the reg has been commandeered for reloading into.
2499 It is copied into STATIC_RELOAD_REG_P and referenced from there
2500 by various subroutines.
2502 Return TRUE if some operands need to be changed, because of swapping
2503 commutative operands, reg_equiv_address substitution, or whatever. */
2506 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2507 short *reload_reg_p)
2509 int insn_code_number;
2510 int i, j;
2511 int noperands;
2512 /* These start out as the constraints for the insn
2513 and they are chewed up as we consider alternatives. */
2514 char *constraints[MAX_RECOG_OPERANDS];
2515 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2516 a register. */
2517 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2518 char pref_or_nothing[MAX_RECOG_OPERANDS];
2519 /* Nonzero for a MEM operand whose entire address needs a reload.
2520 May be -1 to indicate the entire address may or may not need a reload. */
2521 int address_reloaded[MAX_RECOG_OPERANDS];
2522 /* Nonzero for an address operand that needs to be completely reloaded.
2523 May be -1 to indicate the entire operand may or may not need a reload. */
2524 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2525 /* Value of enum reload_type to use for operand. */
2526 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2527 /* Value of enum reload_type to use within address of operand. */
2528 enum reload_type address_type[MAX_RECOG_OPERANDS];
2529 /* Save the usage of each operand. */
2530 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2531 int no_input_reloads = 0, no_output_reloads = 0;
2532 int n_alternatives;
2533 int this_alternative[MAX_RECOG_OPERANDS];
2534 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2535 char this_alternative_win[MAX_RECOG_OPERANDS];
2536 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2537 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2538 int this_alternative_matches[MAX_RECOG_OPERANDS];
2539 int swapped;
2540 int goal_alternative[MAX_RECOG_OPERANDS];
2541 int this_alternative_number;
2542 int goal_alternative_number = 0;
2543 int operand_reloadnum[MAX_RECOG_OPERANDS];
2544 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2545 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2546 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2547 char goal_alternative_win[MAX_RECOG_OPERANDS];
2548 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2549 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2550 int goal_alternative_swapped;
2551 int best;
2552 int commutative;
2553 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2554 rtx substed_operand[MAX_RECOG_OPERANDS];
2555 rtx body = PATTERN (insn);
2556 rtx set = single_set (insn);
2557 int goal_earlyclobber = 0, this_earlyclobber;
2558 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2559 int retval = 0;
2561 this_insn = insn;
2562 n_reloads = 0;
2563 n_replacements = 0;
2564 n_earlyclobbers = 0;
2565 replace_reloads = replace;
2566 hard_regs_live_known = live_known;
2567 static_reload_reg_p = reload_reg_p;
2569 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2570 neither are insns that SET cc0. Insns that use CC0 are not allowed
2571 to have any input reloads. */
2572 if (JUMP_P (insn) || CALL_P (insn))
2573 no_output_reloads = 1;
2575 #ifdef HAVE_cc0
2576 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2577 no_input_reloads = 1;
2578 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2579 no_output_reloads = 1;
2580 #endif
2582 #ifdef SECONDARY_MEMORY_NEEDED
2583 /* The eliminated forms of any secondary memory locations are per-insn, so
2584 clear them out here. */
2586 if (secondary_memlocs_elim_used)
2588 memset (secondary_memlocs_elim, 0,
2589 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2590 secondary_memlocs_elim_used = 0;
2592 #endif
2594 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2595 is cheap to move between them. If it is not, there may not be an insn
2596 to do the copy, so we may need a reload. */
2597 if (GET_CODE (body) == SET
2598 && REG_P (SET_DEST (body))
2599 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2600 && REG_P (SET_SRC (body))
2601 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2602 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2603 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2604 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2605 return 0;
2607 extract_insn (insn);
2609 noperands = reload_n_operands = recog_data.n_operands;
2610 n_alternatives = recog_data.n_alternatives;
2612 /* Just return "no reloads" if insn has no operands with constraints. */
2613 if (noperands == 0 || n_alternatives == 0)
2614 return 0;
2616 insn_code_number = INSN_CODE (insn);
2617 this_insn_is_asm = insn_code_number < 0;
2619 memcpy (operand_mode, recog_data.operand_mode,
2620 noperands * sizeof (enum machine_mode));
2621 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2623 commutative = -1;
2625 /* If we will need to know, later, whether some pair of operands
2626 are the same, we must compare them now and save the result.
2627 Reloading the base and index registers will clobber them
2628 and afterward they will fail to match. */
2630 for (i = 0; i < noperands; i++)
2632 char *p;
2633 int c;
2635 substed_operand[i] = recog_data.operand[i];
2636 p = constraints[i];
2638 modified[i] = RELOAD_READ;
2640 /* Scan this operand's constraint to see if it is an output operand,
2641 an in-out operand, is commutative, or should match another. */
2643 while ((c = *p))
2645 p += CONSTRAINT_LEN (c, p);
2646 switch (c)
2648 case '=':
2649 modified[i] = RELOAD_WRITE;
2650 break;
2651 case '+':
2652 modified[i] = RELOAD_READ_WRITE;
2653 break;
2654 case '%':
2656 /* The last operand should not be marked commutative. */
2657 gcc_assert (i != noperands - 1);
2659 /* We currently only support one commutative pair of
2660 operands. Some existing asm code currently uses more
2661 than one pair. Previously, that would usually work,
2662 but sometimes it would crash the compiler. We
2663 continue supporting that case as well as we can by
2664 silently ignoring all but the first pair. In the
2665 future we may handle it correctly. */
2666 if (commutative < 0)
2667 commutative = i;
2668 else
2669 gcc_assert (this_insn_is_asm);
2671 break;
2672 /* Use of ISDIGIT is tempting here, but it may get expensive because
2673 of locale support we don't want. */
2674 case '0': case '1': case '2': case '3': case '4':
2675 case '5': case '6': case '7': case '8': case '9':
2677 c = strtoul (p - 1, &p, 10);
2679 operands_match[c][i]
2680 = operands_match_p (recog_data.operand[c],
2681 recog_data.operand[i]);
2683 /* An operand may not match itself. */
2684 gcc_assert (c != i);
2686 /* If C can be commuted with C+1, and C might need to match I,
2687 then C+1 might also need to match I. */
2688 if (commutative >= 0)
2690 if (c == commutative || c == commutative + 1)
2692 int other = c + (c == commutative ? 1 : -1);
2693 operands_match[other][i]
2694 = operands_match_p (recog_data.operand[other],
2695 recog_data.operand[i]);
2697 if (i == commutative || i == commutative + 1)
2699 int other = i + (i == commutative ? 1 : -1);
2700 operands_match[c][other]
2701 = operands_match_p (recog_data.operand[c],
2702 recog_data.operand[other]);
2704 /* Note that C is supposed to be less than I.
2705 No need to consider altering both C and I because in
2706 that case we would alter one into the other. */
2713 /* Examine each operand that is a memory reference or memory address
2714 and reload parts of the addresses into index registers.
2715 Also here any references to pseudo regs that didn't get hard regs
2716 but are equivalent to constants get replaced in the insn itself
2717 with those constants. Nobody will ever see them again.
2719 Finally, set up the preferred classes of each operand. */
2721 for (i = 0; i < noperands; i++)
2723 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2725 address_reloaded[i] = 0;
2726 address_operand_reloaded[i] = 0;
2727 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2728 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2729 : RELOAD_OTHER);
2730 address_type[i]
2731 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2732 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2733 : RELOAD_OTHER);
2735 if (*constraints[i] == 0)
2736 /* Ignore things like match_operator operands. */
2738 else if (constraints[i][0] == 'p'
2739 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2741 address_operand_reloaded[i]
2742 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2743 recog_data.operand[i],
2744 recog_data.operand_loc[i],
2745 i, operand_type[i], ind_levels, insn);
2747 /* If we now have a simple operand where we used to have a
2748 PLUS or MULT, re-recognize and try again. */
2749 if ((OBJECT_P (*recog_data.operand_loc[i])
2750 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2751 && (GET_CODE (recog_data.operand[i]) == MULT
2752 || GET_CODE (recog_data.operand[i]) == PLUS))
2754 INSN_CODE (insn) = -1;
2755 retval = find_reloads (insn, replace, ind_levels, live_known,
2756 reload_reg_p);
2757 return retval;
2760 recog_data.operand[i] = *recog_data.operand_loc[i];
2761 substed_operand[i] = recog_data.operand[i];
2763 /* Address operands are reloaded in their existing mode,
2764 no matter what is specified in the machine description. */
2765 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2767 else if (code == MEM)
2769 address_reloaded[i]
2770 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2771 recog_data.operand_loc[i],
2772 XEXP (recog_data.operand[i], 0),
2773 &XEXP (recog_data.operand[i], 0),
2774 i, address_type[i], ind_levels, insn);
2775 recog_data.operand[i] = *recog_data.operand_loc[i];
2776 substed_operand[i] = recog_data.operand[i];
2778 else if (code == SUBREG)
2780 rtx reg = SUBREG_REG (recog_data.operand[i]);
2781 rtx op
2782 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2783 ind_levels,
2784 set != 0
2785 && &SET_DEST (set) == recog_data.operand_loc[i],
2786 insn,
2787 &address_reloaded[i]);
2789 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2790 that didn't get a hard register, emit a USE with a REG_EQUAL
2791 note in front so that we might inherit a previous, possibly
2792 wider reload. */
2794 if (replace
2795 && MEM_P (op)
2796 && REG_P (reg)
2797 && (GET_MODE_SIZE (GET_MODE (reg))
2798 >= GET_MODE_SIZE (GET_MODE (op))))
2799 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2800 insn),
2801 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2803 substed_operand[i] = recog_data.operand[i] = op;
2805 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2806 /* We can get a PLUS as an "operand" as a result of register
2807 elimination. See eliminate_regs and gen_reload. We handle
2808 a unary operator by reloading the operand. */
2809 substed_operand[i] = recog_data.operand[i]
2810 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2811 ind_levels, 0, insn,
2812 &address_reloaded[i]);
2813 else if (code == REG)
2815 /* This is equivalent to calling find_reloads_toplev.
2816 The code is duplicated for speed.
2817 When we find a pseudo always equivalent to a constant,
2818 we replace it by the constant. We must be sure, however,
2819 that we don't try to replace it in the insn in which it
2820 is being set. */
2821 int regno = REGNO (recog_data.operand[i]);
2822 if (reg_equiv_constant[regno] != 0
2823 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2825 /* Record the existing mode so that the check if constants are
2826 allowed will work when operand_mode isn't specified. */
2828 if (operand_mode[i] == VOIDmode)
2829 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2831 substed_operand[i] = recog_data.operand[i]
2832 = reg_equiv_constant[regno];
2834 if (reg_equiv_memory_loc[regno] != 0
2835 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2836 /* We need not give a valid is_set_dest argument since the case
2837 of a constant equivalence was checked above. */
2838 substed_operand[i] = recog_data.operand[i]
2839 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2840 ind_levels, 0, insn,
2841 &address_reloaded[i]);
2843 /* If the operand is still a register (we didn't replace it with an
2844 equivalent), get the preferred class to reload it into. */
2845 code = GET_CODE (recog_data.operand[i]);
2846 preferred_class[i]
2847 = ((code == REG && REGNO (recog_data.operand[i])
2848 >= FIRST_PSEUDO_REGISTER)
2849 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2850 : NO_REGS);
2851 pref_or_nothing[i]
2852 = (code == REG
2853 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2854 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2857 /* If this is simply a copy from operand 1 to operand 0, merge the
2858 preferred classes for the operands. */
2859 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2860 && recog_data.operand[1] == SET_SRC (set))
2862 preferred_class[0] = preferred_class[1]
2863 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2864 pref_or_nothing[0] |= pref_or_nothing[1];
2865 pref_or_nothing[1] |= pref_or_nothing[0];
2868 /* Now see what we need for pseudo-regs that didn't get hard regs
2869 or got the wrong kind of hard reg. For this, we must consider
2870 all the operands together against the register constraints. */
2872 best = MAX_RECOG_OPERANDS * 2 + 600;
2874 swapped = 0;
2875 goal_alternative_swapped = 0;
2876 try_swapped:
2878 /* The constraints are made of several alternatives.
2879 Each operand's constraint looks like foo,bar,... with commas
2880 separating the alternatives. The first alternatives for all
2881 operands go together, the second alternatives go together, etc.
2883 First loop over alternatives. */
2885 for (this_alternative_number = 0;
2886 this_alternative_number < n_alternatives;
2887 this_alternative_number++)
2889 /* Loop over operands for one constraint alternative. */
2890 /* LOSERS counts those that don't fit this alternative
2891 and would require loading. */
2892 int losers = 0;
2893 /* BAD is set to 1 if it some operand can't fit this alternative
2894 even after reloading. */
2895 int bad = 0;
2896 /* REJECT is a count of how undesirable this alternative says it is
2897 if any reloading is required. If the alternative matches exactly
2898 then REJECT is ignored, but otherwise it gets this much
2899 counted against it in addition to the reloading needed. Each
2900 ? counts three times here since we want the disparaging caused by
2901 a bad register class to only count 1/3 as much. */
2902 int reject = 0;
2904 this_earlyclobber = 0;
2906 for (i = 0; i < noperands; i++)
2908 char *p = constraints[i];
2909 char *end;
2910 int len;
2911 int win = 0;
2912 int did_match = 0;
2913 /* 0 => this operand can be reloaded somehow for this alternative. */
2914 int badop = 1;
2915 /* 0 => this operand can be reloaded if the alternative allows regs. */
2916 int winreg = 0;
2917 int c;
2918 int m;
2919 rtx operand = recog_data.operand[i];
2920 int offset = 0;
2921 /* Nonzero means this is a MEM that must be reloaded into a reg
2922 regardless of what the constraint says. */
2923 int force_reload = 0;
2924 int offmemok = 0;
2925 /* Nonzero if a constant forced into memory would be OK for this
2926 operand. */
2927 int constmemok = 0;
2928 int earlyclobber = 0;
2930 /* If the predicate accepts a unary operator, it means that
2931 we need to reload the operand, but do not do this for
2932 match_operator and friends. */
2933 if (UNARY_P (operand) && *p != 0)
2934 operand = XEXP (operand, 0);
2936 /* If the operand is a SUBREG, extract
2937 the REG or MEM (or maybe even a constant) within.
2938 (Constants can occur as a result of reg_equiv_constant.) */
2940 while (GET_CODE (operand) == SUBREG)
2942 /* Offset only matters when operand is a REG and
2943 it is a hard reg. This is because it is passed
2944 to reg_fits_class_p if it is a REG and all pseudos
2945 return 0 from that function. */
2946 if (REG_P (SUBREG_REG (operand))
2947 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2949 if (!subreg_offset_representable_p
2950 (REGNO (SUBREG_REG (operand)),
2951 GET_MODE (SUBREG_REG (operand)),
2952 SUBREG_BYTE (operand),
2953 GET_MODE (operand)))
2954 force_reload = 1;
2955 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2956 GET_MODE (SUBREG_REG (operand)),
2957 SUBREG_BYTE (operand),
2958 GET_MODE (operand));
2960 operand = SUBREG_REG (operand);
2961 /* Force reload if this is a constant or PLUS or if there may
2962 be a problem accessing OPERAND in the outer mode. */
2963 if (CONSTANT_P (operand)
2964 || GET_CODE (operand) == PLUS
2965 /* We must force a reload of paradoxical SUBREGs
2966 of a MEM because the alignment of the inner value
2967 may not be enough to do the outer reference. On
2968 big-endian machines, it may also reference outside
2969 the object.
2971 On machines that extend byte operations and we have a
2972 SUBREG where both the inner and outer modes are no wider
2973 than a word and the inner mode is narrower, is integral,
2974 and gets extended when loaded from memory, combine.c has
2975 made assumptions about the behavior of the machine in such
2976 register access. If the data is, in fact, in memory we
2977 must always load using the size assumed to be in the
2978 register and let the insn do the different-sized
2979 accesses.
2981 This is doubly true if WORD_REGISTER_OPERATIONS. In
2982 this case eliminate_regs has left non-paradoxical
2983 subregs for push_reload to see. Make sure it does
2984 by forcing the reload.
2986 ??? When is it right at this stage to have a subreg
2987 of a mem that is _not_ to be handled specially? IMO
2988 those should have been reduced to just a mem. */
2989 || ((MEM_P (operand)
2990 || (REG_P (operand)
2991 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2992 #ifndef WORD_REGISTER_OPERATIONS
2993 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2994 < BIGGEST_ALIGNMENT)
2995 && (GET_MODE_SIZE (operand_mode[i])
2996 > GET_MODE_SIZE (GET_MODE (operand))))
2997 || BYTES_BIG_ENDIAN
2998 #ifdef LOAD_EXTEND_OP
2999 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3000 && (GET_MODE_SIZE (GET_MODE (operand))
3001 <= UNITS_PER_WORD)
3002 && (GET_MODE_SIZE (operand_mode[i])
3003 > GET_MODE_SIZE (GET_MODE (operand)))
3004 && INTEGRAL_MODE_P (GET_MODE (operand))
3005 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3006 #endif
3008 #endif
3011 force_reload = 1;
3014 this_alternative[i] = (int) NO_REGS;
3015 this_alternative_win[i] = 0;
3016 this_alternative_match_win[i] = 0;
3017 this_alternative_offmemok[i] = 0;
3018 this_alternative_earlyclobber[i] = 0;
3019 this_alternative_matches[i] = -1;
3021 /* An empty constraint or empty alternative
3022 allows anything which matched the pattern. */
3023 if (*p == 0 || *p == ',')
3024 win = 1, badop = 0;
3026 /* Scan this alternative's specs for this operand;
3027 set WIN if the operand fits any letter in this alternative.
