tree-inline.c (estimate_num_insns_1): Handle VEC_COND_EXPR.
[official-gcc.git] / gcc / libgcc2.c
bloba303d0bce25fdadf99744b5d0c4d414f8e805eb6
1 /* More subroutines needed by GCC output code on some machines. */
2 /* Compile this one with gcc. */
3 /* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 In addition to the permissions in the GNU General Public License, the
14 Free Software Foundation gives you unlimited permission to link the
15 compiled version of this file into combinations with other programs,
16 and to distribute those combinations without any restriction coming
17 from the use of this file. (The General Public License restrictions
18 do apply in other respects; for example, they cover modification of
19 the file, and distribution when not linked into a combine
20 executable.)
22 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
23 WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 for more details.
27 You should have received a copy of the GNU General Public License
28 along with GCC; see the file COPYING. If not, write to the Free
29 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
30 02111-1307, USA. */
32 #include "tconfig.h"
33 #include "tsystem.h"
34 #include "coretypes.h"
35 #include "tm.h"
37 #ifdef HAVE_GAS_HIDDEN
38 #define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
39 #else
40 #define ATTRIBUTE_HIDDEN
41 #endif
43 #include "libgcc2.h"
45 #ifdef DECLARE_LIBRARY_RENAMES
46 DECLARE_LIBRARY_RENAMES
47 #endif
49 #if defined (L_negdi2)
50 DWtype
51 __negdi2 (DWtype u)
53 const DWunion uu = {.ll = u};
54 const DWunion w = { {.low = -uu.s.low,
55 .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
57 return w.ll;
59 #endif
61 #ifdef L_addvsi3
62 Wtype
63 __addvSI3 (Wtype a, Wtype b)
65 const Wtype w = a + b;
67 if (b >= 0 ? w < a : w > a)
68 abort ();
70 return w;
72 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
73 SItype
74 __addvsi3 (SItype a, SItype b)
76 const SItype w = a + b;
78 if (b >= 0 ? w < a : w > a)
79 abort ();
81 return w;
83 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
84 #endif
86 #ifdef L_addvdi3
87 DWtype
88 __addvDI3 (DWtype a, DWtype b)
90 const DWtype w = a + b;
92 if (b >= 0 ? w < a : w > a)
93 abort ();
95 return w;
97 #endif
99 #ifdef L_subvsi3
100 Wtype
101 __subvSI3 (Wtype a, Wtype b)
103 const Wtype w = a - b;
105 if (b >= 0 ? w > a : w < a)
106 abort ();
108 return w;
110 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
111 SItype
112 __subvsi3 (SItype a, SItype b)
114 const SItype w = a - b;
116 if (b >= 0 ? w > a : w < a)
117 abort ();
119 return w;
121 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
122 #endif
124 #ifdef L_subvdi3
125 DWtype
126 __subvDI3 (DWtype a, DWtype b)
128 const DWtype w = a - b;
130 if (b >= 0 ? w > a : w < a)
131 abort ();
133 return w;
135 #endif
137 #ifdef L_mulvsi3
138 Wtype
139 __mulvSI3 (Wtype a, Wtype b)
141 const DWtype w = (DWtype) a * (DWtype) b;
143 if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1))
144 abort ();
146 return w;
148 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
149 #undef WORD_SIZE
150 #define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
151 SItype
152 __mulvsi3 (SItype a, SItype b)
154 const DItype w = (DItype) a * (DItype) b;
156 if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1))
157 abort ();
159 return w;
161 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
162 #endif
164 #ifdef L_negvsi2
165 Wtype
166 __negvSI2 (Wtype a)
168 const Wtype w = -a;
170 if (a >= 0 ? w > 0 : w < 0)
171 abort ();
173 return w;
175 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
176 SItype
177 __negvsi2 (SItype a)
179 const SItype w = -a;
181 if (a >= 0 ? w > 0 : w < 0)
182 abort ();
184 return w;
186 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
187 #endif
189 #ifdef L_negvdi2
190 DWtype
191 __negvDI2 (DWtype a)
193 const DWtype w = -a;
195 if (a >= 0 ? w > 0 : w < 0)
196 abort ();
198 return w;
200 #endif
202 #ifdef L_absvsi2
203 Wtype
204 __absvSI2 (Wtype a)
206 Wtype w = a;
208 if (a < 0)
209 #ifdef L_negvsi2
210 w = __negvSI2 (a);
211 #else
212 w = -a;
214 if (w < 0)
215 abort ();
216 #endif
218 return w;
220 #ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
221 SItype
222 __absvsi2 (SItype a)
224 SItype w = a;
226 if (a < 0)
227 #ifdef L_negvsi2
228 w = __negvsi2 (a);
229 #else
230 w = -a;
232 if (w < 0)
233 abort ();
234 #endif
236 return w;
238 #endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
239 #endif
241 #ifdef L_absvdi2
242 DWtype
243 __absvDI2 (DWtype a)
245 DWtype w = a;
247 if (a < 0)
248 #ifdef L_negvdi2
249 w = __negvDI2 (a);
250 #else
251 w = -a;
253 if (w < 0)
254 abort ();
255 #endif
257 return w;
259 #endif
261 #ifdef L_mulvdi3
262 DWtype
263 __mulvDI3 (DWtype u, DWtype v)
265 /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
266 but the checked multiplication needs only two. */
267 const DWunion uu = {.ll = u};
268 const DWunion vv = {.ll = v};
270 if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
272 /* u fits in a single Wtype. */
273 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
275 /* v fits in a single Wtype as well. */
276 /* A single multiplication. No overflow risk. */
277 return (DWtype) uu.s.low * (DWtype) vv.s.low;
279 else
281 /* Two multiplications. */
282 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
283 * (UDWtype) (UWtype) vv.s.low};
284 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
285 * (UDWtype) (UWtype) vv.s.high};
287 if (vv.s.high < 0)
288 w1.s.high -= uu.s.low;
289 if (uu.s.low < 0)
290 w1.ll -= vv.ll;
291 w1.ll += (UWtype) w0.s.high;
292 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
294 w0.s.high = w1.s.low;
295 return w0.ll;
299 else
301 if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
