1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21 /* Allocation of hard register numbers to pseudo registers is done in
22 two passes. In this pass we consider only regs that are born and
23 die once within one basic block. We do this one basic block at a
24 time. Then the next pass allocates the registers that remain.
25 Two passes are used because this pass uses methods that work only
26 on linear code, but that do a better job than the general methods
27 used in global_alloc, and more quickly too.
29 The assignments made are recorded in the vector reg_renumber
30 whose space is allocated here. The rtl code itself is not altered.
32 We assign each instruction in the basic block a number
33 which is its order from the beginning of the block.
34 Then we can represent the lifetime of a pseudo register with
35 a pair of numbers, and check for conflicts easily.
36 We can record the availability of hard registers with a
37 HARD_REG_SET for each instruction. The HARD_REG_SET
38 contains 0 or 1 for each hard reg.
40 To avoid register shuffling, we tie registers together when one
41 dies by being copied into another, or dies in an instruction that
42 does arithmetic to produce another. The tied registers are
43 allocated as one. Registers with different reg class preferences
44 can never be tied unless the class preferred by one is a subclass
45 of the one preferred by the other.
47 Tying is represented with "quantity numbers".
48 A non-tied register is given a new quantity number.
49 Tied registers have the same quantity number.
51 We have provision to exempt registers, even when they are contained
52 within the block, that can be tied to others that are not contained in it.
53 This is so that global_alloc could process them both and tie them then.
54 But this is currently disabled since tying in global_alloc is not
61 #include "basic-block.h"
63 #include "hard-reg-set.h"
64 #include "insn-config.h"
68 /* Pseudos allocated here cannot be reallocated by global.c if the hard
69 register is used as a spill register. So we don't allocate such pseudos
70 here if their preferred class is likely to be used by spills.
72 On most machines, the appropriate test is if the class has one
73 register, so we default to that. */
75 #ifndef CLASS_LIKELY_SPILLED_P
76 #define CLASS_LIKELY_SPILLED_P(CLASS) (reg_class_size[(int) (CLASS)] == 1)
79 /* Next quantity number available for allocation. */
83 /* In all the following vectors indexed by quantity number. */
85 /* Element Q is the hard reg number chosen for quantity Q,
86 or -1 if none was found. */
88 static short *qty_phys_reg
;
90 /* We maintain two hard register sets that indicate suggested hard registers
91 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
92 that are tied to the quantity by a simple copy. The second contains all
93 hard registers that are tied to the quantity via an arithmetic operation.
95 The former register set is given priority for allocation. This tends to
96 eliminate copy insns. */
98 /* Element Q is a set of hard registers that are suggested for quantity Q by
101 static HARD_REG_SET
*qty_phys_copy_sugg
;
103 /* Element Q is a set of hard registers that are suggested for quantity Q by
106 static HARD_REG_SET
*qty_phys_sugg
;
108 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
110 static short *qty_phys_num_copy_sugg
;
112 /* Element Q is the number of suggested registers in qty_phys_sugg. */
114 static short *qty_phys_num_sugg
;
116 /* Element Q is the number of refs to quantity Q. */
118 static int *qty_n_refs
;
120 /* Element Q is a reg class contained in (smaller than) the
121 preferred classes of all the pseudo regs that are tied in quantity Q.
122 This is the preferred class for allocating that quantity. */
124 static enum reg_class
*qty_min_class
;
126 /* Insn number (counting from head of basic block)
127 where quantity Q was born. -1 if birth has not been recorded. */
129 static int *qty_birth
;
131 /* Insn number (counting from head of basic block)
132 where quantity Q died. Due to the way tying is done,
133 and the fact that we consider in this pass only regs that die but once,
134 a quantity can die only once. Each quantity's life span
135 is a set of consecutive insns. -1 if death has not been recorded. */
137 static int *qty_death
;
139 /* Number of words needed to hold the data in quantity Q.
140 This depends on its machine mode. It is used for these purposes:
141 1. It is used in computing the relative importances of qtys,
142 which determines the order in which we look for regs for them.