3028 Otherwise, clear BADOP if this operand could
3029 fit some letter after reloads,
3030 or set WINREG if this operand could fit after reloads
3031 provided the constraint allows some registers. */
3034 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3036 case '\0':
3037 len = 0;
3038 break;
3039 case ',':
3040 c = '\0';
3041 break;
3043 case '=': case '+': case '*':
3044 break;
3046 case '%':
3047 /* We only support one commutative marker, the first
3048 one. We already set commutative above. */
3049 break;
3051 case '?':
3052 reject += 6;
3053 break;
3055 case '!':
3056 reject = 600;
3057 break;
3059 case '#':
3060 /* Ignore rest of this alternative as far as
3061 reloading is concerned. */
3063 p++;
3064 while (*p && *p != ',');
3065 len = 0;
3066 break;
3068 case '0': case '1': case '2': case '3': case '4':
3069 case '5': case '6': case '7': case '8': case '9':
3070 m = strtoul (p, &end, 10);
3071 p = end;
3072 len = 0;
3074 this_alternative_matches[i] = m;
3075 /* We are supposed to match a previous operand.
3076 If we do, we win if that one did.
3077 If we do not, count both of the operands as losers.
3078 (This is too conservative, since most of the time
3079 only a single reload insn will be needed to make
3080 the two operands win. As a result, this alternative
3081 may be rejected when it is actually desirable.) */
3082 if ((swapped && (m != commutative || i != commutative + 1))
3083 /* If we are matching as if two operands were swapped,
3084 also pretend that operands_match had been computed
3085 with swapped.
3086 But if I is the second of those and C is the first,
3087 don't exchange them, because operands_match is valid
3088 only on one side of its diagonal. */
3089 ? (operands_match
3090 [(m == commutative || m == commutative + 1)
3091 ? 2 * commutative + 1 - m : m]
3092 [(i == commutative || i == commutative + 1)
3093 ? 2 * commutative + 1 - i : i])
3094 : operands_match[m][i])
3096 /* If we are matching a non-offsettable address where an
3097 offsettable address was expected, then we must reject
3098 this combination, because we can't reload it. */
3099 if (this_alternative_offmemok[m]
3100 && MEM_P (recog_data.operand[m])
3101 && this_alternative[m] == (int) NO_REGS
3102 && ! this_alternative_win[m])
3103 bad = 1;
3105 did_match = this_alternative_win[m];
3107 else
3109 /* Operands don't match. */
3110 rtx value;
3111 int loc1, loc2;
3112 /* Retroactively mark the operand we had to match
3113 as a loser, if it wasn't already. */
3114 if (this_alternative_win[m])
3115 losers++;
3116 this_alternative_win[m] = 0;
3117 if (this_alternative[m] == (int) NO_REGS)
3118 bad = 1;
3119 /* But count the pair only once in the total badness of
3120 this alternative, if the pair can be a dummy reload.
3121 The pointers in operand_loc are not swapped; swap
3122 them by hand if necessary. */
3123 if (swapped && i == commutative)
3124 loc1 = commutative + 1;
3125 else if (swapped && i == commutative + 1)
3126 loc1 = commutative;
3127 else
3128 loc1 = i;
3129 if (swapped && m == commutative)
3130 loc2 = commutative + 1;
3131 else if (swapped && m == commutative + 1)
3132 loc2 = commutative;
3133 else
3134 loc2 = m;
3135 value
3136 = find_dummy_reload (recog_data.operand[i],
3137 recog_data.operand[m],
3138 recog_data.operand_loc[loc1],
3139 recog_data.operand_loc[loc2],
3140 operand_mode[i], operand_mode[m],
3141 this_alternative[m], -1,
3142 this_alternative_earlyclobber[m]);
3144 if (value != 0)
3145 losers--;
3147 /* This can be fixed with reloads if the operand
3148 we are supposed to match can be fixed with reloads. */
3149 badop = 0;
3150 this_alternative[i] = this_alternative[m];
3152 /* If we have to reload this operand and some previous
3153 operand also had to match the same thing as this
3154 operand, we don't know how to do that. So reject this
3155 alternative. */
3156 if (! did_match || force_reload)
3157 for (j = 0; j < i; j++)
3158 if (this_alternative_matches[j]
3159 == this_alternative_matches[i])
3160 badop = 1;
3161 break;
3163 case 'p':
3164 /* All necessary reloads for an address_operand
3165 were handled in find_reloads_address. */
3166 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3167 win = 1;
3168 badop = 0;
3169 break;
3171 case 'm':
3172 if (force_reload)
3173 break;
3174 if (MEM_P (operand)
3175 || (REG_P (operand)
3176 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3177 && reg_renumber[REGNO (operand)] < 0))
3178 win = 1;
3179 if (CONST_POOL_OK_P (operand))
3180 badop = 0;
3181 constmemok = 1;
3182 break;
3184 case '<':
3185 if (MEM_P (operand)
3186 && ! address_reloaded[i]
3187 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3188 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3189 win = 1;
3190 break;
3192 case '>':
3193 if (MEM_P (operand)
3194 && ! address_reloaded[i]
3195 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3196 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3197 win = 1;
3198 break;
3200 /* Memory operand whose address is not offsettable. */
3201 case 'V':
3202 if (force_reload)
3203 break;
3204 if (MEM_P (operand)
3205 && ! (ind_levels ? offsettable_memref_p (operand)
3206 : offsettable_nonstrict_memref_p (operand))
3207 /* Certain mem addresses will become offsettable
3208 after they themselves are reloaded. This is important;
3209 we don't want our own handling of unoffsettables
3210 to override the handling of reg_equiv_address. */
3211 && !(REG_P (XEXP (operand, 0))
3212 && (ind_levels == 0
3213 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3214 win = 1;
3215 break;
3217 /* Memory operand whose address is offsettable. */
3218 case 'o':
3219 if (force_reload)
3220 break;
3221 if ((MEM_P (operand)
3222 /* If IND_LEVELS, find_reloads_address won't reload a
3223 pseudo that didn't get a hard reg, so we have to
3224 reject that case. */
3225 && ((ind_levels ? offsettable_memref_p (operand)
3226 : offsettable_nonstrict_memref_p (operand))
3227 /* A reloaded address is offsettable because it is now
3228 just a simple register indirect. */
3229 || address_reloaded[i] == 1))
3230 || (REG_P (operand)
3231 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3232 && reg_renumber[REGNO (operand)] < 0
3233 /* If reg_equiv_address is nonzero, we will be
3234 loading it into a register; hence it will be
3235 offsettable, but we cannot say that reg_equiv_mem
3236 is offsettable without checking. */
3237 && ((reg_equiv_mem[REGNO (operand)] != 0
3238 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3239 || (reg_equiv_address[REGNO (operand)] != 0))))
3240 win = 1;
3241 if (CONST_POOL_OK_P (operand)
3242 || MEM_P (operand))
3243 badop = 0;
3244 constmemok = 1;
3245 offmemok = 1;
3246 break;
3248 case '&':
3249 /* Output operand that is stored before the need for the
3250 input operands (and their index registers) is over. */
3251 earlyclobber = 1, this_earlyclobber = 1;
3252 break;
3254 case 'E':
3255 case 'F':
3256 if (GET_CODE (operand) == CONST_DOUBLE
3257 || (GET_CODE (operand) == CONST_VECTOR
3258 && (GET_MODE_CLASS (GET_MODE (operand))
3259 == MODE_VECTOR_FLOAT)))
3260 win = 1;
3261 break;
3263 case 'G':
3264 case 'H':
3265 if (GET_CODE (operand) == CONST_DOUBLE
3266 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3267 win = 1;
3268 break;
3270 case 's':
3271 if (GET_CODE (operand) == CONST_INT
3272 || (GET_CODE (operand) == CONST_DOUBLE
3273 && GET_MODE (operand) == VOIDmode))
3274 break;
3275 case 'i':
3276 if (CONSTANT_P (operand)
3277 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3278 win = 1;
3279 break;
3281 case 'n':
3282 if (GET_CODE (operand) == CONST_INT
3283 || (GET_CODE (operand) == CONST_DOUBLE
3284 && GET_MODE (operand) == VOIDmode))
3285 win = 1;
3286 break;
3288 case 'I':
3289 case 'J':
3290 case 'K':
3291 case 'L':
3292 case 'M':
3293 case 'N':
3294 case 'O':
3295 case 'P':
3296 if (GET_CODE (operand) == CONST_INT
3297 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3298 win = 1;
3299 break;
3301 case 'X':
3302 win = 1;
3303 break;
3305 case 'g':
3306 if (! force_reload
3307 /* A PLUS is never a valid operand, but reload can make
3308 it from a register when eliminating registers. */
3309 && GET_CODE (operand) != PLUS
3310 /* A SCRATCH is not a valid operand. */
3311 && GET_CODE (operand) != SCRATCH
3312 && (! CONSTANT_P (operand)
3313 || ! flag_pic
3314 || LEGITIMATE_PIC_OPERAND_P (operand))
3315 && (GENERAL_REGS == ALL_REGS
3316 || !REG_P (operand)
3317 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3318 && reg_renumber[REGNO (operand)] < 0)))
3319 win = 1;
3320 /* Drop through into 'r' case. */
3322 case 'r':
3323 this_alternative[i]
3324 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3325 goto reg;
3327 default:
3328 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3330 #ifdef EXTRA_CONSTRAINT_STR
3331 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3333 if (force_reload)
3334 break;
3335 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3336 win = 1;
3337 /* If the address was already reloaded,
3338 we win as well. */
3339 else if (MEM_P (operand)
3340 && address_reloaded[i] == 1)
3341 win = 1;
3342 /* Likewise if the address will be reloaded because
3343 reg_equiv_address is nonzero. For reg_equiv_mem
3344 we have to check. */
3345 else if (REG_P (operand)
3346 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3347 && reg_renumber[REGNO (operand)] < 0
3348 && ((reg_equiv_mem[REGNO (operand)] != 0
3349 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3350 || (reg_equiv_address[REGNO (operand)] != 0)))
3351 win = 1;
3353 /* If we didn't already win, we can reload
3354 constants via force_const_mem, and other
3355 MEMs by reloading the address like for 'o'. */
3356 if (CONST_POOL_OK_P (operand)
3357 || MEM_P (operand))
3358 badop = 0;
3359 constmemok = 1;
3360 offmemok = 1;
3361 break;
3363 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3365 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3366 win = 1;
3368 /* If we didn't already win, we can reload
3369 the address into a base register. */
3370 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3371 badop = 0;
3372 break;
3375 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3376 win = 1;
3377 #endif
3378 break;
3381 this_alternative[i]
3382 = (int) (reg_class_subunion
3383 [this_alternative[i]]
3384 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3385 reg:
3386 if (GET_MODE (operand) == BLKmode)
3387 break;
3388 winreg = 1;
3389 if (REG_P (operand)
3390 && reg_fits_class_p (operand, this_alternative[i],
3391 offset, GET_MODE (recog_data.operand[i])))
3392 win = 1;
3393 break;
3395 while ((p += len), c);
3397 constraints[i] = p;
3399 /* If this operand could be handled with a reg,
3400 and some reg is allowed, then this operand can be handled. */
3401 if (winreg && this_alternative[i] != (int) NO_REGS)
3402 badop = 0;
3404 /* Record which operands fit this alternative. */
3405 this_alternative_earlyclobber[i] = earlyclobber;
3406 if (win && ! force_reload)
3407 this_alternative_win[i] = 1;
3408 else if (did_match && ! force_reload)
3409 this_alternative_match_win[i] = 1;
3410 else
3412 int const_to_mem = 0;
3414 this_alternative_offmemok[i] = offmemok;
3415 losers++;
3416 if (badop)
3417 bad = 1;
3418 /* Alternative loses if it has no regs for a reg operand. */
3419 if (REG_P (operand)
3420 && this_alternative[i] == (int) NO_REGS
3421 && this_alternative_matches[i] < 0)
3422 bad = 1;
3424 /* If this is a constant that is reloaded into the desired
3425 class by copying it to memory first, count that as another
3426 reload. This is consistent with other code and is
3427 required to avoid choosing another alternative when
3428 the constant is moved into memory by this function on
3429 an early reload pass. Note that the test here is
3430 precisely the same as in the code below that calls
3431 force_const_mem. */
3432 if (CONST_POOL_OK_P (operand)
3433 && ((PREFERRED_RELOAD_CLASS (operand,
3434 (enum reg_class) this_alternative[i])
3435 == NO_REGS)
3436 || no_input_reloads)
3437 && operand_mode[i] != VOIDmode)
3439 const_to_mem = 1;
3440 if (this_alternative[i] != (int) NO_REGS)
3441 losers++;
3444 /* If we can't reload this value at all, reject this
3445 alternative. Note that we could also lose due to
3446 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3447 here. */
3449 if (! CONSTANT_P (operand)
3450 && (enum reg_class) this_alternative[i] != NO_REGS
3451 && (PREFERRED_RELOAD_CLASS (operand,
3452 (enum reg_class) this_alternative[i])
3453 == NO_REGS))
3454 bad = 1;
3456 /* Alternative loses if it requires a type of reload not
3457 permitted for this insn. We can always reload SCRATCH
3458 and objects with a REG_UNUSED note. */
3459 else if (GET_CODE (operand) != SCRATCH
3460 && modified[i] != RELOAD_READ && no_output_reloads
3461 && ! find_reg_note (insn, REG_UNUSED, operand))
3462 bad = 1;
3463 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3464 && ! const_to_mem)
3465 bad = 1;
3467 /* We prefer to reload pseudos over reloading other things,
3468 since such reloads may be able to be eliminated later.
3469 If we are reloading a SCRATCH, we won't be generating any
3470 insns, just using a register, so it is also preferred.
3471 So bump REJECT in other cases. Don't do this in the
3472 case where we are forcing a constant into memory and
3473 it will then win since we don't want to have a different
3474 alternative match then. */
3475 if (! (REG_P (operand)
3476 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3477 && GET_CODE (operand) != SCRATCH
3478 && ! (const_to_mem && constmemok))
3479 reject += 2;
3481 /* Input reloads can be inherited more often than output
3482 reloads can be removed, so penalize output reloads. */
3483 if (operand_type[i] != RELOAD_FOR_INPUT
3484 && GET_CODE (operand) != SCRATCH)
3485 reject++;
3488 /* If this operand is a pseudo register that didn't get a hard
3489 reg and this alternative accepts some register, see if the
3490 class that we want is a subset of the preferred class for this
3491 register. If not, but it intersects that class, use the
3492 preferred class instead. If it does not intersect the preferred
3493 class, show that usage of this alternative should be discouraged;
3494 it will be discouraged more still if the register is `preferred
3495 or nothing'. We do this because it increases the chance of
3496 reusing our spill register in a later insn and avoiding a pair
3497 of memory stores and loads.
3499 Don't bother with this if this alternative will accept this
3500 operand.
3502 Don't do this for a multiword operand, since it is only a
3503 small win and has the risk of requiring more spill registers,
3504 which could cause a large loss.
