2015-02-20 Ed Schonberg <schonberg@adacore.com>
[official-gcc.git] / gcc / ada / inline.adb
blob9a60befa0bf969102bd9a89ebfa7dce16f3cddff
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- I N L I N E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Fname; use Fname;
38 with Fname.UF; use Fname.UF;
39 with Lib; use Lib;
40 with Namet; use Namet;
41 with Nmake; use Nmake;
42 with Nlists; use Nlists;
43 with Output; use Output;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Ch8; use Sem_Ch8;
46 with Sem_Ch10; use Sem_Ch10;
47 with Sem_Ch12; use Sem_Ch12;
48 with Sem_Prag; use Sem_Prag;
49 with Sem_Util; use Sem_Util;
50 with Sinfo; use Sinfo;
51 with Sinput; use Sinput;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Uname; use Uname;
55 with Tbuild; use Tbuild;
57 package body Inline is
59 Check_Inlining_Restrictions : constant Boolean := True;
60 -- In the following cases the frontend rejects inlining because they
61 -- are not handled well by the backend. This variable facilitates
62 -- disabling these restrictions to evaluate future versions of the
63 -- GCC backend in which some of the restrictions may be supported.
65 -- - subprograms that have:
66 -- - nested subprograms
67 -- - instantiations
68 -- - package declarations
69 -- - task or protected object declarations
70 -- - some of the following statements:
71 -- - abort
72 -- - asynchronous-select
73 -- - conditional-entry-call
74 -- - delay-relative
75 -- - delay-until
76 -- - selective-accept
77 -- - timed-entry-call
79 Inlined_Calls : Elist_Id;
80 -- List of frontend inlined calls
82 Backend_Calls : Elist_Id;
83 -- List of inline calls passed to the backend
85 Backend_Inlined_Subps : Elist_Id;
86 -- List of subprograms inlined by the backend
88 Backend_Not_Inlined_Subps : Elist_Id;
89 -- List of subprograms that cannot be inlined by the backend
91 --------------------
92 -- Inlined Bodies --
93 --------------------
95 -- Inlined functions are actually placed in line by the backend if the
96 -- corresponding bodies are available (i.e. compiled). Whenever we find
97 -- a call to an inlined subprogram, we add the name of the enclosing
98 -- compilation unit to a worklist. After all compilation, and after
99 -- expansion of generic bodies, we traverse the list of pending bodies
100 -- and compile them as well.
102 package Inlined_Bodies is new Table.Table (
103 Table_Component_Type => Entity_Id,
104 Table_Index_Type => Int,
105 Table_Low_Bound => 0,
106 Table_Initial => Alloc.Inlined_Bodies_Initial,
107 Table_Increment => Alloc.Inlined_Bodies_Increment,
108 Table_Name => "Inlined_Bodies");
110 -----------------------
111 -- Inline Processing --
112 -----------------------
114 -- For each call to an inlined subprogram, we make entries in a table
115 -- that stores caller and callee, and indicates the call direction from
116 -- one to the other. We also record the compilation unit that contains
117 -- the callee. After analyzing the bodies of all such compilation units,
118 -- we compute the transitive closure of inlined subprograms called from
119 -- the main compilation unit and make it available to the code generator
120 -- in no particular order, thus allowing cycles in the call graph.
122 Last_Inlined : Entity_Id := Empty;
124 -- For each entry in the table we keep a list of successors in topological
125 -- order, i.e. callers of the current subprogram.
127 type Subp_Index is new Nat;
128 No_Subp : constant Subp_Index := 0;
130 -- The subprogram entities are hashed into the Inlined table
132 Num_Hash_Headers : constant := 512;
134 Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
135 of Subp_Index;
137 type Succ_Index is new Nat;
138 No_Succ : constant Succ_Index := 0;
140 type Succ_Info is record
141 Subp : Subp_Index;
142 Next : Succ_Index;
143 end record;
145 -- The following table stores list elements for the successor lists. These
146 -- lists cannot be chained directly through entries in the Inlined table,
147 -- because a given subprogram can appear in several such lists.
149 package Successors is new Table.Table (
150 Table_Component_Type => Succ_Info,
151 Table_Index_Type => Succ_Index,
152 Table_Low_Bound => 1,
153 Table_Initial => Alloc.Successors_Initial,
154 Table_Increment => Alloc.Successors_Increment,
155 Table_Name => "Successors");
157 type Subp_Info is record
158 Name : Entity_Id := Empty;
159 Next : Subp_Index := No_Subp;
160 First_Succ : Succ_Index := No_Succ;
161 Listed : Boolean := False;
162 Main_Call : Boolean := False;
163 Processed : Boolean := False;
164 end record;
166 package Inlined is new Table.Table (
167 Table_Component_Type => Subp_Info,
168 Table_Index_Type => Subp_Index,
169 Table_Low_Bound => 1,
170 Table_Initial => Alloc.Inlined_Initial,
171 Table_Increment => Alloc.Inlined_Increment,
172 Table_Name => "Inlined");
174 -----------------------
175 -- Local Subprograms --
176 -----------------------
178 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
179 -- Make two entries in Inlined table, for an inlined subprogram being
180 -- called, and for the inlined subprogram that contains the call. If
181 -- the call is in the main compilation unit, Caller is Empty.
183 procedure Add_Inlined_Subprogram (Index : Subp_Index);
184 -- Add the subprogram to the list of inlined subprogram for the unit
186 function Add_Subp (E : Entity_Id) return Subp_Index;
187 -- Make entry in Inlined table for subprogram E, or return table index
188 -- that already holds E.
190 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id;
191 pragma Inline (Get_Code_Unit_Entity);
192 -- Return the entity node for the unit containing E. Always return the spec
193 -- for a package.
195 function Has_Initialized_Type (E : Entity_Id) return Boolean;
196 -- If a candidate for inlining contains type declarations for types with
197 -- non-trivial initialization procedures, they are not worth inlining.
199 function Has_Single_Return (N : Node_Id) return Boolean;
200 -- In general we cannot inline functions that return unconstrained type.
201 -- However, we can handle such functions if all return statements return a
202 -- local variable that is the only declaration in the body of the function.
203 -- In that case the call can be replaced by that local variable as is done
204 -- for other inlined calls.
206 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean;
207 -- Return True if E is in the main unit or its spec or in a subunit
209 function Is_Nested (E : Entity_Id) return Boolean;
210 -- If the function is nested inside some other function, it will always
211 -- be compiled if that function is, so don't add it to the inline list.
212 -- We cannot compile a nested function outside the scope of the containing
213 -- function anyway. This is also the case if the function is defined in a
214 -- task body or within an entry (for example, an initialization procedure).
216 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id);
217 -- Remove all aspects and/or pragmas that have no meaning in inlined body
218 -- Body_Decl. The analysis of these items is performed on the non-inlined
219 -- body. The items currently removed are:
220 -- Contract_Cases
221 -- Global
222 -- Depends
223 -- Postcondition
224 -- Precondition
225 -- Refined_Global
226 -- Refined_Depends
227 -- Refined_Post
228 -- Test_Case
229 -- Unmodified
230 -- Unreferenced
232 ------------------------------
233 -- Deferred Cleanup Actions --
234 ------------------------------
236 -- The cleanup actions for scopes that contain instantiations is delayed
237 -- until after expansion of those instantiations, because they may contain
238 -- finalizable objects or tasks that affect the cleanup code. A scope
239 -- that contains instantiations only needs to be finalized once, even
240 -- if it contains more than one instance. We keep a list of scopes
241 -- that must still be finalized, and call cleanup_actions after all
242 -- the instantiations have been completed.
244 To_Clean : Elist_Id;
246 procedure Add_Scope_To_Clean (Inst : Entity_Id);
247 -- Build set of scopes on which cleanup actions must be performed
249 procedure Cleanup_Scopes;
250 -- Complete cleanup actions on scopes that need it
252 --------------
253 -- Add_Call --
254 --------------
256 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
257 P1 : constant Subp_Index := Add_Subp (Called);
258 P2 : Subp_Index;
259 J : Succ_Index;
261 begin
262 if Present (Caller) then
263 P2 := Add_Subp (Caller);
265 -- Add P1 to the list of successors of P2, if not already there.
266 -- Note that P2 may contain more than one call to P1, and only
267 -- one needs to be recorded.
269 J := Inlined.Table (P2).First_Succ;
270 while J /= No_Succ loop
271 if Successors.Table (J).Subp = P1 then
272 return;
273 end if;
275 J := Successors.Table (J).Next;
276 end loop;
278 -- On exit, make a successor entry for P1
280 Successors.Increment_Last;
281 Successors.Table (Successors.Last).Subp := P1;
282 Successors.Table (Successors.Last).Next :=
283 Inlined.Table (P2).First_Succ;
284 Inlined.Table (P2).First_Succ := Successors.Last;
285 else
286 Inlined.Table (P1).Main_Call := True;
287 end if;
288 end Add_Call;
290 ----------------------
291 -- Add_Inlined_Body --
292 ----------------------
294 procedure Add_Inlined_Body (E : Entity_Id; N : Node_Id) is
296 type Inline_Level_Type is (Dont_Inline, Inline_Call, Inline_Package);
297 -- Level of inlining for the call: Dont_Inline means no inlining,
298 -- Inline_Call means that only the call is considered for inlining,
299 -- Inline_Package means that the call is considered for inlining and
300 -- its package compiled and scanned for more inlining opportunities.
302 function Must_Inline return Inline_Level_Type;
303 -- Inlining is only done if the call statement N is in the main unit,
304 -- or within the body of another inlined subprogram.
306 -----------------
307 -- Must_Inline --
308 -----------------
310 function Must_Inline return Inline_Level_Type is
311 Scop : Entity_Id;
312 Comp : Node_Id;
314 begin
315 -- Check if call is in main unit
317 Scop := Current_Scope;
319 -- Do not try to inline if scope is standard. This could happen, for
320 -- example, for a call to Add_Global_Declaration, and it causes
321 -- trouble to try to inline at this level.
323 if Scop = Standard_Standard then
324 return Dont_Inline;
325 end if;
327 -- Otherwise lookup scope stack to outer scope
329 while Scope (Scop) /= Standard_Standard
330 and then not Is_Child_Unit (Scop)
331 loop
332 Scop := Scope (Scop);
333 end loop;
335 Comp := Parent (Scop);
336 while Nkind (Comp) /= N_Compilation_Unit loop
337 Comp := Parent (Comp);
338 end loop;
340 -- If the call is in the main unit, inline the call and compile the
341 -- package of the subprogram to find more calls to be inlined.
343 if Comp = Cunit (Main_Unit)
344 or else Comp = Library_Unit (Cunit (Main_Unit))
345 then
346 Add_Call (E);
347 return Inline_Package;
348 end if;
350 -- The call is not in the main unit. See if it is in some inlined
351 -- subprogram. If so, inline the call and, if the inlining level is
352 -- set to 1, stop there; otherwise also compile the package as above.
354 Scop := Current_Scope;
355 while Scope (Scop) /= Standard_Standard
356 and then not Is_Child_Unit (Scop)
357 loop
358 if Is_Overloadable (Scop) and then Is_Inlined (Scop) then
359 Add_Call (E, Scop);
361 if Inline_Level = 1 then
362 return Inline_Call;
363 else
364 return Inline_Package;
365 end if;
366 end if;
368 Scop := Scope (Scop);
369 end loop;
371 return Dont_Inline;
372 end Must_Inline;
374 Level : Inline_Level_Type;
376 -- Start of processing for Add_Inlined_Body
378 begin
379 Append_New_Elmt (N, To => Backend_Calls);
381 -- Find unit containing E, and add to list of inlined bodies if needed.
382 -- If the body is already present, no need to load any other unit. This
383 -- is the case for an initialization procedure, which appears in the
384 -- package declaration that contains the type. It is also the case if
385 -- the body has already been analyzed. Finally, if the unit enclosing
386 -- E is an instance, the instance body will be analyzed in any case,
387 -- and there is no need to add the enclosing unit (whose body might not
388 -- be available).
390 -- Library-level functions must be handled specially, because there is
391 -- no enclosing package to retrieve. In this case, it is the body of
392 -- the function that will have to be loaded.
394 if Is_Abstract_Subprogram (E)
395 or else Is_Nested (E)
396 or else Convention (E) = Convention_Protected
397 then
398 return;
399 end if;
401 Level := Must_Inline;
403 if Level /= Dont_Inline then
404 declare
405 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
407 begin
408 if Pack = E then
410 -- Library-level inlined function. Add function itself to
411 -- list of needed units.
413 Set_Is_Called (E);
414 Inlined_Bodies.Increment_Last;
415 Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
417 elsif Ekind (Pack) = E_Package then
418 Set_Is_Called (E);
420 if Is_Generic_Instance (Pack) then
421 null;
423 -- Do not inline the package if the subprogram is an init proc
424 -- or other internally generated subprogram, because in that
425 -- case the subprogram body appears in the same unit that
426 -- declares the type, and that body is visible to the back end.
427 -- Do not inline it either if it is in the main unit.
429 elsif Level = Inline_Package
430 and then not Is_Inlined (Pack)
431 and then not Is_Internal (E)
432 and then not In_Main_Unit_Or_Subunit (Pack)
433 then
434 Set_Is_Inlined (Pack);
435 Inlined_Bodies.Increment_Last;
436 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
438 -- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
439 -- calls if the back-end takes care of inlining the call.
441 elsif Level = Inline_Call
442 and then Has_Pragma_Inline_Always (E)
443 and then Back_End_Inlining
444 then
445 Set_Is_Inlined (Pack);
446 Inlined_Bodies.Increment_Last;
447 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
448 end if;
449 end if;
451 -- If the call was generated by the compiler and is to a function
452 -- in a run-time unit, we need to suppress debugging information
453 -- for it, so that the code that is eventually inlined will not
454 -- affect debugging of the program. We do not do it if the call
455 -- comes from source because, even if the call is inlined, the
456 -- user may expect it to be present in the debugging information.
458 if not Comes_From_Source (N)
459 and then In_Extended_Main_Source_Unit (N)
460 and then
461 Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (E)))
462 then
463 Set_Needs_Debug_Info (E, False);
464 end if;
465 end;
466 end if;
467 end Add_Inlined_Body;
469 ----------------------------
470 -- Add_Inlined_Subprogram --
471 ----------------------------
473 procedure Add_Inlined_Subprogram (Index : Subp_Index) is
474 E : constant Entity_Id := Inlined.Table (Index).Name;
475 Decl : constant Node_Id := Parent (Declaration_Node (E));
476 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
478 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id);
479 -- Append Subp to the list of subprograms inlined by the backend
481 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id);
482 -- Append Subp to the list of subprograms that cannot be inlined by
483 -- the backend.
485 -----------------------------------------
486 -- Register_Backend_Inlined_Subprogram --
487 -----------------------------------------
489 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id) is
490 begin
491 Append_New_Elmt (Subp, To => Backend_Inlined_Subps);
492 end Register_Backend_Inlined_Subprogram;
494 ---------------------------------------------
495 -- Register_Backend_Not_Inlined_Subprogram --
496 ---------------------------------------------
498 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id) is
499 begin
500 Append_New_Elmt (Subp, To => Backend_Not_Inlined_Subps);
501 end Register_Backend_Not_Inlined_Subprogram;
503 -- Start of processing for Add_Inlined_Subprogram
505 begin
506 -- If the subprogram is to be inlined, and if its unit is known to be
507 -- inlined or is an instance whose body will be analyzed anyway or the
508 -- subprogram was generated as a body by the compiler (for example an
509 -- initialization procedure) or its declaration was provided along with
510 -- the body (for example an expression function), and if it is declared
511 -- at the library level not in the main unit, and if it can be inlined
512 -- by the back-end, then insert it in the list of inlined subprograms.