143 2. It is used in rules that prevent tying several registers of
144 different sizes in a way that is geometrically impossible
145 (see combine_regs). */
147 static int *qty_size
;
149 /* This holds the mode of the registers that are tied to qty Q,
150 or VOIDmode if registers with differing modes are tied together. */
152 static enum machine_mode
*qty_mode
;
154 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
156 static int *qty_n_calls_crossed
;
158 /* Register class within which we allocate qty Q if we can't get
159 its preferred class. */
161 static enum reg_class
*qty_alternate_class
;
163 /* Element Q is the SCRATCH expression for which this quantity is being
164 allocated or 0 if this quantity is allocating registers. */
166 static rtx
*qty_scratch_rtx
;
168 /* Element Q is the register number of one pseudo register whose
169 reg_qty value is Q, or -1 is this quantity is for a SCRATCH. This
170 register should be the head of the chain maintained in reg_next_in_qty. */
172 static int *qty_first_reg
;
174 /* If (REG N) has been assigned a quantity number, is a register number
175 of another register assigned the same quantity number, or -1 for the
176 end of the chain. qty_first_reg point to the head of this chain. */
178 static int *reg_next_in_qty
;
180 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
182 of -1 if this register cannot be allocated by local-alloc,
183 or -2 if not known yet.
185 Note that if we see a use or death of pseudo register N with
186 reg_qty[N] == -2, register N must be local to the current block. If
187 it were used in more than one block, we would have reg_qty[N] == -1.
188 This relies on the fact that if reg_basic_block[N] is >= 0, register N
189 will not appear in any other block. We save a considerable number of
190 tests by exploiting this.
192 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
197 /* The offset (in words) of register N within its quantity.
198 This can be nonzero if register N is SImode, and has been tied
199 to a subreg of a DImode register. */
201 static char *reg_offset
;
203 /* Vector of substitutions of register numbers,
204 used to map pseudo regs into hardware regs.
205 This is set up as a result of register allocation.
206 Element N is the hard reg assigned to pseudo reg N,
207 or is -1 if no hard reg was assigned.
208 If N is a hard reg number, element N is N. */
212 /* Set of hard registers live at the current point in the scan
213 of the instructions in a basic block. */
215 static HARD_REG_SET regs_live
;
217 /* Each set of hard registers indicates registers live at a particular
218 point in the basic block. For N even, regs_live_at[N] says which
219 hard registers are needed *after* insn N/2 (i.e., they may not
220 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
222 If an object is to conflict with the inputs of insn J but not the
223 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
224 if it is to conflict with the outputs of insn J but not the inputs of
225 insn J + 1, it is said to die at index J*2 + 1. */
227 static HARD_REG_SET
*regs_live_at
;
231 int scratch_list_length
;
232 static int scratch_index
;
234 /* Communicate local vars `insn_number' and `insn'
235 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
236 static int this_insn_number
;
237 static rtx this_insn
;
239 static void alloc_qty
PROTO((int, enum machine_mode
, int, int));
240 static void alloc_qty_for_scratch
PROTO((rtx
, int, rtx
, int, int));
241 static void validate_equiv_mem_from_store
PROTO((rtx
, rtx
));
242 static int validate_equiv_mem
PROTO((rtx
, rtx
, rtx
));
243 static int memref_referenced_p
PROTO((rtx
, rtx
));
244 static int memref_used_between_p
PROTO((rtx
, rtx
, rtx
));
245 static void optimize_reg_copy_1
PROTO((rtx
, rtx
, rtx
));
246 static void optimize_reg_copy_2
PROTO((rtx
, rtx
, rtx
));
247 static void update_equiv_regs
PROTO((void));
248 static void block_alloc
PROTO((int));
249 static int qty_sugg_compare
PROTO((int, int));
250 static int qty_sugg_compare_1
PROTO((int *, int *));
251 static int qty_compare
PROTO((int, int));
252 static int qty_compare_1
PROTO((int *, int *));
253 static int combine_regs
PROTO((rtx
, rtx
, int, int, rtx
, int));
254 static int reg_meets_class_p
