2001-07-10 Jan van Male <jan.vanmale@fenk.wau.nl>
[official-gcc.git] / gcc / flow.c
blobba1b99c23f9edc0770c61c12c5828919ffd6f88f
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
139 #include "obstack.h"
140 #include "splay-tree.h"
142 #define obstack_chunk_alloc xmalloc
143 #define obstack_chunk_free free
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
151 #endif
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
155 #endif
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
158 #endif
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
161 #endif
163 #ifndef LOCAL_REGNO
164 #define LOCAL_REGNO(REGNO) 0
165 #endif
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
168 #endif
170 #ifdef HAVE_conditional_execution
171 #ifndef REVERSE_CONDEXEC_PREDICATES_P
172 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
173 #endif
174 #endif
176 /* The obstack on which the flow graph components are allocated. */
178 struct obstack flow_obstack;
179 static char *flow_firstobj;
181 /* Number of basic blocks in the current function. */
183 int n_basic_blocks;
185 /* Number of edges in the current function. */
187 int n_edges;
189 /* The basic block array. */
191 varray_type basic_block_info;
193 /* The special entry and exit blocks. */
195 struct basic_block_def entry_exit_blocks[2]
196 = {{NULL, /* head */
197 NULL, /* end */
198 NULL, /* head_tree */
199 NULL, /* end_tree */
200 NULL, /* pred */
201 NULL, /* succ */
202 NULL, /* local_set */
203 NULL, /* cond_local_set */
204 NULL, /* global_live_at_start */
205 NULL, /* global_live_at_end */
206 NULL, /* aux */
207 ENTRY_BLOCK, /* index */
208 0, /* loop_depth */
209 0, /* count */
210 0 /* frequency */
213 NULL, /* head */
214 NULL, /* end */
215 NULL, /* head_tree */
216 NULL, /* end_tree */
217 NULL, /* pred */
218 NULL, /* succ */
219 NULL, /* local_set */
220 NULL, /* cond_local_set */
221 NULL, /* global_live_at_start */
222 NULL, /* global_live_at_end */
223 NULL, /* aux */
224 EXIT_BLOCK, /* index */
225 0, /* loop_depth */
226 0, /* count */
227 0 /* frequency */
231 /* Nonzero if the second flow pass has completed. */
232 int flow2_completed;
234 /* Maximum register number used in this function, plus one. */
236 int max_regno;
238 /* Indexed by n, giving various register information */
240 varray_type reg_n_info;
242 /* Size of a regset for the current function,
243 in (1) bytes and (2) elements. */
245 int regset_bytes;
246 int regset_size;
248 /* Regset of regs live when calls to `setjmp'-like functions happen. */
249 /* ??? Does this exist only for the setjmp-clobbered warning message? */
251 regset regs_live_at_setjmp;
253 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
254 that have to go in the same hard reg.
255 The first two regs in the list are a pair, and the next two
256 are another pair, etc. */
257 rtx regs_may_share;
259 /* Callback that determines if it's ok for a function to have no
260 noreturn attribute. */
261 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
263 /* Set of registers that may be eliminable. These are handled specially
264 in updating regs_ever_live. */
266 static HARD_REG_SET elim_reg_set;
268 /* The basic block structure for every insn, indexed by uid. */
270 varray_type basic_block_for_insn;
272 /* The labels mentioned in non-jump rtl. Valid during find_basic_blocks. */
273 /* ??? Should probably be using LABEL_NUSES instead. It would take a
274 bit of surgery to be able to use or co-opt the routines in jump. */
276 static rtx label_value_list;
277 static rtx tail_recursion_label_list;
279 /* Holds information for tracking conditional register life information. */
280 struct reg_cond_life_info
282 /* A boolean expression of conditions under which a register is dead. */
283 rtx condition;
284 /* Conditions under which a register is dead at the basic block end. */
285 rtx orig_condition;
287 /* A boolean expression of conditions under which a register has been
288 stored into. */
289 rtx stores;
291 /* ??? Could store mask of bytes that are dead, so that we could finally
292 track lifetimes of multi-word registers accessed via subregs. */
295 /* For use in communicating between propagate_block and its subroutines.
296 Holds all information needed to compute life and def-use information. */
298 struct propagate_block_info
300 /* The basic block we're considering. */
301 basic_block bb;
303 /* Bit N is set if register N is conditionally or unconditionally live. */
304 regset reg_live;
306 /* Bit N is set if register N is set this insn. */
307 regset new_set;
309 /* Element N is the next insn that uses (hard or pseudo) register N
310 within the current basic block; or zero, if there is no such insn. */
311 rtx *reg_next_use;
313 /* Contains a list of all the MEMs we are tracking for dead store
314 elimination. */
315 rtx mem_set_list;
317 /* If non-null, record the set of registers set unconditionally in the
318 basic block. */
319 regset local_set;
321 /* If non-null, record the set of registers set conditionally in the
322 basic block. */
323 regset cond_local_set;
325 #ifdef HAVE_conditional_execution
326 /* Indexed by register number, holds a reg_cond_life_info for each
327 register that is not unconditionally live or dead. */
328 splay_tree reg_cond_dead;
330 /* Bit N is set if register N is in an expression in reg_cond_dead. */
331 regset reg_cond_reg;
332 #endif
334 /* The length of mem_set_list. */
335 int mem_set_list_len;
337 /* Non-zero if the value of CC0 is live. */
338 int cc0_live;
340 /* Flags controling the set of information propagate_block collects. */
341 int flags;
344 /* Maximum length of pbi->mem_set_list before we start dropping
345 new elements on the floor. */
346 #define MAX_MEM_SET_LIST_LEN 100
348 /* Store the data structures necessary for depth-first search. */
349 struct depth_first_search_dsS {
350 /* stack for backtracking during the algorithm */
351 basic_block *stack;
353 /* number of edges in the stack. That is, positions 0, ..., sp-1
354 have edges. */
355 unsigned int sp;
357 /* record of basic blocks already seen by depth-first search */
358 sbitmap visited_blocks;
360 typedef struct depth_first_search_dsS *depth_first_search_ds;
362 /* Have print_rtl_and_abort give the same information that fancy_abort
363 does. */
364 #define print_rtl_and_abort() \
365 print_rtl_and_abort_fcn (__FILE__, __LINE__, __FUNCTION__)
367 /* Forward declarations */
368 static int count_basic_blocks PARAMS ((rtx));
369 static void find_basic_blocks_1 PARAMS ((rtx));
370 static rtx find_label_refs PARAMS ((rtx, rtx));
371 static void make_edges PARAMS ((rtx));
372 static void make_label_edge PARAMS ((sbitmap *, basic_block,
373 rtx, int));
374 static void make_eh_edge PARAMS ((sbitmap *, basic_block, rtx));
376 static void commit_one_edge_insertion PARAMS ((edge));
378 static void delete_unreachable_blocks PARAMS ((void));
379 static int can_delete_note_p PARAMS ((rtx));
380 static void expunge_block PARAMS ((basic_block));
381 static int can_delete_label_p PARAMS ((rtx));
382 static int tail_recursion_label_p PARAMS ((rtx));
383 static int merge_blocks_move_predecessor_nojumps PARAMS ((basic_block,
384 basic_block));
385 static int merge_blocks_move_successor_nojumps PARAMS ((basic_block,
386 basic_block));
387 static int merge_blocks PARAMS ((edge,basic_block,basic_block));
388 static bool try_optimize_cfg PARAMS ((void));
389 static bool forwarder_block_p PARAMS ((basic_block));
390 static bool can_fallthru PARAMS ((basic_block, basic_block));
391 static bool try_redirect_by_replacing_jump PARAMS ((edge, basic_block));
392 static bool try_simplify_condjump PARAMS ((basic_block));
393 static bool try_forward_edges PARAMS ((basic_block));
394 static void tidy_fallthru_edges PARAMS ((void));
395 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
396 static void verify_wide_reg PARAMS ((int, rtx, rtx));
397 static void verify_local_live_at_start PARAMS ((regset, basic_block));
398 static int noop_move_p PARAMS ((rtx));
399 static void delete_noop_moves PARAMS ((rtx));
400 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
401 static void notice_stack_pointer_modification PARAMS ((rtx));
402 static void mark_reg PARAMS ((rtx, void *));
403 static void mark_regs_live_at_end PARAMS ((regset));
404 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
405 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
406 static void propagate_block_delete_insn PARAMS ((basic_block, rtx));
407 static rtx propagate_block_delete_libcall PARAMS ((basic_block, rtx, rtx));
408 static int insn_dead_p PARAMS ((struct propagate_block_info *,
409 rtx, int, rtx));
410 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
411 rtx, rtx));
412 static void mark_set_regs PARAMS ((struct propagate_block_info *,
413 rtx, rtx));
414 static void mark_set_1 PARAMS ((struct propagate_block_info *,
415 enum rtx_code, rtx, rtx,
416 rtx, int));
417 #ifdef HAVE_conditional_execution
418 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
419 int, rtx));
420 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
421 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
422 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
423 int));
424 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
425 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
426 static rtx not_reg_cond PARAMS ((rtx));
427 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
428 #endif
429 #ifdef AUTO_INC_DEC
430 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
431 rtx, rtx, rtx, rtx, rtx));
432 static void find_auto_inc PARAMS ((struct propagate_block_info *,
433 rtx, rtx));
434 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
435 rtx));
436 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
437 #endif
438 static void mark_used_reg PARAMS ((struct propagate_block_info *,
439 rtx, rtx, rtx));
440 static void mark_used_regs PARAMS ((struct propagate_block_info *,
441 rtx, rtx, rtx));
442 void dump_flow_info PARAMS ((FILE *));
443 void debug_flow_info PARAMS ((void));
444 static void print_rtl_and_abort_fcn PARAMS ((const char *, int,
445 const char *))
446 ATTRIBUTE_NORETURN;
448 static void invalidate_mems_from_autoinc PARAMS ((struct propagate_block_info *,
449 rtx));
450 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
451 rtx));
452 static void remove_fake_successors PARAMS ((basic_block));
453 static void flow_nodes_print PARAMS ((const char *, const sbitmap,
454 FILE *));
455 static void flow_edge_list_print PARAMS ((const char *, const edge *,
456 int, FILE *));
457 static void flow_loops_cfg_dump PARAMS ((const struct loops *,
458 FILE *));
459 static int flow_loop_nested_p PARAMS ((struct loop *,
460 struct loop *));
461 static int flow_loop_entry_edges_find PARAMS ((basic_block, const sbitmap,
462 edge **));
463 static int flow_loop_exit_edges_find PARAMS ((const sbitmap, edge **));
464 static int flow_loop_nodes_find PARAMS ((basic_block, basic_block, sbitmap));
465 static void flow_dfs_compute_reverse_init
466 PARAMS ((depth_first_search_ds));
467 static void flow_dfs_compute_reverse_add_bb
468 PARAMS ((depth_first_search_ds, basic_block));
469 static basic_block flow_dfs_compute_reverse_execute
470 PARAMS ((depth_first_search_ds));
471 static void flow_dfs_compute_reverse_finish
472 PARAMS ((depth_first_search_ds));
473 static void flow_loop_pre_header_scan PARAMS ((struct loop *));
474 static basic_block flow_loop_pre_header_find PARAMS ((basic_block,
475 const sbitmap *));
476 static void flow_loop_tree_node_add PARAMS ((struct loop *, struct loop *));
477 static void flow_loops_tree_build PARAMS ((struct loops *));
478 static int flow_loop_level_compute PARAMS ((struct loop *, int));
479 static int flow_loops_level_compute PARAMS ((struct loops *));
480 static void allocate_bb_life_data PARAMS ((void));
481 static void find_sub_basic_blocks PARAMS ((basic_block));
482 static bool redirect_edge_and_branch PARAMS ((edge, basic_block));
483 static basic_block redirect_edge_and_branch_force PARAMS ((edge, basic_block));
484 static rtx block_label PARAMS ((basic_block));
486 /* Find basic blocks of the current function.
487 F is the first insn of the function and NREGS the number of register
488 numbers in use. */
490 void
491 find_basic_blocks (f, nregs, file)
492 rtx f;
493 int nregs ATTRIBUTE_UNUSED;
494 FILE *file ATTRIBUTE_UNUSED;
496 int max_uid;
498 /* Flush out existing data. */
499 if (basic_block_info != NULL)
501 int i;
503 clear_edges ();
505 /* Clear bb->aux on all extant basic blocks. We'll use this as a
506 tag for reuse during create_basic_block, just in case some pass
507 copies around basic block notes improperly. */
508 for (i = 0; i < n_basic_blocks; ++i)
509 BASIC_BLOCK (i)->aux = NULL;
511 VARRAY_FREE (basic_block_info);
514 n_basic_blocks = count_basic_blocks (f);
516 /* Size the basic block table. The actual structures will be allocated
517 by find_basic_blocks_1, since we want to keep the structure pointers
518 stable across calls to find_basic_blocks. */
519 /* ??? This whole issue would be much simpler if we called find_basic_blocks
520 exactly once, and thereafter we don't have a single long chain of
521 instructions at all until close to the end of compilation when we
522 actually lay them out. */
524 VARRAY_BB_INIT (basic_block_info, n_basic_blocks, "basic_block_info");
526 find_basic_blocks_1 (f);
528 /* Record the block to which an insn belongs. */
529 /* ??? This should be done another way, by which (perhaps) a label is
530 tagged directly with the basic block that it starts. It is used for
531 more than that currently, but IMO that is the only valid use. */
533 max_uid = get_max_uid ();
534 #ifdef AUTO_INC_DEC
535 /* Leave space for insns life_analysis makes in some cases for auto-inc.
536 These cases are rare, so we don't need too much space. */
537 max_uid += max_uid / 10;
538 #endif
540 compute_bb_for_insn (max_uid);
542 /* Discover the edges of our cfg. */
543 make_edges (label_value_list);
545 /* Do very simple cleanup now, for the benefit of code that runs between
546 here and cleanup_cfg, e.g. thread_prologue_and_epilogue_insns. */
547 tidy_fallthru_edges ();
549 mark_critical_edges ();
551 #ifdef ENABLE_CHECKING
552 verify_flow_info ();
553 #endif
556 void
557 check_function_return_warnings ()
559 if (warn_missing_noreturn
560 && !TREE_THIS_VOLATILE (cfun->decl)
561 && EXIT_BLOCK_PTR->pred == NULL
562 && (lang_missing_noreturn_ok_p
563 && !lang_missing_noreturn_ok_p (cfun->decl)))
564 warning ("function might be possible candidate for attribute `noreturn'");
566 /* If we have a path to EXIT, then we do return. */
567 if (TREE_THIS_VOLATILE (cfun->decl)
568 && EXIT_BLOCK_PTR->pred != NULL)
569 warning ("`noreturn' function does return");
571 /* If the clobber_return_insn appears in some basic block, then we
572 do reach the end without returning a value. */
573 else if (warn_return_type
574 && cfun->x_clobber_return_insn != NULL
575 && EXIT_BLOCK_PTR->pred != NULL)
577 int max_uid = get_max_uid ();
579 /* If clobber_return_insn was excised by jump1, then renumber_insns
580 can make max_uid smaller than the number still recorded in our rtx.
581 That's fine, since this is a quick way of verifying that the insn
582 is no longer in the chain. */
583 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
585 /* Recompute insn->block mapping, since the initial mapping is
586 set before we delete unreachable blocks. */
587 compute_bb_for_insn (max_uid);
589 if (BLOCK_FOR_INSN (cfun->x_clobber_return_insn) != NULL)
590 warning ("control reaches end of non-void function");
595 /* Count the basic blocks of the function. */
597 static int
598 count_basic_blocks (f)
599 rtx f;
601 register rtx insn;
602 register RTX_CODE prev_code;
603 register int count = 0;
604 int saw_abnormal_edge = 0;
606 prev_code = JUMP_INSN;
607 for (insn = f; insn; insn = NEXT_INSN (insn))
609 enum rtx_code code = GET_CODE (insn);
611 if (code == CODE_LABEL
612 || (GET_RTX_CLASS (code) == 'i'
613 && (prev_code == JUMP_INSN
614 || prev_code == BARRIER
615 || saw_abnormal_edge)))
617 saw_abnormal_edge = 0;
618 count++;
621 /* Record whether this insn created an edge. */
622 if (code == CALL_INSN)
624 rtx note;
626 /* If there is a nonlocal goto label and the specified
627 region number isn't -1, we have an edge. */
628 if (nonlocal_goto_handler_labels
629 && ((note = find_reg_note (insn, REG_EH_REGION, NULL_RTX)) == 0
630 || INTVAL (XEXP (note, 0)) >= 0))
631 saw_abnormal_edge = 1;
633 else if (can_throw_internal (insn))
634 saw_abnormal_edge = 1;
636 else if (flag_non_call_exceptions
637 && code == INSN
638 && can_throw_internal (insn))
639 saw_abnormal_edge = 1;
641 if (code != NOTE)
642 prev_code = code;
645 /* The rest of the compiler works a bit smoother when we don't have to
646 check for the edge case of do-nothing functions with no basic blocks. */
647 if (count == 0)
649 emit_insn (gen_rtx_USE (VOIDmode, const0_rtx));
650 count = 1;
653 return count;
656 /* Scan a list of insns for labels referred to other than by jumps.
657 This is used to scan the alternatives of a call placeholder. */
658 static rtx
659 find_label_refs (f, lvl)
660 rtx f;
661 rtx lvl;
663 rtx insn;
665 for (insn = f; insn; insn = NEXT_INSN (insn))
666 if (INSN_P (insn) && GET_CODE (insn) != JUMP_INSN)
668 rtx note;
670 /* Make a list of all labels referred to other than by jumps
671 (which just don't have the REG_LABEL notes).
673 Make a special exception for labels followed by an ADDR*VEC,
674 as this would be a part of the tablejump setup code.
676 Make a special exception to registers loaded with label
677 values just before jump insns that use them. */
679 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
680 if (REG_NOTE_KIND (note) == REG_LABEL)
682 rtx lab = XEXP (note, 0), next;
684 if ((next = next_nonnote_insn (lab)) != NULL
685 && GET_CODE (next) == JUMP_INSN
686 && (GET_CODE (PATTERN (next)) == ADDR_VEC
687 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
689 else if (GET_CODE (lab) == NOTE)
691 else if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
692 && find_reg_note (NEXT_INSN (insn), REG_LABEL, lab))
694 else
695 lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl);
699 return lvl;
702 /* Assume that someone emitted code with control flow instructions to the
703 basic block. Update the data structure. */
704 static void
705 find_sub_basic_blocks (bb)
706 basic_block bb;
708 rtx first_insn = bb->head, insn;
709 rtx end = bb->end;
710 edge succ_list = bb->succ;
711 rtx jump_insn = NULL_RTX;
712 int created = 0;
713 int barrier = 0;
714 edge falltru = 0;
715 basic_block first_bb = bb, last_bb;
716 int i;
718 if (GET_CODE (first_insn) == LABEL_REF)
719 first_insn = NEXT_INSN (first_insn);
720 first_insn = NEXT_INSN (first_insn);
721 bb->succ = NULL;
723 insn = first_insn;
724 /* Scan insn chain and try to find new basic block boundaries. */
725 while (insn != end)
727 enum rtx_code code = GET_CODE (insn);
728 switch (code)
730 case JUMP_INSN:
731 /* We need some special care for those expressions. */
732 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
733 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
734 abort();
735 jump_insn = insn;
736 break;
737 case BARRIER:
738 if (!jump_insn)
739 abort ();
740 barrier = 1;
741 break;
742 /* On code label, split current basic block. */
743 case CODE_LABEL:
744 falltru = split_block (bb, PREV_INSN (insn));
745 if (jump_insn)
746 bb->end = jump_insn;
747 bb = falltru->dest;
748 if (barrier)
749 remove_edge (falltru);
750 barrier = 0;
751 jump_insn = 0;
752 created = 1;
753 if (LABEL_ALTERNATE_NAME (insn))
754 make_edge (NULL, ENTRY_BLOCK_PTR, bb, 0);
755 break;
756 case INSN:
757 /* In case we've previously split insn on the JUMP_INSN, move the
758 block header to proper place. */
759 if (jump_insn)
761 falltru = split_block (bb, PREV_INSN (insn));
762 bb->end = jump_insn;
763 bb = falltru->dest;
764 if (barrier)
765 abort ();
766 jump_insn = 0;
768 default:
769 break;
771 insn = NEXT_INSN (insn);
773 /* Last basic block must end in the original BB end. */
774 if (jump_insn)
775 abort ();
777 /* Wire in the original edges for last basic block. */
778 if (created)
780 bb->succ = succ_list;
781 while (succ_list)
782 succ_list->src = bb, succ_list = succ_list->succ_next;
784 else
785 bb->succ = succ_list;
787 /* Now re-scan and wire in all edges. This expect simple (conditional)
788 jumps at the end of each new basic blocks. */
789 last_bb = bb;
790 for (i = first_bb->index; i < last_bb->index; i++)
792 bb = BASIC_BLOCK (i);
793 if (GET_CODE (bb->end) == JUMP_INSN)
795 mark_jump_label (PATTERN (bb->end), bb->end, 0, 0);
796 make_label_edge (NULL, bb, JUMP_LABEL (bb->end), 0);
798 insn = NEXT_INSN (insn);
802 /* Find all basic blocks of the function whose first insn is F.
804 Collect and return a list of labels whose addresses are taken. This
805 will be used in make_edges for use with computed gotos. */
807 static void
808 find_basic_blocks_1 (f)
809 rtx f;
811 register rtx insn, next;
812 int i = 0;
813 rtx bb_note = NULL_RTX;
814 rtx lvl = NULL_RTX;
815 rtx trll = NULL_RTX;
816 rtx head = NULL_RTX;
817 rtx end = NULL_RTX;
819 /* We process the instructions in a slightly different way than we did
820 previously. This is so that we see a NOTE_BASIC_BLOCK after we have
821 closed out the previous block, so that it gets attached at the proper
822 place. Since this form should be equivalent to the previous,
823 count_basic_blocks continues to use the old form as a check. */
825 for (insn = f; insn; insn = next)
827 enum rtx_code code = GET_CODE (insn);
829 next = NEXT_INSN (insn);
831 switch (code)
833 case NOTE:
835 int kind = NOTE_LINE_NUMBER (insn);
837 /* Look for basic block notes with which to keep the
838 basic_block_info pointers stable. Unthread the note now;
839 we'll put it back at the right place in create_basic_block.
840 Or not at all if we've already found a note in this block. */
841 if (kind == NOTE_INSN_BASIC_BLOCK)
843 if (bb_note == NULL_RTX)
844 bb_note = insn;
845 else
846 next = flow_delete_insn (insn);
848 break;
851 case CODE_LABEL:
852 /* A basic block starts at a label. If we've closed one off due
853 to a barrier or some such, no need to do it again. */
854 if (head != NULL_RTX)
856 /* While we now have edge lists with which other portions of
857 the compiler might determine a call ending a basic block
858 does not imply an abnormal edge, it will be a bit before
859 everything can be updated. So continue to emit a noop at
860 the end of such a block. */
861 if (GET_CODE (end) == CALL_INSN && ! SIBLING_CALL_P (end))
863 rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
864 end = emit_insn_after (nop, end);
867 create_basic_block (i++, head, end, bb_note);
868 bb_note = NULL_RTX;
871 head = end = insn;
872 break;
874 case JUMP_INSN:
875 /* A basic block ends at a jump. */
876 if (head == NULL_RTX)
877 head = insn;
878 else
880 /* ??? Make a special check for table jumps. The way this
881 happens is truly and amazingly gross. We are about to
882 create a basic block that contains just a code label and
883 an addr*vec jump insn. Worse, an addr_diff_vec creates
884 its own natural loop.
886 Prevent this bit of brain damage, pasting things together
887 correctly in make_edges.
889 The correct solution involves emitting the table directly
890 on the tablejump instruction as a note, or JUMP_LABEL. */
892 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
893 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
895 head = end = NULL;
896 n_basic_blocks--;
897 break;
900 end = insn;
901 goto new_bb_inclusive;
903 case BARRIER:
904 /* A basic block ends at a barrier. It may be that an unconditional
905 jump already closed the basic block -- no need to do it again. */
906 if (head == NULL_RTX)
907 break;
909 /* While we now have edge lists with which other portions of the
910 compiler might determine a call ending a basic block does not
911 imply an abnormal edge, it will be a bit before everything can
912 be updated. So continue to emit a noop at the end of such a
913 block. */
914 if (GET_CODE (end) == CALL_INSN && ! SIBLING_CALL_P (end))
916 rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
917 end = emit_insn_after (nop, end);
919 goto new_bb_exclusive;
921 case CALL_INSN:
923 /* Record whether this call created an edge. */
924 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
925 int region = (note ? INTVAL (XEXP (note, 0)) : 0);
927 if (GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
929 /* Scan each of the alternatives for label refs. */
930 lvl = find_label_refs (XEXP (PATTERN (insn), 0), lvl);
931 lvl = find_label_refs (XEXP (PATTERN (insn), 1), lvl);
932 lvl = find_label_refs (XEXP (PATTERN (insn), 2), lvl);
933 /* Record its tail recursion label, if any. */
934 if (XEXP (PATTERN (insn), 3) != NULL_RTX)
935 trll = alloc_EXPR_LIST (0, XEXP (PATTERN (insn), 3), trll);
938 /* A basic block ends at a call that can either throw or
939 do a non-local goto. */
940 if ((nonlocal_goto_handler_labels && region >= 0)
941 || can_throw_internal (insn))
943 new_bb_inclusive:
944 if (head == NULL_RTX)
945 head = insn;
946 end = insn;
948 new_bb_exclusive:
949 create_basic_block (i++, head, end, bb_note);
950 head = end = NULL_RTX;
951 bb_note = NULL_RTX;
952 break;
955 /* Fall through. */
957 case INSN:
958 /* Non-call exceptions generate new blocks just like calls. */
959 if (flag_non_call_exceptions && can_throw_internal (insn))
960 goto new_bb_inclusive;
962 if (head == NULL_RTX)
963 head = insn;
964 end = insn;
965 break;
967 default:
968 abort ();
971 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
973 rtx note;
975 /* Make a list of all labels referred to other than by jumps.
977 Make a special exception for labels followed by an ADDR*VEC,
978 as this would be a part of the tablejump setup code.
980 Make a special exception to registers loaded with label
981 values just before jump insns that use them. */
983 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
984 if (REG_NOTE_KIND (note) == REG_LABEL)
986 rtx lab = XEXP (note, 0), next;
988 if ((next = next_nonnote_insn (lab)) != NULL
989 && GET_CODE (next) == JUMP_INSN
990 && (GET_CODE (PATTERN (next)) == ADDR_VEC
991 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
993 else if (GET_CODE (lab) == NOTE)
995 else if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
996 && find_reg_note (NEXT_INSN (insn), REG_LABEL, lab))
998 else
999 lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl);
1004 if (head != NULL_RTX)
1005 create_basic_block (i++, head, end, bb_note);
1006 else if (bb_note)
1007 flow_delete_insn (bb_note);
1009 if (i != n_basic_blocks)
1010 abort ();
1012 label_value_list = lvl;
1013 tail_recursion_label_list = trll;
1016 /* Tidy the CFG by deleting unreachable code and whatnot. */
1018 void
1019 cleanup_cfg ()
1021 delete_unreachable_blocks ();
1022 if (try_optimize_cfg ())
1023 delete_unreachable_blocks ();
1024 mark_critical_edges ();
1026 /* Kill the data we won't maintain. */
1027 free_EXPR_LIST_list (&label_value_list);
1028 free_EXPR_LIST_list (&tail_recursion_label_list);
1031 /* Create a new basic block consisting of the instructions between
1032 HEAD and END inclusive. Reuses the note and basic block struct
1033 in BB_NOTE, if any. */
1035 void
1036 create_basic_block (index, head, end, bb_note)
1037 int index;
1038 rtx head, end, bb_note;
1040 basic_block bb;
1042 if (bb_note
1043 && ! RTX_INTEGRATED_P (bb_note)
1044 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
1045 && bb->aux == NULL)
1047 /* If we found an existing note, thread it back onto the chain. */
1049 rtx after;
1051 if (GET_CODE (head) == CODE_LABEL)
1052 after = head;
1053 else
1055 after = PREV_INSN (head);
1056 head = bb_note;
1059 if (after != bb_note && NEXT_INSN (after) != bb_note)
1060 reorder_insns (bb_note, bb_note, after);
1062 else
1064 /* Otherwise we must create a note and a basic block structure.
1065 Since we allow basic block structs in rtl, give the struct
1066 the same lifetime by allocating it off the function obstack
1067 rather than using malloc. */
1069 bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*bb));
1070 memset (bb, 0, sizeof (*bb));
1072 if (GET_CODE (head) == CODE_LABEL)
1073 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
1074 else
1076 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
1077 head = bb_note;
1079 NOTE_BASIC_BLOCK (bb_note) = bb;
1082 /* Always include the bb note in the block. */
1083 if (NEXT_INSN (end) == bb_note)
1084 end = bb_note;
1086 bb->head = head;
1087 bb->end = end;
1088 bb->index = index;
1089 BASIC_BLOCK (index) = bb;
1091 /* Tag the block so that we know it has been used when considering
1092 other basic block notes. */
1093 bb->aux = bb;
1096 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
1097 note associated with the BLOCK. */
1100 first_insn_after_basic_block_note (block)
1101 basic_block block;
1103 rtx insn;
1105 /* Get the first instruction in the block. */
1106 insn = block->head;
1108 if (insn == NULL_RTX)
1109 return NULL_RTX;
1110 if (GET_CODE (insn) == CODE_LABEL)
1111 insn = NEXT_INSN (insn);
1112 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
1113 abort ();
1115 return NEXT_INSN (insn);
1118 /* Records the basic block struct in BB_FOR_INSN, for every instruction
1119 indexed by INSN_UID. MAX is the size of the array. */
1121 void
1122 compute_bb_for_insn (max)
1123 int max;
1125 int i;
1127 if (basic_block_for_insn)
1128 VARRAY_FREE (basic_block_for_insn);
1129 VARRAY_BB_INIT (basic_block_for_insn, max, "basic_block_for_insn");
1131 for (i = 0; i < n_basic_blocks; ++i)
1133 basic_block bb = BASIC_BLOCK (i);
1134 rtx insn, end;
1136 end = bb->end;
1137 insn = bb->head;
1138 while (1)
1140 int uid = INSN_UID (insn);
1141 if (uid < max)
1142 VARRAY_BB (basic_block_for_insn, uid) = bb;
1143 if (insn == end)
1144 break;
1145 insn = NEXT_INSN (insn);
1150 /* Free the memory associated with the edge structures. */
1152 void
1153 clear_edges ()
1155 int i;
1156 edge n, e;
1158 for (i = 0; i < n_basic_blocks; ++i)
1160 basic_block bb = BASIC_BLOCK (i);
1162 for (e = bb->succ; e; e = n)
1164 n = e->succ_next;
1165 free (e);
1168 bb->succ = 0;
1169 bb->pred = 0;
1172 for (e = ENTRY_BLOCK_PTR->succ; e; e = n)
1174 n = e->succ_next;
1175 free (e);
1178 ENTRY_BLOCK_PTR->succ = 0;
1179 EXIT_BLOCK_PTR->pred = 0;
1181 n_edges = 0;
1184 /* Identify the edges between basic blocks.
1186 NONLOCAL_LABEL_LIST is a list of non-local labels in the function. Blocks
1187 that are otherwise unreachable may be reachable with a non-local goto.
