[NDS32] Add intrinsic function for ffb, ffmism and flmism.
[official-gcc.git] / gcc / vec.h
blob4d2046c04af562b06b8a3dbc4d056d7c0dadd8bb
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2018 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
25 /* Some gen* file have no ggc support as the header file gtype-desc.h is
26 missing. Provide these definitions in case ggc.h has not been included.
27 This is not a problem because any code that runs before gengtype is built
28 will never need to use GC vectors.*/
30 extern void ggc_free (void *);
31 extern size_t ggc_round_alloc_size (size_t requested_size);
32 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
34 /* Templated vector type and associated interfaces.
36 The interface functions are typesafe and use inline functions,
37 sometimes backed by out-of-line generic functions. The vectors are
38 designed to interoperate with the GTY machinery.
40 There are both 'index' and 'iterate' accessors. The index accessor
41 is implemented by operator[]. The iterator returns a boolean
42 iteration condition and updates the iteration variable passed by
43 reference. Because the iterator will be inlined, the address-of
44 can be optimized away.
46 Each operation that increases the number of active elements is
47 available in 'quick' and 'safe' variants. The former presumes that
48 there is sufficient allocated space for the operation to succeed
49 (it dies if there is not). The latter will reallocate the
50 vector, if needed. Reallocation causes an exponential increase in
51 vector size. If you know you will be adding N elements, it would
52 be more efficient to use the reserve operation before adding the
53 elements with the 'quick' operation. This will ensure there are at
54 least as many elements as you ask for, it will exponentially
55 increase if there are too few spare slots. If you want reserve a
56 specific number of slots, but do not want the exponential increase
57 (for instance, you know this is the last allocation), use the
58 reserve_exact operation. You can also create a vector of a
59 specific size from the get go.
61 You should prefer the push and pop operations, as they append and
62 remove from the end of the vector. If you need to remove several
63 items in one go, use the truncate operation. The insert and remove
64 operations allow you to change elements in the middle of the
65 vector. There are two remove operations, one which preserves the
66 element ordering 'ordered_remove', and one which does not
67 'unordered_remove'. The latter function copies the end element
68 into the removed slot, rather than invoke a memmove operation. The
69 'lower_bound' function will determine where to place an item in the
70 array using insert that will maintain sorted order.
72 Vectors are template types with three arguments: the type of the
73 elements in the vector, the allocation strategy, and the physical
74 layout to use
76 Four allocation strategies are supported:
78 - Heap: allocation is done using malloc/free. This is the
79 default allocation strategy.
81 - GC: allocation is done using ggc_alloc/ggc_free.
83 - GC atomic: same as GC with the exception that the elements
84 themselves are assumed to be of an atomic type that does
85 not need to be garbage collected. This means that marking
86 routines do not need to traverse the array marking the
87 individual elements. This increases the performance of
88 GC activities.
90 Two physical layouts are supported:
92 - Embedded: The vector is structured using the trailing array
93 idiom. The last member of the structure is an array of size
94 1. When the vector is initially allocated, a single memory
95 block is created to hold the vector's control data and the
96 array of elements. These vectors cannot grow without
97 reallocation (see discussion on embeddable vectors below).
99 - Space efficient: The vector is structured as a pointer to an
100 embedded vector. This is the default layout. It means that
101 vectors occupy a single word of storage before initial
102 allocation. Vectors are allowed to grow (the internal
103 pointer is reallocated but the main vector instance does not
104 need to relocate).
106 The type, allocation and layout are specified when the vector is
107 declared.
109 If you need to directly manipulate a vector, then the 'address'
110 accessor will return the address of the start of the vector. Also
111 the 'space' predicate will tell you whether there is spare capacity
112 in the vector. You will not normally need to use these two functions.
114 Notes on the different layout strategies
116 * Embeddable vectors (vec<T, A, vl_embed>)
118 These vectors are suitable to be embedded in other data
119 structures so that they can be pre-allocated in a contiguous
120 memory block.
122 Embeddable vectors are implemented using the trailing array
123 idiom, thus they are not resizeable without changing the address
124 of the vector object itself. This means you cannot have
125 variables or fields of embeddable vector type -- always use a
126 pointer to a vector. The one exception is the final field of a
127 structure, which could be a vector type.
129 You will have to use the embedded_size & embedded_init calls to
130 create such objects, and they will not be resizeable (so the
131 'safe' allocation variants are not available).
133 Properties of embeddable vectors:
135 - The whole vector and control data are allocated in a single
136 contiguous block. It uses the trailing-vector idiom, so
137 allocation must reserve enough space for all the elements
138 in the vector plus its control data.
139 - The vector cannot be re-allocated.
140 - The vector cannot grow nor shrink.
141 - No indirections needed for access/manipulation.
142 - It requires 2 words of storage (prior to vector allocation).
145 * Space efficient vector (vec<T, A, vl_ptr>)
147 These vectors can grow dynamically and are allocated together
148 with their control data. They are suited to be included in data
149 structures. Prior to initial allocation, they only take a single
150 word of storage.
152 These vectors are implemented as a pointer to embeddable vectors.
153 The semantics allow for this pointer to be NULL to represent
154 empty vectors. This way, empty vectors occupy minimal space in
155 the structure containing them.
157 Properties:
159 - The whole vector and control data are allocated in a single
160 contiguous block.
161 - The whole vector may be re-allocated.
162 - Vector data may grow and shrink.
163 - Access and manipulation requires a pointer test and
164 indirection.
165 - It requires 1 word of storage (prior to vector allocation).
167 An example of their use would be,
169 struct my_struct {
170 // A space-efficient vector of tree pointers in GC memory.