514 if Is_Inlined (E)
515 and then (Is_Inlined (Pack)
516 or else Is_Generic_Instance (Pack)
517 or else Nkind (Decl) = N_Subprogram_Body
518 or else Present (Corresponding_Body (Decl)))
519 and then not In_Main_Unit_Or_Subunit (E)
520 and then not Is_Nested (E)
521 and then not Has_Initialized_Type (E)
522 then
523 Register_Backend_Inlined_Subprogram (E);
525 if No (Last_Inlined) then
526 Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
527 else
528 Set_Next_Inlined_Subprogram (Last_Inlined, E);
529 end if;
531 Last_Inlined := E;
533 else
534 Register_Backend_Not_Inlined_Subprogram (E);
535 end if;
537 Inlined.Table (Index).Listed := True;
538 end Add_Inlined_Subprogram;
540 ------------------------
541 -- Add_Scope_To_Clean --
542 ------------------------
544 procedure Add_Scope_To_Clean (Inst : Entity_Id) is
545 Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
546 Elmt : Elmt_Id;
548 begin
549 -- If the instance appears in a library-level package declaration,
550 -- all finalization is global, and nothing needs doing here.
552 if Scop = Standard_Standard then
553 return;
554 end if;
556 -- If the instance is within a generic unit, no finalization code
557 -- can be generated. Note that at this point all bodies have been
558 -- analyzed, and the scope stack itself is not present, and the flag
559 -- Inside_A_Generic is not set.
561 declare
562 S : Entity_Id;
564 begin
565 S := Scope (Inst);
566 while Present (S) and then S /= Standard_Standard loop
567 if Is_Generic_Unit (S) then
568 return;
569 end if;
571 S := Scope (S);
572 end loop;
573 end;
575 Elmt := First_Elmt (To_Clean);
576 while Present (Elmt) loop
577 if Node (Elmt) = Scop then
578 return;
579 end if;
581 Elmt := Next_Elmt (Elmt);
582 end loop;
584 Append_Elmt (Scop, To_Clean);
585 end Add_Scope_To_Clean;
587 --------------
588 -- Add_Subp --
589 --------------
591 function Add_Subp (E : Entity_Id) return Subp_Index is
592 Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
593 J : Subp_Index;
595 procedure New_Entry;
596 -- Initialize entry in Inlined table
598 procedure New_Entry is
599 begin
600 Inlined.Increment_Last;
601 Inlined.Table (Inlined.Last).Name := E;
602 Inlined.Table (Inlined.Last).Next := No_Subp;
603 Inlined.Table (Inlined.Last).First_Succ := No_Succ;
604 Inlined.Table (Inlined.Last).Listed := False;
605 Inlined.Table (Inlined.Last).Main_Call := False;
606 Inlined.Table (Inlined.Last).Processed := False;
607 end New_Entry;
609 -- Start of processing for Add_Subp
611 begin
612 if Hash_Headers (Index) = No_Subp then
613 New_Entry;
614 Hash_Headers (Index) := Inlined.Last;
615 return Inlined.Last;
617 else
618 J := Hash_Headers (Index);
619 while J /= No_Subp loop
620 if Inlined.Table (J).Name = E then
621 return J;
622 else
623 Index := J;
624 J := Inlined.Table (J).Next;
625 end if;
626 end loop;
628 -- On exit, subprogram was not found. Enter in table. Index is
629 -- the current last entry on the hash chain.
631 New_Entry;
632 Inlined.Table (Index).Next := Inlined.Last;
633 return Inlined.Last;
634 end if;
635 end Add_Subp;
637 ----------------------------
638 -- Analyze_Inlined_Bodies --
639 ----------------------------
641 procedure Analyze_Inlined_Bodies is
642 Comp_Unit : Node_Id;
643 J : Int;
644 Pack : Entity_Id;
645 Subp : Subp_Index;
646 S : Succ_Index;
648 type Pending_Index is new Nat;
650 package Pending_Inlined is new Table.Table (
651 Table_Component_Type => Subp_Index,
652 Table_Index_Type => Pending_Index,
653 Table_Low_Bound => 1,
654 Table_Initial => Alloc.Inlined_Initial,
655 Table_Increment => Alloc.Inlined_Increment,
656 Table_Name => "Pending_Inlined");
657 -- The workpile used to compute the transitive closure
659 function Is_Ancestor_Of_Main
660 (U_Name : Entity_Id;
661 Nam : Node_Id) return Boolean;
662 -- Determine whether the unit whose body is loaded is an ancestor of
663 -- the main unit, and has a with_clause on it. The body is not
664 -- analyzed yet, so the check is purely lexical: the name of the with
665 -- clause is a selected component, and names of ancestors must match.
667 -------------------------
668 -- Is_Ancestor_Of_Main --
669 -------------------------
671 function Is_Ancestor_Of_Main
672 (U_Name : Entity_Id;
673 Nam : Node_Id) return Boolean
675 Pref : Node_Id;
677 begin
678 if Nkind (Nam) /= N_Selected_Component then
679 return False;
681 else
682 if Chars (Selector_Name (Nam)) /=
683 Chars (Cunit_Entity (Main_Unit))
684 then
685 return False;
686 end if;
688 Pref := Prefix (Nam);
689 if Nkind (Pref) = N_Identifier then
691 -- Par is an ancestor of Par.Child.
693 return Chars (Pref) = Chars (U_Name);
695 elsif Nkind (Pref) = N_Selected_Component
696 and then Chars (Selector_Name (Pref)) = Chars (U_Name)
697 then
698 -- Par.Child is an ancestor of Par.Child.Grand.
700 return True; -- should check that ancestor match
702 else
703 -- A is an ancestor of A.B.C if it is an ancestor of A.B
705 return Is_Ancestor_Of_Main (U_Name, Pref);
706 end if;
707 end if;
708 end Is_Ancestor_Of_Main;
710 -- Start of processing for Analyze_Inlined_Bodies
712 begin
713 if Serious_Errors_Detected = 0 then
714 Push_Scope (Standard_Standard);
716 J := 0;
717 while J <= Inlined_Bodies.Last
718 and then Serious_Errors_Detected = 0
719 loop
720 Pack := Inlined_Bodies.Table (J);
721 while Present (Pack)
722 and then Scope (Pack) /= Standard_Standard
723 and then not Is_Child_Unit (Pack)
724 loop
725 Pack := Scope (Pack);
726 end loop;
728 Comp_Unit := Parent (Pack);
729 while Present (Comp_Unit)
730 and then Nkind (Comp_Unit) /= N_Compilation_Unit
731 loop
732 Comp_Unit := Parent (Comp_Unit);
733 end loop;
735 -- Load the body, unless it is the main unit, or is an instance
736 -- whose body has already been analyzed.
738 if Present (Comp_Unit)
739 and then Comp_Unit /= Cunit (Main_Unit)
740 and then Body_Required (Comp_Unit)
741 and then (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
742 or else No (Corresponding_Body (Unit (Comp_Unit))))
743 then
744 declare
745 Bname : constant Unit_Name_Type :=
746 Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
748 OK : Boolean;
750 begin
751 if not Is_Loaded (Bname) then
752 Style_Check := False;
753 Load_Needed_Body (Comp_Unit, OK, Do_Analyze => False);
755 if not OK then
757 -- Warn that a body was not available for inlining
758 -- by the back-end.
760 Error_Msg_Unit_1 := Bname;
761 Error_Msg_N
762 ("one or more inlined subprograms accessed in $!??",
763 Comp_Unit);
764 Error_Msg_File_1 :=
765 Get_File_Name (Bname, Subunit => False);
766 Error_Msg_N ("\but file{ was not found!??", Comp_Unit);
768 else
769 -- If the package to be inlined is an ancestor unit of
770 -- the main unit, and it has a semantic dependence on
771 -- it, the inlining cannot take place to prevent an
772 -- elaboration circularity. The desired body is not
773 -- analyzed yet, to prevent the completion of Taft
774 -- amendment types that would lead to elaboration
775 -- circularities in gigi.
777 declare
778 U_Id : constant Entity_Id :=
779 Defining_Entity (Unit (Comp_Unit));
780 Body_Unit : constant Node_Id :=
781 Library_Unit (Comp_Unit);
782 Item : Node_Id;
784 begin
785 Item := First (Context_Items (Body_Unit));
786 while Present (Item) loop
787 if Nkind (Item) = N_With_Clause
788 and then
789 Is_Ancestor_Of_Main (U_Id, Name (Item))
790 then
791 Set_Is_Inlined (U_Id, False);
792 exit;
793 end if;
795 Next (Item);
796 end loop;
798 -- If no suspicious with_clauses, analyze the body.
800 if Is_Inlined (U_Id) then
801 Semantics (Body_Unit);
802 end if;
803 end;
804 end if;
805 end if;
806 end;
807 end if;
809 J := J + 1;
811 if J > Inlined_Bodies.Last then
813 -- The analysis of required bodies may have produced additional
814 -- generic instantiations. To obtain further inlining, we need
815 -- to perform another round of generic body instantiations.
817 Instantiate_Bodies;
819 -- Symmetrically, the instantiation of required generic bodies
820 -- may have caused additional bodies to be inlined. To obtain
821 -- further inlining, we keep looping over the inlined bodies.
822 end if;
823 end loop;
825 -- The list of inlined subprograms is an overestimate, because it
826 -- includes inlined functions called from functions that are compiled
827 -- as part of an inlined package, but are not themselves called. An
828 -- accurate computation of just those subprograms that are needed
829 -- requires that we perform a transitive closure over the call graph,
830 -- starting from calls in the main program.
832 for Index in Inlined.First .. Inlined.Last loop
833 if not Is_Called (Inlined.Table (Index).Name) then
835 -- This means that Add_Inlined_Body added the subprogram to the
836 -- table but wasn't able to handle its code unit. Do nothing.
838 Inlined.Table (Index).Processed := True;
840 elsif Inlined.Table (Index).Main_Call then
841 Pending_Inlined.Increment_Last;
842 Pending_Inlined.Table (Pending_Inlined.Last) := Index;
843 Inlined.Table (Index).Processed := True;
845 else
846 Set_Is_Called (Inlined.Table (Index).Name, False);
847 end if;
848 end loop;
850 -- Iterate over the workpile until it is emptied, propagating the
851 -- Is_Called flag to the successors of the processed subprogram.
853 while Pending_Inlined.Last >= Pending_Inlined.First loop
854 Subp := Pending_Inlined.Table (Pending_Inlined.Last);
855 Pending_Inlined.Decrement_Last;
857 S := Inlined.Table (Subp).First_Succ;
859 while S /= No_Succ loop
860 Subp := Successors.Table (S).Subp;
862 if not Inlined.Table (Subp).Processed then
863 Set_Is_Called (Inlined.Table (Subp).Name);
864 Pending_Inlined.Increment_Last;
865 Pending_Inlined.Table (Pending_Inlined.Last) := Subp;
866 Inlined.Table (Subp).Processed := True;
867 end if;
869 S := Successors.Table (S).Next;
870 end loop;
871 end loop;
873 -- Finally add the called subprograms to the list of inlined
874 -- subprograms for the unit.
876 for Index in Inlined.First .. Inlined.Last loop
877 if Is_Called (Inlined.Table (Index).Name)
878 and then not Inlined.Table (Index).Listed
879 then
880 Add_Inlined_Subprogram (Index);
881 end if;
882 end loop;
884 Pop_Scope;
885 end if;
886 end Analyze_Inlined_Bodies;
888 --------------------------
889 -- Build_Body_To_Inline --
890 --------------------------
892 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
893 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
894 Analysis_Status : constant Boolean := Full_Analysis;
895 Original_Body : Node_Id;
896 Body_To_Analyze : Node_Id;
897 Max_Size : constant := 10;
899 function Has_Pending_Instantiation return Boolean;
900 -- If some enclosing body contains instantiations that appear before
901 -- the corresponding generic body, the enclosing body has a freeze node
902 -- so that it can be elaborated after the generic itself. This might
903 -- conflict with subsequent inlinings, so that it is unsafe to try to
904 -- inline in such a case.
906 function Has_Single_Return_In_GNATprove_Mode return Boolean;
907 -- This function is called only in GNATprove mode, and it returns
908 -- True if the subprogram has no return statement or a single return
909 -- statement as last statement. It returns False for subprogram with
910 -- a single return as last statement inside one or more blocks, as
911 -- inlining would generate gotos in that case as well (although the
912 -- goto is useless in that case).
914 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
915 -- If the body of the subprogram includes a call that returns an
916 -- unconstrained type, the secondary stack is involved, and it
917 -- is not worth inlining.
919 -------------------------------
920 -- Has_Pending_Instantiation --
921 -------------------------------
923 function Has_Pending_Instantiation return Boolean is
924 S : Entity_Id;
926 begin
927 S := Current_Scope;
928 while Present (S) loop
929 if Is_Compilation_Unit (S)
930 or else Is_Child_Unit (S)
931 then
932 return False;
934 elsif Ekind (S) = E_Package
935 and then Has_Forward_Instantiation (S)
936 then
937 return True;
938 end if;
940 S := Scope (S);
941 end loop;
943 return False;
944 end Has_Pending_Instantiation;
946 -----------------------------------------
947 -- Has_Single_Return_In_GNATprove_Mode --
948 -----------------------------------------
950 function Has_Single_Return_In_GNATprove_Mode return Boolean is
951 Last_Statement : Node_Id := Empty;
953 function Check_Return (N : Node_Id) return Traverse_Result;
954 -- Returns OK on node N if this is not a return statement different
955 -- from the last statement in the subprogram.
957 ------------------
958 -- Check_Return --
959 ------------------
961 function Check_Return (N : Node_Id) return Traverse_Result is
962 begin
963 if Nkind_In (N, N_Simple_Return_Statement,
964 N_Extended_Return_Statement)
965 then
966 if N = Last_Statement then
967 return OK;
968 else
969 return Abandon;
970 end if;
972 else
973 return OK;
974 end if;
975 end Check_Return;
977 function Check_All_Returns is new Traverse_Func (Check_Return);
979 -- Start of processing for Has_Single_Return_In_GNATprove_Mode
981 begin
982 -- Retrieve the last statement
984 Last_Statement := Last (Statements (Handled_Statement_Sequence (N)));
986 -- Check that the last statement is the only possible return
987 -- statement in the subprogram.
989 return Check_All_Returns (N) = OK;
990 end Has_Single_Return_In_GNATprove_Mode;
992 --------------------------
993 -- Uses_Secondary_Stack --
994 --------------------------
996 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
997 function Check_Call (N : Node_Id) return Traverse_Result;
998 -- Look for function calls that return an unconstrained type
1000 ----------------
1001 -- Check_Call --
1002 ----------------
1004 function Check_Call (N : Node_Id) return Traverse_Result is
1005 begin
1006 if Nkind (N) = N_Function_Call
1007 and then Is_Entity_Name (Name (N))
1008 and then Is_Composite_Type (Etype (Entity (Name (N))))
1009 and then not Is_Constrained (Etype (Entity (Name (N))))
1010 then
1011 Cannot_Inline
1012 ("cannot inline & (call returns unconstrained type)?",
1013 N, Spec_Id);
1014 return Abandon;
1015 else
1016 return OK;
1017 end if;
1018 end Check_Call;
1020 function Check_Calls is new Traverse_Func (Check_Call);
1022 begin
1023 return Check_Calls (Bod) = Abandon;
1024 end Uses_Secondary_Stack;
1026 -- Start of processing for Build_Body_To_Inline
1028 begin
1029 -- Return immediately if done already
1031 if Nkind (Decl) = N_Subprogram_Declaration
1032 and then Present (Body_To_Inline (Decl))
1033 then
1034 return;
1036 -- Subprograms that have return statements in the middle of the body are
1037 -- inlined with gotos. GNATprove does not currently support gotos, so
1038 -- we prevent such inlining.
