1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
27 #include "insn-config.h"
28 #include "insn-attr.h"
29 #include "hard-reg-set.h"
37 #include "basic-block.h"
41 #ifndef STACK_PUSH_CODE
42 #ifdef STACK_GROWS_DOWNWARD
43 #define STACK_PUSH_CODE PRE_DEC
45 #define STACK_PUSH_CODE PRE_INC
49 #ifndef STACK_POP_CODE
50 #ifdef STACK_GROWS_DOWNWARD
51 #define STACK_POP_CODE POST_INC
53 #define STACK_POP_CODE POST_DEC
57 static void validate_replace_rtx_1
PARAMS ((rtx
*, rtx
, rtx
, rtx
));
58 static rtx
*find_single_use_1
PARAMS ((rtx
, rtx
*));
59 static void validate_replace_src_1
PARAMS ((rtx
*, void *));
60 static rtx split_insn
PARAMS ((rtx
));
62 /* Nonzero means allow operands to be volatile.
63 This should be 0 if you are generating rtl, such as if you are calling
64 the functions in optabs.c and expmed.c (most of the time).
65 This should be 1 if all valid insns need to be recognized,
66 such as in regclass.c and final.c and reload.c.
68 init_recog and init_recog_no_volatile are responsible for setting this. */
72 struct recog_data recog_data
;
74 /* Contains a vector of operand_alternative structures for every operand.
75 Set up by preprocess_constraints. */
76 struct operand_alternative recog_op_alt
[MAX_RECOG_OPERANDS
][MAX_RECOG_ALTERNATIVES
];
78 /* On return from `constrain_operands', indicate which alternative
81 int which_alternative
;
83 /* Nonzero after end of reload pass.
84 Set to 1 or 0 by toplev.c.
85 Controls the significance of (SUBREG (MEM)). */
89 /* Initialize data used by the function `recog'.
90 This must be called once in the compilation of a function
91 before any insn recognition may be done in the function. */
94 init_recog_no_volatile ()
105 /* Try recognizing the instruction INSN,
106 and return the code number that results.
107 Remember the code so that repeated calls do not
108 need to spend the time for actual rerecognition.
110 This function is the normal interface to instruction recognition.
111 The automatically-generated function `recog' is normally called
112 through this one. (The only exception is in combine.c.) */
115 recog_memoized_1 (insn
)
118 if (INSN_CODE (insn
) < 0)
119 INSN_CODE (insn
) = recog (PATTERN (insn
), insn
, 0);
120 return INSN_CODE (insn
);
123 /* Check that X is an insn-body for an `asm' with operands
124 and that the operands mentioned in it are legitimate. */
127 check_asm_operands (x
)
132 const char **constraints
;
135 /* Post-reload, be more strict with things. */
136 if (reload_completed
)
138 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
139 extract_insn (make_insn_raw (x
));
140 constrain_operands (1);
141 return which_alternative
>= 0;
144 noperands
= asm_noperands (x
);
150 operands
= (rtx
*) alloca (noperands
* sizeof (rtx
));
151 constraints
= (const char **) alloca (noperands
* sizeof (char *));
153 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
);
155 for (i
= 0; i
< noperands
; i
++)
157 const char *c
= constraints
[i
];
160 if (ISDIGIT ((unsigned char)c
[0]) && c
[1] == '\0')
161 c
= constraints
[c
[0] - '0'];
163 if (! asm_operand_ok (operands
[i
], c
))
170 /* Static data for the next two routines. */
172 typedef struct change_t
180 static change_t
*changes
;
181 static int changes_allocated
;
183 static int num_changes
= 0;
185 /* Validate a proposed change to OBJECT. LOC is the location in the rtl for
186 at which NEW will be placed. If OBJECT is zero, no validation is done,
187 the change is simply made.
189 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
190 will be called with the address and mode as parameters. If OBJECT is
191 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
194 IN_GROUP is non-zero if this is part of a group of changes that must be
195 performed as a group. In that case, the changes will be stored. The
196 function `apply_change_group' will validate and apply the changes.
198 If IN_GROUP is zero, this is a single change. Try to recognize the insn
199 or validate the memory reference with the change applied. If the result
200 is not valid for the machine, suppress the change and return zero.
201 Otherwise, perform the change and return 1. */
204 validate_change (object
, loc
, new, in_group
)
212 if (old
== new || rtx_equal_p (old
, new))
215 if (in_group
== 0 && num_changes
!= 0)
220 /* Save the information describing this change. */
221 if (num_changes
>= changes_allocated
)
223 if (changes_allocated
== 0)
224 /* This value allows for repeated substitutions inside complex
225 indexed addresses, or changes in up to 5 insns. */
226 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
228 changes_allocated
*= 2;
231 (change_t
*) xrealloc (changes
,
232 sizeof (change_t
) * changes_allocated
);
235 changes
[num_changes
].object
= object
;
236 changes
[num_changes
].loc
= loc
;
237 changes
[num_changes
].old
= old
;
239 if (object
&& GET_CODE (object
) != MEM
)
241 /* Set INSN_CODE to force rerecognition of insn. Save old code in
243 changes
[num_changes
].old_code
= INSN_CODE (object
);
244 INSN_CODE (object
) = -1;
249 /* If we are making a group of changes, return 1. Otherwise, validate the
250 change group we made. */
255 return apply_change_group ();
258 /* This subroutine of apply_change_group verifies whether the changes to INSN
259 were valid; i.e. whether INSN can still be recognized. */
262 insn_invalid_p (insn
)
265 rtx pat
= PATTERN (insn
);
266 int num_clobbers
= 0;
267 /* If we are before reload and the pattern is a SET, see if we can add
269 int icode
= recog (pat
, insn
,
270 (GET_CODE (pat
) == SET
271 && ! reload_completed
&& ! reload_in_progress
)
272 ? &num_clobbers
: 0);
273 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
276 /* If this is an asm and the operand aren't legal, then fail. Likewise if
277 this is not an asm and the insn wasn't recognized. */
278 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
279 || (!is_asm
&& icode
< 0))
282 /* If we have to add CLOBBERs, fail if we have to add ones that reference
283 hard registers since our callers can't know if they are live or not.
284 Otherwise, add them. */
285 if (num_clobbers
> 0)
289 if (added_clobbers_hard_reg_p (icode
))
292 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
293 XVECEXP (newpat
, 0, 0) = pat
;
294 add_clobbers (newpat
, icode
);
295 PATTERN (insn
) = pat
= newpat
;
298 /* After reload, verify that all constraints are satisfied. */
299 if (reload_completed
)
303 if (! constrain_operands (1))
307 INSN_CODE (insn
) = icode
;
311 /* Apply a group of changes previously issued with `validate_change'.
312 Return 1 if all changes are valid, zero otherwise. */
315 apply_change_group ()
318 rtx last_validated
= NULL_RTX
;
320 /* The changes have been applied and all INSN_CODEs have been reset to force
323 The changes are valid if we aren't given an object, or if we are
324 given a MEM and it still is a valid address, or if this is in insn
325 and it is recognized. In the latter case, if reload has completed,
326 we also require that the operands meet the constraints for
329 for (i
= 0; i
< num_changes
; i
++)
331 rtx object
= changes
[i
].object
;
333 /* if there is no object to test or if it is the same as the one we
334 already tested, ignore it. */
335 if (object
== 0 || object
== last_validated
)
338 if (GET_CODE (object
) == MEM
)
340 if (! memory_address_p (GET_MODE (object
), XEXP (object
, 0)))
343 else if (insn_invalid_p (object
))
345 rtx pat
= PATTERN (object
);
347 /* Perhaps we couldn't recognize the insn because there were
348 extra CLOBBERs at the end. If so, try to re-recognize
349 without the last CLOBBER (later iterations will cause each of
350 them to be eliminated, in turn). But don't do this if we
351 have an ASM_OPERAND. */
352 if (GET_CODE (pat
) == PARALLEL
353 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
354 && asm_noperands (PATTERN (object
)) < 0)
358 if (XVECLEN (pat
, 0) == 2)
359 newpat
= XVECEXP (pat
, 0, 0);
365 = gen_rtx_PARALLEL (VOIDmode
,
366 rtvec_alloc (XVECLEN (pat
, 0) - 1));
367 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
368 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
371 /* Add a new change to this group to replace the pattern
372 with this new pattern. Then consider this change
373 as having succeeded. The change we added will
374 cause the entire call to fail if things remain invalid.