303 /* v fits into a single Wtype. */
304 /* Two multiplications. */
305 DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
306 * (UDWtype) (UWtype) vv.s.low};
307 DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
308 * (UDWtype) (UWtype) vv.s.low};
310 if (uu.s.high < 0)
311 w1.s.high -= vv.s.low;
312 if (vv.s.low < 0)
313 w1.ll -= uu.ll;
314 w1.ll += (UWtype) w0.s.high;
315 if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
317 w0.s.high = w1.s.low;
318 return w0.ll;
321 else
323 /* A few sign checks and a single multiplication. */
324 if (uu.s.high >= 0)
326 if (vv.s.high >= 0)
328 if (uu.s.high == 0 && vv.s.high == 0)
330 const DWtype w = (UDWtype) (UWtype) uu.s.low
331 * (UDWtype) (UWtype) vv.s.low;
332 if (__builtin_expect (w >= 0, 1))
333 return w;
336 else
338 if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
340 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
341 * (UDWtype) (UWtype) vv.s.low};
343 ww.s.high -= uu.s.low;
344 if (__builtin_expect (ww.s.high < 0, 1))
345 return ww.ll;
349 else
351 if (vv.s.high >= 0)
353 if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
355 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
356 * (UDWtype) (UWtype) vv.s.low};
358 ww.s.high -= vv.s.low;
359 if (__builtin_expect (ww.s.high < 0, 1))
360 return ww.ll;
363 else
365 if (uu.s.high == (Wtype) -1 && vv.s.high == (Wtype) - 1)
367 DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
368 * (UDWtype) (UWtype) vv.s.low};
370 ww.s.high -= uu.s.low;
371 ww.s.high -= vv.s.low;
372 if (__builtin_expect (ww.s.high >= 0, 1))
373 return ww.ll;
380 /* Overflow. */
381 abort ();
383 #endif
386 /* Unless shift functions are defined with full ANSI prototypes,
387 parameter b will be promoted to int if word_type is smaller than an int. */
388 #ifdef L_lshrdi3
389 DWtype
390 __lshrdi3 (DWtype u, word_type b)
392 if (b == 0)
393 return u;
395 const DWunion uu = {.ll = u};
396 const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
397 DWunion w;
399 if (bm <= 0)
401 w.s.high = 0;
402 w.s.low = (UWtype) uu.s.high >> -bm;
404 else
406 const UWtype carries = (UWtype) uu.s.high << bm;
408 w.s.high = (UWtype) uu.s.high >> b;
409 w.s.low = ((UWtype) uu.s.low >> b) | carries;
412 return w.ll;
414 #endif
416 #ifdef L_ashldi3
417 DWtype
418 __ashldi3 (DWtype u, word_type b)
420 if (b == 0)
421 return u;
423 const DWunion uu = {.ll = u};
424 const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
425 DWunion w;
427 if (bm <= 0)
429 w.s.low = 0;
430 w.s.high = (UWtype) uu.s.low << -bm;
432 else
434 const UWtype carries = (UWtype) uu.s.low >> bm;
436 w.s.low = (UWtype) uu.s.low << b;
437 w.s.high = ((UWtype) uu.s.high << b) | carries;
440 return w.ll;
442 #endif
444 #ifdef L_ashrdi3
445 DWtype
446 __ashrdi3 (DWtype u, word_type b)
448 if (b == 0)
449 return u;
451 const DWunion uu = {.ll = u};
452 const word_type bm = (sizeof (Wtype) * BITS_PER_UNIT) - b;
453 DWunion w;
455 if (bm <= 0)
457 /* w.s.high = 1..1 or 0..0 */
458 w.s.high = uu.s.high >> (sizeof (Wtype) * BITS_PER_UNIT - 1);
459 w.s.low = uu.s.high >> -bm;
461 else
463 const UWtype carries = (UWtype) uu.s.high << bm;
465 w.s.high = uu.s.high >> b;
466 w.s.low = ((UWtype) uu.s.low >> b) | carries;
469 return w.ll;
471 #endif
473 #ifdef L_ffssi2
474 #undef int
476 __ffsSI2 (UWtype u)
478 UWtype count;
480 if (u == 0)
481 return 0;
483 count_trailing_zeros (count, u);
484 return count + 1;
486 #endif
488 #ifdef L_ffsdi2
489 #undef int
491 __ffsDI2 (DWtype u)
493 const DWunion uu = {.ll = u};
494 UWtype word, count, add;
496 if (uu.s.low != 0)
497 word = uu.s.low, add = 0;
498 else if (uu.s.high != 0)
499 word = uu.s.high, add = BITS_PER_UNIT * sizeof (Wtype);
500 else
501 return 0;
503 count_trailing_zeros (count, word);
504 return count + add + 1;
506 #endif
508 #ifdef L_muldi3
509 DWtype
510 __muldi3 (DWtype u, DWtype v)
512 const DWunion uu = {.ll = u};
513 const DWunion vv = {.ll = v};
514 DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
516 w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
517 + (UWtype) uu.s.high * (UWtype) vv.s.low);
519 return w.ll;
521 #endif
523 #if (defined (L_udivdi3) || defined (L_divdi3) || \
524 defined (L_umoddi3) || defined (L_moddi3))
525 #if defined (sdiv_qrnnd)
526 #define L_udiv_w_sdiv
527 #endif
528 #endif
530 #ifdef L_udiv_w_sdiv
531 #if defined (sdiv_qrnnd)
532 #if (defined (L_udivdi3) || defined (L_divdi3) || \
533 defined (L_umoddi3) || defined (L_moddi3))
534 static inline __attribute__ ((__always_inline__))
535 #endif
536 UWtype
537 __udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
539 UWtype q, r;
540 UWtype c0, c1, b1;
542 if ((Wtype) d >= 0)
544 if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
546 /* Dividend, divisor, and quotient are nonnegative. */
547 sdiv_qrnnd (q, r, a1, a0, d);
549 else
551 /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
552 sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
553 /* Divide (c1*2^32 + c0) by d. */
554 sdiv_qrnnd (q, r, c1, c0, d);
555 /* Add 2^31 to quotient. */
556 q += (UWtype) 1 << (W_TYPE_SIZE - 1);
559 else
561 b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
562 c1 = a1 >> 1; /* A/2 */
563 c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
565 if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
567 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
569 r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
570 if ((d & 1) != 0)
572 if (r >= q)
573 r = r - q;
574 else if (q - r <= d)
576 r = r - q + d;
577 q--;
579 else
581 r = r - q + 2*d;
582 q -= 2;
586 else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
588 c1 = (b1 - 1) - c1;
589 c0 = ~c0; /* logical NOT */
591 sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
593 q = ~q; /* (A/2)/b1 */