PROTO((int, enum reg_class
));
255 static int reg_classes_overlap_p
PROTO((enum reg_class
, enum reg_class
,
257 static void update_qty_class
PROTO((int, int));
258 static void reg_is_set
PROTO((rtx
, rtx
));
259 static void reg_is_born
PROTO((rtx
, int));
260 static void wipe_dead_reg
PROTO((rtx
, int));
261 static int find_free_reg
PROTO((enum reg_class
, enum machine_mode
,
262 int, int, int, int, int));
263 static void mark_life
PROTO((int, enum machine_mode
, int));
264 static void post_mark_life
PROTO((int, enum machine_mode
, int, int, int));
265 static int no_conflict_p
PROTO((rtx
, rtx
, rtx
));
266 static int requires_inout
PROTO((char *));
268 /* Allocate a new quantity (new within current basic block)
269 for register number REGNO which is born at index BIRTH
270 within the block. MODE and SIZE are info on reg REGNO. */
273 alloc_qty (regno
, mode
, size
, birth
)
275 enum machine_mode mode
;
278 register int qty
= next_qty
++;
280 reg_qty
[regno
] = qty
;
281 reg_offset
[regno
] = 0;
282 reg_next_in_qty
[regno
] = -1;
284 qty_first_reg
[qty
] = regno
;
285 qty_size
[qty
] = size
;
286 qty_mode
[qty
] = mode
;
287 qty_birth
[qty
] = birth
;
288 qty_n_calls_crossed
[qty
] = reg_n_calls_crossed
[regno
];
289 qty_min_class
[qty
] = reg_preferred_class (regno
);
290 qty_alternate_class
[qty
] = reg_alternate_class (regno
);
291 qty_n_refs
[qty
] = reg_n_refs
[regno
];
294 /* Similar to `alloc_qty', but allocates a quantity for a SCRATCH rtx
295 used as operand N in INSN. We assume here that the SCRATCH is used in
299 alloc_qty_for_scratch (scratch
, n
, insn
, insn_code_num
, insn_number
)
303 int insn_code_num
, insn_number
;
306 enum reg_class
class;
310 #ifdef REGISTER_CONSTRAINTS
311 /* If we haven't yet computed which alternative will be used, do so now.
312 Then set P to the constraints for that alternative. */
313 if (which_alternative
== -1)
314 if (! constrain_operands (insn_code_num
, 0))
317 for (p
= insn_operand_constraint
[insn_code_num
][n
], i
= 0;
318 *p
&& i
< which_alternative
; p
++)
322 /* Compute the class required for this SCRATCH. If we don't need a
323 register, the class will remain NO_REGS. If we guessed the alternative
324 number incorrectly, reload will fix things up for us. */
327 while ((c
= *p
++) != '\0' && c
!= ',')
330 case '=': case '+': case '?':
331 case '#': case '&': case '!':
333 case '0': case '1': case '2': case '3': case '4':
334 case 'm': case '<': case '>': case 'V': case 'o':
335 case 'E': case 'F': case 'G': case 'H':
336 case 's': case 'i': case 'n':
337 case 'I': case 'J': case 'K': case 'L':
338 case 'M': case 'N': case 'O': case 'P':
339 #ifdef EXTRA_CONSTRAINT
340 case 'Q': case 'R': case 'S': case 'T': case 'U':
343 /* These don't say anything we care about. */
347 /* We don't need to allocate this SCRATCH. */
351 class = reg_class_subunion
[(int) class][(int) GENERAL_REGS
];
356 = reg_class_subunion
[(int) class][(int) REG_CLASS_FROM_LETTER (c
)];
360 if (class == NO_REGS
)
363 #else /* REGISTER_CONSTRAINTS */
365 class = GENERAL_REGS
;
371 qty_first_reg
[qty
] = -1;
372 qty_scratch_rtx
[qty
] = scratch
;
373 qty_size
[qty
] = GET_MODE_SIZE (GET_MODE (scratch
));
374 qty_mode
[qty
] = GET_MODE (scratch
);
375 qty_birth
[qty
] = 2 * insn_number
- 1;
376 qty_death
[qty
] = 2 * insn_number
+ 1;
377 qty_n_calls_crossed
[qty
] = 0;
378 qty_min_class
[qty
] = class;
379 qty_alternate_class
[qty
] = NO_REGS
;
383 /* Main entry point of this file. */
391 /* Leaf functions and non-leaf functions have different needs.
392 If defined, let the machine say what kind of ordering we
394 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
395 ORDER_REGS_FOR_LOCAL_ALLOC
;
398 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
400 update_equiv_regs ();
402 /* This sets the maximum number of quantities we can have. Quantity
403 numbers start at zero and we can have one for each pseudo plus the
404 number of SCRATCHes in the largest block, in the worst case. */
405 max_qty
= (max_regno
- FIRST_PSEUDO_REGISTER
) + max_scratch
;
407 /* Allocate vectors of temporary data.
408 See the declarations of these variables, above,
409 for what they mean. */
411 /* There can be up to MAX_SCRATCH * N_BASIC_BLOCKS SCRATCHes to allocate.