376 Note that this can lose if a later change than the one
377 we are processing specified &XVECEXP (PATTERN (object), 0, X)
378 but this shouldn't occur. */
380 validate_change (object
, &PATTERN (object
), newpat
, 1);
383 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
384 /* If this insn is a CLOBBER or USE, it is always valid, but is
390 last_validated
= object
;
393 if (i
== num_changes
)
405 /* Return the number of changes so far in the current group. */
408 num_validated_changes ()
413 /* Retract the changes numbered NUM and up. */
421 /* Back out all the changes. Do this in the opposite order in which
423 for (i
= num_changes
- 1; i
>= num
; i
--)
425 *changes
[i
].loc
= changes
[i
].old
;
426 if (changes
[i
].object
&& GET_CODE (changes
[i
].object
) != MEM
)
427 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
432 /* Replace every occurrence of FROM in X with TO. Mark each change with
433 validate_change passing OBJECT. */
436 validate_replace_rtx_1 (loc
, from
, to
, object
)
438 rtx from
, to
, object
;
441 register const char *fmt
;
442 register rtx x
= *loc
;
444 enum machine_mode op0_mode
= VOIDmode
;
445 int prev_changes
= num_changes
;
452 fmt
= GET_RTX_FORMAT (code
);
454 op0_mode
= GET_MODE (XEXP (x
, 0));
456 /* X matches FROM if it is the same rtx or they are both referring to the
457 same register in the same mode. Avoid calling rtx_equal_p unless the
458 operands look similar. */
461 || (GET_CODE (x
) == REG
&& GET_CODE (from
) == REG
462 && GET_MODE (x
) == GET_MODE (from
)
463 && REGNO (x
) == REGNO (from
))
464 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
465 && rtx_equal_p (x
, from
)))
467 validate_change (object
, loc
, to
, 1);
471 /* Call ourseves recursivly to perform the replacements. */
473 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
476 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
);
477 else if (fmt
[i
] == 'E')
478 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
479 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
);
482 /* In case we didn't substituted, there is nothing to do. */
483 if (num_changes
== prev_changes
)
486 /* Allow substituted expression to have different mode. This is used by
487 regmove to change mode of pseudo register. */
488 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
489 op0_mode
= GET_MODE (XEXP (x
, 0));
491 /* Do changes needed to keep rtx consistent. Don't do any other
492 simplifications, as it is not our job. */
494 if ((GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == 'c')
495 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
497 validate_change (object
, loc
,
498 gen_rtx_fmt_ee (GET_RTX_CLASS (code
) == 'c' ? code
499 : swap_condition (code
),
500 GET_MODE (x
), XEXP (x
, 1),
509 /* If we have a PLUS whose second operand is now a CONST_INT, use
510 plus_constant to try to simplify it.
511 ??? We may want later to remove this, once simplification is
512 separated from this function. */
513 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
514 validate_change (object
, loc
,
515 plus_constant (XEXP (x
, 0), INTVAL (XEXP (x
, 1))), 1);
518 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
519 || GET_CODE (XEXP (x
, 1)) == CONST_DOUBLE
)
520 validate_change (object
, loc
,
522 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
523 simplify_gen_unary (NEG
,
524 op0_mode
, XEXP (x
, 1),
529 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
531 new = simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
533 /* If any of the above failed, substitute in something that
534 we know won't be recognized. */
536 new = gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
537 validate_change (object
, loc
, new, 1);
541 /* All subregs possible to simplify should be simplified. */
542 new = simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
545 /* Subregs of VOIDmode operands are incorect. */
546 if (!new && GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
547 new = gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
549 validate_change (object
, loc
, new, 1);
553 /* If we are replacing a register with memory, try to change the memory
554 to be the mode required for memory in extract operations (this isn't
555 likely to be an insertion operation; if it was, nothing bad will
556 happen, we might just fail in some cases). */
558 if (GET_CODE (XEXP (x
, 0)) == MEM
559 && GET_CODE (XEXP (x
, 1)) == CONST_INT
560 && GET_CODE (XEXP (x
, 2)) == CONST_INT
561 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0))
562 && !MEM_VOLATILE_P (XEXP (x
, 0)))
564 enum machine_mode wanted_mode
= VOIDmode
;
565 enum machine_mode is_mode
= GET_MODE (XEXP (x
, 0));
566 int pos
= INTVAL (XEXP (x
, 2));
569 if (code
== ZERO_EXTRACT
)
571 wanted_mode
= insn_data
[(int) CODE_FOR_extzv
].operand
[1].mode
;
572 if (wanted_mode
== VOIDmode
)
573 wanted_mode
= word_mode
;
577 if (code
== SIGN_EXTRACT
)
579 wanted_mode
= insn_data
[(int) CODE_FOR_extv
].operand
[1].mode
;
580 if (wanted_mode
== VOIDmode
)
581 wanted_mode
= word_mode
;
585 /* If we have a narrower mode, we can do something. */
586 if (wanted_mode
!= VOIDmode
587 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
589 int offset
= pos
/ BITS_PER_UNIT
;
592 /* If the bytes and bits are counted differently, we
593 must adjust the offset. */
594 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
596 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
599 pos
%= GET_MODE_BITSIZE (wanted_mode
);
601 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
603 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
604 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
615 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
616 with TO. After all changes have been made, validate by seeing
617 if INSN is still valid. */
620 validate_replace_rtx_subexp (from
, to
, insn
, loc
)
621 rtx from
, to
, insn
, *loc
;
623 validate_replace_rtx_1 (loc
, from
, to
, insn
);
624 return apply_change_group ();
627 /* Try replacing every occurrence of FROM in INSN with TO. After all
628 changes have been made, validate by seeing if INSN is still valid. */
631 validate_replace_rtx (from
, to
, insn
)
634 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
);
635 return apply_change_group ();
638 /* Try replacing every occurrence of FROM in INSN with TO. */
641 validate_replace_rtx_group (from
, to
, insn
)
644 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
);
647 /* Function called by note_uses to replace used subexpressions. */
648 struct validate_replace_src_data
650 rtx from
; /* Old RTX */
651 rtx to
; /* New RTX */
652 rtx insn
; /* Insn in which substitution is occurring. */
656 validate_replace_src_1 (x
, data
)
660 struct validate_replace_src_data
*d
661 = (struct validate_replace_src_data
*) data
;
663 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
);
666 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
667 SET_DESTs. After all changes have been made, validate by seeing if
668 INSN is still valid. */
671 validate_replace_src (from
, to
, insn
)
674 struct validate_replace_src_data d
;
679 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
680 return apply_change_group ();
684 /* Return 1 if the insn using CC0 set by INSN does not contain
685 any ordered tests applied to the condition codes.
686 EQ and NE tests do not count. */
689 next_insn_tests_no_inequality (insn
)
692 register rtx next
= next_cc0_user (insn
);
694 /* If there is no next insn, we have to take the conservative choice. */
698 return ((GET_CODE (next
) == JUMP_INSN
699 || GET_CODE (next
) == INSN
700 || GET_CODE (next
) == CALL_INSN
)
701 && ! inequality_comparisons_p (PATTERN (next
)));
704 #if 0 /* This is useless since the insn that sets the cc's
705 must be followed immediately by the use of them. */
706 /* Return 1 if the CC value set up by INSN is not used. */
709 next_insns_test_no_inequality (insn
)
712 register rtx next
= NEXT_INSN (insn
);
714 for (; next
!= 0; next
= NEXT_INSN (next
))
716 if (GET_CODE (next
) == CODE_LABEL
717 || GET_CODE (next
) == BARRIER
)
719 if (GET_CODE (next
) == NOTE
)
721 if (inequality_comparisons_p (PATTERN (next
)))
723 if (sets_cc0_p (PATTERN (next
)) == 1)
725 if (! reg_mentioned_p (cc0_rtx
, PATTERN (next
)))
733 /* This is used by find_single_use to locate an rtx that contains exactly one
734 use of DEST, which is typically either a REG or CC0. It returns a
735 pointer to the innermost rtx expression containing DEST. Appearances of
736 DEST that are being used to totally replace it are not counted. */
739 find_single_use_1 (dest
, loc
)
744 enum rtx_code code
= GET_CODE (x
);
761 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
762 of a REG that occupies all of the REG, the insn uses DEST if
763 it is mentioned in the destination or the source. Otherwise, we
764 need just check the source. */
765 if (GET_CODE (SET_DEST (x
)) != CC0
766 && GET_CODE (SET_DEST (x
)) != PC
767 && GET_CODE (SET_DEST (x
)) != REG
768 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
769 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
770 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
771 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
772 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
773 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
776 return find_single_use_1 (dest
, &SET_SRC (x
));
780 return find_single_use_1 (dest
, &XEXP (x
, 0));
786 /* If it wasn't one of the common cases above, check each expression and
787 vector of this code. Look for a unique usage of DEST. */
789 fmt
= GET_RTX_FORMAT (code
);
790 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
794 if (dest
== XEXP (x
, i
)
795 || (GET_CODE (dest
) == REG
&& GET_CODE (XEXP (x
, i
)) == REG
796 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
799 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
802 result
= this_result
;
803 else if (this_result
)
804 /* Duplicate usage. */
807 else if (fmt
[i
] == 'E')
811 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
813 if (XVECEXP (x
, i
, j
) == dest
814 || (GET_CODE (dest
) == REG
815 && GET_CODE (XVECEXP (x
, i
, j
)) == REG
816 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
819 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
822 result
= this_result
;
823 else if (this_result
)
832 /* See if DEST, produced in INSN, is used only a single time in the
833 sequel. If so, return a pointer to the innermost rtx expression in which
836 If PLOC is non-zero, *PLOC is set to the insn containing the single use.
838 This routine will return usually zero either before flow is called (because
839 there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
840 note can't be trusted).