594 r = (b1 - 1) - r;
596 r = 2*r + (a0 & 1); /* A/(2*b1) */
598 if ((d & 1) != 0)
600 if (r >= q)
601 r = r - q;
602 else if (q - r <= d)
604 r = r - q + d;
605 q--;
607 else
609 r = r - q + 2*d;
610 q -= 2;
614 else /* Implies c1 = b1 */
615 { /* Hence a1 = d - 1 = 2*b1 - 1 */
616 if (a0 >= -d)
618 q = -1;
619 r = a0 + d;
621 else
623 q = -2;
624 r = a0 + 2*d;
629 *rp = r;
630 return q;
632 #else
633 /* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
634 UWtype
635 __udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
636 UWtype a1 __attribute__ ((__unused__)),
637 UWtype a0 __attribute__ ((__unused__)),
638 UWtype d __attribute__ ((__unused__)))
640 return 0;
642 #endif
643 #endif
645 #if (defined (L_udivdi3) || defined (L_divdi3) || \
646 defined (L_umoddi3) || defined (L_moddi3))
647 #define L_udivmoddi4
648 #endif
650 #ifdef L_clz
651 const UQItype __clz_tab[] =
653 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
654 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
655 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
656 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
657 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
658 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
659 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
660 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
662 #endif
664 #ifdef L_clzsi2
665 #undef int
667 __clzSI2 (UWtype x)
669 Wtype ret;
671 count_leading_zeros (ret, x);
673 return ret;
675 #endif
677 #ifdef L_clzdi2
678 #undef int
680 __clzDI2 (UDWtype x)
682 const DWunion uu = {.ll = x};
683 UWtype word;
684 Wtype ret, add;
686 if (uu.s.high)
687 word = uu.s.high, add = 0;
688 else
689 word = uu.s.low, add = W_TYPE_SIZE;
691 count_leading_zeros (ret, word);
692 return ret + add;
694 #endif
696 #ifdef L_ctzsi2
697 #undef int
699 __ctzSI2 (UWtype x)
701 Wtype ret;
703 count_trailing_zeros (ret, x);
705 return ret;
707 #endif
709 #ifdef L_ctzdi2
710 #undef int
712 __ctzDI2 (UDWtype x)
714 const DWunion uu = {.ll = x};
715 UWtype word;
716 Wtype ret, add;
718 if (uu.s.low)
719 word = uu.s.low, add = 0;
720 else
721 word = uu.s.high, add = W_TYPE_SIZE;
723 count_trailing_zeros (ret, word);
724 return ret + add;
726 #endif
728 #if (defined (L_popcountsi2) || defined (L_popcountdi2) \
729 || defined (L_popcount_tab))
730 extern const UQItype __popcount_tab[] ATTRIBUTE_HIDDEN;
731 #endif
733 #ifdef L_popcount_tab
734 const UQItype __popcount_tab[] =
736 0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
737 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
738 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
739 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
740 1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
741 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
742 2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
743 3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8,
745 #endif
747 #ifdef L_popcountsi2
748 #undef int
750 __popcountSI2 (UWtype x)
752 UWtype i, ret = 0;
754 for (i = 0; i < W_TYPE_SIZE; i += 8)
755 ret += __popcount_tab[(x >> i) & 0xff];
757 return ret;
759 #endif
761 #ifdef L_popcountdi2
762 #undef int
764 __popcountDI2 (UDWtype x)
766 UWtype i, ret = 0;
768 for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
769 ret += __popcount_tab[(x >> i) & 0xff];
771 return ret;
773 #endif
775 #ifdef L_paritysi2
776 #undef int
778 __paritySI2 (UWtype x)
780 #if W_TYPE_SIZE > 64
781 # error "fill out the table"
782 #endif
783 #if W_TYPE_SIZE > 32
784 x ^= x >> 32;
785 #endif
786 #if W_TYPE_SIZE > 16
787 x ^= x >> 16;
788 #endif
789 x ^= x >> 8;
790 x ^= x >> 4;
791 x &= 0xf;
792 return (0x6996 >> x) & 1;
794 #endif
796 #ifdef L_paritydi2
797 #undef int
799 __parityDI2 (UDWtype x)
801 const DWunion uu = {.ll = x};
802 UWtype nx = uu.s.low ^ uu.s.high;
804 #if W_TYPE_SIZE > 64
805 # error "fill out the table"
806 #endif
807 #if W_TYPE_SIZE > 32
808 nx ^= nx >> 32;
809 #endif
810 #if W_TYPE_SIZE > 16
811 nx ^= nx >> 16;
812 #endif
813 nx ^= nx >> 8;
814 nx ^= nx >> 4;
815 nx &= 0xf;
816 return (0x6996 >> nx) & 1;
818 #endif
820 #ifdef L_udivmoddi4
822 #if (defined (L_udivdi3) || defined (L_divdi3) || \
823 defined (L_umoddi3) || defined (L_moddi3))
824 static inline __attribute__ ((__always_inline__))
825 #endif
826 UDWtype
827 __udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
829 const DWunion nn = {.ll = n};
830 const DWunion dd = {.ll = d};
831 DWunion rr;
832 UWtype d0, d1, n0, n1, n2;
833 UWtype q0, q1;
834 UWtype b, bm;
836 d0 = dd.s.low;
837 d1 = dd.s.high;
838 n0 = nn.s.low;
839 n1 = nn.s.high;
841 #if !UDIV_NEEDS_NORMALIZATION
842 if (d1 == 0)
844 if (d0 > n1)
846 /* 0q = nn / 0D */
848 udiv_qrnnd (q0, n0, n1, n0, d0);
849 q1 = 0;
851 /* Remainder in n0. */
853 else
855 /* qq = NN / 0d */
857 if (d0 == 0)
858 d0 = 1 / d0; /* Divide intentionally by zero. */
860 udiv_qrnnd (q1, n1, 0, n1, d0);
861 udiv_qrnnd (q0, n0, n1, n0, d0);
863 /* Remainder in n0. */
866 if (rp != 0)
868 rr.s.low = n0;
869 rr.s.high = 0;
870 *rp = rr.ll;
874 #else /* UDIV_NEEDS_NORMALIZATION */
876 if (d1 == 0)
878 if (d0 > n1)
880 /* 0q = nn / 0D */
882 count_leading_zeros (bm, d0);
884 if (bm != 0)
886 /* Normalize, i.e. make the most significant bit of the
887 denominator set. */
889 d0 = d0 << bm;
890 n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
891 n0 = n0 << bm;
894 udiv_qrnnd (q0, n0, n1, n0, d0);
895 q1 = 0;
897 /* Remainder in n0 >> bm. */
899 else
901 /* qq = NN / 0d */
903 if (d0 == 0)
904 d0 = 1 / d0; /* Divide intentionally by zero. */
906 count_leading_zeros (bm, d0);
908 if (bm == 0)
910 /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
911 conclude (the most significant bit of n1 is set) /\ (the
912 leading quotient digit q1 = 1).