3506 Don't do this if the preferred class has only one register
3507 because we might otherwise exhaust the class. */
3509 if (! win && ! did_match
3510 && this_alternative[i] != (int) NO_REGS
3511 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3512 && reg_class_size [(int) preferred_class[i]] > 0
3513 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3515 if (! reg_class_subset_p (this_alternative[i],
3516 preferred_class[i]))
3518 /* Since we don't have a way of forming the intersection,
3519 we just do something special if the preferred class
3520 is a subset of the class we have; that's the most
3521 common case anyway. */
3522 if (reg_class_subset_p (preferred_class[i],
3523 this_alternative[i]))
3524 this_alternative[i] = (int) preferred_class[i];
3525 else
3526 reject += (2 + 2 * pref_or_nothing[i]);
3531 /* Now see if any output operands that are marked "earlyclobber"
3532 in this alternative conflict with any input operands
3533 or any memory addresses. */
3535 for (i = 0; i < noperands; i++)
3536 if (this_alternative_earlyclobber[i]
3537 && (this_alternative_win[i] || this_alternative_match_win[i]))
3539 struct decomposition early_data;
3541 early_data = decompose (recog_data.operand[i]);
3543 gcc_assert (modified[i] != RELOAD_READ);
3545 if (this_alternative[i] == NO_REGS)
3547 this_alternative_earlyclobber[i] = 0;
3548 gcc_assert (this_insn_is_asm);
3549 error_for_asm (this_insn,
3550 "%<&%> constraint used with no register class");
3553 for (j = 0; j < noperands; j++)
3554 /* Is this an input operand or a memory ref? */
3555 if ((MEM_P (recog_data.operand[j])
3556 || modified[j] != RELOAD_WRITE)
3557 && j != i
3558 /* Ignore things like match_operator operands. */
3559 && *recog_data.constraints[j] != 0
3560 /* Don't count an input operand that is constrained to match
3561 the early clobber operand. */
3562 && ! (this_alternative_matches[j] == i
3563 && rtx_equal_p (recog_data.operand[i],
3564 recog_data.operand[j]))
3565 /* Is it altered by storing the earlyclobber operand? */
3566 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3567 early_data))
3569 /* If the output is in a non-empty few-regs class,
3570 it's costly to reload it, so reload the input instead. */
3571 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3572 && (REG_P (recog_data.operand[j])
3573 || GET_CODE (recog_data.operand[j]) == SUBREG))
3575 losers++;
3576 this_alternative_win[j] = 0;
3577 this_alternative_match_win[j] = 0;
3579 else
3580 break;
3582 /* If an earlyclobber operand conflicts with something,
3583 it must be reloaded, so request this and count the cost. */
3584 if (j != noperands)
3586 losers++;
3587 this_alternative_win[i] = 0;
3588 this_alternative_match_win[j] = 0;
3589 for (j = 0; j < noperands; j++)
3590 if (this_alternative_matches[j] == i
3591 && this_alternative_match_win[j])
3593 this_alternative_win[j] = 0;
3594 this_alternative_match_win[j] = 0;
3595 losers++;
3600 /* If one alternative accepts all the operands, no reload required,
3601 choose that alternative; don't consider the remaining ones. */
3602 if (losers == 0)
3604 /* Unswap these so that they are never swapped at `finish'. */
3605 if (commutative >= 0)
3607 recog_data.operand[commutative] = substed_operand[commutative];
3608 recog_data.operand[commutative + 1]
3609 = substed_operand[commutative + 1];
3611 for (i = 0; i < noperands; i++)
3613 goal_alternative_win[i] = this_alternative_win[i];
3614 goal_alternative_match_win[i] = this_alternative_match_win[i];
3615 goal_alternative[i] = this_alternative[i];
3616 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3617 goal_alternative_matches[i] = this_alternative_matches[i];
3618 goal_alternative_earlyclobber[i]
3619 = this_alternative_earlyclobber[i];
3621 goal_alternative_number = this_alternative_number;
3622 goal_alternative_swapped = swapped;
3623 goal_earlyclobber = this_earlyclobber;
3624 goto finish;
3627 /* REJECT, set by the ! and ? constraint characters and when a register
3628 would be reloaded into a non-preferred class, discourages the use of
3629 this alternative for a reload goal. REJECT is incremented by six
3630 for each ? and two for each non-preferred class. */
3631 losers = losers * 6 + reject;
3633 /* If this alternative can be made to work by reloading,
3634 and it needs less reloading than the others checked so far,
3635 record it as the chosen goal for reloading. */
3636 if (! bad && best > losers)
3638 for (i = 0; i < noperands; i++)
3640 goal_alternative[i] = this_alternative[i];
3641 goal_alternative_win[i] = this_alternative_win[i];
3642 goal_alternative_match_win[i] = this_alternative_match_win[i];
3643 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3644 goal_alternative_matches[i] = this_alternative_matches[i];
3645 goal_alternative_earlyclobber[i]
3646 = this_alternative_earlyclobber[i];
3648 goal_alternative_swapped = swapped;
3649 best = losers;
3650 goal_alternative_number = this_alternative_number;
3651 goal_earlyclobber = this_earlyclobber;
3655 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3656 then we need to try each alternative twice,
3657 the second time matching those two operands
3658 as if we had exchanged them.
3659 To do this, really exchange them in operands.
3661 If we have just tried the alternatives the second time,
3662 return operands to normal and drop through. */
3664 if (commutative >= 0)
3666 swapped = !swapped;
3667 if (swapped)
3669 enum reg_class tclass;
3670 int t;
3672 recog_data.operand[commutative] = substed_operand[commutative + 1];
3673 recog_data.operand[commutative + 1] = substed_operand[commutative];
3674 /* Swap the duplicates too. */
3675 for (i = 0; i < recog_data.n_dups; i++)
3676 if (recog_data.dup_num[i] == commutative
3677 || recog_data.dup_num[i] == commutative + 1)
3678 *recog_data.dup_loc[i]
3679 = recog_data.operand[(int) recog_data.dup_num[i]];
3681 tclass = preferred_class[commutative];
3682 preferred_class[commutative] = preferred_class[commutative + 1];
3683 preferred_class[commutative + 1] = tclass;
3685 t = pref_or_nothing[commutative];
3686 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3687 pref_or_nothing[commutative + 1] = t;
3689 t = address_reloaded[commutative];
3690 address_reloaded[commutative] = address_reloaded[commutative + 1];
3691 address_reloaded[commutative + 1] = t;
3693 memcpy (constraints, recog_data.constraints,
3694 noperands * sizeof (char *));
3695 goto try_swapped;
3697 else
3699 recog_data.operand[commutative] = substed_operand[commutative];
3700 recog_data.operand[commutative + 1]
3701 = substed_operand[commutative + 1];
3702 /* Unswap the duplicates too. */
3703 for (i = 0; i < recog_data.n_dups; i++)
3704 if (recog_data.dup_num[i] == commutative
3705 || recog_data.dup_num[i] == commutative + 1)
3706 *recog_data.dup_loc[i]
3707 = recog_data.operand[(int) recog_data.dup_num[i]];
3711 /* The operands don't meet the constraints.
3712 goal_alternative describes the alternative
3713 that we could reach by reloading the fewest operands.
3714 Reload so as to fit it. */
3716 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3718 /* No alternative works with reloads?? */
3719 if (insn_code_number >= 0)
3720 fatal_insn ("unable to generate reloads for:", insn);
3721 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3722 /* Avoid further trouble with this insn. */
3723 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3724 n_reloads = 0;
3725 return 0;
3728 /* Jump to `finish' from above if all operands are valid already.
3729 In that case, goal_alternative_win is all 1. */
3730 finish:
3732 /* Right now, for any pair of operands I and J that are required to match,
3733 with I < J,
3734 goal_alternative_matches[J] is I.
3735 Set up goal_alternative_matched as the inverse function:
3736 goal_alternative_matched[I] = J. */
3738 for (i = 0; i < noperands; i++)
3739 goal_alternative_matched[i] = -1;
3741 for (i = 0; i < noperands; i++)
3742 if (! goal_alternative_win[i]
3743 && goal_alternative_matches[i] >= 0)
3744 goal_alternative_matched[goal_alternative_matches[i]] = i;
3746 for (i = 0; i < noperands; i++)
3747 goal_alternative_win[i] |= goal_alternative_match_win[i];
3749 /* If the best alternative is with operands 1 and 2 swapped,
3750 consider them swapped before reporting the reloads. Update the
3751 operand numbers of any reloads already pushed. */
3753 if (goal_alternative_swapped)
3755 rtx tem;
3757 tem = substed_operand[commutative];
3758 substed_operand[commutative] = substed_operand[commutative + 1];
3759 substed_operand[commutative + 1] = tem;
3760 tem = recog_data.operand[commutative];
3761 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3762 recog_data.operand[commutative + 1] = tem;
3763 tem = *recog_data.operand_loc[commutative];
3764 *recog_data.operand_loc[commutative]
3765 = *recog_data.operand_loc[commutative + 1];
3766 *recog_data.operand_loc[commutative + 1] = tem;
3768 for (i = 0; i < n_reloads; i++)
3770 if (rld[i].opnum == commutative)
3771 rld[i].opnum = commutative + 1;
3772 else if (rld[i].opnum == commutative + 1)
3773 rld[i].opnum = commutative;
3777 for (i = 0; i < noperands; i++)
3779 operand_reloadnum[i] = -1;
3781 /* If this is an earlyclobber operand, we need to widen the scope.
3782 The reload must remain valid from the start of the insn being
3783 reloaded until after the operand is stored into its destination.
3784 We approximate this with RELOAD_OTHER even though we know that we
3785 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3787 One special case that is worth checking is when we have an
3788 output that is earlyclobber but isn't used past the insn (typically
3789 a SCRATCH). In this case, we only need have the reload live
3790 through the insn itself, but not for any of our input or output
3791 reloads.
3792 But we must not accidentally narrow the scope of an existing
3793 RELOAD_OTHER reload - leave these alone.
3795 In any case, anything needed to address this operand can remain
3796 however they were previously categorized. */
3798 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3799 operand_type[i]
3800 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3801 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3804 /* Any constants that aren't allowed and can't be reloaded
3805 into registers are here changed into memory references. */
3806 for (i = 0; i < noperands; i++)
3807 if (! goal_alternative_win[i]
3808 && CONST_POOL_OK_P (recog_data.operand[i])
3809 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3810 (enum reg_class) goal_alternative[i])
3811 == NO_REGS)
3812 || no_input_reloads)
3813 && operand_mode[i] != VOIDmode)
3815 substed_operand[i] = recog_data.operand[i]
3816 = find_reloads_toplev (force_const_mem (operand_mode[i],
3817 recog_data.operand[i]),
3818 i, address_type[i], ind_levels, 0, insn,
3819 NULL);
3820 if (alternative_allows_memconst (recog_data.constraints[i],
3821 goal_alternative_number))
3822 goal_alternative_win[i] = 1;
3825 /* Likewise any invalid constants appearing as operand of a PLUS
3826 that is to be reloaded. */
3827 for (i = 0; i < noperands; i++)
3828 if (! goal_alternative_win[i]
3829 && GET_CODE (recog_data.operand[i]) == PLUS
3830 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3831 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3832 (enum reg_class) goal_alternative[i])
3833 == NO_REGS)
3834 && operand_mode[i] != VOIDmode)
3836 rtx tem = force_const_mem (operand_mode[i],
3837 XEXP (recog_data.operand[i], 1));
3838 tem = gen_rtx_PLUS (operand_mode[i],
3839 XEXP (recog_data.operand[i], 0), tem);
3841 substed_operand[i] = recog_data.operand[i]
3842 = find_reloads_toplev (tem, i, address_type[i],
3843 ind_levels, 0, insn, NULL);
3846 /* Record the values of the earlyclobber operands for the caller. */
3847 if (goal_earlyclobber)
3848 for (i = 0; i < noperands; i++)
3849 if (goal_alternative_earlyclobber[i])
3850 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3852 /* Now record reloads for all the operands that need them. */
3853 for (i = 0; i < noperands; i++)
3854 if (! goal_alternative_win[i])
3856 /* Operands that match previous ones have already been handled. */
3857 if (goal_alternative_matches[i] >= 0)
3859 /* Handle an operand with a nonoffsettable address
3860 appearing where an offsettable address will do
3861 by reloading the address into a base register.
3863 ??? We can also do this when the operand is a register and
3864 reg_equiv_mem is not offsettable, but this is a bit tricky,
3865 so we don't bother with it. It may not be worth doing. */
3866 else if (goal_alternative_matched[i] == -1
3867 && goal_alternative_offmemok[i]
3868 && MEM_P (recog_data.operand[i]))
3870 operand_reloadnum[i]
3871 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3872 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3873 MODE_BASE_REG_CLASS (VOIDmode),
3874 GET_MODE (XEXP (recog_data.operand[i], 0)),
3875 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3876 rld[operand_reloadnum[i]].inc
3877 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3879 /* If this operand is an output, we will have made any
3880 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3881 now we are treating part of the operand as an input, so
3882 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3884 if (modified[i] == RELOAD_WRITE)
3886 for (j = 0; j < n_reloads; j++)
3888 if (rld[j].opnum == i)
3890 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3891 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3892 else if (rld[j].when_needed
3893 == RELOAD_FOR_OUTADDR_ADDRESS)
3894 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3899 else if (goal_alternative_matched[i] == -1)
3901 operand_reloadnum[i]
3902 = push_reload ((modified[i] != RELOAD_WRITE
3903 ? recog_data.operand[i] : 0),
3904 (modified[i] != RELOAD_READ
3905 ? recog_data.operand[i] : 0),
3906 (modified[i] != RELOAD_WRITE
3907 ? recog_data.operand_loc[i] : 0),
3908 (modified[i] != RELOAD_READ
3909 ? recog_data.operand_loc[i] : 0),
3910 (enum reg_class) goal_alternative[i],
3911 (modified[i] == RELOAD_WRITE
3912 ? VOIDmode : operand_mode[i]),
3913 (modified[i] == RELOAD_READ
3914 ? VOIDmode : operand_mode[i]),
3915 (insn_code_number < 0 ? 0
3916 : insn_data[insn_code_number].operand[i].strict_low),
3917 0, i, operand_type[i]);
3919 /* In a matching pair of operands, one must be input only
3920 and the other must be output only.
3921 Pass the input operand as IN and the other as OUT. */
3922 else if (modified[i] == RELOAD_READ
3923 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3925 operand_reloadnum[i]
3926 = push_reload (recog_data.operand[i],
3927 recog_data.operand[goal_alternative_matched[i]],
3928 recog_data.operand_loc[i],
3929 recog_data.operand_loc[goal_alternative_matched[i]],
3930 (enum reg_class) goal_alternative[i],
3931 operand_mode[i],
3932 operand_mode[goal_alternative_matched[i]],
3933 0, 0, i, RELOAD_OTHER);
3934 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3936 else if (modified[i] == RELOAD_WRITE
3937 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3939 operand_reloadnum[goal_alternative_matched[i]]
3940 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3941 recog_data.operand[i],
3942 recog_data.operand_loc[goal_alternative_matched[i]],
3943 recog_data.operand_loc[i],
3944 (enum reg_class) goal_alternative[i],
3945 operand_mode[goal_alternative_matched[i]],
3946 operand_mode[i],
3947 0, 0, i, RELOAD_OTHER);
3948 operand_reloadnum[i] = output_reloadnum;
3950 else
3952 gcc_assert (insn_code_number < 0);
3953 error_for_asm (insn, "inconsistent operand constraints "
3954 "in an %<asm%>");
3955 /* Avoid further trouble with this insn. */
3956 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3957 n_reloads = 0;
3958 return 0;
3961 else if (goal_alternative_matched[i] < 0
3962 && goal_alternative_matches[i] < 0
3963 && address_operand_reloaded[i] != 1
3964 && optimize)
3966 /* For each non-matching operand that's a MEM or a pseudo-register
3967 that didn't get a hard register, make an optional reload.
3968 This may get done even if the insn needs no reloads otherwise. */
3970 rtx operand = recog_data.operand[i];
3972 while (GET_CODE (operand) == SUBREG)
3973 operand = SUBREG_REG (operand);
3974 if ((MEM_P (operand)
3975 || (REG_P (operand)
3976 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3977 /* If this is only for an output, the optional reload would not
3978 actually cause us to use a register now, just note that
3979 something is stored here. */
3980 && ((enum reg_class) goal_alternative[i] != NO_REGS
3981 || modified[i] == RELOAD_WRITE)
3982 && ! no_input_reloads
3983 /* An optional output reload might allow to delete INSN later.
3984 We mustn't make in-out reloads on insns that are not permitted
3985 output reloads.
3986 If this is an asm, we can't delete it; we must not even call
3987 push_reload for an optional output reload in this case,
3988 because we can't be sure that the constraint allows a register,
3989 and push_reload verifies the constraints for asms. */
3990 && (modified[i] == RELOAD_READ
3991 || (! no_output_reloads && ! this_insn_is_asm)))
3992 operand_reloadnum[i]
3993 = push_reload ((modified[i] != RELOAD_WRITE
3994 ? recog_data.operand[i] : 0),
3995 (modified[i] != RELOAD_READ
3996 ? recog_data.operand[i] : 0),
3997 (modified[i] != RELOAD_WRITE
3998 ? recog_data.operand_loc[i] : 0),
3999 (modified[i] != RELOAD_READ
4000 ? recog_data.operand_loc[i] : 0),
4001 (enum reg_class) goal_alternative[i],
4002 (modified[i] == RELOAD_WRITE
4003 ? VOIDmode : operand_mode[i]),
4004 (modified[i] == RELOAD_READ
4005 ? VOIDmode : operand_mode[i]),
4006 (insn_code_number < 0 ? 0
4007 : insn_data[insn_code_number].operand[i].strict_low),
4008 1, i, operand_type[i]);
4009 /* If a memory reference remains (either as a MEM or a pseudo that
4010 did not get a hard register), yet we can't make an optional
4011 reload, check if this is actually a pseudo register reference;
4012 we then need to emit a USE and/or a CLOBBER so that reload
4013 inheritance will do the right thing. */
4014 else if (replace
4015 && (MEM_P (operand)
4016 || (REG_P (operand)
4017 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4018 && reg_renumber [REGNO (operand)] < 0)))
4020 operand = *recog_data.operand_loc[i];
4022 while (GET_CODE (operand) == SUBREG)
4023 operand = SUBREG_REG (operand);
4024 if (REG_P (operand))
4026 if (modified[i] != RELOAD_WRITE)
4027 /* We mark the USE with QImode so that we recognize
4028 it as one that can be safely deleted at the end
4029 of reload. */
4030 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4031 insn), QImode);
4032 if (modified[i] != RELOAD_READ)
4033 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
4037 else if (goal_alternative_matches[i] >= 0
4038 && goal_alternative_win[goal_alternative_matches[i]]
4039 && modified[i] == RELOAD_READ
4040 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4041 && ! no_input_reloads && ! no_output_reloads
4042 && optimize)
4044 /* Similarly, make an optional reload for a pair of matching
4045 objects that are in MEM or a pseudo that didn't get a hard reg. */
4047 rtx operand = recog_data.operand[i];
4049 while (GET_CODE (operand) == SUBREG)
4050 operand = SUBREG_REG (operand);
4051 if ((MEM_P (operand)
4052 || (REG_P (operand)
4053 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4054 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4055 != NO_REGS))
4056 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4057 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4058 recog_data.operand[i],
4059 recog_data.operand_loc[goal_alternative_matches[i]],
4060 recog_data.operand_loc[i],
4061 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4062 operand_mode[goal_alternative_matches[i]],
4063 operand_mode[i],
4064 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4067 /* Perform whatever substitutions on the operands we are supposed
4068 to make due to commutativity or replacement of registers
4069 with equivalent constants or memory slots. */
4071 for (i = 0; i < noperands; i++)
4073 /* We only do this on the last pass through reload, because it is
4074 possible for some data (like reg_equiv_address) to be changed during
4075 later passes. Moreover, we loose the opportunity to get a useful
4076 reload_{in,out}_reg when we do these replacements. */
4078 if (replace)
4080 rtx substitution = substed_operand[i];
4082 *recog_data.operand_loc[i] = substitution;
4084 /* If we're replacing an operand with a LABEL_REF, we need
4085 to make sure that there's a REG_LABEL note attached to
4086 this instruction. */
4087 if (!JUMP_P (insn)
4088 && GET_CODE (substitution) == LABEL_REF
4089 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4090 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4091 XEXP (substitution, 0),
4092 REG_NOTES (insn));
4094 else
4095 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4098 /* If this insn pattern contains any MATCH_DUP's, make sure that
4099 they will be substituted if the operands they match are substituted.
