1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000, 2002, 2003 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 /* This (greedy) algorithm constructs traces in several rounds.
22 The construction starts from "seeds". The seed for the first round
23 is the entry point of function. When there are more than one seed
24 that one is selected first that has the lowest key in the heap
25 (see function bb_to_key). Then the algorithm repeatedly adds the most
26 probable successor to the end of a trace. Finally it connects the traces.
28 There are two parameters: Branch Threshold and Exec Threshold.
29 If the edge to a successor of the actual basic block is lower than
30 Branch Threshold or the frequency of the successor is lower than
31 Exec Threshold the successor will be the seed in one of the next rounds.
32 Each round has these parameters lower than the previous one.
33 The last round has to have these parameters set to zero
34 so that the remaining blocks are picked up.
36 The algorithm selects the most probable successor from all unvisited
37 successors and successors that have been added to this trace.
38 The other successors (that has not been "sent" to the next round) will be
39 other seeds for this round and the secondary traces will start in them.
40 If the successor has not been visited in this trace it is added to the trace
41 (however, there is some heuristic for simple branches).
42 If the successor has been visited in this trace the loop has been found.
43 If the loop has many iterations the loop is rotated so that the
44 source block of the most probable edge going out from the loop
45 is the last block of the trace.
46 If the loop has few iterations and there is no edge from the last block of
47 the loop going out from loop the loop header is duplicated.
48 Finally, the construction of the trace is terminated.
50 When connecting traces it first checks whether there is an edge from the
51 last block of one trace to the first block of another trace.
52 When there are still some unconnected traces it checks whether there exists
53 a basic block BB such that BB is a successor of the last bb of one trace
54 and BB is a predecessor of the first block of another trace. In this case,
55 BB is duplicated and the traces are connected through this duplicate.
56 The rest of traces are simply connected so there will be a jump to the
57 beginning of the rest of trace.
62 "Software Trace Cache"
63 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
64 http://citeseer.nj.nec.com/15361.html
70 #include "coretypes.h"
73 #include "basic-block.h"
76 #include "cfglayout.h"
80 /* The number of rounds. */
83 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
84 static int branch_threshold
[N_ROUNDS
] = {400, 200, 100, 0};
86 /* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
87 static int exec_threshold
[N_ROUNDS
] = {500, 200, 50, 0};
89 /* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
90 block the edge destination is not duplicated while connecting traces. */
91 #define DUPLICATION_THRESHOLD 100
93 /* Length of unconditional jump instruction. */
94 static int uncond_jump_length
;
96 /* Structure to hold needed information for each basic block. */
97 typedef struct bbro_basic_block_data_def
99 /* Which trace is the bb start of (-1 means it is not a start of a trace). */
102 /* Which trace is the bb end of (-1 means it is not an end of a trace). */
105 /* Which heap is BB in (if any)? */
108 /* Which heap node is BB in (if any)? */