171 vec<tree, va_gc, vl_ptr> v;
174 struct my_struct *s;
176 if (s->v.length ()) { we have some contents }
177 s->v.safe_push (decl); // append some decl onto the end
178 for (ix = 0; s->v.iterate (ix, &elt); ix++)
179 { do something with elt }
182 /* Support function for statistics. */
183 extern void dump_vec_loc_statistics (void);
185 /* Hashtable mapping vec addresses to descriptors. */
186 extern htab_t vec_mem_usage_hash;
188 /* Control data for vectors. This contains the number of allocated
189 and used slots inside a vector. */
191 struct vec_prefix
193 /* FIXME - These fields should be private, but we need to cater to
194 compilers that have stricter notions of PODness for types. */
196 /* Memory allocation support routines in vec.c. */
197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198 void release_overhead (void *, size_t, bool CXX_MEM_STAT_INFO);
199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
200 static unsigned calculate_allocation_1 (unsigned, unsigned);
202 /* Note that vec_prefix should be a base class for vec, but we use
203 offsetof() on vector fields of tree structures (e.g.,
204 tree_binfo::base_binfos), and offsetof only supports base types.
206 To compensate, we make vec_prefix a field inside vec and make
207 vec a friend class of vec_prefix so it can access its fields. */
208 template <typename, typename, typename> friend struct vec;
210 /* The allocator types also need access to our internals. */
211 friend struct va_gc;
212 friend struct va_gc_atomic;
213 friend struct va_heap;
215 unsigned m_alloc : 31;
216 unsigned m_using_auto_storage : 1;
217 unsigned m_num;
220 /* Calculate the number of slots to reserve a vector, making sure that
221 RESERVE slots are free. If EXACT grow exactly, otherwise grow
222 exponentially. PFX is the control data for the vector. */
224 inline unsigned
225 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 bool exact)
228 if (exact)
229 return (pfx ? pfx->m_num : 0) + reserve;
230 else if (!pfx)
231 return MAX (4, reserve);
232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
235 template<typename, typename, typename> struct vec;
237 /* Valid vector layouts
239 vl_embed - Embeddable vector that uses the trailing array idiom.
240 vl_ptr - Space efficient vector that uses a pointer to an
241 embeddable vector. */
242 struct vl_embed { };
243 struct vl_ptr { };
246 /* Types of supported allocations
248 va_heap - Allocation uses malloc/free.
249 va_gc - Allocation uses ggc_alloc.
250 va_gc_atomic - Same as GC, but individual elements of the array
251 do not need to be marked during collection. */
253 /* Allocator type for heap vectors. */
254 struct va_heap
256 /* Heap vectors are frequently regular instances, so use the vl_ptr
257 layout for them. */
258 typedef vl_ptr default_layout;
260 template<typename T>
261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 CXX_MEM_STAT_INFO);
264 template<typename T>
265 static void release (vec<T, va_heap, vl_embed> *&);
269 /* Allocator for heap memory. Ensure there are at least RESERVE free
270 slots in V. If EXACT is true, grow exactly, else grow
271 exponentially. As a special case, if the vector had not been
272 allocated and RESERVE is 0, no vector will be created. */
274 template<typename T>
275 inline void
276 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 MEM_STAT_DECL)
279 unsigned alloc
280 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
281 gcc_checking_assert (alloc);
283 if (GATHER_STATISTICS && v)
284 v->m_vecpfx.release_overhead (v, v->allocated (), false);
286 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
287 unsigned nelem = v ? v->length () : 0;
288 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
289 v->embedded_init (alloc, nelem);
291 if (GATHER_STATISTICS)
292 v->m_vecpfx.register_overhead (v, alloc, nelem PASS_MEM_STAT);
296 /* Free the heap space allocated for vector V. */
298 template<typename T>
299 void
300 va_heap::release (vec<T, va_heap, vl_embed> *&v)
302 if (v == NULL)
303 return;
305 if (GATHER_STATISTICS)
306 v->m_vecpfx.release_overhead (v, v->allocated (), true);
307 ::free (v);
308 v = NULL;
312 /* Allocator type for GC vectors. Notice that we need the structure
313 declaration even if GC is not enabled. */
315 struct va_gc
317 /* Use vl_embed as the default layout for GC vectors. Due to GTY
318 limitations, GC vectors must always be pointers, so it is more
319 efficient to use a pointer to the vl_embed layout, rather than
320 using a pointer to a pointer as would be the case with vl_ptr. */
321 typedef vl_embed default_layout;
323 template<typename T, typename A>
324 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
325 CXX_MEM_STAT_INFO);
327 template<typename T, typename A>
328 static void release (vec<T, A, vl_embed> *&v);
332 /* Free GC memory used by V and reset V to NULL. */
334 template<typename T, typename A>
335 inline void
336 va_gc::release (vec<T, A, vl_embed> *&v)
338 if (v)
339 ::ggc_free (v);
340 v = NULL;
344 /* Allocator for GC memory. Ensure there are at least RESERVE free
345 slots in V. If EXACT is true, grow exactly, else grow
346 exponentially. As a special case, if the vector had not been
347 allocated and RESERVE is 0, no vector will be created. */
349 template<typename T, typename A>
350 void
351 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
352 MEM_STAT_DECL)
354 unsigned alloc
355 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
356 if (!alloc)
358 ::ggc_free (v);
359 v = NULL;
360 return;
363 /* Calculate the amount of space we want. */
364 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
366 /* Ask the allocator how much space it will really give us. */
367 size = ::ggc_round_alloc_size (size);
369 /* Adjust the number of slots accordingly. */
370 size_t vec_offset = sizeof (vec_prefix);
371 size_t elt_size = sizeof (T);
372 alloc = (size - vec_offset) / elt_size;
374 /* And finally, recalculate the amount of space we ask for. */
375 size = vec_offset + alloc * elt_size;
377 unsigned nelem = v ? v->length () : 0;
378 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
379 PASS_MEM_STAT));
380 v->embedded_init (alloc, nelem);
384 /* Allocator type for GC vectors. This is for vectors of types
385 atomics w.r.t. collection, so allocation and deallocation is
386 completely inherited from va_gc. */
387 struct va_gc_atomic : va_gc
392 /* Generic vector template. Default values for A and L indicate the
393 most commonly used strategies.
395 FIXME - Ideally, they would all be vl_ptr to encourage using regular
396 instances for vectors, but the existing GTY machinery is limited
397 in that it can only deal with GC objects that are pointers
398 themselves.
400 This means that vector operations that need to deal with
401 potentially NULL pointers, must be provided as free
402 functions (see the vec_safe_* functions above). */
403 template<typename T,
404 typename A = va_heap,
405 typename L = typename A::default_layout>
406 struct GTY((user)) vec
410 /* Generic vec<> debug helpers.
