tree.c (build_tree_list): Fix parameter names in comment.
[official-gcc.git] / gcc / cfgcleanup.c
blob2a23cc08fabf7727a88b25ed3cb1e9cac15862e0
1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains optimizer of the control flow. The main entrypoint is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to it's
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
29 eliminated).
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
41 #include "timevar.h"
42 #include "output.h"
43 #include "insn-config.h"
44 #include "flags.h"
45 #include "recog.h"
46 #include "toplev.h"
47 #include "cselib.h"
48 #include "tm_p.h"
49 #include "target.h"
51 /* cleanup_cfg maintains following flags for each basic block. */
53 enum bb_flags
55 /* Set if BB is the forwarder block to avoid too many
56 forwarder_block_p calls. */
57 BB_FORWARDER_BLOCK = 1,
58 BB_NONTHREADABLE_BLOCK = 2
61 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
62 #define BB_SET_FLAG(BB, FLAG) \
63 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
64 #define BB_CLEAR_FLAG(BB, FLAG) \
65 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
67 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
69 static bool try_crossjump_to_edge PARAMS ((int, edge, edge));
70 static bool try_crossjump_bb PARAMS ((int, basic_block));
71 static bool outgoing_edges_match PARAMS ((int,
72 basic_block, basic_block));
73 static int flow_find_cross_jump PARAMS ((int, basic_block, basic_block,
74 rtx *, rtx *));
75 static bool insns_match_p PARAMS ((int, rtx, rtx));
77 static bool label_is_jump_target_p PARAMS ((rtx, rtx));
78 static bool tail_recursion_label_p PARAMS ((rtx));
79 static void merge_blocks_move_predecessor_nojumps PARAMS ((basic_block,
80 basic_block));
81 static void merge_blocks_move_successor_nojumps PARAMS ((basic_block,
82 basic_block));
83 static bool merge_blocks PARAMS ((edge,basic_block,basic_block,
84 int));
85 static bool try_optimize_cfg PARAMS ((int));
86 static bool try_simplify_condjump PARAMS ((basic_block));
87 static bool try_forward_edges PARAMS ((int, basic_block));
88 static edge thread_jump PARAMS ((int, edge, basic_block));
89 static bool mark_effect PARAMS ((rtx, bitmap));
90 static void notice_new_block PARAMS ((basic_block));
91 static void update_forwarder_flag PARAMS ((basic_block));
92 static int mentions_nonequal_regs PARAMS ((rtx *, void *));
94 /* Set flags for newly created block. */
96 static void
97 notice_new_block (bb)
98 basic_block bb;
100 if (!bb)
101 return;
103 if (forwarder_block_p (bb))
104 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
107 /* Recompute forwarder flag after block has been modified. */
109 static void
110 update_forwarder_flag (bb)
111 basic_block bb;
113 if (forwarder_block_p (bb))
114 BB_SET_FLAG (bb, BB_FORWARDER_BLOCK);
115 else
116 BB_CLEAR_FLAG (bb, BB_FORWARDER_BLOCK);
119 /* Simplify a conditional jump around an unconditional jump.
120 Return true if something changed. */
122 static bool
123 try_simplify_condjump (cbranch_block)
124 basic_block cbranch_block;
126 basic_block jump_block, jump_dest_block, cbranch_dest_block;
127 edge cbranch_jump_edge, cbranch_fallthru_edge;
128 rtx cbranch_insn;
130 /* Verify that there are exactly two successors. */
131 if (!cbranch_block->succ
132 || !cbranch_block->succ->succ_next
133 || cbranch_block->succ->succ_next->succ_next)
134 return false;
136 /* Verify that we've got a normal conditional branch at the end
137 of the block. */
138 cbranch_insn = cbranch_block->end;
139 if (!any_condjump_p (cbranch_insn))
140 return false;
142 cbranch_fallthru_edge = FALLTHRU_EDGE (cbranch_block);
143 cbranch_jump_edge = BRANCH_EDGE (cbranch_block);
145 /* The next block must not have multiple predecessors, must not
146 be the last block in the function, and must contain just the
147 unconditional jump. */
148 jump_block = cbranch_fallthru_edge->dest;
149 if (jump_block->pred->pred_next
150 || jump_block->next_bb == EXIT_BLOCK_PTR
151 || !FORWARDER_BLOCK_P (jump_block))
152 return false;
153 jump_dest_block = jump_block->succ->dest;
155 /* The conditional branch must target the block after the
156 unconditional branch. */
157 cbranch_dest_block = cbranch_jump_edge->dest;
159 if (!can_fallthru (jump_block, cbranch_dest_block))
160 return false;
162 /* Invert the conditional branch. */
163 if (!invert_jump (cbranch_insn, block_label (jump_dest_block), 0))
164 return false;
166 if (rtl_dump_file)
167 fprintf (rtl_dump_file, "Simplifying condjump %i around jump %i\n",
168 INSN_UID (cbranch_insn), INSN_UID (jump_block->end));
170 /* Success. Update the CFG to match. Note that after this point
171 the edge variable names appear backwards; the redirection is done
172 this way to preserve edge profile data. */
173 cbranch_jump_edge = redirect_edge_succ_nodup (cbranch_jump_edge,
174 cbranch_dest_block);
175 cbranch_fallthru_edge = redirect_edge_succ_nodup (cbranch_fallthru_edge,
176 jump_dest_block);
177 cbranch_jump_edge->flags |= EDGE_FALLTHRU;
178 cbranch_fallthru_edge->flags &= ~EDGE_FALLTHRU;
179 update_br_prob_note (cbranch_block);
181 /* Delete the block with the unconditional jump, and clean up the mess. */
182 flow_delete_block (jump_block);
183 tidy_fallthru_edge (cbranch_jump_edge, cbranch_block, cbranch_dest_block);
185 return true;
188 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
189 on register. Used by jump threading. */
191 static bool
192 mark_effect (exp, nonequal)
193 rtx exp;
194 regset nonequal;
196 int regno;
197 rtx dest;
198 switch (GET_CODE (exp))
200 /* In case we do clobber the register, mark it as equal, as we know the
201 value is dead so it don't have to match. */
202 case CLOBBER:
203 if (REG_P (XEXP (exp, 0)))
205 dest = XEXP (exp, 0);
206 regno = REGNO (dest);
207 CLEAR_REGNO_REG_SET (nonequal, regno);
208 if (regno < FIRST_PSEUDO_REGISTER)
210 int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
211 while (--n > 0)
212 CLEAR_REGNO_REG_SET (nonequal, regno + n);
215 return false;
217 case SET:
218 if (rtx_equal_for_cselib_p (SET_DEST (exp), SET_SRC (exp)))
219 return false;
220 dest = SET_DEST (exp);
221 if (dest == pc_rtx)
222 return false;
223 if (!REG_P (dest))
224 return true;
225 regno = REGNO (dest);
226 SET_REGNO_REG_SET (nonequal, regno);
227 if (regno < FIRST_PSEUDO_REGISTER)
229 int n = HARD_REGNO_NREGS (regno, GET_MODE (dest));
230 while (--n > 0)
231 SET_REGNO_REG_SET (nonequal, regno + n);
233 return false;
235 default:
236 return false;
240 /* Return nonzero if X is an register set in regset DATA.