4100 Also do now any substitutions we already did on the operands.
4102 Don't do this if we aren't making replacements because we might be
4103 propagating things allocated by frame pointer elimination into places
4104 it doesn't expect. */
4106 if (insn_code_number >= 0 && replace)
4107 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4109 int opno = recog_data.dup_num[i];
4110 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4111 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4114 #if 0
4115 /* This loses because reloading of prior insns can invalidate the equivalence
4116 (or at least find_equiv_reg isn't smart enough to find it any more),
4117 causing this insn to need more reload regs than it needed before.
4118 It may be too late to make the reload regs available.
4119 Now this optimization is done safely in choose_reload_regs. */
4121 /* For each reload of a reg into some other class of reg,
4122 search for an existing equivalent reg (same value now) in the right class.
4123 We can use it as long as we don't need to change its contents. */
4124 for (i = 0; i < n_reloads; i++)
4125 if (rld[i].reg_rtx == 0
4126 && rld[i].in != 0
4127 && REG_P (rld[i].in)
4128 && rld[i].out == 0)
4130 rld[i].reg_rtx
4131 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4132 static_reload_reg_p, 0, rld[i].inmode);
4133 /* Prevent generation of insn to load the value
4134 because the one we found already has the value. */
4135 if (rld[i].reg_rtx)
4136 rld[i].in = rld[i].reg_rtx;
4138 #endif
4140 /* Perhaps an output reload can be combined with another
4141 to reduce needs by one. */
4142 if (!goal_earlyclobber)
4143 combine_reloads ();
4145 /* If we have a pair of reloads for parts of an address, they are reloading
4146 the same object, the operands themselves were not reloaded, and they
4147 are for two operands that are supposed to match, merge the reloads and
4148 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4150 for (i = 0; i < n_reloads; i++)
4152 int k;
4154 for (j = i + 1; j < n_reloads; j++)
4155 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4156 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4157 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4158 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4159 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4160 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4161 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4162 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4163 && rtx_equal_p (rld[i].in, rld[j].in)
4164 && (operand_reloadnum[rld[i].opnum] < 0
4165 || rld[operand_reloadnum[rld[i].opnum]].optional)
4166 && (operand_reloadnum[rld[j].opnum] < 0
4167 || rld[operand_reloadnum[rld[j].opnum]].optional)
4168 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4169 || (goal_alternative_matches[rld[j].opnum]
4170 == rld[i].opnum)))
4172 for (k = 0; k < n_replacements; k++)
4173 if (replacements[k].what == j)
4174 replacements[k].what = i;
4176 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4177 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4178 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4179 else
4180 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4181 rld[j].in = 0;
4185 /* Scan all the reloads and update their type.
4186 If a reload is for the address of an operand and we didn't reload
4187 that operand, change the type. Similarly, change the operand number
4188 of a reload when two operands match. If a reload is optional, treat it
4189 as though the operand isn't reloaded.
4191 ??? This latter case is somewhat odd because if we do the optional
4192 reload, it means the object is hanging around. Thus we need only
4193 do the address reload if the optional reload was NOT done.
4195 Change secondary reloads to be the address type of their operand, not
4196 the normal type.
4198 If an operand's reload is now RELOAD_OTHER, change any
4199 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4200 RELOAD_FOR_OTHER_ADDRESS. */
4202 for (i = 0; i < n_reloads; i++)
4204 if (rld[i].secondary_p
4205 && rld[i].when_needed == operand_type[rld[i].opnum])
4206 rld[i].when_needed = address_type[rld[i].opnum];
4208 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4209 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4210 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4211 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4212 && (operand_reloadnum[rld[i].opnum] < 0
4213 || rld[operand_reloadnum[rld[i].opnum]].optional))
4215 /* If we have a secondary reload to go along with this reload,
4216 change its type to RELOAD_FOR_OPADDR_ADDR. */
4218 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4219 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4220 && rld[i].secondary_in_reload != -1)
4222 int secondary_in_reload = rld[i].secondary_in_reload;
4224 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4226 /* If there's a tertiary reload we have to change it also. */
4227 if (secondary_in_reload > 0
4228 && rld[secondary_in_reload].secondary_in_reload != -1)
4229 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4230 = RELOAD_FOR_OPADDR_ADDR;
4233 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4234 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4235 && rld[i].secondary_out_reload != -1)
4237 int secondary_out_reload = rld[i].secondary_out_reload;
4239 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4241 /* If there's a tertiary reload we have to change it also. */
4242 if (secondary_out_reload
4243 && rld[secondary_out_reload].secondary_out_reload != -1)
4244 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4245 = RELOAD_FOR_OPADDR_ADDR;
4248 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4249 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4250 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4251 else
4252 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4255 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4256 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4257 && operand_reloadnum[rld[i].opnum] >= 0
4258 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4259 == RELOAD_OTHER))
4260 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4262 if (goal_alternative_matches[rld[i].opnum] >= 0)
4263 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4266 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4267 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4268 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4270 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4271 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4272 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4273 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4274 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4275 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4276 This is complicated by the fact that a single operand can have more
4277 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4278 choose_reload_regs without affecting code quality, and cases that
4279 actually fail are extremely rare, so it turns out to be better to fix
4280 the problem here by not generating cases that choose_reload_regs will
4281 fail for. */
4282 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4283 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4284 a single operand.
4285 We can reduce the register pressure by exploiting that a
4286 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4287 does not conflict with any of them, if it is only used for the first of
4288 the RELOAD_FOR_X_ADDRESS reloads. */
4290 int first_op_addr_num = -2;
4291 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4292 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4293 int need_change = 0;
4294 /* We use last_op_addr_reload and the contents of the above arrays
4295 first as flags - -2 means no instance encountered, -1 means exactly
4296 one instance encountered.
4297 If more than one instance has been encountered, we store the reload
4298 number of the first reload of the kind in question; reload numbers
4299 are known to be non-negative. */
4300 for (i = 0; i < noperands; i++)
4301 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4302 for (i = n_reloads - 1; i >= 0; i--)
4304 switch (rld[i].when_needed)
4306 case RELOAD_FOR_OPERAND_ADDRESS:
4307 if (++first_op_addr_num >= 0)
4309 first_op_addr_num = i;
4310 need_change = 1;
4312 break;
4313 case RELOAD_FOR_INPUT_ADDRESS:
4314 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4316 first_inpaddr_num[rld[i].opnum] = i;
4317 need_change = 1;
4319 break;
4320 case RELOAD_FOR_OUTPUT_ADDRESS:
4321 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4323 first_outpaddr_num[rld[i].opnum] = i;
4324 need_change = 1;
4326 break;
4327 default:
4328 break;
4332 if (need_change)
4334 for (i = 0; i < n_reloads; i++)
4336 int first_num;
4337 enum reload_type type;
4339 switch (rld[i].when_needed)
4341 case RELOAD_FOR_OPADDR_ADDR:
4342 first_num = first_op_addr_num;
4343 type = RELOAD_FOR_OPERAND_ADDRESS;
4344 break;
4345 case RELOAD_FOR_INPADDR_ADDRESS:
4346 first_num = first_inpaddr_num[rld[i].opnum];
4347 type = RELOAD_FOR_INPUT_ADDRESS;
4348 break;
4349 case RELOAD_FOR_OUTADDR_ADDRESS:
4350 first_num = first_outpaddr_num[rld[i].opnum];
4351 type = RELOAD_FOR_OUTPUT_ADDRESS;
4352 break;
4353 default:
4354 continue;
4356 if (first_num < 0)
4357 continue;
4358 else if (i > first_num)
4359 rld[i].when_needed = type;
4360 else
4362 /* Check if the only TYPE reload that uses reload I is
4363 reload FIRST_NUM. */
4364 for (j = n_reloads - 1; j > first_num; j--)
4366 if (rld[j].when_needed == type
4367 && (rld[i].secondary_p
4368 ? rld[j].secondary_in_reload == i
4369 : reg_mentioned_p (rld[i].in, rld[j].in)))
4371 rld[i].when_needed = type;
4372 break;
4380 /* See if we have any reloads that are now allowed to be merged
4381 because we've changed when the reload is needed to
4382 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4383 check for the most common cases. */
4385 for (i = 0; i < n_reloads; i++)
4386 if (rld[i].in != 0 && rld[i].out == 0
4387 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4388 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4389 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4390 for (j = 0; j < n_reloads; j++)
4391 if (i != j && rld[j].in != 0 && rld[j].out == 0
4392 && rld[j].when_needed == rld[i].when_needed
4393 && MATCHES (rld[i].in, rld[j].in)
4394 && rld[i].class == rld[j].class
4395 && !rld[i].nocombine && !rld[j].nocombine
4396 && rld[i].reg_rtx == rld[j].reg_rtx)
4398 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4399 transfer_replacements (i, j);
4400 rld[j].in = 0;
4403 #ifdef HAVE_cc0
4404 /* If we made any reloads for addresses, see if they violate a
4405 "no input reloads" requirement for this insn. But loads that we
4406 do after the insn (such as for output addresses) are fine. */
4407 if (no_input_reloads)
4408 for (i = 0; i < n_reloads; i++)
4409 gcc_assert (rld[i].in == 0
4410 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4411 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4412 #endif
4414 /* Compute reload_mode and reload_nregs. */
4415 for (i = 0; i < n_reloads; i++)
4417 rld[i].mode
4418 = (rld[i].inmode == VOIDmode
4419 || (GET_MODE_SIZE (rld[i].outmode)
4420 > GET_MODE_SIZE (rld[i].inmode)))
4421 ? rld[i].outmode : rld[i].inmode;
4423 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4426 /* Special case a simple move with an input reload and a
4427 destination of a hard reg, if the hard reg is ok, use it. */
4428 for (i = 0; i < n_reloads; i++)
4429 if (rld[i].when_needed == RELOAD_FOR_INPUT
4430 && GET_CODE (PATTERN (insn)) == SET
4431 && REG_P (SET_DEST (PATTERN (insn)))
4432 && SET_SRC (PATTERN (insn)) == rld[i].in)
4434 rtx dest = SET_DEST (PATTERN (insn));
4435 unsigned int regno = REGNO (dest);
4437 if (regno < FIRST_PSEUDO_REGISTER
4438 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4439 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4441 int nr = hard_regno_nregs[regno][rld[i].mode];
4442 int ok = 1, nri;
4444 for (nri = 1; nri < nr; nri ++)
4445 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4446 ok = 0;
4448 if (ok)
4449 rld[i].reg_rtx = dest;
4453 return retval;
4456 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4457 accepts a memory operand with constant address. */
4459 static int
4460 alternative_allows_memconst (const char *constraint, int altnum)
4462 int c;
4463 /* Skip alternatives before the one requested. */
4464 while (altnum > 0)
4466 while (*constraint++ != ',');
4467 altnum--;
4469 /* Scan the requested alternative for 'm' or 'o'.
4470 If one of them is present, this alternative accepts memory constants. */
4471 for (; (c = *constraint) && c != ',' && c != '#';
4472 constraint += CONSTRAINT_LEN (c, constraint))
4473 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4474 return 1;
4475 return 0;
4478 /* Scan X for memory references and scan the addresses for reloading.
4479 Also checks for references to "constant" regs that we want to eliminate
4480 and replaces them with the values they stand for.
4481 We may alter X destructively if it contains a reference to such.
4482 If X is just a constant reg, we return the equivalent value
4483 instead of X.
4485 IND_LEVELS says how many levels of indirect addressing this machine
4486 supports.
4488 OPNUM and TYPE identify the purpose of the reload.
4490 IS_SET_DEST is true if X is the destination of a SET, which is not
4491 appropriate to be replaced by a constant.
4493 INSN, if nonzero, is the insn in which we do the reload. It is used
4494 to determine if we may generate output reloads, and where to put USEs
4495 for pseudos that we have to replace with stack slots.
4497 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4498 result of find_reloads_address. */
4500 static rtx
4501 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4502 int ind_levels, int is_set_dest, rtx insn,
4503 int *address_reloaded)
4505 RTX_CODE code = GET_CODE (x);
4507 const char *fmt = GET_RTX_FORMAT (code);
4508 int i;
4509 int copied;
4511 if (code == REG)
4513 /* This code is duplicated for speed in find_reloads. */
4514 int regno = REGNO (x);
4515 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4516 x = reg_equiv_constant[regno];
4517 #if 0
4518 /* This creates (subreg (mem...)) which would cause an unnecessary
4519 reload of the mem. */
4520 else if (reg_equiv_mem[regno] != 0)
4521 x = reg_equiv_mem[regno];
4522 #endif
4523 else if (reg_equiv_memory_loc[regno]
4524 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4526 rtx mem = make_memloc (x, regno);
4527 if (reg_equiv_address[regno]
4528 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4530 /* If this is not a toplevel operand, find_reloads doesn't see
4531 this substitution. We have to emit a USE of the pseudo so
4532 that delete_output_reload can see it. */
4533 if (replace_reloads && recog_data.operand[opnum] != x)
4534 /* We mark the USE with QImode so that we recognize it
4535 as one that can be safely deleted at the end of
4536 reload. */
4537 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4538 QImode);
4539 x = mem;
4540 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4541 opnum, type, ind_levels, insn);
4542 if (address_reloaded)
4543 *address_reloaded = i;
4546 return x;
4548 if (code == MEM)
4550 rtx tem = x;
4552 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4553 opnum, type, ind_levels, insn);
4554 if (address_reloaded)
4555 *address_reloaded = i;
4557 return tem;
4560 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4562 /* Check for SUBREG containing a REG that's equivalent to a
4563 constant. If the constant has a known value, truncate it
4564 right now. Similarly if we are extracting a single-word of a
4565 multi-word constant. If the constant is symbolic, allow it
4566 to be substituted normally. push_reload will strip the
4567 subreg later. The constant must not be VOIDmode, because we
4568 will lose the mode of the register (this should never happen
4569 because one of the cases above should handle it). */
4571 int regno = REGNO (SUBREG_REG (x));
4572 rtx tem;
4574 if (subreg_lowpart_p (x)
4575 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4576 && reg_equiv_constant[regno] != 0
4577 && (tem = gen_lowpart_common (GET_MODE (x),
4578 reg_equiv_constant[regno])) != 0)
4579 return tem;
4581 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4582 && reg_equiv_constant[regno] != 0)
4584 tem =
4585 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4586 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4587 gcc_assert (tem);
4588 return tem;
4591 /* If the subreg contains a reg that will be converted to a mem,
4592 convert the subreg to a narrower memref now.
4593 Otherwise, we would get (subreg (mem ...) ...),
4594 which would force reload of the mem.
4596 We also need to do this if there is an equivalent MEM that is
4597 not offsettable. In that case, alter_subreg would produce an
4598 invalid address on big-endian machines.
4600 For machines that extend byte loads, we must not reload using
4601 a wider mode if we have a paradoxical SUBREG. find_reloads will
4602 force a reload in that case. So we should not do anything here. */
4604 else if (regno >= FIRST_PSEUDO_REGISTER
4605 #ifdef LOAD_EXTEND_OP
4606 && (GET_MODE_SIZE (GET_MODE (x))
4607 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4608 #endif
4609 && (reg_equiv_address[regno] != 0
4610 || (reg_equiv_mem[regno] != 0
4611 && (! strict_memory_address_p (GET_MODE (x),
4612 XEXP (reg_equiv_mem[regno], 0))
4613 || ! offsettable_memref_p (reg_equiv_mem[regno])
4614 || num_not_at_initial_offset))))
4615 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4616 insn);
4619 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4621 if (fmt[i] == 'e')
4623 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4624 ind_levels, is_set_dest, insn,
4625 address_reloaded);
4626 /* If we have replaced a reg with it's equivalent memory loc -
4627 that can still be handled here e.g. if it's in a paradoxical
4628 subreg - we must make the change in a copy, rather than using
4629 a destructive change. This way, find_reloads can still elect
4630 not to do the change. */
4631 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4633 x = shallow_copy_rtx (x);
4634 copied = 1;
4636 XEXP (x, i) = new_part;
4639 return x;
4642 /* Return a mem ref for the memory equivalent of reg REGNO.