412 These need to be instantiated for each vec<TYPE> used throughout
413 the compiler like this:
415 DEFINE_DEBUG_VEC (TYPE)
417 The reason we have a debug_helper() is because GDB can't
418 disambiguate a plain call to debug(some_vec), and it must be called
419 like debug<TYPE>(some_vec). */
421 template<typename T>
422 void
423 debug_helper (vec<T> &ref)
425 unsigned i;
426 for (i = 0; i < ref.length (); ++i)
428 fprintf (stderr, "[%d] = ", i);
429 debug_slim (ref[i]);
430 fputc ('\n', stderr);
434 /* We need a separate va_gc variant here because default template
435 argument for functions cannot be used in c++-98. Once this
436 restriction is removed, those variant should be folded with the
437 above debug_helper. */
439 template<typename T>
440 void
441 debug_helper (vec<T, va_gc> &ref)
443 unsigned i;
444 for (i = 0; i < ref.length (); ++i)
446 fprintf (stderr, "[%d] = ", i);
447 debug_slim (ref[i]);
448 fputc ('\n', stderr);
452 /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
453 functions for a type T. */
455 #define DEFINE_DEBUG_VEC(T) \
456 template void debug_helper (vec<T> &); \
457 template void debug_helper (vec<T, va_gc> &); \
458 /* Define the vec<T> debug functions. */ \
459 DEBUG_FUNCTION void \
460 debug (vec<T> &ref) \
462 debug_helper <T> (ref); \
464 DEBUG_FUNCTION void \
465 debug (vec<T> *ptr) \
467 if (ptr) \
468 debug (*ptr); \
469 else \
470 fprintf (stderr, "<nil>\n"); \
472 /* Define the vec<T, va_gc> debug functions. */ \
473 DEBUG_FUNCTION void \
474 debug (vec<T, va_gc> &ref) \
476 debug_helper <T> (ref); \
478 DEBUG_FUNCTION void \
479 debug (vec<T, va_gc> *ptr) \
481 if (ptr) \
482 debug (*ptr); \
483 else \
484 fprintf (stderr, "<nil>\n"); \
487 /* Default-construct N elements in DST. */
489 template <typename T>
490 inline void
491 vec_default_construct (T *dst, unsigned n)
493 #ifdef BROKEN_VALUE_INITIALIZATION
494 /* Versions of GCC before 4.4 sometimes leave certain objects
495 uninitialized when value initialized, though if the type has
496 user defined default ctor, that ctor is invoked. As a workaround
497 perform clearing first and then the value initialization, which
498 fixes the case when value initialization doesn't initialize due to
499 the bugs and should initialize to all zeros, but still allows
500 vectors for types with user defined default ctor that initializes
501 some or all elements to non-zero. If T has no user defined
502 default ctor and some non-static data members have user defined
503 default ctors that initialize to non-zero the workaround will
504 still not work properly; in that case we just need to provide
505 user defined default ctor. */
506 memset (dst, '\0', sizeof (T) * n);
507 #endif
508 for ( ; n; ++dst, --n)
509 ::new (static_cast<void*>(dst)) T ();
512 /* Copy-construct N elements in DST from *SRC. */
514 template <typename T>
515 inline void
516 vec_copy_construct (T *dst, const T *src, unsigned n)
518 for ( ; n; ++dst, ++src, --n)
519 ::new (static_cast<void*>(dst)) T (*src);
522 /* Type to provide NULL values for vec<T, A, L>. This is used to
523 provide nil initializers for vec instances. Since vec must be
524 a POD, we cannot have proper ctor/dtor for it. To initialize
525 a vec instance, you can assign it the value vNULL. This isn't
526 needed for file-scope and function-local static vectors, which
527 are zero-initialized by default. */
528 struct vnull
530 template <typename T, typename A, typename L>
531 CONSTEXPR operator vec<T, A, L> () { return vec<T, A, L>(); }
533 extern vnull vNULL;
536 /* Embeddable vector. These vectors are suitable to be embedded
537 in other data structures so that they can be pre-allocated in a
538 contiguous memory block.
540 Embeddable vectors are implemented using the trailing array idiom,
541 thus they are not resizeable without changing the address of the
542 vector object itself. This means you cannot have variables or
543 fields of embeddable vector type -- always use a pointer to a
544 vector. The one exception is the final field of a structure, which
545 could be a vector type.
547 You will have to use the embedded_size & embedded_init calls to
548 create such objects, and they will not be resizeable (so the 'safe'
549 allocation variants are not available).
551 Properties:
553 - The whole vector and control data are allocated in a single
554 contiguous block. It uses the trailing-vector idiom, so
555 allocation must reserve enough space for all the elements
556 in the vector plus its control data.
557 - The vector cannot be re-allocated.
558 - The vector cannot grow nor shrink.
559 - No indirections needed for access/manipulation.
560 - It requires 2 words of storage (prior to vector allocation). */
562 template<typename T, typename A>
563 struct GTY((user)) vec<T, A, vl_embed>
565 public:
566 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
567 unsigned length (void) const { return m_vecpfx.m_num; }
568 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
569 T *address (void) { return m_vecdata; }
570 const T *address (void) const { return m_vecdata; }
571 T *begin () { return address (); }
572 const T *begin () const { return address (); }
573 T *end () { return address () + length (); }
574 const T *end () const { return address () + length (); }
575 const T &operator[] (unsigned) const;
576 T &operator[] (unsigned);
577 T &last (void);
578 bool space (unsigned) const;
579 bool iterate (unsigned, T *) const;
580 bool iterate (unsigned, T **) const;
581 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
582 void splice (const vec &);
583 void splice (const vec *src);
584 T *quick_push (const T &);
585 T &pop (void);
586 void truncate (unsigned);
587 void quick_insert (unsigned, const T &);
588 void ordered_remove (unsigned);
589 void unordered_remove (unsigned);
590 void block_remove (unsigned, unsigned);
591 void qsort (int (*) (const void *, const void *));
592 T *bsearch (const void *key, int (*compar)(const void *, const void *));
593 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
594 bool contains (const T &search) const;
595 static size_t embedded_size (unsigned);
596 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
597 void quick_grow (unsigned len);
598 void quick_grow_cleared (unsigned len);
600 /* vec class can access our internal data and functions. */
601 template <typename, typename, typename> friend struct vec;
603 /* The allocator types also need access to our internals. */
604 friend struct va_gc;
605 friend struct va_gc_atomic;
606 friend struct va_heap;
608 /* FIXME - These fields should be private, but we need to cater to
609 compilers that have stricter notions of PODness for types. */
610 vec_prefix m_vecpfx;
611 T m_vecdata[1];
615 /* Convenience wrapper functions to use when dealing with pointers to
616 embedded vectors. Some functionality for these vectors must be
617 provided via free functions for these reasons:
619 1- The pointer may be NULL (e.g., before initial allocation).