914 This special case is necessary, not an optimization.
915 (Shifts counts of W_TYPE_SIZE are undefined.) */
917 n1 -= d0;
918 q1 = 1;
920 else
922 /* Normalize. */
924 b = W_TYPE_SIZE - bm;
926 d0 = d0 << bm;
927 n2 = n1 >> b;
928 n1 = (n1 << bm) | (n0 >> b);
929 n0 = n0 << bm;
931 udiv_qrnnd (q1, n1, n2, n1, d0);
934 /* n1 != d0... */
936 udiv_qrnnd (q0, n0, n1, n0, d0);
938 /* Remainder in n0 >> bm. */
941 if (rp != 0)
943 rr.s.low = n0 >> bm;
944 rr.s.high = 0;
945 *rp = rr.ll;
948 #endif /* UDIV_NEEDS_NORMALIZATION */
950 else
952 if (d1 > n1)
954 /* 00 = nn / DD */
956 q0 = 0;
957 q1 = 0;
959 /* Remainder in n1n0. */
960 if (rp != 0)
962 rr.s.low = n0;
963 rr.s.high = n1;
964 *rp = rr.ll;
967 else
969 /* 0q = NN / dd */
971 count_leading_zeros (bm, d1);
972 if (bm == 0)
974 /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
975 conclude (the most significant bit of n1 is set) /\ (the
976 quotient digit q0 = 0 or 1).
978 This special case is necessary, not an optimization. */
980 /* The condition on the next line takes advantage of that
981 n1 >= d1 (true due to program flow). */
982 if (n1 > d1 || n0 >= d0)
984 q0 = 1;
985 sub_ddmmss (n1, n0, n1, n0, d1, d0);
987 else
988 q0 = 0;
990 q1 = 0;
992 if (rp != 0)
994 rr.s.low = n0;
995 rr.s.high = n1;
996 *rp = rr.ll;
999 else
1001 UWtype m1, m0;
1002 /* Normalize. */
1004 b = W_TYPE_SIZE - bm;
1006 d1 = (d1 << bm) | (d0 >> b);
1007 d0 = d0 << bm;
1008 n2 = n1 >> b;
1009 n1 = (n1 << bm) | (n0 >> b);
1010 n0 = n0 << bm;
1012 udiv_qrnnd (q0, n1, n2, n1, d1);
1013 umul_ppmm (m1, m0, q0, d0);
1015 if (m1 > n1 || (m1 == n1 && m0 > n0))
1017 q0--;
1018 sub_ddmmss (m1, m0, m1, m0, d1, d0);
1021 q1 = 0;
1023 /* Remainder in (n1n0 - m1m0) >> bm. */
1024 if (rp != 0)
1026 sub_ddmmss (n1, n0, n1, n0, m1, m0);
1027 rr.s.low = (n1 << b) | (n0 >> bm);
1028 rr.s.high = n1 >> bm;
1029 *rp = rr.ll;
1035 const DWunion ww = {{.low = q0, .high = q1}};
1036 return ww.ll;
1038 #endif
1040 #ifdef L_divdi3
1041 DWtype
1042 __divdi3 (DWtype u, DWtype v)
1044 word_type c = 0;
1045 DWunion uu = {.ll = u};
1046 DWunion vv = {.ll = v};
1047 DWtype w;
1049 if (uu.s.high < 0)
1050 c = ~c,
1051 uu.ll = -uu.ll;
1052 if (vv.s.high < 0)
1053 c = ~c,
1054 vv.ll = -vv.ll;
1056 w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
1057 if (c)
1058 w = -w;
1060 return w;
1062 #endif
1064 #ifdef L_moddi3
1065 DWtype
1066 __moddi3 (DWtype u, DWtype v)
1068 word_type c = 0;
1069 DWunion uu = {.ll = u};
1070 DWunion vv = {.ll = v};
1071 DWtype w;
1073 if (uu.s.high < 0)
1074 c = ~c,
1075 uu.ll = -uu.ll;
1076 if (vv.s.high < 0)
1077 vv.ll = -vv.ll;
1079 (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
1080 if (c)
1081 w = -w;
1083 return w;
1085 #endif
1087 #ifdef L_umoddi3
1088 UDWtype
1089 __umoddi3 (UDWtype u, UDWtype v)
1091 UDWtype w;
1093 (void) __udivmoddi4 (u, v, &w);
1095 return w;
1097 #endif
1099 #ifdef L_udivdi3
1100 UDWtype
1101 __udivdi3 (UDWtype n, UDWtype d)
1103 return __udivmoddi4 (n, d, (UDWtype *) 0);
1105 #endif
1107 #ifdef L_cmpdi2
1108 word_type
1109 __cmpdi2 (DWtype a, DWtype b)
1111 const DWunion au = {.ll = a};
1112 const DWunion bu = {.ll = b};
1114 if (au.s.high < bu.s.high)
1115 return 0;
1116 else if (au.s.high > bu.s.high)
1117 return 2;
1118 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1119 return 0;
1120 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1121 return 2;
1122 return 1;
1124 #endif
1126 #ifdef L_ucmpdi2
1127 word_type
1128 __ucmpdi2 (DWtype a, DWtype b)
1130 const DWunion au = {.ll = a};
1131 const DWunion bu = {.ll = b};
1133 if ((UWtype) au.s.high < (UWtype) bu.s.high)
1134 return 0;
1135 else if ((UWtype) au.s.high > (UWtype) bu.s.high)
1136 return 2;
1137 if ((UWtype) au.s.low < (UWtype) bu.s.low)
1138 return 0;
1139 else if ((UWtype) au.s.low > (UWtype) bu.s.low)
1140 return 2;
1141 return 1;
1143 #endif
1145 #if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
1146 DWtype
1147 __fixunstfDI (TFtype a)
1149 if (a < 0)
1150 return 0;
1152 /* Compute high word of result, as a flonum. */
1153 const TFtype b = (a / Wtype_MAXp1_F);
1154 /* Convert that to fixed (but not to DWtype!),
1155 and shift it into the high word. */
1156 UDWtype v = (UWtype) b;
1157 v <<= W_TYPE_SIZE;
1158 /* Remove high part from the TFtype, leaving the low part as flonum. */
1159 a -= (TFtype)v;
1160 /* Convert that to fixed (but not to DWtype!) and add it in.