412 Instead of allocating this much memory from now until the end of
413 reload, only allocate space for MAX_QTY SCRATCHes. If there are more
414 reload will allocate them. */
416 scratch_list_length
= max_qty
;
417 scratch_list
= (rtx
*) xmalloc (scratch_list_length
* sizeof (rtx
));
418 bzero (scratch_list
, scratch_list_length
* sizeof (rtx
));
419 scratch_block
= (int *) xmalloc (scratch_list_length
* sizeof (int));
420 bzero (scratch_block
, scratch_list_length
* sizeof (int));
423 qty_phys_reg
= (short *) alloca (max_qty
* sizeof (short));
424 qty_phys_copy_sugg
= (HARD_REG_SET
*) alloca (max_qty
* sizeof (HARD_REG_SET
));
425 qty_phys_num_copy_sugg
= (short *) alloca (max_qty
* sizeof (short));
426 qty_phys_sugg
= (HARD_REG_SET
*) alloca (max_qty
* sizeof (HARD_REG_SET
));
427 qty_phys_num_sugg
= (short *) alloca (max_qty
* sizeof (short));
428 qty_birth
= (int *) alloca (max_qty
* sizeof (int));
429 qty_death
= (int *) alloca (max_qty
* sizeof (int));
430 qty_scratch_rtx
= (rtx
*) alloca (max_qty
* sizeof (rtx
));
431 qty_first_reg
= (int *) alloca (max_qty
* sizeof (int));
432 qty_size
= (int *) alloca (max_qty
* sizeof (int));
433 qty_mode
= (enum machine_mode
*) alloca (max_qty
* sizeof (enum machine_mode
));
434 qty_n_calls_crossed
= (int *) alloca (max_qty
* sizeof (int));
435 qty_min_class
= (enum reg_class
*) alloca (max_qty
* sizeof (enum reg_class
));
436 qty_alternate_class
= (enum reg_class
*) alloca (max_qty
* sizeof (enum reg_class
));
437 qty_n_refs
= (int *) alloca (max_qty
* sizeof (int));
439 reg_qty
= (int *) alloca (max_regno
* sizeof (int));
440 reg_offset
= (char *) alloca (max_regno
* sizeof (char));
441 reg_next_in_qty
= (int *) alloca (max_regno
* sizeof (int));
443 reg_renumber
= (short *) oballoc (max_regno
* sizeof (short));
444 for (i
= 0; i
< max_regno
; i
++)
445 reg_renumber
[i
] = -1;
447 /* Determine which pseudo-registers can be allocated by local-alloc.
448 In general, these are the registers used only in a single block and
449 which only die once. However, if a register's preferred class has only
450 a few entries, don't allocate this register here unless it is preferred
451 or nothing since retry_global_alloc won't be able to move it to
452 GENERAL_REGS if a reload register of this class is needed.
454 We need not be concerned with which block actually uses the register
455 since we will never see it outside that block. */
457 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
459 if (reg_basic_block
[i
] >= 0 && reg_n_deaths
[i
] == 1
460 && (reg_alternate_class (i
) == NO_REGS
461 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i
))))
467 /* Force loop below to initialize entire quantity array. */
470 /* Allocate each block's local registers, block by block. */
472 for (b
= 0; b
< n_basic_blocks
; b
++)
474 /* NEXT_QTY indicates which elements of the `qty_...'