621 2- When the vector needs to grow, it must be reallocated, so
622 the pointer will change its value.
624 Because of limitations with the current GC machinery, all vectors
625 in GC memory *must* be pointers. */
628 /* If V contains no room for NELEMS elements, return false. Otherwise,
629 return true. */
630 template<typename T, typename A>
631 inline bool
632 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
634 return v ? v->space (nelems) : nelems == 0;
638 /* If V is NULL, return 0. Otherwise, return V->length(). */
639 template<typename T, typename A>
640 inline unsigned
641 vec_safe_length (const vec<T, A, vl_embed> *v)
643 return v ? v->length () : 0;
647 /* If V is NULL, return NULL. Otherwise, return V->address(). */
648 template<typename T, typename A>
649 inline T *
650 vec_safe_address (vec<T, A, vl_embed> *v)
652 return v ? v->address () : NULL;
656 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
657 template<typename T, typename A>
658 inline bool
659 vec_safe_is_empty (vec<T, A, vl_embed> *v)
661 return v ? v->is_empty () : true;
664 /* If V does not have space for NELEMS elements, call
665 V->reserve(NELEMS, EXACT). */
666 template<typename T, typename A>
667 inline bool
668 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
669 CXX_MEM_STAT_INFO)
671 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
672 if (extend)
673 A::reserve (v, nelems, exact PASS_MEM_STAT);
674 return extend;
677 template<typename T, typename A>
678 inline bool
679 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
680 CXX_MEM_STAT_INFO)
682 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
686 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
687 is 0, V is initialized to NULL. */
689 template<typename T, typename A>
690 inline void
691 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
693 v = NULL;
694 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
698 /* Free the GC memory allocated by vector V and set it to NULL. */
700 template<typename T, typename A>
701 inline void
702 vec_free (vec<T, A, vl_embed> *&v)
704 A::release (v);
708 /* Grow V to length LEN. Allocate it, if necessary. */
709 template<typename T, typename A>
710 inline void
711 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
713 unsigned oldlen = vec_safe_length (v);
714 gcc_checking_assert (len >= oldlen);
715 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
716 v->quick_grow (len);
720 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
721 template<typename T, typename A>
722 inline void
723 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
725 unsigned oldlen = vec_safe_length (v);
726 vec_safe_grow (v, len PASS_MEM_STAT);
727 vec_default_construct (v->address () + oldlen, len - oldlen);
731 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
732 template<typename T, typename A>
733 inline bool
734 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
736 if (v)
737 return v->iterate (ix, ptr);
738 else
740 *ptr = 0;
741 return false;
745 template<typename T, typename A>
746 inline bool
747 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
749 if (v)
750 return v->iterate (ix, ptr);
751 else
753 *ptr = 0;
754 return false;
759 /* If V has no room for one more element, reallocate it. Then call
760 V->quick_push(OBJ). */
761 template<typename T, typename A>
762 inline T *
763 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
765 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
766 return v->quick_push (obj);
770 /* if V has no room for one more element, reallocate it. Then call
771 V->quick_insert(IX, OBJ). */
772 template<typename T, typename A>
773 inline void
774 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
775 CXX_MEM_STAT_INFO)
777 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
778 v->quick_insert (ix, obj);
782 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
783 template<typename T, typename A>
784 inline void
785 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
787 if (v)
788 v->truncate (size);
792 /* If SRC is not NULL, return a pointer to a copy of it. */
793 template<typename T, typename A>
794 inline vec<T, A, vl_embed> *
795 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
797 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
800 /* Copy the elements from SRC to the end of DST as if by memcpy.
801 Reallocate DST, if necessary. */
802 template<typename T, typename A>
803 inline void
804 vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
805 CXX_MEM_STAT_INFO)
807 unsigned src_len = vec_safe_length (src);
808 if (src_len)
810 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
811 PASS_MEM_STAT);
812 dst->splice (*src);
816 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
817 size of the vector and so should be used with care. */
819 template<typename T, typename A>
820 inline bool
821 vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
823 return v ? v->contains (search) : false;
826 /* Index into vector. Return the IX'th element. IX must be in the
827 domain of the vector. */
829 template<typename T, typename A>
830 inline const T &
831 vec<T, A, vl_embed>::operator[] (unsigned ix) const
833 gcc_checking_assert (ix < m_vecpfx.m_num);
834 return m_vecdata[ix];
837 template<typename T, typename A>
838 inline T &
839 vec<T, A, vl_embed>::operator[] (unsigned ix)
841 gcc_checking_assert (ix < m_vecpfx.m_num);
842 return m_vecdata[ix];
846 /* Get the final element of the vector, which must not be empty. */
848 template<typename T, typename A>
849 inline T &
850 vec<T, A, vl_embed>::last (void)
852 gcc_checking_assert (m_vecpfx.m_num > 0);
853 return (*this)[m_vecpfx.m_num - 1];
857 /* If this vector has space for NELEMS additional entries, return
858 true. You usually only need to use this if you are doing your
859 own vector reallocation, for instance on an embedded vector. This
860 returns true in exactly the same circumstances that vec::reserve
861 will. */
863 template<typename T, typename A>
864 inline bool
865 vec<T, A, vl_embed>::space (unsigned nelems) const
867 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
871 /* Return iteration condition and update PTR to point to the IX'th
872 element of this vector. Use this to iterate over the elements of a
873 vector as follows,
875 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
876 continue; */
878 template<typename T, typename A>
879 inline bool
880 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
882 if (ix < m_vecpfx.m_num)
884 *ptr = m_vecdata[ix];
885 return true;
887 else
889 *ptr = 0;
890 return false;
895 /* Return iteration condition and update *PTR to point to the
896 IX'th element of this vector. Use this to iterate over the
897 elements of a vector as follows,
899 for (ix = 0; v->iterate (ix, &ptr); ix++)
900 continue;
902 This variant is for vectors of objects. */
904 template<typename T, typename A>
905 inline bool
906 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
908 if (ix < m_vecpfx.m_num)
910 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
911 return true;
913 else
915 *ptr = 0;
916 return false;
921 /* Return a pointer to a copy of this vector. */
923 template<typename T, typename A>
924 inline vec<T, A, vl_embed> *
925 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
927 vec<T, A, vl_embed> *new_vec = NULL;
928 unsigned len = length ();
929 if (len)
931 vec_alloc (new_vec, len PASS_MEM_STAT);
932 new_vec->embedded_init (len, len);
933 vec_copy_construct (new_vec->address (), m_vecdata, len);
935 return new_vec;
939 /* Copy the elements from SRC to the end of this vector as if by memcpy.
