Daily bump.
[official-gcc.git] / libsanitizer / asan / asan_allocator.cpp
blob3fa36742060bdbdd8457d2b3cba59ffd9726e002
1 //===-- asan_allocator.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
11 // Implementation of ASan's memory allocator, 2-nd version.
12 // This variant uses the allocator from sanitizer_common, i.e. the one shared
13 // with ThreadSanitizer and MemorySanitizer.
15 //===----------------------------------------------------------------------===//
17 #include "asan_allocator.h"
19 #include "asan_mapping.h"
20 #include "asan_poisoning.h"
21 #include "asan_report.h"
22 #include "asan_stack.h"
23 #include "asan_thread.h"
24 #include "lsan/lsan_common.h"
25 #include "sanitizer_common/sanitizer_allocator_checks.h"
26 #include "sanitizer_common/sanitizer_allocator_interface.h"
27 #include "sanitizer_common/sanitizer_errno.h"
28 #include "sanitizer_common/sanitizer_flags.h"
29 #include "sanitizer_common/sanitizer_internal_defs.h"
30 #include "sanitizer_common/sanitizer_list.h"
31 #include "sanitizer_common/sanitizer_quarantine.h"
32 #include "sanitizer_common/sanitizer_stackdepot.h"
34 namespace __asan {
36 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
37 // We use adaptive redzones: for larger allocation larger redzones are used.
38 static u32 RZLog2Size(u32 rz_log) {
39 CHECK_LT(rz_log, 8);
40 return 16 << rz_log;
43 static u32 RZSize2Log(u32 rz_size) {
44 CHECK_GE(rz_size, 16);
45 CHECK_LE(rz_size, 2048);
46 CHECK(IsPowerOfTwo(rz_size));
47 u32 res = Log2(rz_size) - 4;
48 CHECK_EQ(rz_size, RZLog2Size(res));
49 return res;
52 static AsanAllocator &get_allocator();
54 static void AtomicContextStore(volatile atomic_uint64_t *atomic_context,
55 u32 tid, u32 stack) {
56 u64 context = tid;
57 context <<= 32;
58 context += stack;
59 atomic_store(atomic_context, context, memory_order_relaxed);
62 static void AtomicContextLoad(const volatile atomic_uint64_t *atomic_context,
63 u32 &tid, u32 &stack) {
64 u64 context = atomic_load(atomic_context, memory_order_relaxed);
65 stack = context;
66 context >>= 32;
67 tid = context;
70 // The memory chunk allocated from the underlying allocator looks like this:
71 // L L L L L L H H U U U U U U R R
72 // L -- left redzone words (0 or more bytes)
73 // H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
74 // U -- user memory.
75 // R -- right redzone (0 or more bytes)
76 // ChunkBase consists of ChunkHeader and other bytes that overlap with user
77 // memory.
79 // If the left redzone is greater than the ChunkHeader size we store a magic
80 // value in the first uptr word of the memory block and store the address of
81 // ChunkBase in the next uptr.
82 // M B L L L L L L L L L H H U U U U U U
83 // | ^
84 // ---------------------|
85 // M -- magic value kAllocBegMagic
86 // B -- address of ChunkHeader pointing to the first 'H'
88 class ChunkHeader {
89 public:
90 atomic_uint8_t chunk_state;
91 u8 alloc_type : 2;
92 u8 lsan_tag : 2;
94 // align < 8 -> 0
95 // else -> log2(min(align, 512)) - 2
96 u8 user_requested_alignment_log : 3;
98 private:
99 u16 user_requested_size_hi;
100 u32 user_requested_size_lo;
101 atomic_uint64_t alloc_context_id;
103 public:
104 uptr UsedSize() const {
105 static_assert(sizeof(user_requested_size_lo) == 4,
106 "Expression below requires this");
107 return FIRST_32_SECOND_64(0, ((uptr)user_requested_size_hi << 32)) +
108 user_requested_size_lo;
111 void SetUsedSize(uptr size) {
112 user_requested_size_lo = size;
113 static_assert(sizeof(user_requested_size_lo) == 4,
114 "Expression below requires this");
115 user_requested_size_hi = FIRST_32_SECOND_64(0, size >> 32);
116 CHECK_EQ(UsedSize(), size);
119 void SetAllocContext(u32 tid, u32 stack) {
120 AtomicContextStore(&alloc_context_id, tid, stack);
123 void GetAllocContext(u32 &tid, u32 &stack) const {
124 AtomicContextLoad(&alloc_context_id, tid, stack);
128 class ChunkBase : public ChunkHeader {
129 atomic_uint64_t free_context_id;
131 public:
132 void SetFreeContext(u32 tid, u32 stack) {
133 AtomicContextStore(&free_context_id, tid, stack);
136 void GetFreeContext(u32 &tid, u32 &stack) const {
137 AtomicContextLoad(&free_context_id, tid, stack);
141 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
142 static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
143 COMPILER_CHECK(kChunkHeaderSize == 16);
144 COMPILER_CHECK(kChunkHeader2Size <= 16);
146 enum {
147 // Either just allocated by underlying allocator, but AsanChunk is not yet
148 // ready, or almost returned to undelying allocator and AsanChunk is already
149 // meaningless.