1040 elsif GNATprove_Mode
1041 and then not Has_Single_Return_In_GNATprove_Mode
1042 then
1043 Cannot_Inline ("cannot inline & (multiple returns)?", N, Spec_Id);
1044 return;
1046 -- Functions that return unconstrained composite types require
1047 -- secondary stack handling, and cannot currently be inlined, unless
1048 -- all return statements return a local variable that is the first
1049 -- local declaration in the body.
1051 elsif Ekind (Spec_Id) = E_Function
1052 and then not Is_Scalar_Type (Etype (Spec_Id))
1053 and then not Is_Access_Type (Etype (Spec_Id))
1054 and then not Is_Constrained (Etype (Spec_Id))
1055 then
1056 if not Has_Single_Return (N) then
1057 Cannot_Inline
1058 ("cannot inline & (unconstrained return type)?", N, Spec_Id);
1059 return;
1060 end if;
1062 -- Ditto for functions that return controlled types, where controlled
1063 -- actions interfere in complex ways with inlining.
1065 elsif Ekind (Spec_Id) = E_Function
1066 and then Needs_Finalization (Etype (Spec_Id))
1067 then
1068 Cannot_Inline
1069 ("cannot inline & (controlled return type)?", N, Spec_Id);
1070 return;
1071 end if;
1073 if Present (Declarations (N))
1074 and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
1075 then
1076 return;
1077 end if;
1079 if Present (Handled_Statement_Sequence (N)) then
1080 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
1081 Cannot_Inline
1082 ("cannot inline& (exception handler)?",
1083 First (Exception_Handlers (Handled_Statement_Sequence (N))),
1084 Spec_Id);
1085 return;
1087 elsif Has_Excluded_Statement
1088 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
1089 then
1090 return;
1091 end if;
1092 end if;
1094 -- We do not inline a subprogram that is too large, unless it is marked
1095 -- Inline_Always or we are in GNATprove mode. This pragma does not
1096 -- suppress the other checks on inlining (forbidden declarations,
1097 -- handlers, etc).
1099 if not (Has_Pragma_Inline_Always (Spec_Id) or else GNATprove_Mode)
1100 and then List_Length
1101 (Statements (Handled_Statement_Sequence (N))) > Max_Size
1102 then
1103 Cannot_Inline ("cannot inline& (body too large)?", N, Spec_Id);
1104 return;
1105 end if;
1107 if Has_Pending_Instantiation then
1108 Cannot_Inline
1109 ("cannot inline& (forward instance within enclosing body)?",
1110 N, Spec_Id);
1111 return;
1112 end if;
1114 -- Within an instance, the body to inline must be treated as a nested
1115 -- generic, so that the proper global references are preserved.
1117 -- Note that we do not do this at the library level, because it is not
1118 -- needed, and furthermore this causes trouble if front end inlining
1119 -- is activated (-gnatN).
1121 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1122 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1123 Original_Body := Copy_Generic_Node (N, Empty, True);
1124 else
1125 Original_Body := Copy_Separate_Tree (N);
1126 end if;
1128 -- We need to capture references to the formals in order to substitute
1129 -- the actuals at the point of inlining, i.e. instantiation. To treat
1130 -- the formals as globals to the body to inline, we nest it within a
1131 -- dummy parameterless subprogram, declared within the real one. To
1132 -- avoid generating an internal name (which is never public, and which
1133 -- affects serial numbers of other generated names), we use an internal
1134 -- symbol that cannot conflict with user declarations.
1136 Set_Parameter_Specifications (Specification (Original_Body), No_List);
1137 Set_Defining_Unit_Name
1138 (Specification (Original_Body),
1139 Make_Defining_Identifier (Sloc (N), Name_uParent));
1140 Set_Corresponding_Spec (Original_Body, Empty);
1142 -- Remove all aspects/pragmas that have no meaining in an inlined body
1144 Remove_Aspects_And_Pragmas (Original_Body);
1146 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
1148 -- Set return type of function, which is also global and does not need
1149 -- to be resolved.
1151 if Ekind (Spec_Id) = E_Function then
1152 Set_Result_Definition
1153 (Specification (Body_To_Analyze),
1154 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1155 end if;
1157 if No (Declarations (N)) then
1158 Set_Declarations (N, New_List (Body_To_Analyze));
1159 else
1160 Append (Body_To_Analyze, Declarations (N));
1161 end if;
1163 -- The body to inline is pre-analyzed. In GNATprove mode we must disable
1164 -- full analysis as well so that light expansion does not take place
1165 -- either, and name resolution is unaffected.
1167 Expander_Mode_Save_And_Set (False);
1168 Full_Analysis := False;
1170 Analyze (Body_To_Analyze);
1171 Push_Scope (Defining_Entity (Body_To_Analyze));
1172 Save_Global_References (Original_Body);
1173 End_Scope;
1174 Remove (Body_To_Analyze);
1176 Expander_Mode_Restore;
1177 Full_Analysis := Analysis_Status;
1179 -- Restore environment if previously saved
1181 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1182 Restore_Env;
1183 end if;
1185 -- If secondary stack is used, there is no point in inlining. We have
1186 -- already issued the warning in this case, so nothing to do.
1188 if Uses_Secondary_Stack (Body_To_Analyze) then
1189 return;
1190 end if;
1192 Set_Body_To_Inline (Decl, Original_Body);
1193 Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1194 Set_Is_Inlined (Spec_Id);
1195 end Build_Body_To_Inline;
1197 -------------------
1198 -- Cannot_Inline --
1199 -------------------
1201 procedure Cannot_Inline
1202 (Msg : String;
1203 N : Node_Id;
1204 Subp : Entity_Id;
1205 Is_Serious : Boolean := False)
1207 begin
1208 -- In GNATprove mode, inlining is the technical means by which the
1209 -- higher-level goal of contextual analysis is reached, so issue
1210 -- messages about failure to apply contextual analysis to a
1211 -- subprogram, rather than failure to inline it.
1213 if GNATprove_Mode
1214 and then Msg (Msg'First .. Msg'First + 12) = "cannot inline"
1215 then
1216 declare
1217 Len1 : constant Positive :=
1218 String (String'("cannot inline"))'Length;
1219 Len2 : constant Positive :=
1220 String (String'("info: no contextual analysis of"))'Length;
1222 New_Msg : String (1 .. Msg'Length + Len2 - Len1);
1224 begin
1225 New_Msg (1 .. Len2) := "info: no contextual analysis of";
1226 New_Msg (Len2 + 1 .. Msg'Length + Len2 - Len1) :=
1227 Msg (Msg'First + Len1 .. Msg'Last);
1228 Cannot_Inline (New_Msg, N, Subp, Is_Serious);
1229 return;
1230 end;
1231 end if;
1233 pragma Assert (Msg (Msg'Last) = '?');
1235 -- Legacy front end inlining model
1237 if not Back_End_Inlining then
1239 -- Do not emit warning if this is a predefined unit which is not
1240 -- the main unit. With validity checks enabled, some predefined
1241 -- subprograms may contain nested subprograms and become ineligible
1242 -- for inlining.
1244 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
1245 and then not In_Extended_Main_Source_Unit (Subp)
1246 then
1247 null;
1249 -- In GNATprove mode, issue a warning, and indicate that the
1250 -- subprogram is not always inlined by setting flag Is_Inlined_Always
1251 -- to False.
1253 elsif GNATprove_Mode then
1254 Set_Is_Inlined_Always (Subp, False);
1255 Error_Msg_NE (Msg & "p?", N, Subp);
1257 elsif Has_Pragma_Inline_Always (Subp) then
1259 -- Remove last character (question mark) to make this into an
1260 -- error, because the Inline_Always pragma cannot be obeyed.
1262 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1264 elsif Ineffective_Inline_Warnings then
1265 Error_Msg_NE (Msg & "p?", N, Subp);
1266 end if;
1268 -- New semantics relying on back end inlining
1270 elsif Is_Serious then
1272 -- Remove last character (question mark) to make this into an error.
1274 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1276 -- In GNATprove mode, issue a warning, and indicate that the subprogram
1277 -- is not always inlined by setting flag Is_Inlined_Always to False.
1279 elsif GNATprove_Mode then
1280 Set_Is_Inlined_Always (Subp, False);
1281 Error_Msg_NE (Msg & "p?", N, Subp);
1283 else
1285 -- Do not emit warning if this is a predefined unit which is not
1286 -- the main unit. This behavior is currently provided for backward
1287 -- compatibility but it will be removed when we enforce the
1288 -- strictness of the new rules.
1290 if Is_Predefined_File_Name (Unit_File_Name (Get_Source_Unit (Subp)))
1291 and then not In_Extended_Main_Source_Unit (Subp)
1292 then
1293 null;
1295 elsif Has_Pragma_Inline_Always (Subp) then
1297 -- Emit a warning if this is a call to a runtime subprogram
1298 -- which is located inside a generic. Previously this call
1299 -- was silently skipped.
1301 if Is_Generic_Instance (Subp) then
1302 declare
1303 Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
1304 begin
1305 if Is_Predefined_File_Name
1306 (Unit_File_Name (Get_Source_Unit (Gen_P)))
1307 then
1308 Set_Is_Inlined (Subp, False);
1309 Error_Msg_NE (Msg & "p?", N, Subp);
1310 return;
1311 end if;
1312 end;
1313 end if;
1315 -- Remove last character (question mark) to make this into an
1316 -- error, because the Inline_Always pragma cannot be obeyed.
1318 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1320 else
1321 Set_Is_Inlined (Subp, False);
1323 if Ineffective_Inline_Warnings then
1324 Error_Msg_NE (Msg & "p?", N, Subp);
1325 end if;
1326 end if;
1327 end if;
1328 end Cannot_Inline;
1330 --------------------------------------
1331 -- Can_Be_Inlined_In_GNATprove_Mode --
1332 --------------------------------------
1334 function Can_Be_Inlined_In_GNATprove_Mode
1335 (Spec_Id : Entity_Id;
1336 Body_Id : Entity_Id) return Boolean
1338 function Has_Some_Contract (Id : Entity_Id) return Boolean;
1339 -- Returns True if subprogram Id has any contract (Pre, Post, Global,
1340 -- Depends, etc.)
1342 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean;
1343 -- Returns True if subprogram Id defines a compilation unit
1344 -- Shouldn't this be in Sem_Aux???
1346 function In_Package_Visible_Spec (Id : Node_Id) return Boolean;
1347 -- Returns True if subprogram Id is defined in the visible part of a
1348 -- package specification.
1350 function Is_Expression_Function (Id : Entity_Id) return Boolean;
1351 -- Returns True if subprogram Id was defined originally as an expression
1352 -- function.
1354 -----------------------
1355 -- Has_Some_Contract --
1356 -----------------------
1358 function Has_Some_Contract (Id : Entity_Id) return Boolean is
1359 Items : Node_Id;
1361 begin
1362 -- A call to an expression function may precede the actual body which
1363 -- is inserted at the end of the enclosing declarations. Ensure that
1364 -- the related entity is decorated before inspecting the contract.
1366 if Is_Subprogram_Or_Generic_Subprogram (Id) then
1367 Items := Contract (Id);
1369 return Present (Items)
1370 and then (Present (Pre_Post_Conditions (Items)) or else
1371 Present (Contract_Test_Cases (Items)) or else
1372 Present (Classifications (Items)));
1373 end if;
1375 return False;
1376 end Has_Some_Contract;
1378 -----------------------------
1379 -- In_Package_Visible_Spec --
1380 -----------------------------
1382 function In_Package_Visible_Spec (Id : Node_Id) return Boolean is
1383 Decl : Node_Id := Parent (Parent (Id));
1384 P : Node_Id;
1386 begin
1387 if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1388 Decl := Parent (Decl);
1389 end if;
1391 P := Parent (Decl);
1393 return Nkind (P) = N_Package_Specification
1394 and then List_Containing (Decl) = Visible_Declarations (P);
1395 end In_Package_Visible_Spec;
1397 ----------------------------
1398 -- Is_Expression_Function --
1399 ----------------------------
1401 function Is_Expression_Function (Id : Entity_Id) return Boolean is
1402 Decl : Node_Id := Parent (Parent (Id));
1403 begin
1404 if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1405 Decl := Parent (Decl);
1406 end if;
1408 return Nkind (Original_Node (Decl)) = N_Expression_Function;
1409 end Is_Expression_Function;
1411 ------------------------
1412 -- Is_Unit_Subprogram --
1413 ------------------------
1415 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean is
1416 Decl : Node_Id := Parent (Parent (Id));
1417 begin
1418 if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1419 Decl := Parent (Decl);
1420 end if;
1422 return Nkind (Parent (Decl)) = N_Compilation_Unit;
1423 end Is_Unit_Subprogram;
1425 -- Local declarations
1427 Id : Entity_Id; -- Procedure or function entity for the subprogram
1429 -- Start of Can_Be_Inlined_In_GNATprove_Mode
1431 begin
1432 pragma Assert (Present (Spec_Id) or else Present (Body_Id));
1434 if Present (Spec_Id) then
1435 Id := Spec_Id;
1436 else
1437 Id := Body_Id;
1438 end if;
1440 -- Only local subprograms without contracts are inlined in GNATprove
1441 -- mode, as these are the subprograms which a user is not interested in
1442 -- analyzing in isolation, but rather in the context of their call. This
1443 -- is a convenient convention, that could be changed for an explicit
1444 -- pragma/aspect one day.
1446 -- In a number of special cases, inlining is not desirable or not
1447 -- possible, see below.
1449 -- Do not inline unit-level subprograms
1451 if Is_Unit_Subprogram (Id) then
1452 return False;
1454 -- Do not inline subprograms declared in the visible part of a package
1456 elsif In_Package_Visible_Spec (Id) then
1457 return False;
1459 -- Do not inline subprograms that have a contract on the spec or the
1460 -- body. Use the contract(s) instead in GNATprove.
1462 elsif (Present (Spec_Id) and then Has_Some_Contract (Spec_Id))
1463 or else
1464 (Present (Body_Id) and then Has_Some_Contract (Body_Id))
1465 then
1466 return False;
1468 -- Do not inline expression functions, which are directly inlined at the
1469 -- prover level.
1471 elsif (Present (Spec_Id) and then Is_Expression_Function (Spec_Id))
1472 or else
1473 (Present (Body_Id) and then Is_Expression_Function (Body_Id))
1474 then
1475 return False;
1477 -- Do not inline generic subprogram instances. The visibility rules of
1478 -- generic instances plays badly with inlining.
1480 elsif Is_Generic_Instance (Spec_Id) then
1481 return False;
1483 -- Only inline subprograms whose spec is marked SPARK_Mode On. For
1484 -- the subprogram body, a similar check is performed after the body
1485 -- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
1487 elsif Present (Spec_Id)
1488 and then
1489 (No (SPARK_Pragma (Spec_Id))
1490 or else Get_SPARK_Mode_From_Pragma (SPARK_Pragma (Spec_Id)) /= On)
1491 then
1492 return False;
1494 -- Subprograms in generic instances are currently not inlined, to avoid
1495 -- problems with inlining of standard library subprograms.
1497 elsif Instantiation_Location (Sloc (Id)) /= No_Location then
1498 return False;
1500 -- Don't inline predicate functions (treated specially by GNATprove)
1502 elsif Is_Predicate_Function (Id) then
1503 return False;
1505 -- Otherwise, this is a subprogram declared inside the private part of a
1506 -- package, or inside a package body, or locally in a subprogram, and it
1507 -- does not have any contract. Inline it.