110 } bbro_basic_block_data
;
112 /* The current size of the following dynamic array. */
113 static int array_size
;
115 /* The array which holds needed information for basic blocks. */
116 static bbro_basic_block_data
*bbd
;
118 /* To avoid frequent reallocation the size of arrays is greater than needed,
119 the number of elements is (not less than) 1.25 * size_wanted. */
120 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
122 /* Free the memory and set the pointer to NULL. */
124 do { if (P) { free (P); P = 0; } else { abort (); } } while (0)
126 /* Structure for holding information about a trace. */
129 /* First and last basic block of the trace. */
130 basic_block first
, last
;
132 /* The round of the STC creation which this trace was found in. */
135 /* The length (i.e. the number of basic blocks) of the trace. */
139 /* Maximum frequency and count of one of the entry blocks. */
140 int max_entry_frequency
;
141 gcov_type max_entry_count
;
143 /* Local function prototypes. */
144 static void find_traces
PARAMS ((int *, struct trace
*));
145 static basic_block rotate_loop
PARAMS ((edge
, struct trace
*, int));
146 static void mark_bb_visited
PARAMS ((basic_block
, int));
147 static void find_traces_1_round
PARAMS ((int, int, gcov_type
,
148 struct trace
*, int *, int,
150 static basic_block copy_bb
PARAMS ((basic_block
, edge
,
152 static fibheapkey_t bb_to_key
PARAMS ((basic_block
));
153 static bool better_edge_p
PARAMS ((basic_block
, edge
, int, int,
155 static void connect_traces
PARAMS ((int, struct trace
*));
156 static bool copy_bb_p
PARAMS ((basic_block
, int));
157 static int get_uncond_jump_length
PARAMS ((void));
159 /* Find the traces for Software Trace Cache. Chain each trace through
160 RBI()->next. Store the number of traces to N_TRACES and description of
164 find_traces (n_traces
, traces
)
166 struct trace
*traces
;
172 /* Insert entry points of function into heap. */
173 heap
= fibheap_new ();
174 max_entry_frequency
= 0;
176 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
178 bbd
[e
->dest
->index
].heap
= heap
;
179 bbd
[e
->dest
->index
].node
= fibheap_insert (heap
, bb_to_key (e
->dest
),
181 if (e
->dest
->frequency
> max_entry_frequency
)
182 max_entry_frequency
= e
->dest
->frequency
;
183 if (e
->dest
->count
> max_entry_count
)
184 max_entry_count
= e
->dest
->count
;
187 /* Find the traces. */
188 for (i
= 0; i
< N_ROUNDS
; i
++)
190 gcov_type count_threshold
;
193 fprintf (rtl_dump_file
, "STC - round %d\n", i
+ 1);
195 if (max_entry_count
< INT_MAX
/ 1000)
196 count_threshold
= max_entry_count
* exec_threshold
[i
] / 1000;
198 count_threshold
= max_entry_count
/ 1000 * exec_threshold
[i
];
200 find_traces_1_round (REG_BR_PROB_BASE
* branch_threshold
[i
] / 1000,
201 max_entry_frequency
* exec_threshold
[i
] / 1000,
202 count_threshold
, traces
, n_traces
, i
, &heap
);
204 fibheap_delete (heap
);
208 for (i
= 0; i
< *n_traces
; i
++)
211 fprintf (rtl_dump_file
, "Trace %d (round %d): ", i
+ 1,
212 traces
[i
].round
+ 1);
213 for (bb
= traces
[i
].first
; bb
!= traces
[i
].last
; bb
= RBI (bb
)->next
)
214 fprintf (rtl_dump_file
, "%d [%d] ", bb
->index
, bb
->frequency
);
215 fprintf (rtl_dump_file
, "%d [%d]\n", bb
->index
, bb
->frequency
);
217 fflush (rtl_dump_file
);
221 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
222 (with sequential number TRACE_N). */
225 rotate_loop (back_edge
, trace
, trace_n
)
232 /* Information about the best end (end after rotation) of the loop. */