842 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
843 care about REG_DEAD notes or LOG_LINKS.
845 Otherwise, we find the single use by finding an insn that has a
846 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
847 only referenced once in that insn, we know that it must be the first
848 and last insn referencing DEST. */
851 find_single_use (dest
, insn
, ploc
)
863 next
= NEXT_INSN (insn
);
865 || (GET_CODE (next
) != INSN
&& GET_CODE (next
) != JUMP_INSN
))
868 result
= find_single_use_1 (dest
, &PATTERN (next
));
875 if (reload_completed
|| reload_in_progress
|| GET_CODE (dest
) != REG
)
878 for (next
= next_nonnote_insn (insn
);
879 next
!= 0 && GET_CODE (next
) != CODE_LABEL
;
880 next
= next_nonnote_insn (next
))
881 if (INSN_P (next
) && dead_or_set_p (next
, dest
))
883 for (link
= LOG_LINKS (next
); link
; link
= XEXP (link
, 1))
884 if (XEXP (link
, 0) == insn
)
889 result
= find_single_use_1 (dest
, &PATTERN (next
));
899 /* Return 1 if OP is a valid general operand for machine mode MODE.
900 This is either a register reference, a memory reference,
901 or a constant. In the case of a memory reference, the address
902 is checked for general validity for the target machine.
904 Register and memory references must have mode MODE in order to be valid,
905 but some constants have no machine mode and are valid for any mode.
907 If MODE is VOIDmode, OP is checked for validity for whatever mode
910 The main use of this function is as a predicate in match_operand
911 expressions in the machine description.
913 For an explanation of this function's behavior for registers of
914 class NO_REGS, see the comment for `register_operand'. */
917 general_operand (op
, mode
)
919 enum machine_mode mode
;
921 register enum rtx_code code
= GET_CODE (op
);
923 if (mode
== VOIDmode
)
924 mode
= GET_MODE (op
);
926 /* Don't accept CONST_INT or anything similar
927 if the caller wants something floating. */
928 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
929 && GET_MODE_CLASS (mode
) != MODE_INT
930 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
933 if (GET_CODE (op
) == CONST_INT
934 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
938 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
940 #ifdef LEGITIMATE_PIC_OPERAND_P
941 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
943 && LEGITIMATE_CONSTANT_P (op
));
945 /* Except for certain constants with VOIDmode, already checked for,
946 OP's mode must match MODE if MODE specifies a mode. */
948 if (GET_MODE (op
) != mode
)
953 #ifdef INSN_SCHEDULING
954 /* On machines that have insn scheduling, we want all memory
955 reference to be explicit, so outlaw paradoxical SUBREGs. */
956 if (GET_CODE (SUBREG_REG (op
)) == MEM
957 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op
))))
960 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
961 may result in incorrect reference. We should simplify all valid
962 subregs of MEM anyway. But allow this after reload because we
963 might be called from cleanup_subreg_operands.
965 ??? This is a kludge. */
966 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
967 && GET_CODE (SUBREG_REG (op
)) == MEM
)
970 op
= SUBREG_REG (op
);
971 code
= GET_CODE (op
);
975 /* A register whose class is NO_REGS is not a general operand. */
976 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
977 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
);
981 register rtx y
= XEXP (op
, 0);
983 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
986 if (GET_CODE (y
) == ADDRESSOF
)
989 /* Use the mem's mode, since it will be reloaded thus. */
990 mode
= GET_MODE (op
);
991 GO_IF_LEGITIMATE_ADDRESS (mode
, y
, win
);
994 /* Pretend this is an operand for now; we'll run force_operand
995 on its replacement in fixup_var_refs_1. */
996 if (code
== ADDRESSOF
)
1005 /* Return 1 if OP is a valid memory address for a memory reference
1008 The main use of this function is as a predicate in match_operand
1009 expressions in the machine description. */
1012 address_operand (op
, mode
)
1014 enum machine_mode mode
;
1016 return memory_address_p (mode
, op
);
1019 /* Return 1 if OP is a register reference of mode MODE.
1020 If MODE is VOIDmode, accept a register in any mode.
1022 The main use of this function is as a predicate in match_operand
1023 expressions in the machine description.
1025 As a special exception, registers whose class is NO_REGS are
1026 not accepted by `register_operand'. The reason for this change
1027 is to allow the representation of special architecture artifacts
1028 (such as a condition code register) without extending the rtl
1029 definitions. Since registers of class NO_REGS cannot be used
1030 as registers in any case where register classes are examined,
1031 it is most consistent to keep this function from accepting them. */
1034 register_operand (op
, mode
)
1036 enum machine_mode mode
;
1038 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1041 if (GET_CODE (op
) == SUBREG
)
1043 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1044 because it is guaranteed to be reloaded into one.
1045 Just make sure the MEM is valid in itself.
1046 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1047 but currently it does result from (SUBREG (REG)...) where the
1048 reg went on the stack.) */
1049 if (! reload_completed
&& GET_CODE (SUBREG_REG (op
)) == MEM
)
1050 return general_operand (op
, mode
);
1052 #ifdef CLASS_CANNOT_CHANGE_MODE
1053 if (GET_CODE (SUBREG_REG (op
)) == REG
1054 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
1055 && (TEST_HARD_REG_BIT
1056 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_MODE
],
1057 REGNO (SUBREG_REG (op
))))
1058 && CLASS_CANNOT_CHANGE_MODE_P (mode
, GET_MODE (SUBREG_REG (op
)))
1059 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op
))) != MODE_COMPLEX_INT
1060 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op
))) != MODE_COMPLEX_FLOAT
)
1064 op
= SUBREG_REG (op
);
1067 /* If we have an ADDRESSOF, consider it valid since it will be
1068 converted into something that will not be a MEM. */
1069 if (GET_CODE (op
) == ADDRESSOF
)
1072 /* We don't consider registers whose class is NO_REGS
1073 to be a register operand. */
1074 return (GET_CODE (op
) == REG
1075 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1076 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1079 /* Return 1 for a register in Pmode; ignore the tested mode. */
1082 pmode_register_operand (op
, mode
)
1084 enum machine_mode mode ATTRIBUTE_UNUSED
;
1086 return register_operand (op
, Pmode
);
1089 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1090 or a hard register. */
1093 scratch_operand (op
, mode
)
1095 enum machine_mode mode
;
1097 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1100 return (GET_CODE (op
) == SCRATCH
1101 || (GET_CODE (op
) == REG
1102 && REGNO (op
) < FIRST_PSEUDO_REGISTER
));
1105 /* Return 1 if OP is a valid immediate operand for mode MODE.
1107 The main use of this function is as a predicate in match_operand
1108 expressions in the machine description. */
1111 immediate_operand (op
, mode
)
1113 enum machine_mode mode
;
1115 /* Don't accept CONST_INT or anything similar
1116 if the caller wants something floating. */
1117 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1118 && GET_MODE_CLASS (mode
) != MODE_INT
1119 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1122 if (GET_CODE (op
) == CONST_INT
1123 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1126 /* Accept CONSTANT_P_RTX, since it will be gone by CSE1 and
1127 result in 0/1. It seems a safe assumption that this is
1128 in range for everyone. */
1129 if (GET_CODE (op
) == CONSTANT_P_RTX
)
1132 return (CONSTANT_P (op
)
1133 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1134 || GET_MODE (op
) == VOIDmode
)
1135 #ifdef LEGITIMATE_PIC_OPERAND_P
1136 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1138 && LEGITIMATE_CONSTANT_P (op
));
1141 /* Returns 1 if OP is an operand that is a CONST_INT. */
1144 const_int_operand (op
, mode
)
1146 enum machine_mode mode
;
1148 if (GET_CODE (op
) != CONST_INT
)
1151 if (mode
!= VOIDmode
1152 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1158 /* Returns 1 if OP is an operand that is a constant integer or constant
1159 floating-point number. */
1162 const_double_operand (op
, mode
)
1164 enum machine_mode mode
;
1166 /* Don't accept CONST_INT or anything similar
1167 if the caller wants something floating. */
1168 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1169 && GET_MODE_CLASS (mode
) != MODE_INT
1170 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1173 return ((GET_CODE (op
) == CONST_DOUBLE
|| GET_CODE (op
) == CONST_INT
)
1174 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1175 || GET_MODE (op
) == VOIDmode
));
1178 /* Return 1 if OP is a general operand that is not an immediate operand. */
1181 nonimmediate_operand (op
, mode
)
1183 enum machine_mode mode
;
1185 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1188 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1191 nonmemory_operand (op
, mode
)
1193 enum machine_mode mode
;
1195 if (CONSTANT_P (op
))
1197 /* Don't accept CONST_INT or anything similar
1198 if the caller wants something floating. */
1199 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1200 && GET_MODE_CLASS (mode
) != MODE_INT
1201 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1204 if (GET_CODE (op
) == CONST_INT
1205 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1208 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
1209 || mode
== VOIDmode
)
1210 #ifdef LEGITIMATE_PIC_OPERAND_P
1211 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1213 && LEGITIMATE_CONSTANT_P (op
));
1216 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1219 if (GET_CODE (op
) == SUBREG
)
1221 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1222 because it is guaranteed to be reloaded into one.