4643 This mem ref is not shared with anything. */
4645 static rtx
4646 make_memloc (rtx ad, int regno)
4648 /* We must rerun eliminate_regs, in case the elimination
4649 offsets have changed. */
4650 rtx tem
4651 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4653 /* If TEM might contain a pseudo, we must copy it to avoid
4654 modifying it when we do the substitution for the reload. */
4655 if (rtx_varies_p (tem, 0))
4656 tem = copy_rtx (tem);
4658 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4659 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4661 /* Copy the result if it's still the same as the equivalence, to avoid
4662 modifying it when we do the substitution for the reload. */
4663 if (tem == reg_equiv_memory_loc[regno])
4664 tem = copy_rtx (tem);
4665 return tem;
4668 /* Returns true if AD could be turned into a valid memory reference
4669 to mode MODE by reloading the part pointed to by PART into a
4670 register. */
4672 static int
4673 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4675 int retv;
4676 rtx tem = *part;
4677 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4679 *part = reg;
4680 retv = memory_address_p (mode, ad);
4681 *part = tem;
4683 return retv;
4686 /* Record all reloads needed for handling memory address AD
4687 which appears in *LOC in a memory reference to mode MODE
4688 which itself is found in location *MEMREFLOC.
4689 Note that we take shortcuts assuming that no multi-reg machine mode
4690 occurs as part of an address.
4692 OPNUM and TYPE specify the purpose of this reload.
4694 IND_LEVELS says how many levels of indirect addressing this machine
4695 supports.
4697 INSN, if nonzero, is the insn in which we do the reload. It is used
4698 to determine if we may generate output reloads, and where to put USEs
4699 for pseudos that we have to replace with stack slots.
4701 Value is one if this address is reloaded or replaced as a whole; it is
4702 zero if the top level of this address was not reloaded or replaced, and
4703 it is -1 if it may or may not have been reloaded or replaced.
4705 Note that there is no verification that the address will be valid after
4706 this routine does its work. Instead, we rely on the fact that the address
4707 was valid when reload started. So we need only undo things that reload
4708 could have broken. These are wrong register types, pseudos not allocated
4709 to a hard register, and frame pointer elimination. */
4711 static int
4712 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4713 rtx *loc, int opnum, enum reload_type type,
4714 int ind_levels, rtx insn)
4716 int regno;
4717 int removed_and = 0;
4718 int op_index;
4719 rtx tem;
4721 /* If the address is a register, see if it is a legitimate address and
4722 reload if not. We first handle the cases where we need not reload
4723 or where we must reload in a non-standard way. */
4725 if (REG_P (ad))
4727 regno = REGNO (ad);
4729 /* If the register is equivalent to an invariant expression, substitute
4730 the invariant, and eliminate any eliminable register references. */
4731 tem = reg_equiv_constant[regno];
4732 if (tem != 0
4733 && (tem = eliminate_regs (tem, mode, insn))
4734 && strict_memory_address_p (mode, tem))
4736 *loc = ad = tem;
4737 return 0;
4740 tem = reg_equiv_memory_loc[regno];
4741 if (tem != 0)
4743 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4745 tem = make_memloc (ad, regno);
4746 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4748 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4749 &XEXP (tem, 0), opnum,
4750 ADDR_TYPE (type), ind_levels, insn);
4752 /* We can avoid a reload if the register's equivalent memory
4753 expression is valid as an indirect memory address.
4754 But not all addresses are valid in a mem used as an indirect
4755 address: only reg or reg+constant. */
4757 if (ind_levels > 0
4758 && strict_memory_address_p (mode, tem)
4759 && (REG_P (XEXP (tem, 0))
4760 || (GET_CODE (XEXP (tem, 0)) == PLUS
4761 && REG_P (XEXP (XEXP (tem, 0), 0))
4762 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4764 /* TEM is not the same as what we'll be replacing the
4765 pseudo with after reload, put a USE in front of INSN
4766 in the final reload pass. */
4767 if (replace_reloads
4768 && num_not_at_initial_offset
4769 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4771 *loc = tem;
4772 /* We mark the USE with QImode so that we
4773 recognize it as one that can be safely
4774 deleted at the end of reload. */
4775 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4776 insn), QImode);
4778 /* This doesn't really count as replacing the address
4779 as a whole, since it is still a memory access. */
4781 return 0;
4783 ad = tem;
4787 /* The only remaining case where we can avoid a reload is if this is a
4788 hard register that is valid as a base register and which is not the
4789 subject of a CLOBBER in this insn. */
4791 else if (regno < FIRST_PSEUDO_REGISTER
4792 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4793 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4794 return 0;
4796 /* If we do not have one of the cases above, we must do the reload. */
4797 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4798 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4799 return 1;
4802 if (strict_memory_address_p (mode, ad))
4804 /* The address appears valid, so reloads are not needed.
4805 But the address may contain an eliminable register.
4806 This can happen because a machine with indirect addressing
4807 may consider a pseudo register by itself a valid address even when
4808 it has failed to get a hard reg.
4809 So do a tree-walk to find and eliminate all such regs. */
4811 /* But first quickly dispose of a common case. */
4812 if (GET_CODE (ad) == PLUS
4813 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4814 && REG_P (XEXP (ad, 0))
4815 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4816 return 0;
4818 subst_reg_equivs_changed = 0;
4819 *loc = subst_reg_equivs (ad, insn);
4821 if (! subst_reg_equivs_changed)
4822 return 0;
4824 /* Check result for validity after substitution. */
4825 if (strict_memory_address_p (mode, ad))
4826 return 0;
4829 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4832 if (memrefloc)
4834 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4835 ind_levels, win);
4837 break;
4838 win:
4839 *memrefloc = copy_rtx (*memrefloc);
4840 XEXP (*memrefloc, 0) = ad;
4841 move_replacements (&ad, &XEXP (*memrefloc, 0));
4842 return -1;
4844 while (0);
4845 #endif
4847 /* The address is not valid. We have to figure out why. First see if
4848 we have an outer AND and remove it if so. Then analyze what's inside. */
4850 if (GET_CODE (ad) == AND)
4852 removed_and = 1;
4853 loc = &XEXP (ad, 0);
4854 ad = *loc;
4857 /* One possibility for why the address is invalid is that it is itself
4858 a MEM. This can happen when the frame pointer is being eliminated, a
4859 pseudo is not allocated to a hard register, and the offset between the
4860 frame and stack pointers is not its initial value. In that case the
4861 pseudo will have been replaced by a MEM referring to the
4862 stack pointer. */
4863 if (MEM_P (ad))
4865 /* First ensure that the address in this MEM is valid. Then, unless
4866 indirect addresses are valid, reload the MEM into a register. */
4867 tem = ad;
4868 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4869 opnum, ADDR_TYPE (type),
4870 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4872 /* If tem was changed, then we must create a new memory reference to
4873 hold it and store it back into memrefloc. */
4874 if (tem != ad && memrefloc)
4876 *memrefloc = copy_rtx (*memrefloc);
4877 copy_replacements (tem, XEXP (*memrefloc, 0));
4878 loc = &XEXP (*memrefloc, 0);
4879 if (removed_and)
4880 loc = &XEXP (*loc, 0);
4883 /* Check similar cases as for indirect addresses as above except
4884 that we can allow pseudos and a MEM since they should have been
4885 taken care of above. */
4887 if (ind_levels == 0
4888 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4889 || MEM_P (XEXP (tem, 0))
4890 || ! (REG_P (XEXP (tem, 0))
4891 || (GET_CODE (XEXP (tem, 0)) == PLUS
4892 && REG_P (XEXP (XEXP (tem, 0), 0))
4893 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4895 /* Must use TEM here, not AD, since it is the one that will
4896 have any subexpressions reloaded, if needed. */
4897 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4898 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4899 VOIDmode, 0,
4900 0, opnum, type);
4901 return ! removed_and;
4903 else
4904 return 0;
4907 /* If we have address of a stack slot but it's not valid because the
4908 displacement is too large, compute the sum in a register.
4909 Handle all base registers here, not just fp/ap/sp, because on some
4910 targets (namely SH) we can also get too large displacements from
4911 big-endian corrections. */
4912 else if (GET_CODE (ad) == PLUS
4913 && REG_P (XEXP (ad, 0))
4914 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4915 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4916 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4918 /* Unshare the MEM rtx so we can safely alter it. */
4919 if (memrefloc)
4921 *memrefloc = copy_rtx (*memrefloc);
4922 loc = &XEXP (*memrefloc, 0);
4923 if (removed_and)
4924 loc = &XEXP (*loc, 0);
4927 if (double_reg_address_ok)
4929 /* Unshare the sum as well. */
4930 *loc = ad = copy_rtx (ad);
4932 /* Reload the displacement into an index reg.
4933 We assume the frame pointer or arg pointer is a base reg. */
4934 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4935 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4936 type, ind_levels);
4937 return 0;
4939 else
4941 /* If the sum of two regs is not necessarily valid,
4942 reload the sum into a base reg.
4943 That will at least work. */
4944 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4945 Pmode, opnum, type, ind_levels);
4947 return ! removed_and;
4950 /* If we have an indexed stack slot, there are three possible reasons why
4951 it might be invalid: The index might need to be reloaded, the address
4952 might have been made by frame pointer elimination and hence have a
4953 constant out of range, or both reasons might apply.
4955 We can easily check for an index needing reload, but even if that is the
4956 case, we might also have an invalid constant. To avoid making the
4957 conservative assumption and requiring two reloads, we see if this address
4958 is valid when not interpreted strictly. If it is, the only problem is
4959 that the index needs a reload and find_reloads_address_1 will take care
4960 of it.
4962 Handle all base registers here, not just fp/ap/sp, because on some
4963 targets (namely SPARC) we can also get invalid addresses from preventive
4964 subreg big-endian corrections made by find_reloads_toplev. We
4965 can also get expressions involving LO_SUM (rather than PLUS) from
4966 find_reloads_subreg_address.
4968 If we decide to do something, it must be that `double_reg_address_ok'
4969 is true. We generate a reload of the base register + constant and
4970 rework the sum so that the reload register will be added to the index.
4971 This is safe because we know the address isn't shared.
4973 We check for the base register as both the first and second operand of
4974 the innermost PLUS and/or LO_SUM. */
4976 for (op_index = 0; op_index < 2; ++op_index)
4978 rtx operand;
4980 if (!(GET_CODE (ad) == PLUS
4981 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4982 && (GET_CODE (XEXP (ad, 0)) == PLUS
4983 || GET_CODE (XEXP (ad, 0)) == LO_SUM)))
4984 continue;
4986 operand = XEXP (XEXP (ad, 0), op_index);
4987 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
4988 continue;
4990 if ((REG_MODE_OK_FOR_BASE_P (operand, mode)
4991 || operand == frame_pointer_rtx
4992 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4993 || operand == hard_frame_pointer_rtx
4994 #endif
4995 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4996 || operand == arg_pointer_rtx
4997 #endif
4998 || operand == stack_pointer_rtx)
4999 && ! maybe_memory_address_p (mode, ad,
5000 &XEXP (XEXP (ad, 0), 1 - op_index)))
5002 rtx offset_reg;
5003 rtx addend;
5005 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5006 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5008 /* Form the adjusted address. */
5009 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5010 ad = gen_rtx_PLUS (GET_MODE (ad),
5011 op_index == 0 ? offset_reg : addend,
5012 op_index == 0 ? addend : offset_reg);
5013 else
5014 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5015 op_index == 0 ? offset_reg : addend,
5016 op_index == 0 ? addend : offset_reg);
5017 *loc = ad;
5019 find_reloads_address_part (XEXP (ad, op_index),
5020 &XEXP (ad, op_index),
5021 MODE_BASE_REG_CLASS (mode),
5022 GET_MODE (ad), opnum, type, ind_levels);
5023 find_reloads_address_1 (mode,
5024 XEXP (ad, 1 - op_index), 1,
5025 &XEXP (ad, 1 - op_index), opnum,
5026 type, 0, insn);
5028 return 0;
5032 /* See if address becomes valid when an eliminable register
5033 in a sum is replaced. */
5035 tem = ad;
5036 if (GET_CODE (ad) == PLUS)
5037 tem = subst_indexed_address (ad);
5038 if (tem != ad && strict_memory_address_p (mode, tem))
5040 /* Ok, we win that way. Replace any additional eliminable
5041 registers. */
5043 subst_reg_equivs_changed = 0;
5044 tem = subst_reg_equivs (tem, insn);
5046 /* Make sure that didn't make the address invalid again. */
5048 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5050 *loc = tem;
5051 return 0;
5055 /* If constants aren't valid addresses, reload the constant address
5056 into a register. */
5057 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5059 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5060 Unshare it so we can safely alter it. */
5061 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5062 && CONSTANT_POOL_ADDRESS_P (ad))
5064 *memrefloc = copy_rtx (*memrefloc);
5065 loc = &XEXP (*memrefloc, 0);
5066 if (removed_and)
5067 loc = &XEXP (*loc, 0);
5070 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5071 Pmode, opnum, type, ind_levels);
5072 return ! removed_and;
5075 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5076 insn);
5079 /* Find all pseudo regs appearing in AD
5080 that are eliminable in favor of equivalent values
5081 and do not have hard regs; replace them by their equivalents.
5082 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5083 front of it for pseudos that we have to replace with stack slots. */
5085 static rtx
5086 subst_reg_equivs (rtx ad, rtx insn)
5088 RTX_CODE code = GET_CODE (ad);
5089 int i;
5090 const char *fmt;
5092 switch (code)
5094 case HIGH:
5095 case CONST_INT:
5096 case CONST:
5097 case CONST_DOUBLE:
5098 case CONST_VECTOR:
5099 case SYMBOL_REF:
5100 case LABEL_REF:
5101 case PC:
5102 case CC0:
5103 return ad;
5105 case REG:
5107 int regno = REGNO (ad);
5109 if (reg_equiv_constant[regno] != 0)
5111 subst_reg_equivs_changed = 1;
5112 return reg_equiv_constant[regno];
5114 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5116 rtx mem = make_memloc (ad, regno);
5117 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5119 subst_reg_equivs_changed = 1;
5120 /* We mark the USE with QImode so that we recognize it
5121 as one that can be safely deleted at the end of
5122 reload. */
5123 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5124 QImode);
5125 return mem;
5129 return ad;
5131 case PLUS:
5132 /* Quickly dispose of a common case. */
5133 if (XEXP (ad, 0) == frame_pointer_rtx
5134 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5135 return ad;
5136 break;
5138 default:
5139 break;
5142 fmt = GET_RTX_FORMAT (code);
5143 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5144 if (fmt[i] == 'e')
5145 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5146 return ad;
5149 /* Compute the sum of X and Y, making canonicalizations assumed in an
5150 address, namely: sum constant integers, surround the sum of two
5151 constants with a CONST, put the constant as the second operand, and
5152 group the constant on the outermost sum.
5154 This routine assumes both inputs are already in canonical form. */
5157 form_sum (rtx x, rtx y)
5159 rtx tem;
5160 enum machine_mode mode = GET_MODE (x);
5162 if (mode == VOIDmode)
5163 mode = GET_MODE (y);
5165 if (mode == VOIDmode)
5166 mode = Pmode;
5168 if (GET_CODE (x) == CONST_INT)
5169 return plus_constant (y, INTVAL (x));
5170 else if (GET_CODE (y) == CONST_INT)
5171 return plus_constant (x, INTVAL (y));
5172 else if (CONSTANT_P (x))
5173 tem = x, x = y, y = tem;
5175 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5176 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5178 /* Note that if the operands of Y are specified in the opposite
5179 order in the recursive calls below, infinite recursion will occur. */
5180 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5181 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5183 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5184 constant will have been placed second. */
5185 if (CONSTANT_P (x) && CONSTANT_P (y))
5187 if (GET_CODE (x) == CONST)
5188 x = XEXP (x, 0);
5189 if (GET_CODE (y) == CONST)
5190 y = XEXP (y, 0);
5192 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5195 return gen_rtx_PLUS (mode, x, y);
5198 /* If ADDR is a sum containing a pseudo register that should be
5199 replaced with a constant (from reg_equiv_constant),
5200 return the result of doing so, and also apply the associative
5201 law so that the result is more likely to be a valid address.
5202 (But it is not guaranteed to be one.)
5204 Note that at most one register is replaced, even if more are
5205 replaceable. Also, we try to put the result into a canonical form
5206 so it is more likely to be a valid address.
5208 In all other cases, return ADDR. */
5210 static rtx
5211 subst_indexed_address (rtx addr)
5213 rtx op0 = 0, op1 = 0, op2 = 0;
5214 rtx tem;
5215 int regno;
5217 if (GET_CODE (addr) == PLUS)
5219 /* Try to find a register to replace. */
5220 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5221 if (REG_P (op0)
5222 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5223 && reg_renumber[regno] < 0
5224 && reg_equiv_constant[regno] != 0)
5225 op0 = reg_equiv_constant[regno];
5226 else if (REG_P (op1)
5227 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5228 && reg_renumber[regno] < 0
5229 && reg_equiv_constant[regno] != 0)
5230 op1 = reg_equiv_constant[regno];
5231 else if (GET_CODE (op0) == PLUS
5232 && (tem = subst_indexed_address (op0)) != op0)
5233 op0 = tem;
5234 else if (GET_CODE (op1) == PLUS
5235 && (tem = subst_indexed_address (op1)) != op1)
5236 op1 = tem;
5237 else
5238 return addr;
5240 /* Pick out up to three things to add. */
5241 if (GET_CODE (op1) == PLUS)
5242 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5243 else if (GET_CODE (op0) == PLUS)
5244 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5246 /* Compute the sum. */
5247 if (op2 != 0)
5248 op1 = form_sum (op1, op2);
5249 if (op1 != 0)
5250 op0 = form_sum (op0, op1);
5252 return op0;
5254 return addr;
5257 /* Update the REG_INC notes for an insn. It updates all REG_INC
5258 notes for the instruction which refer to REGNO the to refer
5259 to the reload number.