1189 BB_EH_END is an array indexed by basic block number in which we record
1190 the list of exception regions active at the end of the basic block. */
1192 static void
1193 make_edges (label_value_list)
1194 rtx label_value_list;
1196 int i;
1197 sbitmap *edge_cache = NULL;
1199 /* Assume no computed jump; revise as we create edges. */
1200 current_function_has_computed_jump = 0;
1202 /* Heavy use of computed goto in machine-generated code can lead to
1203 nearly fully-connected CFGs. In that case we spend a significant
1204 amount of time searching the edge lists for duplicates. */
1205 if (forced_labels || label_value_list)
1207 edge_cache = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
1208 sbitmap_vector_zero (edge_cache, n_basic_blocks);
1211 /* By nature of the way these get numbered, block 0 is always the entry. */
1212 make_edge (edge_cache, ENTRY_BLOCK_PTR, BASIC_BLOCK (0), EDGE_FALLTHRU);
1214 for (i = 0; i < n_basic_blocks; ++i)
1216 basic_block bb = BASIC_BLOCK (i);
1217 rtx insn, x;
1218 enum rtx_code code;
1219 int force_fallthru = 0;
1221 if (GET_CODE (bb->head) == CODE_LABEL
1222 && LABEL_ALTERNATE_NAME (bb->head))
1223 make_edge (NULL, ENTRY_BLOCK_PTR, bb, 0);
1225 /* Examine the last instruction of the block, and discover the
1226 ways we can leave the block. */
1228 insn = bb->end;
1229 code = GET_CODE (insn);
1231 /* A branch. */
1232 if (code == JUMP_INSN)
1234 rtx tmp;
1236 /* Recognize exception handling placeholders. */
1237 if (GET_CODE (PATTERN (insn)) == RESX)
1238 make_eh_edge (edge_cache, bb, insn);
1240 /* Recognize a non-local goto as a branch outside the
1241 current function. */
1242 else if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1245 /* ??? Recognize a tablejump and do the right thing. */
1246 else if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
1247 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
1248 && GET_CODE (tmp) == JUMP_INSN
1249 && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
1250 || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
1252 rtvec vec;
1253 int j;
1255 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
1256 vec = XVEC (PATTERN (tmp), 0);
1257 else
1258 vec = XVEC (PATTERN (tmp), 1);
1260 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1261 make_label_edge (edge_cache, bb,
1262 XEXP (RTVEC_ELT (vec, j), 0), 0);
1264 /* Some targets (eg, ARM) emit a conditional jump that also
1265 contains the out-of-range target. Scan for these and
1266 add an edge if necessary. */
1267 if ((tmp = single_set (insn)) != NULL
1268 && SET_DEST (tmp) == pc_rtx
1269 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1270 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
1271 make_label_edge (edge_cache, bb,
1272 XEXP (XEXP (SET_SRC (tmp), 2), 0), 0);
1274 #ifdef CASE_DROPS_THROUGH
1275 /* Silly VAXen. The ADDR_VEC is going to be in the way of
1276 us naturally detecting fallthru into the next block. */
1277 force_fallthru = 1;
1278 #endif
1281 /* If this is a computed jump, then mark it as reaching
1282 everything on the label_value_list and forced_labels list. */
1283 else if (computed_jump_p (insn))
1285 current_function_has_computed_jump = 1;
1287 for (x = label_value_list; x; x = XEXP (x, 1))
1288 make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
1290 for (x = forced_labels; x; x = XEXP (x, 1))
1291 make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
1294 /* Returns create an exit out. */
1295 else if (returnjump_p (insn))
1296 make_edge (edge_cache, bb, EXIT_BLOCK_PTR, 0);
1298 /* Otherwise, we have a plain conditional or unconditional jump. */
1299 else
1301 if (! JUMP_LABEL (insn))
1302 abort ();
1303 make_label_edge (edge_cache, bb, JUMP_LABEL (insn), 0);
1307 /* If this is a sibling call insn, then this is in effect a
1308 combined call and return, and so we need an edge to the
1309 exit block. No need to worry about EH edges, since we
1310 wouldn't have created the sibling call in the first place. */
1312 if (code == CALL_INSN && SIBLING_CALL_P (insn))
1313 make_edge (edge_cache, bb, EXIT_BLOCK_PTR,
1314 EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
1316 /* If this is a CALL_INSN, then mark it as reaching the active EH
1317 handler for this CALL_INSN. If we're handling non-call
1318 exceptions then any insn can reach any of the active handlers.
1320 Also mark the CALL_INSN as reaching any nonlocal goto handler. */
1322 else if (code == CALL_INSN || flag_non_call_exceptions)
1324 /* Add any appropriate EH edges. */
1325 make_eh_edge (edge_cache, bb, insn);
1327 if (code == CALL_INSN && nonlocal_goto_handler_labels)
1329 /* ??? This could be made smarter: in some cases it's possible
1330 to tell that certain calls will not do a nonlocal goto.
1332 For example, if the nested functions that do the nonlocal
1333 gotos do not have their addresses taken, then only calls to
1334 those functions or to other nested functions that use them
1335 could possibly do nonlocal gotos. */
1336 /* We do know that a REG_EH_REGION note with a value less
1337 than 0 is guaranteed not to perform a non-local goto. */
1338 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1339 if (!note || INTVAL (XEXP (note, 0)) >= 0)
1340 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
1341 make_label_edge (edge_cache, bb, XEXP (x, 0),
1342 EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
1346 /* Find out if we can drop through to the next block. */
1347 insn = next_nonnote_insn (insn);
1348 if (!insn || (i + 1 == n_basic_blocks && force_fallthru))
1349 make_edge (edge_cache, bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
1350 else if (i + 1 < n_basic_blocks)
1352 rtx tmp = BLOCK_HEAD (i + 1);
1353 if (GET_CODE (tmp) == NOTE)
1354 tmp = next_nonnote_insn (tmp);
1355 if (force_fallthru || insn == tmp)
1356 make_edge (edge_cache, bb, BASIC_BLOCK (i + 1), EDGE_FALLTHRU);
1360 if (edge_cache)
1361 sbitmap_vector_free (edge_cache);
1364 /* Create an edge between two basic blocks. FLAGS are auxiliary information
1365 about the edge that is accumulated between calls. */
1367 void
1368 make_edge (edge_cache, src, dst, flags)
1369 sbitmap *edge_cache;
1370 basic_block src, dst;
1371 int flags;
1373 int use_edge_cache;
1374 edge e;
1376 /* Don't bother with edge cache for ENTRY or EXIT; there aren't that
1377 many edges to them, and we didn't allocate memory for it. */
1378 use_edge_cache = (edge_cache
1379 && src != ENTRY_BLOCK_PTR
1380 && dst != EXIT_BLOCK_PTR);
1382 /* Make sure we don't add duplicate edges. */
1383 switch (use_edge_cache)
1385 default:
1386 /* Quick test for non-existance of the edge. */
1387 if (! TEST_BIT (edge_cache[src->index], dst->index))
1388 break;
1390 /* The edge exists; early exit if no work to do. */
1391 if (flags == 0)
1392 return;
1394 /* FALLTHRU */
1395 case 0:
1396 for (e = src->succ; e; e = e->succ_next)
1397 if (e->dest == dst)
1399 e->flags |= flags;
1400 return;
1402 break;
1405 e = (edge) xcalloc (1, sizeof (*e));
1406 n_edges++;
1408 e->succ_next = src->succ;
1409 e->pred_next = dst->pred;
1410 e->src = src;
1411 e->dest = dst;
1412 e->flags = flags;
1414 src->succ = e;
1415 dst->pred = e;
1417 if (use_edge_cache)
1418 SET_BIT (edge_cache[src->index], dst->index);
1421 /* Create an edge from a basic block to a label. */
1423 static void
1424 make_label_edge (edge_cache, src, label, flags)
1425 sbitmap *edge_cache;
1426 basic_block src;
1427 rtx label;
1428 int flags;
1430 if (GET_CODE (label) != CODE_LABEL)
1431 abort ();
1433 /* If the label was never emitted, this insn is junk, but avoid a
1434 crash trying to refer to BLOCK_FOR_INSN (label). This can happen
1435 as a result of a syntax error and a diagnostic has already been
1436 printed. */
1438 if (INSN_UID (label) == 0)
1439 return;
1441 make_edge (edge_cache, src, BLOCK_FOR_INSN (label), flags);
1444 /* Create the edges generated by INSN in REGION. */
1446 static void
1447 make_eh_edge (edge_cache, src, insn)
1448 sbitmap *edge_cache;
1449 basic_block src;
1450 rtx insn;
1452 int is_call = (GET_CODE (insn) == CALL_INSN ? EDGE_ABNORMAL_CALL : 0);
1453 rtx handlers, i;
1455 handlers = reachable_handlers (insn);
1457 for (i = handlers; i; i = XEXP (i, 1))
1458 make_label_edge (edge_cache, src, XEXP (i, 0),
1459 EDGE_ABNORMAL | EDGE_EH | is_call);
1461 free_INSN_LIST_list (&handlers);
1464 /* Identify critical edges and set the bits appropriately. */
1466 void
1467 mark_critical_edges ()
1469 int i, n = n_basic_blocks;
1470 basic_block bb;
1472 /* We begin with the entry block. This is not terribly important now,
1473 but could be if a front end (Fortran) implemented alternate entry
1474 points. */
1475 bb = ENTRY_BLOCK_PTR;
1476 i = -1;
1478 while (1)
1480 edge e;
1482 /* (1) Critical edges must have a source with multiple successors. */
1483 if (bb->succ && bb->succ->succ_next)
1485 for (e = bb->succ; e; e = e->succ_next)
1487 /* (2) Critical edges must have a destination with multiple
1488 predecessors. Note that we know there is at least one
1489 predecessor -- the edge we followed to get here. */
1490 if (e->dest->pred->pred_next)
1491 e->flags |= EDGE_CRITICAL;
1492 else
1493 e->flags &= ~EDGE_CRITICAL;
1496 else
1498 for (e = bb->succ; e; e = e->succ_next)
1499 e->flags &= ~EDGE_CRITICAL;
1502 if (++i >= n)
1503 break;
1504 bb = BASIC_BLOCK (i);
1508 /* Split a block BB after insn INSN creating a new fallthru edge.
1509 Return the new edge. Note that to keep other parts of the compiler happy,
1510 this function renumbers all the basic blocks so that the new
1511 one has a number one greater than the block split. */
1513 edge
1514 split_block (bb, insn)
1515 basic_block bb;
1516 rtx insn;
1518 basic_block new_bb;
1519 edge new_edge;
1520 edge e;
1521 rtx bb_note;
1522 int i, j;
1524 /* There is no point splitting the block after its end. */
1525 if (bb->end == insn)
1526 return 0;
1528 /* Create the new structures. */
1529 new_bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*new_bb));
1530 new_edge = (edge) xcalloc (1, sizeof (*new_edge));
1531 n_edges++;
1533 memset (new_bb, 0, sizeof (*new_bb));
1535 new_bb->head = NEXT_INSN (insn);
1536 new_bb->end = bb->end;
1537 bb->end = insn;
1539 new_bb->succ = bb->succ;
1540 bb->succ = new_edge;
1541 new_bb->pred = new_edge;
1542 new_bb->count = bb->count;
1543 new_bb->frequency = bb->frequency;
1544 new_bb->loop_depth = bb->loop_depth;
1546 new_edge->src = bb;
1547 new_edge->dest = new_bb;
1548 new_edge->flags = EDGE_FALLTHRU;
1549 new_edge->probability = REG_BR_PROB_BASE;
1550 new_edge->count = bb->count;
1552 /* Redirect the src of the successor edges of bb to point to new_bb. */
1553 for (e = new_bb->succ; e; e = e->succ_next)
1554 e->src = new_bb;
1556 /* Place the new block just after the block being split. */
1557 VARRAY_GROW (basic_block_info, ++n_basic_blocks);
1559 /* Some parts of the compiler expect blocks to be number in
1560 sequential order so insert the new block immediately after the
1561 block being split.. */
1562 j = bb->index;
1563 for (i = n_basic_blocks - 1; i > j + 1; --i)
1565 basic_block tmp = BASIC_BLOCK (i - 1);
1566 BASIC_BLOCK (i) = tmp;
1567 tmp->index = i;
1570 BASIC_BLOCK (i) = new_bb;
1571 new_bb->index = i;
1573 if (GET_CODE (new_bb->head) == CODE_LABEL)
1575 /* Create the basic block note. */
1576 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK,
1577 new_bb->head);
1578 NOTE_BASIC_BLOCK (bb_note) = new_bb;
1580 else
1582 /* Create the basic block note. */
1583 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK,
1584 new_bb->head);
1585 NOTE_BASIC_BLOCK (bb_note) = new_bb;
1586 new_bb->head = bb_note;
1589 update_bb_for_insn (new_bb);
1591 if (bb->global_live_at_start)
1593 new_bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1594 new_bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1595 COPY_REG_SET (new_bb->global_live_at_end, bb->global_live_at_end);
1597 /* We now have to calculate which registers are live at the end
1598 of the split basic block and at the start of the new basic
1599 block. Start with those registers that are known to be live
1600 at the end of the original basic block and get
1601 propagate_block to determine which registers are live. */
1602 COPY_REG_SET (new_bb->global_live_at_start, bb->global_live_at_end);
1603 propagate_block (new_bb, new_bb->global_live_at_start, NULL, NULL, 0);
1604 COPY_REG_SET (bb->global_live_at_end,
1605 new_bb->global_live_at_start);
1608 return new_edge;
1611 /* Return label in the head of basic block. Create one if it doesn't exist. */
1612 static rtx
1613 block_label (block)
1614 basic_block block;
1616 if (GET_CODE (block->head) != CODE_LABEL)
1617 block->head = emit_label_before (gen_label_rtx (), block->head);
1618 return block->head;
1621 /* Return true if the block has no effect and only forwards control flow to
1622 its single destination. */
1623 static bool
1624 forwarder_block_p (bb)
1625 basic_block bb;
1627 rtx insn = bb->head;
1628 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
1629 || !bb->succ || bb->succ->succ_next)
1630 return false;
1632 while (insn != bb->end)
1634 if (active_insn_p (insn))
1635 return false;
1636 insn = NEXT_INSN (insn);
1638 return (!active_insn_p (insn)
1639 || (GET_CODE (insn) == JUMP_INSN && onlyjump_p (insn)));
1642 /* Return nonzero if we can reach target from src by falling trought. */
1643 static bool
1644 can_fallthru (src, target)
1645 basic_block src, target;
1647 rtx insn = src->end;
1648 rtx insn2 = target->head;
1650 if (src->index + 1 == target->index && !active_insn_p (insn2))
1651 insn2 = next_active_insn (insn2);
1652 /* ??? Later we may add code to move jump tables offline. */
1653 return next_active_insn (insn) == insn2;
1656 /* Attempt to perform edge redirection by replacing possibly complex jump
1657 instruction by unconditional jump or removing jump completely.
1658 This can apply only if all edges now point to the same block.
1660 The parameters and return values are equivalent to redirect_edge_and_branch.
1662 static bool
1663 try_redirect_by_replacing_jump (e, target)
1664 edge e;
1665 basic_block target;
1667 basic_block src = e->src;
1668 rtx insn = src->end;
1669 edge tmp;
1670 rtx set;
1671 int fallthru = 0;
1673 /* Verify that all targets will be TARGET. */
1674 for (tmp = src->succ; tmp; tmp = tmp->succ_next)
1675 if (tmp->dest != target && tmp != e)
1676 break;
1677 if (tmp || !onlyjump_p (insn))
1678 return false;
1680 /* Avoid removing branch with side effects. */
1681 set = single_set (insn);
1682 if (!set || side_effects_p (set))
1683 return false;
1685 /* See if we can create the fallthru edge. */
1686 if (can_fallthru (src, target))
1688 src->end = PREV_INSN (insn);
1689 if (rtl_dump_file)
1690 fprintf (rtl_dump_file, "Removing jump %i.\n", INSN_UID (insn));
1691 flow_delete_insn (insn);
1692 fallthru = 1;
1694 /* Selectivly unlink whole insn chain. */
1695 if (src->end != PREV_INSN (target->head))
1696 flow_delete_insn_chain (NEXT_INSN (src->end),
1697 PREV_INSN (target->head));
1699 /* If this already is simplejump, redirect it. */
1700 else if (simplejump_p (insn))
1702 if (e->dest == target)
1703 return false;
1704 if (rtl_dump_file)
1705 fprintf (rtl_dump_file, "Redirecting jump %i from %i to %i.\n",
1706 INSN_UID (insn), e->dest->index, target->index);
1707 redirect_jump (insn, block_label (target), 0);
1709 /* Or replace possibly complicated jump insn by simple jump insn. */
1710 else
1712 rtx target_label = block_label (target);
1713 rtx barrier;
1715 src->end = PREV_INSN (insn);
1716 src->end = emit_jump_insn_after (gen_jump (target_label), src->end);
1717 JUMP_LABEL (src->end) = target_label;
1718 LABEL_NUSES (target_label)++;
1719 if (basic_block_for_insn)
1720 set_block_for_new_insns (src->end, src);
1721 if (rtl_dump_file)
1722 fprintf (rtl_dump_file, "Replacing insn %i by jump %i\n",
1723 INSN_UID (insn), INSN_UID (src->end));
1724 flow_delete_insn (insn);
1725 barrier = next_nonnote_insn (src->end);
1726 if (!barrier || GET_CODE (barrier) != BARRIER)
1727 emit_barrier_after (src->end);
1730 /* Keep only one edge out and set proper flags. */
1731 while (src->succ->succ_next)
1732 remove_edge (src->succ);
1733 e = src->succ;
1734 if (fallthru)
1735 e->flags = EDGE_FALLTHRU;
1736 else
1737 e->flags = 0;
1738 e->probability = REG_BR_PROB_BASE;
1739 e->count = src->count;
1741 /* In case we've zapped an conditional jump, we need to kill the cc0
1742 setter too if available. */
1743 #ifdef HAVE_cc0
1744 insn = src->end;
1745 if (GET_CODE (insn) == JUMP_INSN)
1746 insn = prev_nonnote_insn (insn);
1747 if (sets_cc0_p (insn))
1749 if (insn == src->end)
1750 src->end = PREV_INSN (insn);
1751 flow_delete_insn (insn);
1753 #endif
1755 /* We don't want a block to end on a line-number note since that has
1756 the potential of changing the code between -g and not -g. */
1757 while (GET_CODE (e->src->end) == NOTE
1758 && NOTE_LINE_NUMBER (e->src->end) >= 0)
1760 rtx prev = PREV_INSN (e->src->end);
1761 flow_delete_insn (e->src->end);
1762 e->src->end = prev;
1765 if (e->dest != target)
1766 redirect_edge_succ (e, target);
1767 return true;
1770 /* Attempt to change code to redirect edge E to TARGET.
1771 Don't do that on expense of adding new instructions or reordering
1772 basic blocks.
1774 Function can be also called with edge destionation equivalent to the
1775 TARGET. Then it should try the simplifications and do nothing if
1776 none is possible.
1778 Return true if transformation suceeded. We still return flase in case
1779 E already destinated TARGET and we didn't managed to simplify instruction
1780 stream. */
1781 static bool
1782 redirect_edge_and_branch (e, target)
1783 edge e;
1784 basic_block target;
1786 rtx tmp;
1787 rtx old_label = e->dest->head;
1788 basic_block src = e->src;
1789 rtx insn = src->end;
1791 if (try_redirect_by_replacing_jump (e, target))
1792 return true;
1793 /* Do this fast path late, as we want above code to simplify for cases
1794 where called on single edge leaving basic block containing nontrivial
1795 jump insn. */
1796 else if (e->dest == target)
1797 return false;
1799 /* We can only redirect non-fallthru edges of jump insn. */
1800 if (e->flags & EDGE_FALLTHRU)
1801 return false;
1802 if (GET_CODE (insn) != JUMP_INSN)
1803 return false;
1805 /* Recognize a tablejump and adjust all matching cases. */
1806 if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
1807 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
1808 && GET_CODE (tmp) == JUMP_INSN
1809 && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
1810 || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
1812 rtvec vec;
1813 int j;
1814 rtx new_label = block_label (target);
1816 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
1817 vec = XVEC (PATTERN (tmp), 0);
1818 else
1819 vec = XVEC (PATTERN (tmp), 1);
1821 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1822 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1824 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (Pmode, new_label);
1825 --LABEL_NUSES (old_label);
1826 ++LABEL_NUSES (new_label);
1829 /* Handle casesi dispatch insns */
1830 if ((tmp = single_set (insn)) != NULL
1831 && SET_DEST (tmp) == pc_rtx
1832 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1833 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1834 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
1836 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (VOIDmode,
1837 new_label);
1838 --LABEL_NUSES (old_label);
1839 ++LABEL_NUSES (new_label);
1842 else
1844 /* ?? We may play the games with moving the named labels from
1845 one basic block to the other in case only one computed_jump is
1846 available. */
1847 if (computed_jump_p (insn))
1848 return false;
1850 /* A return instruction can't be redirected. */
1851 if (returnjump_p (insn))
1852 return false;
1854 /* If the insn doesn't go where we think, we're confused. */
1855 if (JUMP_LABEL (insn) != old_label)
1856 abort ();
1857 redirect_jump (insn, block_label (target), 0);
1860 if (rtl_dump_file)
1861 fprintf (rtl_dump_file, "Edge %i->%i redirected to %i\n",
1862 e->src->index, e->dest->index, target->index);
1863 if (e->dest != target)
1865 edge s;
1866 /* Check whether the edge is already present. */
1867 for (s = src->succ; s; s=s->succ_next)
1868 if (s->dest == target)
1869 break;
1870 if (s)
1872 s->flags |= e->flags;
1873 s->probability += e->probability;
1874 s->count += e->count;
1875 remove_edge (e);
1877 else
1878 redirect_edge_succ (e, target);
1880 return true;
1883 /* Redirect edge even at the expense of creating new jump insn or
1884 basic block. Return new basic block if created, NULL otherwise.
1885 Abort if converison is impossible. */
1886 static basic_block
1887 redirect_edge_and_branch_force (e, target)
1888 edge e;
1889 basic_block target;
1891 basic_block new_bb;
1892 edge new_edge;
1893 rtx label;
1894 rtx bb_note;
1895 int i, j;
1897 if (redirect_edge_and_branch (e, target))
1898 return NULL;
1899 if (e->dest == target)
1900 return NULL;
1901 if (e->flags & EDGE_ABNORMAL)
1902 abort ();
1903 if (!(e->flags & EDGE_FALLTHRU))
1904 abort ();
1906 e->flags &= ~EDGE_FALLTHRU;
1907 label = block_label (target);
1908 /* Case of the fallthru block. */
1909 if (!e->src->succ->succ_next)
1911 e->src->end = emit_jump_insn_after (gen_jump (label), e->src->end);
1912 JUMP_LABEL (e->src->end) = label;
1913 LABEL_NUSES (label)++;
1914 if (basic_block_for_insn)
1915 set_block_for_insn (e->src->end, e->src);
1916 emit_barrier_after (e->src->end);
1917 if (rtl_dump_file)
1918 fprintf (rtl_dump_file,
1919 "Emitting jump insn %i to redirect edge %i->%i to %i\n",
1920 INSN_UID (e->src->end), e->src->index, e->dest->index,
1921 target->index);
1922 redirect_edge_succ (e, target);
1923 return NULL;
1925 /* Redirecting fallthru edge of the conditional needs extra work. */
1927 if (rtl_dump_file)
1928 fprintf (rtl_dump_file,
1929 "Emitting jump insn %i in new BB to redirect edge %i->%i to %i\n",
1930 INSN_UID (e->src->end), e->src->index, e->dest->index,
1931 target->index);
1933 /* Create the new structures. */
1934 new_bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*new_bb));
1935 new_edge = (edge) xcalloc (1, sizeof (*new_edge));
1936 n_edges++;
1938 memset (new_bb, 0, sizeof (*new_bb));
1940 new_bb->end = new_bb->head = e->src->end;
1941 new_bb->succ = NULL;
1942 new_bb->pred = new_edge;
1943 new_bb->count = e->count;
1944 new_bb->frequency = e->probability * e->src->frequency / REG_BR_PROB_BASE;
1945 new_bb->loop_depth = e->dest->loop_depth;
1947 new_edge->flags = EDGE_FALLTHRU;
1948 new_edge->probability = e->probability;
1949 new_edge->count = e->count;
1951 /* Wire edge in. */
1952 new_edge->src = e->src;
1953 new_edge->dest = new_bb;
1954 new_edge->succ_next = e->src->succ;
1955 e->src->succ = new_edge;
1956 new_edge->pred_next = NULL;
1958 /* Redirect old edge. */
1959 redirect_edge_succ (e, target);
1960 redirect_edge_pred (e, new_bb);
1961 e->probability = REG_BR_PROB_BASE;
1963 /* Place the new block just after the block being split. */
1964 VARRAY_GROW (basic_block_info, ++n_basic_blocks);
1966 /* Some parts of the compiler expect blocks to be number in
1967 sequential order so insert the new block immediately after the
1968 block being split.. */
1969 j = new_edge->src->index;
1970 for (i = n_basic_blocks - 1; i > j + 1; --i)
1972 basic_block tmp = BASIC_BLOCK (i - 1);
1973 BASIC_BLOCK (i) = tmp;
1974 tmp->index = i;
1977 BASIC_BLOCK (i) = new_bb;
1978 new_bb->index = i;
1980 /* Create the basic block note. */
1981 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, new_bb->head);
1982 NOTE_BASIC_BLOCK (bb_note) = new_bb;
1983 new_bb->head = bb_note;
1985 new_bb->end = emit_jump_insn_after (gen_jump (label), new_bb->head);
1986 JUMP_LABEL (new_bb->end) = label;
1987 LABEL_NUSES (label)++;
1988 if (basic_block_for_insn)
1989 set_block_for_insn (new_bb->end, new_bb);
1990 emit_barrier_after (new_bb->end);
1991 return new_bb;
1994 /* Split a (typically critical) edge. Return the new block.
1995 Abort on abnormal edges.
1997 ??? The code generally expects to be called on critical edges.
1998 The case of a block ending in an unconditional jump to a
1999 block with multiple predecessors is not handled optimally. */
2001 basic_block
2002 split_edge (edge_in)
2003 edge edge_in;
2005 basic_block old_pred, bb, old_succ;
2006 edge edge_out;
2007 rtx bb_note;
2008 int i, j;
2010 /* Abnormal edges cannot be split. */
2011 if ((edge_in->flags & EDGE_ABNORMAL) != 0)
2012 abort ();
2014 old_pred = edge_in->src;
2015 old_succ = edge_in->dest;
2017 /* Create the new structures. */
2018 bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*bb));
2019 edge_out = (edge) xcalloc (1, sizeof (*edge_out));
2020 n_edges++;
2022 memset (bb, 0, sizeof (*bb));
2024 /* ??? This info is likely going to be out of date very soon. */
2025 if (old_succ->global_live_at_start)
2027 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
2028 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
2029 COPY_REG_SET (bb->global_live_at_start, old_succ->global_live_at_start);
2030 COPY_REG_SET (bb->global_live_at_end, old_succ->global_live_at_start);
2033 /* Wire them up. */
2034 bb->succ = edge_out;
2035 bb->count = edge_in->count;
2036 bb->frequency = (edge_in->probability * edge_in->src->frequency
2037 / REG_BR_PROB_BASE);
2039 edge_in->flags &= ~EDGE_CRITICAL;
2041 edge_out->pred_next = old_succ->pred;
2042 edge_out->succ_next = NULL;
2043 edge_out->src = bb;
2044 edge_out->dest = old_succ;
2045 edge_out->flags = EDGE_FALLTHRU;
2046 edge_out->probability = REG_BR_PROB_BASE;
2047 edge_out->count = edge_in->count;
2049 old_succ->pred = edge_out;
2051 /* Tricky case -- if there existed a fallthru into the successor
2052 (and we're not it) we must add a new unconditional jump around
2053 the new block we're actually interested in.
2055 Further, if that edge is critical, this means a second new basic
2056 block must be created to hold it. In order to simplify correct
2057 insn placement, do this before we touch the existing basic block
2058 ordering for the block we were really wanting. */
2059 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
2061 edge e;
2062 for (e = edge_out->pred_next; e; e = e->pred_next)
2063 if (e->flags & EDGE_FALLTHRU)
2064 break;
2066 if (e)
2068 basic_block jump_block;
2069 rtx pos;
2071 if ((e->flags & EDGE_CRITICAL) == 0
2072 && e->src != ENTRY_BLOCK_PTR)
2074 /* Non critical -- we can simply add a jump to the end
2075 of the existing predecessor. */
2076 jump_block = e->src;
2078 else
2080 /* We need a new block to hold the jump. The simplest
2081 way to do the bulk of the work here is to recursively
2082 call ourselves. */
2083 jump_block = split_edge (e);
2084 e = jump_block->succ;
2087 /* Now add the jump insn ... */
2088 pos = emit_jump_insn_after (gen_jump (old_succ->head),
2089 jump_block->end);
2090 jump_block->end = pos;
2091 if (basic_block_for_insn)
2092 set_block_for_insn (pos, jump_block);
2093 emit_barrier_after (pos);
2095 /* ... let jump know that label is in use, ... */
2096 JUMP_LABEL (pos) = old_succ->head;
2097 ++LABEL_NUSES (old_succ->head);
2099 /* ... and clear fallthru on the outgoing edge. */
2100 e->flags &= ~EDGE_FALLTHRU;
2102 /* Continue splitting the interesting edge. */
2106 /* Place the new block just in front of the successor. */
2107 VARRAY_GROW (basic_block_info, ++n_basic_blocks);
2108 if (old_succ == EXIT_BLOCK_PTR)
2109 j = n_basic_blocks - 1;
2110 else
2111 j = old_succ->index;
2112 for (i = n_basic_blocks - 1; i > j; --i)
2114 basic_block tmp = BASIC_BLOCK (i - 1);
2115 BASIC_BLOCK (i) = tmp;
2116 tmp->index = i;
2118 BASIC_BLOCK (i) = bb;
2119 bb->index = i;
2121 /* Create the basic block note.
2123 Where we place the note can have a noticable impact on the generated
2124 code. Consider this cfg:
2130 +->1-->2--->E
2132 +--+
2134 If we need to insert an insn on the edge from block 0 to block 1,
2135 we want to ensure the instructions we insert are outside of any
2136 loop notes that physically sit between block 0 and block 1. Otherwise
2137 we confuse the loop optimizer into thinking the loop is a phony. */
2138 if (old_succ != EXIT_BLOCK_PTR
2139 && PREV_INSN (old_succ->head)
2140 && GET_CODE (PREV_INSN (old_succ->head)) == NOTE
2141 && NOTE_LINE_NUMBER (PREV_INSN (old_succ->head)) == NOTE_INSN_LOOP_BEG)
2142 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK,
2143 PREV_INSN (old_succ->head));
2144 else if (old_succ != EXIT_BLOCK_PTR)
2145 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, old_succ->head);
2146 else
2147 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
2148 NOTE_BASIC_BLOCK (bb_note) = bb;
2149 bb->head = bb->end = bb_note;
2151 /* For non-fallthry edges, we must adjust the predecessor's
2152 jump instruction to target our new block. */
2153 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
2155 if (!redirect_edge_and_branch (edge_in, bb))
2156 abort ();
2158 else
2159 redirect_edge_succ (edge_in, bb);
2161 return bb;
2164 /* Queue instructions for insertion on an edge between two basic blocks.
2165 The new instructions and basic blocks (if any) will not appear in the
2166 CFG until commit_edge_insertions is called. */
2168 void
2169 insert_insn_on_edge (pattern, e)
2170 rtx pattern;
2171 edge e;
2173 /* We cannot insert instructions on an abnormal critical edge.
2174 It will be easier to find the culprit if we die now. */
2175 if ((e->flags & (EDGE_ABNORMAL|EDGE_CRITICAL))
2176 == (EDGE_ABNORMAL|EDGE_CRITICAL))
2177 abort ();
2179 if (e->insns == NULL_RTX)
2180 start_sequence ();
2181 else
2182 push_to_sequence (e->insns);
2184 emit_insn (pattern);
2186 e->insns = get_insns ();
2187 end_sequence ();
2190 /* Update the CFG for the instructions queued on edge E. */
2192 static void
2193 commit_one_edge_insertion (e)
2194 edge e;
2196 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
2197 basic_block bb;
2199 /* Pull the insns off the edge now since the edge might go away. */
2200 insns = e->insns;
2201 e->insns = NULL_RTX;
2203 /* Figure out where to put these things. If the destination has
2204 one predecessor, insert there. Except for the exit block. */
2205 if (e->dest->pred->pred_next == NULL
2206 && e->dest != EXIT_BLOCK_PTR)
2208 bb = e->dest;
2210 /* Get the location correct wrt a code label, and "nice" wrt
2211 a basic block note, and before everything else. */
2212 tmp = bb->head;
2213 if (GET_CODE (tmp) == CODE_LABEL)
2214 tmp = NEXT_INSN (tmp);
2215 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
2216 tmp = NEXT_INSN (tmp);
2217 if (tmp == bb->head)
2218 before = tmp;
2219 else
2220 after = PREV_INSN (tmp);
2223 /* If the source has one successor and the edge is not abnormal,
2224 insert there. Except for the entry block. */
2225 else if ((e->flags & EDGE_ABNORMAL) == 0
2226 && e->src->succ->succ_next == NULL
2227 && e->src != ENTRY_BLOCK_PTR)
2229 bb = e->src;
2230 /* It is possible to have a non-simple jump here. Consider a target
2231 where some forms of unconditional jumps clobber a register. This
2232 happens on the fr30 for example.