1223 Just make sure the MEM is valid in itself.
1224 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1225 but currently it does result from (SUBREG (REG)...) where the
1226 reg went on the stack.) */
1227 if (! reload_completed
&& GET_CODE (SUBREG_REG (op
)) == MEM
)
1228 return general_operand (op
, mode
);
1229 op
= SUBREG_REG (op
);
1232 /* We don't consider registers whose class is NO_REGS
1233 to be a register operand. */
1234 return (GET_CODE (op
) == REG
1235 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1236 || REGNO_REG_CLASS (REGNO (op
)) != NO_REGS
));
1239 /* Return 1 if OP is a valid operand that stands for pushing a
1240 value of mode MODE onto the stack.
1242 The main use of this function is as a predicate in match_operand
1243 expressions in the machine description. */
1246 push_operand (op
, mode
)
1248 enum machine_mode mode
;
1250 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1252 #ifdef PUSH_ROUNDING
1253 rounded_size
= PUSH_ROUNDING (rounded_size
);
1256 if (GET_CODE (op
) != MEM
)
1259 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1264 if (rounded_size
== GET_MODE_SIZE (mode
))
1266 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1271 if (GET_CODE (op
) != PRE_MODIFY
1272 || GET_CODE (XEXP (op
, 1)) != PLUS
1273 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1274 || GET_CODE (XEXP (XEXP (op
, 1), 1)) != CONST_INT
1275 #ifdef STACK_GROWS_DOWNWARD
1276 || INTVAL (XEXP (XEXP (op
, 1), 1)) != - (int) rounded_size
1278 || INTVAL (XEXP (XEXP (op
, 1), 1)) != rounded_size
1284 return XEXP (op
, 0) == stack_pointer_rtx
;
1287 /* Return 1 if OP is a valid operand that stands for popping a
1288 value of mode MODE off the stack.
1290 The main use of this function is as a predicate in match_operand
1291 expressions in the machine description. */
1294 pop_operand (op
, mode
)
1296 enum machine_mode mode
;
1298 if (GET_CODE (op
) != MEM
)
1301 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1306 if (GET_CODE (op
) != STACK_POP_CODE
)
1309 return XEXP (op
, 0) == stack_pointer_rtx
;
1312 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1315 memory_address_p (mode
, addr
)
1316 enum machine_mode mode ATTRIBUTE_UNUSED
;
1319 if (GET_CODE (addr
) == ADDRESSOF
)
1322 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1329 /* Return 1 if OP is a valid memory reference with mode MODE,
1330 including a valid address.
1332 The main use of this function is as a predicate in match_operand
1333 expressions in the machine description. */
1336 memory_operand (op
, mode
)
1338 enum machine_mode mode
;
1342 if (! reload_completed
)
1343 /* Note that no SUBREG is a memory operand before end of reload pass,
1344 because (SUBREG (MEM...)) forces reloading into a register. */
1345 return GET_CODE (op
) == MEM
&& general_operand (op
, mode
);
1347 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1351 if (GET_CODE (inner
) == SUBREG
)
1352 inner
= SUBREG_REG (inner
);
1354 return (GET_CODE (inner
) == MEM
&& general_operand (op
, mode
));
1357 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1358 that is, a memory reference whose address is a general_operand. */
1361 indirect_operand (op
, mode
)
1363 enum machine_mode mode
;
1365 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1366 if (! reload_completed
1367 && GET_CODE (op
) == SUBREG
&& GET_CODE (SUBREG_REG (op
)) == MEM
)
1369 register int offset
= SUBREG_BYTE (op
);
1370 rtx inner
= SUBREG_REG (op
);
1372 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1375 /* The only way that we can have a general_operand as the resulting
1376 address is if OFFSET is zero and the address already is an operand
1377 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1380 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1381 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1382 && GET_CODE (XEXP (XEXP (inner
, 0), 1)) == CONST_INT
1383 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1384 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1387 return (GET_CODE (op
) == MEM
1388 && memory_operand (op
, mode
)
1389 && general_operand (XEXP (op
, 0), Pmode
));
1392 /* Return 1 if this is a comparison operator. This allows the use of
1393 MATCH_OPERATOR to recognize all the branch insns. */
1396 comparison_operator (op
, mode
)
1398 enum machine_mode mode
;
1400 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1401 && GET_RTX_CLASS (GET_CODE (op
)) == '<');
1404 /* If BODY is an insn body that uses ASM_OPERANDS,
1405 return the number of operands (both input and output) in the insn.
1406 Otherwise return -1. */
1409 asm_noperands (body
)
1412 switch (GET_CODE (body
))
1415 /* No output operands: return number of input operands. */
1416 return ASM_OPERANDS_INPUT_LENGTH (body
);
1418 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1419 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1420 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body
)) + 1;
1424 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
1425 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
1427 /* Multiple output operands, or 1 output plus some clobbers:
1428 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1432 /* Count backwards through CLOBBERs to determine number of SETs. */
1433 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1435 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1437 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1441 /* N_SETS is now number of output operands. */
1444 /* Verify that all the SETs we have
1445 came from a single original asm_operands insn
1446 (so that invalid combinations are blocked). */
1447 for (i
= 0; i
< n_sets
; i
++)
1449 rtx elt
= XVECEXP (body
, 0, i
);
1450 if (GET_CODE (elt
) != SET
)
1452 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1454 /* If these ASM_OPERANDS rtx's came from different original insns
1455 then they aren't allowed together. */
1456 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1457 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body
, 0, 0))))
1460 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body
, 0, 0)))
1463 else if (GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1465 /* 0 outputs, but some clobbers:
1466 body is [(asm_operands ...) (clobber (reg ...))...]. */
1469 /* Make sure all the other parallel things really are clobbers. */
1470 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1471 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1474 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body
, 0, 0));
1483 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1484 copy its operands (both input and output) into the vector OPERANDS,
1485 the locations of the operands within the insn into the vector OPERAND_LOCS,
1486 and the constraints for the operands into CONSTRAINTS.
1487 Write the modes of the operands into MODES.
1488 Return the assembler-template.
1490 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1491 we don't store that info. */
1494 decode_asm_operands (body
, operands
, operand_locs
, constraints
, modes
)
1498 const char **constraints
;
1499 enum machine_mode
*modes
;
1503 const char *template = 0;
1505 if (GET_CODE (body
) == SET
&& GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
1507 rtx asmop
= SET_SRC (body
);
1508 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1510 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
) + 1;
1512 for (i
= 1; i
< noperands
; i
++)
1515 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
- 1);
1517 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
- 1);
1519 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
- 1);
1521 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
- 1);
1524 /* The output is in the SET.
1525 Its constraint is in the ASM_OPERANDS itself. */
1527 operands
[0] = SET_DEST (body
);
1529 operand_locs
[0] = &SET_DEST (body
);
1531 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1533 modes
[0] = GET_MODE (SET_DEST (body
));
1534 template = ASM_OPERANDS_TEMPLATE (asmop
);
1536 else if (GET_CODE (body
) == ASM_OPERANDS
)
1539 /* No output operands: BODY is (asm_operands ....). */
1541 noperands
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1543 /* The input operands are found in the 1st element vector. */
1544 /* Constraints for inputs are in the 2nd element vector. */
1545 for (i
= 0; i
< noperands
; i
++)
1548 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1550 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1552 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1554 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1556 template = ASM_OPERANDS_TEMPLATE (asmop
);
1558 else if (GET_CODE (body
) == PARALLEL
1559 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
1561 rtx asmop
= SET_SRC (XVECEXP (body
, 0, 0));
1562 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1563 int nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1564 int nout
= 0; /* Does not include CLOBBERs. */
1566 /* At least one output, plus some CLOBBERs. */
1568 /* The outputs are in the SETs.
1569 Their constraints are in the ASM_OPERANDS itself. */
1570 for (i
= 0; i
< nparallel
; i
++)
1572 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1573 break; /* Past last SET */
1576 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1578 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1580 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1582 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1586 for (i
= 0; i
< nin
; i
++)
1589 operand_locs
[i
+ nout
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1591 operands
[i
+ nout
] = ASM_OPERANDS_INPUT (asmop
, i
);
1593 constraints
[i
+ nout
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1595 modes
[i
+ nout
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1598 template = ASM_OPERANDS_TEMPLATE (asmop
);
1600 else if (GET_CODE (body
) == PARALLEL
1601 && GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
1603 /* No outputs, but some CLOBBERs. */
1605 rtx asmop
= XVECEXP (body
, 0, 0);
1606 int nin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1608 for (i
= 0; i
< nin
; i
++)
1611 operand_locs
[i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1613 operands
[i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1615 constraints
[i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1617 modes
[i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1620 template = ASM_OPERANDS_TEMPLATE (asmop
);
1626 /* Check if an asm_operand matches it's constraints.