233 basic_block best_bb
= NULL
;
234 edge best_edge
= NULL
;
236 gcov_type best_count
= -1;
237 /* The best edge is preferred when its destination is not visited yet
238 or is a start block of some trace. */
239 bool is_preferred
= false;
241 /* Find the most frequent edge that goes out from current trace. */
242 bb
= back_edge
->dest
;
246 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
247 if (e
->dest
!= EXIT_BLOCK_PTR
248 && RBI (e
->dest
)->visited
!= trace_n
249 && (e
->flags
& EDGE_CAN_FALLTHRU
)
250 && !(e
->flags
& EDGE_COMPLEX
))
254 /* The best edge is preferred. */
255 if (!RBI (e
->dest
)->visited
256 || bbd
[e
->dest
->index
].start_of_trace
>= 0)
258 /* The current edge E is also preferred. */
259 int freq
= EDGE_FREQUENCY (e
);
260 if (freq
> best_freq
|| e
->count
> best_count
)
263 best_count
= e
->count
;
271 if (!RBI (e
->dest
)->visited
272 || bbd
[e
->dest
->index
].start_of_trace
>= 0)
274 /* The current edge E is preferred. */
276 best_freq
= EDGE_FREQUENCY (e
);
277 best_count
= e
->count
;
283 int freq
= EDGE_FREQUENCY (e
);
284 if (!best_edge
|| freq
> best_freq
|| e
->count
> best_count
)
287 best_count
= e
->count
;
296 while (bb
!= back_edge
->dest
);
300 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
302 if (back_edge
->dest
== trace
->first
)
304 trace
->first
= RBI (best_bb
)->next
;
310 for (prev_bb
= trace
->first
;
311 RBI (prev_bb
)->next
!= back_edge
->dest
;
312 prev_bb
= RBI (prev_bb
)->next
)
314 RBI (prev_bb
)->next
= RBI (best_bb
)->next
;
316 /* Try to get rid of uncond jump to cond jump. */
317 if (prev_bb
->succ
&& !prev_bb
->succ
->succ_next
)
319 basic_block header
= prev_bb
->succ
->dest
;
321 /* Duplicate HEADER if it is a small block containing cond jump
323 if (any_condjump_p (header
->end
) && copy_bb_p (header
, 0))
325 copy_bb (header
, prev_bb
->succ
, prev_bb
, trace_n
);
332 /* We have not found suitable loop tail so do no rotation. */
333 best_bb
= back_edge
->src
;
335 RBI (best_bb
)->next
= NULL
;
339 /* This function marks BB that it was visited in trace number TRACE. */
342 mark_bb_visited (bb
, trace
)
346 RBI (bb
)->visited
= trace
;
347 if (bbd
[bb
->index
].heap
)
349 fibheap_delete_node (bbd
[bb
->index
].heap
, bbd
[bb
->index
].node
);
350 bbd
[bb
->index
].heap
= NULL
;
351 bbd
[bb
->index
].node
= NULL
;
355 /* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
356 not include basic blocks their probability is lower than BRANCH_TH or their
357 frequency is lower than EXEC_TH into traces (or count is lower than
358 COUNT_TH). It stores the new traces into TRACES and modifies the number of
359 traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
360 expects that starting basic blocks are in *HEAP and at the end it deletes
361 *HEAP and stores starting points for the next round into new *HEAP. */
364 find_traces_1_round (branch_th
, exec_th
, count_th
, traces
, n_traces
, round
,
369 struct trace
*traces
;
374 /* Heap for discarded basic blocks which are possible starting points for
376 fibheap_t new_heap
= fibheap_new ();
378 while (!fibheap_empty (*heap
))
385 bb
= fibheap_extract_min (*heap
);
386 bbd
[bb
->index
].heap
= NULL
;
387 bbd
[bb
->index
].node
= NULL
;
390 fprintf (rtl_dump_file
, "Getting bb %d\n", bb
->index
);
392 /* If the BB's frequency is too low send BB to the next round. */
393 if (bb
->frequency
< exec_th
|| bb
->count
< count_th
394 || ((round
< N_ROUNDS
- 1) && probably_never_executed_bb_p (bb
)))
396 int key