1509 else
1510 return True;
1511 end if;
1512 end Can_Be_Inlined_In_GNATprove_Mode;
1514 --------------------------------------------
1515 -- Check_And_Split_Unconstrained_Function --
1516 --------------------------------------------
1518 procedure Check_And_Split_Unconstrained_Function
1519 (N : Node_Id;
1520 Spec_Id : Entity_Id;
1521 Body_Id : Entity_Id)
1523 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
1524 -- Use generic machinery to build an unexpanded body for the subprogram.
1525 -- This body is subsequently used for inline expansions at call sites.
1527 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
1528 -- Return true if we generate code for the function body N, the function
1529 -- body N has no local declarations and its unique statement is a single
1530 -- extended return statement with a handled statements sequence.
1532 procedure Generate_Subprogram_Body
1533 (N : Node_Id;
1534 Body_To_Inline : out Node_Id);
1535 -- Generate a parameterless duplicate of subprogram body N. Occurrences
1536 -- of pragmas referencing the formals are removed since they have no
1537 -- meaning when the body is inlined and the formals are rewritten (the
1538 -- analysis of the non-inlined body will handle these pragmas properly).
1539 -- A new internal name is associated with Body_To_Inline.
1541 procedure Split_Unconstrained_Function
1542 (N : Node_Id;
1543 Spec_Id : Entity_Id);
1544 -- N is an inlined function body that returns an unconstrained type and
1545 -- has a single extended return statement. Split N in two subprograms:
1546 -- a procedure P' and a function F'. The formals of P' duplicate the
1547 -- formals of N plus an extra formal which is used return a value;
1548 -- its body is composed by the declarations and list of statements
1549 -- of the extended return statement of N.
1551 --------------------------
1552 -- Build_Body_To_Inline --
1553 --------------------------
1555 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
1556 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1557 Original_Body : Node_Id;
1558 Body_To_Analyze : Node_Id;
1560 begin
1561 pragma Assert (Current_Scope = Spec_Id);
1563 -- Within an instance, the body to inline must be treated as a nested
1564 -- generic, so that the proper global references are preserved. We
1565 -- do not do this at the library level, because it is not needed, and
1566 -- furthermore this causes trouble if front end inlining is activated
1567 -- (-gnatN).
1569 if In_Instance
1570 and then Scope (Current_Scope) /= Standard_Standard
1571 then
1572 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1573 end if;
1575 -- We need to capture references to the formals in order
1576 -- to substitute the actuals at the point of inlining, i.e.
1577 -- instantiation. To treat the formals as globals to the body to
1578 -- inline, we nest it within a dummy parameterless subprogram,
1579 -- declared within the real one.
1581 Generate_Subprogram_Body (N, Original_Body);
1582 Body_To_Analyze := Copy_Generic_Node (Original_Body, Empty, False);
1584 -- Set return type of function, which is also global and does not
1585 -- need to be resolved.
1587 if Ekind (Spec_Id) = E_Function then
1588 Set_Result_Definition (Specification (Body_To_Analyze),
1589 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1590 end if;
1592 if No (Declarations (N)) then
1593 Set_Declarations (N, New_List (Body_To_Analyze));
1594 else
1595 Append_To (Declarations (N), Body_To_Analyze);
1596 end if;
1598 Preanalyze (Body_To_Analyze);
1600 Push_Scope (Defining_Entity (Body_To_Analyze));
1601 Save_Global_References (Original_Body);
1602 End_Scope;
1603 Remove (Body_To_Analyze);
1605 -- Restore environment if previously saved
1607 if In_Instance
1608 and then Scope (Current_Scope) /= Standard_Standard
1609 then
1610 Restore_Env;
1611 end if;
1613 pragma Assert (No (Body_To_Inline (Decl)));
1614 Set_Body_To_Inline (Decl, Original_Body);
1615 Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1616 end Build_Body_To_Inline;
1618 --------------------------------------
1619 -- Can_Split_Unconstrained_Function --
1620 --------------------------------------
1622 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean
1624 Ret_Node : constant Node_Id :=
1625 First (Statements (Handled_Statement_Sequence (N)));
1626 D : Node_Id;
1628 begin
1629 -- No user defined declarations allowed in the function except inside
1630 -- the unique return statement; implicit labels are the only allowed
1631 -- declarations.
1633 if not Is_Empty_List (Declarations (N)) then
1634 D := First (Declarations (N));
1635 while Present (D) loop
1636 if Nkind (D) /= N_Implicit_Label_Declaration then
1637 return False;
1638 end if;
1640 Next (D);
1641 end loop;
1642 end if;
1644 -- We only split the inlined function when we are generating the code
1645 -- of its body; otherwise we leave duplicated split subprograms in
1646 -- the tree which (if referenced) generate wrong references at link
1647 -- time.
1649 return In_Extended_Main_Code_Unit (N)
1650 and then Present (Ret_Node)
1651 and then Nkind (Ret_Node) = N_Extended_Return_Statement
1652 and then No (Next (Ret_Node))
1653 and then Present (Handled_Statement_Sequence (Ret_Node));
1654 end Can_Split_Unconstrained_Function;
1656 -----------------------------
1657 -- Generate_Body_To_Inline --
1658 -----------------------------
1660 procedure Generate_Subprogram_Body
1661 (N : Node_Id;
1662 Body_To_Inline : out Node_Id)
1664 begin
1665 -- Within an instance, the body to inline must be treated as a nested
1666 -- generic, so that the proper global references are preserved.
1668 -- Note that we do not do this at the library level, because it
1669 -- is not needed, and furthermore this causes trouble if front
1670 -- end inlining is activated (-gnatN).
1672 if In_Instance
1673 and then Scope (Current_Scope) /= Standard_Standard
1674 then
1675 Body_To_Inline := Copy_Generic_Node (N, Empty, True);
1676 else
1677 Body_To_Inline := Copy_Separate_Tree (N);
1678 end if;
1680 -- Remove all aspects/pragmas that have no meaning in an inlined body
1682 Remove_Aspects_And_Pragmas (Body_To_Inline);
1684 -- We need to capture references to the formals in order
1685 -- to substitute the actuals at the point of inlining, i.e.
1686 -- instantiation. To treat the formals as globals to the body to
1687 -- inline, we nest it within a dummy parameterless subprogram,
1688 -- declared within the real one.
1690 Set_Parameter_Specifications
1691 (Specification (Body_To_Inline), No_List);
1693 -- A new internal name is associated with Body_To_Inline to avoid
1694 -- conflicts when the non-inlined body N is analyzed.
1696 Set_Defining_Unit_Name (Specification (Body_To_Inline),
1697 Make_Defining_Identifier (Sloc (N), New_Internal_Name ('P')));
1698 Set_Corresponding_Spec (Body_To_Inline, Empty);
1699 end Generate_Subprogram_Body;
1701 ----------------------------------
1702 -- Split_Unconstrained_Function --
1703 ----------------------------------
1705 procedure Split_Unconstrained_Function
1706 (N : Node_Id;
1707 Spec_Id : Entity_Id)
1709 Loc : constant Source_Ptr := Sloc (N);
1710 Ret_Node : constant Node_Id :=
1711 First (Statements (Handled_Statement_Sequence (N)));
1712 Ret_Obj : constant Node_Id :=
1713 First (Return_Object_Declarations (Ret_Node));
1715 procedure Build_Procedure
1716 (Proc_Id : out Entity_Id;
1717 Decl_List : out List_Id);
1718 -- Build a procedure containing the statements found in the extended
1719 -- return statement of the unconstrained function body N.
1721 ---------------------
1722 -- Build_Procedure --
1723 ---------------------
1725 procedure Build_Procedure
1726 (Proc_Id : out Entity_Id;
1727 Decl_List : out List_Id)
1729 Formal : Entity_Id;
1730 Formal_List : constant List_Id := New_List;
1731 Proc_Spec : Node_Id;
1732 Proc_Body : Node_Id;
1733 Subp_Name : constant Name_Id := New_Internal_Name ('F');
1734 Body_Decl_List : List_Id := No_List;
1735 Param_Type : Node_Id;
1737 begin
1738 if Nkind (Object_Definition (Ret_Obj)) = N_Identifier then
1739 Param_Type :=
1740 New_Copy (Object_Definition (Ret_Obj));
1741 else
1742 Param_Type :=
1743 New_Copy (Subtype_Mark (Object_Definition (Ret_Obj)));
1744 end if;
1746 Append_To (Formal_List,
1747 Make_Parameter_Specification (Loc,
1748 Defining_Identifier =>
1749 Make_Defining_Identifier (Loc,
1750 Chars => Chars (Defining_Identifier (Ret_Obj))),
1751 In_Present => False,
1752 Out_Present => True,
1753 Null_Exclusion_Present => False,
1754 Parameter_Type => Param_Type));
1756 Formal := First_Formal (Spec_Id);
1758 -- Note that we copy the parameter type rather than creating
1759 -- a reference to it, because it may be a class-wide entity
1760 -- that will not be retrieved by name.
1762 while Present (Formal) loop
1763 Append_To (Formal_List,
1764 Make_Parameter_Specification (Loc,
1765 Defining_Identifier =>
1766 Make_Defining_Identifier (Sloc (Formal),
1767 Chars => Chars (Formal)),
1768 In_Present => In_Present (Parent (Formal)),
1769 Out_Present => Out_Present (Parent (Formal)),
1770 Null_Exclusion_Present =>
1771 Null_Exclusion_Present (Parent (Formal)),
1772 Parameter_Type =>
1773 New_Copy_Tree (Parameter_Type (Parent (Formal))),
1774 Expression =>
1775 Copy_Separate_Tree (Expression (Parent (Formal)))));
1777 Next_Formal (Formal);
1778 end loop;
1780 Proc_Id := Make_Defining_Identifier (Loc, Chars => Subp_Name);
1782 Proc_Spec :=
1783 Make_Procedure_Specification (Loc,
1784 Defining_Unit_Name => Proc_Id,
1785 Parameter_Specifications => Formal_List);
1787 Decl_List := New_List;
1789 Append_To (Decl_List,
1790 Make_Subprogram_Declaration (Loc, Proc_Spec));
1792 -- Can_Convert_Unconstrained_Function checked that the function
1793 -- has no local declarations except implicit label declarations.
1794 -- Copy these declarations to the built procedure.
1796 if Present (Declarations (N)) then
1797 Body_Decl_List := New_List;
1799 declare
1800 D : Node_Id;
1801 New_D : Node_Id;
1803 begin
1804 D := First (Declarations (N));
1805 while Present (D) loop
1806 pragma Assert (Nkind (D) = N_Implicit_Label_Declaration);
1808 New_D :=
1809 Make_Implicit_Label_Declaration (Loc,
1810 Make_Defining_Identifier (Loc,
1811 Chars => Chars (Defining_Identifier (D))),
1812 Label_Construct => Empty);
1813 Append_To (Body_Decl_List, New_D);
1815 Next (D);
1816 end loop;
1817 end;
1818 end if;
1820 pragma Assert (Present (Handled_Statement_Sequence (Ret_Node)));
1822 Proc_Body :=
1823 Make_Subprogram_Body (Loc,
1824 Specification => Copy_Separate_Tree (Proc_Spec),
1825 Declarations => Body_Decl_List,
1826 Handled_Statement_Sequence =>
1827 Copy_Separate_Tree (Handled_Statement_Sequence (Ret_Node)));
1829 Set_Defining_Unit_Name (Specification (Proc_Body),
1830 Make_Defining_Identifier (Loc, Subp_Name));
1832 Append_To (Decl_List, Proc_Body);
1833 end Build_Procedure;
1835 -- Local variables
1837 New_Obj : constant Node_Id := Copy_Separate_Tree (Ret_Obj);
1838 Blk_Stmt : Node_Id;
1839 Proc_Id : Entity_Id;
1840 Proc_Call : Node_Id;
1842 -- Start of processing for Split_Unconstrained_Function
1844 begin
1845 -- Build the associated procedure, analyze it and insert it before
1846 -- the function body N.
1848 declare
1849 Scope : constant Entity_Id := Current_Scope;
1850 Decl_List : List_Id;
1851 begin
1852 Pop_Scope;
1853 Build_Procedure (Proc_Id, Decl_List);
1854 Insert_Actions (N, Decl_List);
1855 Push_Scope (Scope);
1856 end;
1858 -- Build the call to the generated procedure
1860 declare
1861 Actual_List : constant List_Id := New_List;
1862 Formal : Entity_Id;
1864 begin
1865 Append_To (Actual_List,
1866 New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
1868 Formal := First_Formal (Spec_Id);
1869 while Present (Formal) loop
1870 Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
1872 -- Avoid spurious warning on unreferenced formals
1874 Set_Referenced (Formal);
1875 Next_Formal (Formal);
1876 end loop;
1878 Proc_Call :=
1879 Make_Procedure_Call_Statement (Loc,
1880 Name => New_Occurrence_Of (Proc_Id, Loc),
1881 Parameter_Associations => Actual_List);
1882 end;
1884 -- Generate
1886 -- declare
1887 -- New_Obj : ...
1888 -- begin
1889 -- main_1__F1b (New_Obj, ...);
1890 -- return Obj;
1891 -- end B10b;
1893 Blk_Stmt :=
1894 Make_Block_Statement (Loc,
1895 Declarations => New_List (New_Obj),
1896 Handled_Statement_Sequence =>
1897 Make_Handled_Sequence_Of_Statements (Loc,
1898 Statements => New_List (
1900 Proc_Call,
1902 Make_Simple_Return_Statement (Loc,
1903 Expression =>
1904 New_Occurrence_Of
1905 (Defining_Identifier (New_Obj), Loc)))));
1907 Rewrite (Ret_Node, Blk_Stmt);
1908 end Split_Unconstrained_Function;
1910 -- Local variables
1912 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1914 -- Start of processing for Check_And_Split_Unconstrained_Function
1916 begin
1917 pragma Assert (Back_End_Inlining
1918 and then Ekind (Spec_Id) = E_Function
1919 and then Returns_Unconstrained_Type (Spec_Id)
1920 and then Comes_From_Source (Body_Id)
1921 and then (Has_Pragma_Inline_Always (Spec_Id)
1922 or else Optimization_Level > 0));
1924 -- This routine must not be used in GNATprove mode since GNATprove
1925 -- relies on frontend inlining
1927 pragma Assert (not GNATprove_Mode);
1929 -- No need to split the function if we cannot generate the code
1931 if Serious_Errors_Detected /= 0 then
1932 return;
1933 end if;
1935 -- No action needed in stubs since the attribute Body_To_Inline
1936 -- is not available
1938 if Nkind (Decl) = N_Subprogram_Body_Stub then
1939 return;
1941 -- Cannot build the body to inline if the attribute is already set.
1942 -- This attribute may have been set if this is a subprogram renaming
1943 -- declarations (see Freeze.Build_Renamed_Body).
1945 elsif Present (Body_To_Inline (Decl)) then
1946 return;
1948 -- Check excluded declarations
1950 elsif Present (Declarations (N))
1951 and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
1952 then
1953 return;
1955 -- Check excluded statements. There is no need to protect us against
1956 -- exception handlers since they are supported by the GCC backend.
1958 elsif Present (Handled_Statement_Sequence (N))
1959 and then Has_Excluded_Statement
1960 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
1961 then
1962 return;
1963 end if;
1965 -- Build the body to inline only if really needed
1967 if Can_Split_Unconstrained_Function (N) then
1968 Split_Unconstrained_Function (N, Spec_Id);
1969 Build_Body_To_Inline (N, Spec_Id);
1970 Set_Is_Inlined (Spec_Id);
1971 end if;
1972 end Check_And_Split_Unconstrained_Function;
1974 -------------------------------------
1975 -- Check_Package_Body_For_Inlining --
1976 -------------------------------------
1978 procedure Check_Package_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
1979 Bname : Unit_Name_Type;
1980 E : Entity_Id;
1981 OK : Boolean;
1983 begin
1984 -- Legacy implementation (relying on frontend inlining)
1986 if not Back_End_Inlining
1987 and then Is_Compilation_Unit (P)
1988 and then not Is_Generic_Instance (P)
1989 then
1990 Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
1992 E := First_Entity (P);
1993 while Present (E) loop
1994 if Has_Pragma_Inline_Always (E)
1995 or else (Has_Pragma_Inline (E) and Front_End_Inlining)
1996 then
1997 if not Is_Loaded (Bname) then
1998 Load_Needed_Body (N, OK);
2000 if OK then
2002 -- Check we are not trying to inline a parent whose body
2003 -- depends on a child, when we are compiling the body of
2004 -- the child. Otherwise we have a potential elaboration
2005 -- circularity with inlined subprograms and with
2006 -- Taft-Amendment types.