475 vectors might need to be initialized because they were used
476 for the previous block; it is set to the entire array before
477 block 0. Initialize those, with explicit loop if there are few,
478 else with bzero and bcopy. Do not initialize vectors that are
479 explicit set by `alloc_qty'. */
483 for (i
= 0; i
< next_qty
; i
++)
485 qty_scratch_rtx
[i
] = 0;
486 CLEAR_HARD_REG_SET (qty_phys_copy_sugg
[i
]);
487 qty_phys_num_copy_sugg
[i
] = 0;
488 CLEAR_HARD_REG_SET (qty_phys_sugg
[i
]);
489 qty_phys_num_sugg
[i
] = 0;
494 #define CLEAR(vector) \
495 bzero ((vector), (sizeof (*(vector))) * next_qty);
497 CLEAR (qty_scratch_rtx
);
498 CLEAR (qty_phys_copy_sugg
);
499 CLEAR (qty_phys_num_copy_sugg
);
500 CLEAR (qty_phys_sugg
);
501 CLEAR (qty_phys_num_sugg
);
513 /* Depth of loops we are in while in update_equiv_regs. */
514 static int loop_depth
;
516 /* Used for communication between the following two functions: contains
517 a MEM that we wish to ensure remains unchanged. */
518 static rtx equiv_mem
;
520 /* Set nonzero if EQUIV_MEM is modified. */
521 static int equiv_mem_modified
;
523 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
524 Called via note_stores. */
527 validate_equiv_mem_from_store (dest
, set
)
531 if ((GET_CODE (dest
) == REG
532 && reg_overlap_mentioned_p (dest
, equiv_mem
))
533 || (GET_CODE (dest
) == MEM
534 && true_dependence (dest
, equiv_mem
)))
535 equiv_mem_modified
= 1;
538 /* Verify that no store between START and the death of REG invalidates
539 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
540 by storing into an overlapping memory location, or with a non-const
543 Return 1 if MEMREF remains valid. */
546 validate_equiv_mem (start
, reg
, memref
)
555 equiv_mem_modified
= 0;
557 /* If the memory reference has side effects or is volatile, it isn't a
558 valid equivalence. */
559 if (side_effects_p (memref
))
562 for (insn
= start
; insn
&& ! equiv_mem_modified
; insn
= NEXT_INSN (insn
))
564 if (GET_RTX_CLASS (GET_CODE (insn
)) != 'i')
567 if (find_reg_note (insn
, REG_DEAD
, reg
))
570 if (GET_CODE (insn
) == CALL_INSN
&& ! RTX_UNCHANGING_P (memref
)
571 && ! CONST_CALL_P (insn
))
574 note_stores (PATTERN (insn
), validate_equiv_mem_from_store
);
576 /* If a register mentioned in MEMREF is modified via an
577 auto-increment, we lose the equivalence. Do the same if one
578 dies; although we could extend the life, it doesn't seem worth
581 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
582 if ((REG_NOTE_KIND (note
) == REG_INC
583 || REG_NOTE_KIND (note
) == REG_DEAD
)
584 && GET_CODE (XEXP (note
, 0)) == REG
585 && reg_overlap_mentioned_p (XEXP (note
, 0), memref
))
592 /* TRUE if X references a memory location that would be affected by a store
596 memref_referenced_p (memref
, x
)
602 enum rtx_code code
= GET_CODE (x
);
619 if (true_dependence (memref
, x
))
624 /* If we are setting a MEM, it doesn't count (its address does), but any
625 other SET_DEST that has a MEM in it is referencing the MEM. */
626 if (GET_CODE (SET_DEST (x
)) == MEM
)
628 if (memref_referenced_p (memref
, XEXP (SET_DEST (x
), 0)))
631 else if (memref_referenced_p (memref
, SET_DEST (x
)))
634 return memref_referenced_p (memref
, SET_SRC (x
));
637 fmt
= GET_RTX_FORMAT (code
);
638 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
642 if (memref_referenced_p (memref
, XEXP (x
, i
)))
646 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
647 if (memref_referenced_p (memref
, XVECEXP (x
, i
, j
)))
655 /* TRUE if some insn in the range (START, END] references a memory location
656 that would be affected by a store to MEMREF. */
659 memref_used_between_p (memref
, start
, end
)
666 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
667 insn
= NEXT_INSN (insn
))
668 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
669 && memref_referenced_p (memref
, PATTERN (insn
)))
675 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
678 Search forward to see if SRC dies before either it or DEST is modified,
679 but don't scan past the end of a basic block. If so, we can replace SRC
680 with DEST and let SRC die in INSN.
682 This will reduce the number of registers live in that range and may enable
683 DEST to be tied to SRC, thus often saving one register in addition to a
684 register-register copy. */
687 optimize_reg_copy_1 (insn
, dest
, src
)
695 int sregno
= REGNO (src
);
696 int dregno
= REGNO (dest
);
699 #ifdef SMALL_REGISTER_CLASSES
700 /* We don't want to mess with hard regs if register classes are small. */
701 || sregno
< FIRST_PSEUDO_REGISTER
|| dregno
< FIRST_PSEUDO_REGISTER
703 /* We don't see all updates to SP if they are in an auto-inc memory
704 reference, so we must disallow this optimization on them. */
705 || sregno
== STACK_POINTER_REGNUM
|| dregno
== STACK_POINTER_REGNUM
)
708 for (p
= NEXT_INSN (insn
); p
; p
= NEXT_INSN (p
))
710 if (GET_CODE (p
) == CODE_LABEL
|| GET_CODE (p
) == JUMP_INSN
711 || (GET_CODE (p
) == NOTE
712 && (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
713 || NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)))
716 if (GET_RTX_CLASS (GET_CODE (p
)) != 'i')
719 if (reg_set_p (src
, p
) || reg_set_p (dest
, p
)
720 /* Don't change a USE of a register. */
721 || (GET_CODE (PATTERN (p
)) == USE
722 && reg_overlap_mentioned_p (src
, XEXP (PATTERN (p
), 0))))
725 /* See if all of SRC dies in P. This test is slightly more
726 conservative than it needs to be. */
727 if ((note
= find_regno_note (p
, REG_DEAD
, sregno
)) != 0
728 && GET_MODE (XEXP (note
, 0)) == GET_MODE (src
))
736 /* We can do the optimization. Scan forward from INSN again,
737 replacing regs as we go. Set FAILED if a replacement can't
738 be done. In that case, we can't move the death note for SRC.