150 CHUNK_INVALID = 0,
151 // The chunk is allocated and not yet freed.
152 CHUNK_ALLOCATED = 2,
153 // The chunk was freed and put into quarantine zone.
154 CHUNK_QUARANTINE = 3,
157 class AsanChunk : public ChunkBase {
158 public:
159 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
160 bool AddrIsInside(uptr addr) {
161 return (addr >= Beg()) && (addr < Beg() + UsedSize());
165 class LargeChunkHeader {
166 static constexpr uptr kAllocBegMagic =
167 FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
168 atomic_uintptr_t magic;
169 AsanChunk *chunk_header;
171 public:
172 AsanChunk *Get() const {
173 return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
174 ? chunk_header
175 : nullptr;
178 void Set(AsanChunk *p) {
179 if (p) {
180 chunk_header = p;
181 atomic_store(&magic, kAllocBegMagic, memory_order_release);
182 return;
185 uptr old = kAllocBegMagic;
186 if (!atomic_compare_exchange_strong(&magic, &old, 0,
187 memory_order_release)) {
188 CHECK_EQ(old, kAllocBegMagic);
193 struct QuarantineCallback {
194 QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack)
195 : cache_(cache),
196 stack_(stack) {
199 void Recycle(AsanChunk *m) {
200 void *p = get_allocator().GetBlockBegin(m);
201 if (p != m) {
202 // Clear the magic value, as allocator internals may overwrite the
203 // contents of deallocated chunk, confusing GetAsanChunk lookup.
204 reinterpret_cast<LargeChunkHeader *>(p)->Set(nullptr);
207 u8 old_chunk_state = CHUNK_QUARANTINE;
208 if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
209 CHUNK_INVALID, memory_order_acquire)) {
210 CHECK_EQ(old_chunk_state, CHUNK_QUARANTINE);
213 PoisonShadow(m->Beg(),
214 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
215 kAsanHeapLeftRedzoneMagic);
217 // Statistics.
218 AsanStats &thread_stats = GetCurrentThreadStats();
219 thread_stats.real_frees++;
220 thread_stats.really_freed += m->UsedSize();
222 get_allocator().Deallocate(cache_, p);
225 void *Allocate(uptr size) {
226 void *res = get_allocator().Allocate(cache_, size, 1);
227 // TODO(alekseys): Consider making quarantine OOM-friendly.
228 if (UNLIKELY(!res))
229 ReportOutOfMemory(size, stack_);
230 return res;
233 void Deallocate(void *p) {
234 get_allocator().Deallocate(cache_, p);
237 private:
238 AllocatorCache* const cache_;
239 BufferedStackTrace* const stack_;
242 typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
243 typedef AsanQuarantine::Cache QuarantineCache;
245 void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
246 PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
247 // Statistics.
248 AsanStats &thread_stats = GetCurrentThreadStats();
249 thread_stats.mmaps++;
250 thread_stats.mmaped += size;
252 void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
253 PoisonShadow(p, size, 0);
254 // We are about to unmap a chunk of user memory.
255 // Mark the corresponding shadow memory as not needed.
256 FlushUnneededASanShadowMemory(p, size);
257 // Statistics.
258 AsanStats &thread_stats = GetCurrentThreadStats();
259 thread_stats.munmaps++;
260 thread_stats.munmaped += size;
263 // We can not use THREADLOCAL because it is not supported on some of the
264 // platforms we care about (OSX 10.6, Android).
265 // static THREADLOCAL AllocatorCache cache;
266 AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
267 CHECK(ms);
268 return &ms->allocator_cache;
271 QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
272 CHECK(ms);
273 CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
274 return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
277 void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) {
278 quarantine_size_mb = f->quarantine_size_mb;
279 thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb;
280 min_redzone = f->redzone;
281 max_redzone = f->max_redzone;
282 may_return_null = cf->allocator_may_return_null;
283 alloc_dealloc_mismatch = f->alloc_dealloc_mismatch;
284 release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms;
287 void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) {
288 f->quarantine_size_mb = quarantine_size_mb;
289 f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb;
290 f->redzone = min_redzone;
291 f->max_redzone = max_redzone;
292 cf->allocator_may_return_null = may_return_null;
293 f->alloc_dealloc_mismatch = alloc_dealloc_mismatch;
294 cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms;
297 struct Allocator {
298 static const uptr kMaxAllowedMallocSize =
299 FIRST_32_SECOND_64(3UL << 30, 1ULL << 40);
301 AsanAllocator allocator;
302 AsanQuarantine quarantine;
303 StaticSpinMutex fallback_mutex;
304 AllocatorCache fallback_allocator_cache;
305 QuarantineCache fallback_quarantine_cache;
307 uptr max_user_defined_malloc_size;
308 atomic_uint8_t rss_limit_exceeded;
310 // ------------------- Options --------------------------
311 atomic_uint16_t min_redzone;
312 atomic_uint16_t max_redzone;
313 atomic_uint8_t alloc_dealloc_mismatch;