1161 Sometimes A comes out negative. This is significant, since
1162 A has more bits than a long int does. */
1163 if (a < 0)
1164 v -= (UWtype) (- a);
1165 else
1166 v += (UWtype) a;
1167 return v;
1169 #endif
1171 #if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
1172 DWtype
1173 __fixtfdi (TFtype a)
1175 if (a < 0)
1176 return - __fixunstfDI (-a);
1177 return __fixunstfDI (a);
1179 #endif
1181 #if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
1182 DWtype
1183 __fixunsxfDI (XFtype a)
1185 if (a < 0)
1186 return 0;
1188 /* Compute high word of result, as a flonum. */
1189 const XFtype b = (a / Wtype_MAXp1_F);
1190 /* Convert that to fixed (but not to DWtype!),
1191 and shift it into the high word. */
1192 UDWtype v = (UWtype) b;
1193 v <<= W_TYPE_SIZE;
1194 /* Remove high part from the XFtype, leaving the low part as flonum. */
1195 a -= (XFtype)v;
1196 /* Convert that to fixed (but not to DWtype!) and add it in.
1197 Sometimes A comes out negative. This is significant, since
1198 A has more bits than a long int does. */
1199 if (a < 0)
1200 v -= (UWtype) (- a);
1201 else
1202 v += (UWtype) a;
1203 return v;
1205 #endif
1207 #if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
1208 DWtype
1209 __fixxfdi (XFtype a)
1211 if (a < 0)
1212 return - __fixunsxfDI (-a);
1213 return __fixunsxfDI (a);
1215 #endif
1217 #if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
1218 DWtype
1219 __fixunsdfDI (DFtype a)
1221 /* Get high part of result. The division here will just moves the radix
1222 point and will not cause any rounding. Then the conversion to integral
1223 type chops result as desired. */
1224 const UWtype hi = a / Wtype_MAXp1_F;
1226 /* Get low part of result. Convert `hi' to floating type and scale it back,
1227 then subtract this from the number being converted. This leaves the low
1228 part. Convert that to integral type. */
1229 const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
1231 /* Assemble result from the two parts. */
1232 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1234 #endif
1236 #if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
1237 DWtype
1238 __fixdfdi (DFtype a)
1240 if (a < 0)
1241 return - __fixunsdfDI (-a);
1242 return __fixunsdfDI (a);
1244 #endif
1246 #if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
1247 DWtype
1248 __fixunssfDI (SFtype a)
1250 #if LIBGCC2_HAS_DF_MODE
1251 /* Convert the SFtype to a DFtype, because that is surely not going
1252 to lose any bits. Some day someone else can write a faster version
1253 that avoids converting to DFtype, and verify it really works right. */
1254 const DFtype dfa = a;
1256 /* Get high part of result. The division here will just moves the radix
1257 point and will not cause any rounding. Then the conversion to integral
1258 type chops result as desired. */
1259 const UWtype hi = dfa / Wtype_MAXp1_F;
1261 /* Get low part of result. Convert `hi' to floating type and scale it back,
1262 then subtract this from the number being converted. This leaves the low
1263 part. Convert that to integral type. */
1264 const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
1266 /* Assemble result from the two parts. */
1267 return ((UDWtype) hi << W_TYPE_SIZE) | lo;
1268 #elif FLT_MANT_DIG < W_TYPE_SIZE
1269 if (a < 1)
1270 return 0;
1271 if (a < Wtype_MAXp1_F)
1272 return (UWtype)a;
1273 if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
1275 /* Since we know that there are fewer significant bits in the SFmode
1276 quantity than in a word, we know that we can convert out all the
1277 significant bits in one step, and thus avoid losing bits. */
1279 /* ??? This following loop essentially performs frexpf. If we could
1280 use the real libm function, or poke at the actual bits of the fp
1281 format, it would be significantly faster. */
1283 UWtype shift = 0, counter;
1284 SFtype msb;
1286 a /= Wtype_MAXp1_F;
1287 for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
1289 SFtype counterf = (UWtype)1 << counter;
1290 if (a >= counterf)
1292 shift |= counter;
1293 a /= counterf;
1297 /* Rescale into the range of one word, extract the bits of that
1298 one word, and shift the result into position. */
1299 a *= Wtype_MAXp1_F;
1300 counter = a;
1301 return (DWtype)counter << shift;
1303 return -1;
1304 #else
1305 # error
1306 #endif
1308 #endif
1310 #if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
1311 DWtype
1312 __fixsfdi (SFtype a)
1314 if (a < 0)
1315 return - __fixunssfDI (-a);
1316 return __fixunssfDI (a);
1318 #endif
1320 #if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
1321 XFtype
1322 __floatdixf (DWtype u)
1324 XFtype d = (Wtype) (u >> W_TYPE_SIZE);
1325 d *= Wtype_MAXp1_F;
1326 d += (UWtype)u;
1327 return d;
1329 #endif
1331 #if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
1332 TFtype
1333 __floatditf (DWtype u)
1335 TFtype d = (Wtype) (u >> W_TYPE_SIZE);
1336 d *= Wtype_MAXp1_F;
1337 d += (UWtype)u;
1338 return d;
1340 #endif
1342 #if defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE
1343 DFtype
1344 __floatdidf (DWtype u)
1346 DFtype d = (Wtype) (u >> W_TYPE_SIZE);
1347 d *= Wtype_MAXp1_F;
1348 d += (UWtype)u;
1349 return d;
1351 #endif
1353 #if defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE
1354 #define DI_SIZE (W_TYPE_SIZE * 2)
1355 #define SF_SIZE FLT_MANT_DIG
1357 SFtype
1358 __floatdisf (DWtype u)
1360 #if SF_SIZE >= W_TYPE_SIZE
1361 /* When the word size is small, we never get any rounding error. */
1362 SFtype f = (Wtype) (u >> W_TYPE_SIZE);
1363 f *= Wtype_MAXp1_F;
1364 f += (UWtype)u;
1365 return f;
1366 #elif LIBGCC2_HAS_DF_MODE
1368 #if LIBGCC2_DOUBLE_TYPE_SIZE == 64
1369 #define DF_SIZE DBL_MANT_DIG
1370 #elif LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1371 #define DF_SIZE LDBL_MANT_DIG
1372 #else
1373 # error
1374 #endif
1376 #define REP_BIT ((UDWtype) 1 << (DI_SIZE - DF_SIZE))
1378 /* Protect against double-rounding error.