= bb_to_key (bb
);
397 bbd
[bb
->index
].heap
= new_heap
;
398 bbd
[bb
->index
].node
= fibheap_insert (new_heap
, key
, bb
);
401 fprintf (rtl_dump_file
,
402 " Possible start point of next round: %d (key: %d)\n",
407 trace
= traces
+ *n_traces
;
409 trace
->round
= round
;
417 /* The probability and frequency of the best edge. */
418 int best_prob
= INT_MIN
/ 2;
419 int best_freq
= INT_MIN
/ 2;
422 mark_bb_visited (bb
, *n_traces
);
426 fprintf (rtl_dump_file
, "Basic block %d was visited in trace %d\n",
427 bb
->index
, *n_traces
- 1);
429 /* Select the successor that will be placed after BB. */
430 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
432 if (e
->flags
& EDGE_FAKE
)
435 if (e
->dest
== EXIT_BLOCK_PTR
)
438 if (RBI (e
->dest
)->visited
439 && RBI (e
->dest
)->visited
!= *n_traces
)
442 prob
= e
->probability
;
443 freq
= EDGE_FREQUENCY (e
);
445 /* Edge that cannot be fallthru or improbable or infrequent
446 successor (ie. it is unsuitable successor). */
447 if (!(e
->flags
& EDGE_CAN_FALLTHRU
) || (e
->flags
& EDGE_COMPLEX
)
448 || prob
< branch_th
|| freq
< exec_th
|| e
->count
< count_th
)
451 if (better_edge_p (bb
, e
, prob
, freq
, best_prob
, best_freq
))
459 /* Add all non-selected successors to the heaps. */
460 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
463 || e
->dest
== EXIT_BLOCK_PTR
464 || RBI (e
->dest
)->visited
)
467 key
= bb_to_key (e
->dest
);
469 if (bbd
[e
->dest
->index
].heap
)
471 /* E->DEST is already in some heap. */
472 if (key
!= bbd
[e
->dest
->index
].node
->key
)
476 fprintf (rtl_dump_file
,
477 "Changing key for bb %d from %ld to %ld.\n",
479 (long) bbd
[e
->dest
->index
].node
->key
,
482 fibheap_replace_key (bbd
[e
->dest
->index
].heap
,
483 bbd
[e
->dest
->index
].node
, key
);
488 fibheap_t which_heap
= *heap
;
490 prob
= e
->probability
;
491 freq
= EDGE_FREQUENCY (e
);
493 if (!(e
->flags
& EDGE_CAN_FALLTHRU
)
494 || (e
->flags
& EDGE_COMPLEX
)
495 || prob
< branch_th
|| freq
< exec_th
496 || e
->count
< count_th
)
498 if (round
< N_ROUNDS
- 1)
499 which_heap
= new_heap
;
502 bbd
[e
->dest
->index
].heap
= which_heap
;
503 bbd
[e
->dest
->index
].node
= fibheap_insert (which_heap
,
508 fprintf (rtl_dump_file
,
509 " Possible start of %s round: %d (key: %ld)\n",
510 (which_heap
== new_heap
) ? "next" : "this",
511 e
->dest
->index
, (long) key
);
517 if (best_edge
) /* Suitable successor was found. */
519 if (RBI (best_edge
->dest
)->visited
== *n_traces
)
521 /* We do nothing with one basic block loops. */
522 if (best_edge
->dest
!= bb
)
524 if (EDGE_FREQUENCY (best_edge
)
525 > 4 * best_edge
->dest
->frequency
/ 5)
527 /* The loop has at least 4 iterations. If the loop
528 header is not the first block of the function
529 we can rotate the loop. */
531 if (best_edge
->dest
!= ENTRY_BLOCK_PTR
->next_bb
)
535 fprintf (rtl_dump_file
,
536 "Rotating loop %d - %d\n",
537 best_edge
->dest
->index
, bb
->index
);
539 RBI (bb
)->next
= best_edge
->dest
;
540 bb
= rotate_loop (best_edge
, trace
, *n_traces
);
545 /* The loop has less than 4 iterations. */
547 /* Check whether there is another edge from BB. */
549 for (another_edge
= bb
->succ
;
551 another_edge
= another_edge
->succ_next
)
552 if (another_edge
!= best_edge
)
555 if (!another_edge
&& copy_bb_p (best_edge
->dest
,
558 bb
= copy_bb (best_edge
->dest
, best_edge
, bb
,
564 /* Terminate the trace. */
569 /* Check for a situation
578 EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
579 >= EDGE_FREQUENCY (AC).