5261 INSN is the insn for which any REG_INC notes need updating.
5263 REGNO is the register number which has been reloaded.
5265 RELOADNUM is the reload number. */
5267 static void
5268 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5269 int reloadnum ATTRIBUTE_UNUSED)
5271 #ifdef AUTO_INC_DEC
5272 rtx link;
5274 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5275 if (REG_NOTE_KIND (link) == REG_INC
5276 && (int) REGNO (XEXP (link, 0)) == regno)
5277 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5278 #endif
5281 /* Record the pseudo registers we must reload into hard registers in a
5282 subexpression of a would-be memory address, X referring to a value
5283 in mode MODE. (This function is not called if the address we find
5284 is strictly valid.)
5286 CONTEXT = 1 means we are considering regs as index regs,
5287 = 0 means we are considering them as base regs, = 2 means we
5288 are considering them as base regs for REG + REG.
5290 OPNUM and TYPE specify the purpose of any reloads made.
5292 IND_LEVELS says how many levels of indirect addressing are
5293 supported at this point in the address.
5295 INSN, if nonzero, is the insn in which we do the reload. It is used
5296 to determine if we may generate output reloads.
5298 We return nonzero if X, as a whole, is reloaded or replaced. */
5300 /* Note that we take shortcuts assuming that no multi-reg machine mode
5301 occurs as part of an address.
5302 Also, this is not fully machine-customizable; it works for machines
5303 such as VAXen and 68000's and 32000's, but other possible machines
5304 could have addressing modes that this does not handle right. */
5306 static int
5307 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5308 rtx *loc, int opnum, enum reload_type type,
5309 int ind_levels, rtx insn)
5311 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE) \
5312 ((CONTEXT) == 2 \
5313 ? REGNO_MODE_OK_FOR_REG_BASE_P (REGNO, MODE) \
5314 : (CONTEXT) == 1 \
5315 ? REGNO_OK_FOR_INDEX_P (REGNO) \
5316 : REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE))
5318 enum reg_class context_reg_class;
5319 RTX_CODE code = GET_CODE (x);
5321 if (context == 2)
5322 context_reg_class = MODE_BASE_REG_REG_CLASS (mode);
5323 else if (context == 1)
5324 context_reg_class = INDEX_REG_CLASS;
5325 else
5326 context_reg_class = MODE_BASE_REG_CLASS (mode);
5328 switch (code)
5330 case PLUS:
5332 rtx orig_op0 = XEXP (x, 0);
5333 rtx orig_op1 = XEXP (x, 1);
5334 RTX_CODE code0 = GET_CODE (orig_op0);
5335 RTX_CODE code1 = GET_CODE (orig_op1);
5336 rtx op0 = orig_op0;
5337 rtx op1 = orig_op1;
5339 if (GET_CODE (op0) == SUBREG)
5341 op0 = SUBREG_REG (op0);
5342 code0 = GET_CODE (op0);
5343 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5344 op0 = gen_rtx_REG (word_mode,
5345 (REGNO (op0) +
5346 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5347 GET_MODE (SUBREG_REG (orig_op0)),
5348 SUBREG_BYTE (orig_op0),
5349 GET_MODE (orig_op0))));
5352 if (GET_CODE (op1) == SUBREG)
5354 op1 = SUBREG_REG (op1);
5355 code1 = GET_CODE (op1);
5356 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5357 /* ??? Why is this given op1's mode and above for
5358 ??? op0 SUBREGs we use word_mode? */
5359 op1 = gen_rtx_REG (GET_MODE (op1),
5360 (REGNO (op1) +
5361 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5362 GET_MODE (SUBREG_REG (orig_op1)),
5363 SUBREG_BYTE (orig_op1),
5364 GET_MODE (orig_op1))));
5366 /* Plus in the index register may be created only as a result of
5367 register remateralization for expression like &localvar*4. Reload it.
5368 It may be possible to combine the displacement on the outer level,
5369 but it is probably not worthwhile to do so. */
5370 if (context == 1)
5372 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5373 opnum, ADDR_TYPE (type), ind_levels, insn);
5374 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5375 context_reg_class,
5376 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5377 return 1;
5380 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5381 || code0 == ZERO_EXTEND || code1 == MEM)
5383 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5384 type, ind_levels, insn);
5385 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5386 type, ind_levels, insn);
5389 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5390 || code1 == ZERO_EXTEND || code0 == MEM)
5392 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5393 type, ind_levels, insn);
5394 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5395 type, ind_levels, insn);
5398 else if (code0 == CONST_INT || code0 == CONST
5399 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5400 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5401 type, ind_levels, insn);
5403 else if (code1 == CONST_INT || code1 == CONST
5404 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5405 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5406 type, ind_levels, insn);
5408 else if (code0 == REG && code1 == REG)
5410 if (REG_OK_FOR_INDEX_P (op0)
5411 && REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
5412 return 0;
5413 else if (REG_OK_FOR_INDEX_P (op1)
5414 && REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
5415 return 0;
5416 else if (REG_MODE_OK_FOR_REG_BASE_P (op1, mode))
5417 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5418 type, ind_levels, insn);
5419 else if (REG_MODE_OK_FOR_REG_BASE_P (op0, mode))
5420 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5421 type, ind_levels, insn);
5422 else if (REG_OK_FOR_INDEX_P (op1))
5423 find_reloads_address_1 (mode, orig_op0, 2, &XEXP (x, 0), opnum,
5424 type, ind_levels, insn);
5425 else if (REG_OK_FOR_INDEX_P (op0))
5426 find_reloads_address_1 (mode, orig_op1, 2, &XEXP (x, 1), opnum,
5427 type, ind_levels, insn);
5428 else
5430 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5431 type, ind_levels, insn);
5432 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5433 type, ind_levels, insn);
5437 else if (code0 == REG)
5439 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5440 type, ind_levels, insn);
5441 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5442 type, ind_levels, insn);
5445 else if (code1 == REG)
5447 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5448 type, ind_levels, insn);
5449 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5450 type, ind_levels, insn);
5454 return 0;
5456 case POST_MODIFY:
5457 case PRE_MODIFY:
5459 rtx op0 = XEXP (x, 0);
5460 rtx op1 = XEXP (x, 1);
5461 int regno;
5462 int reloadnum;
5464 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5465 return 0;
5467 /* Currently, we only support {PRE,POST}_MODIFY constructs
5468 where a base register is {inc,dec}remented by the contents
5469 of another register or by a constant value. Thus, these
5470 operands must match. */
5471 gcc_assert (op0 == XEXP (op1, 0));
5473 /* Require index register (or constant). Let's just handle the
5474 register case in the meantime... If the target allows
5475 auto-modify by a constant then we could try replacing a pseudo
5476 register with its equivalent constant where applicable. */
5477 if (REG_P (XEXP (op1, 1)))
5478 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5479 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5480 opnum, type, ind_levels, insn);
5482 gcc_assert (REG_P (XEXP (op1, 0)));
5484 regno = REGNO (XEXP (op1, 0));
5486 /* A register that is incremented cannot be constant! */
5487 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5488 || reg_equiv_constant[regno] == 0);
5490 /* Handle a register that is equivalent to a memory location
5491 which cannot be addressed directly. */
5492 if (reg_equiv_memory_loc[regno] != 0
5493 && (reg_equiv_address[regno] != 0
5494 || num_not_at_initial_offset))
5496 rtx tem = make_memloc (XEXP (x, 0), regno);
5498 if (reg_equiv_address[regno]
5499 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5501 /* First reload the memory location's address.
5502 We can't use ADDR_TYPE (type) here, because we need to
5503 write back the value after reading it, hence we actually
5504 need two registers. */
5505 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5506 &XEXP (tem, 0), opnum,
5507 RELOAD_OTHER,
5508 ind_levels, insn);
5510 /* Then reload the memory location into a base
5511 register. */
5512 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5513 &XEXP (op1, 0),
5514 MODE_BASE_REG_CLASS (mode),
5515 GET_MODE (x), GET_MODE (x), 0,
5516 0, opnum, RELOAD_OTHER);
5518 update_auto_inc_notes (this_insn, regno, reloadnum);
5519 return 0;
5523 if (reg_renumber[regno] >= 0)
5524 regno = reg_renumber[regno];
5526 /* We require a base register here... */
5527 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5529 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5530 &XEXP (op1, 0), &XEXP (x, 0),
5531 MODE_BASE_REG_CLASS (mode),
5532 GET_MODE (x), GET_MODE (x), 0, 0,
5533 opnum, RELOAD_OTHER);
5535 update_auto_inc_notes (this_insn, regno, reloadnum);
5536 return 0;
5539 return 0;
5541 case POST_INC:
5542 case POST_DEC:
5543 case PRE_INC:
5544 case PRE_DEC:
5545 if (REG_P (XEXP (x, 0)))
5547 int regno = REGNO (XEXP (x, 0));
5548 int value = 0;
5549 rtx x_orig = x;
5551 /* A register that is incremented cannot be constant! */
5552 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5553 || reg_equiv_constant[regno] == 0);
5555 /* Handle a register that is equivalent to a memory location
5556 which cannot be addressed directly. */
5557 if (reg_equiv_memory_loc[regno] != 0
5558 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5560 rtx tem = make_memloc (XEXP (x, 0), regno);
5561 if (reg_equiv_address[regno]
5562 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5564 /* First reload the memory location's address.
5565 We can't use ADDR_TYPE (type) here, because we need to
5566 write back the value after reading it, hence we actually
5567 need two registers. */
5568 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5569 &XEXP (tem, 0), opnum, type,
5570 ind_levels, insn);
5571 /* Put this inside a new increment-expression. */
5572 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5573 /* Proceed to reload that, as if it contained a register. */
5577 /* If we have a hard register that is ok as an index,
5578 don't make a reload. If an autoincrement of a nice register
5579 isn't "valid", it must be that no autoincrement is "valid".
5580 If that is true and something made an autoincrement anyway,
5581 this must be a special context where one is allowed.
5582 (For example, a "push" instruction.)
5583 We can't improve this address, so leave it alone. */
5585 /* Otherwise, reload the autoincrement into a suitable hard reg
5586 and record how much to increment by. */
5588 if (reg_renumber[regno] >= 0)
5589 regno = reg_renumber[regno];
5590 if (regno >= FIRST_PSEUDO_REGISTER
5591 || !REG_OK_FOR_CONTEXT (context, regno, mode))
5593 int reloadnum;
5595 /* If we can output the register afterwards, do so, this
5596 saves the extra update.
5597 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5598 CALL_INSN - and it does not set CC0.
5599 But don't do this if we cannot directly address the
5600 memory location, since this will make it harder to
5601 reuse address reloads, and increases register pressure.
5602 Also don't do this if we can probably update x directly. */
5603 rtx equiv = (MEM_P (XEXP (x, 0))
5604 ? XEXP (x, 0)
5605 : reg_equiv_mem[regno]);
5606 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5607 if (insn && NONJUMP_INSN_P (insn) && equiv
5608 && memory_operand (equiv, GET_MODE (equiv))
5609 #ifdef HAVE_cc0
5610 && ! sets_cc0_p (PATTERN (insn))
5611 #endif
5612 && ! (icode != CODE_FOR_nothing
5613 && ((*insn_data[icode].operand[0].predicate)
5614 (equiv, Pmode))
5615 && ((*insn_data[icode].operand[1].predicate)
5616 (equiv, Pmode))))
5618 /* We use the original pseudo for loc, so that
5619 emit_reload_insns() knows which pseudo this
5620 reload refers to and updates the pseudo rtx, not
5621 its equivalent memory location, as well as the
5622 corresponding entry in reg_last_reload_reg. */
5623 loc = &XEXP (x_orig, 0);
5624 x = XEXP (x, 0);
5625 reloadnum
5626 = push_reload (x, x, loc, loc,
5627 context_reg_class,
5628 GET_MODE (x), GET_MODE (x), 0, 0,
5629 opnum, RELOAD_OTHER);
5631 else
5633 reloadnum
5634 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5635 context_reg_class,
5636 GET_MODE (x), GET_MODE (x), 0, 0,
5637 opnum, type);
5638 rld[reloadnum].inc
5639 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5641 value = 1;
5644 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5645 reloadnum);
5647 return value;
5650 else if (MEM_P (XEXP (x, 0)))
5652 /* This is probably the result of a substitution, by eliminate_regs,
5653 of an equivalent address for a pseudo that was not allocated to a
5654 hard register. Verify that the specified address is valid and
5655 reload it into a register. */
5656 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5657 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5658 rtx link;
5659 int reloadnum;
5661 /* Since we know we are going to reload this item, don't decrement
5662 for the indirection level.
5664 Note that this is actually conservative: it would be slightly
5665 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5666 reload1.c here. */
5667 /* We can't use ADDR_TYPE (type) here, because we need to
5668 write back the value after reading it, hence we actually
5669 need two registers. */
5670 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5671 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5672 opnum, type, ind_levels, insn);
5674 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5675 context_reg_class,
5676 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5677 rld[reloadnum].inc
5678 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5680 link = FIND_REG_INC_NOTE (this_insn, tem);
5681 if (link != 0)
5682 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5684 return 1;
5686 return 0;
5688 case MEM:
5689 /* This is probably the result of a substitution, by eliminate_regs, of
5690 an equivalent address for a pseudo that was not allocated to a hard
5691 register. Verify that the specified address is valid and reload it
5692 into a register.
5694 Since we know we are going to reload this item, don't decrement for
5695 the indirection level.
5697 Note that this is actually conservative: it would be slightly more
5698 efficient to use the value of SPILL_INDIRECT_LEVELS from
5699 reload1.c here. */
5701 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5702 opnum, ADDR_TYPE (type), ind_levels, insn);
5703 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5704 context_reg_class,
5705 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5706 return 1;
5708 case REG:
5710 int regno = REGNO (x);
5712 if (reg_equiv_constant[regno] != 0)
5714 find_reloads_address_part (reg_equiv_constant[regno], loc,
5715 context_reg_class,
5716 GET_MODE (x), opnum, type, ind_levels);
5717 return 1;
5720 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5721 that feeds this insn. */
5722 if (reg_equiv_mem[regno] != 0)
5724 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5725 context_reg_class,
5726 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5727 return 1;
5729 #endif
5731 if (reg_equiv_memory_loc[regno]
5732 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5734 rtx tem = make_memloc (x, regno);
5735 if (reg_equiv_address[regno] != 0
5736 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5738 x = tem;
5739 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5740 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5741 ind_levels, insn);
5745 if (reg_renumber[regno] >= 0)
5746 regno = reg_renumber[regno];
5748 if (regno >= FIRST_PSEUDO_REGISTER
5749 || !REG_OK_FOR_CONTEXT (context, regno, mode))
5751 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5752 context_reg_class,
5753 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5754 return 1;
5757 /* If a register appearing in an address is the subject of a CLOBBER
5758 in this insn, reload it into some other register to be safe.
5759 The CLOBBER is supposed to make the register unavailable
5760 from before this insn to after it. */
5761 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5763 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5764 context_reg_class,
5765 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5766 return 1;
5769 return 0;
5771 case SUBREG:
5772 if (REG_P (SUBREG_REG (x)))
5774 /* If this is a SUBREG of a hard register and the resulting register
5775 is of the wrong class, reload the whole SUBREG. This avoids
5776 needless copies if SUBREG_REG is multi-word. */
5777 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5779 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5781 if (! REG_OK_FOR_CONTEXT (context, regno, mode))
5783 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5784 context_reg_class,
5785 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5786 return 1;
5789 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5790 is larger than the class size, then reload the whole SUBREG. */
5791 else
5793 enum reg_class class = context_reg_class;
5794 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5795 > reg_class_size[class])
5797 x = find_reloads_subreg_address (x, 0, opnum, type,
5798 ind_levels, insn);
5799 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5800 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5801 return 1;
5805 break;
5807 default:
5808 break;
5812 const char *fmt = GET_RTX_FORMAT (code);
5813 int i;
5815 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5817 if (fmt[i] == 'e')
5818 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5819 opnum, type, ind_levels, insn);
5823 #undef REG_OK_FOR_CONTEXT
5824 return 0;
5827 /* X, which is found at *LOC, is a part of an address that needs to be
5828 reloaded into a register of class CLASS. If X is a constant, or if
5829 X is a PLUS that contains a constant, check that the constant is a
5830 legitimate operand and that we are supposed to be able to load
5831 it into the register.
5833 If not, force the constant into memory and reload the MEM instead.
5835 MODE is the mode to use, in case X is an integer constant.
5837 OPNUM and TYPE describe the purpose of any reloads made.
5839 IND_LEVELS says how many levels of indirect addressing this machine
5840 supports. */
5842 static void
5843 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5844 enum machine_mode mode, int opnum,
5845 enum reload_type type, int ind_levels)
5847 if (CONSTANT_P (x)
5848 && (! LEGITIMATE_CONSTANT_P (x)
5849 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5851 rtx tem;
5853 tem = x = force_const_mem (mode, x);
5854 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5855 opnum, type, ind_levels, 0);
5858 else if (GET_CODE (x) == PLUS
5859 && CONSTANT_P (XEXP (x, 1))
5860 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5861 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5863 rtx tem;
5865 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5866 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5867 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5868 opnum, type, ind_levels, 0);
5871 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5872 mode, VOIDmode, 0, 0, opnum, type);
5875 /* X, a subreg of a pseudo, is a part of an address that needs to be
5876 reloaded.
5878 If the pseudo is equivalent to a memory location that cannot be directly
5879 addressed, make the necessary address reloads.