315 // ------------------- Initialization ------------------------
316 explicit Allocator(LinkerInitialized)
317 : quarantine(LINKER_INITIALIZED),
318 fallback_quarantine_cache(LINKER_INITIALIZED) {}
320 void CheckOptions(const AllocatorOptions &options) const {
321 CHECK_GE(options.min_redzone, 16);
322 CHECK_GE(options.max_redzone, options.min_redzone);
323 CHECK_LE(options.max_redzone, 2048);
324 CHECK(IsPowerOfTwo(options.min_redzone));
325 CHECK(IsPowerOfTwo(options.max_redzone));
328 void SharedInitCode(const AllocatorOptions &options) {
329 CheckOptions(options);
330 quarantine.Init((uptr)options.quarantine_size_mb << 20,
331 (uptr)options.thread_local_quarantine_size_kb << 10);
332 atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch,
333 memory_order_release);
334 atomic_store(&min_redzone, options.min_redzone, memory_order_release);
335 atomic_store(&max_redzone, options.max_redzone, memory_order_release);
338 void InitLinkerInitialized(const AllocatorOptions &options) {
339 SetAllocatorMayReturnNull(options.may_return_null);
340 allocator.InitLinkerInitialized(options.release_to_os_interval_ms);
341 SharedInitCode(options);
342 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
343 ? common_flags()->max_allocation_size_mb
344 << 20
345 : kMaxAllowedMallocSize;
348 bool RssLimitExceeded() {
349 return atomic_load(&rss_limit_exceeded, memory_order_relaxed);
352 void SetRssLimitExceeded(bool limit_exceeded) {
353 atomic_store(&rss_limit_exceeded, limit_exceeded, memory_order_relaxed);
356 void RePoisonChunk(uptr chunk) {
357 // This could be a user-facing chunk (with redzones), or some internal
358 // housekeeping chunk, like TransferBatch. Start by assuming the former.
359 AsanChunk *ac = GetAsanChunk((void *)chunk);
360 uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)chunk);
361 if (ac && atomic_load(&ac->chunk_state, memory_order_acquire) ==
362 CHUNK_ALLOCATED) {
363 uptr beg = ac->Beg();
364 uptr end = ac->Beg() + ac->UsedSize();
365 uptr chunk_end = chunk + allocated_size;
366 if (chunk < beg && beg < end && end <= chunk_end) {
367 // Looks like a valid AsanChunk in use, poison redzones only.
368 PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic);
369 uptr end_aligned_down = RoundDownTo(end, SHADOW_GRANULARITY);
370 FastPoisonShadowPartialRightRedzone(
371 end_aligned_down, end - end_aligned_down,
372 chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic);
373 return;
377 // This is either not an AsanChunk or freed or quarantined AsanChunk.
378 // In either case, poison everything.
379 PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic);
382 void ReInitialize(const AllocatorOptions &options) {
383 SetAllocatorMayReturnNull(options.may_return_null);
384 allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms);
385 SharedInitCode(options);
387 // Poison all existing allocation's redzones.
388 if (CanPoisonMemory()) {
389 allocator.ForceLock();
390 allocator.ForEachChunk(
391 [](uptr chunk, void *alloc) {
392 ((Allocator *)alloc)->RePoisonChunk(chunk);
394 this);
395 allocator.ForceUnlock();
399 void GetOptions(AllocatorOptions *options) const {
400 options->quarantine_size_mb = quarantine.GetSize() >> 20;
401 options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10;
402 options->min_redzone = atomic_load(&min_redzone, memory_order_acquire);
403 options->max_redzone = atomic_load(&max_redzone, memory_order_acquire);
404 options->may_return_null = AllocatorMayReturnNull();
405 options->alloc_dealloc_mismatch =
406 atomic_load(&alloc_dealloc_mismatch, memory_order_acquire);
407 options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs();
410 // -------------------- Helper methods. -------------------------
411 uptr ComputeRZLog(uptr user_requested_size) {
412 u32 rz_log = user_requested_size <= 64 - 16 ? 0
413 : user_requested_size <= 128 - 32 ? 1
414 : user_requested_size <= 512 - 64 ? 2
415 : user_requested_size <= 4096 - 128 ? 3
416 : user_requested_size <= (1 << 14) - 256 ? 4
417 : user_requested_size <= (1 << 15) - 512 ? 5
418 : user_requested_size <= (1 << 16) - 1024 ? 6
419 : 7;
420 u32 hdr_log = RZSize2Log(RoundUpToPowerOfTwo(sizeof(ChunkHeader)));
421 u32 min_log = RZSize2Log(atomic_load(&min_redzone, memory_order_acquire));
422 u32 max_log = RZSize2Log(atomic_load(&max_redzone, memory_order_acquire));
423 return Min(Max(rz_log, Max(min_log, hdr_log)), Max(max_log, hdr_log));
426 static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) {
427 if (user_requested_alignment < 8)
428 return 0;
429 if (user_requested_alignment > 512)
430 user_requested_alignment = 512;
431 return Log2(user_requested_alignment) - 2;
434 static uptr ComputeUserAlignment(uptr user_requested_alignment_log) {
435 if (user_requested_alignment_log == 0)
436 return 0;
437 return 1LL << (user_requested_alignment_log + 2);
440 // We have an address between two chunks, and we want to report just one.