580 (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
581 Best ordering is then A B C.
583 This situation is created for example by:
590 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
592 && (e
->flags
& EDGE_CAN_FALLTHRU
)
593 && !(e
->flags
& EDGE_COMPLEX
)
594 && !RBI (e
->dest
)->visited
595 && !e
->dest
->pred
->pred_next
597 && (e
->dest
->succ
->flags
& EDGE_CAN_FALLTHRU
)
598 && !(e
->dest
->succ
->flags
& EDGE_COMPLEX
)
599 && !e
->dest
->succ
->succ_next
600 && e
->dest
->succ
->dest
== best_edge
->dest
601 && 2 * e
->dest
->frequency
>= EDGE_FREQUENCY (best_edge
))
605 fprintf (rtl_dump_file
, "Selecting BB %d\n",
606 best_edge
->dest
->index
);
610 RBI (bb
)->next
= best_edge
->dest
;
611 bb
= best_edge
->dest
;
617 bbd
[trace
->first
->index
].start_of_trace
= *n_traces
- 1;
618 bbd
[trace
->last
->index
].end_of_trace
= *n_traces
- 1;
620 /* The trace is terminated so we have to recount the keys in heap
621 (some block can have a lower key because now one of its predecessors
622 is an end of the trace). */
623 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
625 if (e
->dest
== EXIT_BLOCK_PTR
626 || RBI (e
->dest
)->visited
)
629 if (bbd
[e
->dest
->index
].heap
)
631 key
= bb_to_key (e
->dest
);
632 if (key
!= bbd
[e
->dest
->index
].node
->key
)
636 fprintf (rtl_dump_file
,
637 "Changing key for bb %d from %ld to %ld.\n",
639 (long) bbd
[e
->dest
->index
].node
->key
, key
);
641 fibheap_replace_key (bbd
[e
->dest
->index
].heap
,
642 bbd
[e
->dest
->index
].node
,
649 fibheap_delete (*heap
);
651 /* "Return" the new heap. */
655 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
656 it to trace after BB, mark OLD_BB visited and update pass' data structures
657 (TRACE is a number of trace which OLD_BB is duplicated to). */
660 copy_bb (old_bb
, e
, bb
, trace
)
668 new_bb
= cfg_layout_duplicate_bb (old_bb
, e
);
669 if (e
->dest
!= new_bb
)
671 if (RBI (e
->dest
)->visited
)
674 fprintf (rtl_dump_file
,
675 "Duplicated bb %d (created bb %d)\n",
676 old_bb
->index
, new_bb
->index
);
677 RBI (new_bb
)->visited
= trace
;
678 RBI (new_bb
)->next
= RBI (bb
)->next
;
679 RBI (bb
)->next
= new_bb
;
681 if (new_bb
->index
>= array_size
|| last_basic_block
> array_size
)
686 new_size
= MAX (last_basic_block
, new_bb
->index
+ 1);
687 new_size
= GET_ARRAY_SIZE (new_size
);
688 bbd
= xrealloc (bbd
, new_size
* sizeof (bbro_basic_block_data
));
689 for (i
= array_size
; i
< new_size
; i
++)
691 bbd
[i
].start_of_trace
= -1;
692 bbd
[i
].end_of_trace
= -1;
696 array_size
= new_size
;
700 fprintf (rtl_dump_file
,
701 "Growing the dynamic array to %d elements.\n",
709 /* Compute and return the key (for the heap) of the basic block BB. */
719 /* Do not start in probably never executed blocks. */
720 if (probably_never_executed_bb_p (bb
))
723 /* Prefer blocks whose predecessor is an end of some trace
724 or whose predecessor edge is EDGE_DFS_BACK. */
725 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
727 if ((e
->src
!= ENTRY_BLOCK_PTR
&& bbd
[e
->src
->index
].end_of_trace
>= 0)
728 || (e
->flags
& EDGE_DFS_BACK
))
730 int edge_freq
= EDGE_FREQUENCY (e
);
732 if (edge_freq
> priority
)
733 priority
= edge_freq
;
738 /* The block with priority should have significantly lower key. */
739 return -(100 * BB_FREQ_MAX
+ 100 * priority
+ bb
->frequency
);
740 return -bb
->frequency
;
743 /* Return true when the edge E from basic block BB is better than the temporary
744 best edge (details are in function). The probability of edge E is PROB. The
745 frequency of the successor is FREQ. The current best probability is
746 BEST_PROB, the best frequency is BEST_FREQ.
747 The edge is considered to be equivalent when PROB does not differ much from
748 BEST_PROB; similarly for frequency. */
751 better_edge_p (bb
, e
, prob
, freq
, best_prob
, best_freq
)
761 /* The BEST_* values do not have to be best, but can be a bit smaller than
763 int diff_prob
= best_prob
/ 10;
764 int diff_freq
= best_freq
/ 10;
766 if (prob
> best_prob
+ diff_prob
)
767 /* The edge has higher probability than the temporary best edge. */
768 is_better_edge
= true;
769 else if (prob
< best_prob
- diff_prob
)
770 /* The edge has lower probability than the temporary best edge. */
771 is_better_edge
= false;
772 else if (freq
< best_freq
- diff_freq
)
773 /* The edge and the temporary best edge have almost equivalent
774 probabilities. The higher frequency of a successor now means
775 that there is another edge going into that successor.