241 Called via for_each_rtx. */
242 static int
243 mentions_nonequal_regs (x, data)
244 rtx *x;
245 void *data;
247 regset nonequal = (regset) data;
248 if (REG_P (*x))
250 int regno;
252 regno = REGNO (*x);
253 if (REGNO_REG_SET_P (nonequal, regno))
254 return 1;
255 if (regno < FIRST_PSEUDO_REGISTER)
257 int n = HARD_REGNO_NREGS (regno, GET_MODE (*x));
258 while (--n > 0)
259 if (REGNO_REG_SET_P (nonequal, regno + n))
260 return 1;
263 return 0;
265 /* Attempt to prove that the basic block B will have no side effects and
266 always continues in the same edge if reached via E. Return the edge
267 if exist, NULL otherwise. */
269 static edge
270 thread_jump (mode, e, b)
271 int mode;
272 edge e;
273 basic_block b;
275 rtx set1, set2, cond1, cond2, insn;
276 enum rtx_code code1, code2, reversed_code2;
277 bool reverse1 = false;
278 int i;
279 regset nonequal;
280 bool failed = false;
282 if (BB_FLAGS (b) & BB_NONTHREADABLE_BLOCK)
283 return NULL;
285 /* At the moment, we do handle only conditional jumps, but later we may
286 want to extend this code to tablejumps and others. */
287 if (!e->src->succ->succ_next || e->src->succ->succ_next->succ_next)
288 return NULL;
289 if (!b->succ || !b->succ->succ_next || b->succ->succ_next->succ_next)
291 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
292 return NULL;
295 /* Second branch must end with onlyjump, as we will eliminate the jump. */
296 if (!any_condjump_p (e->src->end))
297 return NULL;
299 if (!any_condjump_p (b->end) || !onlyjump_p (b->end))
301 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
302 return NULL;
305 set1 = pc_set (e->src->end);
306 set2 = pc_set (b->end);
307 if (((e->flags & EDGE_FALLTHRU) != 0)
308 != (XEXP (SET_SRC (set1), 1) == pc_rtx))
309 reverse1 = true;
311 cond1 = XEXP (SET_SRC (set1), 0);
312 cond2 = XEXP (SET_SRC (set2), 0);
313 if (reverse1)
314 code1 = reversed_comparison_code (cond1, e->src->end);
315 else
316 code1 = GET_CODE (cond1);
318 code2 = GET_CODE (cond2);
319 reversed_code2 = reversed_comparison_code (cond2, b->end);
321 if (!comparison_dominates_p (code1, code2)
322 && !comparison_dominates_p (code1, reversed_code2))
323 return NULL;
325 /* Ensure that the comparison operators are equivalent.
326 ??? This is far too pessimistic. We should allow swapped operands,
327 different CCmodes, or for example comparisons for interval, that
328 dominate even when operands are not equivalent. */
329 if (!rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
330 || !rtx_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
331 return NULL;
333 /* Short circuit cases where block B contains some side effects, as we can't
334 safely bypass it. */
335 for (insn = NEXT_INSN (b->head); insn != NEXT_INSN (b->end);
336 insn = NEXT_INSN (insn))
337 if (INSN_P (insn) && side_effects_p (PATTERN (insn)))
339 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
340 return NULL;
343 cselib_init ();
345 /* First process all values computed in the source basic block. */
346 for (insn = NEXT_INSN (e->src->head); insn != NEXT_INSN (e->src->end);
347 insn = NEXT_INSN (insn))
348 if (INSN_P (insn))
349 cselib_process_insn (insn);
351 nonequal = BITMAP_XMALLOC();
352 CLEAR_REG_SET (nonequal);
354 /* Now assume that we've continued by the edge E to B and continue
355 processing as if it were same basic block.
356 Our goal is to prove that whole block is an NOOP. */
358 for (insn = NEXT_INSN (b->head); insn != NEXT_INSN (b->end) && !failed;
359 insn = NEXT_INSN (insn))
361 if (INSN_P (insn))
363 rtx pat = PATTERN (insn);
365 if (GET_CODE (pat) == PARALLEL)
367 for (i = 0; i < XVECLEN (pat, 0); i++)
368 failed |= mark_effect (XVECEXP (pat, 0, i), nonequal);
370 else
371 failed |= mark_effect (pat, nonequal);
374 cselib_process_insn (insn);
377 /* Later we should clear nonequal of dead registers. So far we don't
378 have life information in cfg_cleanup. */
379 if (failed)
381 BB_SET_FLAG (b, BB_NONTHREADABLE_BLOCK);
382 goto failed_exit;
385 /* cond2 must not mention any register that is not equal to the
386 former block. */
387 if (for_each_rtx (&cond2, mentions_nonequal_regs, nonequal))
388 goto failed_exit;
390 /* In case liveness information is available, we need to prove equivalence
391 only of the live values. */
392 if (mode & CLEANUP_UPDATE_LIFE)
393 AND_REG_SET (nonequal, b->global_live_at_end);
395 EXECUTE_IF_SET_IN_REG_SET (nonequal, 0, i, goto failed_exit;);
397 BITMAP_XFREE (nonequal);
398 cselib_finish ();
399 if ((comparison_dominates_p (code1, code2) != 0)
400 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
401 return BRANCH_EDGE (b);
402 else
403 return FALLTHRU_EDGE (b);
405 failed_exit:
406 BITMAP_XFREE (nonequal);
407 cselib_finish ();
408 return NULL;
411 /* Attempt to forward edges leaving basic block B.
412 Return true if successful. */
414 static bool
415 try_forward_edges (mode, b)
416 basic_block b;
417 int mode;
419 bool changed = false;
420 edge e, next, *threaded_edges = NULL;
422 for (e = b->succ; e; e = next)
424 basic_block target, first;
425 int counter;
426 bool threaded = false;
427 int nthreaded_edges = 0;
429 next = e->succ_next;
431 /* Skip complex edges because we don't know how to update them.
433 Still handle fallthru edges, as we can succeed to forward fallthru
434 edge to the same place as the branch edge of conditional branch
435 and turn conditional branch to an unconditional branch. */
436 if (e->flags & EDGE_COMPLEX)
437 continue;
439 target = first = e->dest;
440 counter = 0;
442 while (counter < n_basic_blocks)
444 basic_block new_target = NULL;
445 bool new_target_threaded = false;
447 if (FORWARDER_BLOCK_P (target)
448 && target->succ->dest != EXIT_BLOCK_PTR)
450 /* Bypass trivial infinite loops. */
451 if (target == target->succ->dest)
452 counter = n_basic_blocks;
453 new_target = target->succ->dest;
456 /* Allow to thread only over one edge at time to simplify updating
457 of probabilities. */
458 else if (mode & CLEANUP_THREADING)
460 edge t = thread_jump (mode, e, target);
461 if (t)
463 if (!threaded_edges)
464 threaded_edges = xmalloc (sizeof (*threaded_edges)
465 * n_basic_blocks);
466 else
468 int i;
470 /* Detect an infinite loop across blocks not
471 including the start block. */
472 for (i = 0; i < nthreaded_edges; ++i)
473 if (threaded_edges[i] == t)
474 break;
475 if (i < nthreaded_edges)
477 counter = n_basic_blocks;
478 break;
482 /* Detect an infinite loop across the start block. */
483 if (t->dest == b)
484 break;
486 if (nthreaded_edges >= n_basic_blocks)
487 abort ();
488 threaded_edges[nthreaded_edges++] = t;
490 new_target = t->dest;
491 new_target_threaded = true;
495 if (!new_target)
496 break;
498 /* Avoid killing of loop pre-headers, as it is the place loop
499 optimizer wants to hoist code to.