441 AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
442 AsanChunk *right_chunk) {
443 if (!left_chunk)
444 return right_chunk;
445 if (!right_chunk)
446 return left_chunk;
447 // Prefer an allocated chunk over freed chunk and freed chunk
448 // over available chunk.
449 u8 left_state = atomic_load(&left_chunk->chunk_state, memory_order_relaxed);
450 u8 right_state =
451 atomic_load(&right_chunk->chunk_state, memory_order_relaxed);
452 if (left_state != right_state) {
453 if (left_state == CHUNK_ALLOCATED)
454 return left_chunk;
455 if (right_state == CHUNK_ALLOCATED)
456 return right_chunk;
457 if (left_state == CHUNK_QUARANTINE)
458 return left_chunk;
459 if (right_state == CHUNK_QUARANTINE)
460 return right_chunk;
462 // Same chunk_state: choose based on offset.
463 sptr l_offset = 0, r_offset = 0;
464 CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
465 CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
466 if (l_offset < r_offset)
467 return left_chunk;
468 return right_chunk;
471 bool UpdateAllocationStack(uptr addr, BufferedStackTrace *stack) {
472 AsanChunk *m = GetAsanChunkByAddr(addr);
473 if (!m) return false;
474 if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
475 return false;
476 if (m->Beg() != addr) return false;
477 AsanThread *t = GetCurrentThread();
478 m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
479 return true;
482 // -------------------- Allocation/Deallocation routines ---------------
483 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
484 AllocType alloc_type, bool can_fill) {
485 if (UNLIKELY(!asan_inited))
486 AsanInitFromRtl();
487 if (RssLimitExceeded()) {
488 if (AllocatorMayReturnNull())
489 return nullptr;
490 ReportRssLimitExceeded(stack);
492 Flags &fl = *flags();
493 CHECK(stack);
494 const uptr min_alignment = SHADOW_GRANULARITY;
495 const uptr user_requested_alignment_log =
496 ComputeUserRequestedAlignmentLog(alignment);
497 if (alignment < min_alignment)
498 alignment = min_alignment;
499 if (size == 0) {
500 // We'd be happy to avoid allocating memory for zero-size requests, but
501 // some programs/tests depend on this behavior and assume that malloc
502 // would not return NULL even for zero-size allocations. Moreover, it
503 // looks like operator new should never return NULL, and results of
504 // consecutive "new" calls must be different even if the allocated size
505 // is zero.
506 size = 1;
508 CHECK(IsPowerOfTwo(alignment));
509 uptr rz_log = ComputeRZLog(size);
510 uptr rz_size = RZLog2Size(rz_log);
511 uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
512 uptr needed_size = rounded_size + rz_size;
513 if (alignment > min_alignment)
514 needed_size += alignment;
515 // If we are allocating from the secondary allocator, there will be no
516 // automatic right redzone, so add the right redzone manually.
517 if (!PrimaryAllocator::CanAllocate(needed_size, alignment))
518 needed_size += rz_size;
519 CHECK(IsAligned(needed_size, min_alignment));
520 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
521 size > max_user_defined_malloc_size) {
522 if (AllocatorMayReturnNull()) {
523 Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n",
524 size);
525 return nullptr;
527 uptr malloc_limit =
528 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
529 ReportAllocationSizeTooBig(size, needed_size, malloc_limit, stack);
532 AsanThread *t = GetCurrentThread();
533 void *allocated;
534 if (t) {
535 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
536 allocated = allocator.Allocate(cache, needed_size, 8);
537 } else {
538 SpinMutexLock l(&fallback_mutex);
539 AllocatorCache *cache = &fallback_allocator_cache;
540 allocated = allocator.Allocate(cache, needed_size, 8);
542 if (UNLIKELY(!allocated)) {
543 SetAllocatorOutOfMemory();
544 if (AllocatorMayReturnNull())
545 return nullptr;
546 ReportOutOfMemory(size, stack);
549 if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) {
550 // Heap poisoning is enabled, but the allocator provides an unpoisoned
551 // chunk. This is possible if CanPoisonMemory() was false for some
552 // time, for example, due to flags()->start_disabled.
553 // Anyway, poison the block before using it for anything else.
554 uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
555 PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
558 uptr alloc_beg = reinterpret_cast<uptr>(allocated);
559 uptr alloc_end = alloc_beg + needed_size;
560 uptr user_beg = alloc_beg + rz_size;
561 if (!IsAligned(user_beg, alignment))
562 user_beg = RoundUpTo(user_beg, alignment);
563 uptr user_end = user_beg + size;
564 CHECK_LE(user_end, alloc_end);
565 uptr chunk_beg = user_beg - kChunkHeaderSize;
566 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
567 m->alloc_type = alloc_type;
568 CHECK(size);
569 m->SetUsedSize(size);
570 m->user_requested_alignment_log = user_requested_alignment_log;
572 m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
574 uptr size_rounded_down_to_granularity =
575 RoundDownTo(size, SHADOW_GRANULARITY);
576 // Unpoison the bulk of the memory region.
577 if (size_rounded_down_to_granularity)
578 PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
579 // Deal with the end of the region if size is not aligned to granularity.