940 The vector must have sufficient headroom available. */
942 template<typename T, typename A>
943 inline void
944 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
946 unsigned len = src.length ();
947 if (len)
949 gcc_checking_assert (space (len));
950 vec_copy_construct (end (), src.address (), len);
951 m_vecpfx.m_num += len;
955 template<typename T, typename A>
956 inline void
957 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
959 if (src)
960 splice (*src);
964 /* Push OBJ (a new element) onto the end of the vector. There must be
965 sufficient space in the vector. Return a pointer to the slot
966 where OBJ was inserted. */
968 template<typename T, typename A>
969 inline T *
970 vec<T, A, vl_embed>::quick_push (const T &obj)
972 gcc_checking_assert (space (1));
973 T *slot = &m_vecdata[m_vecpfx.m_num++];
974 *slot = obj;
975 return slot;
979 /* Pop and return the last element off the end of the vector. */
981 template<typename T, typename A>
982 inline T &
983 vec<T, A, vl_embed>::pop (void)
985 gcc_checking_assert (length () > 0);
986 return m_vecdata[--m_vecpfx.m_num];
990 /* Set the length of the vector to SIZE. The new length must be less
991 than or equal to the current length. This is an O(1) operation. */
993 template<typename T, typename A>
994 inline void
995 vec<T, A, vl_embed>::truncate (unsigned size)
997 gcc_checking_assert (length () >= size);
998 m_vecpfx.m_num = size;
1002 /* Insert an element, OBJ, at the IXth position of this vector. There
1003 must be sufficient space. */
1005 template<typename T, typename A>
1006 inline void
1007 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
1009 gcc_checking_assert (length () < allocated ());
1010 gcc_checking_assert (ix <= length ());
1011 T *slot = &m_vecdata[ix];
1012 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
1013 *slot = obj;
1017 /* Remove an element from the IXth position of this vector. Ordering of
1018 remaining elements is preserved. This is an O(N) operation due to
1019 memmove. */
1021 template<typename T, typename A>
1022 inline void
1023 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
1025 gcc_checking_assert (ix < length ());
1026 T *slot = &m_vecdata[ix];
1027 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
1031 /* Remove an element from the IXth position of this vector. Ordering of
1032 remaining elements is destroyed. This is an O(1) operation. */
1034 template<typename T, typename A>
1035 inline void
1036 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
1038 gcc_checking_assert (ix < length ());
1039 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
1043 /* Remove LEN elements starting at the IXth. Ordering is retained.
1044 This is an O(N) operation due to memmove. */
1046 template<typename T, typename A>
1047 inline void
1048 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
1050 gcc_checking_assert (ix + len <= length ());
1051 T *slot = &m_vecdata[ix];
1052 m_vecpfx.m_num -= len;
1053 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
1057 /* Sort the contents of this vector with qsort. CMP is the comparison
1058 function to pass to qsort. */
1060 template<typename T, typename A>
1061 inline void
1062 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
1064 if (length () > 1)
1065 ::qsort (address (), length (), sizeof (T), cmp);
1069 /* Search the contents of the sorted vector with a binary search.
1070 CMP is the comparison function to pass to bsearch. */
1072 template<typename T, typename A>
1073 inline T *
1074 vec<T, A, vl_embed>::bsearch (const void *key,
1075 int (*compar) (const void *, const void *))
1077 const void *base = this->address ();
1078 size_t nmemb = this->length ();
1079 size_t size = sizeof (T);
1080 /* The following is a copy of glibc stdlib-bsearch.h. */
1081 size_t l, u, idx;
1082 const void *p;
1083 int comparison;
1085 l = 0;
1086 u = nmemb;
1087 while (l < u)
1089 idx = (l + u) / 2;
1090 p = (const void *) (((const char *) base) + (idx * size));
1091 comparison = (*compar) (key, p);
1092 if (comparison < 0)
1093 u = idx;
1094 else if (comparison > 0)
1095 l = idx + 1;
1096 else
1097 return (T *)const_cast<void *>(p);
1100 return NULL;
1103 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
1104 size of the vector and so should be used with care. */
1106 template<typename T, typename A>
1107 inline bool
1108 vec<T, A, vl_embed>::contains (const T &search) const
1110 unsigned int len = length ();
1111 for (unsigned int i = 0; i < len; i++)
1112 if ((*this)[i] == search)
1113 return true;
1115 return false;
1118 /* Find and return the first position in which OBJ could be inserted
1119 without changing the ordering of this vector. LESSTHAN is a
1120 function that returns true if the first argument is strictly less
1121 than the second. */
1123 template<typename T, typename A>
1124 unsigned
1125 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1126 const
1128 unsigned int len = length ();
1129 unsigned int half, middle;
1130 unsigned int first = 0;
1131 while (len > 0)
1133 half = len / 2;
1134 middle = first;
1135 middle += half;
1136 T middle_elem = (*this)[middle];
1137 if (lessthan (middle_elem, obj))
1139 first = middle;
1140 ++first;
1141 len = len - half - 1;
1143 else
1144 len = half;
1146 return first;
1150 /* Return the number of bytes needed to embed an instance of an
1151 embeddable vec inside another data structure.