5881 If address reloads have been necessary, or if the address is changed
5882 by register elimination, return the rtx of the memory location;
5883 otherwise, return X.
5885 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5886 memory location.
5888 OPNUM and TYPE identify the purpose of the reload.
5890 IND_LEVELS says how many levels of indirect addressing are
5891 supported at this point in the address.
5893 INSN, if nonzero, is the insn in which we do the reload. It is used
5894 to determine where to put USEs for pseudos that we have to replace with
5895 stack slots. */
5897 static rtx
5898 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5899 enum reload_type type, int ind_levels, rtx insn)
5901 int regno = REGNO (SUBREG_REG (x));
5903 if (reg_equiv_memory_loc[regno])
5905 /* If the address is not directly addressable, or if the address is not
5906 offsettable, then it must be replaced. */
5907 if (! force_replace
5908 && (reg_equiv_address[regno]
5909 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5910 force_replace = 1;
5912 if (force_replace || num_not_at_initial_offset)
5914 rtx tem = make_memloc (SUBREG_REG (x), regno);
5916 /* If the address changes because of register elimination, then
5917 it must be replaced. */
5918 if (force_replace
5919 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5921 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5922 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5923 int offset;
5925 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5926 hold the correct (negative) byte offset. */
5927 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5928 offset = inner_size - outer_size;
5929 else
5930 offset = SUBREG_BYTE (x);
5932 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5933 PUT_MODE (tem, GET_MODE (x));
5935 /* If this was a paradoxical subreg that we replaced, the
5936 resulting memory must be sufficiently aligned to allow
5937 us to widen the mode of the memory. */
5938 if (outer_size > inner_size && STRICT_ALIGNMENT)
5940 rtx base;
5942 base = XEXP (tem, 0);
5943 if (GET_CODE (base) == PLUS)
5945 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5946 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5947 return x;
5948 base = XEXP (base, 0);
5950 if (!REG_P (base)
5951 || (REGNO_POINTER_ALIGN (REGNO (base))
5952 < outer_size * BITS_PER_UNIT))
5953 return x;
5956 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5957 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5958 ind_levels, insn);
5960 /* If this is not a toplevel operand, find_reloads doesn't see
5961 this substitution. We have to emit a USE of the pseudo so
5962 that delete_output_reload can see it. */
5963 if (replace_reloads && recog_data.operand[opnum] != x)
5964 /* We mark the USE with QImode so that we recognize it
5965 as one that can be safely deleted at the end of
5966 reload. */
5967 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5968 SUBREG_REG (x)),
5969 insn), QImode);
5970 x = tem;
5974 return x;
5977 /* Substitute into the current INSN the registers into which we have reloaded
5978 the things that need reloading. The array `replacements'
5979 contains the locations of all pointers that must be changed
5980 and says what to replace them with.
5982 Return the rtx that X translates into; usually X, but modified. */
5984 void
5985 subst_reloads (rtx insn)
5987 int i;
5989 for (i = 0; i < n_replacements; i++)
5991 struct replacement *r = &replacements[i];
5992 rtx reloadreg = rld[r->what].reg_rtx;
5993 if (reloadreg)
5995 #ifdef ENABLE_CHECKING
5996 /* Internal consistency test. Check that we don't modify
5997 anything in the equivalence arrays. Whenever something from
5998 those arrays needs to be reloaded, it must be unshared before
5999 being substituted into; the equivalence must not be modified.
6000 Otherwise, if the equivalence is used after that, it will
6001 have been modified, and the thing substituted (probably a
6002 register) is likely overwritten and not a usable equivalence. */
6003 int check_regno;
6005 for (check_regno = 0; check_regno < max_regno; check_regno++)
6007 #define CHECK_MODF(ARRAY) \
6008 gcc_assert (!ARRAY[check_regno] \
6009 || !loc_mentioned_in_p (r->where, \
6010 ARRAY[check_regno]))
6012 CHECK_MODF (reg_equiv_constant);
6013 CHECK_MODF (reg_equiv_memory_loc);
6014 CHECK_MODF (reg_equiv_address);
6015 CHECK_MODF (reg_equiv_mem);
6016 #undef CHECK_MODF
6018 #endif /* ENABLE_CHECKING */
6020 /* If we're replacing a LABEL_REF with a register, add a
6021 REG_LABEL note to indicate to flow which label this
6022 register refers to. */
6023 if (GET_CODE (*r->where) == LABEL_REF
6024 && JUMP_P (insn))
6025 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
6026 XEXP (*r->where, 0),
6027 REG_NOTES (insn));
6029 /* Encapsulate RELOADREG so its machine mode matches what
6030 used to be there. Note that gen_lowpart_common will
6031 do the wrong thing if RELOADREG is multi-word. RELOADREG
6032 will always be a REG here. */
6033 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6034 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6036 /* If we are putting this into a SUBREG and RELOADREG is a
6037 SUBREG, we would be making nested SUBREGs, so we have to fix
6038 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6040 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6042 if (GET_MODE (*r->subreg_loc)
6043 == GET_MODE (SUBREG_REG (reloadreg)))
6044 *r->subreg_loc = SUBREG_REG (reloadreg);
6045 else
6047 int final_offset =
6048 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6050 /* When working with SUBREGs the rule is that the byte
6051 offset must be a multiple of the SUBREG's mode. */
6052 final_offset = (final_offset /
6053 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6054 final_offset = (final_offset *
6055 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6057 *r->where = SUBREG_REG (reloadreg);
6058 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6061 else
6062 *r->where = reloadreg;
6064 /* If reload got no reg and isn't optional, something's wrong. */
6065 else
6066 gcc_assert (rld[r->what].optional);
6070 /* Make a copy of any replacements being done into X and move those
6071 copies to locations in Y, a copy of X. */
6073 void
6074 copy_replacements (rtx x, rtx y)
6076 /* We can't support X being a SUBREG because we might then need to know its
6077 location if something inside it was replaced. */
6078 gcc_assert (GET_CODE (x) != SUBREG);
6080 copy_replacements_1 (&x, &y, n_replacements);
6083 static void
6084 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6086 int i, j;
6087 rtx x, y;
6088 struct replacement *r;
6089 enum rtx_code code;
6090 const char *fmt;
6092 for (j = 0; j < orig_replacements; j++)
6094 if (replacements[j].subreg_loc == px)
6096 r = &replacements[n_replacements++];
6097 r->where = replacements[j].where;
6098 r->subreg_loc = py;
6099 r->what = replacements[j].what;
6100 r->mode = replacements[j].mode;
6102 else if (replacements[j].where == px)
6104 r = &replacements[n_replacements++];
6105 r->where = py;
6106 r->subreg_loc = 0;
6107 r->what = replacements[j].what;
6108 r->mode = replacements[j].mode;
6112 x = *px;
6113 y = *py;
6114 code = GET_CODE (x);
6115 fmt = GET_RTX_FORMAT (code);
6117 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6119 if (fmt[i] == 'e')
6120 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6121 else if (fmt[i] == 'E')
6122 for (j = XVECLEN (x, i); --j >= 0; )
6123 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6124 orig_replacements);
6128 /* Change any replacements being done to *X to be done to *Y. */
6130 void
6131 move_replacements (rtx *x, rtx *y)
6133 int i;
6135 for (i = 0; i < n_replacements; i++)
6136 if (replacements[i].subreg_loc == x)
6137 replacements[i].subreg_loc = y;
6138 else if (replacements[i].where == x)
6140 replacements[i].where = y;
6141 replacements[i].subreg_loc = 0;
6145 /* If LOC was scheduled to be replaced by something, return the replacement.
6146 Otherwise, return *LOC. */
6149 find_replacement (rtx *loc)
6151 struct replacement *r;
6153 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6155 rtx reloadreg = rld[r->what].reg_rtx;
6157 if (reloadreg && r->where == loc)
6159 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6160 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6162 return reloadreg;
6164 else if (reloadreg && r->subreg_loc == loc)
6166 /* RELOADREG must be either a REG or a SUBREG.
6168 ??? Is it actually still ever a SUBREG? If so, why? */
6170 if (REG_P (reloadreg))
6171 return gen_rtx_REG (GET_MODE (*loc),
6172 (REGNO (reloadreg) +
6173 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6174 GET_MODE (SUBREG_REG (*loc)),
6175 SUBREG_BYTE (*loc),
6176 GET_MODE (*loc))));
6177 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6178 return reloadreg;
6179 else
6181 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6183 /* When working with SUBREGs the rule is that the byte
6184 offset must be a multiple of the SUBREG's mode. */
6185 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6186 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6187 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6188 final_offset);
6193 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6194 what's inside and make a new rtl if so. */
6195 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6196 || GET_CODE (*loc) == MULT)
6198 rtx x = find_replacement (&XEXP (*loc, 0));
6199 rtx y = find_replacement (&XEXP (*loc, 1));
6201 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6202 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6205 return *loc;
6208 /* Return nonzero if register in range [REGNO, ENDREGNO)
6209 appears either explicitly or implicitly in X
6210 other than being stored into (except for earlyclobber operands).
6212 References contained within the substructure at LOC do not count.
6213 LOC may be zero, meaning don't ignore anything.
6215 This is similar to refers_to_regno_p in rtlanal.c except that we
6216 look at equivalences for pseudos that didn't get hard registers. */
6218 static int
6219 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6220 rtx x, rtx *loc)
6222 int i;
6223 unsigned int r;
6224 RTX_CODE code;
6225 const char *fmt;
6227 if (x == 0)
6228 return 0;
6230 repeat:
6231 code = GET_CODE (x);
6233 switch (code)
6235 case REG:
6236 r = REGNO (x);
6238 /* If this is a pseudo, a hard register must not have been allocated.
6239 X must therefore either be a constant or be in memory. */
6240 if (r >= FIRST_PSEUDO_REGISTER)
6242 if (reg_equiv_memory_loc[r])
6243 return refers_to_regno_for_reload_p (regno, endregno,
6244 reg_equiv_memory_loc[r],
6245 (rtx*) 0);
6247 gcc_assert (reg_equiv_constant[r]);
6248 return 0;
6251 return (endregno > r
6252 && regno < r + (r < FIRST_PSEUDO_REGISTER
6253 ? hard_regno_nregs[r][GET_MODE (x)]
6254 : 1));
6256 case SUBREG:
6257 /* If this is a SUBREG of a hard reg, we can see exactly which
6258 registers are being modified. Otherwise, handle normally. */
6259 if (REG_P (SUBREG_REG (x))
6260 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6262 unsigned int inner_regno = subreg_regno (x);
6263 unsigned int inner_endregno
6264 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6265 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6267 return endregno > inner_regno && regno < inner_endregno;
6269 break;
6271 case CLOBBER:
6272 case SET:
6273 if (&SET_DEST (x) != loc
6274 /* Note setting a SUBREG counts as referring to the REG it is in for
6275 a pseudo but not for hard registers since we can
6276 treat each word individually. */
6277 && ((GET_CODE (SET_DEST (x)) == SUBREG
6278 && loc != &SUBREG_REG (SET_DEST (x))
6279 && REG_P (SUBREG_REG (SET_DEST (x)))
6280 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6281 && refers_to_regno_for_reload_p (regno, endregno,
6282 SUBREG_REG (SET_DEST (x)),
6283 loc))
6284 /* If the output is an earlyclobber operand, this is
6285 a conflict. */
6286 || ((!REG_P (SET_DEST (x))
6287 || earlyclobber_operand_p (SET_DEST (x)))
6288 && refers_to_regno_for_reload_p (regno, endregno,
6289 SET_DEST (x), loc))))
6290 return 1;
6292 if (code == CLOBBER || loc == &SET_SRC (x))
6293 return 0;
6294 x = SET_SRC (x);
6295 goto repeat;
6297 default:
6298 break;
6301 /* X does not match, so try its subexpressions. */
6303 fmt = GET_RTX_FORMAT (code);
6304 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6306 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6308 if (i == 0)
6310 x = XEXP (x, 0);
6311 goto repeat;
6313 else
6314 if (refers_to_regno_for_reload_p (regno, endregno,
6315 XEXP (x, i), loc))
6316 return 1;
6318 else if (fmt[i] == 'E')
6320 int j;
6321 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6322 if (loc != &XVECEXP (x, i, j)
6323 && refers_to_regno_for_reload_p (regno, endregno,
6324 XVECEXP (x, i, j), loc))
6325 return 1;
6328 return 0;
6331 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6332 we check if any register number in X conflicts with the relevant register
6333 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6334 contains a MEM (we don't bother checking for memory addresses that can't
6335 conflict because we expect this to be a rare case.
6337 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6338 that we look at equivalences for pseudos that didn't get hard registers. */
6341 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6343 int regno, endregno;
6345 /* Overly conservative. */
6346 if (GET_CODE (x) == STRICT_LOW_PART
6347 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6348 x = XEXP (x, 0);
6350 /* If either argument is a constant, then modifying X can not affect IN. */
6351 if (CONSTANT_P (x) || CONSTANT_P (in))
6352 return 0;
6353 else if (GET_CODE (x) == SUBREG)
6355 regno = REGNO (SUBREG_REG (x));
6356 if (regno < FIRST_PSEUDO_REGISTER)
6357 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6358 GET_MODE (SUBREG_REG (x)),
6359 SUBREG_BYTE (x),
6360 GET_MODE (x));
6362 else if (REG_P (x))
6364 regno = REGNO (x);
6366 /* If this is a pseudo, it must not have been assigned a hard register.
6367 Therefore, it must either be in memory or be a constant. */
6369 if (regno >= FIRST_PSEUDO_REGISTER)
6371 if (reg_equiv_memory_loc[regno])
6372 return refers_to_mem_for_reload_p (in);
6373 gcc_assert (reg_equiv_constant[regno]);
6374 return 0;
6377 else if (MEM_P (x))
6378 return refers_to_mem_for_reload_p (in);
6379 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6380 || GET_CODE (x) == CC0)
6381 return reg_mentioned_p (x, in);
6382 else
6384 gcc_assert (GET_CODE (x) == PLUS);
6386 /* We actually want to know if X is mentioned somewhere inside IN.
6387 We must not say that (plus (sp) (const_int 124)) is in
6388 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6389 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6390 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6391 while (MEM_P (in))
6392 in = XEXP (in, 0);
6393 if (REG_P (in))
6394 return 0;
6395 else if (GET_CODE (in) == PLUS)
6396 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6397 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6398 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6399 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6402 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6403 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6405 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6408 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6409 registers. */
6411 static int
6412 refers_to_mem_for_reload_p (rtx x)
6414 const char *fmt;
6415 int i;
6417 if (MEM_P (x))
6418 return 1;
6420 if (REG_P (x))
6421 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6422 && reg_equiv_memory_loc[REGNO (x)]);
6424 fmt = GET_RTX_FORMAT (GET_CODE (x));
6425 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6426 if (fmt[i] == 'e'
6427 && (MEM_P (XEXP (x, i))
6428 || refers_to_mem_for_reload_p (XEXP (x, i))))
6429 return 1;
6431 return 0;
6434 /* Check the insns before INSN to see if there is a suitable register
6435 containing the same value as GOAL.
6436 If OTHER is -1, look for a register in class CLASS.
6437 Otherwise, just see if register number OTHER shares GOAL's value.
6439 Return an rtx for the register found, or zero if none is found.
6441 If RELOAD_REG_P is (short *)1,
6442 we reject any hard reg that appears in reload_reg_rtx
6443 because such a hard reg is also needed coming into this insn.
6445 If RELOAD_REG_P is any other nonzero value,
6446 it is a vector indexed by hard reg number
6447 and we reject any hard reg whose element in the vector is nonnegative
6448 as well as any that appears in reload_reg_rtx.
6450 If GOAL is zero, then GOALREG is a register number; we look
6451 for an equivalent for that register.
6453 MODE is the machine mode of the value we want an equivalence for.
6454 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6456 This function is used by jump.c as well as in the reload pass.
6458 If GOAL is the sum of the stack pointer and a constant, we treat it
6459 as if it were a constant except that sp is required to be unchanging. */
6462 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6463 short *reload_reg_p, int goalreg, enum machine_mode mode)
6465 rtx p = insn;
6466 rtx goaltry, valtry, value, where;
6467 rtx pat;
6468 int regno = -1;
6469 int valueno;
6470 int goal_mem = 0;
6471 int goal_const = 0;
6472 int goal_mem_addr_varies = 0;
6473 int need_stable_sp = 0;
6474 int nregs;
6475 int valuenregs;
6476 int num = 0;
6478 if (goal == 0)
6479 regno = goalreg;
6480 else if (REG_P (goal))
6481 regno = REGNO (goal);
6482 else if (MEM_P (goal))
6484 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6485 if (MEM_VOLATILE_P (goal))
6486 return 0;
6487 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6488 return 0;
6489 /* An address with side effects must be reexecuted. */
6490 switch (code)
6492 case POST_INC:
6493 case PRE_INC:
6494 case POST_DEC:
6495 case PRE_DEC:
6496 case POST_MODIFY:
6497 case PRE_MODIFY:
6498 return 0;
6499 default:
6500 break;
6502 goal_mem = 1;
6504 else if (CONSTANT_P (goal))
6505 goal_const = 1;
6506 else if (GET_CODE (goal) == PLUS
6507 && XEXP (goal, 0) == stack_pointer_rtx
6508 && CONSTANT_P (XEXP (goal, 1)))
6509 goal_const = need_stable_sp = 1;
6510 else if (GET_CODE (goal) == PLUS
6511 && XEXP (goal, 0) == frame_pointer_rtx
6512 && CONSTANT_P (XEXP (goal, 1)))
6513 goal_const = 1;
6514 else
6515 return 0;
6517 num = 0;
6518 /* Scan insns back from INSN, looking for one that copies
6519 a value into or out of GOAL.