1627 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1630 asm_operand_ok (op
, constraint
)
1632 const char *constraint
;
1636 /* Use constrain_operands after reload. */
1637 if (reload_completed
)
1642 char c
= *constraint
++;
1656 case '0': case '1': case '2': case '3': case '4':
1657 case '5': case '6': case '7': case '8': case '9':
1658 /* For best results, our caller should have given us the
1659 proper matching constraint, but we can't actually fail
1660 the check if they didn't. Indicate that results are
1666 if (address_operand (op
, VOIDmode
))
1671 case 'V': /* non-offsettable */
1672 if (memory_operand (op
, VOIDmode
))
1676 case 'o': /* offsettable */
1677 if (offsettable_nonstrict_memref_p (op
))
1682 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1683 excepting those that expand_call created. Further, on some
1684 machines which do not have generalized auto inc/dec, an inc/dec
1685 is not a memory_operand.
1687 Match any memory and hope things are resolved after reload. */
1689 if (GET_CODE (op
) == MEM
1691 || GET_CODE (XEXP (op
, 0)) == PRE_DEC
1692 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1697 if (GET_CODE (op
) == MEM
1699 || GET_CODE (XEXP (op
, 0)) == PRE_INC
1700 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1705 #ifndef REAL_ARITHMETIC
1706 /* Match any floating double constant, but only if
1707 we can examine the bits of it reliably. */
1708 if ((HOST_FLOAT_FORMAT
!= TARGET_FLOAT_FORMAT
1709 || HOST_BITS_PER_WIDE_INT
!= BITS_PER_WORD
)
1710 && GET_MODE (op
) != VOIDmode
&& ! flag_pretend_float
)
1716 if (GET_CODE (op
) == CONST_DOUBLE
)
1721 if (GET_CODE (op
) == CONST_DOUBLE
1722 && CONST_DOUBLE_OK_FOR_LETTER_P (op
, 'G'))
1726 if (GET_CODE (op
) == CONST_DOUBLE
1727 && CONST_DOUBLE_OK_FOR_LETTER_P (op
, 'H'))
1732 if (GET_CODE (op
) == CONST_INT
1733 || (GET_CODE (op
) == CONST_DOUBLE
1734 && GET_MODE (op
) == VOIDmode
))
1740 #ifdef LEGITIMATE_PIC_OPERAND_P
1741 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1748 if (GET_CODE (op
) == CONST_INT
1749 || (GET_CODE (op
) == CONST_DOUBLE
1750 && GET_MODE (op
) == VOIDmode
))
1755 if (GET_CODE (op
) == CONST_INT
1756 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'I'))
1760 if (GET_CODE (op
) == CONST_INT
1761 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'J'))
1765 if (GET_CODE (op
) == CONST_INT
1766 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'K'))
1770 if (GET_CODE (op
) == CONST_INT
1771 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'L'))
1775 if (GET_CODE (op
) == CONST_INT
1776 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'M'))
1780 if (GET_CODE (op
) == CONST_INT
1781 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'N'))
1785 if (GET_CODE (op
) == CONST_INT
1786 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'O'))
1790 if (GET_CODE (op
) == CONST_INT
1791 && CONST_OK_FOR_LETTER_P (INTVAL (op
), 'P'))
1799 if (general_operand (op
, VOIDmode
))
1804 /* For all other letters, we first check for a register class,
1805 otherwise it is an EXTRA_CONSTRAINT. */
1806 if (REG_CLASS_FROM_LETTER (c
) != NO_REGS
)
1809 if (GET_MODE (op
) == BLKmode
)
1811 if (register_operand (op
, VOIDmode
))
1814 #ifdef EXTRA_CONSTRAINT
1815 if (EXTRA_CONSTRAINT (op
, c
))
1825 /* Given an rtx *P, if it is a sum containing an integer constant term,
1826 return the location (type rtx *) of the pointer to that constant term.
1827 Otherwise, return a null pointer. */
1830 find_constant_term_loc (p
)
1834 register enum rtx_code code
= GET_CODE (*p
);
1836 /* If *P IS such a constant term, P is its location. */
1838 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1842 /* Otherwise, if not a sum, it has no constant term. */
1844 if (GET_CODE (*p
) != PLUS
)
1847 /* If one of the summands is constant, return its location. */
1849 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1850 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1853 /* Otherwise, check each summand for containing a constant term. */
1855 if (XEXP (*p
, 0) != 0)
1857 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1862 if (XEXP (*p
, 1) != 0)
1864 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1872 /* Return 1 if OP is a memory reference
1873 whose address contains no side effects
1874 and remains valid after the addition
1875 of a positive integer less than the
1876 size of the object being referenced.
1878 We assume that the original address is valid and do not check it.
1880 This uses strict_memory_address_p as a subroutine, so
1881 don't use it before reload. */
1884 offsettable_memref_p (op
)
1887 return ((GET_CODE (op
) == MEM
)
1888 && offsettable_address_p (1, GET_MODE (op
), XEXP (op
, 0)));
1891 /* Similar, but don't require a strictly valid mem ref:
1892 consider pseudo-regs valid as index or base regs. */
1895 offsettable_nonstrict_memref_p (op
)
1898 return ((GET_CODE (op
) == MEM
)
1899 && offsettable_address_p (0, GET_MODE (op
), XEXP (op
, 0)));
1902 /* Return 1 if Y is a memory address which contains no side effects
1903 and would remain valid after the addition of a positive integer
1904 less than the size of that mode.
1906 We assume that the original address is valid and do not check it.
1907 We do check that it is valid for narrower modes.
1909 If STRICTP is nonzero, we require a strictly valid address,
1910 for the sake of use in reload.c. */
1913 offsettable_address_p (strictp
, mode
, y
)
1915 enum machine_mode mode
;
1918 register enum rtx_code ycode
= GET_CODE (y
);
1922 int (*addressp
) PARAMS ((enum machine_mode
, rtx
)) =
1923 (strictp
? strict_memory_address_p
: memory_address_p
);
1924 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1926 if (CONSTANT_ADDRESS_P (y
))
1929 /* Adjusting an offsettable address involves changing to a narrower mode.
1930 Make sure that's OK. */
1932 if (mode_dependent_address_p (y
))
1935 /* ??? How much offset does an offsettable BLKmode reference need?
1936 Clearly that depends on the situation in which it's being used.
1937 However, the current situation in which we test 0xffffffff is
1938 less than ideal. Caveat user. */
1940 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1942 /* If the expression contains a constant term,
1943 see if it remains valid when max possible offset is added. */
1945 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1950 *y2
= plus_constant (*y2
, mode_sz
- 1);
1951 /* Use QImode because an odd displacement may be automatically invalid
1952 for any wider mode. But it should be valid for a single byte. */
1953 good
= (*addressp
) (QImode
, y
);
1955 /* In any case, restore old contents of memory. */
1960 if (GET_RTX_CLASS (ycode
) == 'a')
1963 /* The offset added here is chosen as the maximum offset that
1964 any instruction could need to add when operating on something
1965 of the specified mode. We assume that if Y and Y+c are
1966 valid addresses then so is Y+d for all 0<d<c. */
1968 z
= plus_constant (y
, mode_sz
- 1);
1970 /* Use QImode because an odd displacement may be automatically invalid
1971 for any wider mode. But it should be valid for a single byte. */
1972 return (*addressp
) (QImode
, z
);
1975 /* Return 1 if ADDR is an address-expression whose effect depends
1976 on the mode of the memory reference it is used in.
1978 Autoincrement addressing is a typical example of mode-dependence
1979 because the amount of the increment depends on the mode. */
1982 mode_dependent_address_p (addr
)
1983 rtx addr ATTRIBUTE_UNUSED
; /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */
1985 GO_IF_MODE_DEPENDENT_ADDRESS (addr
, win
);
1987 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1988 win
: ATTRIBUTE_UNUSED_LABEL
1992 /* Return 1 if OP is a general operand
1993 other than a memory ref with a mode dependent address. */
1996 mode_independent_operand (op
, mode
)
1997 enum machine_mode mode
;
2002 if (! general_operand (op
, mode
))
2005 if (GET_CODE (op
) != MEM
)
2008 addr
= XEXP (op
, 0);
2009 GO_IF_MODE_DEPENDENT_ADDRESS (addr
, lose
);
2011 /* Label `lose' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
2012 lose
: ATTRIBUTE_UNUSED_LABEL
2016 /* Like extract_insn, but save insn extracted and don't extract again, when
2017 called again for the same insn expecting that recog_data still contain the
2018 valid information. This is used primary by gen_attr infrastructure that
2019 often does extract insn again and again. */
2021 extract_insn_cached (insn
)
2024 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
2026 extract_insn (insn
);
2027 recog_data
.insn
= insn
;
2029 /* Do cached extract_insn, constrain_operand and complain about failures.