2008 declare
2009 Comp : Node_Id; -- Body just compiled
2010 Child_Spec : Entity_Id; -- Spec of main unit
2011 Ent : Entity_Id; -- For iteration
2012 With_Clause : Node_Id; -- Context of body.
2014 begin
2015 if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
2016 and then Present (Body_Entity (P))
2017 then
2018 Child_Spec :=
2019 Defining_Entity
2020 ((Unit (Library_Unit (Cunit (Main_Unit)))));
2022 Comp :=
2023 Parent (Unit_Declaration_Node (Body_Entity (P)));
2025 -- Check whether the context of the body just
2026 -- compiled includes a child of itself, and that
2027 -- child is the spec of the main compilation.
2029 With_Clause := First (Context_Items (Comp));
2030 while Present (With_Clause) loop
2031 if Nkind (With_Clause) = N_With_Clause
2032 and then
2033 Scope (Entity (Name (With_Clause))) = P
2034 and then
2035 Entity (Name (With_Clause)) = Child_Spec
2036 then
2037 Error_Msg_Node_2 := Child_Spec;
2038 Error_Msg_NE
2039 ("body of & depends on child unit&??",
2040 With_Clause, P);
2041 Error_Msg_N
2042 ("\subprograms in body cannot be inlined??",
2043 With_Clause);
2045 -- Disable further inlining from this unit,
2046 -- and keep Taft-amendment types incomplete.
2048 Ent := First_Entity (P);
2049 while Present (Ent) loop
2050 if Is_Type (Ent)
2051 and then Has_Completion_In_Body (Ent)
2052 then
2053 Set_Full_View (Ent, Empty);
2055 elsif Is_Subprogram (Ent) then
2056 Set_Is_Inlined (Ent, False);
2057 end if;
2059 Next_Entity (Ent);
2060 end loop;
2062 return;
2063 end if;
2065 Next (With_Clause);
2066 end loop;
2067 end if;
2068 end;
2070 elsif Ineffective_Inline_Warnings then
2071 Error_Msg_Unit_1 := Bname;
2072 Error_Msg_N
2073 ("unable to inline subprograms defined in $??", P);
2074 Error_Msg_N ("\body not found??", P);
2075 return;
2076 end if;
2077 end if;
2079 return;
2080 end if;
2082 Next_Entity (E);
2083 end loop;
2084 end if;
2085 end Check_Package_Body_For_Inlining;
2087 --------------------
2088 -- Cleanup_Scopes --
2089 --------------------
2091 procedure Cleanup_Scopes is
2092 Elmt : Elmt_Id;
2093 Decl : Node_Id;
2094 Scop : Entity_Id;
2096 begin
2097 Elmt := First_Elmt (To_Clean);
2098 while Present (Elmt) loop
2099 Scop := Node (Elmt);
2101 if Ekind (Scop) = E_Entry then
2102 Scop := Protected_Body_Subprogram (Scop);
2104 elsif Is_Subprogram (Scop)
2105 and then Is_Protected_Type (Scope (Scop))
2106 and then Present (Protected_Body_Subprogram (Scop))
2107 then
2108 -- If a protected operation contains an instance, its cleanup
2109 -- operations have been delayed, and the subprogram has been
2110 -- rewritten in the expansion of the enclosing protected body. It
2111 -- is the corresponding subprogram that may require the cleanup
2112 -- operations, so propagate the information that triggers cleanup
2113 -- activity.
2115 Set_Uses_Sec_Stack
2116 (Protected_Body_Subprogram (Scop),
2117 Uses_Sec_Stack (Scop));
2119 Scop := Protected_Body_Subprogram (Scop);
2120 end if;
2122 if Ekind (Scop) = E_Block then
2123 Decl := Parent (Block_Node (Scop));
2125 else
2126 Decl := Unit_Declaration_Node (Scop);
2128 if Nkind_In (Decl, N_Subprogram_Declaration,
2129 N_Task_Type_Declaration,
2130 N_Subprogram_Body_Stub)
2131 then
2132 Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
2133 end if;
2134 end if;
2136 Push_Scope (Scop);
2137 Expand_Cleanup_Actions (Decl);
2138 End_Scope;
2140 Elmt := Next_Elmt (Elmt);
2141 end loop;
2142 end Cleanup_Scopes;
2144 -------------------------
2145 -- Expand_Inlined_Call --
2146 -------------------------
2148 procedure Expand_Inlined_Call
2149 (N : Node_Id;
2150 Subp : Entity_Id;
2151 Orig_Subp : Entity_Id)
2153 Loc : constant Source_Ptr := Sloc (N);
2154 Is_Predef : constant Boolean :=
2155 Is_Predefined_File_Name
2156 (Unit_File_Name (Get_Source_Unit (Subp)));
2157 Orig_Bod : constant Node_Id :=
2158 Body_To_Inline (Unit_Declaration_Node (Subp));
2160 Blk : Node_Id;
2161 Decl : Node_Id;
2162 Decls : constant List_Id := New_List;
2163 Exit_Lab : Entity_Id := Empty;
2164 F : Entity_Id;
2165 A : Node_Id;
2166 Lab_Decl : Node_Id;
2167 Lab_Id : Node_Id;
2168 New_A : Node_Id;
2169 Num_Ret : Int := 0;
2170 Ret_Type : Entity_Id;
2172 Targ : Node_Id;
2173 -- The target of the call. If context is an assignment statement then
2174 -- this is the left-hand side of the assignment, else it is a temporary
2175 -- to which the return value is assigned prior to rewriting the call.
2177 Targ1 : Node_Id;
2178 -- A separate target used when the return type is unconstrained
2180 Temp : Entity_Id;
2181 Temp_Typ : Entity_Id;
2183 Return_Object : Entity_Id := Empty;
2184 -- Entity in declaration in an extended_return_statement
2186 Is_Unc : Boolean;
2187 Is_Unc_Decl : Boolean;
2188 -- If the type returned by the function is unconstrained and the call
2189 -- can be inlined, special processing is required.
2191 procedure Make_Exit_Label;
2192 -- Build declaration for exit label to be used in Return statements,
2193 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
2194 -- declaration). Does nothing if Exit_Lab already set.
2196 function Process_Formals (N : Node_Id) return Traverse_Result;
2197 -- Replace occurrence of a formal with the corresponding actual, or the
2198 -- thunk generated for it. Replace a return statement with an assignment
2199 -- to the target of the call, with appropriate conversions if needed.
2201 function Process_Sloc (Nod : Node_Id) return Traverse_Result;
2202 -- If the call being expanded is that of an internal subprogram, set the
2203 -- sloc of the generated block to that of the call itself, so that the
2204 -- expansion is skipped by the "next" command in gdb. Same processing
2205 -- for a subprogram in a predefined file, e.g. Ada.Tags. If
2206 -- Debug_Generated_Code is true, suppress this change to simplify our
2207 -- own development. Same in GNATprove mode, to ensure that warnings and
2208 -- diagnostics point to the proper location.
2210 procedure Reset_Dispatching_Calls (N : Node_Id);
2211 -- In subtree N search for occurrences of dispatching calls that use the
2212 -- Ada 2005 Object.Operation notation and the object is a formal of the
2213 -- inlined subprogram. Reset the entity associated with Operation in all
2214 -- the found occurrences.
2216 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
2217 -- If the function body is a single expression, replace call with
2218 -- expression, else insert block appropriately.
2220 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
2221 -- If procedure body has no local variables, inline body without
2222 -- creating block, otherwise rewrite call with block.
2224 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
2225 -- Determine whether a formal parameter is used only once in Orig_Bod
2227 ---------------------
2228 -- Make_Exit_Label --
2229 ---------------------
2231 procedure Make_Exit_Label is
2232 Lab_Ent : Entity_Id;
2233 begin
2234 if No (Exit_Lab) then
2235 Lab_Ent := Make_Temporary (Loc, 'L');
2236 Lab_Id := New_Occurrence_Of (Lab_Ent, Loc);
2237 Exit_Lab := Make_Label (Loc, Lab_Id);
2238 Lab_Decl :=
2239 Make_Implicit_Label_Declaration (Loc,
2240 Defining_Identifier => Lab_Ent,
2241 Label_Construct => Exit_Lab);
2242 end if;
2243 end Make_Exit_Label;
2245 ---------------------
2246 -- Process_Formals --
2247 ---------------------
2249 function Process_Formals (N : Node_Id) return Traverse_Result is
2250 A : Entity_Id;
2251 E : Entity_Id;
2252 Ret : Node_Id;
2254 begin
2255 if Is_Entity_Name (N) and then Present (Entity (N)) then
2256 E := Entity (N);
2258 if Is_Formal (E) and then Scope (E) = Subp then
2259 A := Renamed_Object (E);
2261 -- Rewrite the occurrence of the formal into an occurrence of
2262 -- the actual. Also establish visibility on the proper view of
2263 -- the actual's subtype for the body's context (if the actual's
2264 -- subtype is private at the call point but its full view is
2265 -- visible to the body, then the inlined tree here must be
2266 -- analyzed with the full view).
2268 if Is_Entity_Name (A) then
2269 Rewrite (N, New_Occurrence_Of (Entity (A), Sloc (N)));
2270 Check_Private_View (N);
2272 elsif Nkind (A) = N_Defining_Identifier then
2273 Rewrite (N, New_Occurrence_Of (A, Sloc (N)));
2274 Check_Private_View (N);
2276 -- Numeric literal
2278 else
2279 Rewrite (N, New_Copy (A));
2280 end if;
2281 end if;
2283 return Skip;
2285 elsif Is_Entity_Name (N)
2286 and then Present (Return_Object)
2287 and then Chars (N) = Chars (Return_Object)
2288 then
2289 -- Occurrence within an extended return statement. The return
2290 -- object is local to the body been inlined, and thus the generic
2291 -- copy is not analyzed yet, so we match by name, and replace it
2292 -- with target of call.
2294 if Nkind (Targ) = N_Defining_Identifier then
2295 Rewrite (N, New_Occurrence_Of (Targ, Loc));
2296 else
2297 Rewrite (N, New_Copy_Tree (Targ));
2298 end if;
2300 return Skip;
2302 elsif Nkind (N) = N_Simple_Return_Statement then
2303 if No (Expression (N)) then
2304 Make_Exit_Label;
2305 Rewrite (N,
2306 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
2308 else
2309 if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
2310 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
2311 then
2312 -- Function body is a single expression. No need for
2313 -- exit label.
2315 null;
2317 else
2318 Num_Ret := Num_Ret + 1;
2319 Make_Exit_Label;
2320 end if;
2322 -- Because of the presence of private types, the views of the
2323 -- expression and the context may be different, so place an
2324 -- unchecked conversion to the context type to avoid spurious
2325 -- errors, e.g. when the expression is a numeric literal and
2326 -- the context is private. If the expression is an aggregate,
2327 -- use a qualified expression, because an aggregate is not a
2328 -- legal argument of a conversion. Ditto for numeric literals,
2329 -- which must be resolved to a specific type.
2331 if Nkind_In (Expression (N), N_Aggregate,
2332 N_Null,
2333 N_Real_Literal,
2334 N_Integer_Literal)
2335 then
2336 Ret :=
2337 Make_Qualified_Expression (Sloc (N),
2338 Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
2339 Expression => Relocate_Node (Expression (N)));
2340 else
2341 Ret :=
2342 Unchecked_Convert_To
2343 (Ret_Type, Relocate_Node (Expression (N)));
2344 end if;
2346 if Nkind (Targ) = N_Defining_Identifier then
2347 Rewrite (N,
2348 Make_Assignment_Statement (Loc,
2349 Name => New_Occurrence_Of (Targ, Loc),
2350 Expression => Ret));
2351 else
2352 Rewrite (N,
2353 Make_Assignment_Statement (Loc,
2354 Name => New_Copy (Targ),
2355 Expression => Ret));
2356 end if;
2358 Set_Assignment_OK (Name (N));
2360 if Present (Exit_Lab) then
2361 Insert_After (N,
2362 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
2363 end if;
2364 end if;
2366 return OK;
2368 -- An extended return becomes a block whose first statement is the
2369 -- assignment of the initial expression of the return object to the
2370 -- target of the call itself.
2372 elsif Nkind (N) = N_Extended_Return_Statement then
2373 declare
2374 Return_Decl : constant Entity_Id :=
2375 First (Return_Object_Declarations (N));
2376 Assign : Node_Id;
2378 begin
2379 Return_Object := Defining_Identifier (Return_Decl);
2381 if Present (Expression (Return_Decl)) then
2382 if Nkind (Targ) = N_Defining_Identifier then
2383 Assign :=
2384 Make_Assignment_Statement (Loc,
2385 Name => New_Occurrence_Of (Targ, Loc),
2386 Expression => Expression (Return_Decl));
2387 else
2388 Assign :=
2389 Make_Assignment_Statement (Loc,
2390 Name => New_Copy (Targ),
2391 Expression => Expression (Return_Decl));
2392 end if;
2394 Set_Assignment_OK (Name (Assign));
2396 if No (Handled_Statement_Sequence (N)) then
2397 Set_Handled_Statement_Sequence (N,
2398 Make_Handled_Sequence_Of_Statements (Loc,
2399 Statements => New_List));
2400 end if;
2402 Prepend (Assign,
2403 Statements (Handled_Statement_Sequence (N)));
2404 end if;
2406 Rewrite (N,
2407 Make_Block_Statement (Loc,
2408 Handled_Statement_Sequence =>
2409 Handled_Statement_Sequence (N)));
2411 return OK;
2412 end;
2414 -- Remove pragma Unreferenced since it may refer to formals that
2415 -- are not visible in the inlined body, and in any case we will
2416 -- not be posting warnings on the inlined body so it is unneeded.
2418 elsif Nkind (N) = N_Pragma
2419 and then Pragma_Name (N) = Name_Unreferenced
2420 then
2421 Rewrite (N, Make_Null_Statement (Sloc (N)));
2422 return OK;
2424 else
2425 return OK;
2426 end if;
2427 end Process_Formals;
2429 procedure Replace_Formals is new Traverse_Proc (Process_Formals);
2431 ------------------
2432 -- Process_Sloc --
2433 ------------------
2435 function Process_Sloc (Nod : Node_Id) return Traverse_Result is
2436 begin
2437 if not Debug_Generated_Code then
2438 Set_Sloc (Nod, Sloc (N));
2439 Set_Comes_From_Source (Nod, False);
2440 end if;
2442 return OK;
2443 end Process_Sloc;
2445 procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
2447 ------------------------------
2448 -- Reset_Dispatching_Calls --
2449 ------------------------------
2451 procedure Reset_Dispatching_Calls (N : Node_Id) is
2453 function Do_Reset (N : Node_Id) return Traverse_Result;
2454 -- Comment required ???