739 This should be rare. */
741 /* Set to stop at next insn. */
742 for (q
= next_real_insn (insn
);
743 q
!= next_real_insn (p
);
744 q
= next_real_insn (q
))
746 if (reg_overlap_mentioned_p (src
, PATTERN (q
)))
748 /* If SRC is a hard register, we might miss some
749 overlapping registers with validate_replace_rtx,
750 so we would have to undo it. We can't if DEST is
751 present in the insn, so fail in that combination
753 if (sregno
< FIRST_PSEUDO_REGISTER
754 && reg_mentioned_p (dest
, PATTERN (q
)))
757 /* Replace all uses and make sure that the register
758 isn't still present. */
759 else if (validate_replace_rtx (src
, dest
, q
)
760 && (sregno
>= FIRST_PSEUDO_REGISTER
761 || ! reg_overlap_mentioned_p (src
,
764 /* We assume that a register is used exactly once per
765 insn in the updates below. If this is not correct,
766 no great harm is done. */
767 if (sregno
>= FIRST_PSEUDO_REGISTER
)
768 reg_n_refs
[sregno
] -= loop_depth
;
769 if (dregno
>= FIRST_PSEUDO_REGISTER
)
770 reg_n_refs
[dregno
] += loop_depth
;
774 validate_replace_rtx (dest
, src
, q
);
779 /* Count the insns and CALL_INSNs passed. If we passed the
780 death note of DEST, show increased live length. */
785 /* If the insn in which SRC dies is a CALL_INSN, don't count it
786 as a call that has been crossed. Otherwise, count it. */
787 if (q
!= p
&& GET_CODE (q
) == CALL_INSN
)
794 /* If DEST dies here, remove the death note and save it for
795 later. Make sure ALL of DEST dies here; again, this is
796 overly conservative. */
798 && (dest_death
= find_regno_note (q
, REG_DEAD
, dregno
)) != 0
799 && GET_MODE (XEXP (dest_death
, 0)) == GET_MODE (dest
))
800 remove_note (q
, dest_death
);
805 if (sregno
>= FIRST_PSEUDO_REGISTER
)
807 reg_live_length
[sregno
] -= length
;
808 /* reg_live_length is only an approximation after combine
809 if sched is not run, so make sure that we still have
810 a reasonable value. */
811 if (reg_live_length
[sregno
] < 2)
812 reg_live_length
[sregno
] = 2;
813 reg_n_calls_crossed
[sregno
] -= n_calls
;
816 if (dregno
>= FIRST_PSEUDO_REGISTER
)
818 reg_live_length
[dregno
] += d_length
;
819 reg_n_calls_crossed
[dregno
] += d_n_calls
;
822 /* Move death note of SRC from P to INSN. */
823 remove_note (p
, note
);
824 XEXP (note
, 1) = REG_NOTES (insn
);
825 REG_NOTES (insn
) = note
;
828 /* Put death note of DEST on P if we saw it die. */
831 XEXP (dest_death
, 1) = REG_NOTES (p
);
832 REG_NOTES (p
) = dest_death
;
838 /* If SRC is a hard register which is set or killed in some other
839 way, we can't do this optimization. */
840 else if (sregno
< FIRST_PSEUDO_REGISTER
841 && dead_or_set_p (p
, src
))
846 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
847 a sequence of insns that modify DEST followed by an insn that sets
848 SRC to DEST in which DEST dies, with no prior modification of DEST.
849 (There is no need to check if the insns in between actually modify
850 DEST. We should not have cases where DEST is not modified, but
851 the optimization is safe if no such modification is detected.)