2234 We know this block has a single successor, so we can just emit
2235 the queued insns before the jump. */
2236 if (GET_CODE (bb->end) == JUMP_INSN)
2238 before = bb->end;
2240 else
2242 /* We'd better be fallthru, or we've lost track of what's what. */
2243 if ((e->flags & EDGE_FALLTHRU) == 0)
2244 abort ();
2246 after = bb->end;
2250 /* Otherwise we must split the edge. */
2251 else
2253 bb = split_edge (e);
2254 after = bb->end;
2257 /* Now that we've found the spot, do the insertion. */
2259 /* Set the new block number for these insns, if structure is allocated. */
2260 if (basic_block_for_insn)
2262 rtx i;
2263 for (i = insns; i != NULL_RTX; i = NEXT_INSN (i))
2264 set_block_for_insn (i, bb);
2267 if (before)
2269 emit_insns_before (insns, before);
2270 if (before == bb->head)
2271 bb->head = insns;
2273 last = prev_nonnote_insn (before);
2275 else
2277 last = emit_insns_after (insns, after);
2278 if (after == bb->end)
2279 bb->end = last;
2282 if (returnjump_p (last))
2284 /* ??? Remove all outgoing edges from BB and add one for EXIT.
2285 This is not currently a problem because this only happens
2286 for the (single) epilogue, which already has a fallthru edge
2287 to EXIT. */
2289 e = bb->succ;
2290 if (e->dest != EXIT_BLOCK_PTR
2291 || e->succ_next != NULL
2292 || (e->flags & EDGE_FALLTHRU) == 0)
2293 abort ();
2294 e->flags &= ~EDGE_FALLTHRU;
2296 emit_barrier_after (last);
2297 bb->end = last;
2299 if (before)
2300 flow_delete_insn (before);
2302 else if (GET_CODE (last) == JUMP_INSN)
2303 abort ();
2304 find_sub_basic_blocks (bb);
2307 /* Update the CFG for all queued instructions. */
2309 void
2310 commit_edge_insertions ()
2312 int i;
2313 basic_block bb;
2315 #ifdef ENABLE_CHECKING
2316 verify_flow_info ();
2317 #endif
2319 i = -1;
2320 bb = ENTRY_BLOCK_PTR;
2321 while (1)
2323 edge e, next;
2325 for (e = bb->succ; e; e = next)
2327 next = e->succ_next;
2328 if (e->insns)
2329 commit_one_edge_insertion (e);
2332 if (++i >= n_basic_blocks)
2333 break;
2334 bb = BASIC_BLOCK (i);
2338 /* Add fake edges to the function exit for any non constant calls in
2339 the bitmap of blocks specified by BLOCKS or to the whole CFG if
2340 BLOCKS is zero. Return the nuber of blocks that were split. */
2343 flow_call_edges_add (blocks)
2344 sbitmap blocks;
2346 int i;
2347 int blocks_split = 0;
2348 int bb_num = 0;
2349 basic_block *bbs;
2351 /* Map bb indicies into basic block pointers since split_block
2352 will renumber the basic blocks. */
2354 bbs = xmalloc (n_basic_blocks * sizeof (*bbs));
2356 if (! blocks)
2358 for (i = 0; i < n_basic_blocks; i++)
2359 bbs[bb_num++] = BASIC_BLOCK (i);
2361 else
2363 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
2365 bbs[bb_num++] = BASIC_BLOCK (i);
2370 /* Now add fake edges to the function exit for any non constant
2371 calls since there is no way that we can determine if they will
2372 return or not... */
2374 for (i = 0; i < bb_num; i++)
2376 basic_block bb = bbs[i];
2377 rtx insn;
2378 rtx prev_insn;
2380 for (insn = bb->end; ; insn = prev_insn)
2382 prev_insn = PREV_INSN (insn);
2383 if (GET_CODE (insn) == CALL_INSN && ! CONST_CALL_P (insn))
2385 edge e;
2387 /* Note that the following may create a new basic block
2388 and renumber the existing basic blocks. */
2389 e = split_block (bb, insn);
2390 if (e)
2391 blocks_split++;
2393 make_edge (NULL, bb, EXIT_BLOCK_PTR, EDGE_FAKE);
2395 if (insn == bb->head)
2396 break;
2400 if (blocks_split)
2401 verify_flow_info ();
2403 free (bbs);
2404 return blocks_split;
2407 /* Find unreachable blocks. An unreachable block will have NULL in
2408 block->aux, a non-NULL value indicates the block is reachable. */
2410 void
2411 find_unreachable_blocks ()
2413 edge e;
2414 int i, n;
2415 basic_block *tos, *worklist;
2417 n = n_basic_blocks;
2418 tos = worklist = (basic_block *) xmalloc (sizeof (basic_block) * n);
2420 /* Use basic_block->aux as a marker. Clear them all. */
2422 for (i = 0; i < n; ++i)
2423 BASIC_BLOCK (i)->aux = NULL;
2425 /* Add our starting points to the worklist. Almost always there will
2426 be only one. It isn't inconcievable that we might one day directly
2427 support Fortran alternate entry points. */
2429 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
2431 *tos++ = e->dest;
2433 /* Mark the block with a handy non-null value. */
2434 e->dest->aux = e;
2437 /* Iterate: find everything reachable from what we've already seen. */
2439 while (tos != worklist)
2441 basic_block b = *--tos;
2443 for (e = b->succ; e; e = e->succ_next)
2444 if (!e->dest->aux)
2446 *tos++ = e->dest;
2447 e->dest->aux = e;
2451 free (worklist);
2454 /* Delete all unreachable basic blocks. */
2455 static void
2456 delete_unreachable_blocks ()
2458 int i;
2460 find_unreachable_blocks ();
2462 /* Delete all unreachable basic blocks. Count down so that we
2463 don't interfere with the block renumbering that happens in
2464 flow_delete_block. */
2466 for (i = n_basic_blocks - 1; i >= 0; --i)
2468 basic_block b = BASIC_BLOCK (i);
2470 if (b->aux != NULL)
2471 /* This block was found. Tidy up the mark. */
2472 b->aux = NULL;
2473 else
2474 flow_delete_block (b);
2477 tidy_fallthru_edges ();
2480 /* Return true if NOTE is not one of the ones that must be kept paired,
2481 so that we may simply delete them. */
2483 static int
2484 can_delete_note_p (note)
2485 rtx note;
2487 return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
2488 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
2491 /* Unlink a chain of insns between START and FINISH, leaving notes
2492 that must be paired. */
2494 void
2495 flow_delete_insn_chain (start, finish)
2496 rtx start, finish;
2498 /* Unchain the insns one by one. It would be quicker to delete all
2499 of these with a single unchaining, rather than one at a time, but
2500 we need to keep the NOTE's. */
2502 rtx next;
2504 while (1)
2506 next = NEXT_INSN (start);
2507 if (GET_CODE (start) == NOTE && !can_delete_note_p (start))
2509 else if (GET_CODE (start) == CODE_LABEL
2510 && ! can_delete_label_p (start))
2512 const char *name = LABEL_NAME (start);
2513 PUT_CODE (start, NOTE);
2514 NOTE_LINE_NUMBER (start) = NOTE_INSN_DELETED_LABEL;
2515 NOTE_SOURCE_FILE (start) = name;
2517 else
2518 next = flow_delete_insn (start);
2520 if (start == finish)
2521 break;
2522 start = next;
2526 /* Delete the insns in a (non-live) block. We physically delete every
2527 non-deleted-note insn, and update the flow graph appropriately.
2529 Return nonzero if we deleted an exception handler. */
2531 /* ??? Preserving all such notes strikes me as wrong. It would be nice
2532 to post-process the stream to remove empty blocks, loops, ranges, etc. */
2535 flow_delete_block (b)
2536 basic_block b;
2538 int deleted_handler = 0;
2539 rtx insn, end, tmp;
2541 /* If the head of this block is a CODE_LABEL, then it might be the
2542 label for an exception handler which can't be reached.
2544 We need to remove the label from the exception_handler_label list
2545 and remove the associated NOTE_INSN_EH_REGION_BEG and
2546 NOTE_INSN_EH_REGION_END notes. */
2548 insn = b->head;
2550 never_reached_warning (insn);
2552 if (GET_CODE (insn) == CODE_LABEL)
2553 maybe_remove_eh_handler (insn);
2555 /* Include any jump table following the basic block. */
2556 end = b->end;
2557 if (GET_CODE (end) == JUMP_INSN
2558 && (tmp = JUMP_LABEL (end)) != NULL_RTX
2559 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
2560 && GET_CODE (tmp) == JUMP_INSN
2561 && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
2562 || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
2563 end = tmp;
2565 /* Include any barrier that may follow the basic block. */
2566 tmp = next_nonnote_insn (end);
2567 if (tmp && GET_CODE (tmp) == BARRIER)
2568 end = tmp;
2570 /* Selectively delete the entire chain. */
2571 flow_delete_insn_chain (insn, end);
2573 /* Remove the edges into and out of this block. Note that there may
2574 indeed be edges in, if we are removing an unreachable loop. */
2576 edge e, next, *q;
2578 for (e = b->pred; e; e = next)
2580 for (q = &e->src->succ; *q != e; q = &(*q)->succ_next)
2581 continue;
2582 *q = e->succ_next;
2583 next = e->pred_next;
2584 n_edges--;
2585 free (e);
2587 for (e = b->succ; e; e = next)
2589 for (q = &e->dest->pred; *q != e; q = &(*q)->pred_next)
2590 continue;
2591 *q = e->pred_next;
2592 next = e->succ_next;
2593 n_edges--;
2594 free (e);
2597 b->pred = NULL;
2598 b->succ = NULL;
2601 /* Remove the basic block from the array, and compact behind it. */
2602 expunge_block (b);
2604 return deleted_handler;
2607 /* Remove block B from the basic block array and compact behind it. */
2609 static void
2610 expunge_block (b)
2611 basic_block b;
2613 int i, n = n_basic_blocks;
2615 for (i = b->index; i + 1 < n; ++i)
2617 basic_block x = BASIC_BLOCK (i + 1);
2618 BASIC_BLOCK (i) = x;
2619 x->index = i;
2622 basic_block_info->num_elements--;
2623 n_basic_blocks--;
2626 /* Delete INSN by patching it out. Return the next insn. */
2629 flow_delete_insn (insn)
2630 rtx insn;
2632 rtx prev = PREV_INSN (insn);
2633 rtx next = NEXT_INSN (insn);
2634 rtx note;
2636 PREV_INSN (insn) = NULL_RTX;
2637 NEXT_INSN (insn) = NULL_RTX;
2638 INSN_DELETED_P (insn) = 1;
2640 if (prev)
2641 NEXT_INSN (prev) = next;
2642 if (next)
2643 PREV_INSN (next) = prev;
2644 else
2645 set_last_insn (prev);
2647 if (GET_CODE (insn) == CODE_LABEL)
2648 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
2650 /* If deleting a jump, decrement the use count of the label. Deleting
2651 the label itself should happen in the normal course of block merging. */
2652 if (GET_CODE (insn) == JUMP_INSN
2653 && JUMP_LABEL (insn)
2654 && GET_CODE (JUMP_LABEL (insn)) == CODE_LABEL)
2655 LABEL_NUSES (JUMP_LABEL (insn))--;
2657 /* Also if deleting an insn that references a label. */
2658 else if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
2659 && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
2660 LABEL_NUSES (XEXP (note, 0))--;
2662 if (GET_CODE (insn) == JUMP_INSN
2663 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
2664 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
2666 rtx pat = PATTERN (insn);
2667 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
2668 int len = XVECLEN (pat, diff_vec_p);
2669 int i;
2671 for (i = 0; i < len; i++)
2672 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
2675 return next;
2678 /* True if a given label can be deleted. */
2680 static int
2681 can_delete_label_p (label)
2682 rtx label;
2684 rtx x;
2686 if (LABEL_PRESERVE_P (label))
2687 return 0;
2689 for (x = forced_labels; x; x = XEXP (x, 1))
2690 if (label == XEXP (x, 0))
2691 return 0;
2692 for (x = label_value_list; x; x = XEXP (x, 1))
2693 if (label == XEXP (x, 0))
2694 return 0;
2695 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2696 if (label == XEXP (x, 0))
2697 return 0;
2699 /* User declared labels must be preserved. */
2700 if (LABEL_NAME (label) != 0)
2701 return 0;
2703 return 1;
2706 static int
2707 tail_recursion_label_p (label)
2708 rtx label;
2710 rtx x;
2712 for (x = tail_recursion_label_list; x; x = XEXP (x, 1))
2713 if (label == XEXP (x, 0))
2714 return 1;
2716 return 0;
2719 /* Blocks A and B are to be merged into a single block A. The insns
2720 are already contiguous, hence `nomove'. */
2722 void
2723 merge_blocks_nomove (a, b)
2724 basic_block a, b;
2726 edge e;
2727 rtx b_head, b_end, a_end;
2728 rtx del_first = NULL_RTX, del_last = NULL_RTX;
2729 int b_empty = 0;
2731 /* If there was a CODE_LABEL beginning B, delete it. */
2732 b_head = b->head;
2733 b_end = b->end;
2734 if (GET_CODE (b_head) == CODE_LABEL)
2736 /* Detect basic blocks with nothing but a label. This can happen
2737 in particular at the end of a function. */
2738 if (b_head == b_end)
2739 b_empty = 1;
2740 del_first = del_last = b_head;
2741 b_head = NEXT_INSN (b_head);
2744 /* Delete the basic block note. */
2745 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
2747 if (b_head == b_end)
2748 b_empty = 1;
2749 if (! del_last)
2750 del_first = b_head;
2751 del_last = b_head;
2752 b_head = NEXT_INSN (b_head);
2755 /* If there was a jump out of A, delete it. */
2756 a_end = a->end;
2757 if (GET_CODE (a_end) == JUMP_INSN)
2759 rtx prev;
2761 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
2762 if (GET_CODE (prev) != NOTE
2763 || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
2764 || prev == a->head)
2765 break;
2767 del_first = a_end;
2769 #ifdef HAVE_cc0
2770 /* If this was a conditional jump, we need to also delete
2771 the insn that set cc0. */
2772 if (prev && sets_cc0_p (prev))
2774 rtx tmp = prev;
2775 prev = prev_nonnote_insn (prev);
2776 if (!prev)
2777 prev = a->head;
2778 del_first = tmp;
2780 #endif
2782 a_end = prev;
2784 else if (GET_CODE (NEXT_INSN (a_end)) == BARRIER)
2785 del_first = NEXT_INSN (a_end);
2787 /* Delete everything marked above as well as crap that might be
2788 hanging out between the two blocks. */
2789 flow_delete_insn_chain (del_first, del_last);
2791 /* Normally there should only be one successor of A and that is B, but
2792 partway though the merge of blocks for conditional_execution we'll
2793 be merging a TEST block with THEN and ELSE successors. Free the
2794 whole lot of them and hope the caller knows what they're doing. */
2795 while (a->succ)
2796 remove_edge (a->succ);
2798 /* Adjust the edges out of B for the new owner. */
2799 for (e = b->succ; e; e = e->succ_next)
2800 e->src = a;
2801 a->succ = b->succ;
2803 /* B hasn't quite yet ceased to exist. Attempt to prevent mishap. */
2804 b->pred = b->succ = NULL;
2806 /* Reassociate the insns of B with A. */
2807 if (!b_empty)
2809 if (basic_block_for_insn)
2811 BLOCK_FOR_INSN (b_head) = a;
2812 while (b_head != b_end)
2814 b_head = NEXT_INSN (b_head);
2815 BLOCK_FOR_INSN (b_head) = a;
2818 a_end = b_end;
2820 a->end = a_end;
2822 expunge_block (b);
2825 /* Blocks A and B are to be merged into a single block. A has no incoming
2826 fallthru edge, so it can be moved before B without adding or modifying
2827 any jumps (aside from the jump from A to B). */
2829 static int
2830 merge_blocks_move_predecessor_nojumps (a, b)
2831 basic_block a, b;
2833 rtx start, end, barrier;
2834 int index;
2836 start = a->head;
2837 end = a->end;
2839 barrier = next_nonnote_insn (end);
2840 if (GET_CODE (barrier) != BARRIER)
2841 abort ();
2842 flow_delete_insn (barrier);
2844 /* Move block and loop notes out of the chain so that we do not
2845 disturb their order.
2847 ??? A better solution would be to squeeze out all the non-nested notes
2848 and adjust the block trees appropriately. Even better would be to have
2849 a tighter connection between block trees and rtl so that this is not
2850 necessary. */
2851 start = squeeze_notes (start, end);
2853 /* Scramble the insn chain. */
2854 if (end != PREV_INSN (b->head))
2855 reorder_insns (start, end, PREV_INSN (b->head));
2857 if (rtl_dump_file)
2859 fprintf (rtl_dump_file, "Moved block %d before %d and merged.\n",
2860 a->index, b->index);
2863 /* Swap the records for the two blocks around. Although we are deleting B,
2864 A is now where B was and we want to compact the BB array from where
2865 A used to be. */
2866 BASIC_BLOCK (a->index) = b;
2867 BASIC_BLOCK (b->index) = a;
2868 index = a->index;
2869 a->index = b->index;
2870 b->index = index;
2872 /* Now blocks A and B are contiguous. Merge them. */
2873 merge_blocks_nomove (a, b);
2875 return 1;
2878 /* Blocks A and B are to be merged into a single block. B has no outgoing
2879 fallthru edge, so it can be moved after A without adding or modifying
2880 any jumps (aside from the jump from A to B). */
2882 static int
2883 merge_blocks_move_successor_nojumps (a, b)
2884 basic_block a, b;
2886 rtx start, end, barrier;
2888 start = b->head;
2889 end = b->end;
2890 barrier = NEXT_INSN (end);
2892 /* Recognize a jump table following block B. */
2893 if (GET_CODE (barrier) == CODE_LABEL
2894 && NEXT_INSN (barrier)
2895 && GET_CODE (NEXT_INSN (barrier)) == JUMP_INSN
2896 && (GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_VEC
2897 || GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_DIFF_VEC))
2899 end = NEXT_INSN (barrier);
2900 barrier = NEXT_INSN (end);
2903 /* There had better have been a barrier there. Delete it. */
2904 if (GET_CODE (barrier) != BARRIER)
2905 abort ();
2906 flow_delete_insn (barrier);
2908 /* Move block and loop notes out of the chain so that we do not
2909 disturb their order.
2911 ??? A better solution would be to squeeze out all the non-nested notes
2912 and adjust the block trees appropriately. Even better would be to have
2913 a tighter connection between block trees and rtl so that this is not
2914 necessary. */
2915 start = squeeze_notes (start, end);
2917 /* Scramble the insn chain. */
2918 reorder_insns (start, end, a->end);
2920 /* Now blocks A and B are contiguous. Merge them. */
2921 merge_blocks_nomove (a, b);
2923 if (rtl_dump_file)
2925 fprintf (rtl_dump_file, "Moved block %d after %d and merged.\n",
2926 b->index, a->index);
2929 return 1;
2932 /* Attempt to merge basic blocks that are potentially non-adjacent.
2933 Return true iff the attempt succeeded. */
2935 static int
2936 merge_blocks (e, b, c)
2937 edge e;
2938 basic_block b, c;
2940 /* If C has a tail recursion label, do not merge. There is no
2941 edge recorded from the call_placeholder back to this label, as
2942 that would make optimize_sibling_and_tail_recursive_calls more
2943 complex for no gain. */
2944 if (GET_CODE (c->head) == CODE_LABEL
2945 && tail_recursion_label_p (c->head))
2946 return 0;
2948 /* If B has a fallthru edge to C, no need to move anything. */
2949 if (e->flags & EDGE_FALLTHRU)
2951 merge_blocks_nomove (b, c);
2953 if (rtl_dump_file)
2955 fprintf (rtl_dump_file, "Merged %d and %d without moving.\n",
2956 b->index, c->index);
2959 return 1;
2961 else
2963 edge tmp_edge;
2964 int c_has_outgoing_fallthru;
2965 int b_has_incoming_fallthru;
2967 /* We must make sure to not munge nesting of exception regions,
2968 lexical blocks, and loop notes.
2970 The first is taken care of by requiring that the active eh
2971 region at the end of one block always matches the active eh
2972 region at the beginning of the next block.
2974 The later two are taken care of by squeezing out all the notes. */
2976 /* ??? A throw/catch edge (or any abnormal edge) should be rarely
2977 executed and we may want to treat blocks which have two out
2978 edges, one normal, one abnormal as only having one edge for
2979 block merging purposes. */
2981 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
2982 if (tmp_edge->flags & EDGE_FALLTHRU)
2983 break;
2984 c_has_outgoing_fallthru = (tmp_edge != NULL);
2986 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
2987 if (tmp_edge->flags & EDGE_FALLTHRU)
2988 break;
2989 b_has_incoming_fallthru = (tmp_edge != NULL);
2991 /* If B does not have an incoming fallthru, then it can be moved
2992 immediately before C without introducing or modifying jumps.
2993 C cannot be the first block, so we do not have to worry about
2994 accessing a non-existent block. */
2995 if (! b_has_incoming_fallthru)
2996 return merge_blocks_move_predecessor_nojumps (b, c);
2998 /* Otherwise, we're going to try to move C after B. If C does
2999 not have an outgoing fallthru, then it can be moved
3000 immediately after B without introducing or modifying jumps. */
3001 if (! c_has_outgoing_fallthru)
3002 return merge_blocks_move_successor_nojumps (b, c);
3004 /* Otherwise, we'll need to insert an extra jump, and possibly
3005 a new block to contain it. */
3006 /* ??? Not implemented yet. */
3008 return 0;
3012 /* Simplify conditional jump around an jump.
3013 Return nonzero in case optimization matched. */
3015 static bool
3016 try_simplify_condjump (src)
3017 basic_block src;
3019 basic_block final_block, next_block;
3020 rtx insn = src->end;
3021 edge branch, fallthru;
3023 /* Verify that there are exactly two successors. */
3024 if (!src->succ || !src->succ->succ_next || src->succ->succ_next->succ_next
3025 || !any_condjump_p (insn))
3026 return false;
3028 fallthru = FALLTHRU_EDGE (src);
3030 /* Following block must be simple forwarder block with single
3031 entry and must not be last in the stream. */
3032 next_block = fallthru->dest;
3033 if (!forwarder_block_p (next_block)
3034 || next_block->pred->pred_next
3035 || next_block->index == n_basic_blocks - 1)
3036 return false;
3038 /* The branch must target to block afterwards. */
3039 final_block = BASIC_BLOCK (next_block->index + 1);
3041 branch = BRANCH_EDGE (src);
3043 if (branch->dest != final_block)
3044 return false;
3046 /* Avoid jump.c from being overactive on removin ureachable insns. */
3047 LABEL_NUSES (JUMP_LABEL (insn))++;
3048 if (!invert_jump (insn, block_label (next_block->succ->dest), 1))
3050 LABEL_NUSES (JUMP_LABEL (insn))--;
3051 return false;
3053 if (rtl_dump_file)
3054 fprintf (rtl_dump_file, "Simplifying condjump %i around jump %i\n",
3055 INSN_UID (insn), INSN_UID (next_block->end));
3057 redirect_edge_succ (branch, final_block);
3058 redirect_edge_succ (fallthru, next_block->succ->dest);
3060 branch->flags |= EDGE_FALLTHRU;
3061 fallthru->flags &= ~EDGE_FALLTHRU;
3063 flow_delete_block (next_block);
3064 return true;
3067 /* Attempt to forward edges leaving basic block B.
3068 Return nonzero if sucessfull. */
3070 static bool
3071 try_forward_edges (b)
3072 basic_block b;
3074 bool changed = 0;
3075 edge e;
3076 for (e = b->succ; e; e = e->succ_next)
3078 basic_block target = e->dest, first = e->dest;
3079 int counter = 0;
3081 /* Look for the real destination of jump.
3082 Avoid inifinite loop in the infinite empty loop by counting
3083 up to n_basic_blocks. */
3084 while (forwarder_block_p (target)
3085 && target->succ->dest != EXIT_BLOCK_PTR
3086 && counter < n_basic_blocks)
3088 /* Bypass trivial infinite loops. */
3089 if (target == target->succ->dest)
3090 counter = n_basic_blocks;
3091 target = target->succ->dest, counter++;
3094 if (target != first && counter < n_basic_blocks
3095 && redirect_edge_and_branch (e, target))
3097 while (first != target)
3099 first->count -= e->count;
3100 first->succ->count -= e->count;
3101 first->frequency -= ((e->probability * b->frequency
3102 + REG_BR_PROB_BASE / 2)
3103 / REG_BR_PROB_BASE);
3104 first = first->succ->dest;
3106 /* We've possibly removed the edge. */
3107 changed = 1;
3108 e = b->succ;
3110 else if (rtl_dump_file && counter == n_basic_blocks)
3111 fprintf (rtl_dump_file, "Infinite loop in BB %i.\n", target->index);
3112 else if (rtl_dump_file && first != target)
3113 fprintf (rtl_dump_file,
3114 "Forwarding edge %i->%i to %i failed.\n", b->index,
3115 e->dest->index, target->index);
3117 return changed;
3120 /* Do simple CFG optimizations - basic block merging, simplifying of jump
3121 instructions etc.
3123 Return nonzero in case some optimizations matched. */
3125 static bool
3126 try_optimize_cfg ()
3128 int i;
3129 bool changed_overall = 0;
3130 bool changed;
3132 /* Attempt to merge blocks as made possible by edge removal. If a block
3133 has only one successor, and the successor has only one predecessor,
3134 they may be combined. */
3138 changed = 0;
3139 for (i = 0; i < n_basic_blocks;)
3141 basic_block c, b = BASIC_BLOCK (i);
3142 edge s;
3143 int changed_here = 0;
3145 /* Delete trivially dead basic block. */
3146 if (b->pred == NULL)
3148 c = BASIC_BLOCK (i - 1);
3149 if (rtl_dump_file)
3150 fprintf (rtl_dump_file, "Deleting block %i.\n", b->index);
3151 flow_delete_block (b);
3152 changed = 1;
3153 b = c;
3155 /* The fallthru forwarder block can be deleted. */
3156 if (b->pred->pred_next == NULL
3157 && forwarder_block_p (b)
3158 && n_basic_blocks > 1
3159 && (b->pred->flags & EDGE_FALLTHRU)
3160 && (b->succ->flags & EDGE_FALLTHRU))
3162 if (rtl_dump_file)
3163 fprintf (rtl_dump_file, "Deleting fallthru block %i.\n",
3164 b->index);
3165 c = BASIC_BLOCK (i ? i - 1 : i + 1);
3166 redirect_edge_succ (b->pred, b->succ->dest);
3167 flow_delete_block (b);
3168 changed = 1;
3169 b = c;
3172 /* A loop because chains of blocks might be combineable. */
3173 while ((s = b->succ) != NULL
3174 && s->succ_next == NULL
3175 && (s->flags & EDGE_EH) == 0
3176 && (c = s->dest) != EXIT_BLOCK_PTR
3177 && c->pred->pred_next == NULL
3178 /* If the jump insn has side effects, we can't kill the edge. */
3179 && (GET_CODE (b->end) != JUMP_INSN
3180 || onlyjump_p (b->end)) && merge_blocks (s, b, c))
3181 changed_here = 1;
3183 if (try_simplify_condjump (b))
3184 changed_here = 1;
3186 /* In the case basic blocks has single outgoing edge, but over by the
3187 non-trivial jump instruction, we can replace it by unconditional
3188 jump, or delete the jump completely. Use logic of
3189 redirect_edge_and_branch to do the dirty job for us.
3191 We match cases as conditional jumps jumping to the next block or
3192 dispatch tables. */
3194 if (b->succ
3195 && b->succ->succ_next == NULL
3196 && GET_CODE (b->end) == JUMP_INSN
3197 && b->succ->dest != EXIT_BLOCK_PTR
3198 && redirect_edge_and_branch (b->succ, b->succ->dest))
3199 changed_here = 1;
3201 if (try_forward_edges (b))
3202 changed_here = 1;
3204 /* Don't get confused by the index shift caused by deleting
3205 blocks. */
3206 if (!changed_here)
3207 i = b->index + 1;
3208 else
3209 changed = 1;
3211 changed_overall |= changed;
3212 changed = 0;
3214 while (changed);
3215 #ifdef ENABLE_CHECKING
3216 if (changed)
3217 verify_flow_info ();
3218 #endif
3219 return changed_overall;
3222 /* The given edge should potentially be a fallthru edge. If that is in
3223 fact true, delete the jump and barriers that are in the way. */
3225 void
3226 tidy_fallthru_edge (e, b, c)
3227 edge e;
3228 basic_block b, c;
3230 rtx q;
3232 /* ??? In a late-running flow pass, other folks may have deleted basic
3233 blocks by nopping out blocks, leaving multiple BARRIERs between here
3234 and the target label. They ought to be chastized and fixed.
3236 We can also wind up with a sequence of undeletable labels between
3237 one block and the next.
3239 So search through a sequence of barriers, labels, and notes for
3240 the head of block C and assert that we really do fall through. */
3242 if (next_real_insn (b->end) != next_real_insn (PREV_INSN (c->head)))
3243 return;
3245 /* Remove what will soon cease being the jump insn from the source block.
3246 If block B consisted only of this single jump, turn it into a deleted
3247 note. */
3248 q = b->end;
3249 if (GET_CODE (q) == JUMP_INSN
3250 && onlyjump_p (q)
3251 && (any_uncondjump_p (q)
3252 || (b->succ == e && e->succ_next == NULL)))
3254 #ifdef HAVE_cc0
3255 /* If this was a conditional jump, we need to also delete
3256 the insn that set cc0. */
3257 if (any_condjump_p (q) && sets_cc0_p (PREV_INSN (q)))
3258 q = PREV_INSN (q);
3259 #endif
3261 if (b->head == q)
3263 PUT_CODE (q, NOTE);
3264 NOTE_LINE_NUMBER (q) = NOTE_INSN_DELETED;
3265 NOTE_SOURCE_FILE (q) = 0;
3267 else
3269 q = PREV_INSN (q);
3271 /* We don't want a block to end on a line-number note since that has
3272 the potential of changing the code between -g and not -g. */
3273 while (GET_CODE (q) == NOTE && NOTE_LINE_NUMBER (q) >= 0)
3274 q = PREV_INSN (q);
3277 b->end = q;
3280 /* Selectively unlink the sequence. */
3281 if (q != PREV_INSN (c->head))
3282 flow_delete_insn_chain (NEXT_INSN (q), PREV_INSN (c->head));
3284 e->flags |= EDGE_FALLTHRU;
3287 /* Fix up edges that now fall through, or rather should now fall through
3288 but previously required a jump around now deleted blocks. Simplify
3289 the search by only examining blocks numerically adjacent, since this
3290 is how find_basic_blocks created them. */
3292 static void
3293 tidy_fallthru_edges ()
3295 int i;
3297 for (i = 1; i < n_basic_blocks; ++i)
3299 basic_block b = BASIC_BLOCK (i - 1);
3300 basic_block c = BASIC_BLOCK (i);
3301 edge s;
3303 /* We care about simple conditional or unconditional jumps with
3304 a single successor.
3306 If we had a conditional branch to the next instruction when
3307 find_basic_blocks was called, then there will only be one
3308 out edge for the block which ended with the conditional
3309 branch (since we do not create duplicate edges).
3311 Furthermore, the edge will be marked as a fallthru because we
3312 merge the flags for the duplicate edges. So we do not want to
3313 check that the edge is not a FALLTHRU edge. */
3314 if ((s = b->succ) != NULL
3315 && ! (s->flags & EDGE_COMPLEX)
3316 && s->succ_next == NULL
3317 && s->dest == c
3318 /* If the jump insn has side effects, we can't tidy the edge. */
3319 && (GET_CODE (b->end) != JUMP_INSN
3320 || onlyjump_p (b->end)))
3321 tidy_fallthru_edge (s, b, c);
3325 /* Perform data flow analysis.
3326 F is the first insn of the function; FLAGS is a set of PROP_* flags
3327 to be used in accumulating flow info. */
3329 void
3330 life_analysis (f, file, flags)
3331 rtx f;
3332 FILE *file;
3333 int flags;
3335 #ifdef ELIMINABLE_REGS
3336 register int i;
3337 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
3338 #endif
3340 /* Record which registers will be eliminated. We use this in
3341 mark_used_regs. */
3343 CLEAR_HARD_REG_SET (elim_reg_set);
3345 #ifdef ELIMINABLE_REGS
3346 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
3347 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
3348 #else
3349 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
3350 #endif
3352 if (! optimize)
3353 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC);
3355 /* The post-reload life analysis have (on a global basis) the same
3356 registers live as was computed by reload itself. elimination
3357 Otherwise offsets and such may be incorrect.
3359 Reload will make some registers as live even though they do not
3360 appear in the rtl.