580 if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
581 u8 *shadow =
582 (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
583 *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
586 AsanStats &thread_stats = GetCurrentThreadStats();
587 thread_stats.mallocs++;
588 thread_stats.malloced += size;
589 thread_stats.malloced_redzones += needed_size - size;
590 if (needed_size > SizeClassMap::kMaxSize)
591 thread_stats.malloc_large++;
592 else
593 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
595 void *res = reinterpret_cast<void *>(user_beg);
596 if (can_fill && fl.max_malloc_fill_size) {
597 uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
598 REAL(memset)(res, fl.malloc_fill_byte, fill_size);
600 #if CAN_SANITIZE_LEAKS
601 m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
602 : __lsan::kDirectlyLeaked;
603 #endif
604 // Must be the last mutation of metadata in this function.
605 atomic_store(&m->chunk_state, CHUNK_ALLOCATED, memory_order_release);
606 if (alloc_beg != chunk_beg) {
607 CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
608 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
610 ASAN_MALLOC_HOOK(res, size);
611 return res;
614 // Set quarantine flag if chunk is allocated, issue ASan error report on
615 // available and quarantined chunks. Return true on success, false otherwise.
616 bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr,
617 BufferedStackTrace *stack) {
618 u8 old_chunk_state = CHUNK_ALLOCATED;
619 // Flip the chunk_state atomically to avoid race on double-free.
620 if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
621 CHUNK_QUARANTINE,
622 memory_order_acquire)) {
623 ReportInvalidFree(ptr, old_chunk_state, stack);
624 // It's not safe to push a chunk in quarantine on invalid free.
625 return false;
627 CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
628 // It was a user data.
629 m->SetFreeContext(kInvalidTid, 0);
630 return true;
633 // Expects the chunk to already be marked as quarantined by using
634 // AtomicallySetQuarantineFlagIfAllocated.
635 void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) {
636 CHECK_EQ(atomic_load(&m->chunk_state, memory_order_relaxed),
637 CHUNK_QUARANTINE);
638 AsanThread *t = GetCurrentThread();
639 m->SetFreeContext(t ? t->tid() : 0, StackDepotPut(*stack));
641 Flags &fl = *flags();
642 if (fl.max_free_fill_size > 0) {
643 // We have to skip the chunk header, it contains free_context_id.
644 uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size;
645 if (m->UsedSize() >= kChunkHeader2Size) { // Skip Header2 in user area.
646 uptr size_to_fill = m->UsedSize() - kChunkHeader2Size;
647 size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size);
648 REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill);
652 // Poison the region.
653 PoisonShadow(m->Beg(),
654 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
655 kAsanHeapFreeMagic);
657 AsanStats &thread_stats = GetCurrentThreadStats();
658 thread_stats.frees++;
659 thread_stats.freed += m->UsedSize();
661 // Push into quarantine.
662 if (t) {
663 AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
664 AllocatorCache *ac = GetAllocatorCache(ms);
665 quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m,
666 m->UsedSize());
667 } else {
668 SpinMutexLock l(&fallback_mutex);
669 AllocatorCache *ac = &fallback_allocator_cache;
670 quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack),
671 m, m->UsedSize());
675 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
676 BufferedStackTrace *stack, AllocType alloc_type) {
677 uptr p = reinterpret_cast<uptr>(ptr);
678 if (p == 0) return;
680 uptr chunk_beg = p - kChunkHeaderSize;
681 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
683 // On Windows, uninstrumented DLLs may allocate memory before ASan hooks
684 // malloc. Don't report an invalid free in this case.
685 if (SANITIZER_WINDOWS &&
686 !get_allocator().PointerIsMine(ptr)) {
687 if (!IsSystemHeapAddress(p))
688 ReportFreeNotMalloced(p, stack);
689 return;
692 ASAN_FREE_HOOK(ptr);
694 // Must mark the chunk as quarantined before any changes to its metadata.
695 // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag.
696 if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return;
698 if (m->alloc_type != alloc_type) {
699 if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) {
700 ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type,
701 (AllocType)alloc_type);
703 } else {
704 if (flags()->new_delete_type_mismatch &&
705 (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) &&
706 ((delete_size && delete_size != m->UsedSize()) ||
707 ComputeUserRequestedAlignmentLog(delete_alignment) !=
708 m->user_requested_alignment_log)) {
709 ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack);
713 QuarantineChunk(m, ptr, stack);
716 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
717 CHECK(old_ptr && new_size);
718 uptr p = reinterpret_cast<uptr>(old_ptr);
719 uptr chunk_beg = p - kChunkHeaderSize;
720 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
722 AsanStats &thread_stats = GetCurrentThreadStats();
723 thread_stats.reallocs++;
724 thread_stats.realloced += new_size;
726 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
727 if (new_ptr) {
728 u8 chunk_state = atomic_load(&m->chunk_state, memory_order_acquire);
729 if (chunk_state != CHUNK_ALLOCATED)
730 ReportInvalidFree(old_ptr, chunk_state, stack);
731 CHECK_NE(REAL(memcpy), nullptr);
732 uptr memcpy_size = Min(new_size, m->UsedSize());
733 // If realloc() races with free(), we may start copying freed memory.
734 // However, we will report racy double-free later anyway.