1379 Represent any low-order bits, that might be truncated by a bit that
1380 won't be lost. The bit can go in anywhere below the rounding position
1381 of the SFmode. A fixed mask and bit position handles all usual
1382 configurations. It doesn't handle the case of 128-bit DImode, however. */
1383 if (DF_SIZE < DI_SIZE
1384 && DF_SIZE > (DI_SIZE - DF_SIZE + SF_SIZE))
1386 if (! (- ((DWtype) 1 << DF_SIZE) < u
1387 && u < ((DWtype) 1 << DF_SIZE)))
1389 if ((UDWtype) u & (REP_BIT - 1))
1391 u &= ~ (REP_BIT - 1);
1392 u |= REP_BIT;
1397 /* Do the calculation in DFmode so that we don't lose any of the
1398 precision of the high word while multiplying it. */
1399 DFtype f = (Wtype) (u >> W_TYPE_SIZE);
1400 f *= Wtype_MAXp1_F;
1401 f += (UWtype)u;
1402 return (SFtype) f;
1403 #else
1404 /* Finally, the word size is larger than the number of bits in SFmode,
1405 and we've got no DFmode. The only way to avoid double rounding is
1406 to special case the extraction. */
1408 /* If there are no high bits set, fall back to one conversion. */
1409 if ((Wtype)u == u)
1410 return (SFtype)(Wtype)u;
1412 /* Otherwise, find the power of two. */
1413 Wtype hi = u >> W_TYPE_SIZE;
1414 if (hi < 0)
1415 hi = -hi;
1417 UWtype count, shift;
1418 count_leading_zeros (count, hi);
1420 /* No leading bits means u == minimum. */
1421 if (count == 0)
1422 return -(Wtype_MAXp1_F * Wtype_MAXp1_F / 2);
1424 shift = W_TYPE_SIZE - count;
1426 /* Shift down the most significant bits. */
1427 hi = u >> shift;
1429 /* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
1430 if (u & ((1 << shift) - 1))
1431 hi |= 1;
1433 /* Convert the one word of data, and rescale. */
1434 SFtype f = hi;
1435 f *= (UWtype)1 << shift;
1436 return f;
1437 #endif
1439 #endif
1441 #if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
1442 /* Reenable the normal types, in case limits.h needs them. */
1443 #undef char
1444 #undef short
1445 #undef int
1446 #undef long
1447 #undef unsigned
1448 #undef float
1449 #undef double
1450 #undef MIN
1451 #undef MAX
1452 #include <limits.h>
1454 UWtype
1455 __fixunsxfSI (XFtype a)
1457 if (a >= - (DFtype) Wtype_MIN)
1458 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1459 return (Wtype) a;
1461 #endif
1463 #if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
1464 /* Reenable the normal types, in case limits.h needs them. */
1465 #undef char
1466 #undef short
1467 #undef int
1468 #undef long
1469 #undef unsigned
1470 #undef float
1471 #undef double
1472 #undef MIN
1473 #undef MAX
1474 #include <limits.h>
1476 UWtype
1477 __fixunsdfSI (DFtype a)
1479 if (a >= - (DFtype) Wtype_MIN)
1480 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1481 return (Wtype) a;
1483 #endif
1485 #if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
1486 /* Reenable the normal types, in case limits.h needs them. */
1487 #undef char
1488 #undef short
1489 #undef int
1490 #undef long
1491 #undef unsigned
1492 #undef float
1493 #undef double
1494 #undef MIN
1495 #undef MAX
1496 #include <limits.h>
1498 UWtype
1499 __fixunssfSI (SFtype a)
1501 if (a >= - (SFtype) Wtype_MIN)
1502 return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
1503 return (Wtype) a;
1505 #endif
1507 /* Integer power helper used from __builtin_powi for non-constant
1508 exponents. */
1510 #if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
1511 || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
1512 || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
1513 || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
1514 # if defined(L_powisf2)
1515 # define TYPE SFtype
1516 # define NAME __powisf2
1517 # elif defined(L_powidf2)
1518 # define TYPE DFtype
1519 # define NAME __powidf2
1520 # elif defined(L_powixf2)
1521 # define TYPE XFtype
1522 # define NAME __powixf2
1523 # elif defined(L_powitf2)
1524 # define TYPE TFtype
1525 # define NAME __powitf2
1526 # endif
1528 #undef int
1529 #undef unsigned
1530 TYPE
1531 NAME (TYPE x, int m)
1533 unsigned int n = m < 0 ? -m : m;
1534 TYPE y = n % 2 ? x : 1;
1535 while (n >>= 1)
1537 x = x * x;
1538 if (n % 2)
1539 y = y * x;
1541 return m < 0 ? 1/y : y;
1544 #endif
1546 #if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
1547 || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
1548 || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
1549 || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
1551 #undef float
1552 #undef double
1553 #undef long
1555 #if defined(L_mulsc3) || defined(L_divsc3)
1556 # define MTYPE SFtype
1557 # define CTYPE SCtype
1558 # define MODE sc
1559 # define CEXT f
1560 # define NOTRUNC __FLT_EVAL_METHOD__ == 0
1561 #elif defined(L_muldc3) || defined(L_divdc3)
1562 # define MTYPE DFtype
1563 # define CTYPE DCtype
1564 # define MODE dc
1565 # if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
1566 # define CEXT l
1567 # define NOTRUNC 1
1568 # else
1569 # define CEXT
1570 # define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
1571 # endif
1572 #elif defined(L_mulxc3) || defined(L_divxc3)
1573 # define MTYPE XFtype
1574 # define CTYPE XCtype
1575 # define MODE xc
1576 # define CEXT l
1577 # define NOTRUNC 1
1578 #elif defined(L_multc3) || defined(L_divtc3)
1579 # define MTYPE TFtype
1580 # define CTYPE TCtype
1581 # define MODE tc
1582 # define CEXT l
1583 # define NOTRUNC 1
1584 #else
1585 # error
1586 #endif
1588 #define CONCAT3(A,B,C) _CONCAT3(A,B,C)