501 For fallthru forwarders, the LOOP_BEG note must appear between
502 the header of block and CODE_LABEL of the loop, for non forwarders
503 it must appear before the JUMP_INSN. */
504 if (mode & CLEANUP_PRE_LOOP)
506 rtx insn = (target->succ->flags & EDGE_FALLTHRU
507 ? target->head : prev_nonnote_insn (target->end));
509 if (GET_CODE (insn) != NOTE)
510 insn = NEXT_INSN (insn);
512 for (; insn && GET_CODE (insn) != CODE_LABEL && !INSN_P (insn);
513 insn = NEXT_INSN (insn))
514 if (GET_CODE (insn) == NOTE
515 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
516 break;
518 if (GET_CODE (insn) == NOTE)
519 break;
521 /* Do not clean up branches to just past the end of a loop
522 at this time; it can mess up the loop optimizer's
523 recognition of some patterns. */
525 insn = PREV_INSN (target->head);
526 if (insn && GET_CODE (insn) == NOTE
527 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
528 break;
531 counter++;
532 target = new_target;
533 threaded |= new_target_threaded;
536 if (counter >= n_basic_blocks)
538 if (rtl_dump_file)
539 fprintf (rtl_dump_file, "Infinite loop in BB %i.\n",
540 target->index);
542 else if (target == first)
543 ; /* We didn't do anything. */
544 else
546 /* Save the values now, as the edge may get removed. */
547 gcov_type edge_count = e->count;
548 int edge_probability = e->probability;
549 int edge_frequency;
550 int n = 0;
552 /* Don't force if target is exit block. */
553 if (threaded && target != EXIT_BLOCK_PTR)
555 notice_new_block (redirect_edge_and_branch_force (e, target));
556 if (rtl_dump_file)
557 fprintf (rtl_dump_file, "Conditionals threaded.\n");
559 else if (!redirect_edge_and_branch (e, target))
561 if (rtl_dump_file)
562 fprintf (rtl_dump_file,
563 "Forwarding edge %i->%i to %i failed.\n",
564 b->index, e->dest->index, target->index);
565 continue;
568 /* We successfully forwarded the edge. Now update profile
569 data: for each edge we traversed in the chain, remove
570 the original edge's execution count. */
571 edge_frequency = ((edge_probability * b->frequency
572 + REG_BR_PROB_BASE / 2)
573 / REG_BR_PROB_BASE);
575 if (!FORWARDER_BLOCK_P (b) && forwarder_block_p (b))
576 BB_SET_FLAG (b, BB_FORWARDER_BLOCK);
580 edge t;
582 first->count -= edge_count;
583 if (first->count < 0)
584 first->count = 0;
585 first->frequency -= edge_frequency;
586 if (first->frequency < 0)
587 first->frequency = 0;
588 if (first->succ->succ_next)
590 edge e;
591 int prob;
592 if (n >= nthreaded_edges)
593 abort ();
594 t = threaded_edges [n++];
595 if (t->src != first)
596 abort ();
597 if (first->frequency)
598 prob = edge_frequency * REG_BR_PROB_BASE / first->frequency;
599 else
600 prob = 0;
601 if (prob > t->probability)
602 prob = t->probability;
603 t->probability -= prob;
604 prob = REG_BR_PROB_BASE - prob;
605 if (prob <= 0)
607 first->succ->probability = REG_BR_PROB_BASE;
608 first->succ->succ_next->probability = 0;
610 else
611 for (e = first->succ; e; e = e->succ_next)
612 e->probability = ((e->probability * REG_BR_PROB_BASE)
613 / (double) prob);
614 update_br_prob_note (first);
616 else
618 /* It is possible that as the result of
619 threading we've removed edge as it is
620 threaded to the fallthru edge. Avoid
621 getting out of sync. */
622 if (n < nthreaded_edges
623 && first == threaded_edges [n]->src)
624 n++;
625 t = first->succ;
628 t->count -= edge_count;
629 if (t->count < 0)
630 t->count = 0;
631 first = t->dest;
633 while (first != target);
635 changed = true;
639 if (threaded_edges)
640 free (threaded_edges);
641 return changed;
644 /* Return true if LABEL is a target of JUMP_INSN. This applies only
645 to non-complex jumps. That is, direct unconditional, conditional,
646 and tablejumps, but not computed jumps or returns. It also does
647 not apply to the fallthru case of a conditional jump. */
649 static bool
650 label_is_jump_target_p (label, jump_insn)
651 rtx label, jump_insn;
653 rtx tmp = JUMP_LABEL (jump_insn);
655 if (label == tmp)
656 return true;
658 if (tmp != NULL_RTX
659 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
660 && GET_CODE (tmp) == JUMP_INSN
661 && (tmp = PATTERN (tmp),
662 GET_CODE (tmp) == ADDR_VEC
663 || GET_CODE (tmp) == ADDR_DIFF_VEC))
665 rtvec vec = XVEC (tmp, GET_CODE (tmp) == ADDR_DIFF_VEC);
666 int i, veclen = GET_NUM_ELEM (vec);
668 for (i = 0; i < veclen; ++i)
669 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
670 return true;
673 return false;
676 /* Return true if LABEL is used for tail recursion. */
678 static bool
679 tail_recursion_label_p (label)
680 rtx label;
682 rtx x;
684 for (x = tail_recursion_label_list; x; x = XEXP (x, 1))
685 if (label == XEXP (x, 0))
686 return true;
688 return false;
691 /* Blocks A and B are to be merged into a single block. A has no incoming
692 fallthru edge, so it can be moved before B without adding or modifying
693 any jumps (aside from the jump from A to B). */
695 static void
696 merge_blocks_move_predecessor_nojumps (a, b)
697 basic_block a, b;
699 rtx barrier;
701 barrier = next_nonnote_insn (a->end);
702 if (GET_CODE (barrier) != BARRIER)
703 abort ();
704 delete_insn (barrier);
706 /* Move block and loop notes out of the chain so that we do not
707 disturb their order.