852 In that case, we can replace all uses of DEST, starting with INSN and
853 ending with the set of SRC to DEST, with SRC. We do not do this
854 optimization if a CALL_INSN is crossed unless SRC already crosses a
857 It is assumed that DEST and SRC are pseudos; it is too complicated to do
858 this for hard registers since the substitutions we may make might fail. */
861 optimize_reg_copy_2 (insn
, dest
, src
)
868 int sregno
= REGNO (src
);
869 int dregno
= REGNO (dest
);
871 for (p
= NEXT_INSN (insn
); p
; p
= NEXT_INSN (p
))
873 if (GET_CODE (p
) == CODE_LABEL
|| GET_CODE (p
) == JUMP_INSN
874 || (GET_CODE (p
) == NOTE
875 && (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
876 || NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)))
879 if (GET_RTX_CLASS (GET_CODE (p
)) != 'i')
882 set
= single_set (p
);
883 if (set
&& SET_SRC (set
) == dest
&& SET_DEST (set
) == src
884 && find_reg_note (p
, REG_DEAD
, dest
))
886 /* We can do the optimization. Scan forward from INSN again,
887 replacing regs as we go. */
889 /* Set to stop at next insn. */
890 for (q
= insn
; q
!= NEXT_INSN (p
); q
= NEXT_INSN (q
))
891 if (GET_RTX_CLASS (GET_CODE (q
)) == 'i')
893 if (reg_mentioned_p (dest
, PATTERN (q
)))
895 PATTERN (q
) = replace_rtx (PATTERN (q
), dest
, src
);
897 /* We assume that a register is used exactly once per
898 insn in the updates below. If this is not correct,
899 no great harm is done. */
900 reg_n_refs
[dregno
] -= loop_depth
;
901 reg_n_refs
[sregno
] += loop_depth
;
905 if (GET_CODE (q
) == CALL_INSN
)
907 reg_n_calls_crossed
[dregno
]--;
908 reg_n_calls_crossed
[sregno
]++;
912 remove_note (p
, find_reg_note (p
, REG_DEAD
, dest
));
913 reg_n_deaths
[dregno
]--;
914 remove_note (insn
, find_reg_note (insn
, REG_DEAD
, src
));
915 reg_n_deaths
[sregno
]--;
919 if (reg_set_p (src
, p
)
920 || (GET_CODE (p
) == CALL_INSN
&& reg_n_calls_crossed
[sregno
] == 0))
925 /* Find registers that are equivalent to a single value throughout the
926 compilation (either because they can be referenced in memory or are set once
927 from a single constant). Lower their priority for a register.
929 If such a register is only referenced once, try substituting its value
930 into the using insn. If it succeeds, we can eliminate the register
936 rtx
*reg_equiv_init_insn
= (rtx
*) alloca (max_regno
* sizeof (rtx
*));
937 rtx
*reg_equiv_replacement
= (rtx
*) alloca (max_regno
* sizeof (rtx
*));
940 bzero (reg_equiv_init_insn
, max_regno
* sizeof (rtx
*));
941 bzero (reg_equiv_replacement
, max_regno
* sizeof (rtx
*));
943 init_alias_analysis ();
947 /* Scan the insns and find which registers have equivalences. Do this
948 in a separate scan of the insns because (due to -fcse-follow-jumps)
949 a register can be set below its use. */
950 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
953 rtx set
= single_set (insn
);
957 if (GET_CODE (insn
) == NOTE
)
959 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
961 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
965 /* If this insn contains more (or less) than a single SET, ignore it. */
969 dest
= SET_DEST (set
);
971 /* If this sets a MEM to the contents of a REG that is only used
972 in a single basic block, see if the register is always equivalent
973 to that memory location and if moving the store from INSN to the
974 insn that set REG is safe. If so, put a REG_EQUIV note on the
975 initializing insn. */
977 if (GET_CODE (dest
) == MEM
&& GET_CODE (SET_SRC (set
)) == REG
978 && (regno
= REGNO (SET_SRC (set
))) >= FIRST_PSEUDO_REGISTER
979 && reg_basic_block
[regno
] >= 0
980 && reg_equiv_init_insn
[regno
] != 0
981 && validate_equiv_mem (reg_equiv_init_insn
[regno
], SET_SRC (set
),
983 && ! memref_used_between_p (SET_DEST (set
),
984 reg_equiv_init_insn
[regno
], insn
))
985 REG_NOTES (reg_equiv_init_insn
[regno
])
986 = gen_rtx (EXPR_LIST
, REG_EQUIV
, dest
,
987 REG_NOTES (reg_equiv_init_insn
[regno
]));