3362 We don't want to create new auto-incs after reload, since they
3363 are unlikely to be useful and can cause problems with shared
3364 stack slots. */
3365 if (reload_completed)
3366 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
3368 /* We want alias analysis information for local dead store elimination. */
3369 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
3370 init_alias_analysis ();
3372 /* Always remove no-op moves. Do this before other processing so
3373 that we don't have to keep re-scanning them. */
3374 delete_noop_moves (f);
3376 /* Some targets can emit simpler epilogues if they know that sp was
3377 not ever modified during the function. After reload, of course,
3378 we've already emitted the epilogue so there's no sense searching. */
3379 if (! reload_completed)
3380 notice_stack_pointer_modification (f);
3382 /* Allocate and zero out data structures that will record the
3383 data from lifetime analysis. */
3384 allocate_reg_life_data ();
3385 allocate_bb_life_data ();
3387 /* Find the set of registers live on function exit. */
3388 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
3390 /* "Update" life info from zero. It'd be nice to begin the
3391 relaxation with just the exit and noreturn blocks, but that set
3392 is not immediately handy. */
3394 if (flags & PROP_REG_INFO)
3395 memset (regs_ever_live, 0, sizeof (regs_ever_live));
3396 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
3398 /* Clean up. */
3399 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
3400 end_alias_analysis ();
3402 if (file)
3403 dump_flow_info (file);
3405 free_basic_block_vars (1);
3407 #ifdef ENABLE_CHECKING
3409 rtx insn;
3411 /* Search for any REG_LABEL notes which reference deleted labels. */
3412 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3414 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
3416 if (inote && GET_CODE (inote) == NOTE_INSN_DELETED_LABEL)
3417 abort ();
3420 #endif
3423 /* A subroutine of verify_wide_reg, called through for_each_rtx.
3424 Search for REGNO. If found, abort if it is not wider than word_mode. */
3426 static int
3427 verify_wide_reg_1 (px, pregno)
3428 rtx *px;
3429 void *pregno;
3431 rtx x = *px;
3432 unsigned int regno = *(int *) pregno;
3434 if (GET_CODE (x) == REG && REGNO (x) == regno)
3436 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
3437 abort ();
3438 return 1;
3440 return 0;
3443 /* A subroutine of verify_local_live_at_start. Search through insns
3444 between HEAD and END looking for register REGNO. */
3446 static void
3447 verify_wide_reg (regno, head, end)
3448 int regno;
3449 rtx head, end;
3451 while (1)
3453 if (INSN_P (head)
3454 && for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno))
3455 return;
3456 if (head == end)
3457 break;
3458 head = NEXT_INSN (head);
3461 /* We didn't find the register at all. Something's way screwy. */
3462 if (rtl_dump_file)
3463 fprintf (rtl_dump_file, "Aborting in verify_wide_reg; reg %d\n", regno);
3464 print_rtl_and_abort ();
3467 /* A subroutine of update_life_info. Verify that there are no untoward
3468 changes in live_at_start during a local update. */
3470 static void
3471 verify_local_live_at_start (new_live_at_start, bb)
3472 regset new_live_at_start;
3473 basic_block bb;
3475 if (reload_completed)
3477 /* After reload, there are no pseudos, nor subregs of multi-word
3478 registers. The regsets should exactly match. */
3479 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
3481 if (rtl_dump_file)
3483 fprintf (rtl_dump_file,
3484 "live_at_start mismatch in bb %d, aborting\n",
3485 bb->index);
3486 debug_bitmap_file (rtl_dump_file, bb->global_live_at_start);
3487 debug_bitmap_file (rtl_dump_file, new_live_at_start);
3489 print_rtl_and_abort ();
3492 else
3494 int i;
3496 /* Find the set of changed registers. */
3497 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
3499 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
3501 /* No registers should die. */
3502 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
3504 if (rtl_dump_file)
3505 fprintf (rtl_dump_file,
3506 "Register %d died unexpectedly in block %d\n", i,
3507 bb->index);
3508 print_rtl_and_abort ();
3511 /* Verify that the now-live register is wider than word_mode. */
3512 verify_wide_reg (i, bb->head, bb->end);
3517 /* Updates life information starting with the basic blocks set in BLOCKS.
3518 If BLOCKS is null, consider it to be the universal set.
3520 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
3521 we are only expecting local modifications to basic blocks. If we find
3522 extra registers live at the beginning of a block, then we either killed
3523 useful data, or we have a broken split that wants data not provided.
3524 If we find registers removed from live_at_start, that means we have
3525 a broken peephole that is killing a register it shouldn't.
3527 ??? This is not true in one situation -- when a pre-reload splitter
3528 generates subregs of a multi-word pseudo, current life analysis will
3529 lose the kill. So we _can_ have a pseudo go live. How irritating.
3531 Including PROP_REG_INFO does not properly refresh regs_ever_live
3532 unless the caller resets it to zero. */
3534 void
3535 update_life_info (blocks, extent, prop_flags)
3536 sbitmap blocks;
3537 enum update_life_extent extent;
3538 int prop_flags;
3540 regset tmp;
3541 regset_head tmp_head;
3542 int i;
3544 tmp = INITIALIZE_REG_SET (tmp_head);
3546 /* For a global update, we go through the relaxation process again. */
3547 if (extent != UPDATE_LIFE_LOCAL)
3549 calculate_global_regs_live (blocks, blocks,
3550 prop_flags & PROP_SCAN_DEAD_CODE);
3552 /* If asked, remove notes from the blocks we'll update. */
3553 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
3554 count_or_remove_death_notes (blocks, 1);
3557 if (blocks)
3559 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
3561 basic_block bb = BASIC_BLOCK (i);
3563 COPY_REG_SET (tmp, bb->global_live_at_end);
3564 propagate_block (bb, tmp, NULL, NULL, prop_flags);
3566 if (extent == UPDATE_LIFE_LOCAL)
3567 verify_local_live_at_start (tmp, bb);
3570 else
3572 for (i = n_basic_blocks - 1; i >= 0; --i)
3574 basic_block bb = BASIC_BLOCK (i);
3576 COPY_REG_SET (tmp, bb->global_live_at_end);
3577 propagate_block (bb, tmp, NULL, NULL, prop_flags);
3579 if (extent == UPDATE_LIFE_LOCAL)
3580 verify_local_live_at_start (tmp, bb);
3584 FREE_REG_SET (tmp);
3586 if (prop_flags & PROP_REG_INFO)
3588 /* The only pseudos that are live at the beginning of the function
3589 are those that were not set anywhere in the function. local-alloc
3590 doesn't know how to handle these correctly, so mark them as not
3591 local to any one basic block. */
3592 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
3593 FIRST_PSEUDO_REGISTER, i,
3594 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
3596 /* We have a problem with any pseudoreg that lives across the setjmp.
3597 ANSI says that if a user variable does not change in value between
3598 the setjmp and the longjmp, then the longjmp preserves it. This
3599 includes longjmp from a place where the pseudo appears dead.
3600 (In principle, the value still exists if it is in scope.)
3601 If the pseudo goes in a hard reg, some other value may occupy
3602 that hard reg where this pseudo is dead, thus clobbering the pseudo.
3603 Conclusion: such a pseudo must not go in a hard reg. */
3604 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
3605 FIRST_PSEUDO_REGISTER, i,
3607 if (regno_reg_rtx[i] != 0)
3609 REG_LIVE_LENGTH (i) = -1;
3610 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
3616 /* Free the variables allocated by find_basic_blocks.
3618 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
3620 void
3621 free_basic_block_vars (keep_head_end_p)
3622 int keep_head_end_p;
3624 if (basic_block_for_insn)
3626 VARRAY_FREE (basic_block_for_insn);
3627 basic_block_for_insn = NULL;
3630 if (! keep_head_end_p)
3632 if (basic_block_info)
3634 clear_edges ();
3635 VARRAY_FREE (basic_block_info);
3637 n_basic_blocks = 0;
3639 ENTRY_BLOCK_PTR->aux = NULL;
3640 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
3641 EXIT_BLOCK_PTR->aux = NULL;
3642 EXIT_BLOCK_PTR->global_live_at_start = NULL;
3646 /* Return nonzero if an insn consists only of SETs, each of which only sets a
3647 value to itself. */
3649 static int
3650 noop_move_p (insn)
3651 rtx insn;
3653 rtx pat = PATTERN (insn);
3655 /* Insns carrying these notes are useful later on. */
3656 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
3657 return 0;
3659 if (GET_CODE (pat) == SET && set_noop_p (pat))
3660 return 1;
3662 if (GET_CODE (pat) == PARALLEL)
3664 int i;
3665 /* If nothing but SETs of registers to themselves,
3666 this insn can also be deleted. */
3667 for (i = 0; i < XVECLEN (pat, 0); i++)
3669 rtx tem = XVECEXP (pat, 0, i);
3671 if (GET_CODE (tem) == USE
3672 || GET_CODE (tem) == CLOBBER)
3673 continue;
3675 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
3676 return 0;
3679 return 1;
3681 return 0;
3684 /* Delete any insns that copy a register to itself. */
3686 static void
3687 delete_noop_moves (f)
3688 rtx f;
3690 rtx insn;
3691 for (insn = f; insn; insn = NEXT_INSN (insn))
3693 if (GET_CODE (insn) == INSN && noop_move_p (insn))
3695 PUT_CODE (insn, NOTE);
3696 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
3697 NOTE_SOURCE_FILE (insn) = 0;
3702 /* Determine if the stack pointer is constant over the life of the function.
3703 Only useful before prologues have been emitted. */
3705 static void
3706 notice_stack_pointer_modification_1 (x, pat, data)
3707 rtx x;
3708 rtx pat ATTRIBUTE_UNUSED;
3709 void *data ATTRIBUTE_UNUSED;
3711 if (x == stack_pointer_rtx
3712 /* The stack pointer is only modified indirectly as the result
3713 of a push until later in flow. See the comments in rtl.texi
3714 regarding Embedded Side-Effects on Addresses. */
3715 || (GET_CODE (x) == MEM
3716 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
3717 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
3718 current_function_sp_is_unchanging = 0;
3721 static void
3722 notice_stack_pointer_modification (f)
3723 rtx f;
3725 rtx insn;
3727 /* Assume that the stack pointer is unchanging if alloca hasn't
3728 been used. */
3729 current_function_sp_is_unchanging = !current_function_calls_alloca;
3730 if (! current_function_sp_is_unchanging)
3731 return;
3733 for (insn = f; insn; insn = NEXT_INSN (insn))
3735 if (INSN_P (insn))
3737 /* Check if insn modifies the stack pointer. */
3738 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
3739 NULL);
3740 if (! current_function_sp_is_unchanging)
3741 return;
3746 /* Mark a register in SET. Hard registers in large modes get all
3747 of their component registers set as well. */
3749 static void
3750 mark_reg (reg, xset)
3751 rtx reg;
3752 void *xset;
3754 regset set = (regset) xset;
3755 int regno = REGNO (reg);
3757 if (GET_MODE (reg) == BLKmode)
3758 abort ();
3760 SET_REGNO_REG_SET (set, regno);
3761 if (regno < FIRST_PSEUDO_REGISTER)
3763 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
3764 while (--n > 0)
3765 SET_REGNO_REG_SET (set, regno + n);
3769 /* Mark those regs which are needed at the end of the function as live
3770 at the end of the last basic block. */
3772 static void
3773 mark_regs_live_at_end (set)
3774 regset set;
3776 unsigned int i;
3778 /* If exiting needs the right stack value, consider the stack pointer
3779 live at the end of the function. */
3780 if ((HAVE_epilogue && reload_completed)
3781 || ! EXIT_IGNORE_STACK
3782 || (! FRAME_POINTER_REQUIRED
3783 && ! current_function_calls_alloca
3784 && flag_omit_frame_pointer)
3785 || current_function_sp_is_unchanging)
3787 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
3790 /* Mark the frame pointer if needed at the end of the function. If
3791 we end up eliminating it, it will be removed from the live list
3792 of each basic block by reload. */
3794 if (! reload_completed || frame_pointer_needed)
3796 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
3797 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3798 /* If they are different, also mark the hard frame pointer as live. */
3799 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
3800 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
3801 #endif
3804 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
3805 /* Many architectures have a GP register even without flag_pic.
3806 Assume the pic register is not in use, or will be handled by
3807 other means, if it is not fixed. */
3808 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
3809 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
3810 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
3811 #endif
3813 /* Mark all global registers, and all registers used by the epilogue
3814 as being live at the end of the function since they may be
3815 referenced by our caller. */
3816 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3817 if (global_regs[i] || EPILOGUE_USES (i))
3818 SET_REGNO_REG_SET (set, i);
3820 if (HAVE_epilogue && reload_completed)
3822 /* Mark all call-saved registers that we actually used. */
3823 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3824 if (regs_ever_live[i] && ! call_used_regs[i] && ! LOCAL_REGNO (i))
3825 SET_REGNO_REG_SET (set, i);
3828 #ifdef EH_RETURN_DATA_REGNO
3829 /* Mark the registers that will contain data for the handler. */
3830 if (reload_completed && current_function_calls_eh_return)
3831 for (i = 0; ; ++i)
3833 unsigned regno = EH_RETURN_DATA_REGNO(i);
3834 if (regno == INVALID_REGNUM)
3835 break;
3836 SET_REGNO_REG_SET (set, regno);
3838 #endif
3839 #ifdef EH_RETURN_STACKADJ_RTX
3840 if ((! HAVE_epilogue || ! reload_completed)
3841 && current_function_calls_eh_return)
3843 rtx tmp = EH_RETURN_STACKADJ_RTX;
3844 if (tmp && REG_P (tmp))
3845 mark_reg (tmp, set);
3847 #endif
3848 #ifdef EH_RETURN_HANDLER_RTX
3849 if ((! HAVE_epilogue || ! reload_completed)
3850 && current_function_calls_eh_return)
3852 rtx tmp = EH_RETURN_HANDLER_RTX;
3853 if (tmp && REG_P (tmp))
3854 mark_reg (tmp, set);
3856 #endif
3858 /* Mark function return value. */
3859 diddle_return_value (mark_reg, set);
3862 /* Callback function for for_each_successor_phi. DATA is a regset.
3863 Sets the SRC_REGNO, the regno of the phi alternative for phi node
3864 INSN, in the regset. */
3866 static int
3867 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
3868 rtx insn ATTRIBUTE_UNUSED;
3869 int dest_regno ATTRIBUTE_UNUSED;
3870 int src_regno;
3871 void *data;
3873 regset live = (regset) data;
3874 SET_REGNO_REG_SET (live, src_regno);
3875 return 0;
3878 /* Propagate global life info around the graph of basic blocks. Begin
3879 considering blocks with their corresponding bit set in BLOCKS_IN.
3880 If BLOCKS_IN is null, consider it the universal set.
3882 BLOCKS_OUT is set for every block that was changed. */
3884 static void
3885 calculate_global_regs_live (blocks_in, blocks_out, flags)
3886 sbitmap blocks_in, blocks_out;
3887 int flags;
3889 basic_block *queue, *qhead, *qtail, *qend;
3890 regset tmp, new_live_at_end, call_used;
3891 regset_head tmp_head, call_used_head;
3892 regset_head new_live_at_end_head;
3893 int i;
3895 tmp = INITIALIZE_REG_SET (tmp_head);
3896 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
3897 call_used = INITIALIZE_REG_SET (call_used_head);
3899 /* Inconveniently, this is only redily available in hard reg set form. */
3900 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
3901 if (call_used_regs[i])
3902 SET_REGNO_REG_SET (call_used, i);
3904 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
3905 because the `head == tail' style test for an empty queue doesn't
3906 work with a full queue. */
3907 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
3908 qtail = queue;
3909 qhead = qend = queue + n_basic_blocks + 2;
3911 /* Queue the blocks set in the initial mask. Do this in reverse block
3912 number order so that we are more likely for the first round to do
3913 useful work. We use AUX non-null to flag that the block is queued. */
3914 if (blocks_in)
3916 /* Clear out the garbage that might be hanging out in bb->aux. */
3917 for (i = n_basic_blocks - 1; i >= 0; --i)
3918 BASIC_BLOCK (i)->aux = NULL;
3920 EXECUTE_IF_SET_IN_SBITMAP (blocks_in, 0, i,
3922 basic_block bb = BASIC_BLOCK (i);
3923 *--qhead = bb;
3924 bb->aux = bb;
3927 else
3929 for (i = 0; i < n_basic_blocks; ++i)
3931 basic_block bb = BASIC_BLOCK (i);
3932 *--qhead = bb;
3933 bb->aux = bb;
3937 if (blocks_out)
3938 sbitmap_zero (blocks_out);
3940 /* We work through the queue until there are no more blocks. What
3941 is live at the end of this block is precisely the union of what
3942 is live at the beginning of all its successors. So, we set its
3943 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
3944 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
3945 this block by walking through the instructions in this block in
3946 reverse order and updating as we go. If that changed
3947 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
3948 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
3950 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
3951 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
3952 must either be live at the end of the block, or used within the
3953 block. In the latter case, it will certainly never disappear
3954 from GLOBAL_LIVE_AT_START. In the former case, the register
3955 could go away only if it disappeared from GLOBAL_LIVE_AT_START
3956 for one of the successor blocks. By induction, that cannot
3957 occur. */
3958 while (qhead != qtail)
3960 int rescan, changed;
3961 basic_block bb;
3962 edge e;
3964 bb = *qhead++;
3965 if (qhead == qend)
3966 qhead = queue;
3967 bb->aux = NULL;
3969 /* Begin by propagating live_at_start from the successor blocks. */
3970 CLEAR_REG_SET (new_live_at_end);
3971 for (e = bb->succ; e; e = e->succ_next)
3973 basic_block sb = e->dest;
3975 /* Call-clobbered registers die across exception and call edges. */
3976 /* ??? Abnormal call edges ignored for the moment, as this gets
3977 confused by sibling call edges, which crashes reg-stack. */
3978 if (e->flags & EDGE_EH)
3980 bitmap_operation (tmp, sb->global_live_at_start,
3981 call_used, BITMAP_AND_COMPL);
3982 IOR_REG_SET (new_live_at_end, tmp);
3984 else
3985 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
3988 /* The all-important stack pointer must always be live. */
3989 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
3991 /* Before reload, there are a few registers that must be forced
3992 live everywhere -- which might not already be the case for
3993 blocks within infinite loops. */
3994 if (! reload_completed)
3996 /* Any reference to any pseudo before reload is a potential
3997 reference of the frame pointer. */
3998 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
4000 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4001 /* Pseudos with argument area equivalences may require
4002 reloading via the argument pointer. */
4003 if (fixed_regs[ARG_POINTER_REGNUM])
4004 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
4005 #endif
4007 /* Any constant, or pseudo with constant equivalences, may
4008 require reloading from memory using the pic register. */
4009 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
4010 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
4011 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
4014 /* Regs used in phi nodes are not included in
4015 global_live_at_start, since they are live only along a
4016 particular edge. Set those regs that are live because of a
4017 phi node alternative corresponding to this particular block. */
4018 if (in_ssa_form)
4019 for_each_successor_phi (bb, &set_phi_alternative_reg,
4020 new_live_at_end);
4022 if (bb == ENTRY_BLOCK_PTR)
4024 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
4025 continue;
4028 /* On our first pass through this block, we'll go ahead and continue.
4029 Recognize first pass by local_set NULL. On subsequent passes, we
4030 get to skip out early if live_at_end wouldn't have changed. */
4032 if (bb->local_set == NULL)
4034 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
4035 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
4036 rescan = 1;
4038 else
4040 /* If any bits were removed from live_at_end, we'll have to
4041 rescan the block. This wouldn't be necessary if we had
4042 precalculated local_live, however with PROP_SCAN_DEAD_CODE
4043 local_live is really dependent on live_at_end. */
4044 CLEAR_REG_SET (tmp);
4045 rescan = bitmap_operation (tmp, bb->global_live_at_end,
4046 new_live_at_end, BITMAP_AND_COMPL);
4048 if (! rescan)
4050 /* If any of the registers in the new live_at_end set are
4051 conditionally set in this basic block, we must rescan.
4052 This is because conditional lifetimes at the end of the
4053 block do not just take the live_at_end set into account,
4054 but also the liveness at the start of each successor
4055 block. We can miss changes in those sets if we only
4056 compare the new live_at_end against the previous one. */
4057 CLEAR_REG_SET (tmp);
4058 rescan = bitmap_operation (tmp, new_live_at_end,
4059 bb->cond_local_set, BITMAP_AND);
4062 if (! rescan)
4064 /* Find the set of changed bits. Take this opportunity
4065 to notice that this set is empty and early out. */
4066 CLEAR_REG_SET (tmp);
4067 changed = bitmap_operation (tmp, bb->global_live_at_end,
4068 new_live_at_end, BITMAP_XOR);
4069 if (! changed)
4070 continue;
4072 /* If any of the changed bits overlap with local_set,
4073 we'll have to rescan the block. Detect overlap by
4074 the AND with ~local_set turning off bits. */
4075 rescan = bitmap_operation (tmp, tmp, bb->local_set,
4076 BITMAP_AND_COMPL);
4080 /* Let our caller know that BB changed enough to require its
4081 death notes updated. */
4082 if (blocks_out)
4083 SET_BIT (blocks_out, bb->index);
4085 if (! rescan)
4087 /* Add to live_at_start the set of all registers in
4088 new_live_at_end that aren't in the old live_at_end. */
4090 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
4091 BITMAP_AND_COMPL);
4092 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
4094 changed = bitmap_operation (bb->global_live_at_start,
4095 bb->global_live_at_start,
4096 tmp, BITMAP_IOR);
4097 if (! changed)
4098 continue;
4100 else
4102 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
4104 /* Rescan the block insn by insn to turn (a copy of) live_at_end
4105 into live_at_start. */
4106 propagate_block (bb, new_live_at_end, bb->local_set,
4107 bb->cond_local_set, flags);
4109 /* If live_at start didn't change, no need to go farther. */
4110 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
4111 continue;
4113 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
4116 /* Queue all predecessors of BB so that we may re-examine
4117 their live_at_end. */
4118 for (e = bb->pred; e; e = e->pred_next)
4120 basic_block pb = e->src;
4121 if (pb->aux == NULL)
4123 *qtail++ = pb;
4124 if (qtail == qend)
4125 qtail = queue;
4126 pb->aux = pb;
4131 FREE_REG_SET (tmp);
4132 FREE_REG_SET (new_live_at_end);
4133 FREE_REG_SET (call_used);
4135 if (blocks_out)
4137 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
4139 basic_block bb = BASIC_BLOCK (i);
4140 FREE_REG_SET (bb->local_set);
4141 FREE_REG_SET (bb->cond_local_set);
4144 else
4146 for (i = n_basic_blocks - 1; i >= 0; --i)
4148 basic_block bb = BASIC_BLOCK (i);
4149 FREE_REG_SET (bb->local_set);
4150 FREE_REG_SET (bb->cond_local_set);
4154 free (queue);
4157 /* Subroutines of life analysis. */
4159 /* Allocate the permanent data structures that represent the results
4160 of life analysis. Not static since used also for stupid life analysis. */
4162 static void
4163 allocate_bb_life_data ()
4165 register int i;
4167 for (i = 0; i < n_basic_blocks; i++)
4169 basic_block bb = BASIC_BLOCK (i);
4171 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
4172 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
4175 ENTRY_BLOCK_PTR->global_live_at_end
4176 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
4177 EXIT_BLOCK_PTR->global_live_at_start
4178 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
4180 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
4183 void
4184 allocate_reg_life_data ()
4186 int i;
4188 max_regno = max_reg_num ();
4190 /* Recalculate the register space, in case it has grown. Old style
4191 vector oriented regsets would set regset_{size,bytes} here also. */
4192 allocate_reg_info (max_regno, FALSE, FALSE);
4194 /* Reset all the data we'll collect in propagate_block and its
4195 subroutines. */
4196 for (i = 0; i < max_regno; i++)
4198 REG_N_SETS (i) = 0;
4199 REG_N_REFS (i) = 0;
4200 REG_N_DEATHS (i) = 0;
4201 REG_N_CALLS_CROSSED (i) = 0;
4202 REG_LIVE_LENGTH (i) = 0;
4203 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
4207 /* Delete dead instructions for propagate_block. */
4209 static void
4210 propagate_block_delete_insn (bb, insn)
4211 basic_block bb;
4212 rtx insn;
4214 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
4216 /* If the insn referred to a label, and that label was attached to
4217 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
4218 pretty much mandatory to delete it, because the ADDR_VEC may be
4219 referencing labels that no longer exist.
4221 INSN may reference a deleted label, particularly when a jump
4222 table has been optimized into a direct jump. There's no
4223 real good way to fix up the reference to the deleted label
4224 when the label is deleted, so we just allow it here.
4226 After dead code elimination is complete, we do search for
4227 any REG_LABEL notes which reference deleted labels as a
4228 sanity check. */
4230 if (inote && GET_CODE (inote) == CODE_LABEL)
4232 rtx label = XEXP (inote, 0);
4233 rtx next;
4235 /* The label may be forced if it has been put in the constant
4236 pool. If that is the only use we must discard the table
4237 jump following it, but not the label itself. */
4238 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
4239 && (next = next_nonnote_insn (label)) != NULL
4240 && GET_CODE (next) == JUMP_INSN
4241 && (GET_CODE (PATTERN (next)) == ADDR_VEC
4242 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
4244 rtx pat = PATTERN (next);
4245 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
4246 int len = XVECLEN (pat, diff_vec_p);
4247 int i;
4249 for (i = 0; i < len; i++)
4250 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
4252 flow_delete_insn (next);
4256 if (bb->end == insn)
4257 bb->end = PREV_INSN (insn);
4258 flow_delete_insn (insn);
4261 /* Delete dead libcalls for propagate_block. Return the insn
4262 before the libcall. */
4264 static rtx
4265 propagate_block_delete_libcall (bb, insn, note)
4266 basic_block bb;
4267 rtx insn, note;
4269 rtx first = XEXP (note, 0);
4270 rtx before = PREV_INSN (first);
4272 if (insn == bb->end)
4273 bb->end = before;
4275 flow_delete_insn_chain (first, insn);
4276 return before;
4279 /* Update the life-status of regs for one insn. Return the previous insn. */
4282 propagate_one_insn (pbi, insn)
4283 struct propagate_block_info *pbi;
4284 rtx insn;
4286 rtx prev = PREV_INSN (insn);
4287 int flags = pbi->flags;
4288 int insn_is_dead = 0;
4289 int libcall_is_dead = 0;
4290 rtx note;
4291 int i;
4293 if (! INSN_P (insn))
4294 return prev;
4296 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
4297 if (flags & PROP_SCAN_DEAD_CODE)
4299 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
4300 libcall_is_dead = (insn_is_dead && note != 0
4301 && libcall_dead_p (pbi, note, insn));
4304 /* If an instruction consists of just dead store(s) on final pass,
4305 delete it. */
4306 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
4308 /* If we're trying to delete a prologue or epilogue instruction
4309 that isn't flagged as possibly being dead, something is wrong.
4310 But if we are keeping the stack pointer depressed, we might well
4311 be deleting insns that are used to compute the amount to update
4312 it by, so they are fine. */
4313 if (reload_completed
4314 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
4315 && (TYPE_RETURNS_STACK_DEPRESSED
4316 (TREE_TYPE (current_function_decl))))
4317 && (((HAVE_epilogue || HAVE_prologue)
4318 && prologue_epilogue_contains (insn))
4319 || (HAVE_sibcall_epilogue
4320 && sibcall_epilogue_contains (insn)))
4321 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
4322 abort ();
4324 /* Record sets. Do this even for dead instructions, since they
4325 would have killed the values if they hadn't been deleted. */
4326 mark_set_regs (pbi, PATTERN (insn), insn);
4328 /* CC0 is now known to be dead. Either this insn used it,
4329 in which case it doesn't anymore, or clobbered it,
4330 so the next insn can't use it. */
4331 pbi->cc0_live = 0;
4333 if (libcall_is_dead)
4334 prev = propagate_block_delete_libcall (pbi->bb, insn, note);
4335 else
4336 propagate_block_delete_insn (pbi->bb, insn);
4338 return prev;
4341 /* See if this is an increment or decrement that can be merged into
4342 a following memory address. */
4343 #ifdef AUTO_INC_DEC
4345 register rtx x = single_set (insn);
4347 /* Does this instruction increment or decrement a register? */
4348 if ((flags & PROP_AUTOINC)
4349 && x != 0
4350 && GET_CODE (SET_DEST (x)) == REG
4351 && (GET_CODE (SET_SRC (x)) == PLUS
4352 || GET_CODE (SET_SRC (x)) == MINUS)
4353 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
4354 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4355 /* Ok, look for a following memory ref we can combine with.
4356 If one is found, change the memory ref to a PRE_INC
4357 or PRE_DEC, cancel this insn, and return 1.
4358 Return 0 if nothing has been done. */
4359 && try_pre_increment_1 (pbi, insn))
4360 return prev;
4362 #endif /* AUTO_INC_DEC */
4364 CLEAR_REG_SET (pbi->new_set);
4366 /* If this is not the final pass, and this insn is copying the value of
4367 a library call and it's dead, don't scan the insns that perform the
4368 library call, so that the call's arguments are not marked live. */
4369 if (libcall_is_dead)
4371 /* Record the death of the dest reg. */
4372 mark_set_regs (pbi, PATTERN (insn), insn);
4374 insn = XEXP (note, 0);
4375 return PREV_INSN (insn);
4377 else if (GET_CODE (PATTERN (insn)) == SET
4378 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
4379 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
4380 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
4381 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
4382 /* We have an insn to pop a constant amount off the stack.
4383 (Such insns use PLUS regardless of the direction of the stack,
4384 and any insn to adjust the stack by a constant is always a pop.)
4385 These insns, if not dead stores, have no effect on life. */
4387 else
4389 /* Any regs live at the time of a call instruction must not go
4390 in a register clobbered by calls. Find all regs now live and
4391 record this for them. */
4393 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
4394 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
4395 { REG_N_CALLS_CROSSED (i)++; });
4397 /* Record sets. Do this even for dead instructions, since they
4398 would have killed the values if they hadn't been deleted. */
4399 mark_set_regs (pbi, PATTERN (insn), insn);
4401 if (GET_CODE (insn) == CALL_INSN)
4403 register int i;
4404 rtx note, cond;
4406 cond = NULL_RTX;
4407 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
4408 cond = COND_EXEC_TEST (PATTERN (insn));
4410 /* Non-constant calls clobber memory. */
4411 if (! CONST_CALL_P (insn))
4413 free_EXPR_LIST_list (&pbi->mem_set_list);
4414 pbi->mem_set_list_len = 0;
4417 /* There may be extra registers to be clobbered. */
4418 for (note = CALL_INSN_FUNCTION_USAGE (insn);
4419 note;
4420 note = XEXP (note, 1))
4421 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
4422 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
4423 cond, insn, pbi->flags);
4425 /* Calls change all call-used and global registers. */
4426 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4427 if (call_used_regs[i] && ! global_regs[i]
4428 && ! fixed_regs[i])
4430 /* We do not want REG_UNUSED notes for these registers. */
4431 mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
4432 cond, insn,
4433 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
4437 /* If an insn doesn't use CC0, it becomes dead since we assume
4438 that every insn clobbers it. So show it dead here;
4439 mark_used_regs will set it live if it is referenced. */
4440 pbi->cc0_live = 0;
4442 /* Record uses. */
4443 if (! insn_is_dead)
4444 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
4446 /* Sometimes we may have inserted something before INSN (such as a move)
4447 when we make an auto-inc. So ensure we will scan those insns. */
4448 #ifdef AUTO_INC_DEC
4449 prev = PREV_INSN (insn);
4450 #endif
4452 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
4454 register int i;
4455 rtx note, cond;
4457 cond = NULL_RTX;
4458 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
4459 cond = COND_EXEC_TEST (PATTERN (insn));
4461 /* Calls use their arguments. */
4462 for (note = CALL_INSN_FUNCTION_USAGE (insn);
4463 note;
4464 note = XEXP (note, 1))
4465 if (GET_CODE (XEXP (note, 0)) == USE)
4466 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
4467 cond, insn);
4469 /* The stack ptr is used (honorarily) by a CALL insn. */
4470 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
4472 /* Calls may also reference any of the global registers,
4473 so they are made live. */
4474 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4475 if (global_regs[i])
4476 mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
4477 cond, insn);
4481 /* On final pass, update counts of how many insns in which each reg
4482 is live. */
4483 if (flags & PROP_REG_INFO)
4484 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
4485 { REG_LIVE_LENGTH (i)++; });
4487 return prev;
4490 /* Initialize a propagate_block_info struct for public consumption.