1153 Use these methods to determine the required size and initialization
1154 of a vector V of type T embedded within another structure (as the
1155 final member):
1157 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1158 void v->embedded_init (unsigned alloc, unsigned num);
1160 These allow the caller to perform the memory allocation. */
1162 template<typename T, typename A>
1163 inline size_t
1164 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1166 typedef vec<T, A, vl_embed> vec_embedded;
1167 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1171 /* Initialize the vector to contain room for ALLOC elements and
1172 NUM active elements. */
1174 template<typename T, typename A>
1175 inline void
1176 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1178 m_vecpfx.m_alloc = alloc;
1179 m_vecpfx.m_using_auto_storage = aut;
1180 m_vecpfx.m_num = num;
1184 /* Grow the vector to a specific length. LEN must be as long or longer than
1185 the current length. The new elements are uninitialized. */
1187 template<typename T, typename A>
1188 inline void
1189 vec<T, A, vl_embed>::quick_grow (unsigned len)
1191 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1192 m_vecpfx.m_num = len;
1196 /* Grow the vector to a specific length. LEN must be as long or longer than
1197 the current length. The new elements are initialized to zero. */
1199 template<typename T, typename A>
1200 inline void
1201 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1203 unsigned oldlen = length ();
1204 size_t growby = len - oldlen;
1205 quick_grow (len);
1206 if (growby != 0)
1207 vec_default_construct (address () + oldlen, growby);
1210 /* Garbage collection support for vec<T, A, vl_embed>. */
1212 template<typename T>
1213 void
1214 gt_ggc_mx (vec<T, va_gc> *v)
1216 extern void gt_ggc_mx (T &);
1217 for (unsigned i = 0; i < v->length (); i++)
1218 gt_ggc_mx ((*v)[i]);
1221 template<typename T>
1222 void
1223 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1225 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1226 be traversed. */
1230 /* PCH support for vec<T, A, vl_embed>. */
1232 template<typename T, typename A>
1233 void
1234 gt_pch_nx (vec<T, A, vl_embed> *v)
1236 extern void gt_pch_nx (T &);
1237 for (unsigned i = 0; i < v->length (); i++)
1238 gt_pch_nx ((*v)[i]);
1241 template<typename T, typename A>
1242 void
1243 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1245 for (unsigned i = 0; i < v->length (); i++)
1246 op (&((*v)[i]), cookie);
1249 template<typename T, typename A>
1250 void
1251 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1253 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1254 for (unsigned i = 0; i < v->length (); i++)
1255 gt_pch_nx (&((*v)[i]), op, cookie);
1259 /* Space efficient vector. These vectors can grow dynamically and are
1260 allocated together with their control data. They are suited to be
1261 included in data structures. Prior to initial allocation, they
1262 only take a single word of storage.
1264 These vectors are implemented as a pointer to an embeddable vector.
1265 The semantics allow for this pointer to be NULL to represent empty
1266 vectors. This way, empty vectors occupy minimal space in the
1267 structure containing them.
1269 Properties:
1271 - The whole vector and control data are allocated in a single
1272 contiguous block.
1273 - The whole vector may be re-allocated.
1274 - Vector data may grow and shrink.
1275 - Access and manipulation requires a pointer test and
1276 indirection.
1277 - It requires 1 word of storage (prior to vector allocation).
1280 Limitations:
1282 These vectors must be PODs because they are stored in unions.
1283 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1284 As long as we use C++03, we cannot have constructors nor
1285 destructors in classes that are stored in unions. */
1287 template<typename T>
1288 struct vec<T, va_heap, vl_ptr>
1290 public:
1291 /* Memory allocation and deallocation for the embedded vector.
1292 Needed because we cannot have proper ctors/dtors defined. */
1293 void create (unsigned nelems CXX_MEM_STAT_INFO);
1294 void release (void);
1296 /* Vector operations. */
1297 bool exists (void) const
1298 { return m_vec != NULL; }
1300 bool is_empty (void) const
1301 { return m_vec ? m_vec->is_empty () : true; }
1303 unsigned length (void) const
1304 { return m_vec ? m_vec->length () : 0; }
1306 T *address (void)
1307 { return m_vec ? m_vec->m_vecdata : NULL; }
1309 const T *address (void) const
1310 { return m_vec ? m_vec->m_vecdata : NULL; }
1312 T *begin () { return address (); }
1313 const T *begin () const { return address (); }
1314 T *end () { return begin () + length (); }
1315 const T *end () const { return begin () + length (); }
1316 const T &operator[] (unsigned ix) const
1317 { return (*m_vec)[ix]; }
1319 bool operator!=(const vec &other) const
1320 { return !(*this == other); }
1322 bool operator==(const vec &other) const
1323 { return address () == other.address (); }
1325 T &operator[] (unsigned ix)
1326 { return (*m_vec)[ix]; }
1328 T &last (void)
1329 { return m_vec->last (); }
1331 bool space (int nelems) const
1332 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1334 bool iterate (unsigned ix, T *p) const;
1335 bool iterate (unsigned ix, T **p) const;
1336 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1337 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1338 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1339 void splice (const vec &);
1340 void safe_splice (const vec & CXX_MEM_STAT_INFO);
1341 T *quick_push (const T &);
1342 T *safe_push (const T &CXX_MEM_STAT_INFO);
1343 T &pop (void);
1344 void truncate (unsigned);
1345 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1346 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1347 void quick_grow (unsigned);
1348 void quick_grow_cleared (unsigned);
1349 void quick_insert (unsigned, const T &);
1350 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1351 void ordered_remove (unsigned);
1352 void unordered_remove (unsigned);
1353 void block_remove (unsigned, unsigned);
1354 void qsort (int (*) (const void *, const void *));
1355 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1356 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1357 bool contains (const T &search) const;
1359 bool using_auto_storage () const;
1361 /* FIXME - This field should be private, but we need to cater to
1362 compilers that have stricter notions of PODness for types. */
1363 vec<T, va_heap, vl_embed> *m_vec;
1367 /* auto_vec is a subclass of vec that automatically manages creating and
1368 releasing the internal vector. If N is non zero then it has N elements of
1369 internal storage. The default is no internal storage, and you probably only
1370 want to ask for internal storage for vectors on the stack because if the
1371 size of the vector is larger than the internal storage that space is wasted.