2030 Used by insn_attrtab. */
2032 extract_constrain_insn_cached (insn
)
2035 extract_insn_cached (insn
);
2036 if (which_alternative
== -1
2037 && !constrain_operands (reload_completed
))
2038 fatal_insn_not_found (insn
);
2040 /* Do cached constrain_operand and complain about failures. */
2042 constrain_operands_cached (strict
)
2045 if (which_alternative
== -1)
2046 return constrain_operands (strict
);
2051 /* Analyze INSN and fill in recog_data. */
2060 rtx body
= PATTERN (insn
);
2062 recog_data
.insn
= NULL
;
2063 recog_data
.n_operands
= 0;
2064 recog_data
.n_alternatives
= 0;
2065 recog_data
.n_dups
= 0;
2066 which_alternative
= -1;
2068 switch (GET_CODE (body
))
2078 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2083 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2084 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2085 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
2091 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2094 /* This insn is an `asm' with operands. */
2096 /* expand_asm_operands makes sure there aren't too many operands. */
2097 if (noperands
> MAX_RECOG_OPERANDS
)
2100 /* Now get the operand values and constraints out of the insn. */
2101 decode_asm_operands (body
, recog_data
.operand
,
2102 recog_data
.operand_loc
,
2103 recog_data
.constraints
,
2104 recog_data
.operand_mode
);
2107 const char *p
= recog_data
.constraints
[0];
2108 recog_data
.n_alternatives
= 1;
2110 recog_data
.n_alternatives
+= (*p
++ == ',');
2114 fatal_insn_not_found (insn
);
2118 /* Ordinary insn: recognize it, get the operands via insn_extract
2119 and get the constraints. */
2121 icode
= recog_memoized (insn
);
2123 fatal_insn_not_found (insn
);
2125 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2126 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2127 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2129 insn_extract (insn
);
2131 for (i
= 0; i
< noperands
; i
++)
2133 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2134 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2135 /* VOIDmode match_operands gets mode from their real operand. */
2136 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2137 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2140 for (i
= 0; i
< noperands
; i
++)
2141 recog_data
.operand_type
[i
]
2142 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2143 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2146 if (recog_data
.n_alternatives
> MAX_RECOG_ALTERNATIVES
)
2150 /* After calling extract_insn, you can use this function to extract some
2151 information from the constraint strings into a more usable form.
2152 The collected data is stored in recog_op_alt. */
2154 preprocess_constraints ()
2158 memset (recog_op_alt
, 0, sizeof recog_op_alt
);
2159 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2162 struct operand_alternative
*op_alt
;
2163 const char *p
= recog_data
.constraints
[i
];
2165 op_alt
= recog_op_alt
[i
];
2167 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
2169 op_alt
[j
].class = NO_REGS
;
2170 op_alt
[j
].constraint
= p
;
2171 op_alt
[j
].matches
= -1;
2172 op_alt
[j
].matched
= -1;
2174 if (*p
== '\0' || *p
== ',')
2176 op_alt
[j
].anything_ok
= 1;
2186 while (c
!= ',' && c
!= '\0');
2187 if (c
== ',' || c
== '\0')
2192 case '=': case '+': case '*': case '%':
2193 case 'E': case 'F': case 'G': case 'H':
2194 case 's': case 'i': case 'n':
2195 case 'I': case 'J': case 'K': case 'L':
2196 case 'M': case 'N': case 'O': case 'P':
2197 /* These don't say anything we care about. */
2201 op_alt
[j
].reject
+= 6;
2204 op_alt
[j
].reject
+= 600;
2207 op_alt
[j
].earlyclobber
= 1;
2210 case '0': case '1': case '2': case '3': case '4':
2211 case '5': case '6': case '7': case '8': case '9':
2212 op_alt
[j
].matches
= c
- '0';
2213 recog_op_alt
[op_alt
[j
].matches
][j
].matched
= i
;
2217 op_alt
[j
].memory_ok
= 1;
2220 op_alt
[j
].decmem_ok
= 1;
2223 op_alt
[j
].incmem_ok
= 1;
2226 op_alt
[j
].nonoffmem_ok
= 1;
2229 op_alt
[j
].offmem_ok
= 1;
2232 op_alt
[j
].anything_ok
= 1;
2236 op_alt
[j
].is_address
= 1;
2237 op_alt
[j
].class = reg_class_subunion
[(int) op_alt
[j
].class][(int) BASE_REG_CLASS
];
2241 op_alt
[j
].class = reg_class_subunion
[(int) op_alt
[j
].class][(int) GENERAL_REGS
];
2245 op_alt
[j
].class = reg_class_subunion
[(int) op_alt
[j
].class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c
)];
2253 /* Check the operands of an insn against the insn's operand constraints
2254 and return 1 if they are valid.
2255 The information about the insn's operands, constraints, operand modes
2256 etc. is obtained from the global variables set up by extract_insn.
2258 WHICH_ALTERNATIVE is set to a number which indicates which
2259 alternative of constraints was matched: 0 for the first alternative,
2260 1 for the next, etc.
2262 In addition, when two operands are match
2263 and it happens that the output operand is (reg) while the
2264 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2265 make the output operand look like the input.
2266 This is because the output operand is the one the template will print.
2268 This is used in final, just before printing the assembler code and by
2269 the routines that determine an insn's attribute.
2271 If STRICT is a positive non-zero value, it means that we have been
2272 called after reload has been completed. In that case, we must
2273 do all checks strictly. If it is zero, it means that we have been called
2274 before reload has completed. In that case, we first try to see if we can
2275 find an alternative that matches strictly. If not, we try again, this
2276 time assuming that reload will fix up the insn. This provides a "best
2277 guess" for the alternative and is used to compute attributes of insns prior
2278 to reload. A negative value of STRICT is used for this internal call. */
2286 constrain_operands (strict
)
2289 const char *constraints
[MAX_RECOG_OPERANDS
];
2290 int matching_operands
[MAX_RECOG_OPERANDS
];
2291 int earlyclobber
[MAX_RECOG_OPERANDS
];
2294 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2295 int funny_match_index
;
2297 which_alternative
= 0;
2298 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2301 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2303 constraints
[c
] = recog_data
.constraints
[c
];
2304 matching_operands
[c
] = -1;
2311 funny_match_index
= 0;
2313 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2315 register rtx op
= recog_data
.operand
[opno
];
2316 enum machine_mode mode
= GET_MODE (op
);
2317 register const char *p
= constraints
[opno
];
2322 earlyclobber
[opno
] = 0;
2324 /* A unary operator may be accepted by the predicate, but it
2325 is irrelevant for matching constraints. */
2326 if (GET_RTX_CLASS (GET_CODE (op
)) == '1')
2329 if (GET_CODE (op
) == SUBREG
)
2331 if (GET_CODE (SUBREG_REG (op
)) == REG
2332 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2333 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2334 GET_MODE (SUBREG_REG (op
)),
2337 op
= SUBREG_REG (op
);
2340 /* An empty constraint or empty alternative
2341 allows anything which matched the pattern. */
2342 if (*p
== 0 || *p
== ',')
2345 while (*p
&& (c
= *p
++) != ',')
2348 case '?': case '!': case '*': case '%':
2353 /* Ignore rest of this alternative as far as
2354 constraint checking is concerned. */
2355 while (*p
&& *p
!= ',')
2360 earlyclobber
[opno
] = 1;
2363 case '0': case '1': case '2': case '3': case '4':
2364 case '5': case '6': case '7': case '8': case '9':
2366 /* This operand must be the same as a previous one.
2367 This kind of constraint is used for instructions such
2368 as add when they take only two operands.