1589 #define _CONCAT3(A,B,C) A##B##C
1591 #define CONCAT2(A,B) _CONCAT2(A,B)
1592 #define _CONCAT2(A,B) A##B
1594 /* All of these would be present in a full C99 implementation of <math.h>
1595 and <complex.h>. Our problem is that only a few systems have such full
1596 implementations. Further, libgcc_s.so isn't currently linked against
1597 libm.so, and even for systems that do provide full C99, the extra overhead
1598 of all programs using libgcc having to link against libm. So avoid it. */
1600 #define isnan(x) __builtin_expect ((x) != (x), 0)
1601 #define isfinite(x) __builtin_expect (!isnan((x) - (x)), 1)
1602 #define isinf(x) __builtin_expect (!isnan(x) & !isfinite(x), 0)
1604 #define INFINITY CONCAT2(__builtin_inf, CEXT) ()
1605 #define I 1i
1607 /* Helpers to make the following code slightly less gross. */
1608 #define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
1609 #define FABS CONCAT2(__builtin_fabs, CEXT)
1611 /* Verify that MTYPE matches up with CEXT. */
1612 extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
1614 /* Ensure that we've lost any extra precision. */
1615 #if NOTRUNC
1616 # define TRUNC(x)
1617 #else
1618 # define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
1619 #endif
1621 #if defined(L_mulsc3) || defined(L_muldc3) \
1622 || defined(L_mulxc3) || defined(L_multc3)
1624 CTYPE
1625 CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1627 MTYPE ac, bd, ad, bc, x, y;
1629 ac = a * c;
1630 bd = b * d;
1631 ad = a * d;
1632 bc = b * c;
1634 TRUNC (ac);
1635 TRUNC (bd);
1636 TRUNC (ad);
1637 TRUNC (bc);
1639 x = ac - bd;
1640 y = ad + bc;
1642 if (isnan (x) && isnan (y))
1644 /* Recover infinities that computed as NaN + iNaN. */
1645 _Bool recalc = 0;
1646 if (isinf (a) || isinf (b))
1648 /* z is infinite. "Box" the infinity and change NaNs in
1649 the other factor to 0. */
1650 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1651 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1652 if (isnan (c)) c = COPYSIGN (0, c);
1653 if (isnan (d)) d = COPYSIGN (0, d);
1654 recalc = 1;
1656 if (isinf (c) || isinf (d))
1658 /* w is infinite. "Box" the infinity and change NaNs in
1659 the other factor to 0. */
1660 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1661 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1662 if (isnan (a)) a = COPYSIGN (0, a);
1663 if (isnan (b)) b = COPYSIGN (0, b);
1664 recalc = 1;
1666 if (!recalc
1667 && (isinf (ac) || isinf (bd)
1668 || isinf (ad) || isinf (bc)))
1670 /* Recover infinities from overflow by changing NaNs to 0. */
1671 if (isnan (a)) a = COPYSIGN (0, a);
1672 if (isnan (b)) b = COPYSIGN (0, b);
1673 if (isnan (c)) c = COPYSIGN (0, c);
1674 if (isnan (d)) d = COPYSIGN (0, d);
1675 recalc = 1;
1677 if (recalc)
1679 x = INFINITY * (a * c - b * d);
1680 y = INFINITY * (a * d + b * c);
1684 return x + I * y;
1686 #endif /* complex multiply */
1688 #if defined(L_divsc3) || defined(L_divdc3) \
1689 || defined(L_divxc3) || defined(L_divtc3)
1691 CTYPE
1692 CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
1694 MTYPE denom, ratio, x, y;
1696 /* ??? We can get better behavior from logarithmic scaling instead of
1697 the division. But that would mean starting to link libgcc against
1698 libm. We could implement something akin to ldexp/frexp as gcc builtins
1699 fairly easily... */
1700 if (FABS (c) < FABS (d))
1702 ratio = c / d;
1703 denom = (c * ratio) + d;
1704 x = ((a * ratio) + b) / denom;
1705 y = ((b * ratio) - a) / denom;
1707 else
1709 ratio = d / c;
1710 denom = (d * ratio) + c;
1711 x = ((b * ratio) + a) / denom;
1712 y = (b - (a * ratio)) / denom;
1715 /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
1716 are nonzero/zero, infinite/finite, and finite/infinite. */
1717 if (isnan (x) && isnan (y))
1719 if (denom == 0.0 && (!isnan (a) || !isnan (b)))
1721 x = COPYSIGN (INFINITY, c) * a;
1722 y = COPYSIGN (INFINITY, c) * b;
1724 else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
1726 a = COPYSIGN (isinf (a) ? 1 : 0, a);
1727 b = COPYSIGN (isinf (b) ? 1 : 0, b);
1728 x = INFINITY * (a * c + b * d);
1729 y = INFINITY * (b * c - a * d);
1731 else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
1733 c = COPYSIGN (isinf (c) ? 1 : 0, c);
1734 d = COPYSIGN (isinf (d) ? 1 : 0, d);
1735 x = 0.0 * (a * c + b * d);
1736 y = 0.0 * (b * c - a * d);
1740 return x + I * y;
1742 #endif /* complex divide */
1744 #endif /* all complex float routines */
1746 /* From here on down, the routines use normal data types. */
1748 #define SItype bogus_type
1749 #define USItype bogus_type
1750 #define DItype bogus_type
1751 #define UDItype bogus_type
1752 #define SFtype bogus_type
1753 #define DFtype bogus_type
1754 #undef Wtype
1755 #undef UWtype
1756 #undef HWtype
1757 #undef UHWtype
1758 #undef DWtype
1759 #undef UDWtype
1761 #undef char
1762 #undef short
1763 #undef int
1764 #undef long
1765 #undef unsigned
1766 #undef float
1767 #undef double
1769 #ifdef L__gcc_bcmp
1771 /* Like bcmp except the sign is meaningful.
1772 Result is negative if S1 is less than S2,
1773 positive if S1 is greater, 0 if S1 and S2 are equal. */
1776 __gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
1778 while (size > 0)
1780 const unsigned char c1 = *s1++, c2 = *s2++;
1781 if (c1 != c2)
1782 return c1 - c2;
1783 size--;
1785 return 0;
1788 #endif
1790 /* __eprintf used to be used by GCC's private version of <assert.h>.