1373 template<typename T, size_t N = 0>
1374 class auto_vec : public vec<T, va_heap>
1376 public:
1377 auto_vec ()
1379 m_auto.embedded_init (MAX (N, 2), 0, 1);
1380 this->m_vec = &m_auto;
1383 auto_vec (size_t s)
1385 if (s > N)
1387 this->create (s);
1388 return;
1391 m_auto.embedded_init (MAX (N, 2), 0, 1);
1392 this->m_vec = &m_auto;
1395 ~auto_vec ()
1397 this->release ();
1400 private:
1401 vec<T, va_heap, vl_embed> m_auto;
1402 T m_data[MAX (N - 1, 1)];
1405 /* auto_vec is a sub class of vec whose storage is released when it is
1406 destroyed. */
1407 template<typename T>
1408 class auto_vec<T, 0> : public vec<T, va_heap>
1410 public:
1411 auto_vec () { this->m_vec = NULL; }
1412 auto_vec (size_t n) { this->create (n); }
1413 ~auto_vec () { this->release (); }
1417 /* Allocate heap memory for pointer V and create the internal vector
1418 with space for NELEMS elements. If NELEMS is 0, the internal
1419 vector is initialized to empty. */
1421 template<typename T>
1422 inline void
1423 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1425 v = new vec<T>;
1426 v->create (nelems PASS_MEM_STAT);
1430 /* Conditionally allocate heap memory for VEC and its internal vector. */
1432 template<typename T>
1433 inline void
1434 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1436 if (!vec)
1437 vec_alloc (vec, nelems PASS_MEM_STAT);
1441 /* Free the heap memory allocated by vector V and set it to NULL. */
1443 template<typename T>
1444 inline void
1445 vec_free (vec<T> *&v)
1447 if (v == NULL)
1448 return;
1450 v->release ();
1451 delete v;
1452 v = NULL;
1456 /* Return iteration condition and update PTR to point to the IX'th
1457 element of this vector. Use this to iterate over the elements of a
1458 vector as follows,
1460 for (ix = 0; v.iterate (ix, &ptr); ix++)
1461 continue; */
1463 template<typename T>
1464 inline bool
1465 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1467 if (m_vec)
1468 return m_vec->iterate (ix, ptr);
1469 else
1471 *ptr = 0;
1472 return false;
1477 /* Return iteration condition and update *PTR to point to the
1478 IX'th element of this vector. Use this to iterate over the
1479 elements of a vector as follows,
1481 for (ix = 0; v->iterate (ix, &ptr); ix++)
1482 continue;
1484 This variant is for vectors of objects. */
1486 template<typename T>
1487 inline bool
1488 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1490 if (m_vec)
1491 return m_vec->iterate (ix, ptr);
1492 else
1494 *ptr = 0;
1495 return false;
1500 /* Convenience macro for forward iteration. */
1501 #define FOR_EACH_VEC_ELT(V, I, P) \
1502 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1504 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1505 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1507 /* Likewise, but start from FROM rather than 0. */
1508 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1509 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1511 /* Convenience macro for reverse iteration. */
1512 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1513 for (I = (V).length () - 1; \
1514 (V).iterate ((I), &(P)); \
1515 (I)--)
1517 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1518 for (I = vec_safe_length (V) - 1; \
1519 vec_safe_iterate ((V), (I), &(P)); \
1520 (I)--)
1523 /* Return a copy of this vector. */
1525 template<typename T>
1526 inline vec<T, va_heap, vl_ptr>
1527 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1529 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1530 if (length ())
1531 new_vec.m_vec = m_vec->copy ();
1532 return new_vec;
1536 /* Ensure that the vector has at least RESERVE slots available (if
1537 EXACT is false), or exactly RESERVE slots available (if EXACT is
1538 true).
1540 This may create additional headroom if EXACT is false.
1542 Note that this can cause the embedded vector to be reallocated.
1543 Returns true iff reallocation actually occurred. */
1545 template<typename T>
1546 inline bool
1547 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1549 if (space (nelems))
1550 return false;
1552 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1553 this is necessary because it doesn't have enough information to know the
1554 embedded vector is in auto storage, and so should not be freed. */
1555 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1556 unsigned int oldsize = 0;
1557 bool handle_auto_vec = m_vec && using_auto_storage ();
1558 if (handle_auto_vec)
1560 m_vec = NULL;
1561 oldsize = oldvec->length ();
1562 nelems += oldsize;
1565 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1566 if (handle_auto_vec)
1568 vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
1569 m_vec->m_vecpfx.m_num = oldsize;
1572 return true;
1576 /* Ensure that this vector has exactly NELEMS slots available. This
1577 will not create additional headroom. Note this can cause the
1578 embedded vector to be reallocated. Returns true iff reallocation
1579 actually occurred. */
1581 template<typename T>
1582 inline bool
1583 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1585 return reserve (nelems, true PASS_MEM_STAT);
1589 /* Create the internal vector and reserve NELEMS for it. This is
1590 exactly like vec::reserve, but the internal vector is
1591 unconditionally allocated from scratch. The old one, if it
1592 existed, is lost. */
1594 template<typename T>
1595 inline void
1596 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1598 m_vec = NULL;
1599 if (nelems > 0)
1600 reserve_exact (nelems PASS_MEM_STAT);
1604 /* Free the memory occupied by the embedded vector. */
1606 template<typename T>
1607 inline void
1608 vec<T, va_heap, vl_ptr>::release (void)
1610 if (!m_vec)
1611 return;
1613 if (using_auto_storage ())
1615 m_vec->m_vecpfx.m_num = 0;
1616 return;
1619 va_heap::release (m_vec);
1622 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1623 SRC and this vector must be allocated with the same memory
1624 allocation mechanism. This vector is assumed to have sufficient
1625 headroom available. */
1627 template<typename T>
1628 inline void
1629 vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
1631 if (src.m_vec)
1632 m_vec->splice (*(src.m_vec));
1636 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1637 SRC and this vector must be allocated with the same mechanism.