2370 Note that the lower-numbered operand is passed first.
2372 If we are not testing strictly, assume that this constraint
2373 will be satisfied. */
2378 rtx op1
= recog_data
.operand
[c
- '0'];
2379 rtx op2
= recog_data
.operand
[opno
];
2381 /* A unary operator may be accepted by the predicate,
2382 but it is irrelevant for matching constraints. */
2383 if (GET_RTX_CLASS (GET_CODE (op1
)) == '1')
2384 op1
= XEXP (op1
, 0);
2385 if (GET_RTX_CLASS (GET_CODE (op2
)) == '1')
2386 op2
= XEXP (op2
, 0);
2388 val
= operands_match_p (op1
, op2
);
2391 matching_operands
[opno
] = c
- '0';
2392 matching_operands
[c
- '0'] = opno
;
2396 /* If output is *x and input is *--x,
2397 arrange later to change the output to *--x as well,
2398 since the output op is the one that will be printed. */
2399 if (val
== 2 && strict
> 0)
2401 funny_match
[funny_match_index
].this = opno
;
2402 funny_match
[funny_match_index
++].other
= c
- '0';
2407 /* p is used for address_operands. When we are called by
2408 gen_reload, no one will have checked that the address is
2409 strictly valid, i.e., that all pseudos requiring hard regs
2410 have gotten them. */
2412 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2417 /* No need to check general_operand again;
2418 it was done in insn-recog.c. */
2420 /* Anything goes unless it is a REG and really has a hard reg
2421 but the hard reg is not in the class GENERAL_REGS. */
2423 || GENERAL_REGS
== ALL_REGS
2424 || GET_CODE (op
) != REG
2425 || (reload_in_progress
2426 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2427 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2432 /* This is used for a MATCH_SCRATCH in the cases when
2433 we don't actually need anything. So anything goes
2439 if (GET_CODE (op
) == MEM
2440 /* Before reload, accept what reload can turn into mem. */
2441 || (strict
< 0 && CONSTANT_P (op
))
2442 /* During reload, accept a pseudo */
2443 || (reload_in_progress
&& GET_CODE (op
) == REG
2444 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2449 if (GET_CODE (op
) == MEM
2450 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
2451 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
2456 if (GET_CODE (op
) == MEM
2457 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
2458 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
2463 #ifndef REAL_ARITHMETIC
2464 /* Match any CONST_DOUBLE, but only if
2465 we can examine the bits of it reliably. */
2466 if ((HOST_FLOAT_FORMAT
!= TARGET_FLOAT_FORMAT
2467 || HOST_BITS_PER_WIDE_INT
!= BITS_PER_WORD
)
2468 && GET_MODE (op
) != VOIDmode
&& ! flag_pretend_float
)
2471 if (GET_CODE (op
) == CONST_DOUBLE
)
2476 if (GET_CODE (op
) == CONST_DOUBLE
)
2482 if (GET_CODE (op
) == CONST_DOUBLE
2483 && CONST_DOUBLE_OK_FOR_LETTER_P (op
, c
))
2488 if (GET_CODE (op
) == CONST_INT
2489 || (GET_CODE (op
) == CONST_DOUBLE
2490 && GET_MODE (op
) == VOIDmode
))
2493 if (CONSTANT_P (op
))
2498 if (GET_CODE (op
) == CONST_INT
2499 || (GET_CODE (op
) == CONST_DOUBLE
2500 && GET_MODE (op
) == VOIDmode
))
2512 if (GET_CODE (op
) == CONST_INT
2513 && CONST_OK_FOR_LETTER_P (INTVAL (op
), c
))
2518 if (GET_CODE (op
) == MEM
2519 && ((strict
> 0 && ! offsettable_memref_p (op
))
2521 && !(CONSTANT_P (op
) || GET_CODE (op
) == MEM
))
2522 || (reload_in_progress
2523 && !(GET_CODE (op
) == REG
2524 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))))
2529 if ((strict
> 0 && offsettable_memref_p (op
))
2530 || (strict
== 0 && offsettable_nonstrict_memref_p (op
))
2531 /* Before reload, accept what reload can handle. */
2533 && (CONSTANT_P (op
) || GET_CODE (op
) == MEM
))
2534 /* During reload, accept a pseudo */
2535 || (reload_in_progress
&& GET_CODE (op
) == REG
2536 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2542 enum reg_class
class;
2544 class = (c
== 'r' ? GENERAL_REGS
: REG_CLASS_FROM_LETTER (c
));
2545 if (class != NO_REGS
)
2549 && GET_CODE (op
) == REG
2550 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2551 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2552 || (GET_CODE (op
) == REG
2553 && reg_fits_class_p (op
, class, offset
, mode
)))
2556 #ifdef EXTRA_CONSTRAINT
2557 else if (EXTRA_CONSTRAINT (op
, c
))
2564 constraints
[opno
] = p
;
2565 /* If this operand did not win somehow,
2566 this alternative loses. */
2570 /* This alternative won; the operands are ok.
2571 Change whichever operands this alternative says to change. */
2576 /* See if any earlyclobber operand conflicts with some other
2580 for (eopno
= 0; eopno
< recog_data
.n_operands
; eopno
++)
2581 /* Ignore earlyclobber operands now in memory,
2582 because we would often report failure when we have
2583 two memory operands, one of which was formerly a REG. */
2584 if (earlyclobber
[eopno
]
2585 && GET_CODE (recog_data
.operand
[eopno
]) == REG
)
2586 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2587 if ((GET_CODE (recog_data
.operand
[opno
]) == MEM
2588 || recog_data
.operand_type
[opno
] != OP_OUT
)
2590 /* Ignore things like match_operator operands. */
2591 && *recog_data
.constraints
[opno
] != 0
2592 && ! (matching_operands
[opno
] == eopno
2593 && operands_match_p (recog_data
.operand
[opno
],
2594 recog_data
.operand
[eopno
]))
2595 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2596 recog_data
.operand
[eopno
]))
2601 while (--funny_match_index
>= 0)
2603 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2604 = recog_data
.operand
[funny_match
[funny_match_index
].this];
2611 which_alternative
++;
2613 while (which_alternative
< recog_data
.n_alternatives
);
2615 which_alternative
= -1;
2616 /* If we are about to reject this, but we are not to test strictly,
2617 try a very loose test. Only return failure if it fails also. */
2619 return constrain_operands (-1);
2624 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2625 is a hard reg in class CLASS when its regno is offset by OFFSET
2626 and changed to mode MODE.
2627 If REG occupies multiple hard regs, all of them must be in CLASS. */
2630 reg_fits_class_p (operand
, class, offset
, mode
)
2632 register enum reg_class
class;
2634 enum machine_mode mode
;
2636 register int regno
= REGNO (operand
);
2637 if (regno
< FIRST_PSEUDO_REGISTER
2638 && TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
2643 for (sr
= HARD_REGNO_NREGS (regno
, mode
) - 1;
2645 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
2654 /* Split single instruction. Helper function for split_all_insns.
2655 Return last insn in the sequence if succesfull, or NULL if unsuccesfull. */
2663 /* Don't split no-op move insns. These should silently
2664 disappear later in final. Splitting such insns would
2665 break the code that handles REG_NO_CONFLICT blocks. */
2667 else if ((set
= single_set (insn
)) != NULL
&& set_noop_p (set
))
2669 /* Nops get in the way while scheduling, so delete them
2670 now if register allocation has already been done. It
2671 is too risky to try to do this before register
2672 allocation, and there are unlikely to be very many
2673 nops then anyways. */
2674 if (reload_completed
)
2676 PUT_CODE (insn
, NOTE
);
2677 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
2678 NOTE_SOURCE_FILE (insn
) = 0;
2683 /* Split insns here to get max fine-grain parallelism. */
2684 rtx first
= PREV_INSN (insn
);
2685 rtx last
= try_split (PATTERN (insn
), insn
, 1);
2689 /* try_split returns the NOTE that INSN became. */
2690 PUT_CODE (insn
, NOTE
);
2691 NOTE_SOURCE_FILE (insn
) = 0;
2692 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
2694 /* ??? Coddle to md files that generate subregs in post-
2695 reload splitters instead of computing the proper
2697 if (reload_completed
&& first
!= last
)
2699 first
= NEXT_INSN (first
);
2703 cleanup_subreg_operands (first
);
2706 first
= NEXT_INSN (first
);
2714 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2717 split_all_insns (upd_life
)
2728 for (insn
= get_insns (); insn
; insn
= next
)
2732 /* Can't use `next_real_insn' because that might go across
2733 CODE_LABELS and short-out basic blocks. */
2734 next
= NEXT_INSN (insn
);
2735 last
= split_insn (insn
);
2740 blocks
= sbitmap_alloc (n_basic_blocks
);
2741 sbitmap_zero (blocks
);
2744 for (i
= n_basic_blocks
- 1; i
>= 0; --i
)
2746 basic_block bb
= BASIC_BLOCK (i
);
2749 for (insn
= bb
->head
; insn
; insn
= next
)
2753 /* Can't use `next_real_insn' because that might go across
2754 CODE_LABELS and short-out basic blocks. */
2755 next
= NEXT_INSN (insn
);
2756 last
= split_insn (insn
);
2759 SET_BIT (blocks
, i
);
2761 if (insn
== bb
->end
)
2766 if (insn
== bb
->end
)
2774 if (changed
&& upd_life
)
2776 compute_bb_for_insn (get_max_uid ());
2777 count_or_remove_death_notes (blocks
, 1);
2778 update_life_info (blocks
, UPDATE_LIFE_LOCAL
, PROP_DEATH_NOTES
);
2781 sbitmap_free (blocks
);
2784 #ifdef HAVE_peephole2
2785 struct peep2_insn_data
2791 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
2792 static int peep2_current
;
2794 /* A non-insn marker indicating the last insn of the block.