1791 We no longer provide that header, but this routine remains in libgcc.a
1792 for binary backward compatibility. Note that it is not included in
1793 the shared version of libgcc. */
1794 #ifdef L_eprintf
1795 #ifndef inhibit_libc
1797 #undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
1798 #include <stdio.h>
1800 void
1801 __eprintf (const char *string, const char *expression,
1802 unsigned int line, const char *filename)
1804 fprintf (stderr, string, expression, line, filename);
1805 fflush (stderr);
1806 abort ();
1809 #endif
1810 #endif
1813 #ifdef L_clear_cache
1814 /* Clear part of an instruction cache. */
1816 void
1817 __clear_cache (char *beg __attribute__((__unused__)),
1818 char *end __attribute__((__unused__)))
1820 #ifdef CLEAR_INSN_CACHE
1821 CLEAR_INSN_CACHE (beg, end);
1822 #endif /* CLEAR_INSN_CACHE */
1825 #endif /* L_clear_cache */
1827 #ifdef L_enable_execute_stack
1828 /* Attempt to turn on execute permission for the stack. */
1830 #ifdef ENABLE_EXECUTE_STACK
1831 ENABLE_EXECUTE_STACK
1832 #else
1833 void
1834 __enable_execute_stack (void *addr __attribute__((__unused__)))
1836 #endif /* ENABLE_EXECUTE_STACK */
1838 #endif /* L_enable_execute_stack */
1840 #ifdef L_trampoline
1842 /* Jump to a trampoline, loading the static chain address. */
1844 #if defined(WINNT) && ! defined(__CYGWIN__) && ! defined (_UWIN)
1847 getpagesize (void)
1849 #ifdef _ALPHA_
1850 return 8192;
1851 #else
1852 return 4096;
1853 #endif
1856 #ifdef __i386__
1857 extern int VirtualProtect (char *, int, int, int *) __attribute__((stdcall));
1858 #endif
1861 mprotect (char *addr, int len, int prot)
1863 int np, op;
1865 if (prot == 7)
1866 np = 0x40;
1867 else if (prot == 5)
1868 np = 0x20;
1869 else if (prot == 4)
1870 np = 0x10;
1871 else if (prot == 3)
1872 np = 0x04;
1873 else if (prot == 1)
1874 np = 0x02;
1875 else if (prot == 0)
1876 np = 0x01;
1878 if (VirtualProtect (addr, len, np, &op))
1879 return 0;
1880 else
1881 return -1;
1884 #endif /* WINNT && ! __CYGWIN__ && ! _UWIN */
1886 #ifdef TRANSFER_FROM_TRAMPOLINE
1887 TRANSFER_FROM_TRAMPOLINE
1888 #endif
1889 #endif /* L_trampoline */
1891 #ifndef __CYGWIN__
1892 #ifdef L__main
1894 #include "gbl-ctors.h"
1896 /* Some systems use __main in a way incompatible with its use in gcc, in these
1897 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
1898 give the same symbol without quotes for an alternative entry point. You
1899 must define both, or neither. */
1900 #ifndef NAME__MAIN
1901 #define NAME__MAIN "__main"
1902 #define SYMBOL__MAIN __main
1903 #endif
1905 #if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
1906 #undef HAS_INIT_SECTION
1907 #define HAS_INIT_SECTION
1908 #endif
1910 #if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
1912 /* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
1913 code to run constructors. In that case, we need to handle EH here, too. */
1915 #ifdef EH_FRAME_SECTION_NAME
1916 #include "unwind-dw2-fde.h"
1917 extern unsigned char __EH_FRAME_BEGIN__[];
1918 #endif
1920 /* Run all the global destructors on exit from the program. */
1922 void
1923 __do_global_dtors (void)
1925 #ifdef DO_GLOBAL_DTORS_BODY
1926 DO_GLOBAL_DTORS_BODY;
1927 #else
1928 static func_ptr *p = __DTOR_LIST__ + 1;
1929 while (*p)
1931 p++;
1932 (*(p-1)) ();
1934 #endif
1935 #if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
1937 static int completed = 0;
1938 if (! completed)
1940 completed = 1;
1941 __deregister_frame_info (__EH_FRAME_BEGIN__);
1944 #endif
1946 #endif
1948 #ifndef HAS_INIT_SECTION
1949 /* Run all the global constructors on entry to the program. */
1951 void
1952 __do_global_ctors (void)
1954 #ifdef EH_FRAME_SECTION_NAME
1956 static struct object object;
1957 __register_frame_info (__EH_FRAME_BEGIN__, &object);
1959 #endif
1960 DO_GLOBAL_CTORS_BODY;
1961 atexit (__do_global_dtors);
1963 #endif /* no HAS_INIT_SECTION */
1965 #if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
1966 /* Subroutine called automatically by `main'.
1967 Compiling a global function named `main'
1968 produces an automatic call to this function at the beginning.
1970 For many systems, this routine calls __do_global_ctors.
1971 For systems which support a .init section we use the .init section
1972 to run __do_global_ctors, so we need not do anything here. */
1974 extern void SYMBOL__MAIN (void);
1975 void
1976 SYMBOL__MAIN (void)
1978 /* Support recursive calls to `main': run initializers just once. */
1979 static int initialized;
1980 if (! initialized)
1982 initialized = 1;
1983 __do_global_ctors ();
1986 #endif /* no HAS_INIT_SECTION or INVOKE__main */
1988 #endif /* L__main */
1989 #endif /* __CYGWIN__ */
1991 #ifdef L_ctors
1993 #include "gbl-ctors.h"
1995 /* Provide default definitions for the lists of constructors and
1996 destructors, so that we don't get linker errors. These symbols are
1997 intentionally bss symbols, so that gld and/or collect will provide
1998 the right values. */
2000 /* We declare the lists here with two elements each,
2001 so that they are valid empty lists if no other definition is loaded.
2003 If we are using the old "set" extensions to have the gnu linker
2004 collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
2005 must be in the bss/common section.
2007 Long term no port should use those extensions. But many still do. */
2008 #if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
2009 #if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
2010 func_ptr __CTOR_LIST__[2] = {0, 0};
2011 func_ptr __DTOR_LIST__[2] = {0, 0};
2012 #else
2013 func_ptr __CTOR_LIST__[2];
2014 func_ptr __DTOR_LIST__[2];
2015 #endif
2016 #endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
2017 #endif /* L_ctors */