709 ??? A better solution would be to squeeze out all the non-nested notes
710 and adjust the block trees appropriately. Even better would be to have
711 a tighter connection between block trees and rtl so that this is not
712 necessary. */
713 if (squeeze_notes (&a->head, &a->end))
714 abort ();
716 /* Scramble the insn chain. */
717 if (a->end != PREV_INSN (b->head))
718 reorder_insns_nobb (a->head, a->end, PREV_INSN (b->head));
719 a->flags |= BB_DIRTY;
721 if (rtl_dump_file)
722 fprintf (rtl_dump_file, "Moved block %d before %d and merged.\n",
723 a->index, b->index);
725 /* Swap the records for the two blocks around. */
727 unlink_block (a);
728 link_block (a, b->prev_bb);
730 /* Now blocks A and B are contiguous. Merge them. */
731 merge_blocks_nomove (a, b);
734 /* Blocks A and B are to be merged into a single block. B has no outgoing
735 fallthru edge, so it can be moved after A without adding or modifying
736 any jumps (aside from the jump from A to B). */
738 static void
739 merge_blocks_move_successor_nojumps (a, b)
740 basic_block a, b;
742 rtx barrier, real_b_end;
744 real_b_end = b->end;
745 barrier = NEXT_INSN (b->end);
747 /* Recognize a jump table following block B. */
748 if (barrier
749 && GET_CODE (barrier) == CODE_LABEL
750 && NEXT_INSN (barrier)
751 && GET_CODE (NEXT_INSN (barrier)) == JUMP_INSN
752 && (GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_VEC
753 || GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_DIFF_VEC))
755 /* Temporarily add the table jump insn to b, so that it will also
756 be moved to the correct location. */
757 b->end = NEXT_INSN (barrier);
758 barrier = NEXT_INSN (b->end);
761 /* There had better have been a barrier there. Delete it. */
762 if (barrier && GET_CODE (barrier) == BARRIER)
763 delete_insn (barrier);
765 /* Move block and loop notes out of the chain so that we do not
766 disturb their order.
768 ??? A better solution would be to squeeze out all the non-nested notes
769 and adjust the block trees appropriately. Even better would be to have
770 a tighter connection between block trees and rtl so that this is not
771 necessary. */
772 if (squeeze_notes (&b->head, &b->end))
773 abort ();
775 /* Scramble the insn chain. */
776 reorder_insns_nobb (b->head, b->end, a->end);
778 /* Restore the real end of b. */
779 b->end = real_b_end;
781 if (rtl_dump_file)
782 fprintf (rtl_dump_file, "Moved block %d after %d and merged.\n",
783 b->index, a->index);
785 /* Now blocks A and B are contiguous. Merge them. */
786 merge_blocks_nomove (a, b);
789 /* Attempt to merge basic blocks that are potentially non-adjacent.
790 Return true iff the attempt succeeded. */
792 static bool
793 merge_blocks (e, b, c, mode)
794 edge e;
795 basic_block b, c;
796 int mode;
798 /* If C has a tail recursion label, do not merge. There is no
799 edge recorded from the call_placeholder back to this label, as
800 that would make optimize_sibling_and_tail_recursive_calls more
801 complex for no gain. */
802 if ((mode & CLEANUP_PRE_SIBCALL)
803 && GET_CODE (c->head) == CODE_LABEL
804 && tail_recursion_label_p (c->head))
805 return false;
807 /* If B has a fallthru edge to C, no need to move anything. */
808 if (e->flags & EDGE_FALLTHRU)
810 int b_index = b->index, c_index = c->index;
811 merge_blocks_nomove (b, c);
812 update_forwarder_flag (b);
814 if (rtl_dump_file)
815 fprintf (rtl_dump_file, "Merged %d and %d without moving.\n",
816 b_index, c_index);
818 return true;
821 /* Otherwise we will need to move code around. Do that only if expensive
822 transformations are allowed. */
823 else if (mode & CLEANUP_EXPENSIVE)
825 edge tmp_edge, b_fallthru_edge;
826 bool c_has_outgoing_fallthru;
827 bool b_has_incoming_fallthru;
829 /* Avoid overactive code motion, as the forwarder blocks should be
830 eliminated by edge redirection instead. One exception might have
831 been if B is a forwarder block and C has no fallthru edge, but
832 that should be cleaned up by bb-reorder instead. */
833 if (FORWARDER_BLOCK_P (b) || FORWARDER_BLOCK_P (c))
834 return false;
836 /* We must make sure to not munge nesting of lexical blocks,
837 and loop notes. This is done by squeezing out all the notes
838 and leaving them there to lie. Not ideal, but functional. */
840 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
841 if (tmp_edge->flags & EDGE_FALLTHRU)
842 break;
844 c_has_outgoing_fallthru = (tmp_edge != NULL);
846 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
847 if (tmp_edge->flags & EDGE_FALLTHRU)
848 break;
850 b_has_incoming_fallthru = (tmp_edge != NULL);
851 b_fallthru_edge = tmp_edge;
853 /* Otherwise, we're going to try to move C after B. If C does
854 not have an outgoing fallthru, then it can be moved
855 immediately after B without introducing or modifying jumps. */
856 if (! c_has_outgoing_fallthru)
858 merge_blocks_move_successor_nojumps (b, c);
859 return true;
862 /* If B does not have an incoming fallthru, then it can be moved
863 immediately before C without introducing or modifying jumps.
864 C cannot be the first block, so we do not have to worry about
865 accessing a non-existent block. */
867 if (b_has_incoming_fallthru)
869 basic_block bb;
871 if (b_fallthru_edge->src == ENTRY_BLOCK_PTR)
872 return false;
873 bb = force_nonfallthru (b_fallthru_edge);
874 if (bb)
875 notice_new_block (bb);
878 merge_blocks_move_predecessor_nojumps (b, c);
879 return true;
882 return false;
886 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
888 static bool
889 insns_match_p (mode, i1, i2)
890 int mode ATTRIBUTE_UNUSED;
891 rtx i1, i2;
893 rtx p1, p2;
895 /* Verify that I1 and I2 are equivalent. */
896 if (GET_CODE (i1) != GET_CODE (i2))
897 return false;
899 p1 = PATTERN (i1);
900 p2 = PATTERN (i2);
902 if (GET_CODE (p1) != GET_CODE (p2))
903 return false;
905 /* If this is a CALL_INSN, compare register usage information.
906 If we don't check this on stack register machines, the two
907 CALL_INSNs might be merged leaving reg-stack.c with mismatching
908 numbers of stack registers in the same basic block.
909 If we don't check this on machines with delay slots, a delay slot may
910 be filled that clobbers a parameter expected by the subroutine.
912 ??? We take the simple route for now and assume that if they're
913 equal, they were constructed identically. */
915 if (GET_CODE (i1) == CALL_INSN
916 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
917 CALL_INSN_FUNCTION_USAGE (i2))
918 || SIBLING_CALL_P (i1) != SIBLING_CALL_P (i2)))
919 return false;
921 #ifdef STACK_REGS
922 /* If cross_jump_death_matters is not 0, the insn's mode
923 indicates whether or not the insn contains any stack-like
924 regs. */
926 if ((mode & CLEANUP_POST_REGSTACK) && stack_regs_mentioned (i1))
928 /* If register stack conversion has already been done, then
929 death notes must also be compared before it is certain that
930 the two instruction streams match. */
932 rtx note;
933 HARD_REG_SET i1_regset, i2_regset;
935 CLEAR_HARD_REG_SET (i1_regset);
936 CLEAR_HARD_REG_SET (i2_regset);
938 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
939 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
940 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
942 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
943 if (REG_NOTE_KIND (note) == REG_DEAD && STACK_REG_P (XEXP (note, 0)))
944 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
946 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
948 return false;
950 done:
953 #endif
955 if (reload_completed
956 ? ! rtx_renumbered_equal_p (p1, p2) : ! rtx_equal_p (p1, p2))
958 /* The following code helps take care of G++ cleanups. */
959 rtx equiv1 = find_reg_equal_equiv_note (i1);
960 rtx equiv2 = find_reg_equal_equiv_note (i2);
962 if (equiv1 && equiv2
963 /* If the equivalences are not to a constant, they may
964 reference pseudos that no longer exist, so we can't
965 use them. */
966 && (! reload_completed
967 || (CONSTANT_P (XEXP (equiv1, 0))
968 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))))
970 rtx s1 = single_set (i1);
971 rtx s2 = single_set (i2);
972 if (s1 != 0 && s2 != 0
973 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
975 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
976 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
977 if (! rtx_renumbered_equal_p (p1, p2))
978 cancel_changes (0);
979 else if (apply_change_group ())
980 return true;
984 return false;
987 return true;
990 /* Look through the insns at the end of BB1 and BB2 and find the longest
991 sequence that are equivalent. Store the first insns for that sequence
992 in *F1 and *F2 and return the sequence length.