776 This successor has lower frequency so it is better. */
777 is_better_edge
= true;
778 else if (freq
> best_freq
+ diff_freq
)
779 /* This successor has higher frequency so it is worse. */
780 is_better_edge
= false;
781 else if (e
->dest
->prev_bb
== bb
)
782 /* The edges have equivalent probabilities and the successors
783 have equivalent frequencies. Select the previous successor. */
784 is_better_edge
= true;
786 is_better_edge
= false;
788 return is_better_edge
;
791 /* Connect traces in array TRACES, N_TRACES is the count of traces. */
794 connect_traces (n_traces
, traces
)
796 struct trace
*traces
;
802 gcov_type count_threshold
;
804 freq_threshold
= max_entry_frequency
* DUPLICATION_THRESHOLD
/ 1000;
805 if (max_entry_count
< INT_MAX
/ 1000)
806 count_threshold
= max_entry_count
* DUPLICATION_THRESHOLD
/ 1000;
808 count_threshold
= max_entry_count
/ 1000 * DUPLICATION_THRESHOLD
;
810 connected
= xcalloc (n_traces
, sizeof (bool));
812 for (i
= 0; i
< n_traces
; i
++)
824 /* Find the predecessor traces. */
825 for (t2
= t
; t2
> 0;)
829 for (e
= traces
[t2
].first
->pred
; e
; e
= e
->pred_next
)
831 int si
= e
->src
->index
;
833 if (e
->src
!= ENTRY_BLOCK_PTR
834 && (e
->flags
& EDGE_CAN_FALLTHRU
)
835 && !(e
->flags
& EDGE_COMPLEX
)
836 && bbd
[si
].end_of_trace
>= 0
837 && !connected
[bbd
[si
].end_of_trace
]
839 || e
->probability
> best
->probability
840 || (e
->probability
== best
->probability
841 && traces
[bbd
[si
].end_of_trace
].length
> best_len
)))
844 best_len
= traces
[bbd
[si
].end_of_trace
].length
;
849 RBI (best
->src
)->next
= best
->dest
;
850 t2
= bbd
[best
->src
->index
].end_of_trace
;
851 connected
[t2
] = true;
854 fprintf (rtl_dump_file
, "Connection: %d %d\n",
855 best
->src
->index
, best
->dest
->index
);
863 RBI (traces
[last_trace
].last
)->next
= traces
[t2
].first
;
866 /* Find the successor traces. */
869 /* Find the continuation of the chain. */
872 for (e
= traces
[t
].last
->succ
; e
; e
= e
->succ_next
)
874 int di
= e
->dest
->index
;
876 if (e
->dest
!= EXIT_BLOCK_PTR
877 && (e
->flags
& EDGE_CAN_FALLTHRU
)
878 && !(e
->flags
& EDGE_COMPLEX
)
879 && bbd
[di
].start_of_trace
>= 0
880 && !connected
[bbd
[di
].start_of_trace
]
882 || e
->probability
> best
->probability
883 || (e
->probability
== best
->probability
884 && traces
[bbd
[di
].start_of_trace
].length
> best_len
)))
887 best_len
= traces
[bbd
[di
].start_of_trace
].length
;
895 fprintf (rtl_dump_file
, "Connection: %d %d\n",
896 best
->src
->index
, best
->dest
->index
);
898 t
= bbd
[best
->dest
->index
].start_of_trace
;
899 RBI (traces
[last_trace
].last
)->next
= traces
[t
].first
;
905 /* Try to connect the traces by duplication of 1 block. */
907 basic_block next_bb
= NULL
;
909 for (e
= traces
[t
].last
->succ
; e
; e
= e
->succ_next
)
910 if (e
->dest
!= EXIT_BLOCK_PTR
911 && (e
->flags
& EDGE_CAN_FALLTHRU
)
912 && !(e
->flags
& EDGE_COMPLEX
)
913 && (EDGE_FREQUENCY (e
) >= freq_threshold
)
914 && (e
->count
>= count_threshold
)
916 || e
->probability
> best
->probability
))
921 for (e2
= e
->dest
->succ
; e2
; e2
= e2
->succ_next
)
923 int di
= e2
->dest
->index
;
925 if (e2
->dest
== EXIT_BLOCK_PTR
926 || ((e2
->flags
& EDGE_CAN_FALLTHRU
)
927 && !(e2