2456 --------------
2457 -- Do_Reset --
2458 --------------
2460 function Do_Reset (N : Node_Id) return Traverse_Result is
2461 begin
2462 if Nkind (N) = N_Procedure_Call_Statement
2463 and then Nkind (Name (N)) = N_Selected_Component
2464 and then Nkind (Prefix (Name (N))) = N_Identifier
2465 and then Is_Formal (Entity (Prefix (Name (N))))
2466 and then Is_Dispatching_Operation
2467 (Entity (Selector_Name (Name (N))))
2468 then
2469 Set_Entity (Selector_Name (Name (N)), Empty);
2470 end if;
2472 return OK;
2473 end Do_Reset;
2475 function Do_Reset_Calls is new Traverse_Func (Do_Reset);
2477 -- Local variables
2479 Dummy : constant Traverse_Result := Do_Reset_Calls (N);
2480 pragma Unreferenced (Dummy);
2482 -- Start of processing for Reset_Dispatching_Calls
2484 begin
2485 null;
2486 end Reset_Dispatching_Calls;
2488 ---------------------------
2489 -- Rewrite_Function_Call --
2490 ---------------------------
2492 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
2493 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
2494 Fst : constant Node_Id := First (Statements (HSS));
2496 begin
2497 -- Optimize simple case: function body is a single return statement,
2498 -- which has been expanded into an assignment.
2500 if Is_Empty_List (Declarations (Blk))
2501 and then Nkind (Fst) = N_Assignment_Statement
2502 and then No (Next (Fst))
2503 then
2504 -- The function call may have been rewritten as the temporary
2505 -- that holds the result of the call, in which case remove the
2506 -- now useless declaration.
2508 if Nkind (N) = N_Identifier
2509 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2510 then
2511 Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
2512 end if;
2514 Rewrite (N, Expression (Fst));
2516 elsif Nkind (N) = N_Identifier
2517 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2518 then
2519 -- The block assigns the result of the call to the temporary
2521 Insert_After (Parent (Entity (N)), Blk);
2523 -- If the context is an assignment, and the left-hand side is free of
2524 -- side-effects, the replacement is also safe.
2525 -- Can this be generalized further???
2527 elsif Nkind (Parent (N)) = N_Assignment_Statement
2528 and then
2529 (Is_Entity_Name (Name (Parent (N)))
2530 or else
2531 (Nkind (Name (Parent (N))) = N_Explicit_Dereference
2532 and then Is_Entity_Name (Prefix (Name (Parent (N)))))
2534 or else
2535 (Nkind (Name (Parent (N))) = N_Selected_Component
2536 and then Is_Entity_Name (Prefix (Name (Parent (N))))))
2537 then
2538 -- Replace assignment with the block
2540 declare
2541 Original_Assignment : constant Node_Id := Parent (N);
2543 begin
2544 -- Preserve the original assignment node to keep the complete
2545 -- assignment subtree consistent enough for Analyze_Assignment
2546 -- to proceed (specifically, the original Lhs node must still
2547 -- have an assignment statement as its parent).
2549 -- We cannot rely on Original_Node to go back from the block
2550 -- node to the assignment node, because the assignment might
2551 -- already be a rewrite substitution.
2553 Discard_Node (Relocate_Node (Original_Assignment));
2554 Rewrite (Original_Assignment, Blk);
2555 end;
2557 elsif Nkind (Parent (N)) = N_Object_Declaration then
2559 -- A call to a function which returns an unconstrained type
2560 -- found in the expression initializing an object-declaration is
2561 -- expanded into a procedure call which must be added after the
2562 -- object declaration.
2564 if Is_Unc_Decl and Back_End_Inlining then
2565 Insert_Action_After (Parent (N), Blk);
2566 else
2567 Set_Expression (Parent (N), Empty);
2568 Insert_After (Parent (N), Blk);
2569 end if;
2571 elsif Is_Unc and then not Back_End_Inlining then
2572 Insert_Before (Parent (N), Blk);
2573 end if;
2574 end Rewrite_Function_Call;
2576 ----------------------------
2577 -- Rewrite_Procedure_Call --
2578 ----------------------------
2580 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
2581 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
2583 begin
2584 -- If there is a transient scope for N, this will be the scope of the
2585 -- actions for N, and the statements in Blk need to be within this
2586 -- scope. For example, they need to have visibility on the constant
2587 -- declarations created for the formals.
2589 -- If N needs no transient scope, and if there are no declarations in
2590 -- the inlined body, we can do a little optimization and insert the
2591 -- statements for the body directly after N, and rewrite N to a
2592 -- null statement, instead of rewriting N into a full-blown block
2593 -- statement.
2595 if not Scope_Is_Transient
2596 and then Is_Empty_List (Declarations (Blk))
2597 then
2598 Insert_List_After (N, Statements (HSS));
2599 Rewrite (N, Make_Null_Statement (Loc));
2600 else
2601 Rewrite (N, Blk);
2602 end if;
2603 end Rewrite_Procedure_Call;
2605 -------------------------
2606 -- Formal_Is_Used_Once --
2607 -------------------------
2609 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
2610 Use_Counter : Int := 0;
2612 function Count_Uses (N : Node_Id) return Traverse_Result;
2613 -- Traverse the tree and count the uses of the formal parameter.
2614 -- In this case, for optimization purposes, we do not need to
2615 -- continue the traversal once more than one use is encountered.
2617 ----------------
2618 -- Count_Uses --
2619 ----------------
2621 function Count_Uses (N : Node_Id) return Traverse_Result is
2622 begin
2623 -- The original node is an identifier
2625 if Nkind (N) = N_Identifier
2626 and then Present (Entity (N))
2628 -- Original node's entity points to the one in the copied body
2630 and then Nkind (Entity (N)) = N_Identifier
2631 and then Present (Entity (Entity (N)))
2633 -- The entity of the copied node is the formal parameter
2635 and then Entity (Entity (N)) = Formal
2636 then
2637 Use_Counter := Use_Counter + 1;
2639 if Use_Counter > 1 then
2641 -- Denote more than one use and abandon the traversal
2643 Use_Counter := 2;
2644 return Abandon;
2646 end if;
2647 end if;
2649 return OK;
2650 end Count_Uses;
2652 procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
2654 -- Start of processing for Formal_Is_Used_Once
2656 begin
2657 Count_Formal_Uses (Orig_Bod);
2658 return Use_Counter = 1;
2659 end Formal_Is_Used_Once;
2661 -- Start of processing for Expand_Inlined_Call
2663 begin
2664 -- Initializations for old/new semantics
2666 if not Back_End_Inlining then
2667 Is_Unc := Is_Array_Type (Etype (Subp))
2668 and then not Is_Constrained (Etype (Subp));
2669 Is_Unc_Decl := False;
2670 else
2671 Is_Unc := Returns_Unconstrained_Type (Subp)
2672 and then Optimization_Level > 0;
2673 Is_Unc_Decl := Nkind (Parent (N)) = N_Object_Declaration
2674 and then Is_Unc;
2675 end if;
2677 -- Check for an illegal attempt to inline a recursive procedure. If the
2678 -- subprogram has parameters this is detected when trying to supply a
2679 -- binding for parameters that already have one. For parameterless
2680 -- subprograms this must be done explicitly.
2682 if In_Open_Scopes (Subp) then
2683 Error_Msg_N ("call to recursive subprogram cannot be inlined??", N);
2684 Set_Is_Inlined (Subp, False);
2686 -- In GNATprove mode, issue a warning, and indicate that the
2687 -- subprogram is not always inlined by setting flag Is_Inlined_Always
2688 -- to False.
2690 if GNATprove_Mode then
2691 Set_Is_Inlined_Always (Subp, False);
2692 end if;
2694 return;
2696 -- Skip inlining if this is not a true inlining since the attribute
2697 -- Body_To_Inline is also set for renamings (see sinfo.ads). For a
2698 -- true inlining, Orig_Bod has code rather than being an entity.
2700 elsif Nkind (Orig_Bod) in N_Entity then
2701 return;
2703 -- Skip inlining if the function returns an unconstrained type using
2704 -- an extended return statement since this part of the new inlining
2705 -- model which is not yet supported by the current implementation. ???
2707 elsif Is_Unc
2708 and then
2709 Nkind (First (Statements (Handled_Statement_Sequence (Orig_Bod))))
2710 = N_Extended_Return_Statement
2711 and then not Back_End_Inlining
2712 then
2713 return;
2714 end if;
2716 if Nkind (Orig_Bod) = N_Defining_Identifier
2717 or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
2718 then
2719 -- Subprogram is renaming_as_body. Calls occurring after the renaming
2720 -- can be replaced with calls to the renamed entity directly, because
2721 -- the subprograms are subtype conformant. If the renamed subprogram
2722 -- is an inherited operation, we must redo the expansion because
2723 -- implicit conversions may be needed. Similarly, if the renamed
2724 -- entity is inlined, expand the call for further optimizations.
2726 Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
2728 if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
2729 Expand_Call (N);
2730 end if;
2732 return;
2733 end if;
2735 -- Register the call in the list of inlined calls
2737 Append_New_Elmt (N, To => Inlined_Calls);
2739 -- Use generic machinery to copy body of inlined subprogram, as if it
2740 -- were an instantiation, resetting source locations appropriately, so
2741 -- that nested inlined calls appear in the main unit.
2743 Save_Env (Subp, Empty);
2744 Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
2746 -- Old semantics
2748 if not Back_End_Inlining then
2749 declare
2750 Bod : Node_Id;
2752 begin
2753 Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
2754 Blk :=
2755 Make_Block_Statement (Loc,
2756 Declarations => Declarations (Bod),
2757 Handled_Statement_Sequence =>
2758 Handled_Statement_Sequence (Bod));
2760 if No (Declarations (Bod)) then
2761 Set_Declarations (Blk, New_List);
2762 end if;
2764 -- For the unconstrained case, capture the name of the local
2765 -- variable that holds the result. This must be the first
2766 -- declaration in the block, because its bounds cannot depend
2767 -- on local variables. Otherwise there is no way to declare the
2768 -- result outside of the block. Needless to say, in general the
2769 -- bounds will depend on the actuals in the call.
2771 -- If the context is an assignment statement, as is the case
2772 -- for the expansion of an extended return, the left-hand side
2773 -- provides bounds even if the return type is unconstrained.
2775 if Is_Unc then
2776 declare
2777 First_Decl : Node_Id;
2779 begin
2780 First_Decl := First (Declarations (Blk));
2782 if Nkind (First_Decl) /= N_Object_Declaration then
2783 return;
2784 end if;
2786 if Nkind (Parent (N)) /= N_Assignment_Statement then
2787 Targ1 := Defining_Identifier (First_Decl);
2788 else
2789 Targ1 := Name (Parent (N));
2790 end if;
2791 end;
2792 end if;
2793 end;
2795 -- New semantics
2797 else
2798 declare
2799 Bod : Node_Id;
2801 begin
2802 -- General case
2804 if not Is_Unc then
2805 Bod :=
2806 Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
2807 Blk :=
2808 Make_Block_Statement (Loc,
2809 Declarations => Declarations (Bod),
2810 Handled_Statement_Sequence =>
2811 Handled_Statement_Sequence (Bod));
2813 -- Inline a call to a function that returns an unconstrained type.
2814 -- The semantic analyzer checked that frontend-inlined functions
2815 -- returning unconstrained types have no declarations and have
2816 -- a single extended return statement. As part of its processing
2817 -- the function was split in two subprograms: a procedure P and
2818 -- a function F that has a block with a call to procedure P (see
2819 -- Split_Unconstrained_Function).
2821 else
2822 pragma Assert
2823 (Nkind
2824 (First
2825 (Statements (Handled_Statement_Sequence (Orig_Bod)))) =
2826 N_Block_Statement);
2828 declare
2829 Blk_Stmt : constant Node_Id :=
2830 First (Statements (Handled_Statement_Sequence (Orig_Bod)));
2831 First_Stmt : constant Node_Id :=
2832 First (Statements (Handled_Statement_Sequence (Blk_Stmt)));
2833 Second_Stmt : constant Node_Id := Next (First_Stmt);
2835 begin
2836 pragma Assert
2837 (Nkind (First_Stmt) = N_Procedure_Call_Statement
2838 and then Nkind (Second_Stmt) = N_Simple_Return_Statement
2839 and then No (Next (Second_Stmt)));
2841 Bod :=
2842 Copy_Generic_Node
2843 (First
2844 (Statements (Handled_Statement_Sequence (Orig_Bod))),
2845 Empty, Instantiating => True);
2846 Blk := Bod;
2848 -- Capture the name of the local variable that holds the
2849 -- result. This must be the first declaration in the block,
2850 -- because its bounds cannot depend on local variables.
2851 -- Otherwise there is no way to declare the result outside
2852 -- of the block. Needless to say, in general the bounds will
2853 -- depend on the actuals in the call.
2855 if Nkind (Parent (N)) /= N_Assignment_Statement then
2856 Targ1 := Defining_Identifier (First (Declarations (Blk)));
2858 -- If the context is an assignment statement, as is the case
2859 -- for the expansion of an extended return, the left-hand
2860 -- side provides bounds even if the return type is
2861 -- unconstrained.
2863 else
2864 Targ1 := Name (Parent (N));
2865 end if;
2866 end;
2867 end if;
2869 if No (Declarations (Bod)) then
2870 Set_Declarations (Blk, New_List);
2871 end if;
2872 end;
2873 end if;
2875 -- If this is a derived function, establish the proper return type
2877 if Present (Orig_Subp) and then Orig_Subp /= Subp then
2878 Ret_Type := Etype (Orig_Subp);
2879 else
2880 Ret_Type := Etype (Subp);
2881 end if;
2883 -- Create temporaries for the actuals that are expressions, or that are
2884 -- scalars and require copying to preserve semantics.
2886 F := First_Formal (Subp);
2887 A := First_Actual (N);
2888 while Present (F) loop
2889 if Present (Renamed_Object (F)) then
2891 -- If expander is active, it is an error to try to inline a
2892 -- recursive program. In GNATprove mode, just indicate that the
2893 -- inlining will not happen, and mark the subprogram as not always
2894 -- inlined.
2896 if GNATprove_Mode then
2897 Cannot_Inline
2898 ("cannot inline call to recursive subprogram?", N, Subp);
2899 Set_Is_Inlined_Always (Subp, False);
2900 else
2901 Error_Msg_N
2902 ("cannot inline call to recursive subprogram", N);
2903 end if;
2905 return;
2906 end if;
2908 -- Reset Last_Assignment for any parameters of mode out or in out, to
2909 -- prevent spurious warnings about overwriting for assignments to the
2910 -- formal in the inlined code.
2912 if Is_Entity_Name (A) and then Ekind (F) /= E_In_Parameter then
2913 Set_Last_Assignment (Entity (A), Empty);
2914 end if;
2916 -- If the argument may be a controlling argument in a call within
2917 -- the inlined body, we must preserve its classwide nature to insure
2918 -- that dynamic dispatching take place subsequently. If the formal
2919 -- has a constraint it must be preserved to retain the semantics of
2920 -- the body.
2922 if Is_Class_Wide_Type (Etype (F))
2923 or else (Is_Access_Type (Etype (F))
2924 and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
2925 then
2926 Temp_Typ := Etype (F);
2928 elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
2929 and then Etype (F) /= Base_Type (Etype (F))
2930 then
2931 Temp_Typ := Etype (F);
2932 else
2933 Temp_Typ := Etype (A);
2934 end if;
2936 -- If the actual is a simple name or a literal, no need to
2937 -- create a temporary, object can be used directly.
2939 -- If the actual is a literal and the formal has its address taken,
2940 -- we cannot pass the literal itself as an argument, so its value
2941 -- must be captured in a temporary.
2943 if (Is_Entity_Name (A)
2944 and then
2945 (not Is_Scalar_Type (Etype (A))
2946 or else Ekind (Entity (A)) = E_Enumeration_Literal))
2948 -- When the actual is an identifier and the corresponding formal is
2949 -- used only once in the original body, the formal can be substituted
2950 -- directly with the actual parameter.