994 To simplify callers of this function, if the blocks match exactly,
995 store the head of the blocks in *F1 and *F2. */
997 static int
998 flow_find_cross_jump (mode, bb1, bb2, f1, f2)
999 int mode ATTRIBUTE_UNUSED;
1000 basic_block bb1, bb2;
1001 rtx *f1, *f2;
1003 rtx i1, i2, last1, last2, afterlast1, afterlast2;
1004 int ninsns = 0;
1006 /* Skip simple jumps at the end of the blocks. Complex jumps still
1007 need to be compared for equivalence, which we'll do below. */
1009 i1 = bb1->end;
1010 last1 = afterlast1 = last2 = afterlast2 = NULL_RTX;
1011 if (onlyjump_p (i1)
1012 || (returnjump_p (i1) && !side_effects_p (PATTERN (i1))))
1014 last1 = i1;
1015 i1 = PREV_INSN (i1);
1018 i2 = bb2->end;
1019 if (onlyjump_p (i2)
1020 || (returnjump_p (i2) && !side_effects_p (PATTERN (i2))))
1022 last2 = i2;
1023 /* Count everything except for unconditional jump as insn. */
1024 if (!simplejump_p (i2) && !returnjump_p (i2) && last1)
1025 ninsns++;
1026 i2 = PREV_INSN (i2);
1029 while (true)
1031 /* Ignore notes. */
1032 while (!active_insn_p (i1) && i1 != bb1->head)
1033 i1 = PREV_INSN (i1);
1035 while (!active_insn_p (i2) && i2 != bb2->head)
1036 i2 = PREV_INSN (i2);
1038 if (i1 == bb1->head || i2 == bb2->head)
1039 break;
1041 if (!insns_match_p (mode, i1, i2))
1042 break;
1044 /* Don't begin a cross-jump with a USE or CLOBBER insn. */
1045 if (active_insn_p (i1))
1047 /* If the merged insns have different REG_EQUAL notes, then
1048 remove them. */
1049 rtx equiv1 = find_reg_equal_equiv_note (i1);
1050 rtx equiv2 = find_reg_equal_equiv_note (i2);
1052 if (equiv1 && !equiv2)
1053 remove_note (i1, equiv1);
1054 else if (!equiv1 && equiv2)
1055 remove_note (i2, equiv2);
1056 else if (equiv1 && equiv2
1057 && !rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1059 remove_note (i1, equiv1);
1060 remove_note (i2, equiv2);
1063 afterlast1 = last1, afterlast2 = last2;
1064 last1 = i1, last2 = i2;
1065 ninsns++;
1068 i1 = PREV_INSN (i1);
1069 i2 = PREV_INSN (i2);
1072 #ifdef HAVE_cc0
1073 /* Don't allow the insn after a compare to be shared by
1074 cross-jumping unless the compare is also shared. */
1075 if (ninsns && reg_mentioned_p (cc0_rtx, last1) && ! sets_cc0_p (last1))
1076 last1 = afterlast1, last2 = afterlast2, ninsns--;
1077 #endif
1079 /* Include preceding notes and labels in the cross-jump. One,
1080 this may bring us to the head of the blocks as requested above.
1081 Two, it keeps line number notes as matched as may be. */
1082 if (ninsns)
1084 while (last1 != bb1->head && !active_insn_p (PREV_INSN (last1)))
1085 last1 = PREV_INSN (last1);
1087 if (last1 != bb1->head && GET_CODE (PREV_INSN (last1)) == CODE_LABEL)
1088 last1 = PREV_INSN (last1);
1090 while (last2 != bb2->head && !active_insn_p (PREV_INSN (last2)))
1091 last2 = PREV_INSN (last2);
1093 if (last2 != bb2->head && GET_CODE (PREV_INSN (last2)) == CODE_LABEL)
1094 last2 = PREV_INSN (last2);
1096 *f1 = last1;
1097 *f2 = last2;
1100 return ninsns;
1103 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1104 the branch instruction. This means that if we commonize the control
1105 flow before end of the basic block, the semantic remains unchanged.