6520 Stop and give up if we reach a label. */
6522 while (1)
6524 p = PREV_INSN (p);
6525 num++;
6526 if (p == 0 || LABEL_P (p)
6527 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6528 return 0;
6530 if (NONJUMP_INSN_P (p)
6531 /* If we don't want spill regs ... */
6532 && (! (reload_reg_p != 0
6533 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6534 /* ... then ignore insns introduced by reload; they aren't
6535 useful and can cause results in reload_as_needed to be
6536 different from what they were when calculating the need for
6537 spills. If we notice an input-reload insn here, we will
6538 reject it below, but it might hide a usable equivalent.
6539 That makes bad code. It may even fail: perhaps no reg was
6540 spilled for this insn because it was assumed we would find
6541 that equivalent. */
6542 || INSN_UID (p) < reload_first_uid))
6544 rtx tem;
6545 pat = single_set (p);
6547 /* First check for something that sets some reg equal to GOAL. */
6548 if (pat != 0
6549 && ((regno >= 0
6550 && true_regnum (SET_SRC (pat)) == regno
6551 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6553 (regno >= 0
6554 && true_regnum (SET_DEST (pat)) == regno
6555 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6557 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6558 /* When looking for stack pointer + const,
6559 make sure we don't use a stack adjust. */
6560 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6561 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6562 || (goal_mem
6563 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6564 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6565 || (goal_mem
6566 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6567 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6568 /* If we are looking for a constant,
6569 and something equivalent to that constant was copied
6570 into a reg, we can use that reg. */
6571 || (goal_const && REG_NOTES (p) != 0
6572 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6573 && ((rtx_equal_p (XEXP (tem, 0), goal)
6574 && (valueno
6575 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6576 || (REG_P (SET_DEST (pat))
6577 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6578 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6579 == MODE_FLOAT)
6580 && GET_CODE (goal) == CONST_INT
6581 && 0 != (goaltry
6582 = operand_subword (XEXP (tem, 0), 0, 0,
6583 VOIDmode))
6584 && rtx_equal_p (goal, goaltry)
6585 && (valtry
6586 = operand_subword (SET_DEST (pat), 0, 0,
6587 VOIDmode))
6588 && (valueno = true_regnum (valtry)) >= 0)))
6589 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6590 NULL_RTX))
6591 && REG_P (SET_DEST (pat))
6592 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6593 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6594 == MODE_FLOAT)
6595 && GET_CODE (goal) == CONST_INT
6596 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6597 VOIDmode))
6598 && rtx_equal_p (goal, goaltry)
6599 && (valtry
6600 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6601 && (valueno = true_regnum (valtry)) >= 0)))
6603 if (other >= 0)
6605 if (valueno != other)
6606 continue;
6608 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6609 continue;
6610 else
6612 int i;
6614 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6615 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6616 valueno + i))
6617 break;
6618 if (i >= 0)
6619 continue;
6621 value = valtry;
6622 where = p;
6623 break;
6628 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6629 (or copying VALUE into GOAL, if GOAL is also a register).
6630 Now verify that VALUE is really valid. */
6632 /* VALUENO is the register number of VALUE; a hard register. */
6634 /* Don't try to re-use something that is killed in this insn. We want
6635 to be able to trust REG_UNUSED notes. */
6636 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6637 return 0;
6639 /* If we propose to get the value from the stack pointer or if GOAL is
6640 a MEM based on the stack pointer, we need a stable SP. */
6641 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6642 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6643 goal)))
6644 need_stable_sp = 1;
6646 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6647 if (GET_MODE (value) != mode)
6648 return 0;
6650 /* Reject VALUE if it was loaded from GOAL
6651 and is also a register that appears in the address of GOAL. */
6653 if (goal_mem && value == SET_DEST (single_set (where))
6654 && refers_to_regno_for_reload_p (valueno,
6655 (valueno
6656 + hard_regno_nregs[valueno][mode]),
6657 goal, (rtx*) 0))
6658 return 0;
6660 /* Reject registers that overlap GOAL. */
6662 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6663 nregs = hard_regno_nregs[regno][mode];
6664 else
6665 nregs = 1;
6666 valuenregs = hard_regno_nregs[valueno][mode];
6668 if (!goal_mem && !goal_const
6669 && regno + nregs > valueno && regno < valueno + valuenregs)
6670 return 0;
6672 /* Reject VALUE if it is one of the regs reserved for reloads.
6673 Reload1 knows how to reuse them anyway, and it would get
6674 confused if we allocated one without its knowledge.
6675 (Now that insns introduced by reload are ignored above,
6676 this case shouldn't happen, but I'm not positive.) */
6678 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6680 int i;
6681 for (i = 0; i < valuenregs; ++i)
6682 if (reload_reg_p[valueno + i] >= 0)
6683 return 0;
6686 /* Reject VALUE if it is a register being used for an input reload
6687 even if it is not one of those reserved. */
6689 if (reload_reg_p != 0)
6691 int i;
6692 for (i = 0; i < n_reloads; i++)
6693 if (rld[i].reg_rtx != 0 && rld[i].in)
6695 int regno1 = REGNO (rld[i].reg_rtx);
6696 int nregs1 = hard_regno_nregs[regno1]
6697 [GET_MODE (rld[i].reg_rtx)];
6698 if (regno1 < valueno + valuenregs
6699 && regno1 + nregs1 > valueno)
6700 return 0;
6704 if (goal_mem)
6705 /* We must treat frame pointer as varying here,
6706 since it can vary--in a nonlocal goto as generated by expand_goto. */
6707 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6709 /* Now verify that the values of GOAL and VALUE remain unaltered
6710 until INSN is reached. */
6712 p = insn;
6713 while (1)
6715 p = PREV_INSN (p);
6716 if (p == where)
6717 return value;
6719 /* Don't trust the conversion past a function call
6720 if either of the two is in a call-clobbered register, or memory. */
6721 if (CALL_P (p))
6723 int i;
6725 if (goal_mem || need_stable_sp)
6726 return 0;
6728 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6729 for (i = 0; i < nregs; ++i)
6730 if (call_used_regs[regno + i]
6731 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6732 return 0;
6734 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6735 for (i = 0; i < valuenregs; ++i)
6736 if (call_used_regs[valueno + i]
6737 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6738 return 0;
6741 if (INSN_P (p))
6743 pat = PATTERN (p);
6745 /* Watch out for unspec_volatile, and volatile asms. */
6746 if (volatile_insn_p (pat))
6747 return 0;
6749 /* If this insn P stores in either GOAL or VALUE, return 0.
6750 If GOAL is a memory ref and this insn writes memory, return 0.
6751 If GOAL is a memory ref and its address is not constant,
6752 and this insn P changes a register used in GOAL, return 0. */
6754 if (GET_CODE (pat) == COND_EXEC)
6755 pat = COND_EXEC_CODE (pat);
6756 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6758 rtx dest = SET_DEST (pat);
6759 while (GET_CODE (dest) == SUBREG
6760 || GET_CODE (dest) == ZERO_EXTRACT
6761 || GET_CODE (dest) == STRICT_LOW_PART)
6762 dest = XEXP (dest, 0);
6763 if (REG_P (dest))
6765 int xregno = REGNO (dest);
6766 int xnregs;
6767 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6768 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6769 else
6770 xnregs = 1;
6771 if (xregno < regno + nregs && xregno + xnregs > regno)
6772 return 0;
6773 if (xregno < valueno + valuenregs
6774 && xregno + xnregs > valueno)
6775 return 0;
6776 if (goal_mem_addr_varies
6777 && reg_overlap_mentioned_for_reload_p (dest, goal))
6778 return 0;
6779 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6780 return 0;
6782 else if (goal_mem && MEM_P (dest)
6783 && ! push_operand (dest, GET_MODE (dest)))
6784 return 0;
6785 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6786 && reg_equiv_memory_loc[regno] != 0)
6787 return 0;
6788 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6789 return 0;
6791 else if (GET_CODE (pat) == PARALLEL)
6793 int i;
6794 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6796 rtx v1 = XVECEXP (pat, 0, i);
6797 if (GET_CODE (v1) == COND_EXEC)
6798 v1 = COND_EXEC_CODE (v1);
6799 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6801 rtx dest = SET_DEST (v1);
6802 while (GET_CODE (dest) == SUBREG
6803 || GET_CODE (dest) == ZERO_EXTRACT
6804 || GET_CODE (dest) == STRICT_LOW_PART)
6805 dest = XEXP (dest, 0);
6806 if (REG_P (dest))
6808 int xregno = REGNO (dest);
6809 int xnregs;
6810 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6811 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6812 else
6813 xnregs = 1;
6814 if (xregno < regno + nregs
6815 && xregno + xnregs > regno)
6816 return 0;
6817 if (xregno < valueno + valuenregs
6818 && xregno + xnregs > valueno)
6819 return 0;
6820 if (goal_mem_addr_varies
6821 && reg_overlap_mentioned_for_reload_p (dest,
6822 goal))
6823 return 0;
6824 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6825 return 0;
6827 else if (goal_mem && MEM_P (dest)
6828 && ! push_operand (dest, GET_MODE (dest)))
6829 return 0;
6830 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6831 && reg_equiv_memory_loc[regno] != 0)
6832 return 0;
6833 else if (need_stable_sp
6834 && push_operand (dest, GET_MODE (dest)))
6835 return 0;
6840 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6842 rtx link;
6844 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6845 link = XEXP (link, 1))
6847 pat = XEXP (link, 0);
6848 if (GET_CODE (pat) == CLOBBER)
6850 rtx dest = SET_DEST (pat);
6852 if (REG_P (dest))
6854 int xregno = REGNO (dest);
6855 int xnregs
6856 = hard_regno_nregs[xregno][GET_MODE (dest)];
6858 if (xregno < regno + nregs
6859 && xregno + xnregs > regno)
6860 return 0;
6861 else if (xregno < valueno + valuenregs
6862 && xregno + xnregs > valueno)
6863 return 0;
6864 else if (goal_mem_addr_varies
6865 && reg_overlap_mentioned_for_reload_p (dest,
6866 goal))
6867 return 0;
6870 else if (goal_mem && MEM_P (dest)
6871 && ! push_operand (dest, GET_MODE (dest)))
6872 return 0;
6873 else if (need_stable_sp
6874 && push_operand (dest, GET_MODE (dest)))
6875 return 0;
6880 #ifdef AUTO_INC_DEC
6881 /* If this insn auto-increments or auto-decrements
6882 either regno or valueno, return 0 now.
6883 If GOAL is a memory ref and its address is not constant,
6884 and this insn P increments a register used in GOAL, return 0. */
6886 rtx link;
6888 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6889 if (REG_NOTE_KIND (link) == REG_INC
6890 && REG_P (XEXP (link, 0)))
6892 int incno = REGNO (XEXP (link, 0));
6893 if (incno < regno + nregs && incno >= regno)
6894 return 0;
6895 if (incno < valueno + valuenregs && incno >= valueno)
6896 return 0;
6897 if (goal_mem_addr_varies
6898 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6899 goal))
6900 return 0;
6903 #endif
6908 /* Find a place where INCED appears in an increment or decrement operator
6909 within X, and return the amount INCED is incremented or decremented by.
6910 The value is always positive. */
6912 static int
6913 find_inc_amount (rtx x, rtx inced)
6915 enum rtx_code code = GET_CODE (x);
6916 const char *fmt;
6917 int i;
6919 if (code == MEM)
6921 rtx addr = XEXP (x, 0);
6922 if ((GET_CODE (addr) == PRE_DEC
6923 || GET_CODE (addr) == POST_DEC
6924 || GET_CODE (addr) == PRE_INC
6925 || GET_CODE (addr) == POST_INC)
6926 && XEXP (addr, 0) == inced)
6927 return GET_MODE_SIZE (GET_MODE (x));
6928 else if ((GET_CODE (addr) == PRE_MODIFY
6929 || GET_CODE (addr) == POST_MODIFY)
6930 && GET_CODE (XEXP (addr, 1)) == PLUS
6931 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6932 && XEXP (addr, 0) == inced
6933 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6935 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6936 return i < 0 ? -i : i;
6940 fmt = GET_RTX_FORMAT (code);
6941 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6943 if (fmt[i] == 'e')
6945 int tem = find_inc_amount (XEXP (x, i), inced);
6946 if (tem != 0)
6947 return tem;
6949 if (fmt[i] == 'E')
6951 int j;
6952 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6954 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6955 if (tem != 0)
6956 return tem;
6961 return 0;
6964 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6965 If SETS is nonzero, also consider SETs. REGNO must refer to a hard
6966 register. */
6969 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6970 int sets)
6972 unsigned int nregs, endregno;
6974 /* regno must be a hard register. */
6975 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
6977 nregs = hard_regno_nregs[regno][mode];
6978 endregno = regno + nregs;
6980 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6981 || (sets && GET_CODE (PATTERN (insn)) == SET))
6982 && REG_P (XEXP (PATTERN (insn), 0)))
6984 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6986 return test >= regno && test < endregno;
6989 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6991 int i = XVECLEN (PATTERN (insn), 0) - 1;
6993 for (; i >= 0; i--)
6995 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6996 if ((GET_CODE (elt) == CLOBBER
6997 || (sets && GET_CODE (PATTERN (insn)) == SET))
6998 && REG_P (XEXP (elt, 0)))
7000 unsigned int test = REGNO (XEXP (elt, 0));
7002 if (test >= regno && test < endregno)
7003 return 1;
7008 return 0;
7011 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7013 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7015 int regno;
7017 if (GET_MODE (reloadreg) == mode)
7018 return reloadreg;
7020 regno = REGNO (reloadreg);
7022 if (WORDS_BIG_ENDIAN)
7023 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7024 - (int) hard_regno_nregs[regno][mode];
7026 return gen_rtx_REG (mode, regno);
7029 static const char *const reload_when_needed_name[] =
7031 "RELOAD_FOR_INPUT",
7032 "RELOAD_FOR_OUTPUT",
7033 "RELOAD_FOR_INSN",
7034 "RELOAD_FOR_INPUT_ADDRESS",
7035 "RELOAD_FOR_INPADDR_ADDRESS",
7036 "RELOAD_FOR_OUTPUT_ADDRESS",
7037 "RELOAD_FOR_OUTADDR_ADDRESS",
7038 "RELOAD_FOR_OPERAND_ADDRESS",
7039 "RELOAD_FOR_OPADDR_ADDR",
7040 "RELOAD_OTHER",
7041 "RELOAD_FOR_OTHER_ADDRESS"
7044 /* These functions are used to print the variables set by 'find_reloads' */
7046 void
7047 debug_reload_to_stream (FILE *f)
7049 int r;
7050 const char *prefix;
7052 if (! f)
7053 f = stderr;
7054 for (r = 0; r < n_reloads; r++)
7056 fprintf (f, "Reload %d: ", r);
7058 if (rld[r].in != 0)
7060 fprintf (f, "reload_in (%s) = ",
7061 GET_MODE_NAME (rld[r].inmode));
7062 print_inline_rtx (f, rld[r].in, 24);
7063 fprintf (f, "\n\t");
7066 if (rld[r].out != 0)
7068 fprintf (f, "reload_out (%s) = ",
7069 GET_MODE_NAME (rld[r].outmode));
7070 print_inline_rtx (f, rld[r].out, 24);
7071 fprintf (f, "\n\t");
7074 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7076 fprintf (f, "%s (opnum = %d)",
7077 reload_when_needed_name[(int) rld[r].when_needed],
7078 rld[r].opnum);
7080 if (rld[r].optional)
7081 fprintf (f, ", optional");
7083 if (rld[r].nongroup)
7084 fprintf (f, ", nongroup");
7086 if (rld[r].inc != 0)
7087 fprintf (f, ", inc by %d", rld[r].inc);
7089 if (rld[r].nocombine)
7090 fprintf (f, ", can't combine");
7092 if (rld[r].secondary_p)
7093 fprintf (f, ", secondary_reload_p");
7095 if (rld[r].in_reg != 0)
7097 fprintf (f, "\n\treload_in_reg: ");
7098 print_inline_rtx (f, rld[r].in_reg, 24);
7101 if (rld[r].out_reg != 0)
7103 fprintf (f, "\n\treload_out_reg: ");
7104 print_inline_rtx (f, rld[r].out_reg, 24);
7107 if (rld[r].reg_rtx != 0)
7109 fprintf (f, "\n\treload_reg_rtx: ");
7110 print_inline_rtx (f, rld[r].reg_rtx, 24);
7113 prefix = "\n\t";
7114 if (rld[r].secondary_in_reload != -1)
7116 fprintf (f, "%ssecondary_in_reload = %d",
7117 prefix, rld[r].secondary_in_reload);
7118 prefix = ", ";
7121 if (rld[r].secondary_out_reload != -1)
7122 fprintf (f, "%ssecondary_out_reload = %d\n",
7123 prefix, rld[r].secondary_out_reload);
7125 prefix = "\n\t";
7126 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7128 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7129 insn_data[rld[r].secondary_in_icode].name);
7130 prefix = ", ";
7133 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7134 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7135 insn_data[rld[r].secondary_out_icode].name);
7137 fprintf (f, "\n");
7141 void
7142 debug_reload (void)
7144 debug_reload_to_stream (stderr);