4491 Note that the structure itself is opaque to this file, but that
4492 the user can use the regsets provided here. */
4494 struct propagate_block_info *
4495 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
4496 basic_block bb;
4497 regset live, local_set, cond_local_set;
4498 int flags;
4500 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
4502 pbi->bb = bb;
4503 pbi->reg_live = live;
4504 pbi->mem_set_list = NULL_RTX;
4505 pbi->mem_set_list_len = 0;
4506 pbi->local_set = local_set;
4507 pbi->cond_local_set = cond_local_set;
4508 pbi->cc0_live = 0;
4509 pbi->flags = flags;
4511 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
4512 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
4513 else
4514 pbi->reg_next_use = NULL;
4516 pbi->new_set = BITMAP_XMALLOC ();
4518 #ifdef HAVE_conditional_execution
4519 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
4520 free_reg_cond_life_info);
4521 pbi->reg_cond_reg = BITMAP_XMALLOC ();
4523 /* If this block ends in a conditional branch, for each register live
4524 from one side of the branch and not the other, record the register
4525 as conditionally dead. */
4526 if (GET_CODE (bb->end) == JUMP_INSN
4527 && any_condjump_p (bb->end))
4529 regset_head diff_head;
4530 regset diff = INITIALIZE_REG_SET (diff_head);
4531 basic_block bb_true, bb_false;
4532 rtx cond_true, cond_false, set_src;
4533 int i;
4535 /* Identify the successor blocks. */
4536 bb_true = bb->succ->dest;
4537 if (bb->succ->succ_next != NULL)
4539 bb_false = bb->succ->succ_next->dest;
4541 if (bb->succ->flags & EDGE_FALLTHRU)
4543 basic_block t = bb_false;
4544 bb_false = bb_true;
4545 bb_true = t;
4547 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
4548 abort ();
4550 else
4552 /* This can happen with a conditional jump to the next insn. */
4553 if (JUMP_LABEL (bb->end) != bb_true->head)
4554 abort ();
4556 /* Simplest way to do nothing. */
4557 bb_false = bb_true;
4560 /* Extract the condition from the branch. */
4561 set_src = SET_SRC (pc_set (bb->end));
4562 cond_true = XEXP (set_src, 0);
4563 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
4564 GET_MODE (cond_true), XEXP (cond_true, 0),
4565 XEXP (cond_true, 1));
4566 if (GET_CODE (XEXP (set_src, 1)) == PC)
4568 rtx t = cond_false;
4569 cond_false = cond_true;
4570 cond_true = t;
4573 /* Compute which register lead different lives in the successors. */
4574 if (bitmap_operation (diff, bb_true->global_live_at_start,
4575 bb_false->global_live_at_start, BITMAP_XOR))
4577 rtx reg = XEXP (cond_true, 0);
4579 if (GET_CODE (reg) == SUBREG)
4580 reg = SUBREG_REG (reg);
4582 if (GET_CODE (reg) != REG)
4583 abort ();
4585 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
4587 /* For each such register, mark it conditionally dead. */
4588 EXECUTE_IF_SET_IN_REG_SET
4589 (diff, 0, i,
4591 struct reg_cond_life_info *rcli;
4592 rtx cond;
4594 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
4596 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
4597 cond = cond_false;
4598 else
4599 cond = cond_true;
4600 rcli->condition = cond;
4601 rcli->stores = const0_rtx;
4602 rcli->orig_condition = cond;
4604 splay_tree_insert (pbi->reg_cond_dead, i,
4605 (splay_tree_value) rcli);
4609 FREE_REG_SET (diff);
4611 #endif
4613 /* If this block has no successors, any stores to the frame that aren't
4614 used later in the block are dead. So make a pass over the block
4615 recording any such that are made and show them dead at the end. We do
4616 a very conservative and simple job here. */
4617 if (optimize
4618 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
4619 && (TYPE_RETURNS_STACK_DEPRESSED
4620 (TREE_TYPE (current_function_decl))))
4621 && (flags & PROP_SCAN_DEAD_CODE)
4622 && (bb->succ == NULL
4623 || (bb->succ->succ_next == NULL
4624 && bb->succ->dest == EXIT_BLOCK_PTR
4625 && ! current_function_calls_eh_return)))
4627 rtx insn, set;
4628 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
4629 if (GET_CODE (insn) == INSN
4630 && (set = single_set (insn))
4631 && GET_CODE (SET_DEST (set)) == MEM)
4633 rtx mem = SET_DEST (set);
4634 rtx canon_mem = canon_rtx (mem);
4636 /* This optimization is performed by faking a store to the
4637 memory at the end of the block. This doesn't work for
4638 unchanging memories because multiple stores to unchanging
4639 memory is illegal and alias analysis doesn't consider it. */
4640 if (RTX_UNCHANGING_P (canon_mem))
4641 continue;
4643 if (XEXP (canon_mem, 0) == frame_pointer_rtx
4644 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
4645 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
4646 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
4648 #ifdef AUTO_INC_DEC
4649 /* Store a copy of mem, otherwise the address may be scrogged
4650 by find_auto_inc. This matters because insn_dead_p uses
4651 an rtx_equal_p check to determine if two addresses are
4652 the same. This works before find_auto_inc, but fails
4653 after find_auto_inc, causing discrepencies between the
4654 set of live registers calculated during the
4655 calculate_global_regs_live phase and what actually exists
4656 after flow completes, leading to aborts. */
4657 if (flags & PROP_AUTOINC)
4658 mem = shallow_copy_rtx (mem);
4659 #endif
4660 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
4661 if (++pbi->mem_set_list_len >= MAX_MEM_SET_LIST_LEN)
4662 break;
4667 return pbi;
4670 /* Release a propagate_block_info struct. */
4672 void
4673 free_propagate_block_info (pbi)
4674 struct propagate_block_info *pbi;
4676 free_EXPR_LIST_list (&pbi->mem_set_list);
4678 BITMAP_XFREE (pbi->new_set);
4680 #ifdef HAVE_conditional_execution
4681 splay_tree_delete (pbi->reg_cond_dead);
4682 BITMAP_XFREE (pbi->reg_cond_reg);
4683 #endif
4685 if (pbi->reg_next_use)
4686 free (pbi->reg_next_use);
4688 free (pbi);
4691 /* Compute the registers live at the beginning of a basic block BB from
4692 those live at the end.
4694 When called, REG_LIVE contains those live at the end. On return, it
4695 contains those live at the beginning.
4697 LOCAL_SET, if non-null, will be set with all registers killed
4698 unconditionally by this basic block.
4699 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
4700 killed conditionally by this basic block. If there is any unconditional
4701 set of a register, then the corresponding bit will be set in LOCAL_SET
4702 and cleared in COND_LOCAL_SET.
4703 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
4704 case, the resulting set will be equal to the union of the two sets that
4705 would otherwise be computed. */
4707 void
4708 propagate_block (bb, live, local_set, cond_local_set, flags)
4709 basic_block bb;
4710 regset live;
4711 regset local_set;
4712 regset cond_local_set;
4713 int flags;
4715 struct propagate_block_info *pbi;
4716 rtx insn, prev;
4718 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
4720 if (flags & PROP_REG_INFO)
4722 register int i;
4724 /* Process the regs live at the end of the block.
4725 Mark them as not local to any one basic block. */
4726 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
4727 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
4730 /* Scan the block an insn at a time from end to beginning. */
4732 for (insn = bb->end;; insn = prev)
4734 /* If this is a call to `setjmp' et al, warn if any
4735 non-volatile datum is live. */
4736 if ((flags & PROP_REG_INFO)
4737 && GET_CODE (insn) == NOTE
4738 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
4739 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
4741 prev = propagate_one_insn (pbi, insn);
4743 if (insn == bb->head)
4744 break;
4747 free_propagate_block_info (pbi);
4750 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
4751 (SET expressions whose destinations are registers dead after the insn).
4752 NEEDED is the regset that says which regs are alive after the insn.
4754 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
4756 If X is the entire body of an insn, NOTES contains the reg notes
4757 pertaining to the insn. */
4759 static int
4760 insn_dead_p (pbi, x, call_ok, notes)
4761 struct propagate_block_info *pbi;
4762 rtx x;
4763 int call_ok;
4764 rtx notes ATTRIBUTE_UNUSED;
4766 enum rtx_code code = GET_CODE (x);
4768 #ifdef AUTO_INC_DEC
4769 /* If flow is invoked after reload, we must take existing AUTO_INC
4770 expresions into account. */
4771 if (reload_completed)
4773 for (; notes; notes = XEXP (notes, 1))
4775 if (REG_NOTE_KIND (notes) == REG_INC)
4777 int regno = REGNO (XEXP (notes, 0));
4779 /* Don't delete insns to set global regs. */
4780 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
4781 || REGNO_REG_SET_P (pbi->reg_live, regno))
4782 return 0;
4786 #endif
4788 /* If setting something that's a reg or part of one,
4789 see if that register's altered value will be live. */
4791 if (code == SET)
4793 rtx r = SET_DEST (x);
4795 #ifdef HAVE_cc0
4796 if (GET_CODE (r) == CC0)
4797 return ! pbi->cc0_live;
4798 #endif
4800 /* A SET that is a subroutine call cannot be dead. */
4801 if (GET_CODE (SET_SRC (x)) == CALL)
4803 if (! call_ok)
4804 return 0;
4807 /* Don't eliminate loads from volatile memory or volatile asms. */
4808 else if (volatile_refs_p (SET_SRC (x)))
4809 return 0;
4811 if (GET_CODE (r) == MEM)
4813 rtx temp;
4815 if (MEM_VOLATILE_P (r))
4816 return 0;
4818 /* Walk the set of memory locations we are currently tracking
4819 and see if one is an identical match to this memory location.
4820 If so, this memory write is dead (remember, we're walking
4821 backwards from the end of the block to the start). Since
4822 rtx_equal_p does not check the alias set or flags, we also
4823 must have the potential for them to conflict (anti_dependence). */
4824 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
4825 if (anti_dependence (r, XEXP (temp, 0)))
4827 rtx mem = XEXP (temp, 0);
4829 if (rtx_equal_p (mem, r))
4830 return 1;
4831 #ifdef AUTO_INC_DEC
4832 /* Check if memory reference matches an auto increment. Only
4833 post increment/decrement or modify are valid. */
4834 if (GET_MODE (mem) == GET_MODE (r)
4835 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
4836 || GET_CODE (XEXP (mem, 0)) == POST_INC
4837 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
4838 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
4839 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
4840 return 1;
4841 #endif
4844 else
4846 while (GET_CODE (r) == SUBREG
4847 || GET_CODE (r) == STRICT_LOW_PART
4848 || GET_CODE (r) == ZERO_EXTRACT)
4849 r = XEXP (r, 0);
4851 if (GET_CODE (r) == REG)
4853 int regno = REGNO (r);
4855 /* Obvious. */
4856 if (REGNO_REG_SET_P (pbi->reg_live, regno))
4857 return 0;
4859 /* If this is a hard register, verify that subsequent
4860 words are not needed. */
4861 if (regno < FIRST_PSEUDO_REGISTER)
4863 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
4865 while (--n > 0)
4866 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
4867 return 0;
4870 /* Don't delete insns to set global regs. */
4871 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
4872 return 0;
4874 /* Make sure insns to set the stack pointer aren't deleted. */
4875 if (regno == STACK_POINTER_REGNUM)
4876 return 0;
4878 /* ??? These bits might be redundant with the force live bits
4879 in calculate_global_regs_live. We would delete from
4880 sequential sets; whether this actually affects real code
4881 for anything but the stack pointer I don't know. */
4882 /* Make sure insns to set the frame pointer aren't deleted. */
4883 if (regno == FRAME_POINTER_REGNUM
4884 && (! reload_completed || frame_pointer_needed))
4885 return 0;
4886 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4887 if (regno == HARD_FRAME_POINTER_REGNUM
4888 && (! reload_completed || frame_pointer_needed))
4889 return 0;
4890 #endif
4892 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4893 /* Make sure insns to set arg pointer are never deleted
4894 (if the arg pointer isn't fixed, there will be a USE
4895 for it, so we can treat it normally). */
4896 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
4897 return 0;
4898 #endif
4900 /* Otherwise, the set is dead. */
4901 return 1;
4906 /* If performing several activities, insn is dead if each activity
4907 is individually dead. Also, CLOBBERs and USEs can be ignored; a
4908 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
4909 worth keeping. */
4910 else if (code == PARALLEL)
4912 int i = XVECLEN (x, 0);
4914 for (i--; i >= 0; i--)
4915 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
4916 && GET_CODE (XVECEXP (x, 0, i)) != USE
4917 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
4918 return 0;
4920 return 1;
4923 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
4924 is not necessarily true for hard registers. */
4925 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
4926 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
4927 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
4928 return 1;
4930 /* We do not check other CLOBBER or USE here. An insn consisting of just
4931 a CLOBBER or just a USE should not be deleted. */
4932 return 0;
4935 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
4936 return 1 if the entire library call is dead.
4937 This is true if INSN copies a register (hard or pseudo)
4938 and if the hard return reg of the call insn is dead.
4939 (The caller should have tested the destination of the SET inside
4940 INSN already for death.)
4942 If this insn doesn't just copy a register, then we don't
4943 have an ordinary libcall. In that case, cse could not have
4944 managed to substitute the source for the dest later on,
4945 so we can assume the libcall is dead.
4947 PBI is the block info giving pseudoregs live before this insn.
4948 NOTE is the REG_RETVAL note of the insn. */
4950 static int
4951 libcall_dead_p (pbi, note, insn)
4952 struct propagate_block_info *pbi;
4953 rtx note;
4954 rtx insn;
4956 rtx x = single_set (insn);
4958 if (x)
4960 register rtx r = SET_SRC (x);
4961 if (GET_CODE (r) == REG)
4963 rtx call = XEXP (note, 0);
4964 rtx call_pat;
4965 register int i;
4967 /* Find the call insn. */
4968 while (call != insn && GET_CODE (call) != CALL_INSN)
4969 call = NEXT_INSN (call);
4971 /* If there is none, do nothing special,
4972 since ordinary death handling can understand these insns. */
4973 if (call == insn)
4974 return 0;
4976 /* See if the hard reg holding the value is dead.
4977 If this is a PARALLEL, find the call within it. */
4978 call_pat = PATTERN (call);
4979 if (GET_CODE (call_pat) == PARALLEL)
4981 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
4982 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
4983 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
4984 break;
4986 /* This may be a library call that is returning a value
4987 via invisible pointer. Do nothing special, since
4988 ordinary death handling can understand these insns. */
4989 if (i < 0)
4990 return 0;
4992 call_pat = XVECEXP (call_pat, 0, i);
4995 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
4998 return 1;
5001 /* Return 1 if register REGNO was used before it was set, i.e. if it is
5002 live at function entry. Don't count global register variables, variables
5003 in registers that can be used for function arg passing, or variables in
5004 fixed hard registers. */
5007 regno_uninitialized (regno)
5008 int regno;
5010 if (n_basic_blocks == 0
5011 || (regno < FIRST_PSEUDO_REGISTER
5012 && (global_regs[regno]
5013 || fixed_regs[regno]
5014 || FUNCTION_ARG_REGNO_P (regno))))
5015 return 0;
5017 return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno);
5020 /* 1 if register REGNO was alive at a place where `setjmp' was called
5021 and was set more than once or is an argument.
5022 Such regs may be clobbered by `longjmp'. */
5025 regno_clobbered_at_setjmp (regno)
5026 int regno;
5028 if (n_basic_blocks == 0)
5029 return 0;
5031 return ((REG_N_SETS (regno) > 1
5032 || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno))
5033 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
5036 /* INSN references memory, possibly using autoincrement addressing modes.
5037 Find any entries on the mem_set_list that need to be invalidated due
5038 to an address change. */
5040 static void
5041 invalidate_mems_from_autoinc (pbi, insn)
5042 struct propagate_block_info *pbi;
5043 rtx insn;
5045 rtx note = REG_NOTES (insn);
5046 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5048 if (REG_NOTE_KIND (note) == REG_INC)
5050 rtx temp = pbi->mem_set_list;
5051 rtx prev = NULL_RTX;
5052 rtx next;
5054 while (temp)
5056 next = XEXP (temp, 1);
5057 if (reg_overlap_mentioned_p (XEXP (note, 0), XEXP (temp, 0)))
5059 /* Splice temp out of list. */
5060 if (prev)
5061 XEXP (prev, 1) = next;
5062 else
5063 pbi->mem_set_list = next;
5064 free_EXPR_LIST_node (temp);
5065 pbi->mem_set_list_len--;
5067 else
5068 prev = temp;
5069 temp = next;
5075 /* EXP is either a MEM or a REG. Remove any dependant entries
5076 from pbi->mem_set_list. */
5078 static void
5079 invalidate_mems_from_set (pbi, exp)
5080 struct propagate_block_info *pbi;
5081 rtx exp;
5083 rtx temp = pbi->mem_set_list;
5084 rtx prev = NULL_RTX;
5085 rtx next;
5087 while (temp)
5089 next = XEXP (temp, 1);
5090 if ((GET_CODE (exp) == MEM
5091 && output_dependence (XEXP (temp, 0), exp))
5092 || (GET_CODE (exp) == REG
5093 && reg_overlap_mentioned_p (exp, XEXP (temp, 0))))
5095 /* Splice this entry out of the list. */
5096 if (prev)
5097 XEXP (prev, 1) = next;
5098 else
5099 pbi->mem_set_list = next;
5100 free_EXPR_LIST_node (temp);
5101 pbi->mem_set_list_len--;
5103 else
5104 prev = temp;
5105 temp = next;
5109 /* Process the registers that are set within X. Their bits are set to
5110 1 in the regset DEAD, because they are dead prior to this insn.
5112 If INSN is nonzero, it is the insn being processed.
5114 FLAGS is the set of operations to perform. */
5116 static void
5117 mark_set_regs (pbi, x, insn)
5118 struct propagate_block_info *pbi;
5119 rtx x, insn;
5121 rtx cond = NULL_RTX;
5122 rtx link;
5123 enum rtx_code code;
5125 if (insn)
5126 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5128 if (REG_NOTE_KIND (link) == REG_INC)
5129 mark_set_1 (pbi, SET, XEXP (link, 0),
5130 (GET_CODE (x) == COND_EXEC
5131 ? COND_EXEC_TEST (x) : NULL_RTX),
5132 insn, pbi->flags);
5134 retry:
5135 switch (code = GET_CODE (x))
5137 case SET:
5138 case CLOBBER:
5139 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
5140 return;
5142 case COND_EXEC:
5143 cond = COND_EXEC_TEST (x);
5144 x = COND_EXEC_CODE (x);
5145 goto retry;
5147 case PARALLEL:
5149 register int i;
5150 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5152 rtx sub = XVECEXP (x, 0, i);
5153 switch (code = GET_CODE (sub))
5155 case COND_EXEC:
5156 if (cond != NULL_RTX)
5157 abort ();
5159 cond = COND_EXEC_TEST (sub);
5160 sub = COND_EXEC_CODE (sub);
5161 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
5162 break;
5163 /* Fall through. */
5165 case SET:
5166 case CLOBBER:
5167 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
5168 break;
5170 default:
5171 break;
5174 break;
5177 default:
5178 break;
5182 /* Process a single set, which appears in INSN. REG (which may not
5183 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
5184 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
5185 If the set is conditional (because it appear in a COND_EXEC), COND
5186 will be the condition. */
5188 static void
5189 mark_set_1 (pbi, code, reg, cond, insn, flags)
5190 struct propagate_block_info *pbi;
5191 enum rtx_code code;
5192 rtx reg, cond, insn;
5193 int flags;
5195 int regno_first = -1, regno_last = -1;
5196 unsigned long not_dead = 0;
5197 int i;
5199 /* Modifying just one hardware register of a multi-reg value or just a
5200 byte field of a register does not mean the value from before this insn
5201 is now dead. Of course, if it was dead after it's unused now. */
5203 switch (GET_CODE (reg))
5205 case PARALLEL:
5206 /* Some targets place small structures in registers for return values of
5207 functions. We have to detect this case specially here to get correct
5208 flow information. */
5209 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
5210 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
5211 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
5212 flags);
5213 return;
5215 case ZERO_EXTRACT:
5216 case SIGN_EXTRACT:
5217 case STRICT_LOW_PART:
5218 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
5220 reg = XEXP (reg, 0);
5221 while (GET_CODE (reg) == SUBREG
5222 || GET_CODE (reg) == ZERO_EXTRACT
5223 || GET_CODE (reg) == SIGN_EXTRACT
5224 || GET_CODE (reg) == STRICT_LOW_PART);
5225 if (GET_CODE (reg) == MEM)
5226 break;
5227 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
5228 /* Fall through. */
5230 case REG:
5231 regno_last = regno_first = REGNO (reg);
5232 if (regno_first < FIRST_PSEUDO_REGISTER)
5233 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
5234 break;
5236 case SUBREG:
5237 if (GET_CODE (SUBREG_REG (reg)) == REG)
5239 enum machine_mode outer_mode = GET_MODE (reg);
5240 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
5242 /* Identify the range of registers affected. This is moderately
5243 tricky for hard registers. See alter_subreg. */
5245 regno_last = regno_first = REGNO (SUBREG_REG (reg));
5246 if (regno_first < FIRST_PSEUDO_REGISTER)
5248 regno_first += subreg_regno_offset (regno_first, inner_mode,
5249 SUBREG_BYTE (reg),
5250 outer_mode);
5251 regno_last = (regno_first
5252 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
5254 /* Since we've just adjusted the register number ranges, make
5255 sure REG matches. Otherwise some_was_live will be clear
5256 when it shouldn't have been, and we'll create incorrect
5257 REG_UNUSED notes. */
5258 reg = gen_rtx_REG (outer_mode, regno_first);
5260 else
5262 /* If the number of words in the subreg is less than the number
5263 of words in the full register, we have a well-defined partial
5264 set. Otherwise the high bits are undefined.
5266 This is only really applicable to pseudos, since we just took
5267 care of multi-word hard registers. */
5268 if (((GET_MODE_SIZE (outer_mode)
5269 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
5270 < ((GET_MODE_SIZE (inner_mode)
5271 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
5272 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
5273 regno_first);
5275 reg = SUBREG_REG (reg);
5278 else
5279 reg = SUBREG_REG (reg);
5280 break;
5282 default:
5283 break;
5286 /* If this set is a MEM, then it kills any aliased writes.
5287 If this set is a REG, then it kills any MEMs which use the reg. */
5288 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
5290 if (GET_CODE (reg) == MEM || GET_CODE (reg) == REG)
5291 invalidate_mems_from_set (pbi, reg);
5293 /* If the memory reference had embedded side effects (autoincrement
5294 address modes. Then we may need to kill some entries on the
5295 memory set list. */
5296 if (insn && GET_CODE (reg) == MEM)
5297 invalidate_mems_from_autoinc (pbi, insn);
5299 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN
5300 && GET_CODE (reg) == MEM && ! side_effects_p (reg)
5301 /* ??? With more effort we could track conditional memory life. */
5302 && ! cond
5303 /* We do not know the size of a BLKmode store, so we do not track
5304 them for redundant store elimination. */
5305 && GET_MODE (reg) != BLKmode
5306 /* There are no REG_INC notes for SP, so we can't assume we'll see
5307 everything that invalidates it. To be safe, don't eliminate any
5308 stores though SP; none of them should be redundant anyway. */
5309 && ! reg_mentioned_p (stack_pointer_rtx, reg))
5311 #ifdef AUTO_INC_DEC
5312 /* Store a copy of mem, otherwise the address may be
5313 scrogged by find_auto_inc. */
5314 if (flags & PROP_AUTOINC)
5315 reg = shallow_copy_rtx (reg);
5316 #endif
5317 pbi->mem_set_list = alloc_EXPR_LIST (0, reg, pbi->mem_set_list);
5318 pbi->mem_set_list_len++;
5322 if (GET_CODE (reg) == REG
5323 && ! (regno_first == FRAME_POINTER_REGNUM
5324 && (! reload_completed || frame_pointer_needed))
5325 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5326 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
5327 && (! reload_completed || frame_pointer_needed))
5328 #endif
5329 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5330 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
5331 #endif
5334 int some_was_live = 0, some_was_dead = 0;
5336 for (i = regno_first; i <= regno_last; ++i)
5338 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
5339 if (pbi->local_set)
5341 /* Order of the set operation matters here since both
5342 sets may be the same. */
5343 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
5344 if (cond != NULL_RTX
5345 && ! REGNO_REG_SET_P (pbi->local_set, i))
5346 SET_REGNO_REG_SET (pbi->cond_local_set, i);
5347 else
5348 SET_REGNO_REG_SET (pbi->local_set, i);
5350 if (code != CLOBBER)
5351 SET_REGNO_REG_SET (pbi->new_set, i);
5353 some_was_live |= needed_regno;
5354 some_was_dead |= ! needed_regno;
5357 #ifdef HAVE_conditional_execution
5358 /* Consider conditional death in deciding that the register needs
5359 a death note. */
5360 if (some_was_live && ! not_dead
5361 /* The stack pointer is never dead. Well, not strictly true,
5362 but it's very difficult to tell from here. Hopefully
5363 combine_stack_adjustments will fix up the most egregious
5364 errors. */
5365 && regno_first != STACK_POINTER_REGNUM)
5367 for (i = regno_first; i <= regno_last; ++i)
5368 if (! mark_regno_cond_dead (pbi, i, cond))
5369 not_dead |= ((unsigned long) 1) << (i - regno_first);
5371 #endif
5373 /* Additional data to record if this is the final pass. */
5374 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
5375 | PROP_DEATH_NOTES | PROP_AUTOINC))
5377 register rtx y;
5378 register int blocknum = pbi->bb->index;
5380 y = NULL_RTX;
5381 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
5383 y = pbi->reg_next_use[regno_first];
5385 /* The next use is no longer next, since a store intervenes. */
5386 for (i = regno_first; i <= regno_last; ++i)
5387 pbi->reg_next_use[i] = 0;
5390 if (flags & PROP_REG_INFO)
5392 for (i = regno_first; i <= regno_last; ++i)
5394 /* Count (weighted) references, stores, etc. This counts a
5395 register twice if it is modified, but that is correct. */
5396 REG_N_SETS (i) += 1;
5397 REG_N_REFS (i) += 1;
5398 REG_FREQ (i) += (optimize_size || !pbi->bb->frequency
5399 ? 1 : pbi->bb->frequency);
5401 /* The insns where a reg is live are normally counted
5402 elsewhere, but we want the count to include the insn
5403 where the reg is set, and the normal counting mechanism
5404 would not count it. */
5405 REG_LIVE_LENGTH (i) += 1;
5408 /* If this is a hard reg, record this function uses the reg. */
5409 if (regno_first < FIRST_PSEUDO_REGISTER)
5411 for (i = regno_first; i <= regno_last; i++)
5412 regs_ever_live[i] = 1;
5414 else
5416 /* Keep track of which basic blocks each reg appears in. */
5417 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
5418 REG_BASIC_BLOCK (regno_first) = blocknum;
5419 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
5420 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
5424 if (! some_was_dead)
5426 if (flags & PROP_LOG_LINKS)
5428 /* Make a logical link from the next following insn
5429 that uses this register, back to this insn.
5430 The following insns have already been processed.
5432 We don't build a LOG_LINK for hard registers containing
5433 in ASM_OPERANDs. If these registers get replaced,
5434 we might wind up changing the semantics of the insn,
5435 even if reload can make what appear to be valid
5436 assignments later. */
5437 if (y && (BLOCK_NUM (y) == blocknum)
5438 && (regno_first >= FIRST_PSEUDO_REGISTER
5439 || asm_noperands (PATTERN (y)) < 0))
5440 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
5443 else if (not_dead)
5445 else if (! some_was_live)
5447 if (flags & PROP_REG_INFO)
5448 REG_N_DEATHS (regno_first) += 1;
5450 if (flags & PROP_DEATH_NOTES)
5452 /* Note that dead stores have already been deleted
5453 when possible. If we get here, we have found a
5454 dead store that cannot be eliminated (because the
5455 same insn does something useful). Indicate this
5456 by marking the reg being set as dying here. */
5457 REG_NOTES (insn)
5458 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
5461 else
5463 if (flags & PROP_DEATH_NOTES)
5465 /* This is a case where we have a multi-word hard register
5466 and some, but not all, of the words of the register are
5467 needed in subsequent insns. Write REG_UNUSED notes
5468 for those parts that were not needed. This case should
5469 be rare. */
5471 for (i = regno_first; i <= regno_last; ++i)
5472 if (! REGNO_REG_SET_P (pbi->reg_live, i))
5473 REG_NOTES (insn)
5474 = alloc_EXPR_LIST (REG_UNUSED,
5475 gen_rtx_REG (reg_raw_mode[i], i),
5476 REG_NOTES (insn));
5481 /* Mark the register as being dead. */
5482 if (some_was_live
5483 /* The stack pointer is never dead. Well, not strictly true,
5484 but it's very difficult to tell from here. Hopefully
5485 combine_stack_adjustments will fix up the most egregious
5486 errors. */
5487 && regno_first != STACK_POINTER_REGNUM)
5489 for (i = regno_first; i <= regno_last; ++i)
5490 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
5491 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
5494 else if (GET_CODE (reg) == REG)
5496 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
5497 pbi->reg_next_use[regno_first] = 0;
5500 /* If this is the last pass and this is a SCRATCH, show it will be dying
5501 here and count it. */
5502 else if (GET_CODE (reg) == SCRATCH)
5504 if (flags & PROP_DEATH_NOTES)
5505 REG_NOTES (insn)
5506 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
5510 #ifdef HAVE_conditional_execution
5511 /* Mark REGNO conditionally dead.
5512 Return true if the register is now unconditionally dead. */
5514 static int
5515 mark_regno_cond_dead (pbi, regno, cond)
5516 struct propagate_block_info *pbi;
5517 int regno;
5518 rtx cond;
5520 /* If this is a store to a predicate register, the value of the
5521 predicate is changing, we don't know that the predicate as seen
5522 before is the same as that seen after. Flush all dependent
5523 conditions from reg_cond_dead. This will make all such
5524 conditionally live registers unconditionally live. */
5525 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
5526 flush_reg_cond_reg (pbi, regno);
5528 /* If this is an unconditional store, remove any conditional
5529 life that may have existed. */
5530 if (cond == NULL_RTX)
5531 splay_tree_remove (pbi->reg_cond_dead, regno);
5532 else
5534 splay_tree_node node;
5535 struct reg_cond_life_info *rcli;
5536 rtx ncond;
5538 /* Otherwise this is a conditional set. Record that fact.
5539 It may have been conditionally used, or there may be a
5540 subsequent set with a complimentary condition. */
5542 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
5543 if (node == NULL)
5545 /* The register was unconditionally live previously.
5546 Record the current condition as the condition under
5547 which it is dead. */
5548 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
5549 rcli->condition = cond;
5550 rcli->stores = cond;
5551 rcli->orig_condition = const0_rtx;
5552 splay_tree_insert (pbi->reg_cond_dead, regno,
5553 (splay_tree_value) rcli);
5555 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
5557 /* Not unconditionaly dead. */
5558 return 0;
5560 else
5562 /* The register was conditionally live previously.