1107 We may assume that there exists one edge with a common destination. */
1109 static bool
1110 outgoing_edges_match (mode, bb1, bb2)
1111 int mode;
1112 basic_block bb1;
1113 basic_block bb2;
1115 int nehedges1 = 0, nehedges2 = 0;
1116 edge fallthru1 = 0, fallthru2 = 0;
1117 edge e1, e2;
1119 /* If BB1 has only one successor, we may be looking at either an
1120 unconditional jump, or a fake edge to exit. */
1121 if (bb1->succ && !bb1->succ->succ_next
1122 && !(bb1->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)))
1123 return (bb2->succ && !bb2->succ->succ_next
1124 && (bb2->succ->flags & (EDGE_COMPLEX | EDGE_FAKE)) == 0);
1126 /* Match conditional jumps - this may get tricky when fallthru and branch
1127 edges are crossed. */
1128 if (bb1->succ
1129 && bb1->succ->succ_next
1130 && !bb1->succ->succ_next->succ_next
1131 && any_condjump_p (bb1->end)
1132 && onlyjump_p (bb1->end))
1134 edge b1, f1, b2, f2;
1135 bool reverse, match;
1136 rtx set1, set2, cond1, cond2;
1137 enum rtx_code code1, code2;
1139 if (!bb2->succ
1140 || !bb2->succ->succ_next
1141 || bb2->succ->succ_next->succ_next
1142 || !any_condjump_p (bb2->end)
1143 || !onlyjump_p (bb2->end))
1144 return false;
1146 b1 = BRANCH_EDGE (bb1);
1147 b2 = BRANCH_EDGE (bb2);
1148 f1 = FALLTHRU_EDGE (bb1);
1149 f2 = FALLTHRU_EDGE (bb2);
1151 /* Get around possible forwarders on fallthru edges. Other cases
1152 should be optimized out already. */
1153 if (FORWARDER_BLOCK_P (f1->dest))
1154 f1 = f1->dest->succ;
1156 if (FORWARDER_BLOCK_P (f2->dest))
1157 f2 = f2->dest->succ;
1159 /* To simplify use of this function, return false if there are
1160 unneeded forwarder blocks. These will get eliminated later
1161 during cleanup_cfg. */
1162 if (FORWARDER_BLOCK_P (f1->dest)
1163 || FORWARDER_BLOCK_P (f2->dest)
1164 || FORWARDER_BLOCK_P (b1->dest)
1165 || FORWARDER_BLOCK_P (b2->dest))
1166 return false;
1168 if (f1->dest == f2->dest && b1->dest == b2->dest)
1169 reverse = false;
1170 else if (f1->dest == b2->dest && b1->dest == f2->dest)
1171 reverse = true;
1172 else
1173 return false;
1175 set1 = pc_set (bb1->end);
1176 set2 = pc_set (bb2->end);
1177 if ((XEXP (SET_SRC (set1), 1) == pc_rtx)
1178 != (XEXP (SET_SRC (set2), 1) == pc_rtx))
1179 reverse = !reverse;
1181 cond1 = XEXP (SET_SRC (set1), 0);
1182 cond2 = XEXP (SET_SRC (set2), 0);
1183 code1 = GET_CODE (cond1);
1184 if (reverse)
1185 code2 = reversed_comparison_code (cond2, bb2->end);
1186 else
1187 code2 = GET_CODE (cond2);
1189 if (code2 == UNKNOWN)
1190 return false;
1192 /* Verify codes and operands match. */
1193 match = ((code1 == code2
1194 && rtx_renumbered_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
1195 && rtx_renumbered_equal_p (XEXP (cond1, 1), XEXP (cond2, 1)))
1196 || (code1 == swap_condition (code2)
1197 && rtx_renumbered_equal_p (XEXP (cond1, 1),
1198 XEXP (cond2, 0))
1199 && rtx_renumbered_equal_p (XEXP (cond1, 0),
1200 XEXP (cond2, 1))));
1202 /* If we return true, we will join the blocks. Which means that
1203 we will only have one branch prediction bit to work with. Thus
1204 we require the existing branches to have probabilities that are
1205 roughly similar. */
1206 if (match
1207 && !optimize_size
1208 && maybe_hot_bb_p (bb1)
1209 && maybe_hot_bb_p (bb2))
1211 int prob2;
1213 if (b1->dest == b2->dest)
1214 prob2 = b2->probability;
1215 else
1216 /* Do not use f2 probability as f2 may be forwarded. */
1217 prob2 = REG_BR_PROB_BASE - b2->probability;
1219 /* Fail if the difference in probabilities is greater than 50%.
1220 This rules out two well-predicted branches with opposite
1221 outcomes. */
1222 if (abs (b1->probability - prob2) > REG_BR_PROB_BASE / 2)
1224 if (rtl_dump_file)
1225 fprintf (rtl_dump_file,
1226 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1227 bb1->index, bb2->index, b1->probability, prob2);
1229 return false;
1233 if (rtl_dump_file && match)
1234 fprintf (rtl_dump_file, "Conditionals in bb %i and %i match.\n",
1235 bb1->index, bb2->index);
1237 return match;
1240 /* Generic case - we are seeing a computed jump, table jump or trapping
1241 instruction. */
1243 /* First ensure that the instructions match. There may be many outgoing
1244 edges so this test is generally cheaper.
1245 ??? Currently the tablejumps will never match, as they do have
1246 different tables. */
1247 if (!insns_match_p (mode, bb1->end, bb2->end))
1248 return false;
1250 /* Search the outgoing edges, ensure that the counts do match, find possible
1251 fallthru and exception handling edges since these needs more
1252 validation. */
1253 for (e1 = bb1->succ, e2 = bb2->succ; e1 && e2;
1254 e1 = e1->succ_next, e2 = e2->succ_next)
1256 if (e1->flags & EDGE_EH)
1257 nehedges1++;
1259 if (e2->flags & EDGE_EH)
1260 nehedges2++;
1262 if (e1->flags & EDGE_FALLTHRU)
1263 fallthru1 = e1;
1264 if (e2->flags & EDGE_FALLTHRU)
1265 fallthru2 = e2;
1268 /* If number of edges of various types does not match, fail. */
1269 if (e1 || e2
1270 || nehedges1 != nehedges2
1271 || (fallthru1 != 0) != (fallthru2 != 0))
1272 return false;
1274 /* fallthru edges must be forwarded to the same destination. */
1275 if (fallthru1)
1277 basic_block d1 = (forwarder_block_p (fallthru1->dest)
1278 ? fallthru1->dest->succ->dest: fallthru1->dest);
1279 basic_block d2 = (forwarder_block_p (fallthru2->dest)
1280 ? fallthru2->dest->succ->dest: fallthru2->dest);
1282 if (d1 != d2)
1283 return false;
1286 /* In case we do have EH edges, ensure we are in the same region. */
1287 if (nehedges1)
1289 rtx n1 = find_reg_note (bb1->end, REG_EH_REGION, 0);
1290 rtx n2 = find_reg_note (bb2->end, REG_EH_REGION, 0);
1292 if (XEXP (n1, 0) != XEXP (n2, 0))
1293 return false;
1296 /* We don't need to match the rest of edges as above checks should be enought
1297 to ensure that they are equivalent. */
1298 return true;
1301 /* E1 and E2 are edges with the same destination block. Search their
1302 predecessors for common code. If found, redirect control flow from