735 REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
736 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
738 return new_ptr;
741 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
742 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
743 if (AllocatorMayReturnNull())
744 return nullptr;
745 ReportCallocOverflow(nmemb, size, stack);
747 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
748 // If the memory comes from the secondary allocator no need to clear it
749 // as it comes directly from mmap.
750 if (ptr && allocator.FromPrimary(ptr))
751 REAL(memset)(ptr, 0, nmemb * size);
752 return ptr;
755 void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
756 if (chunk_state == CHUNK_QUARANTINE)
757 ReportDoubleFree((uptr)ptr, stack);
758 else
759 ReportFreeNotMalloced((uptr)ptr, stack);
762 void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) {
763 AllocatorCache *ac = GetAllocatorCache(ms);
764 quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack));
765 allocator.SwallowCache(ac);
768 // -------------------------- Chunk lookup ----------------------
770 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
771 // Returns nullptr if AsanChunk is not yet initialized just after
772 // get_allocator().Allocate(), or is being destroyed just before
773 // get_allocator().Deallocate().
774 AsanChunk *GetAsanChunk(void *alloc_beg) {
775 if (!alloc_beg)
776 return nullptr;
777 AsanChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
778 if (!p) {
779 if (!allocator.FromPrimary(alloc_beg))
780 return nullptr;
781 p = reinterpret_cast<AsanChunk *>(alloc_beg);
783 u8 state = atomic_load(&p->chunk_state, memory_order_relaxed);
784 // It does not guaranty that Chunk is initialized, but it's
785 // definitely not for any other value.
786 if (state == CHUNK_ALLOCATED || state == CHUNK_QUARANTINE)
787 return p;
788 return nullptr;
791 AsanChunk *GetAsanChunkByAddr(uptr p) {
792 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
793 return GetAsanChunk(alloc_beg);
796 // Allocator must be locked when this function is called.
797 AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
798 void *alloc_beg =
799 allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
800 return GetAsanChunk(alloc_beg);
803 uptr AllocationSize(uptr p) {
804 AsanChunk *m = GetAsanChunkByAddr(p);
805 if (!m) return 0;
806 if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
807 return 0;
808 if (m->Beg() != p) return 0;
809 return m->UsedSize();
812 AsanChunkView FindHeapChunkByAddress(uptr addr) {
813 AsanChunk *m1 = GetAsanChunkByAddr(addr);
814 sptr offset = 0;
815 if (!m1 || AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
816 // The address is in the chunk's left redzone, so maybe it is actually
817 // a right buffer overflow from the other chunk to the left.
818 // Search a bit to the left to see if there is another chunk.
819 AsanChunk *m2 = nullptr;
820 for (uptr l = 1; l < GetPageSizeCached(); l++) {
821 m2 = GetAsanChunkByAddr(addr - l);
822 if (m2 == m1) continue; // Still the same chunk.
823 break;
825 if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
826 m1 = ChooseChunk(addr, m2, m1);
828 return AsanChunkView(m1);
831 void Purge(BufferedStackTrace *stack) {
832 AsanThread *t = GetCurrentThread();
833 if (t) {
834 AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
835 quarantine.DrainAndRecycle(GetQuarantineCache(ms),
836 QuarantineCallback(GetAllocatorCache(ms),
837 stack));
840 SpinMutexLock l(&fallback_mutex);
841 quarantine.DrainAndRecycle(&fallback_quarantine_cache,
842 QuarantineCallback(&fallback_allocator_cache,
843 stack));
846 allocator.ForceReleaseToOS();
849 void PrintStats() {
850 allocator.PrintStats();
851 quarantine.PrintStats();
854 void ForceLock() ACQUIRE(fallback_mutex) {
855 allocator.ForceLock();
856 fallback_mutex.Lock();
859 void ForceUnlock() RELEASE(fallback_mutex) {
860 fallback_mutex.Unlock();
861 allocator.ForceUnlock();
865 static Allocator instance(LINKER_INITIALIZED);
867 static AsanAllocator &get_allocator() {
868 return instance.allocator;
871 bool AsanChunkView::IsValid() const {
872 return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) !=
873 CHUNK_INVALID;
875 bool AsanChunkView::IsAllocated() const {
876 return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
877 CHUNK_ALLOCATED;
879 bool AsanChunkView::IsQuarantined() const {
880 return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
881 CHUNK_QUARANTINE;
883 uptr AsanChunkView::Beg() const { return chunk_->Beg(); }
884 uptr AsanChunkView::End() const { return Beg() + UsedSize(); }
885 uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); }