1638 If there is not enough headroom in this vector, it will be reallocated
1639 as needed. */
1641 template<typename T>
1642 inline void
1643 vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
1644 MEM_STAT_DECL)
1646 if (src.length ())
1648 reserve_exact (src.length ());
1649 splice (src);
1654 /* Push OBJ (a new element) onto the end of the vector. There must be
1655 sufficient space in the vector. Return a pointer to the slot
1656 where OBJ was inserted. */
1658 template<typename T>
1659 inline T *
1660 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1662 return m_vec->quick_push (obj);
1666 /* Push a new element OBJ onto the end of this vector. Reallocates
1667 the embedded vector, if needed. Return a pointer to the slot where
1668 OBJ was inserted. */
1670 template<typename T>
1671 inline T *
1672 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1674 reserve (1, false PASS_MEM_STAT);
1675 return quick_push (obj);
1679 /* Pop and return the last element off the end of the vector. */
1681 template<typename T>
1682 inline T &
1683 vec<T, va_heap, vl_ptr>::pop (void)
1685 return m_vec->pop ();
1689 /* Set the length of the vector to LEN. The new length must be less
1690 than or equal to the current length. This is an O(1) operation. */
1692 template<typename T>
1693 inline void
1694 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1696 if (m_vec)
1697 m_vec->truncate (size);
1698 else
1699 gcc_checking_assert (size == 0);
1703 /* Grow the vector to a specific length. LEN must be as long or
1704 longer than the current length. The new elements are
1705 uninitialized. Reallocate the internal vector, if needed. */
1707 template<typename T>
1708 inline void
1709 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1711 unsigned oldlen = length ();
1712 gcc_checking_assert (oldlen <= len);
1713 reserve_exact (len - oldlen PASS_MEM_STAT);
1714 if (m_vec)
1715 m_vec->quick_grow (len);
1716 else
1717 gcc_checking_assert (len == 0);
1721 /* Grow the embedded vector to a specific length. LEN must be as
1722 long or longer than the current length. The new elements are
1723 initialized to zero. Reallocate the internal vector, if needed. */
1725 template<typename T>
1726 inline void
1727 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1729 unsigned oldlen = length ();
1730 size_t growby = len - oldlen;
1731 safe_grow (len PASS_MEM_STAT);
1732 if (growby != 0)
1733 vec_default_construct (address () + oldlen, growby);
1737 /* Same as vec::safe_grow but without reallocation of the internal vector.
1738 If the vector cannot be extended, a runtime assertion will be triggered. */
1740 template<typename T>
1741 inline void
1742 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1744 gcc_checking_assert (m_vec);
1745 m_vec->quick_grow (len);
1749 /* Same as vec::quick_grow_cleared but without reallocation of the
1750 internal vector. If the vector cannot be extended, a runtime
1751 assertion will be triggered. */
1753 template<typename T>
1754 inline void
1755 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1757 gcc_checking_assert (m_vec);
1758 m_vec->quick_grow_cleared (len);
1762 /* Insert an element, OBJ, at the IXth position of this vector. There
1763 must be sufficient space. */
1765 template<typename T>
1766 inline void
1767 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1769 m_vec->quick_insert (ix, obj);
1773 /* Insert an element, OBJ, at the IXth position of the vector.
1774 Reallocate the embedded vector, if necessary. */
1776 template<typename T>
1777 inline void
1778 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1780 reserve (1, false PASS_MEM_STAT);
1781 quick_insert (ix, obj);
1785 /* Remove an element from the IXth position of this vector. Ordering of
1786 remaining elements is preserved. This is an O(N) operation due to
1787 a memmove. */
1789 template<typename T>
1790 inline void
1791 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1793 m_vec->ordered_remove (ix);
1797 /* Remove an element from the IXth position of this vector. Ordering
1798 of remaining elements is destroyed. This is an O(1) operation. */
1800 template<typename T>
1801 inline void
1802 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1804 m_vec->unordered_remove (ix);
1808 /* Remove LEN elements starting at the IXth. Ordering is retained.
1809 This is an O(N) operation due to memmove. */
1811 template<typename T>
1812 inline void
1813 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1815 m_vec->block_remove (ix, len);
1819 /* Sort the contents of this vector with qsort. CMP is the comparison
1820 function to pass to qsort. */
1822 template<typename T>
1823 inline void
1824 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1826 if (m_vec)
1827 m_vec->qsort (cmp);
1831 /* Search the contents of the sorted vector with a binary search.
1832 CMP is the comparison function to pass to bsearch. */
1834 template<typename T>
1835 inline T *
1836 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1837 int (*cmp) (const void *, const void *))
1839 if (m_vec)
1840 return m_vec->bsearch (key, cmp);
1841 return NULL;
1845 /* Find and return the first position in which OBJ could be inserted
1846 without changing the ordering of this vector. LESSTHAN is a
1847 function that returns true if the first argument is strictly less
1848 than the second. */
1850 template<typename T>
1851 inline unsigned
1852 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1853 bool (*lessthan)(const T &, const T &))
1854 const
1856 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1859 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
1860 size of the vector and so should be used with care. */
1862 template<typename T>
1863 inline bool
1864 vec<T, va_heap, vl_ptr>::contains (const T &search) const
1866 return m_vec ? m_vec->contains (search) : false;
1869 template<typename T>
1870 inline bool
1871 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1873 return m_vec->m_vecpfx.m_using_auto_storage;
1876 /* Release VEC and call release of all element vectors. */
1878 template<typename T>
1879 inline void
1880 release_vec_vec (vec<vec<T> > &vec)
1882 for (unsigned i = 0; i < vec.length (); i++)
1883 vec[i].release ();
1885 vec.release ();
1888 #if (GCC_VERSION >= 3000)
1889 # pragma GCC poison m_vec m_vecpfx m_vecdata
1890 #endif
1892 #endif // GCC_VEC_H