2952 or else (Nkind (A) = N_Identifier
2953 and then Formal_Is_Used_Once (F))
2955 or else
2956 (Nkind_In (A, N_Real_Literal,
2957 N_Integer_Literal,
2958 N_Character_Literal)
2959 and then not Address_Taken (F))
2960 then
2961 if Etype (F) /= Etype (A) then
2962 Set_Renamed_Object
2963 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
2964 else
2965 Set_Renamed_Object (F, A);
2966 end if;
2968 else
2969 Temp := Make_Temporary (Loc, 'C');
2971 -- If the actual for an in/in-out parameter is a view conversion,
2972 -- make it into an unchecked conversion, given that an untagged
2973 -- type conversion is not a proper object for a renaming.
2975 -- In-out conversions that involve real conversions have already
2976 -- been transformed in Expand_Actuals.
2978 if Nkind (A) = N_Type_Conversion
2979 and then Ekind (F) /= E_In_Parameter
2980 then
2981 New_A :=
2982 Make_Unchecked_Type_Conversion (Loc,
2983 Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
2984 Expression => Relocate_Node (Expression (A)));
2986 elsif Etype (F) /= Etype (A) then
2987 New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
2988 Temp_Typ := Etype (F);
2990 else
2991 New_A := Relocate_Node (A);
2992 end if;
2994 Set_Sloc (New_A, Sloc (N));
2996 -- If the actual has a by-reference type, it cannot be copied,
2997 -- so its value is captured in a renaming declaration. Otherwise
2998 -- declare a local constant initialized with the actual.
3000 -- We also use a renaming declaration for expressions of an array
3001 -- type that is not bit-packed, both for efficiency reasons and to
3002 -- respect the semantics of the call: in most cases the original
3003 -- call will pass the parameter by reference, and thus the inlined
3004 -- code will have the same semantics.
3006 -- Finally, we need a renaming declaration in the case of limited
3007 -- types for which initialization cannot be by copy either.
3009 if Ekind (F) = E_In_Parameter
3010 and then not Is_By_Reference_Type (Etype (A))
3011 and then not Is_Limited_Type (Etype (A))
3012 and then
3013 (not Is_Array_Type (Etype (A))
3014 or else not Is_Object_Reference (A)
3015 or else Is_Bit_Packed_Array (Etype (A)))
3016 then
3017 Decl :=
3018 Make_Object_Declaration (Loc,
3019 Defining_Identifier => Temp,
3020 Constant_Present => True,
3021 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3022 Expression => New_A);
3023 else
3024 Decl :=
3025 Make_Object_Renaming_Declaration (Loc,
3026 Defining_Identifier => Temp,
3027 Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
3028 Name => New_A);
3029 end if;
3031 Append (Decl, Decls);
3032 Set_Renamed_Object (F, Temp);
3033 end if;
3035 Next_Formal (F);
3036 Next_Actual (A);
3037 end loop;
3039 -- Establish target of function call. If context is not assignment or
3040 -- declaration, create a temporary as a target. The declaration for the
3041 -- temporary may be subsequently optimized away if the body is a single
3042 -- expression, or if the left-hand side of the assignment is simple
3043 -- enough, i.e. an entity or an explicit dereference of one.
3045 if Ekind (Subp) = E_Function then
3046 if Nkind (Parent (N)) = N_Assignment_Statement
3047 and then Is_Entity_Name (Name (Parent (N)))
3048 then
3049 Targ := Name (Parent (N));
3051 elsif Nkind (Parent (N)) = N_Assignment_Statement
3052 and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
3053 and then Is_Entity_Name (Prefix (Name (Parent (N))))
3054 then
3055 Targ := Name (Parent (N));
3057 elsif Nkind (Parent (N)) = N_Assignment_Statement
3058 and then Nkind (Name (Parent (N))) = N_Selected_Component
3059 and then Is_Entity_Name (Prefix (Name (Parent (N))))
3060 then
3061 Targ := New_Copy_Tree (Name (Parent (N)));
3063 elsif Nkind (Parent (N)) = N_Object_Declaration
3064 and then Is_Limited_Type (Etype (Subp))
3065 then
3066 Targ := Defining_Identifier (Parent (N));
3068 -- New semantics: In an object declaration avoid an extra copy
3069 -- of the result of a call to an inlined function that returns
3070 -- an unconstrained type
3072 elsif Back_End_Inlining
3073 and then Nkind (Parent (N)) = N_Object_Declaration
3074 and then Is_Unc
3075 then
3076 Targ := Defining_Identifier (Parent (N));
3078 else
3079 -- Replace call with temporary and create its declaration
3081 Temp := Make_Temporary (Loc, 'C');
3082 Set_Is_Internal (Temp);
3084 -- For the unconstrained case, the generated temporary has the
3085 -- same constrained declaration as the result variable. It may
3086 -- eventually be possible to remove that temporary and use the
3087 -- result variable directly.
3089 if Is_Unc and then Nkind (Parent (N)) /= N_Assignment_Statement
3090 then
3091 Decl :=
3092 Make_Object_Declaration (Loc,
3093 Defining_Identifier => Temp,
3094 Object_Definition =>
3095 New_Copy_Tree (Object_Definition (Parent (Targ1))));
3097 Replace_Formals (Decl);
3099 else
3100 Decl :=
3101 Make_Object_Declaration (Loc,
3102 Defining_Identifier => Temp,
3103 Object_Definition => New_Occurrence_Of (Ret_Type, Loc));
3105 Set_Etype (Temp, Ret_Type);
3106 end if;
3108 Set_No_Initialization (Decl);
3109 Append (Decl, Decls);
3110 Rewrite (N, New_Occurrence_Of (Temp, Loc));
3111 Targ := Temp;
3112 end if;
3113 end if;
3115 Insert_Actions (N, Decls);
3117 if Is_Unc_Decl then
3119 -- Special management for inlining a call to a function that returns
3120 -- an unconstrained type and initializes an object declaration: we
3121 -- avoid generating undesired extra calls and goto statements.
3123 -- Given:
3124 -- function Func (...) return ...
3125 -- begin
3126 -- declare
3127 -- Result : String (1 .. 4);
3128 -- begin
3129 -- Proc (Result, ...);
3130 -- return Result;
3131 -- end;
3132 -- end F;
3134 -- Result : String := Func (...);
3136 -- Replace this object declaration by:
3138 -- Result : String (1 .. 4);
3139 -- Proc (Result, ...);
3141 Remove_Homonym (Targ);
3143 Decl :=
3144 Make_Object_Declaration
3145 (Loc,
3146 Defining_Identifier => Targ,
3147 Object_Definition =>
3148 New_Copy_Tree (Object_Definition (Parent (Targ1))));
3149 Replace_Formals (Decl);
3150 Rewrite (Parent (N), Decl);
3151 Analyze (Parent (N));
3153 -- Avoid spurious warnings since we know that this declaration is
3154 -- referenced by the procedure call.
3156 Set_Never_Set_In_Source (Targ, False);
3158 -- Remove the local declaration of the extended return stmt from the
3159 -- inlined code
3161 Remove (Parent (Targ1));
3163 -- Update the reference to the result (since we have rewriten the
3164 -- object declaration)
3166 declare
3167 Blk_Call_Stmt : Node_Id;
3169 begin
3170 -- Capture the call to the procedure
3172 Blk_Call_Stmt :=
3173 First (Statements (Handled_Statement_Sequence (Blk)));
3174 pragma Assert
3175 (Nkind (Blk_Call_Stmt) = N_Procedure_Call_Statement);
3177 Remove (First (Parameter_Associations (Blk_Call_Stmt)));
3178 Prepend_To (Parameter_Associations (Blk_Call_Stmt),
3179 New_Occurrence_Of (Targ, Loc));
3180 end;
3182 -- Remove the return statement
3184 pragma Assert
3185 (Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3186 N_Simple_Return_Statement);
3188 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3189 end if;
3191 -- Traverse the tree and replace formals with actuals or their thunks.
3192 -- Attach block to tree before analysis and rewriting.
3194 Replace_Formals (Blk);
3195 Set_Parent (Blk, N);
3197 if GNATprove_Mode then
3198 null;
3200 elsif not Comes_From_Source (Subp) or else Is_Predef then
3201 Reset_Slocs (Blk);
3202 end if;
3204 if Is_Unc_Decl then
3206 -- No action needed since return statement has been already removed
3208 null;
3210 elsif Present (Exit_Lab) then
3212 -- If the body was a single expression, the single return statement
3213 -- and the corresponding label are useless.
3215 if Num_Ret = 1
3216 and then
3217 Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3218 N_Goto_Statement
3219 then
3220 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3221 else
3222 Append (Lab_Decl, (Declarations (Blk)));
3223 Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
3224 end if;
3225 end if;
3227 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
3228 -- on conflicting private views that Gigi would ignore. If this is a
3229 -- predefined unit, analyze with checks off, as is done in the non-
3230 -- inlined run-time units.
3232 declare
3233 I_Flag : constant Boolean := In_Inlined_Body;
3235 begin
3236 In_Inlined_Body := True;
3238 if Is_Predef then
3239 declare
3240 Style : constant Boolean := Style_Check;
3242 begin
3243 Style_Check := False;
3245 -- Search for dispatching calls that use the Object.Operation
3246 -- notation using an Object that is a parameter of the inlined
3247 -- function. We reset the decoration of Operation to force
3248 -- the reanalysis of the inlined dispatching call because
3249 -- the actual object has been inlined.
3251 Reset_Dispatching_Calls (Blk);
3253 Analyze (Blk, Suppress => All_Checks);
3254 Style_Check := Style;
3255 end;
3257 else
3258 Analyze (Blk);
3259 end if;
3261 In_Inlined_Body := I_Flag;
3262 end;
3264 if Ekind (Subp) = E_Procedure then
3265 Rewrite_Procedure_Call (N, Blk);
3267 else
3268 Rewrite_Function_Call (N, Blk);
3270 if Is_Unc_Decl then
3271 null;
3273 -- For the unconstrained case, the replacement of the call has been
3274 -- made prior to the complete analysis of the generated declarations.
3275 -- Propagate the proper type now.
3277 elsif Is_Unc then
3278 if Nkind (N) = N_Identifier then
3279 Set_Etype (N, Etype (Entity (N)));
3280 else
3281 Set_Etype (N, Etype (Targ1));
3282 end if;
3283 end if;
3284 end if;
3286 Restore_Env;
3288 -- Cleanup mapping between formals and actuals for other expansions
3290 F := First_Formal (Subp);
3291 while Present (F) loop
3292 Set_Renamed_Object (F, Empty);
3293 Next_Formal (F);
3294 end loop;
3295 end Expand_Inlined_Call;
3297 --------------------------
3298 -- Get_Code_Unit_Entity --
3299 --------------------------
3301 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id is
3302 Unit : Entity_Id := Cunit_Entity (Get_Code_Unit (E));
3304 begin
3305 if Ekind (Unit) = E_Package_Body then
3306 Unit := Spec_Entity (Unit);
3307 end if;
3309 return Unit;
3310 end Get_Code_Unit_Entity;
3312 ------------------------------
3313 -- Has_Excluded_Declaration --
3314 ------------------------------
3316 function Has_Excluded_Declaration
3317 (Subp : Entity_Id;
3318 Decls : List_Id) return Boolean
3320 D : Node_Id;
3322 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
3323 -- Nested subprograms make a given body ineligible for inlining, but
3324 -- we make an exception for instantiations of unchecked conversion.
3325 -- The body has not been analyzed yet, so check the name, and verify
3326 -- that the visible entity with that name is the predefined unit.
3328 -----------------------------
3329 -- Is_Unchecked_Conversion --
3330 -----------------------------
3332 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
3333 Id : constant Node_Id := Name (D);
3334 Conv : Entity_Id;
3336 begin
3337 if Nkind (Id) = N_Identifier
3338 and then Chars (Id) = Name_Unchecked_Conversion
3339 then
3340 Conv := Current_Entity (Id);
3342 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
3343 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3344 then
3345 Conv := Current_Entity (Selector_Name (Id));
3346 else
3347 return False;
3348 end if;
3350 return Present (Conv)
3351 and then Is_Predefined_File_Name
3352 (Unit_File_Name (Get_Source_Unit (Conv)))
3353 and then Is_Intrinsic_Subprogram (Conv);
3354 end Is_Unchecked_Conversion;
3356 -- Start of processing for Has_Excluded_Declaration
3358 begin
3359 -- No action needed if the check is not needed
3361 if not Check_Inlining_Restrictions then
3362 return False;
3363 end if;
3365 D := First (Decls);
3366 while Present (D) loop
3368 -- First declarations universally excluded
3370 if Nkind (D) = N_Package_Declaration then
3371 Cannot_Inline
3372 ("cannot inline & (nested package declaration)?",
3373 D, Subp);
3374 return True;
3376 elsif Nkind (D) = N_Package_Instantiation then
3377 Cannot_Inline
3378 ("cannot inline & (nested package instantiation)?",
3379 D, Subp);
3380 return True;
3381 end if;
3383 -- Then declarations excluded only for front end inlining
3385 if Back_End_Inlining then
3386 null;
3388 elsif Nkind (D) = N_Task_Type_Declaration
3389 or else Nkind (D) = N_Single_Task_Declaration
3390 then
3391 Cannot_Inline
3392 ("cannot inline & (nested task type declaration)?",
3393 D, Subp);
3394 return True;
3396 elsif Nkind (D) = N_Protected_Type_Declaration
3397 or else Nkind (D) = N_Single_Protected_Declaration
3398 then
3399 Cannot_Inline
3400 ("cannot inline & (nested protected type declaration)?",
3401 D, Subp);
3402 return True;
3404 elsif Nkind (D) = N_Subprogram_Body then
3405 Cannot_Inline
3406 ("cannot inline & (nested subprogram)?",
3407 D, Subp);
3408 return True;
3410 elsif Nkind (D) = N_Function_Instantiation
3411 and then not Is_Unchecked_Conversion (D)
3412 then
3413 Cannot_Inline
3414 ("cannot inline & (nested function instantiation)?",
3415 D, Subp);
3416 return True;
3418 elsif Nkind (D) = N_Procedure_Instantiation then
3419 Cannot_Inline
3420 ("cannot inline & (nested procedure instantiation)?",
3421 D, Subp);
3422 return True;
3423 end if;
3425 Next (D);
3426 end loop;
3428 return False;
3429 end Has_Excluded_Declaration;
3431 ----------------------------
3432 -- Has_Excluded_Statement --
3433 ----------------------------
3435 function Has_Excluded_Statement
3436 (Subp : Entity_Id;
3437 Stats : List_Id) return Boolean
3439 S : Node_Id;
3440 E : Node_Id;
3442 begin
3443 -- No action needed if the check is not needed
3445 if not Check_Inlining_Restrictions then
3446 return False;
3447 end if;
3449 S := First (Stats);
3450 while Present (S) loop
3451 if Nkind_In (S, N_Abort_Statement,
3452 N_Asynchronous_Select,
3453 N_Conditional_Entry_Call,
3454 N_Delay_Relative_Statement,
3455 N_Delay_Until_Statement,
3456 N_Selective_Accept,
3457 N_Timed_Entry_Call)
3458 then
3459 Cannot_Inline
3460 ("cannot inline & (non-allowed statement)?", S, Subp);
3461 return True;
3463 elsif Nkind (S) = N_Block_Statement then
3464 if Present (Declarations (S))
3465 and then Has_Excluded_Declaration (Subp, Declarations (S))
3466 then
3467 return True;
3469 elsif Present (Handled_Statement_Sequence (S)) then
3470 if not Back_End_Inlining
3471 and then
3472 Present
3473 (Exception_Handlers (Handled_Statement_Sequence (S)))
3474 then
3475 Cannot_Inline
3476 ("cannot inline& (exception handler)?",
3477 First (Exception_Handlers
3478 (Handled_Statement_Sequence (S))),
3479 Subp);
3480 return True;
3482 elsif Has_Excluded_Statement
3483 (Subp, Statements (Handled_Statement_Sequence (S)))
3484 then
3485 return True;
3486 end if;
3487 end if;
3489 elsif Nkind (S) = N_Case_Statement then
3490 E := First (Alternatives (S));
3491 while Present (E) loop
3492 if Has_Excluded_Statement (Subp, Statements (E)) then
3493 return True;
3494 end if;
3496 Next (E);
3497 end loop;
3499 elsif Nkind (S) = N_If_Statement then
3500 if Has_Excluded_Statement (Subp, Then_Statements (S)) then
3501 return True;
3502 end if;
3504 if Present (Elsif_Parts (S)) then
3505 E := First (Elsif_Parts (S));
3506 while Present (E) loop
3507 if Has_Excluded_Statement (Subp, Then_Statements (E)) then
3508 return True;
3509 end if;
3511 Next (E);
3512 end loop;
3513 end if;
3515 if Present (Else_Statements (S))
3516 and then Has_Excluded_Statement (Subp, Else_Statements (S))
3517 then
3518 return True;
3519 end if;
3521 elsif Nkind (S) = N_Loop_Statement
3522 and then Has_Excluded_Statement (Subp, Statements (S))
3523 then
3524 return True;
3526 elsif Nkind (S) = N_Extended_Return_Statement then
3527 if Present (Handled_Statement_Sequence (S))
3528 and then
3529 Has_Excluded_Statement
3530 (Subp, Statements (Handled_Statement_Sequence (S)))
3531 then
3532 return True;
3534 elsif not Back_End_Inlining
3535 and then Present (Handled_Statement_Sequence (S))
3536 and then
3537 Present (Exception_Handlers
3538 (Handled_Statement_Sequence (S)))
3539 then
3540 Cannot_Inline
3541 ("cannot inline& (exception handler)?",
3542 First (Exception_Handlers (Handled_Statement_Sequence (S))),
3543 Subp);
3544 return True;
3545 end if;
3546 end if;
3548 Next (S);
3549 end loop;
3551 return False;
3552 end Has_Excluded_Statement;
3554 --------------------------
3555 -- Has_Initialized_Type --
3556 --------------------------
3558 function Has_Initialized_Type (E : Entity_Id) return Boolean is
3559 E_Body : constant Node_Id := Get_Subprogram_Body (E);
3560 Decl : Node_Id;
3562 begin
3563 if No (E_Body) then -- imported subprogram
3564 return False;
3566 else
3567 Decl := First (Declarations (E_Body));
3568 while Present (Decl) loop
3569 if Nkind (Decl) = N_Full_Type_Declaration
3570 and then Present (Init_Proc (Defining_Identifier (Decl)))
3571 then
3572 return True;
3573 end if;
3575 Next (Decl);
3576 end loop;
3577 end if;
3579 return False;
3580 end Has_Initialized_Type;
3582 -----------------------
3583 -- Has_Single_Return --
3584 -----------------------
3586 function Has_Single_Return (N : Node_Id) return Boolean is
3587 Return_Statement : Node_Id := Empty;
3589 function Check_Return (N : Node_Id) return Traverse_Result;
3591 ------------------
3592 -- Check_Return --
3593 ------------------
3595 function Check_Return (N : Node_Id) return Traverse_Result is
3596 begin
3597 if Nkind (N) = N_Simple_Return_Statement then
3598 if Present (Expression (N))
3599 and then Is_Entity_Name (Expression (N))
3600 then
3601 if No (Return_Statement) then
3602 Return_Statement := N;
3603 return OK;
3605 elsif Chars (Expression (N)) =
3606 Chars (Expression (Return_Statement))
3607 then
3608 return OK;
3610 else
3611 return Abandon;
3612 end if;
3614 -- A return statement within an extended return is a noop
3615 -- after inlining.