1303 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1305 static bool
1306 try_crossjump_to_edge (mode, e1, e2)
1307 int mode;
1308 edge e1, e2;
1310 int nmatch;
1311 basic_block src1 = e1->src, src2 = e2->src;
1312 basic_block redirect_to, redirect_from, to_remove;
1313 rtx newpos1, newpos2;
1314 edge s;
1316 /* Search backward through forwarder blocks. We don't need to worry
1317 about multiple entry or chained forwarders, as they will be optimized
1318 away. We do this to look past the unconditional jump following a
1319 conditional jump that is required due to the current CFG shape. */
1320 if (src1->pred
1321 && !src1->pred->pred_next
1322 && FORWARDER_BLOCK_P (src1))
1323 e1 = src1->pred, src1 = e1->src;
1325 if (src2->pred
1326 && !src2->pred->pred_next
1327 && FORWARDER_BLOCK_P (src2))
1328 e2 = src2->pred, src2 = e2->src;
1330 /* Nothing to do if we reach ENTRY, or a common source block. */
1331 if (src1 == ENTRY_BLOCK_PTR || src2 == ENTRY_BLOCK_PTR)
1332 return false;
1333 if (src1 == src2)
1334 return false;
1336 /* Seeing more than 1 forwarder blocks would confuse us later... */
1337 if (FORWARDER_BLOCK_P (e1->dest)
1338 && FORWARDER_BLOCK_P (e1->dest->succ->dest))
1339 return false;
1341 if (FORWARDER_BLOCK_P (e2->dest)
1342 && FORWARDER_BLOCK_P (e2->dest->succ->dest))
1343 return false;
1345 /* Likewise with dead code (possibly newly created by the other optimizations
1346 of cfg_cleanup). */
1347 if (!src1->pred || !src2->pred)
1348 return false;
1350 /* Look for the common insn sequence, part the first ... */
1351 if (!outgoing_edges_match (mode, src1, src2))
1352 return false;
1354 /* ... and part the second. */
1355 nmatch = flow_find_cross_jump (mode, src1, src2, &newpos1, &newpos2);
1356 if (!nmatch)
1357 return false;
1359 /* Avoid splitting if possible. */
1360 if (newpos2 == src2->head)
1361 redirect_to = src2;
1362 else
1364 if (rtl_dump_file)
1365 fprintf (rtl_dump_file, "Splitting bb %i before %i insns\n",
1366 src2->index, nmatch);
1367 redirect_to = split_block (src2, PREV_INSN (newpos2))->dest;
1370 if (rtl_dump_file)
1371 fprintf (rtl_dump_file,
1372 "Cross jumping from bb %i to bb %i; %i common insns\n",
1373 src1->index, src2->index, nmatch);
1375 redirect_to->count += src1->count;
1376 redirect_to->frequency += src1->frequency;
1377 /* We may have some registers visible trought the block. */
1378 redirect_to->flags |= BB_DIRTY;
1380 /* Recompute the frequencies and counts of outgoing edges. */
1381 for (s = redirect_to->succ; s; s = s->succ_next)
1383 edge s2;
1384 basic_block d = s->dest;
1386 if (FORWARDER_BLOCK_P (d))
1387 d = d->succ->dest;
1389 for (s2 = src1->succ; ; s2 = s2->succ_next)
1391 basic_block d2 = s2->dest;
1392 if (FORWARDER_BLOCK_P (d2))
1393 d2 = d2->succ->dest;
1394 if (d == d2)
1395 break;
1398 s->count += s2->count;
1400 /* Take care to update possible forwarder blocks. We verified
1401 that there is no more than one in the chain, so we can't run
1402 into infinite loop. */
1403 if (FORWARDER_BLOCK_P (s->dest))
1405 s->dest->succ->count += s2->count;
1406 s->dest->count += s2->count;
1407 s->dest->frequency += EDGE_FREQUENCY (s);
1410 if (FORWARDER_BLOCK_P (s2->dest))
1412 s2->dest->succ->count -= s2->count;
1413 if (s2->dest->succ->count < 0)
1414 s2->dest->succ->count = 0;
1415 s2->dest->count -= s2->count;
1416 s2->dest->frequency -= EDGE_FREQUENCY (s);
1417 if (s2->dest->frequency < 0)
1418 s2->dest->frequency = 0;
1419 if (s2->dest->count < 0)
1420 s2->dest->count = 0;
1423 if (!redirect_to->frequency && !src1->frequency)
1424 s->probability = (s->probability + s2->probability) / 2;
1425 else
1426 s->probability
1427 = ((s->probability * redirect_to->frequency +
1428 s2->probability * src1->frequency)
1429 / (redirect_to->frequency + src1->frequency));
1432 update_br_prob_note (redirect_to);
1434 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1436 /* Skip possible basic block header. */
1437 if (GET_CODE (newpos1) == CODE_LABEL)
1438 newpos1 = NEXT_INSN (newpos1);
1440 if (GET_CODE (newpos1) == NOTE)
1441 newpos1 = NEXT_INSN (newpos1);
1443 redirect_from = split_block (src1, PREV_INSN (newpos1))->src;
1444 to_remove = redirect_from->succ->dest;
1446 redirect_edge_and_branch_force (redirect_from->succ, redirect_to);
1447 flow_delete_block (to_remove);
1449 update_forwarder_flag (redirect_from);
1451 return true;
1454 /* Search the predecessors of BB for common insn sequences. When found,
1455 share code between them by redirecting control flow. Return true if
1456 any changes made. */
1458 static bool
1459 try_crossjump_bb (mode, bb)
1460 int mode;
1461 basic_block bb;
1463 edge e, e2, nexte2, nexte, fallthru;
1464 bool changed;
1465 int n = 0;
1467 /* Nothing to do if there is not at least two incoming edges. */
1468 if (!bb->pred || !bb->pred->pred_next)
1469 return false;
1471 /* It is always cheapest to redirect a block that ends in a branch to
1472 a block that falls through into BB, as that adds no branches to the
1473 program. We'll try that combination first. */
1474 for (fallthru = bb->pred; fallthru; fallthru = fallthru->pred_next, n++)
1476 if (fallthru->flags & EDGE_FALLTHRU)
1477 break;
1478 if (n > 100)
1479 return false;
1482 changed = false;
1483 for (e = bb->pred; e; e = nexte)
1485 nexte = e->pred_next;
1487 /* As noted above, first try with the fallthru predecessor. */
1488 if (fallthru)
1490 /* Don't combine the fallthru edge into anything else.
1491 If there is a match, we'll do it the other way around. */
1492 if (e == fallthru)
1493 continue;
1495 if (try_crossjump_to_edge (mode, e, fallthru))
1497 changed = true;
1498 nexte = bb->pred;
1499 continue;
1503 /* Non-obvious work limiting check: Recognize that we're going
1504 to call try_crossjump_bb on every basic block. So if we have
1505 two blocks with lots of outgoing edges (a switch) and they
1506 share lots of common destinations, then we would do the
1507 cross-jump check once for each common destination.