886 u32 AsanChunkView::UserRequestedAlignment() const {
887 return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log);
890 uptr AsanChunkView::AllocTid() const {
891 u32 tid = 0;
892 u32 stack = 0;
893 chunk_->GetAllocContext(tid, stack);
894 return tid;
897 uptr AsanChunkView::FreeTid() const {
898 if (!IsQuarantined())
899 return kInvalidTid;
900 u32 tid = 0;
901 u32 stack = 0;
902 chunk_->GetFreeContext(tid, stack);
903 return tid;
906 AllocType AsanChunkView::GetAllocType() const {
907 return (AllocType)chunk_->alloc_type;
910 u32 AsanChunkView::GetAllocStackId() const {
911 u32 tid = 0;
912 u32 stack = 0;
913 chunk_->GetAllocContext(tid, stack);
914 return stack;
917 u32 AsanChunkView::GetFreeStackId() const {
918 if (!IsQuarantined())
919 return 0;
920 u32 tid = 0;
921 u32 stack = 0;
922 chunk_->GetFreeContext(tid, stack);
923 return stack;
926 void InitializeAllocator(const AllocatorOptions &options) {
927 instance.InitLinkerInitialized(options);
930 void ReInitializeAllocator(const AllocatorOptions &options) {
931 instance.ReInitialize(options);
934 void GetAllocatorOptions(AllocatorOptions *options) {
935 instance.GetOptions(options);
938 AsanChunkView FindHeapChunkByAddress(uptr addr) {
939 return instance.FindHeapChunkByAddress(addr);
941 AsanChunkView FindHeapChunkByAllocBeg(uptr addr) {
942 return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr)));
945 void AsanThreadLocalMallocStorage::CommitBack() {
946 GET_STACK_TRACE_MALLOC;
947 instance.CommitBack(this, &stack);
950 void PrintInternalAllocatorStats() {
951 instance.PrintStats();
954 void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
955 instance.Deallocate(ptr, 0, 0, stack, alloc_type);
958 void asan_delete(void *ptr, uptr size, uptr alignment,
959 BufferedStackTrace *stack, AllocType alloc_type) {
960 instance.Deallocate(ptr, size, alignment, stack, alloc_type);
963 void *asan_malloc(uptr size, BufferedStackTrace *stack) {
964 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
967 void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
968 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
971 void *asan_reallocarray(void *p, uptr nmemb, uptr size,
972 BufferedStackTrace *stack) {
973 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
974 errno = errno_ENOMEM;
975 if (AllocatorMayReturnNull())
976 return nullptr;
977 ReportReallocArrayOverflow(nmemb, size, stack);
979 return asan_realloc(p, nmemb * size, stack);
982 void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
983 if (!p)
984 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
985 if (size == 0) {
986 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
987 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
988 return nullptr;
990 // Allocate a size of 1 if we shouldn't free() on Realloc to 0
991 size = 1;
993 return SetErrnoOnNull(instance.Reallocate(p, size, stack));
996 void *asan_valloc(uptr size, BufferedStackTrace *stack) {
997 return SetErrnoOnNull(
998 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true));
1001 void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
1002 uptr PageSize = GetPageSizeCached();
1003 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
1004 errno = errno_ENOMEM;
1005 if (AllocatorMayReturnNull())
1006 return nullptr;
1007 ReportPvallocOverflow(size, stack);
1009 // pvalloc(0) should allocate one page.
1010 size = size ? RoundUpTo(size, PageSize) : PageSize;
1011 return SetErrnoOnNull(
1012 instance.Allocate(size, PageSize, stack, FROM_MALLOC, true));
1015 void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
1016 AllocType alloc_type) {
1017 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
1018 errno = errno_EINVAL;
1019 if (AllocatorMayReturnNull())
1020 return nullptr;
1021 ReportInvalidAllocationAlignment(alignment, stack);
1023 return SetErrnoOnNull(
1024 instance.Allocate(size, alignment, stack, alloc_type, true));
1027 void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
1028 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
1029 errno = errno_EINVAL;
1030 if (AllocatorMayReturnNull())
1031 return nullptr;
1032 ReportInvalidAlignedAllocAlignment(size, alignment, stack);
1034 return SetErrnoOnNull(
1035 instance.Allocate(size, alignment, stack, FROM_MALLOC, true));
1038 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
1039 BufferedStackTrace *stack) {
1040 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
1041 if (AllocatorMayReturnNull())
1042 return errno_EINVAL;
1043 ReportInvalidPosixMemalignAlignment(alignment, stack);
1045 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
1046 if (UNLIKELY(!ptr))
1047 // OOM error is already taken care of by Allocate.