3617 elsif No (Expression (N))
3618 and then
3619 Nkind (Parent (Parent (N))) = N_Extended_Return_Statement
3620 then
3621 return OK;
3623 else
3624 -- Expression has wrong form
3626 return Abandon;
3627 end if;
3629 -- We can only inline a build-in-place function if it has a single
3630 -- extended return.
3632 elsif Nkind (N) = N_Extended_Return_Statement then
3633 if No (Return_Statement) then
3634 Return_Statement := N;
3635 return OK;
3637 else
3638 return Abandon;
3639 end if;
3641 else
3642 return OK;
3643 end if;
3644 end Check_Return;
3646 function Check_All_Returns is new Traverse_Func (Check_Return);
3648 -- Start of processing for Has_Single_Return
3650 begin
3651 if Check_All_Returns (N) /= OK then
3652 return False;
3654 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
3655 return True;
3657 else
3658 return Present (Declarations (N))
3659 and then Present (First (Declarations (N)))
3660 and then Chars (Expression (Return_Statement)) =
3661 Chars (Defining_Identifier (First (Declarations (N))));
3662 end if;
3663 end Has_Single_Return;
3665 -----------------------------
3666 -- In_Main_Unit_Or_Subunit --
3667 -----------------------------
3669 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean is
3670 Comp : Node_Id := Cunit (Get_Code_Unit (E));
3672 begin
3673 -- Check whether the subprogram or package to inline is within the main
3674 -- unit or its spec or within a subunit. In either case there are no
3675 -- additional bodies to process. If the subprogram appears in a parent
3676 -- of the current unit, the check on whether inlining is possible is
3677 -- done in Analyze_Inlined_Bodies.
3679 while Nkind (Unit (Comp)) = N_Subunit loop
3680 Comp := Library_Unit (Comp);
3681 end loop;
3683 return Comp = Cunit (Main_Unit)
3684 or else Comp = Library_Unit (Cunit (Main_Unit));
3685 end In_Main_Unit_Or_Subunit;
3687 ----------------
3688 -- Initialize --
3689 ----------------
3691 procedure Initialize is
3692 begin
3693 Pending_Descriptor.Init;
3694 Pending_Instantiations.Init;
3695 Inlined_Bodies.Init;
3696 Successors.Init;
3697 Inlined.Init;
3699 for J in Hash_Headers'Range loop
3700 Hash_Headers (J) := No_Subp;
3701 end loop;
3703 Inlined_Calls := No_Elist;
3704 Backend_Calls := No_Elist;
3705 Backend_Inlined_Subps := No_Elist;
3706 Backend_Not_Inlined_Subps := No_Elist;
3707 end Initialize;
3709 ------------------------
3710 -- Instantiate_Bodies --
3711 ------------------------
3713 -- Generic bodies contain all the non-local references, so an
3714 -- instantiation does not need any more context than Standard
3715 -- itself, even if the instantiation appears in an inner scope.
3716 -- Generic associations have verified that the contract model is
3717 -- satisfied, so that any error that may occur in the analysis of
3718 -- the body is an internal error.
3720 procedure Instantiate_Bodies is
3721 J : Int;
3722 Info : Pending_Body_Info;
3724 begin
3725 if Serious_Errors_Detected = 0 then
3726 Expander_Active := (Operating_Mode = Opt.Generate_Code);
3727 Push_Scope (Standard_Standard);
3728 To_Clean := New_Elmt_List;
3730 if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
3731 Start_Generic;
3732 end if;
3734 -- A body instantiation may generate additional instantiations, so
3735 -- the following loop must scan to the end of a possibly expanding
3736 -- set (that's why we can't simply use a FOR loop here).
3738 J := 0;
3739 while J <= Pending_Instantiations.Last
3740 and then Serious_Errors_Detected = 0
3741 loop
3742 Info := Pending_Instantiations.Table (J);
3744 -- If the instantiation node is absent, it has been removed
3745 -- as part of unreachable code.
3747 if No (Info.Inst_Node) then
3748 null;
3750 elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
3751 Instantiate_Package_Body (Info);
3752 Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
3754 else
3755 Instantiate_Subprogram_Body (Info);
3756 end if;
3758 J := J + 1;
3759 end loop;
3761 -- Reset the table of instantiations. Additional instantiations
3762 -- may be added through inlining, when additional bodies are
3763 -- analyzed.
3765 Pending_Instantiations.Init;
3767 -- We can now complete the cleanup actions of scopes that contain
3768 -- pending instantiations (skipped for generic units, since we
3769 -- never need any cleanups in generic units).
3770 -- pending instantiations.
3772 if Expander_Active
3773 and then not Is_Generic_Unit (Main_Unit_Entity)
3774 then
3775 Cleanup_Scopes;
3776 elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
3777 End_Generic;
3778 end if;
3780 Pop_Scope;
3781 end if;
3782 end Instantiate_Bodies;
3784 ---------------
3785 -- Is_Nested --
3786 ---------------
3788 function Is_Nested (E : Entity_Id) return Boolean is
3789 Scop : Entity_Id;
3791 begin
3792 Scop := Scope (E);
3793 while Scop /= Standard_Standard loop
3794 if Ekind (Scop) in Subprogram_Kind then
3795 return True;
3797 elsif Ekind (Scop) = E_Task_Type
3798 or else Ekind (Scop) = E_Entry
3799 or else Ekind (Scop) = E_Entry_Family
3800 then
3801 return True;
3802 end if;
3804 Scop := Scope (Scop);
3805 end loop;
3807 return False;
3808 end Is_Nested;
3810 ------------------------
3811 -- List_Inlining_Info --
3812 ------------------------
3814 procedure List_Inlining_Info is
3815 Elmt : Elmt_Id;
3816 Nod : Node_Id;
3817 Count : Nat;
3819 begin
3820 if not Debug_Flag_Dot_J then
3821 return;
3822 end if;
3824 -- Generate listing of calls inlined by the frontend
3826 if Present (Inlined_Calls) then
3827 Count := 0;
3828 Elmt := First_Elmt (Inlined_Calls);
3829 while Present (Elmt) loop
3830 Nod := Node (Elmt);
3832 if In_Extended_Main_Code_Unit (Nod) then
3833 Count := Count + 1;
3835 if Count = 1 then
3836 Write_Str ("List of calls inlined by the frontend");
3837 Write_Eol;
3838 end if;
3840 Write_Str (" ");
3841 Write_Int (Count);
3842 Write_Str (":");
3843 Write_Location (Sloc (Nod));
3844 Write_Str (":");
3845 Output.Write_Eol;
3846 end if;
3848 Next_Elmt (Elmt);
3849 end loop;
3850 end if;
3852 -- Generate listing of calls passed to the backend
3854 if Present (Backend_Calls) then
3855 Count := 0;
3857 Elmt := First_Elmt (Backend_Calls);
3858 while Present (Elmt) loop
3859 Nod := Node (Elmt);
3861 if In_Extended_Main_Code_Unit (Nod) then
3862 Count := Count + 1;
3864 if Count = 1 then
3865 Write_Str ("List of inlined calls passed to the backend");
3866 Write_Eol;
3867 end if;
3869 Write_Str (" ");
3870 Write_Int (Count);
3871 Write_Str (":");
3872 Write_Location (Sloc (Nod));
3873 Output.Write_Eol;
3874 end if;
3876 Next_Elmt (Elmt);
3877 end loop;
3878 end if;
3880 -- Generate listing of subprograms passed to the backend
3882 if Present (Backend_Inlined_Subps) and then Back_End_Inlining then
3883 Count := 0;
3885 Elmt := First_Elmt (Backend_Inlined_Subps);
3886 while Present (Elmt) loop
3887 Nod := Node (Elmt);
3889 Count := Count + 1;
3891 if Count = 1 then
3892 Write_Str
3893 ("List of inlined subprograms passed to the backend");
3894 Write_Eol;
3895 end if;
3897 Write_Str (" ");
3898 Write_Int (Count);
3899 Write_Str (":");
3900 Write_Name (Chars (Nod));
3901 Write_Str (" (");
3902 Write_Location (Sloc (Nod));
3903 Write_Str (")");
3904 Output.Write_Eol;
3906 Next_Elmt (Elmt);
3907 end loop;
3908 end if;
3910 -- Generate listing of subprograms that cannot be inlined by the backend
3912 if Present (Backend_Not_Inlined_Subps) and then Back_End_Inlining then
3913 Count := 0;
3915 Elmt := First_Elmt (Backend_Not_Inlined_Subps);
3916 while Present (Elmt) loop
3917 Nod := Node (Elmt);
3919 Count := Count + 1;
3921 if Count = 1 then
3922 Write_Str
3923 ("List of subprograms that cannot be inlined by the backend");
3924 Write_Eol;
3925 end if;
3927 Write_Str (" ");
3928 Write_Int (Count);
3929 Write_Str (":");
3930 Write_Name (Chars (Nod));
3931 Write_Str (" (");
3932 Write_Location (Sloc (Nod));
3933 Write_Str (")");
3934 Output.Write_Eol;
3936 Next_Elmt (Elmt);
3937 end loop;
3938 end if;
3939 end List_Inlining_Info;
3941 ----------
3942 -- Lock --
3943 ----------
3945 procedure Lock is
3946 begin
3947 Pending_Instantiations.Locked := True;
3948 Inlined_Bodies.Locked := True;
3949 Successors.Locked := True;
3950 Inlined.Locked := True;
3951 Pending_Instantiations.Release;
3952 Inlined_Bodies.Release;
3953 Successors.Release;
3954 Inlined.Release;
3955 end Lock;
3957 --------------------------------
3958 -- Remove_Aspects_And_Pragmas --
3959 --------------------------------
3961 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id) is
3962 procedure Remove_Items (List : List_Id);
3963 -- Remove all useless aspects/pragmas from a particular list
3965 ------------------
3966 -- Remove_Items --
3967 ------------------
3969 procedure Remove_Items (List : List_Id) is
3970 Item : Node_Id;
3971 Item_Id : Node_Id;
3972 Next_Item : Node_Id;
3974 begin
3975 -- Traverse the list looking for an aspect specification or a pragma
3977 Item := First (List);
3978 while Present (Item) loop
3979 Next_Item := Next (Item);
3981 if Nkind (Item) = N_Aspect_Specification then
3982 Item_Id := Identifier (Item);
3983 elsif Nkind (Item) = N_Pragma then
3984 Item_Id := Pragma_Identifier (Item);
3985 else
3986 Item_Id := Empty;
3987 end if;
3989 if Present (Item_Id)
3990 and then Nam_In (Chars (Item_Id), Name_Contract_Cases,
3991 Name_Global,
3992 Name_Depends,
3993 Name_Postcondition,
3994 Name_Precondition,
3995 Name_Refined_Global,
3996 Name_Refined_Depends,
3997 Name_Refined_Post,
3998 Name_Test_Case,
3999 Name_Unmodified,
4000 Name_Unreferenced)
4001 then
4002 Remove (Item);
4003 end if;
4005 Item := Next_Item;
4006 end loop;
4007 end Remove_Items;
4009 -- Start of processing for Remove_Aspects_And_Pragmas
4011 begin
4012 Remove_Items (Aspect_Specifications (Body_Decl));
4013 Remove_Items (Declarations (Body_Decl));
4014 end Remove_Aspects_And_Pragmas;
4016 --------------------------
4017 -- Remove_Dead_Instance --
4018 --------------------------
4020 procedure Remove_Dead_Instance (N : Node_Id) is
4021 J : Int;
4023 begin
4024 J := 0;
4025 while J <= Pending_Instantiations.Last loop
4026 if Pending_Instantiations.Table (J).Inst_Node = N then
4027 Pending_Instantiations.Table (J).Inst_Node := Empty;
4028 return;
4029 end if;
4031 J := J + 1;
4032 end loop;
4033 end Remove_Dead_Instance;
4035 end Inline;