1509 Now, if the blocks actually are cross-jump candidates, then
1510 all of their destinations will be shared. Which means that
1511 we only need check them for cross-jump candidacy once. We
1512 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1513 choosing to do the check from the block for which the edge
1514 in question is the first successor of A. */
1515 if (e->src->succ != e)
1516 continue;
1518 for (e2 = bb->pred; e2; e2 = nexte2)
1520 nexte2 = e2->pred_next;
1522 if (e2 == e)
1523 continue;
1525 /* We've already checked the fallthru edge above. */
1526 if (e2 == fallthru)
1527 continue;
1529 /* The "first successor" check above only prevents multiple
1530 checks of crossjump(A,B). In order to prevent redundant
1531 checks of crossjump(B,A), require that A be the block
1532 with the lowest index. */
1533 if (e->src->index > e2->src->index)
1534 continue;
1536 if (try_crossjump_to_edge (mode, e, e2))
1538 changed = true;
1539 nexte = bb->pred;
1540 break;
1545 return changed;
1548 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1549 instructions etc. Return nonzero if changes were made. */
1551 static bool
1552 try_optimize_cfg (mode)
1553 int mode;
1555 bool changed_overall = false;
1556 bool changed;
1557 int iterations = 0;
1558 basic_block bb, b;
1560 if (mode & CLEANUP_CROSSJUMP)
1561 add_noreturn_fake_exit_edges ();
1563 FOR_EACH_BB (bb)
1564 update_forwarder_flag (bb);
1566 if (mode & CLEANUP_UPDATE_LIFE)
1567 clear_bb_flags ();
1569 if (! (* targetm.cannot_modify_jumps_p) ())
1571 /* Attempt to merge blocks as made possible by edge removal. If
1572 a block has only one successor, and the successor has only
1573 one predecessor, they may be combined. */
1576 changed = false;
1577 iterations++;
1579 if (rtl_dump_file)
1580 fprintf (rtl_dump_file,
1581 "\n\ntry_optimize_cfg iteration %i\n\n",
1582 iterations);
1584 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR;)
1586 basic_block c;
1587 edge s;
1588 bool changed_here = false;
1590 /* Delete trivially dead basic blocks. */
1591 while (b->pred == NULL)
1593 c = b->prev_bb;
1594 if (rtl_dump_file)
1595 fprintf (rtl_dump_file, "Deleting block %i.\n",
1596 b->index);
1598 flow_delete_block (b);
1599 changed = true;
1600 b = c;
1603 /* Remove code labels no longer used. Don't do this
1604 before CALL_PLACEHOLDER is removed, as some branches
1605 may be hidden within. */
1606 if (b->pred->pred_next == NULL
1607 && (b->pred->flags & EDGE_FALLTHRU)
1608 && !(b->pred->flags & EDGE_COMPLEX)
1609 && GET_CODE (b->head) == CODE_LABEL
1610 && (!(mode & CLEANUP_PRE_SIBCALL)
1611 || !tail_recursion_label_p (b->head))
1612 /* If the previous block ends with a branch to this
1613 block, we can't delete the label. Normally this
1614 is a condjump that is yet to be simplified, but
1615 if CASE_DROPS_THRU, this can be a tablejump with
1616 some element going to the same place as the
1617 default (fallthru). */
1618 && (b->pred->src == ENTRY_BLOCK_PTR
1619 || GET_CODE (b->pred->src->end) != JUMP_INSN
1620 || ! label_is_jump_target_p (b->head,
1621 b->pred->src->end)))
1623 rtx label = b->head;
1625 b->head = NEXT_INSN (b->head);
1626 delete_insn_chain (label, label);
1627 if (rtl_dump_file)
1628 fprintf (rtl_dump_file, "Deleted label in block %i.\n",
1629 b->index);
1632 /* If we fall through an empty block, we can remove it. */
1633 if (b->pred->pred_next == NULL
1634 && (b->pred->flags & EDGE_FALLTHRU)
1635 && GET_CODE (b->head) != CODE_LABEL
1636 && FORWARDER_BLOCK_P (b)
1637 /* Note that forwarder_block_p true ensures that
1638 there is a successor for this block. */
1639 && (b->succ->flags & EDGE_FALLTHRU)
1640 && n_basic_blocks > 1)
1642 if (rtl_dump_file)
1643 fprintf (rtl_dump_file,
1644 "Deleting fallthru block %i.\n",
1645 b->index);
1647 c = b->prev_bb == ENTRY_BLOCK_PTR ? b->next_bb : b->prev_bb;
1648 redirect_edge_succ_nodup (b->pred, b->succ->dest);
1649 flow_delete_block (b);
1650 changed = true;
1651 b = c;
1654 /* Merge blocks. Loop because chains of blocks might be
1655 combineable. */
1656 while ((s = b->succ) != NULL
1657 && s->succ_next == NULL
1658 && !(s->flags & EDGE_COMPLEX)
1659 && (c = s->dest) != EXIT_BLOCK_PTR
1660 && c->pred->pred_next == NULL
1661 && b != c
1662 /* If the jump insn has side effects,
1663 we can't kill the edge. */
1664 && (GET_CODE (b->end) != JUMP_INSN
1665 || simplejump_p (b->end))
1666 && merge_blocks (s, b, c, mode))
1667 changed_here = true;
1669 /* Simplify branch over branch. */
1670 if ((mode & CLEANUP_EXPENSIVE) && try_simplify_condjump (b))
1671 changed_here = true;
1673 /* If B has a single outgoing edge, but uses a
1674 non-trivial jump instruction without side-effects, we
1675 can either delete the jump entirely, or replace it
1676 with a simple unconditional jump. Use
1677 redirect_edge_and_branch to do the dirty work. */
1678 if (b->succ
1679 && ! b->succ->succ_next
1680 && b->succ->dest != EXIT_BLOCK_PTR
1681 && onlyjump_p (b->end)
1682 && redirect_edge_and_branch (b->succ, b->succ->dest))
1684 update_forwarder_flag (b);
1685 changed_here = true;
1688 /* Simplify branch to branch. */
1689 if (try_forward_edges (mode, b))
1690 changed_here = true;
1692 /* Look for shared code between blocks. */
1693 if ((mode & CLEANUP_CROSSJUMP)
1694 && try_crossjump_bb (mode, b))
1695 changed_here = true;
1697 /* Don't get confused by the index shift caused by
1698 deleting blocks. */
1699 if (!changed_here)
1700 b = b->next_bb;
1701 else
1702 changed = true;
1705 if ((mode & CLEANUP_CROSSJUMP)
1706 && try_crossjump_bb (mode, EXIT_BLOCK_PTR))
1707 changed = true;
1709 #ifdef ENABLE_CHECKING
1710 if (changed)
1711 verify_flow_info ();
1712 #endif
1714 changed_overall |= changed;
1716 while (changed);
1719 if (mode & CLEANUP_CROSSJUMP)
1720 remove_fake_edges ();
1722 clear_aux_for_blocks ();
1724 return changed_overall;
1727 /* Delete all unreachable basic blocks. */
1729 bool
1730 delete_unreachable_blocks ()
1732 bool changed = false;
1733 basic_block b, next_bb;
1735 find_unreachable_blocks ();
1737 /* Delete all unreachable basic blocks. */
1739 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
1741 next_bb = b->next_bb;
1743 if (!(b->flags & BB_REACHABLE))
1745 flow_delete_block (b);
1746 changed = true;
1750 if (changed)
1751 tidy_fallthru_edges ();
1752 return changed;
1755 /* Tidy the CFG by deleting unreachable code and whatnot. */
1757 bool
1758 cleanup_cfg (mode)
1759 int mode;
1761 bool changed = false;
1763 timevar_push (TV_CLEANUP_CFG);
1764 if (delete_unreachable_blocks ())
1766 changed = true;
1767 /* We've possibly created trivially dead code. Cleanup it right
1768 now to introduce more opportunities for try_optimize_cfg. */
1769 if (!(mode & (CLEANUP_NO_INSN_DEL
1770 | CLEANUP_UPDATE_LIFE | CLEANUP_PRE_SIBCALL))
1771 && !reload_completed)
1772 delete_trivially_dead_insns (get_insns(), max_reg_num ());
1775 compact_blocks ();
1777 while (try_optimize_cfg (mode))
1779 delete_unreachable_blocks (), changed = true;
1780 if (mode & CLEANUP_UPDATE_LIFE)
1782 /* Cleaning up CFG introduces more opportunities for dead code
1783 removal that in turn may introduce more opportunities for
1784 cleaning up the CFG. */
1785 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
1786 PROP_DEATH_NOTES
1787 | PROP_SCAN_DEAD_CODE
1788 | PROP_KILL_DEAD_CODE
1789 | PROP_LOG_LINKS))
1790 break;
1792 else if (!(mode & (CLEANUP_NO_INSN_DEL | CLEANUP_PRE_SIBCALL))
1793 && !reload_completed)
1795 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
1796 break;
1798 else
1799 break;
1800 delete_dead_jumptables ();
1803 /* Kill the data we won't maintain. */
1804 free_EXPR_LIST_list (&label_value_list);
1805 timevar_pop (TV_CLEANUP_CFG);
1807 return changed;