5563 Add the new condition to the old. */
5564 rcli = (struct reg_cond_life_info *) node->value;
5565 ncond = rcli->condition;
5566 ncond = ior_reg_cond (ncond, cond, 1);
5567 if (rcli->stores == const0_rtx)
5568 rcli->stores = cond;
5569 else if (rcli->stores != const1_rtx)
5570 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
5572 /* If the register is now unconditionally dead, remove the entry
5573 in the splay_tree. A register is unconditionally dead if the
5574 dead condition ncond is true. A register is also unconditionally
5575 dead if the sum of all conditional stores is an unconditional
5576 store (stores is true), and the dead condition is identically the
5577 same as the original dead condition initialized at the end of
5578 the block. This is a pointer compare, not an rtx_equal_p
5579 compare. */
5580 if (ncond == const1_rtx
5581 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
5582 splay_tree_remove (pbi->reg_cond_dead, regno);
5583 else
5585 rcli->condition = ncond;
5587 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
5589 /* Not unconditionaly dead. */
5590 return 0;
5595 return 1;
5598 /* Called from splay_tree_delete for pbi->reg_cond_life. */
5600 static void
5601 free_reg_cond_life_info (value)
5602 splay_tree_value value;
5604 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
5605 free (rcli);
5608 /* Helper function for flush_reg_cond_reg. */
5610 static int
5611 flush_reg_cond_reg_1 (node, data)
5612 splay_tree_node node;
5613 void *data;
5615 struct reg_cond_life_info *rcli;
5616 int *xdata = (int *) data;
5617 unsigned int regno = xdata[0];
5619 /* Don't need to search if last flushed value was farther on in
5620 the in-order traversal. */
5621 if (xdata[1] >= (int) node->key)
5622 return 0;
5624 /* Splice out portions of the expression that refer to regno. */
5625 rcli = (struct reg_cond_life_info *) node->value;
5626 rcli->condition = elim_reg_cond (rcli->condition, regno);
5627 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
5628 rcli->stores = elim_reg_cond (rcli->stores, regno);
5630 /* If the entire condition is now false, signal the node to be removed. */
5631 if (rcli->condition == const0_rtx)
5633 xdata[1] = node->key;
5634 return -1;
5636 else if (rcli->condition == const1_rtx)
5637 abort ();
5639 return 0;
5642 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
5644 static void
5645 flush_reg_cond_reg (pbi, regno)
5646 struct propagate_block_info *pbi;
5647 int regno;
5649 int pair[2];
5651 pair[0] = regno;
5652 pair[1] = -1;
5653 while (splay_tree_foreach (pbi->reg_cond_dead,
5654 flush_reg_cond_reg_1, pair) == -1)
5655 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
5657 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
5660 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
5661 For ior/and, the ADD flag determines whether we want to add the new
5662 condition X to the old one unconditionally. If it is zero, we will
5663 only return a new expression if X allows us to simplify part of
5664 OLD, otherwise we return OLD unchanged to the caller.
5665 If ADD is nonzero, we will return a new condition in all cases. The
5666 toplevel caller of one of these functions should always pass 1 for
5667 ADD. */
5669 static rtx
5670 ior_reg_cond (old, x, add)
5671 rtx old, x;
5672 int add;
5674 rtx op0, op1;
5676 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
5678 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
5679 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
5680 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
5681 return const1_rtx;
5682 if (GET_CODE (x) == GET_CODE (old)
5683 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
5684 return old;
5685 if (! add)
5686 return old;
5687 return gen_rtx_IOR (0, old, x);
5690 switch (GET_CODE (old))
5692 case IOR:
5693 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
5694 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
5695 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
5697 if (op0 == const0_rtx)
5698 return op1;
5699 if (op1 == const0_rtx)
5700 return op0;
5701 if (op0 == const1_rtx || op1 == const1_rtx)
5702 return const1_rtx;
5703 if (op0 == XEXP (old, 0))
5704 op0 = gen_rtx_IOR (0, op0, x);
5705 else
5706 op1 = gen_rtx_IOR (0, op1, x);
5707 return gen_rtx_IOR (0, op0, op1);
5709 if (! add)
5710 return old;
5711 return gen_rtx_IOR (0, old, x);
5713 case AND:
5714 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
5715 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
5716 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
5718 if (op0 == const1_rtx)
5719 return op1;
5720 if (op1 == const1_rtx)
5721 return op0;
5722 if (op0 == const0_rtx || op1 == const0_rtx)
5723 return const0_rtx;
5724 if (op0 == XEXP (old, 0))
5725 op0 = gen_rtx_IOR (0, op0, x);
5726 else
5727 op1 = gen_rtx_IOR (0, op1, x);
5728 return gen_rtx_AND (0, op0, op1);
5730 if (! add)
5731 return old;
5732 return gen_rtx_IOR (0, old, x);
5734 case NOT:
5735 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
5736 if (op0 != XEXP (old, 0))
5737 return not_reg_cond (op0);
5738 if (! add)
5739 return old;
5740 return gen_rtx_IOR (0, old, x);
5742 default:
5743 abort ();
5747 static rtx
5748 not_reg_cond (x)
5749 rtx x;
5751 enum rtx_code x_code;
5753 if (x == const0_rtx)
5754 return const1_rtx;
5755 else if (x == const1_rtx)
5756 return const0_rtx;
5757 x_code = GET_CODE (x);
5758 if (x_code == NOT)
5759 return XEXP (x, 0);
5760 if (GET_RTX_CLASS (x_code) == '<'
5761 && GET_CODE (XEXP (x, 0)) == REG)
5763 if (XEXP (x, 1) != const0_rtx)
5764 abort ();
5766 return gen_rtx_fmt_ee (reverse_condition (x_code),
5767 VOIDmode, XEXP (x, 0), const0_rtx);
5769 return gen_rtx_NOT (0, x);
5772 static rtx
5773 and_reg_cond (old, x, add)
5774 rtx old, x;
5775 int add;
5777 rtx op0, op1;
5779 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
5781 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
5782 && GET_CODE (x) == reverse_condition (GET_CODE (old))
5783 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
5784 return const0_rtx;
5785 if (GET_CODE (x) == GET_CODE (old)
5786 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
5787 return old;
5788 if (! add)
5789 return old;
5790 return gen_rtx_AND (0, old, x);
5793 switch (GET_CODE (old))
5795 case IOR:
5796 op0 = and_reg_cond (XEXP (old, 0), x, 0);
5797 op1 = and_reg_cond (XEXP (old, 1), x, 0);
5798 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
5800 if (op0 == const0_rtx)
5801 return op1;
5802 if (op1 == const0_rtx)
5803 return op0;
5804 if (op0 == const1_rtx || op1 == const1_rtx)
5805 return const1_rtx;
5806 if (op0 == XEXP (old, 0))
5807 op0 = gen_rtx_AND (0, op0, x);
5808 else
5809 op1 = gen_rtx_AND (0, op1, x);
5810 return gen_rtx_IOR (0, op0, op1);
5812 if (! add)
5813 return old;
5814 return gen_rtx_AND (0, old, x);
5816 case AND:
5817 op0 = and_reg_cond (XEXP (old, 0), x, 0);
5818 op1 = and_reg_cond (XEXP (old, 1), x, 0);
5819 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
5821 if (op0 == const1_rtx)
5822 return op1;
5823 if (op1 == const1_rtx)
5824 return op0;
5825 if (op0 == const0_rtx || op1 == const0_rtx)
5826 return const0_rtx;
5827 if (op0 == XEXP (old, 0))
5828 op0 = gen_rtx_AND (0, op0, x);
5829 else
5830 op1 = gen_rtx_AND (0, op1, x);
5831 return gen_rtx_AND (0, op0, op1);
5833 if (! add)
5834 return old;
5836 /* If X is identical to one of the existing terms of the AND,
5837 then just return what we already have. */
5838 /* ??? There really should be some sort of recursive check here in
5839 case there are nested ANDs. */
5840 if ((GET_CODE (XEXP (old, 0)) == GET_CODE (x)
5841 && REGNO (XEXP (XEXP (old, 0), 0)) == REGNO (XEXP (x, 0)))
5842 || (GET_CODE (XEXP (old, 1)) == GET_CODE (x)
5843 && REGNO (XEXP (XEXP (old, 1), 0)) == REGNO (XEXP (x, 0))))
5844 return old;
5846 return gen_rtx_AND (0, old, x);
5848 case NOT:
5849 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
5850 if (op0 != XEXP (old, 0))
5851 return not_reg_cond (op0);
5852 if (! add)
5853 return old;
5854 return gen_rtx_AND (0, old, x);
5856 default:
5857 abort ();
5861 /* Given a condition X, remove references to reg REGNO and return the
5862 new condition. The removal will be done so that all conditions
5863 involving REGNO are considered to evaluate to false. This function
5864 is used when the value of REGNO changes. */
5866 static rtx
5867 elim_reg_cond (x, regno)
5868 rtx x;
5869 unsigned int regno;
5871 rtx op0, op1;
5873 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
5875 if (REGNO (XEXP (x, 0)) == regno)
5876 return const0_rtx;
5877 return x;
5880 switch (GET_CODE (x))
5882 case AND:
5883 op0 = elim_reg_cond (XEXP (x, 0), regno);
5884 op1 = elim_reg_cond (XEXP (x, 1), regno);
5885 if (op0 == const0_rtx || op1 == const0_rtx)
5886 return const0_rtx;
5887 if (op0 == const1_rtx)
5888 return op1;
5889 if (op1 == const1_rtx)
5890 return op0;
5891 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
5892 return x;
5893 return gen_rtx_AND (0, op0, op1);
5895 case IOR:
5896 op0 = elim_reg_cond (XEXP (x, 0), regno);
5897 op1 = elim_reg_cond (XEXP (x, 1), regno);
5898 if (op0 == const1_rtx || op1 == const1_rtx)
5899 return const1_rtx;
5900 if (op0 == const0_rtx)
5901 return op1;
5902 if (op1 == const0_rtx)
5903 return op0;
5904 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
5905 return x;
5906 return gen_rtx_IOR (0, op0, op1);
5908 case NOT:
5909 op0 = elim_reg_cond (XEXP (x, 0), regno);
5910 if (op0 == const0_rtx)
5911 return const1_rtx;
5912 if (op0 == const1_rtx)
5913 return const0_rtx;
5914 if (op0 != XEXP (x, 0))
5915 return not_reg_cond (op0);
5916 return x;
5918 default:
5919 abort ();
5922 #endif /* HAVE_conditional_execution */
5924 #ifdef AUTO_INC_DEC
5926 /* Try to substitute the auto-inc expression INC as the address inside
5927 MEM which occurs in INSN. Currently, the address of MEM is an expression
5928 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
5929 that has a single set whose source is a PLUS of INCR_REG and something
5930 else. */
5932 static void
5933 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
5934 struct propagate_block_info *pbi;
5935 rtx inc, insn, mem, incr, incr_reg;
5937 int regno = REGNO (incr_reg);
5938 rtx set = single_set (incr);
5939 rtx q = SET_DEST (set);
5940 rtx y = SET_SRC (set);
5941 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
5943 /* Make sure this reg appears only once in this insn. */
5944 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
5945 return;
5947 if (dead_or_set_p (incr, incr_reg)
5948 /* Mustn't autoinc an eliminable register. */
5949 && (regno >= FIRST_PSEUDO_REGISTER
5950 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
5952 /* This is the simple case. Try to make the auto-inc. If
5953 we can't, we are done. Otherwise, we will do any
5954 needed updates below. */
5955 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
5956 return;
5958 else if (GET_CODE (q) == REG
5959 /* PREV_INSN used here to check the semi-open interval
5960 [insn,incr). */
5961 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
5962 /* We must also check for sets of q as q may be
5963 a call clobbered hard register and there may
5964 be a call between PREV_INSN (insn) and incr. */
5965 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
5967 /* We have *p followed sometime later by q = p+size.
5968 Both p and q must be live afterward,
5969 and q is not used between INSN and its assignment.
5970 Change it to q = p, ...*q..., q = q+size.
5971 Then fall into the usual case. */
5972 rtx insns, temp;
5974 start_sequence ();
5975 emit_move_insn (q, incr_reg);
5976 insns = get_insns ();
5977 end_sequence ();
5979 if (basic_block_for_insn)
5980 for (temp = insns; temp; temp = NEXT_INSN (temp))
5981 set_block_for_insn (temp, pbi->bb);
5983 /* If we can't make the auto-inc, or can't make the
5984 replacement into Y, exit. There's no point in making
5985 the change below if we can't do the auto-inc and doing
5986 so is not correct in the pre-inc case. */
5988 XEXP (inc, 0) = q;
5989 validate_change (insn, &XEXP (mem, 0), inc, 1);
5990 validate_change (incr, &XEXP (y, opnum), q, 1);
5991 if (! apply_change_group ())
5992 return;
5994 /* We now know we'll be doing this change, so emit the
5995 new insn(s) and do the updates. */
5996 emit_insns_before (insns, insn);
5998 if (pbi->bb->head == insn)
5999 pbi->bb->head = insns;
6001 /* INCR will become a NOTE and INSN won't contain a
6002 use of INCR_REG. If a use of INCR_REG was just placed in
6003 the insn before INSN, make that the next use.
6004 Otherwise, invalidate it. */
6005 if (GET_CODE (PREV_INSN (insn)) == INSN
6006 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
6007 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
6008 pbi->reg_next_use[regno] = PREV_INSN (insn);
6009 else
6010 pbi->reg_next_use[regno] = 0;
6012 incr_reg = q;
6013 regno = REGNO (q);
6015 /* REGNO is now used in INCR which is below INSN, but
6016 it previously wasn't live here. If we don't mark
6017 it as live, we'll put a REG_DEAD note for it
6018 on this insn, which is incorrect. */
6019 SET_REGNO_REG_SET (pbi->reg_live, regno);
6021 /* If there are any calls between INSN and INCR, show
6022 that REGNO now crosses them. */
6023 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
6024 if (GET_CODE (temp) == CALL_INSN)
6025 REG_N_CALLS_CROSSED (regno)++;
6027 else
6028 return;
6030 /* If we haven't returned, it means we were able to make the
6031 auto-inc, so update the status. First, record that this insn
6032 has an implicit side effect. */
6034 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
6036 /* Modify the old increment-insn to simply copy
6037 the already-incremented value of our register. */
6038 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
6039 abort ();
6041 /* If that makes it a no-op (copying the register into itself) delete
6042 it so it won't appear to be a "use" and a "set" of this
6043 register. */
6044 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
6046 /* If the original source was dead, it's dead now. */
6047 rtx note;
6049 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
6051 remove_note (incr, note);
6052 if (XEXP (note, 0) != incr_reg)
6053 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
6056 PUT_CODE (incr, NOTE);
6057 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
6058 NOTE_SOURCE_FILE (incr) = 0;
6061 if (regno >= FIRST_PSEUDO_REGISTER)
6063 /* Count an extra reference to the reg. When a reg is
6064 incremented, spilling it is worse, so we want to make
6065 that less likely. */
6066 REG_FREQ (regno) += (optimize_size || !pbi->bb->frequency
6067 ? 1 : pbi->bb->frequency);
6069 /* Count the increment as a setting of the register,
6070 even though it isn't a SET in rtl. */
6071 REG_N_SETS (regno)++;
6075 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
6076 reference. */
6078 static void
6079 find_auto_inc (pbi, x, insn)
6080 struct propagate_block_info *pbi;
6081 rtx x;
6082 rtx insn;
6084 rtx addr = XEXP (x, 0);
6085 HOST_WIDE_INT offset = 0;
6086 rtx set, y, incr, inc_val;
6087 int regno;
6088 int size = GET_MODE_SIZE (GET_MODE (x));
6090 if (GET_CODE (insn) == JUMP_INSN)
6091 return;
6093 /* Here we detect use of an index register which might be good for
6094 postincrement, postdecrement, preincrement, or predecrement. */
6096 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
6097 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
6099 if (GET_CODE (addr) != REG)
6100 return;
6102 regno = REGNO (addr);
6104 /* Is the next use an increment that might make auto-increment? */
6105 incr = pbi->reg_next_use[regno];
6106 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
6107 return;
6108 set = single_set (incr);
6109 if (set == 0 || GET_CODE (set) != SET)
6110 return;
6111 y = SET_SRC (set);
6113 if (GET_CODE (y) != PLUS)
6114 return;
6116 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
6117 inc_val = XEXP (y, 1);
6118 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
6119 inc_val = XEXP (y, 0);
6120 else
6121 return;
6123 if (GET_CODE (inc_val) == CONST_INT)
6125 if (HAVE_POST_INCREMENT
6126 && (INTVAL (inc_val) == size && offset == 0))
6127 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
6128 incr, addr);
6129 else if (HAVE_POST_DECREMENT
6130 && (INTVAL (inc_val) == -size && offset == 0))
6131 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
6132 incr, addr);
6133 else if (HAVE_PRE_INCREMENT
6134 && (INTVAL (inc_val) == size && offset == size))
6135 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
6136 incr, addr);
6137 else if (HAVE_PRE_DECREMENT
6138 && (INTVAL (inc_val) == -size && offset == -size))
6139 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
6140 incr, addr);
6141 else if (HAVE_POST_MODIFY_DISP && offset == 0)
6142 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
6143 gen_rtx_PLUS (Pmode,
6144 addr,
6145 inc_val)),
6146 insn, x, incr, addr);
6148 else if (GET_CODE (inc_val) == REG
6149 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
6150 NEXT_INSN (incr)))
6153 if (HAVE_POST_MODIFY_REG && offset == 0)
6154 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
6155 gen_rtx_PLUS (Pmode,
6156 addr,
6157 inc_val)),
6158 insn, x, incr, addr);
6162 #endif /* AUTO_INC_DEC */
6164 static void
6165 mark_used_reg (pbi, reg, cond, insn)
6166 struct propagate_block_info *pbi;
6167 rtx reg;
6168 rtx cond ATTRIBUTE_UNUSED;
6169 rtx insn;
6171 unsigned int regno_first, regno_last, i;
6172 int some_was_live, some_was_dead, some_not_set;
6174 regno_last = regno_first = REGNO (reg);
6175 if (regno_first < FIRST_PSEUDO_REGISTER)
6176 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
6178 /* Find out if any of this register is live after this instruction. */
6179 some_was_live = some_was_dead = 0;
6180 for (i = regno_first; i <= regno_last; ++i)
6182 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
6183 some_was_live |= needed_regno;
6184 some_was_dead |= ! needed_regno;
6187 /* Find out if any of the register was set this insn. */
6188 some_not_set = 0;
6189 for (i = regno_first; i <= regno_last; ++i)
6190 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
6192 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
6194 /* Record where each reg is used, so when the reg is set we know
6195 the next insn that uses it. */
6196 pbi->reg_next_use[regno_first] = insn;
6199 if (pbi->flags & PROP_REG_INFO)
6201 if (regno_first < FIRST_PSEUDO_REGISTER)
6203 /* If this is a register we are going to try to eliminate,
6204 don't mark it live here. If we are successful in
6205 eliminating it, it need not be live unless it is used for
6206 pseudos, in which case it will have been set live when it
6207 was allocated to the pseudos. If the register will not
6208 be eliminated, reload will set it live at that point.
6210 Otherwise, record that this function uses this register. */
6211 /* ??? The PPC backend tries to "eliminate" on the pic
6212 register to itself. This should be fixed. In the mean
6213 time, hack around it. */
6215 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
6216 && (regno_first == FRAME_POINTER_REGNUM
6217 || regno_first == ARG_POINTER_REGNUM)))
6218 for (i = regno_first; i <= regno_last; ++i)
6219 regs_ever_live[i] = 1;
6221 else
6223 /* Keep track of which basic block each reg appears in. */
6225 register int blocknum = pbi->bb->index;
6226 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
6227 REG_BASIC_BLOCK (regno_first) = blocknum;
6228 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
6229 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
6231 /* Count (weighted) number of uses of each reg. */
6232 REG_FREQ (regno_first)
6233 += (optimize_size || !pbi->bb->frequency ? 1 : pbi->bb->frequency);
6234 REG_N_REFS (regno_first)++;
6238 /* Record and count the insns in which a reg dies. If it is used in
6239 this insn and was dead below the insn then it dies in this insn.
6240 If it was set in this insn, we do not make a REG_DEAD note;
6241 likewise if we already made such a note. */
6242 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
6243 && some_was_dead
6244 && some_not_set)
6246 /* Check for the case where the register dying partially
6247 overlaps the register set by this insn. */
6248 if (regno_first != regno_last)
6249 for (i = regno_first; i <= regno_last; ++i)
6250 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
6252 /* If none of the words in X is needed, make a REG_DEAD note.
6253 Otherwise, we must make partial REG_DEAD notes. */
6254 if (! some_was_live)
6256 if ((pbi->flags & PROP_DEATH_NOTES)
6257 && ! find_regno_note (insn, REG_DEAD, regno_first))
6258 REG_NOTES (insn)
6259 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
6261 if (pbi->flags & PROP_REG_INFO)
6262 REG_N_DEATHS (regno_first)++;
6264 else
6266 /* Don't make a REG_DEAD note for a part of a register
6267 that is set in the insn. */
6268 for (i = regno_first; i <= regno_last; ++i)
6269 if (! REGNO_REG_SET_P (pbi->reg_live, i)
6270 && ! dead_or_set_regno_p (insn, i))
6271 REG_NOTES (insn)
6272 = alloc_EXPR_LIST (REG_DEAD,
6273 gen_rtx_REG (reg_raw_mode[i], i),
6274 REG_NOTES (insn));
6278 /* Mark the register as being live. */
6279 for (i = regno_first; i <= regno_last; ++i)
6281 SET_REGNO_REG_SET (pbi->reg_live, i);
6283 #ifdef HAVE_conditional_execution
6284 /* If this is a conditional use, record that fact. If it is later
6285 conditionally set, we'll know to kill the register. */
6286 if (cond != NULL_RTX)
6288 splay_tree_node node;
6289 struct reg_cond_life_info *rcli;
6290 rtx ncond;
6292 if (some_was_live)
6294 node = splay_tree_lookup (pbi->reg_cond_dead, i);
6295 if (node == NULL)
6297 /* The register was unconditionally live previously.
6298 No need to do anything. */
6300 else
6302 /* The register was conditionally live previously.
6303 Subtract the new life cond from the old death cond. */
6304 rcli = (struct reg_cond_life_info *) node->value;
6305 ncond = rcli->condition;
6306 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
6308 /* If the register is now unconditionally live,
6309 remove the entry in the splay_tree. */
6310 if (ncond == const0_rtx)
6311 splay_tree_remove (pbi->reg_cond_dead, i);
6312 else
6314 rcli->condition = ncond;
6315 SET_REGNO_REG_SET (pbi->reg_cond_reg,
6316 REGNO (XEXP (cond, 0)));
6320 else
6322 /* The register was not previously live at all. Record
6323 the condition under which it is still dead. */
6324 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
6325 rcli->condition = not_reg_cond (cond);
6326 rcli->stores = const0_rtx;
6327 rcli->orig_condition = const0_rtx;
6328 splay_tree_insert (pbi->reg_cond_dead, i,
6329 (splay_tree_value) rcli);
6331 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
6334 else if (some_was_live)
6336 /* The register may have been conditionally live previously, but
6337 is now unconditionally live. Remove it from the conditionally
6338 dead list, so that a conditional set won't cause us to think
6339 it dead. */
6340 splay_tree_remove (pbi->reg_cond_dead, i);
6342 #endif
6346 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
6347 This is done assuming the registers needed from X are those that
6348 have 1-bits in PBI->REG_LIVE.
6350 INSN is the containing instruction. If INSN is dead, this function
6351 is not called. */
6353 static void
6354 mark_used_regs (pbi, x, cond, insn)
6355 struct propagate_block_info *pbi;
6356 rtx x, cond, insn;
6358 register RTX_CODE code;
6359 register int regno;
6360 int flags = pbi->flags;
6362 retry:
6363 code = GET_CODE (x);
6364 switch (code)
6366 case LABEL_REF:
6367 case SYMBOL_REF:
6368 case CONST_INT:
6369 case CONST:
6370 case CONST_DOUBLE:
6371 case PC:
6372 case ADDR_VEC:
6373 case ADDR_DIFF_VEC:
6374 return;
6376 #ifdef HAVE_cc0
6377 case CC0:
6378 pbi->cc0_live = 1;
6379 return;
6380 #endif
6382 case CLOBBER:
6383 /* If we are clobbering a MEM, mark any registers inside the address
6384 as being used. */
6385 if (GET_CODE (XEXP (x, 0)) == MEM)
6386 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
6387 return;
6389 case MEM:
6390 /* Don't bother watching stores to mems if this is not the
6391 final pass. We'll not be deleting dead stores this round. */
6392 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
6394 /* Invalidate the data for the last MEM stored, but only if MEM is
6395 something that can be stored into. */
6396 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
6397 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
6398 /* Needn't clear the memory set list. */
6400 else
6402 rtx temp = pbi->mem_set_list;
6403 rtx prev = NULL_RTX;
6404 rtx next;
6406 while (temp)
6408 next = XEXP (temp, 1);
6409 if (anti_dependence (XEXP (temp, 0), x))
6411 /* Splice temp out of the list. */
6412 if (prev)
6413 XEXP (prev, 1) = next;
6414 else
6415 pbi->mem_set_list = next;
6416 free_EXPR_LIST_node (temp);
6417 pbi->mem_set_list_len--;
6419 else
6420 prev = temp;
6421 temp = next;
6425 /* If the memory reference had embedded side effects (autoincrement
6426 address modes. Then we may need to kill some entries on the
6427 memory set list. */
6428 if (insn)
6429 invalidate_mems_from_autoinc (pbi, insn);
6432 #ifdef AUTO_INC_DEC
6433 if (flags & PROP_AUTOINC)
6434 find_auto_inc (pbi, x, insn);
6435 #endif
6436 break;
6438 case SUBREG:
6439 #ifdef CLASS_CANNOT_CHANGE_MODE
6440 if (GET_CODE (SUBREG_REG (x)) == REG
6441 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
6442 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
6443 GET_MODE (SUBREG_REG (x))))
6444 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
6445 #endif
6447 /* While we're here, optimize this case. */
6448 x = SUBREG_REG (x);
6449 if (GET_CODE (x) != REG)
6450 goto retry;
6451 /* Fall through. */
6453 case REG:
6454 /* See a register other than being set => mark it as needed. */
6455 mark_used_reg (pbi, x, cond, insn);
6456 return;
6458 case SET:
6460 register rtx testreg = SET_DEST (x);
6461 int mark_dest = 0;
6463 /* If storing into MEM, don't show it as being used. But do
6464 show the address as being used. */
6465 if (GET_CODE (testreg) == MEM)
6467 #ifdef AUTO_INC_DEC
6468 if (flags & PROP_AUTOINC)
6469 find_auto_inc (pbi, testreg, insn);
6470 #endif
6471 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
6472 mark_used_regs (pbi, SET_SRC (x), cond, insn);
6473 return;
6476 /* Storing in STRICT_LOW_PART is like storing in a reg
6477 in that this SET might be dead, so ignore it in TESTREG.
6478 but in some other ways it is like using the reg.
6480 Storing in a SUBREG or a bit field is like storing the entire
6481 register in that if the register's value is not used
6482 then this SET is not needed. */
6483 while (GET_CODE (testreg) == STRICT_LOW_PART
6484 || GET_CODE (testreg) == ZERO_EXTRACT
6485 || GET_CODE (testreg) == SIGN_EXTRACT
6486 || GET_CODE (testreg) == SUBREG)
6488 #ifdef CLASS_CANNOT_CHANGE_MODE
6489 if (GET_CODE (testreg) == SUBREG
6490 && GET_CODE (SUBREG_REG (testreg)) == REG
6491 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
6492 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
6493 GET_MODE (testreg)))
6494 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
6495 #endif
6497 /* Modifying a single register in an alternate mode
6498 does not use any of the old value. But these other
6499 ways of storing in a register do use the old value. */
6500 if (GET_CODE (testreg) == SUBREG
6501 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
6503 else
6504 mark_dest = 1;
6506 testreg = XEXP (testreg, 0);
6509 /* If this is a store into a register or group of registers,
6510 recursively scan the value being stored. */
6512 if ((GET_CODE (testreg) == PARALLEL
6513 && GET_MODE (testreg) == BLKmode)
6514 || (GET_CODE (testreg) == REG
6515 && (regno = REGNO (testreg),
6516 ! (regno == FRAME_POINTER_REGNUM
6517 && (! reload_completed || frame_pointer_needed)))
6518 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
6519 && ! (regno == HARD_FRAME_POINTER_REGNUM
6520 && (! reload_completed || frame_pointer_needed))
6521 #endif
6522 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
6523 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
6524 #endif
6527 if (mark_dest)
6528 mark_used_regs (pbi, SET_DEST (x), cond, insn);
6529 mark_used_regs (pbi, SET_SRC (x), cond, insn);
6530 return;
6533 break;
6535 case ASM_OPERANDS:
6536 case UNSPEC_VOLATILE:
6537 case TRAP_IF:
6538 case ASM_INPUT:
6540 /* Traditional and volatile asm instructions must be considered to use
6541 and clobber all hard registers, all pseudo-registers and all of
6542 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
6544 Consider for instance a volatile asm that changes the fpu rounding
6545 mode. An insn should not be moved across this even if it only uses
6546 pseudo-regs because it might give an incorrectly rounded result.
6548 ?!? Unfortunately, marking all hard registers as live causes massive
6549 problems for the register allocator and marking all pseudos as live
6550 creates mountains of uninitialized variable warnings.
6552 So for now, just clear the memory set list and mark any regs
6553 we can find in ASM_OPERANDS as used. */
6554 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
6556 free_EXPR_LIST_list (&pbi->mem_set_list);
6557 pbi->mem_set_list_len = 0;
6560 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
6561 We can not just fall through here since then we would be confused
6562 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
6563 traditional asms unlike their normal usage. */
6564 if (code == ASM_OPERANDS)
6566 int j;
6568 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
6569 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
6571 break;
6574 case COND_EXEC:
6575 if (cond != NULL_RTX)
6576 abort ();
6578 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
6580 cond = COND_EXEC_TEST (x);
6581 x = COND_EXEC_CODE (x);
6582 goto retry;
6584 case PHI:
6585 /* We _do_not_ want to scan operands of phi nodes. Operands of
6586 a phi function are evaluated only when control reaches this
6587 block along a particular edge. Therefore, regs that appear
6588 as arguments to phi should not be added to the global live at
6589 start. */
6590 return;
6592 default:
6593 break;
6596 /* Recursively scan the operands of this expression. */
6599 register const char *fmt = GET_RTX_FORMAT (code);
6600 register int i;
6602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6604 if (fmt[i] == 'e')
6606 /* Tail recursive case: save a function call level. */
6607 if (i == 0)
6609 x = XEXP (x, 0);
6610 goto retry;
6612 mark_used_regs (pbi, XEXP (x, i), cond, insn);
6614 else if (fmt[i] == 'E')
6616 register int j;
6617 for (j = 0; j < XVECLEN (x, i); j++)
6618 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
6624 #ifdef AUTO_INC_DEC
6626 static int
6627 try_pre_increment_1 (pbi, insn)
6628 struct propagate_block_info *pbi;
6629 rtx insn;
6631 /* Find the next use of this reg. If in same basic block,
6632 make it do pre-increment or pre-decrement if appropriate. */
6633 rtx x = single_set (insn);
6634 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
6635 * INTVAL (XEXP (SET_SRC (x), 1)));
6636 int regno = REGNO (SET_DEST (x));
6637 rtx y = pbi->reg_next_use[regno];
6638 if (y != 0
6639 && SET_DEST (x) != stack_pointer_rtx
6640 && BLOCK_NUM (y) == BLOCK_NUM (insn)
6641 /* Don't do this if the reg dies, or gets set in y; a standard addressing
6642 mode would be better. */
6643 && ! dead_or_set_p (y, SET_DEST (x))
6644 && try_pre_increment (y, SET_DEST (x), amount))
6646 /* We have found a suitable auto-increment and already changed
6647 insn Y to do it. So flush this increment instruction. */
6648 propagate_block_delete_insn (pbi->bb, insn);
6650 /* Count a reference to this reg for the increment insn we are
6651 deleting. When a reg is incremented, spilling it is worse,
6652 so we want to make that less likely. */
6653 if (regno >= FIRST_PSEUDO_REGISTER)
6655 REG_FREQ (regno) += (optimize_size || !pbi->bb->frequency
6656 ? 1 : pbi->bb->frequency);
6657 REG_N_SETS (regno)++;
6660 /* Flush any remembered memories depending on the value of
6661 the incremented register. */
6662 invalidate_mems_from_set (pbi, SET_DEST (x));
6664 return 1;
6666 return 0;
6669 /* Try to change INSN so that it does pre-increment or pre-decrement
6670 addressing on register REG in order to add AMOUNT to REG.
6671 AMOUNT is negative for pre-decrement.
6672 Returns 1 if the change could be made.
6673 This checks all about the validity of the result of modifying INSN. */
6675 static int
6676 try_pre_increment (insn, reg, amount)
6677 rtx insn, reg;
6678 HOST_WIDE_INT amount;
6680 register rtx use;
6682 /* Nonzero if we can try to make a pre-increment or pre-decrement.
6683 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
6684 int pre_ok = 0;
6685 /* Nonzero if we can try to make a post-increment or post-decrement.
6686 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
6687 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
6688 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
6689 int post_ok = 0;
6691 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
6692 int do_post = 0;
6694 /* From the sign of increment, see which possibilities are conceivable
6695 on this target machine. */
6696 if (HAVE_PRE_INCREMENT && amount > 0)
6697 pre_ok = 1;
6698 if (HAVE_POST_INCREMENT && amount > 0)
6699 post_ok = 1;
6701 if (HAVE_PRE_DECREMENT && amount < 0)
6702 pre_ok = 1;
6703 if (HAVE_POST_DECREMENT && amount < 0)
6704 post_ok = 1;
6706 if (! (pre_ok || post_ok))
6707 return 0;
6709 /* It is not safe to add a side effect to a jump insn
6710 because if the incremented register is spilled and must be reloaded
6711 there would be no way to store the incremented value back in memory. */
6713 if (GET_CODE (insn) == JUMP_INSN)
6714 return 0;
6716 use = 0;
6717 if (pre_ok)
6718 use = find_use_as_address (PATTERN (insn), reg, 0);
6719 if (post_ok && (use == 0 || use == (rtx) 1))
6721 use = find_use_as_address (PATTERN (insn), reg, -amount);
6722 do_post = 1;
6725 if (use == 0 || use == (rtx) 1)
6726 return 0;
6728 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
6729 return 0;
6731 /* See if this combination of instruction and addressing mode exists. */
6732 if (! validate_change (insn, &XEXP (use, 0),
6733 gen_rtx_fmt_e (amount > 0
6734 ? (do_post ? POST_INC : PRE_INC)
6735 : (do_post ? POST_DEC : PRE_DEC),
6736 Pmode, reg), 0))
6737 return 0;
6739 /* Record that this insn now has an implicit side effect on X. */
6740 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
6741 return 1;
6744 #endif /* AUTO_INC_DEC */
6746 /* Find the place in the rtx X where REG is used as a memory address.