1048 return errno_ENOMEM;
1049 CHECK(IsAligned((uptr)ptr, alignment));
1050 *memptr = ptr;
1051 return 0;
1054 uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
1055 if (!ptr) return 0;
1056 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
1057 if (flags()->check_malloc_usable_size && (usable_size == 0)) {
1058 GET_STACK_TRACE_FATAL(pc, bp);
1059 ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
1061 return usable_size;
1064 uptr asan_mz_size(const void *ptr) {
1065 return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
1068 void asan_mz_force_lock() NO_THREAD_SAFETY_ANALYSIS { instance.ForceLock(); }
1070 void asan_mz_force_unlock() NO_THREAD_SAFETY_ANALYSIS {
1071 instance.ForceUnlock();
1074 void AsanSoftRssLimitExceededCallback(bool limit_exceeded) {
1075 instance.SetRssLimitExceeded(limit_exceeded);
1078 } // namespace __asan
1080 // --- Implementation of LSan-specific functions --- {{{1
1081 namespace __lsan {
1082 void LockAllocator() {
1083 __asan::get_allocator().ForceLock();
1086 void UnlockAllocator() {
1087 __asan::get_allocator().ForceUnlock();
1090 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
1091 *begin = (uptr)&__asan::get_allocator();
1092 *end = *begin + sizeof(__asan::get_allocator());
1095 uptr PointsIntoChunk(void *p) {
1096 uptr addr = reinterpret_cast<uptr>(p);
1097 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
1098 if (!m || atomic_load(&m->chunk_state, memory_order_acquire) !=
1099 __asan::CHUNK_ALLOCATED)
1100 return 0;
1101 uptr chunk = m->Beg();
1102 if (m->AddrIsInside(addr))
1103 return chunk;
1104 if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(), addr))
1105 return chunk;
1106 return 0;
1109 uptr GetUserBegin(uptr chunk) {
1110 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
1111 return m ? m->Beg() : 0;
1114 LsanMetadata::LsanMetadata(uptr chunk) {
1115 metadata_ = chunk ? reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize)
1116 : nullptr;
1119 bool LsanMetadata::allocated() const {
1120 if (!metadata_)
1121 return false;
1122 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1123 return atomic_load(&m->chunk_state, memory_order_relaxed) ==
1124 __asan::CHUNK_ALLOCATED;
1127 ChunkTag LsanMetadata::tag() const {
1128 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1129 return static_cast<ChunkTag>(m->lsan_tag);
1132 void LsanMetadata::set_tag(ChunkTag value) {
1133 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1134 m->lsan_tag = value;
1137 uptr LsanMetadata::requested_size() const {
1138 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1139 return m->UsedSize();
1142 u32 LsanMetadata::stack_trace_id() const {
1143 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1144 u32 tid = 0;
1145 u32 stack = 0;
1146 m->GetAllocContext(tid, stack);
1147 return stack;
1150 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1151 __asan::get_allocator().ForEachChunk(callback, arg);
1154 IgnoreObjectResult IgnoreObjectLocked(const void *p) {
1155 uptr addr = reinterpret_cast<uptr>(p);
1156 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
1157 if (!m ||
1158 (atomic_load(&m->chunk_state, memory_order_acquire) !=
1159 __asan::CHUNK_ALLOCATED) ||
1160 !m->AddrIsInside(addr)) {
1161 return kIgnoreObjectInvalid;
1163 if (m->lsan_tag == kIgnored)
1164 return kIgnoreObjectAlreadyIgnored;
1165 m->lsan_tag = __lsan::kIgnored;
1166 return kIgnoreObjectSuccess;
1169 void GetAdditionalThreadContextPtrs(ThreadContextBase *tctx, void *ptrs) {
1170 // Look for the arg pointer of threads that have been created or are running.
1171 // This is necessary to prevent false positive leaks due to the AsanThread
1172 // holding the only live reference to a heap object. This can happen because
1173 // the `pthread_create()` interceptor doesn't wait for the child thread to
1174 // start before returning and thus loosing the the only live reference to the
1175 // heap object on the stack.
1177 __asan::AsanThreadContext *atctx =
1178 reinterpret_cast<__asan::AsanThreadContext *>(tctx);
1179 __asan::AsanThread *asan_thread = atctx->thread;
1181 // Note ThreadStatusRunning is required because there is a small window where
1182 // the thread status switches to `ThreadStatusRunning` but the `arg` pointer
1183 // still isn't on the stack yet.
1184 if (atctx->status != ThreadStatusCreated &&
1185 atctx->status != ThreadStatusRunning)
1186 return;
1188 uptr thread_arg = reinterpret_cast<uptr>(asan_thread->get_arg());
1189 if (!thread_arg)
1190 return;
1192 auto ptrsVec = reinterpret_cast<InternalMmapVector<uptr> *>(ptrs);
1193 ptrsVec->push_back(thread_arg);
1196 } // namespace __lsan
1198 // ---------------------- Interface ---------------- {{{1
1199 using namespace __asan;
1201 // ASan allocator doesn't reserve extra bytes, so normally we would
1202 // just return "size". We don't want to expose our redzone sizes, etc here.
1203 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
1204 return size;
1207 int __sanitizer_get_ownership(const void *p) {
1208 uptr ptr = reinterpret_cast<uptr>(p);
1209 return instance.AllocationSize(ptr) > 0;
1212 uptr __sanitizer_get_allocated_size(const void *p) {
1213 if (!p) return 0;
1214 uptr ptr = reinterpret_cast<uptr>(p);
1215 uptr allocated_size = instance.AllocationSize(ptr);
1216 // Die if p is not malloced or if it is already freed.
1217 if (allocated_size == 0) {
1218 GET_STACK_TRACE_FATAL_HERE;
1219 ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
1221 return allocated_size;
1224 void __sanitizer_purge_allocator() {
1225 GET_STACK_TRACE_MALLOC;
1226 instance.Purge(&stack);
1229 int __asan_update_allocation_context(void* addr) {
1230 GET_STACK_TRACE_MALLOC;
1231 return instance.UpdateAllocationStack((uptr)addr, &stack);
1234 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
1235 // Provide default (no-op) implementation of malloc hooks.
1236 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_malloc_hook,
1237 void *ptr, uptr size) {
1238 (void)ptr;
1239 (void)size;
1242 SANITIZER_INTERFACE_WEAK_DEF(void, __sanitizer_free_hook, void *ptr) {
1243 (void)ptr;
1245 #endif