->flags
& EDGE_COMPLEX
)
928 && bbd
[di
].start_of_trace
>= 0
929 && !connected
[bbd
[di
].start_of_trace
]
930 && (EDGE_FREQUENCY (e2
) >= freq_threshold
)
931 && (e2
->count
>= count_threshold
)
933 || e2
->probability
> best2
->probability
934 || (e2
->probability
== best2
->probability
935 && traces
[bbd
[di
].start_of_trace
].length
940 if (e2
->dest
!= EXIT_BLOCK_PTR
)
941 best2_len
= traces
[bbd
[di
].start_of_trace
].length
;
948 if (best
&& next_bb
&& copy_bb_p (best
->dest
, !optimize_size
))
954 fprintf (rtl_dump_file
, "Connection: %d %d ",
955 traces
[t
].last
->index
, best
->dest
->index
);
956 if (next_bb
== EXIT_BLOCK_PTR
)
957 fprintf (rtl_dump_file
, "exit\n");
959 fprintf (rtl_dump_file
, "%d\n", next_bb
->index
);
962 new_bb
= copy_bb (best
->dest
, best
, traces
[t
].last
, t
);
963 traces
[t
].last
= new_bb
;
964 if (next_bb
!= EXIT_BLOCK_PTR
)
966 t
= bbd
[next_bb
->index
].start_of_trace
;
967 RBI (traces
[last_trace
].last
)->next
= traces
[t
].first
;
972 break; /* Stop finding the successor traces. */
975 break; /* Stop finding the successor traces. */
984 fprintf (rtl_dump_file
, "Final order:\n");
985 for (bb
= traces
[0].first
; bb
; bb
= RBI (bb
)->next
)
986 fprintf (rtl_dump_file
, "%d ", bb
->index
);
987 fprintf (rtl_dump_file
, "\n");
988 fflush (rtl_dump_file
);
994 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
995 when code size is allowed to grow by duplication. */
998 copy_bb_p (bb
, code_may_grow
)
1003 int max_size
= uncond_jump_length
;
1008 if (!bb
->pred
|| !bb
->pred
->pred_next
)
1010 if (!cfg_layout_can_duplicate_bb_p (bb
))
1013 if (code_may_grow
&& maybe_hot_bb_p (bb
))
1016 for (insn
= bb
->head
; insn
!= NEXT_INSN (bb
->end
);
1017 insn
= NEXT_INSN (insn
))
1020 size
+= get_attr_length (insn
);
1023 if (size
<= max_size
)
1028 fprintf (rtl_dump_file
,
1029 "Block %d can't be copied because its size = %d.\n",
1036 /* Return the length of unconditional jump instruction. */
1039 get_uncond_jump_length ()
1044 label
= emit_label_before (gen_label_rtx (), get_insns ());
1045 jump
= emit_jump_insn (gen_jump (label
));
1047 length
= get_attr_length (jump
);
1050 delete_insn (label
);
1054 /* Reorder basic blocks. The main entry point to this file. */
1057 reorder_basic_blocks ()
1061 struct trace
*traces
;
1063 if (n_basic_blocks
<= 1)
1066 if ((* targetm
.cannot_modify_jumps_p
) ())
1069 cfg_layout_initialize (NULL
);
1071 set_edge_can_fallthru_flag ();
1072 mark_dfs_back_edges ();
1074 /* We are estimating the lenght of uncond jump insn only once since the code
1075 for getting the insn lenght always returns the minimal length now. */
1076 if (uncond_jump_length
== 0)
1077 uncond_jump_length
= get_uncond_jump_length ();
1079 /* We need to know some information for each basic block. */
1080 array_size
= GET_ARRAY_SIZE (last_basic_block
);
1081 bbd
= xmalloc (array_size
* sizeof (bbro_basic_block_data
));
1082 for (i
= 0; i
< array_size
; i
++)
1084 bbd
[i
].start_of_trace
= -1;
1085 bbd
[i
].end_of_trace
= -1;
1090 traces
= xmalloc (n_basic_blocks
* sizeof (struct trace
));
1092 find_traces (&n_traces
, traces
);
1093 connect_traces (n_traces
, traces
);
1098 dump_flow_info (rtl_dump_file
);
1100 cfg_layout_finalize ();