6747 Return the MEM rtx that so uses it.
6748 If PLUSCONST is nonzero, search instead for a memory address equivalent to
6749 (plus REG (const_int PLUSCONST)).
6751 If such an address does not appear, return 0.
6752 If REG appears more than once, or is used other than in such an address,
6753 return (rtx)1. */
6756 find_use_as_address (x, reg, plusconst)
6757 register rtx x;
6758 rtx reg;
6759 HOST_WIDE_INT plusconst;
6761 enum rtx_code code = GET_CODE (x);
6762 const char *fmt = GET_RTX_FORMAT (code);
6763 register int i;
6764 register rtx value = 0;
6765 register rtx tem;
6767 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
6768 return x;
6770 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
6771 && XEXP (XEXP (x, 0), 0) == reg
6772 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6773 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
6774 return x;
6776 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
6778 /* If REG occurs inside a MEM used in a bit-field reference,
6779 that is unacceptable. */
6780 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
6781 return (rtx) (HOST_WIDE_INT) 1;
6784 if (x == reg)
6785 return (rtx) (HOST_WIDE_INT) 1;
6787 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6789 if (fmt[i] == 'e')
6791 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
6792 if (value == 0)
6793 value = tem;
6794 else if (tem != 0)
6795 return (rtx) (HOST_WIDE_INT) 1;
6797 else if (fmt[i] == 'E')
6799 register int j;
6800 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6802 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
6803 if (value == 0)
6804 value = tem;
6805 else if (tem != 0)
6806 return (rtx) (HOST_WIDE_INT) 1;
6811 return value;
6814 /* Write information about registers and basic blocks into FILE.
6815 This is part of making a debugging dump. */
6817 void
6818 dump_regset (r, outf)
6819 regset r;
6820 FILE *outf;
6822 int i;
6823 if (r == NULL)
6825 fputs (" (nil)", outf);
6826 return;
6829 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
6831 fprintf (outf, " %d", i);
6832 if (i < FIRST_PSEUDO_REGISTER)
6833 fprintf (outf, " [%s]",
6834 reg_names[i]);
6838 /* Print a human-reaable representation of R on the standard error
6839 stream. This function is designed to be used from within the
6840 debugger. */
6842 void
6843 debug_regset (r)
6844 regset r;
6846 dump_regset (r, stderr);
6847 putc ('\n', stderr);
6850 void
6851 dump_flow_info (file)
6852 FILE *file;
6854 register int i;
6855 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6857 fprintf (file, "%d registers.\n", max_regno);
6858 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
6859 if (REG_N_REFS (i))
6861 enum reg_class class, altclass;
6862 fprintf (file, "\nRegister %d used %d times across %d insns",
6863 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
6864 if (REG_BASIC_BLOCK (i) >= 0)
6865 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
6866 if (REG_N_SETS (i))
6867 fprintf (file, "; set %d time%s", REG_N_SETS (i),
6868 (REG_N_SETS (i) == 1) ? "" : "s");
6869 if (REG_USERVAR_P (regno_reg_rtx[i]))
6870 fprintf (file, "; user var");
6871 if (REG_N_DEATHS (i) != 1)
6872 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
6873 if (REG_N_CALLS_CROSSED (i) == 1)
6874 fprintf (file, "; crosses 1 call");
6875 else if (REG_N_CALLS_CROSSED (i))
6876 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
6877 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
6878 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
6879 class = reg_preferred_class (i);
6880 altclass = reg_alternate_class (i);
6881 if (class != GENERAL_REGS || altclass != ALL_REGS)
6883 if (altclass == ALL_REGS || class == ALL_REGS)
6884 fprintf (file, "; pref %s", reg_class_names[(int) class]);
6885 else if (altclass == NO_REGS)
6886 fprintf (file, "; %s or none", reg_class_names[(int) class]);
6887 else
6888 fprintf (file, "; pref %s, else %s",
6889 reg_class_names[(int) class],
6890 reg_class_names[(int) altclass]);
6892 if (REG_POINTER (regno_reg_rtx[i]))
6893 fprintf (file, "; pointer");
6894 fprintf (file, ".\n");
6897 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
6898 for (i = 0; i < n_basic_blocks; i++)
6900 register basic_block bb = BASIC_BLOCK (i);
6901 register edge e;
6903 fprintf (file, "\nBasic block %d: first insn %d, last %d, loop_depth %d, count ",
6904 i, INSN_UID (bb->head), INSN_UID (bb->end), bb->loop_depth);
6905 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) bb->count);
6906 fprintf (file, ", freq %i.\n", bb->frequency);
6908 fprintf (file, "Predecessors: ");
6909 for (e = bb->pred; e; e = e->pred_next)
6910 dump_edge_info (file, e, 0);
6912 fprintf (file, "\nSuccessors: ");
6913 for (e = bb->succ; e; e = e->succ_next)
6914 dump_edge_info (file, e, 1);
6916 fprintf (file, "\nRegisters live at start:");
6917 dump_regset (bb->global_live_at_start, file);
6919 fprintf (file, "\nRegisters live at end:");
6920 dump_regset (bb->global_live_at_end, file);
6922 putc ('\n', file);
6925 putc ('\n', file);
6928 void
6929 debug_flow_info ()
6931 dump_flow_info (stderr);
6934 void
6935 dump_edge_info (file, e, do_succ)
6936 FILE *file;
6937 edge e;
6938 int do_succ;
6940 basic_block side = (do_succ ? e->dest : e->src);
6942 if (side == ENTRY_BLOCK_PTR)
6943 fputs (" ENTRY", file);
6944 else if (side == EXIT_BLOCK_PTR)
6945 fputs (" EXIT", file);
6946 else
6947 fprintf (file, " %d", side->index);
6949 if (e->probability)
6950 fprintf (file, " [%.1f%%] ", e->probability * 100.0 / REG_BR_PROB_BASE);
6952 if (e->count)
6954 fprintf (file, " count:");
6955 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) e->count);
6958 if (e->flags)
6960 static const char * const bitnames[] = {
6961 "fallthru", "crit", "ab", "abcall", "eh", "fake"
6963 int comma = 0;
6964 int i, flags = e->flags;
6966 fputc (' ', file);
6967 fputc ('(', file);
6968 for (i = 0; flags; i++)
6969 if (flags & (1 << i))
6971 flags &= ~(1 << i);
6973 if (comma)
6974 fputc (',', file);
6975 if (i < (int) ARRAY_SIZE (bitnames))
6976 fputs (bitnames[i], file);
6977 else
6978 fprintf (file, "%d", i);
6979 comma = 1;
6981 fputc (')', file);
6985 /* Print out one basic block with live information at start and end. */
6987 void
6988 dump_bb (bb, outf)
6989 basic_block bb;
6990 FILE *outf;
6992 rtx insn;
6993 rtx last;
6994 edge e;
6996 fprintf (outf, ";; Basic block %d, loop depth %d, count ",
6997 bb->index, bb->loop_depth);
6998 fprintf (outf, HOST_WIDEST_INT_PRINT_DEC, (HOST_WIDEST_INT) bb->count);
6999 putc ('\n', outf);
7001 fputs (";; Predecessors: ", outf);
7002 for (e = bb->pred; e; e = e->pred_next)
7003 dump_edge_info (outf, e, 0);
7004 putc ('\n', outf);
7006 fputs (";; Registers live at start:", outf);
7007 dump_regset (bb->global_live_at_start, outf);
7008 putc ('\n', outf);
7010 for (insn = bb->head, last = NEXT_INSN (bb->end);
7011 insn != last;
7012 insn = NEXT_INSN (insn))
7013 print_rtl_single (outf, insn);
7015 fputs (";; Registers live at end:", outf);
7016 dump_regset (bb->global_live_at_end, outf);
7017 putc ('\n', outf);
7019 fputs (";; Successors: ", outf);
7020 for (e = bb->succ; e; e = e->succ_next)
7021 dump_edge_info (outf, e, 1);
7022 putc ('\n', outf);
7025 void
7026 debug_bb (bb)
7027 basic_block bb;
7029 dump_bb (bb, stderr);
7032 void
7033 debug_bb_n (n)
7034 int n;
7036 dump_bb (BASIC_BLOCK (n), stderr);
7039 /* Like print_rtl, but also print out live information for the start of each
7040 basic block. */
7042 void
7043 print_rtl_with_bb (outf, rtx_first)
7044 FILE *outf;
7045 rtx rtx_first;
7047 register rtx tmp_rtx;
7049 if (rtx_first == 0)
7050 fprintf (outf, "(nil)\n");
7051 else
7053 int i;
7054 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
7055 int max_uid = get_max_uid ();
7056 basic_block *start = (basic_block *)
7057 xcalloc (max_uid, sizeof (basic_block));
7058 basic_block *end = (basic_block *)
7059 xcalloc (max_uid, sizeof (basic_block));
7060 enum bb_state *in_bb_p = (enum bb_state *)
7061 xcalloc (max_uid, sizeof (enum bb_state));
7063 for (i = n_basic_blocks - 1; i >= 0; i--)
7065 basic_block bb = BASIC_BLOCK (i);
7066 rtx x;
7068 start[INSN_UID (bb->head)] = bb;
7069 end[INSN_UID (bb->end)] = bb;
7070 for (x = bb->head; x != NULL_RTX; x = NEXT_INSN (x))
7072 enum bb_state state = IN_MULTIPLE_BB;
7073 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
7074 state = IN_ONE_BB;
7075 in_bb_p[INSN_UID (x)] = state;
7077 if (x == bb->end)
7078 break;
7082 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
7084 int did_output;
7085 basic_block bb;
7087 if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
7089 fprintf (outf, ";; Start of basic block %d, registers live:",
7090 bb->index);
7091 dump_regset (bb->global_live_at_start, outf);
7092 putc ('\n', outf);
7095 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
7096 && GET_CODE (tmp_rtx) != NOTE
7097 && GET_CODE (tmp_rtx) != BARRIER)
7098 fprintf (outf, ";; Insn is not within a basic block\n");
7099 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
7100 fprintf (outf, ";; Insn is in multiple basic blocks\n");
7102 did_output = print_rtl_single (outf, tmp_rtx);
7104 if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
7106 fprintf (outf, ";; End of basic block %d, registers live:\n",
7107 bb->index);
7108 dump_regset (bb->global_live_at_end, outf);
7109 putc ('\n', outf);
7112 if (did_output)
7113 putc ('\n', outf);
7116 free (start);
7117 free (end);
7118 free (in_bb_p);
7121 if (current_function_epilogue_delay_list != 0)
7123 fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
7124 for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
7125 tmp_rtx = XEXP (tmp_rtx, 1))
7126 print_rtl_single (outf, XEXP (tmp_rtx, 0));
7130 /* Dump the rtl into the current debugging dump file, then abort. */
7132 static void
7133 print_rtl_and_abort_fcn (file, line, function)
7134 const char *file;
7135 int line;
7136 const char *function;
7138 if (rtl_dump_file)
7140 print_rtl_with_bb (rtl_dump_file, get_insns ());
7141 fclose (rtl_dump_file);
7144 fancy_abort (file, line, function);
7147 /* Recompute register set/reference counts immediately prior to register
7148 allocation.
7150 This avoids problems with set/reference counts changing to/from values
7151 which have special meanings to the register allocators.
7153 Additionally, the reference counts are the primary component used by the
7154 register allocators to prioritize pseudos for allocation to hard regs.
7155 More accurate reference counts generally lead to better register allocation.
7157 F is the first insn to be scanned.
7159 LOOP_STEP denotes how much loop_depth should be incremented per
7160 loop nesting level in order to increase the ref count more for
7161 references in a loop.
7163 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
7164 possibly other information which is used by the register allocators. */
7166 void
7167 recompute_reg_usage (f, loop_step)
7168 rtx f ATTRIBUTE_UNUSED;
7169 int loop_step ATTRIBUTE_UNUSED;
7171 allocate_reg_life_data ();
7172 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
7175 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
7176 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
7177 of the number of registers that died. */
7180 count_or_remove_death_notes (blocks, kill)
7181 sbitmap blocks;
7182 int kill;
7184 int i, count = 0;
7186 for (i = n_basic_blocks - 1; i >= 0; --i)
7188 basic_block bb;
7189 rtx insn;
7191 if (blocks && ! TEST_BIT (blocks, i))
7192 continue;
7194 bb = BASIC_BLOCK (i);
7196 for (insn = bb->head;; insn = NEXT_INSN (insn))
7198 if (INSN_P (insn))
7200 rtx *pprev = &REG_NOTES (insn);
7201 rtx link = *pprev;
7203 while (link)
7205 switch (REG_NOTE_KIND (link))
7207 case REG_DEAD:
7208 if (GET_CODE (XEXP (link, 0)) == REG)
7210 rtx reg = XEXP (link, 0);
7211 int n;
7213 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
7214 n = 1;
7215 else
7216 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
7217 count += n;
7219 /* Fall through. */
7221 case REG_UNUSED:
7222 if (kill)
7224 rtx next = XEXP (link, 1);
7225 free_EXPR_LIST_node (link);
7226 *pprev = link = next;
7227 break;
7229 /* Fall through. */
7231 default:
7232 pprev = &XEXP (link, 1);
7233 link = *pprev;
7234 break;
7239 if (insn == bb->end)
7240 break;
7244 return count;
7248 /* Update insns block within BB. */
7250 void
7251 update_bb_for_insn (bb)
7252 basic_block bb;
7254 rtx insn;
7256 if (! basic_block_for_insn)
7257 return;
7259 for (insn = bb->head; ; insn = NEXT_INSN (insn))
7261 set_block_for_insn (insn, bb);
7263 if (insn == bb->end)
7264 break;
7269 /* Record INSN's block as BB. */
7271 void
7272 set_block_for_insn (insn, bb)
7273 rtx insn;
7274 basic_block bb;
7276 size_t uid = INSN_UID (insn);
7277 if (uid >= basic_block_for_insn->num_elements)
7279 int new_size;
7281 /* Add one-eighth the size so we don't keep calling xrealloc. */
7282 new_size = uid + (uid + 7) / 8;
7284 VARRAY_GROW (basic_block_for_insn, new_size);
7286 VARRAY_BB (basic_block_for_insn, uid) = bb;
7289 /* When a new insn has been inserted into an existing block, it will
7290 sometimes emit more than a single insn. This routine will set the
7291 block number for the specified insn, and look backwards in the insn
7292 chain to see if there are any other uninitialized insns immediately
7293 previous to this one, and set the block number for them too. */
7295 void
7296 set_block_for_new_insns (insn, bb)
7297 rtx insn;
7298 basic_block bb;
7300 set_block_for_insn (insn, bb);
7302 /* Scan the previous instructions setting the block number until we find
7303 an instruction that has the block number set, or we find a note
7304 of any kind. */
7305 for (insn = PREV_INSN (insn); insn != NULL_RTX; insn = PREV_INSN (insn))
7307 if (GET_CODE (insn) == NOTE)
7308 break;
7309 if (INSN_UID (insn) >= basic_block_for_insn->num_elements
7310 || BLOCK_FOR_INSN (insn) == 0)
7311 set_block_for_insn (insn, bb);
7312 else
7313 break;
7317 /* Verify the CFG consistency. This function check some CFG invariants and
7318 aborts when something is wrong. Hope that this function will help to
7319 convert many optimization passes to preserve CFG consistent.
7321 Currently it does following checks:
7323 - test head/end pointers
7324 - overlapping of basic blocks
7325 - edge list corectness
7326 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
7327 - tails of basic blocks (ensure that boundary is necesary)
7328 - scans body of the basic block for JUMP_INSN, CODE_LABEL
7329 and NOTE_INSN_BASIC_BLOCK
7330 - check that all insns are in the basic blocks
7331 (except the switch handling code, barriers and notes)
7332 - check that all returns are followed by barriers
7334 In future it can be extended check a lot of other stuff as well
7335 (reachability of basic blocks, life information, etc. etc.). */
7337 void
7338 verify_flow_info ()
7340 const int max_uid = get_max_uid ();
7341 const rtx rtx_first = get_insns ();
7342 rtx last_head = get_last_insn ();
7343 basic_block *bb_info;
7344 rtx x;
7345 int i, last_bb_num_seen, num_bb_notes, err = 0;
7347 bb_info = (basic_block *) xcalloc (max_uid, sizeof (basic_block));
7349 for (i = n_basic_blocks - 1; i >= 0; i--)
7351 basic_block bb = BASIC_BLOCK (i);
7352 rtx head = bb->head;
7353 rtx end = bb->end;
7355 /* Verify the end of the basic block is in the INSN chain. */
7356 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
7357 if (x == end)
7358 break;
7359 if (!x)
7361 error ("End insn %d for block %d not found in the insn stream.",
7362 INSN_UID (end), bb->index);
7363 err = 1;
7366 /* Work backwards from the end to the head of the basic block
7367 to verify the head is in the RTL chain. */
7368 for (; x != NULL_RTX; x = PREV_INSN (x))
7370 /* While walking over the insn chain, verify insns appear
7371 in only one basic block and initialize the BB_INFO array
7372 used by other passes. */
7373 if (bb_info[INSN_UID (x)] != NULL)
7375 error ("Insn %d is in multiple basic blocks (%d and %d)",
7376 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
7377 err = 1;
7379 bb_info[INSN_UID (x)] = bb;
7381 if (x == head)
7382 break;
7384 if (!x)
7386 error ("Head insn %d for block %d not found in the insn stream.",
7387 INSN_UID (head), bb->index);
7388 err = 1;
7391 last_head = x;
7394 /* Now check the basic blocks (boundaries etc.) */
7395 for (i = n_basic_blocks - 1; i >= 0; i--)
7397 basic_block bb = BASIC_BLOCK (i);
7398 /* Check corectness of edge lists */
7399 edge e;
7401 e = bb->succ;
7402 while (e)
7404 if (e->src != bb)
7406 fprintf (stderr,
7407 "verify_flow_info: Basic block %d succ edge is corrupted\n",
7408 bb->index);
7409 fprintf (stderr, "Predecessor: ");
7410 dump_edge_info (stderr, e, 0);
7411 fprintf (stderr, "\nSuccessor: ");
7412 dump_edge_info (stderr, e, 1);
7413 fflush (stderr);
7414 err = 1;
7416 if (e->dest != EXIT_BLOCK_PTR)
7418 edge e2 = e->dest->pred;
7419 while (e2 && e2 != e)
7420 e2 = e2->pred_next;
7421 if (!e2)
7423 error ("Basic block %i edge lists are corrupted", bb->index);
7424 err = 1;
7427 e = e->succ_next;
7430 e = bb->pred;
7431 while (e)
7433 if (e->dest != bb)
7435 error ("Basic block %d pred edge is corrupted", bb->index);
7436 fputs ("Predecessor: ", stderr);
7437 dump_edge_info (stderr, e, 0);
7438 fputs ("\nSuccessor: ", stderr);
7439 dump_edge_info (stderr, e, 1);
7440 fputc ('\n', stderr);
7441 err = 1;
7443 if (e->src != ENTRY_BLOCK_PTR)
7445 edge e2 = e->src->succ;
7446 while (e2 && e2 != e)
7447 e2 = e2->succ_next;
7448 if (!e2)
7450 error ("Basic block %i edge lists are corrupted", bb->index);
7451 err = 1;
7454 e = e->pred_next;
7457 /* OK pointers are correct. Now check the header of basic
7458 block. It ought to contain optional CODE_LABEL followed
7459 by NOTE_BASIC_BLOCK. */
7460 x = bb->head;
7461 if (GET_CODE (x) == CODE_LABEL)
7463 if (bb->end == x)
7465 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
7466 bb->index);
7467 err = 1;
7469 x = NEXT_INSN (x);
7471 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
7473 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d\n",
7474 bb->index);
7475 err = 1;
7478 if (bb->end == x)
7480 /* Do checks for empty blocks here */
7482 else
7484 x = NEXT_INSN (x);
7485 while (x)
7487 if (NOTE_INSN_BASIC_BLOCK_P (x))
7489 error ("NOTE_INSN_BASIC_BLOCK %d in the middle of basic block %d",
7490 INSN_UID (x), bb->index);
7491 err = 1;
7494 if (x == bb->end)
7495 break;
7497 if (GET_CODE (x) == JUMP_INSN
7498 || GET_CODE (x) == CODE_LABEL
7499 || GET_CODE (x) == BARRIER)
7501 error ("In basic block %d:", bb->index);
7502 fatal_insn ("Flow control insn inside a basic block", x);
7505 x = NEXT_INSN (x);
7510 last_bb_num_seen = -1;
7511 num_bb_notes = 0;
7512 x = rtx_first;
7513 while (x)
7515 if (NOTE_INSN_BASIC_BLOCK_P (x))
7517 basic_block bb = NOTE_BASIC_BLOCK (x);
7518 num_bb_notes++;
7519 if (bb->index != last_bb_num_seen + 1)
7520 /* Basic blocks not numbered consecutively. */
7521 abort ();
7523 last_bb_num_seen = bb->index;
7526 if (!bb_info[INSN_UID (x)])
7528 switch (GET_CODE (x))
7530 case BARRIER:
7531 case NOTE:
7532 break;
7534 case CODE_LABEL:
7535 /* An addr_vec is placed outside any block block. */
7536 if (NEXT_INSN (x)
7537 && GET_CODE (NEXT_INSN (x)) == JUMP_INSN
7538 && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
7539 || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
7541 x = NEXT_INSN (x);
7544 /* But in any case, non-deletable labels can appear anywhere. */
7545 break;
7547 default:
7548 fatal_insn ("Insn outside basic block", x);
7552 if (INSN_P (x)
7553 && GET_CODE (x) == JUMP_INSN
7554 && returnjump_p (x) && ! condjump_p (x)
7555 && ! (NEXT_INSN (x) && GET_CODE (NEXT_INSN (x)) == BARRIER))
7556 fatal_insn ("Return not followed by barrier", x);
7558 x = NEXT_INSN (x);
7561 if (num_bb_notes != n_basic_blocks)
7562 internal_error
7563 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
7564 num_bb_notes, n_basic_blocks);
7566 if (err)
7567 abort ();
7569 /* Clean up. */
7570 free (bb_info);
7573 /* Functions to access an edge list with a vector representation.
7574 Enough data is kept such that given an index number, the
7575 pred and succ that edge represents can be determined, or
7576 given a pred and a succ, its index number can be returned.
7577 This allows algorithms which consume a lot of memory to
7578 represent the normally full matrix of edge (pred,succ) with a
7579 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
7580 wasted space in the client code due to sparse flow graphs. */
7582 /* This functions initializes the edge list. Basically the entire
7583 flowgraph is processed, and all edges are assigned a number,
7584 and the data structure is filled in. */
7586 struct edge_list *
7587 create_edge_list ()
7589 struct edge_list *elist;
7590 edge e;
7591 int num_edges;
7592 int x;
7593 int block_count;
7595 block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
7597 num_edges = 0;
7599 /* Determine the number of edges in the flow graph by counting successor
7600 edges on each basic block. */
7601 for (x = 0; x < n_basic_blocks; x++)
7603 basic_block bb = BASIC_BLOCK (x);
7605 for (e = bb->succ; e; e = e->succ_next)
7606 num_edges++;
7608 /* Don't forget successors of the entry block. */
7609 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
7610 num_edges++;
7612 elist = (struct edge_list *) xmalloc (sizeof (struct edge_list));
7613 elist->num_blocks = block_count;
7614 elist->num_edges = num_edges;
7615 elist->index_to_edge = (edge *) xmalloc (sizeof (edge) * num_edges);
7617 num_edges = 0;
7619 /* Follow successors of the entry block, and register these edges. */
7620 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
7622 elist->index_to_edge[num_edges] = e;
7623 num_edges++;
7626 for (x = 0; x < n_basic_blocks; x++)
7628 basic_block bb = BASIC_BLOCK (x);
7630 /* Follow all successors of blocks, and register these edges. */
7631 for (e = bb->succ; e; e = e->succ_next)
7633 elist->index_to_edge[num_edges] = e;
7634 num_edges++;
7637 return elist;
7640 /* This function free's memory associated with an edge list. */
7642 void
7643 free_edge_list (elist)
7644 struct edge_list *elist;
7646 if (elist)
7648 free (elist->index_to_edge);
7649 free (elist);
7653 /* This function provides debug output showing an edge list. */
7655 void
7656 print_edge_list (f, elist)
7657 FILE *f;
7658 struct edge_list *elist;
7660 int x;
7661 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
7662 elist->num_blocks - 2, elist->num_edges);
7664 for (x = 0; x < elist->num_edges; x++)
7666 fprintf (f, " %-4d - edge(", x);
7667 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
7668 fprintf (f, "entry,");
7669 else
7670 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
7672 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
7673 fprintf (f, "exit)\n");
7674 else
7675 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
7679 /* This function provides an internal consistency check of an edge list,
7680 verifying that all edges are present, and that there are no
7681 extra edges. */
7683 void
7684 verify_edge_list (f, elist)
7685 FILE *f;
7686 struct edge_list *elist;
7688 int x, pred, succ, index;
7689 edge e;
7691 for (x = 0; x < n_basic_blocks; x++)
7693 basic_block bb = BASIC_BLOCK (x);
7695 for (e = bb->succ; e; e = e->succ_next)
7697 pred = e->src->index;
7698 succ = e->dest->index;
7699 index = EDGE_INDEX (elist, e->src, e->dest);
7700 if (index == EDGE_INDEX_NO_EDGE)
7702 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
7703 continue;
7705 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
7706 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
7707 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
7708 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
7709 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
7710 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
7713 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
7715 pred = e->src->index;
7716 succ = e->dest->index;
7717 index = EDGE_INDEX (elist, e->src, e->dest);
7718 if (index == EDGE_INDEX_NO_EDGE)
7720 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
7721 continue;
7723 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
7724 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
7725 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
7726 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
7727 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
7728 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
7730 /* We've verified that all the edges are in the list, no lets make sure
7731 there are no spurious edges in the list. */
7733 for (pred = 0; pred < n_basic_blocks; pred++)
7734 for (succ = 0; succ < n_basic_blocks; succ++)
7736 basic_block p = BASIC_BLOCK (pred);
7737 basic_block s = BASIC_BLOCK (succ);
7739 int found_edge = 0;
7741 for (e = p->succ; e; e = e->succ_next)
7742 if (e->dest == s)
7744 found_edge = 1;
7745 break;
7747 for (e = s->pred; e; e = e->pred_next)
7748 if (e->src == p)
7750 found_edge = 1;
7751 break;
7753 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), BASIC_BLOCK (succ))
7754 == EDGE_INDEX_NO_EDGE && found_edge != 0)
7755 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
7756 pred, succ);
7757 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), BASIC_BLOCK (succ))
7758 != EDGE_INDEX_NO_EDGE && found_edge == 0)
7759 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
7760 pred, succ, EDGE_INDEX (elist, BASIC_BLOCK (pred),
7761 BASIC_BLOCK (succ)));
7763 for (succ = 0; succ < n_basic_blocks; succ++)
7765 basic_block p = ENTRY_BLOCK_PTR;
7766 basic_block s = BASIC_BLOCK (succ);
7768 int found_edge = 0;
7770 for (e = p->succ; e; e = e->succ_next)
7771 if (e->dest == s)
7773 found_edge = 1;
7774 break;
7776 for (e = s->pred; e; e = e->pred_next)
7777 if (e->src == p)
7779 found_edge = 1;
7780 break;
7782 if (EDGE_INDEX (elist, ENTRY_BLOCK_PTR, BASIC_BLOCK (succ))
7783 == EDGE_INDEX_NO_EDGE && found_edge != 0)
7784 fprintf (f, "*** Edge (entry, %d) appears to not have an index\n",
7785 succ);
7786 if (EDGE_INDEX (elist, ENTRY_BLOCK_PTR, BASIC_BLOCK (succ))
7787 != EDGE_INDEX_NO_EDGE && found_edge == 0)
7788 fprintf (f, "*** Edge (entry, %d) has index %d, but no edge exists\n",
7789 succ, EDGE_INDEX (elist, ENTRY_BLOCK_PTR,
7790 BASIC_BLOCK (succ)));
7792 for (pred = 0; pred < n_basic_blocks; pred++)
7794 basic_block p = BASIC_BLOCK (pred);
7795 basic_block s = EXIT_BLOCK_PTR;
7797 int found_edge = 0;
7799 for (e = p->succ; e; e = e->succ_next)
7800 if (e->dest == s)
7802 found_edge = 1;
7803 break;
7805 for (e = s->pred; e; e = e->pred_next)
7806 if (e->src == p)
7808 found_edge = 1;
7809 break;
7811 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), EXIT_BLOCK_PTR)
7812 == EDGE_INDEX_NO_EDGE && found_edge != 0)
7813 fprintf (f, "*** Edge (%d, exit) appears to not have an index\n",
7814 pred);
7815 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), EXIT_BLOCK_PTR)
7816 != EDGE_INDEX_NO_EDGE && found_edge == 0)
7817 fprintf (f, "*** Edge (%d, exit) has index %d, but no edge exists\n",
7818 pred, EDGE_INDEX (elist, BASIC_BLOCK (pred),
7819 EXIT_BLOCK_PTR));
7823 /* This routine will determine what, if any, edge there is between
7824 a specified predecessor and successor. */
7827 find_edge_index (edge_list, pred, succ)
7828 struct edge_list *edge_list;
7829 basic_block pred, succ;
7831 int x;
7832 for (x = 0; x < NUM_EDGES (edge_list); x++)
7834 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
7835 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
7836 return x;
7838 return (EDGE_INDEX_NO_EDGE);
7841 /* This function will remove an edge from the flow graph. */
7843 void
7844 remove_edge (e)
7845 edge e;
7847 edge last_pred = NULL;
7848 edge last_succ = NULL;
7849 edge tmp;
7850 basic_block src, dest;
7851 src = e->src;
7852 dest = e->dest;
7853 for (tmp = src->succ; tmp && tmp != e; tmp = tmp->succ_next)
7854 last_succ = tmp;
7856 if (!tmp)
7857 abort ();
7858 if (last_succ)
7859 last_succ->succ_next = e->succ_next;
7860 else
7861 src->succ = e->succ_next;
7863 for (tmp = dest->pred; tmp && tmp != e; tmp = tmp->pred_next)
7864 last_pred = tmp;
7866 if (!tmp)
7867 abort ();
7868 if (last_pred)
7869 last_pred->pred_next = e->pred_next;
7870 else
7871 dest->pred = e->pred_next;
7873 n_edges--;
7874 free (e);
7877 /* This routine will remove any fake successor edges for a basic block.
7878 When the edge is removed, it is also removed from whatever predecessor
7879 list it is in. */
7881 static void
7882 remove_fake_successors (bb)
7883 basic_block bb;
7885 edge e;
7886 for (e = bb->succ; e;)
7888 edge tmp = e;
7889 e = e->succ_next;
7890 if ((tmp->flags & EDGE_FAKE) == EDGE_FAKE)
7891 remove_edge (tmp);
7895 /* This routine will remove all fake edges from the flow graph. If
7896 we remove all fake successors, it will automatically remove all
7897 fake predecessors. */
7899 void
7900 remove_fake_edges ()
7902 int x;
7904 for (x = 0; x < n_basic_blocks; x++)
7905 remove_fake_successors (BASIC_BLOCK (x));
7907 /* We've handled all successors except the entry block's. */
7908 remove_fake_successors (ENTRY_BLOCK_PTR);
7911 /* This function will add a fake edge between any block which has no
7912 successors, and the exit block. Some data flow equations require these
7913 edges to exist. */
7915 void
7916 add_noreturn_fake_exit_edges ()
7918 int x;
7920 for (x = 0; x < n_basic_blocks; x++)
7921 if (BASIC_BLOCK (x)->succ == NULL)
7922 make_edge (NULL, BASIC_BLOCK (x), EXIT_BLOCK_PTR, EDGE_FAKE);
7925 /* This function adds a fake edge between any infinite loops to the
7926 exit block. Some optimizations require a path from each node to
7927 the exit node.