2795 The live_before regset for this element is correct, indicating
2796 global_live_at_end for the block. */
2797 #define PEEP2_EOB pc_rtx
2799 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2800 does not exist. Used by the recognizer to find the next insn to match
2801 in a multi-insn pattern. */
2807 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2811 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2812 n
-= MAX_INSNS_PER_PEEP2
+ 1;
2814 if (peep2_insn_data
[n
].insn
== PEEP2_EOB
)
2816 return peep2_insn_data
[n
].insn
;
2819 /* Return true if REGNO is dead before the Nth non-note insn
2823 peep2_regno_dead_p (ofs
, regno
)
2827 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2830 ofs
+= peep2_current
;
2831 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2832 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2834 if (peep2_insn_data
[ofs
].insn
== NULL_RTX
)
2837 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
2840 /* Similarly for a REG. */
2843 peep2_reg_dead_p (ofs
, reg
)
2849 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2852 ofs
+= peep2_current
;
2853 if (ofs
>= MAX_INSNS_PER_PEEP2
+ 1)
2854 ofs
-= MAX_INSNS_PER_PEEP2
+ 1;
2856 if (peep2_insn_data
[ofs
].insn
== NULL_RTX
)
2859 regno
= REGNO (reg
);
2860 n
= HARD_REGNO_NREGS (regno
, GET_MODE (reg
));
2862 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
+ n
))
2867 /* Try to find a hard register of mode MODE, matching the register class in
2868 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2869 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2870 in which case the only condition is that the register must be available
2871 before CURRENT_INSN.
2872 Registers that already have bits set in REG_SET will not be considered.
2874 If an appropriate register is available, it will be returned and the
2875 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2879 peep2_find_free_register (from
, to
, class_str
, mode
, reg_set
)
2881 const char *class_str
;
2882 enum machine_mode mode
;
2883 HARD_REG_SET
*reg_set
;
2885 static int search_ofs
;
2886 enum reg_class
class;
2890 if (from
>= MAX_INSNS_PER_PEEP2
+ 1 || to
>= MAX_INSNS_PER_PEEP2
+ 1)
2893 from
+= peep2_current
;
2894 if (from
>= MAX_INSNS_PER_PEEP2
+ 1)
2895 from
-= MAX_INSNS_PER_PEEP2
+ 1;
2896 to
+= peep2_current
;
2897 if (to
>= MAX_INSNS_PER_PEEP2
+ 1)
2898 to
-= MAX_INSNS_PER_PEEP2
+ 1;
2900 if (peep2_insn_data
[from
].insn
== NULL_RTX
)
2902 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
2906 HARD_REG_SET this_live
;
2908 if (++from
>= MAX_INSNS_PER_PEEP2
+ 1)
2910 if (peep2_insn_data
[from
].insn
== NULL_RTX
)
2912 REG_SET_TO_HARD_REG_SET (this_live
, peep2_insn_data
[from
].live_before
);
2913 IOR_HARD_REG_SET (live
, this_live
);
2916 class = (class_str
[0] == 'r' ? GENERAL_REGS
2917 : REG_CLASS_FROM_LETTER (class_str
[0]));
2919 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2921 int raw_regno
, regno
, success
, j
;
2923 /* Distribute the free registers as much as possible. */
2924 raw_regno
= search_ofs
+ i
;
2925 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
2926 raw_regno
-= FIRST_PSEUDO_REGISTER
;
2927 #ifdef REG_ALLOC_ORDER
2928 regno
= reg_alloc_order
[raw_regno
];
2933 /* Don't allocate fixed registers. */
2934 if (fixed_regs
[regno
])
2936 /* Make sure the register is of the right class. */
2937 if (! TEST_HARD_REG_BIT (reg_class_contents
[class], regno
))
2939 /* And can support the mode we need. */
2940 if (! HARD_REGNO_MODE_OK (regno
, mode
))
2942 /* And that we don't create an extra save/restore. */
2943 if (! call_used_regs
[regno
] && ! regs_ever_live
[regno
])
2945 /* And we don't clobber traceback for noreturn functions. */
2946 if ((regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
)
2947 && (! reload_completed
|| frame_pointer_needed
))
2951 for (j
= HARD_REGNO_NREGS (regno
, mode
) - 1; j
>= 0; j
--)
2953 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
2954 || TEST_HARD_REG_BIT (live
, regno
+ j
))
2962 for (j
= HARD_REGNO_NREGS (regno
, mode
) - 1; j
>= 0; j
--)
2963 SET_HARD_REG_BIT (*reg_set
, regno
+ j
);
2965 /* Start the next search with the next register. */
2966 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
2968 search_ofs
= raw_regno
;
2970 return gen_rtx_REG (mode
, regno
);
2978 /* Perform the peephole2 optimization pass. */
2981 peephole2_optimize (dump_file
)
2982 FILE *dump_file ATTRIBUTE_UNUSED
;
2984 regset_head rs_heads
[MAX_INSNS_PER_PEEP2
+ 2];
2988 #ifdef HAVE_conditional_execution
2993 /* Initialize the regsets we're going to use. */
2994 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
2995 peep2_insn_data
[i
].live_before
= INITIALIZE_REG_SET (rs_heads
[i
]);
2996 live
= INITIALIZE_REG_SET (rs_heads
[i
]);
2998 #ifdef HAVE_conditional_execution
2999 blocks
= sbitmap_alloc (n_basic_blocks
);
3000 sbitmap_zero (blocks
);
3003 count_or_remove_death_notes (NULL
, 1);
3006 for (b
= n_basic_blocks
- 1; b
>= 0; --b
)
3008 basic_block bb
= BASIC_BLOCK (b
);
3009 struct propagate_block_info
*pbi
;
3011 /* Indicate that all slots except the last holds invalid data. */
3012 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3013 peep2_insn_data
[i
].insn
= NULL_RTX
;
3015 /* Indicate that the last slot contains live_after data. */
3016 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3017 peep2_current
= MAX_INSNS_PER_PEEP2
;
3019 /* Start up propagation. */
3020 COPY_REG_SET (live
, bb
->global_live_at_end
);
3021 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3023 #ifdef HAVE_conditional_execution
3024 pbi
= init_propagate_block_info (bb
, live
, NULL
, NULL
, 0);
3026 pbi
= init_propagate_block_info (bb
, live
, NULL
, NULL
, PROP_DEATH_NOTES
);
3029 for (insn
= bb
->end
; ; insn
= prev
)
3031 prev
= PREV_INSN (insn
);
3037 /* Record this insn. */
3038 if (--peep2_current
< 0)
3039 peep2_current
= MAX_INSNS_PER_PEEP2
;
3040 peep2_insn_data
[peep2_current
].insn
= insn
;
3041 propagate_one_insn (pbi
, insn
);
3042 COPY_REG_SET (peep2_insn_data
[peep2_current
].live_before
, live
);
3044 /* Match the peephole. */
3045 try = peephole2_insns (PATTERN (insn
), insn
, &match_len
);
3048 i
= match_len
+ peep2_current
;
3049 if (i
>= MAX_INSNS_PER_PEEP2
+ 1)
3050 i
-= MAX_INSNS_PER_PEEP2
+ 1;
3052 /* Replace the old sequence with the new. */
3053 flow_delete_insn_chain (insn
, peep2_insn_data
[i
].insn
);
3054 try = emit_insn_after (try, prev
);
3056 /* Adjust the basic block boundaries. */
3057 if (peep2_insn_data
[i
].insn
== bb
->end
)
3059 if (insn
== bb
->head
)
3060 bb
->head
= NEXT_INSN (prev
);
3062 #ifdef HAVE_conditional_execution
3063 /* With conditional execution, we cannot back up the
3064 live information so easily, since the conditional
3065 death data structures are not so self-contained.
3066 So record that we've made a modification to this
3067 block and update life information at the end. */
3068 SET_BIT (blocks
, b
);
3071 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3072 peep2_insn_data
[i
].insn
= NULL_RTX
;
3073 peep2_insn_data
[peep2_current
].insn
= PEEP2_EOB
;
3075 /* Back up lifetime information past the end of the
3076 newly created sequence. */
3077 if (++i
>= MAX_INSNS_PER_PEEP2
+ 1)
3079 COPY_REG_SET (live
, peep2_insn_data
[i
].live_before
);
3081 /* Update life information for the new sequence. */
3087 i
= MAX_INSNS_PER_PEEP2
;
3088 peep2_insn_data
[i
].insn
= try;
3089 propagate_one_insn (pbi
, try);
3090 COPY_REG_SET (peep2_insn_data
[i
].live_before
, live
);
3092 try = PREV_INSN (try);
3094 while (try != prev
);
3096 /* ??? Should verify that LIVE now matches what we
3097 had before the new sequence. */
3104 if (insn
== bb
->head
)
3108 free_propagate_block_info (pbi
);
3111 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3112 FREE_REG_SET (peep2_insn_data
[i
].live_before
);
3113 FREE_REG_SET (live
);
3115 #ifdef HAVE_conditional_execution
3116 count_or_remove_death_notes (blocks
, 1);
3117 update_life_info (blocks
, UPDATE_LIFE_LOCAL
, PROP_DEATH_NOTES
);
3118 sbitmap_free (blocks
);
3121 #endif /* HAVE_peephole2 */