7929 See also Morgan, Figure 3.10, pp. 82-83.
7931 The current implementation is ugly, not attempting to minimize the
7932 number of inserted fake edges. To reduce the number of fake edges
7933 to insert, add fake edges from _innermost_ loops containing only
7934 nodes not reachable from the exit block. */
7936 void
7937 connect_infinite_loops_to_exit ()
7939 basic_block unvisited_block;
7941 /* Perform depth-first search in the reverse graph to find nodes
7942 reachable from the exit block. */
7943 struct depth_first_search_dsS dfs_ds;
7945 flow_dfs_compute_reverse_init (&dfs_ds);
7946 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
7948 /* Repeatedly add fake edges, updating the unreachable nodes. */
7949 while (1)
7951 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds);
7952 if (!unvisited_block)
7953 break;
7954 make_edge (NULL, unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
7955 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
7958 flow_dfs_compute_reverse_finish (&dfs_ds);
7960 return;
7963 /* Redirect an edge's successor from one block to another. */
7965 void
7966 redirect_edge_succ (e, new_succ)
7967 edge e;
7968 basic_block new_succ;
7970 edge *pe;
7972 /* Disconnect the edge from the old successor block. */
7973 for (pe = &e->dest->pred; *pe != e; pe = &(*pe)->pred_next)
7974 continue;
7975 *pe = (*pe)->pred_next;
7977 /* Reconnect the edge to the new successor block. */
7978 e->pred_next = new_succ->pred;
7979 new_succ->pred = e;
7980 e->dest = new_succ;
7983 /* Redirect an edge's predecessor from one block to another. */
7985 void
7986 redirect_edge_pred (e, new_pred)
7987 edge e;
7988 basic_block new_pred;
7990 edge *pe;
7992 /* Disconnect the edge from the old predecessor block. */
7993 for (pe = &e->src->succ; *pe != e; pe = &(*pe)->succ_next)
7994 continue;
7995 *pe = (*pe)->succ_next;
7997 /* Reconnect the edge to the new predecessor block. */
7998 e->succ_next = new_pred->succ;
7999 new_pred->succ = e;
8000 e->src = new_pred;
8003 /* Dump the list of basic blocks in the bitmap NODES. */
8005 static void
8006 flow_nodes_print (str, nodes, file)
8007 const char *str;
8008 const sbitmap nodes;
8009 FILE *file;
8011 int node;
8013 if (! nodes)
8014 return;
8016 fprintf (file, "%s { ", str);
8017 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
8018 fputs ("}\n", file);
8022 /* Dump the list of edges in the array EDGE_LIST. */
8024 static void
8025 flow_edge_list_print (str, edge_list, num_edges, file)
8026 const char *str;
8027 const edge *edge_list;
8028 int num_edges;
8029 FILE *file;
8031 int i;
8033 if (! edge_list)
8034 return;
8036 fprintf (file, "%s { ", str);
8037 for (i = 0; i < num_edges; i++)
8038 fprintf (file, "%d->%d ", edge_list[i]->src->index,
8039 edge_list[i]->dest->index);
8040 fputs ("}\n", file);
8044 /* Dump loop related CFG information. */
8046 static void
8047 flow_loops_cfg_dump (loops, file)
8048 const struct loops *loops;
8049 FILE *file;
8051 int i;
8053 if (! loops->num || ! file || ! loops->cfg.dom)
8054 return;
8056 for (i = 0; i < n_basic_blocks; i++)
8058 edge succ;
8060 fprintf (file, ";; %d succs { ", i);
8061 for (succ = BASIC_BLOCK (i)->succ; succ; succ = succ->succ_next)
8062 fprintf (file, "%d ", succ->dest->index);
8063 flow_nodes_print ("} dom", loops->cfg.dom[i], file);
8066 /* Dump the DFS node order. */
8067 if (loops->cfg.dfs_order)
8069 fputs (";; DFS order: ", file);
8070 for (i = 0; i < n_basic_blocks; i++)
8071 fprintf (file, "%d ", loops->cfg.dfs_order[i]);
8072 fputs ("\n", file);
8074 /* Dump the reverse completion node order. */
8075 if (loops->cfg.rc_order)
8077 fputs (";; RC order: ", file);
8078 for (i = 0; i < n_basic_blocks; i++)
8079 fprintf (file, "%d ", loops->cfg.rc_order[i]);
8080 fputs ("\n", file);
8084 /* Return non-zero if the nodes of LOOP are a subset of OUTER. */
8086 static int
8087 flow_loop_nested_p (outer, loop)
8088 struct loop *outer;
8089 struct loop *loop;
8091 return sbitmap_a_subset_b_p (loop->nodes, outer->nodes);
8095 /* Dump the loop information specified by LOOP to the stream FILE
8096 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
8097 void
8098 flow_loop_dump (loop, file, loop_dump_aux, verbose)
8099 const struct loop *loop;
8100 FILE *file;
8101 void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
8102 int verbose;
8104 if (! loop || ! loop->header)
8105 return;
8107 fprintf (file, ";;\n;; Loop %d (%d to %d):%s%s\n",
8108 loop->num, INSN_UID (loop->first->head),
8109 INSN_UID (loop->last->end),
8110 loop->shared ? " shared" : "",
8111 loop->invalid ? " invalid" : "");
8112 fprintf (file, ";; header %d, latch %d, pre-header %d, first %d, last %d\n",
8113 loop->header->index, loop->latch->index,
8114 loop->pre_header ? loop->pre_header->index : -1,
8115 loop->first->index, loop->last->index);
8116 fprintf (file, ";; depth %d, level %d, outer %ld\n",
8117 loop->depth, loop->level,
8118 (long) (loop->outer ? loop->outer->num : -1));
8120 if (loop->pre_header_edges)
8121 flow_edge_list_print (";; pre-header edges", loop->pre_header_edges,
8122 loop->num_pre_header_edges, file);
8123 flow_edge_list_print (";; entry edges", loop->entry_edges,
8124 loop->num_entries, file);
8125 fprintf (file, ";; %d", loop->num_nodes);
8126 flow_nodes_print (" nodes", loop->nodes, file);
8127 flow_edge_list_print (";; exit edges", loop->exit_edges,
8128 loop->num_exits, file);
8129 if (loop->exits_doms)
8130 flow_nodes_print (";; exit doms", loop->exits_doms, file);
8131 if (loop_dump_aux)
8132 loop_dump_aux (loop, file, verbose);
8136 /* Dump the loop information specified by LOOPS to the stream FILE,
8137 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
8138 void
8139 flow_loops_dump (loops, file, loop_dump_aux, verbose)
8140 const struct loops *loops;
8141 FILE *file;
8142 void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
8143 int verbose;
8145 int i;
8146 int num_loops;
8148 num_loops = loops->num;
8149 if (! num_loops || ! file)
8150 return;
8152 fprintf (file, ";; %d loops found, %d levels\n",
8153 num_loops, loops->levels);
8155 for (i = 0; i < num_loops; i++)
8157 struct loop *loop = &loops->array[i];
8159 flow_loop_dump (loop, file, loop_dump_aux, verbose);
8161 if (loop->shared)
8163 int j;
8165 for (j = 0; j < i; j++)
8167 struct loop *oloop = &loops->array[j];
8169 if (loop->header == oloop->header)
8171 int disjoint;
8172 int smaller;
8174 smaller = loop->num_nodes < oloop->num_nodes;
8176 /* If the union of LOOP and OLOOP is different than
8177 the larger of LOOP and OLOOP then LOOP and OLOOP
8178 must be disjoint. */
8179 disjoint = ! flow_loop_nested_p (smaller ? loop : oloop,
8180 smaller ? oloop : loop);
8181 fprintf (file,
8182 ";; loop header %d shared by loops %d, %d %s\n",
8183 loop->header->index, i, j,
8184 disjoint ? "disjoint" : "nested");
8190 if (verbose)
8191 flow_loops_cfg_dump (loops, file);
8195 /* Free all the memory allocated for LOOPS. */
8197 void
8198 flow_loops_free (loops)
8199 struct loops *loops;
8201 if (loops->array)
8203 int i;
8205 if (! loops->num)
8206 abort ();
8208 /* Free the loop descriptors. */
8209 for (i = 0; i < loops->num; i++)
8211 struct loop *loop = &loops->array[i];
8213 if (loop->pre_header_edges)
8214 free (loop->pre_header_edges);
8215 if (loop->nodes)
8216 sbitmap_free (loop->nodes);
8217 if (loop->entry_edges)
8218 free (loop->entry_edges);
8219 if (loop->exit_edges)
8220 free (loop->exit_edges);
8221 if (loop->exits_doms)
8222 sbitmap_free (loop->exits_doms);
8224 free (loops->array);
8225 loops->array = NULL;
8227 if (loops->cfg.dom)
8228 sbitmap_vector_free (loops->cfg.dom);
8229 if (loops->cfg.dfs_order)
8230 free (loops->cfg.dfs_order);
8232 if (loops->shared_headers)
8233 sbitmap_free (loops->shared_headers);
8238 /* Find the entry edges into the loop with header HEADER and nodes
8239 NODES and store in ENTRY_EDGES array. Return the number of entry
8240 edges from the loop. */
8242 static int
8243 flow_loop_entry_edges_find (header, nodes, entry_edges)
8244 basic_block header;
8245 const sbitmap nodes;
8246 edge **entry_edges;
8248 edge e;
8249 int num_entries;
8251 *entry_edges = NULL;
8253 num_entries = 0;
8254 for (e = header->pred; e; e = e->pred_next)
8256 basic_block src = e->src;
8258 if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
8259 num_entries++;
8262 if (! num_entries)
8263 abort ();
8265 *entry_edges = (edge *) xmalloc (num_entries * sizeof (edge *));
8267 num_entries = 0;
8268 for (e = header->pred; e; e = e->pred_next)
8270 basic_block src = e->src;
8272 if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
8273 (*entry_edges)[num_entries++] = e;
8276 return num_entries;
8280 /* Find the exit edges from the loop using the bitmap of loop nodes
8281 NODES and store in EXIT_EDGES array. Return the number of
8282 exit edges from the loop. */
8284 static int
8285 flow_loop_exit_edges_find (nodes, exit_edges)
8286 const sbitmap nodes;
8287 edge **exit_edges;
8289 edge e;
8290 int node;
8291 int num_exits;
8293 *exit_edges = NULL;
8295 /* Check all nodes within the loop to see if there are any
8296 successors not in the loop. Note that a node may have multiple
8297 exiting edges ????? A node can have one jumping edge and one fallthru
8298 edge so only one of these can exit the loop. */
8299 num_exits = 0;
8300 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
8301 for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
8303 basic_block dest = e->dest;
8305 if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
8306 num_exits++;
8310 if (! num_exits)
8311 return 0;
8313 *exit_edges = (edge *) xmalloc (num_exits * sizeof (edge *));
8315 /* Store all exiting edges into an array. */
8316 num_exits = 0;
8317 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
8318 for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
8320 basic_block dest = e->dest;
8322 if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
8323 (*exit_edges)[num_exits++] = e;
8327 return num_exits;
8331 /* Find the nodes contained within the loop with header HEADER and
8332 latch LATCH and store in NODES. Return the number of nodes within
8333 the loop. */
8335 static int
8336 flow_loop_nodes_find (header, latch, nodes)
8337 basic_block header;
8338 basic_block latch;
8339 sbitmap nodes;
8341 basic_block *stack;
8342 int sp;
8343 int num_nodes = 0;
8345 stack = (basic_block *) xmalloc (n_basic_blocks * sizeof (basic_block));
8346 sp = 0;
8348 /* Start with only the loop header in the set of loop nodes. */
8349 sbitmap_zero (nodes);
8350 SET_BIT (nodes, header->index);
8351 num_nodes++;
8352 header->loop_depth++;
8354 /* Push the loop latch on to the stack. */
8355 if (! TEST_BIT (nodes, latch->index))
8357 SET_BIT (nodes, latch->index);
8358 latch->loop_depth++;
8359 num_nodes++;
8360 stack[sp++] = latch;
8363 while (sp)
8365 basic_block node;
8366 edge e;
8368 node = stack[--sp];
8369 for (e = node->pred; e; e = e->pred_next)
8371 basic_block ancestor = e->src;
8373 /* If each ancestor not marked as part of loop, add to set of
8374 loop nodes and push on to stack. */
8375 if (ancestor != ENTRY_BLOCK_PTR
8376 && ! TEST_BIT (nodes, ancestor->index))
8378 SET_BIT (nodes, ancestor->index);
8379 ancestor->loop_depth++;
8380 num_nodes++;
8381 stack[sp++] = ancestor;
8385 free (stack);
8386 return num_nodes;
8389 /* Compute the depth first search order and store in the array
8390 DFS_ORDER if non-zero, marking the nodes visited in VISITED. If
8391 RC_ORDER is non-zero, return the reverse completion number for each
8392 node. Returns the number of nodes visited. A depth first search
8393 tries to get as far away from the starting point as quickly as
8394 possible. */
8397 flow_depth_first_order_compute (dfs_order, rc_order)
8398 int *dfs_order;
8399 int *rc_order;
8401 edge *stack;
8402 int sp;
8403 int dfsnum = 0;
8404 int rcnum = n_basic_blocks - 1;
8405 sbitmap visited;
8407 /* Allocate stack for back-tracking up CFG. */
8408 stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
8409 sp = 0;
8411 /* Allocate bitmap to track nodes that have been visited. */
8412 visited = sbitmap_alloc (n_basic_blocks);
8414 /* None of the nodes in the CFG have been visited yet. */
8415 sbitmap_zero (visited);
8417 /* Push the first edge on to the stack. */
8418 stack[sp++] = ENTRY_BLOCK_PTR->succ;
8420 while (sp)
8422 edge e;
8423 basic_block src;
8424 basic_block dest;
8426 /* Look at the edge on the top of the stack. */
8427 e = stack[sp - 1];
8428 src = e->src;
8429 dest = e->dest;
8431 /* Check if the edge destination has been visited yet. */
8432 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
8434 /* Mark that we have visited the destination. */
8435 SET_BIT (visited, dest->index);
8437 if (dfs_order)
8438 dfs_order[dfsnum++] = dest->index;
8440 if (dest->succ)
8442 /* Since the DEST node has been visited for the first
8443 time, check its successors. */
8444 stack[sp++] = dest->succ;
8446 else
8448 /* There are no successors for the DEST node so assign
8449 its reverse completion number. */
8450 if (rc_order)
8451 rc_order[rcnum--] = dest->index;
8454 else
8456 if (! e->succ_next && src != ENTRY_BLOCK_PTR)
8458 /* There are no more successors for the SRC node
8459 so assign its reverse completion number. */
8460 if (rc_order)
8461 rc_order[rcnum--] = src->index;
8464 if (e->succ_next)
8465 stack[sp - 1] = e->succ_next;
8466 else
8467 sp--;
8471 free (stack);
8472 sbitmap_free (visited);
8474 /* The number of nodes visited should not be greater than
8475 n_basic_blocks. */
8476 if (dfsnum > n_basic_blocks)
8477 abort ();
8479 /* There are some nodes left in the CFG that are unreachable. */
8480 if (dfsnum < n_basic_blocks)
8481 abort ();
8482 return dfsnum;
8485 /* Compute the depth first search order on the _reverse_ graph and
8486 store in the array DFS_ORDER, marking the nodes visited in VISITED.
8487 Returns the number of nodes visited.
8489 The computation is split into three pieces:
8491 flow_dfs_compute_reverse_init () creates the necessary data
8492 structures.
8494 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
8495 structures. The block will start the search.
8497 flow_dfs_compute_reverse_execute () continues (or starts) the
8498 search using the block on the top of the stack, stopping when the
8499 stack is empty.
8501 flow_dfs_compute_reverse_finish () destroys the necessary data
8502 structures.
8504 Thus, the user will probably call ..._init(), call ..._add_bb() to
8505 add a beginning basic block to the stack, call ..._execute(),
8506 possibly add another bb to the stack and again call ..._execute(),
8507 ..., and finally call _finish(). */
8509 /* Initialize the data structures used for depth-first search on the
8510 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
8511 added to the basic block stack. DATA is the current depth-first
8512 search context. If INITIALIZE_STACK is non-zero, there is an
8513 element on the stack. */
8515 static void
8516 flow_dfs_compute_reverse_init (data)
8517 depth_first_search_ds data;
8519 /* Allocate stack for back-tracking up CFG. */
8520 data->stack =
8521 (basic_block *) xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
8522 * sizeof (basic_block));
8523 data->sp = 0;
8525 /* Allocate bitmap to track nodes that have been visited. */
8526 data->visited_blocks = sbitmap_alloc (n_basic_blocks - (INVALID_BLOCK + 1));
8528 /* None of the nodes in the CFG have been visited yet. */
8529 sbitmap_zero (data->visited_blocks);
8531 return;
8534 /* Add the specified basic block to the top of the dfs data
8535 structures. When the search continues, it will start at the
8536 block. */
8538 static void
8539 flow_dfs_compute_reverse_add_bb (data, bb)
8540 depth_first_search_ds data;
8541 basic_block bb;
8543 data->stack[data->sp++] = bb;
8544 return;
8547 /* Continue the depth-first search through the reverse graph starting
8548 with the block at the stack's top and ending when the stack is
8549 empty. Visited nodes are marked. Returns an unvisited basic
8550 block, or NULL if there is none available. */
8552 static basic_block
8553 flow_dfs_compute_reverse_execute (data)
8554 depth_first_search_ds data;
8556 basic_block bb;
8557 edge e;
8558 int i;
8560 while (data->sp > 0)
8562 bb = data->stack[--data->sp];
8564 /* Mark that we have visited this node. */
8565 if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
8567 SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
8569 /* Perform depth-first search on adjacent vertices. */
8570 for (e = bb->pred; e; e = e->pred_next)
8571 flow_dfs_compute_reverse_add_bb (data, e->src);
8575 /* Determine if there are unvisited basic blocks. */
8576 for (i = n_basic_blocks - (INVALID_BLOCK + 1); --i >= 0;)
8577 if (!TEST_BIT (data->visited_blocks, i))
8578 return BASIC_BLOCK (i + (INVALID_BLOCK + 1));
8579 return NULL;
8582 /* Destroy the data structures needed for depth-first search on the
8583 reverse graph. */
8585 static void
8586 flow_dfs_compute_reverse_finish (data)
8587 depth_first_search_ds data;
8589 free (data->stack);
8590 sbitmap_free (data->visited_blocks);
8591 return;
8595 /* Find the root node of the loop pre-header extended basic block and
8596 the edges along the trace from the root node to the loop header. */
8598 static void
8599 flow_loop_pre_header_scan (loop)
8600 struct loop *loop;
8602 int num = 0;
8603 basic_block ebb;
8605 loop->num_pre_header_edges = 0;
8607 if (loop->num_entries != 1)
8608 return;
8610 ebb = loop->entry_edges[0]->src;
8612 if (ebb != ENTRY_BLOCK_PTR)
8614 edge e;
8616 /* Count number of edges along trace from loop header to
8617 root of pre-header extended basic block. Usually this is
8618 only one or two edges. */
8619 num++;
8620 while (ebb->pred->src != ENTRY_BLOCK_PTR && ! ebb->pred->pred_next)
8622 ebb = ebb->pred->src;
8623 num++;
8626 loop->pre_header_edges = (edge *) xmalloc (num * sizeof (edge *));
8627 loop->num_pre_header_edges = num;
8629 /* Store edges in order that they are followed. The source
8630 of the first edge is the root node of the pre-header extended
8631 basic block and the destination of the last last edge is
8632 the loop header. */
8633 for (e = loop->entry_edges[0]; num; e = e->src->pred)
8635 loop->pre_header_edges[--num] = e;
8641 /* Return the block for the pre-header of the loop with header
8642 HEADER where DOM specifies the dominator information. Return NULL if
8643 there is no pre-header. */
8645 static basic_block
8646 flow_loop_pre_header_find (header, dom)
8647 basic_block header;
8648 const sbitmap *dom;
8650 basic_block pre_header;
8651 edge e;
8653 /* If block p is a predecessor of the header and is the only block
8654 that the header does not dominate, then it is the pre-header. */
8655 pre_header = NULL;
8656 for (e = header->pred; e; e = e->pred_next)
8658 basic_block node = e->src;
8660 if (node != ENTRY_BLOCK_PTR
8661 && ! TEST_BIT (dom[node->index], header->index))
8663 if (pre_header == NULL)
8664 pre_header = node;
8665 else
8667 /* There are multiple edges into the header from outside
8668 the loop so there is no pre-header block. */
8669 pre_header = NULL;
8670 break;
8674 return pre_header;
8677 /* Add LOOP to the loop hierarchy tree where PREVLOOP was the loop
8678 previously added. The insertion algorithm assumes that the loops
8679 are added in the order found by a depth first search of the CFG. */
8681 static void
8682 flow_loop_tree_node_add (prevloop, loop)
8683 struct loop *prevloop;
8684 struct loop *loop;
8687 if (flow_loop_nested_p (prevloop, loop))
8689 prevloop->inner = loop;
8690 loop->outer = prevloop;
8691 return;
8694 while (prevloop->outer)
8696 if (flow_loop_nested_p (prevloop->outer, loop))
8698 prevloop->next = loop;
8699 loop->outer = prevloop->outer;
8700 return;
8702 prevloop = prevloop->outer;
8705 prevloop->next = loop;
8706 loop->outer = NULL;
8709 /* Build the loop hierarchy tree for LOOPS. */
8711 static void
8712 flow_loops_tree_build (loops)
8713 struct loops *loops;
8715 int i;
8716 int num_loops;
8718 num_loops = loops->num;
8719 if (! num_loops)
8720 return;
8722 /* Root the loop hierarchy tree with the first loop found.
8723 Since we used a depth first search this should be the
8724 outermost loop. */
8725 loops->tree_root = &loops->array[0];
8726 loops->tree_root->outer = loops->tree_root->inner = loops->tree_root->next = NULL;
8728 /* Add the remaining loops to the tree. */
8729 for (i = 1; i < num_loops; i++)
8730 flow_loop_tree_node_add (&loops->array[i - 1], &loops->array[i]);
8733 /* Helper function to compute loop nesting depth and enclosed loop level
8734 for the natural loop specified by LOOP at the loop depth DEPTH.
8735 Returns the loop level. */
8737 static int
8738 flow_loop_level_compute (loop, depth)
8739 struct loop *loop;
8740 int depth;
8742 struct loop *inner;
8743 int level = 1;
8745 if (! loop)
8746 return 0;
8748 /* Traverse loop tree assigning depth and computing level as the
8749 maximum level of all the inner loops of this loop. The loop
8750 level is equivalent to the height of the loop in the loop tree
8751 and corresponds to the number of enclosed loop levels (including
8752 itself). */
8753 for (inner = loop->inner; inner; inner = inner->next)
8755 int ilevel;
8757 ilevel = flow_loop_level_compute (inner, depth + 1) + 1;
8759 if (ilevel > level)
8760 level = ilevel;
8762 loop->level = level;
8763 loop->depth = depth;
8764 return level;
8767 /* Compute the loop nesting depth and enclosed loop level for the loop
8768 hierarchy tree specfied by LOOPS. Return the maximum enclosed loop
8769 level. */
8771 static int
8772 flow_loops_level_compute (loops)
8773 struct loops *loops;
8775 struct loop *loop;
8776 int level;
8777 int levels = 0;
8779 /* Traverse all the outer level loops. */
8780 for (loop = loops->tree_root; loop; loop = loop->next)
8782 level = flow_loop_level_compute (loop, 1);
8783 if (level > levels)
8784 levels = level;
8786 return levels;
8790 /* Scan a single natural loop specified by LOOP collecting information
8791 about it specified by FLAGS. */
8794 flow_loop_scan (loops, loop, flags)
8795 struct loops *loops;
8796 struct loop *loop;
8797 int flags;
8799 /* Determine prerequisites. */
8800 if ((flags & LOOP_EXITS_DOMS) && ! loop->exit_edges)
8801 flags |= LOOP_EXIT_EDGES;
8803 if (flags & LOOP_ENTRY_EDGES)
8805 /* Find edges which enter the loop header.
8806 Note that the entry edges should only
8807 enter the header of a natural loop. */
8808 loop->num_entries
8809 = flow_loop_entry_edges_find (loop->header,
8810 loop->nodes,
8811 &loop->entry_edges);
8814 if (flags & LOOP_EXIT_EDGES)
8816 /* Find edges which exit the loop. */
8817 loop->num_exits
8818 = flow_loop_exit_edges_find (loop->nodes,
8819 &loop->exit_edges);
8822 if (flags & LOOP_EXITS_DOMS)
8824 int j;
8826 /* Determine which loop nodes dominate all the exits
8827 of the loop. */
8828 loop->exits_doms = sbitmap_alloc (n_basic_blocks);
8829 sbitmap_copy (loop->exits_doms, loop->nodes);
8830 for (j = 0; j < loop->num_exits; j++)
8831 sbitmap_a_and_b (loop->exits_doms, loop->exits_doms,
8832 loops->cfg.dom[loop->exit_edges[j]->src->index]);
8834 /* The header of a natural loop must dominate
8835 all exits. */
8836 if (! TEST_BIT (loop->exits_doms, loop->header->index))
8837 abort ();
8840 if (flags & LOOP_PRE_HEADER)
8842 /* Look to see if the loop has a pre-header node. */
8843 loop->pre_header
8844 = flow_loop_pre_header_find (loop->header, loops->cfg.dom);
8846 /* Find the blocks within the extended basic block of
8847 the loop pre-header. */
8848 flow_loop_pre_header_scan (loop);
8850 return 1;
8854 /* Find all the natural loops in the function and save in LOOPS structure
8855 and recalculate loop_depth information in basic block structures.
8856 FLAGS controls which loop information is collected.
8857 Return the number of natural loops found. */
8860 flow_loops_find (loops, flags)
8861 struct loops *loops;
8862 int flags;
8864 int i;
8865 int b;
8866 int num_loops;
8867 edge e;
8868 sbitmap headers;
8869 sbitmap *dom;
8870 int *dfs_order;
8871 int *rc_order;
8873 /* This function cannot be repeatedly called with different
8874 flags to build up the loop information. The loop tree
8875 must always be built if this function is called. */
8876 if (! (flags & LOOP_TREE))
8877 abort ();
8879 memset (loops, 0, sizeof (*loops));
8881 /* Taking care of this degenerate case makes the rest of
8882 this code simpler. */
8883 if (n_basic_blocks == 0)
8884 return 0;
8886 dfs_order = NULL;
8887 rc_order = NULL;
8889 /* Compute the dominators. */
8890 dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
8891 calculate_dominance_info (NULL, dom, CDI_DOMINATORS);
8893 /* Count the number of loop edges (back edges). This should be the
8894 same as the number of natural loops. */
8896 num_loops = 0;
8897 for (b = 0; b < n_basic_blocks; b++)
8899 basic_block header;
8901 header = BASIC_BLOCK (b);
8902 header->loop_depth = 0;
8904 for (e = header->pred; e; e = e->pred_next)
8906 basic_block latch = e->src;
8908 /* Look for back edges where a predecessor is dominated
8909 by this block. A natural loop has a single entry
8910 node (header) that dominates all the nodes in the
8911 loop. It also has single back edge to the header
8912 from a latch node. Note that multiple natural loops
8913 may share the same header. */
8914 if (b != header->index)
8915 abort ();
8917 if (latch != ENTRY_BLOCK_PTR && TEST_BIT (dom[latch->index], b))
8918 num_loops++;
8922 if (num_loops)
8924 /* Compute depth first search order of the CFG so that outer
8925 natural loops will be found before inner natural loops. */
8926 dfs_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
8927 rc_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
8928 flow_depth_first_order_compute (dfs_order, rc_order);
8930 /* Save CFG derived information to avoid recomputing it. */
8931 loops->cfg.dom = dom;
8932 loops->cfg.dfs_order = dfs_order;
8933 loops->cfg.rc_order = rc_order;
8935 /* Allocate loop structures. */
8936 loops->array
8937 = (struct loop *) xcalloc (num_loops, sizeof (struct loop));
8939 headers = sbitmap_alloc (n_basic_blocks);
8940 sbitmap_zero (headers);
8942 loops->shared_headers = sbitmap_alloc (n_basic_blocks);
8943 sbitmap_zero (loops->shared_headers);
8945 /* Find and record information about all the natural loops
8946 in the CFG. */
8947 num_loops = 0;
8948 for (b = 0; b < n_basic_blocks; b++)
8950 basic_block header;
8952 /* Search the nodes of the CFG in reverse completion order
8953 so that we can find outer loops first. */
8954 header = BASIC_BLOCK (rc_order[b]);
8956 /* Look for all the possible latch blocks for this header. */
8957 for (e = header->pred; e; e = e->pred_next)
8959 basic_block latch = e->src;
8961 /* Look for back edges where a predecessor is dominated
8962 by this block. A natural loop has a single entry
8963 node (header) that dominates all the nodes in the
8964 loop. It also has single back edge to the header
8965 from a latch node. Note that multiple natural loops
8966 may share the same header. */
8967 if (latch != ENTRY_BLOCK_PTR
8968 && TEST_BIT (dom[latch->index], header->index))
8970 struct loop *loop;
8972 loop = loops->array + num_loops;
8974 loop->header = header;
8975 loop->latch = latch;
8976 loop->num = num_loops;
8978 num_loops++;
8983 for (i = 0; i < num_loops; i++)
8985 struct loop *loop = &loops->array[i];
8987 /* Keep track of blocks that are loop headers so
8988 that we can tell which loops should be merged. */
8989 if (TEST_BIT (headers, loop->header->index))
8990 SET_BIT (loops->shared_headers, loop->header->index);
8991 SET_BIT (headers, loop->header->index);
8993 /* Find nodes contained within the loop. */
8994 loop->nodes = sbitmap_alloc (n_basic_blocks);
8995 loop->num_nodes
8996 = flow_loop_nodes_find (loop->header, loop->latch, loop->nodes);
8998 /* Compute first and last blocks within the loop.
8999 These are often the same as the loop header and
9000 loop latch respectively, but this is not always
9001 the case. */
9002 loop->first
9003 = BASIC_BLOCK (sbitmap_first_set_bit (loop->nodes));
9004 loop->last
9005 = BASIC_BLOCK (sbitmap_last_set_bit (loop->nodes));
9007 flow_loop_scan (loops, loop, flags);
9010 /* Natural loops with shared headers may either be disjoint or
9011 nested. Disjoint loops with shared headers cannot be inner
9012 loops and should be merged. For now just mark loops that share
9013 headers. */
9014 for (i = 0; i < num_loops; i++)
9015 if (TEST_BIT (loops->shared_headers, loops->array[i].header->index))
9016 loops->array[i].shared = 1;
9018 sbitmap_free (headers);
9021 loops->num = num_loops;
9023 /* Build the loop hierarchy tree. */
9024 flow_loops_tree_build (loops);
9026 /* Assign the loop nesting depth and enclosed loop level for each
9027 loop. */
9028 loops->levels = flow_loops_level_compute (loops);
9030 return num_loops;
9034 /* Update the information regarding the loops in the CFG
9035 specified by LOOPS. */
9037 flow_loops_update (loops, flags)
9038 struct loops *loops;
9039 int flags;
9041 /* One day we may want to update the current loop data. For now
9042 throw away the old stuff and rebuild what we need. */
9043 if (loops->array)
9044 flow_loops_free (loops);
9046 return flow_loops_find (loops, flags);
9050 /* Return non-zero if edge E enters header of LOOP from outside of LOOP. */
9053 flow_loop_outside_edge_p (loop, e)
9054 const struct loop *loop;
9055 edge e;
9057 if (e->dest != loop->header)
9058 abort ();
9059 return (e->src == ENTRY_BLOCK_PTR)
9060 || ! TEST_BIT (loop->nodes, e->src->index);
9063 /* Clear LOG_LINKS fields of insns in a chain.
9064 Also clear the global_live_at_{start,end} fields of the basic block
9065 structures. */
9067 void
9068 clear_log_links (insns)
9069 rtx insns;
9071 rtx i;
9072 int b;
9074 for (i = insns; i; i = NEXT_INSN (i))
9075 if (INSN_P (i))
9076 LOG_LINKS (i) = 0;
9078 for (b = 0; b < n_basic_blocks; b++)
9080 basic_block bb = BASIC_BLOCK (b);
9082 bb->global_live_at_start = NULL;
9083 bb->global_live_at_end = NULL;
9086 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
9087 EXIT_BLOCK_PTR->global_live_at_start = NULL;
9090 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
9091 correspond to the hard registers, if any, set in that map. This
9092 could be done far more efficiently by having all sorts of special-cases
9093 with moving single words, but probably isn't worth the trouble. */
9095 void
9096 reg_set_to_hard_reg_set (to, from)
9097 HARD_REG_SET *to;
9098 bitmap from;
9100 int i;
9102 EXECUTE_IF_SET_IN_BITMAP
9103 (from, 0, i,
9105 if (i >= FIRST_PSEUDO_REGISTER)
9106 return;
9107 SET_HARD_REG_BIT (*to, i);
9111 /* Called once at intialization time. */
9113 void
9114 init_flow ()
9116 static int initialized;
9118 if (!initialized)
9120 gcc_obstack_init (&flow_obstack);
9121 flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);
9122 initialized = 1;
9124 else
9126 obstack_free (&flow_obstack, flow_firstobj);
9127 flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);