989 /* If this is a register-register copy where SRC is not dead, see if we
991 if (flag_expensive_optimizations
&& GET_CODE (dest
) == REG
992 && GET_CODE (SET_SRC (set
)) == REG
993 && ! find_reg_note (insn
, REG_DEAD
, SET_SRC (set
)))
994 optimize_reg_copy_1 (insn
, dest
, SET_SRC (set
));
996 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
997 else if (flag_expensive_optimizations
&& GET_CODE (dest
) == REG
998 && REGNO (dest
) >= FIRST_PSEUDO_REGISTER
999 && GET_CODE (SET_SRC (set
)) == REG
1000 && REGNO (SET_SRC (set
)) >= FIRST_PSEUDO_REGISTER
1001 && find_reg_note (insn
, REG_DEAD
, SET_SRC (set
)))
1002 optimize_reg_copy_2 (insn
, dest
, SET_SRC (set
));
1004 /* Otherwise, we only handle the case of a pseudo register being set
1006 if (GET_CODE (dest
) != REG
1007 || (regno
= REGNO (dest
)) < FIRST_PSEUDO_REGISTER
1008 || reg_n_sets
[regno
] != 1)
1011 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
1013 /* Record this insn as initializing this register. */
1014 reg_equiv_init_insn
[regno
] = insn
;
1016 /* If this register is known to be equal to a constant, record that
1017 it is always equivalent to the constant. */
1018 if (note
&& CONSTANT_P (XEXP (note
, 0)))
1019 PUT_MODE (note
, (enum machine_mode
) REG_EQUIV
);
1021 /* If this insn introduces a "constant" register, decrease the priority
1022 of that register. Record this insn if the register is only used once
1023 more and the equivalence value is the same as our source.
1025 The latter condition is checked for two reasons: First, it is an
1026 indication that it may be more efficient to actually emit the insn
1027 as written (if no registers are available, reload will substitute
1028 the equivalence). Secondly, it avoids problems with any registers
1029 dying in this insn whose death notes would be missed.
1031 If we don't have a REG_EQUIV note, see if this insn is loading
1032 a register used only in one basic block from a MEM. If so, and the
1033 MEM remains unchanged for the life of the register, add a REG_EQUIV
1036 note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
);
1038 if (note
== 0 && reg_basic_block
[regno
] >= 0
1039 && GET_CODE (SET_SRC (set
)) == MEM
1040 && validate_equiv_mem (insn
, dest
, SET_SRC (set
)))
1041 REG_NOTES (insn
) = note
= gen_rtx (EXPR_LIST
, REG_EQUIV
, SET_SRC (set
),
1044 /* Don't mess with things live during setjmp. */
1045 if (note
&& reg_live_length
[regno
] >= 0)
1047 int regno
= REGNO (dest
);
1049 /* Note that the statement below does not affect the priority
1051 reg_live_length
[regno
] *= 2;
1053 /* If the register is referenced exactly twice, meaning it is set
1054 once and used once, indicate that the reference may be replaced
1055 by the equivalence we computed above. If the register is only
1056 used in one basic block, this can't succeed or combine would
1059 It would be nice to use "loop_depth * 2" in the compare
1060 below. Unfortunately, LOOP_DEPTH need not be constant within
1061 a basic block so this would be too complicated.
1063 This case normally occurs when a parameter is read from memory
1064 and then used exactly once, not in a loop. */
1066 if (reg_n_refs
[regno
] == 2
1067 && reg_basic_block
[regno
] < 0
1068 && rtx_equal_p (XEXP (note
, 0), SET_SRC (set
)))
1069 reg_equiv_replacement
[regno
] = SET_SRC (set
);
1073 /* Now scan all regs killed in an insn to see if any of them are registers
1074 only used that once. If so, see if we can replace the reference with
1075 the equivalent from. If we can, delete the initializing reference
1076 and this register will go away. */
1077 for (insn
= next_active_insn (get_insns ());
1079 insn
= next_active_insn (insn
))
1083 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1084 if (REG_NOTE_KIND (link
) == REG_DEAD
1085 /* Make sure this insn still refers to the register. */
1086 && reg_mentioned_p (XEXP (link
, 0), PATTERN (insn
)))
1088 int regno
= REGNO (XEXP (link
, 0));
1090 if (reg_equiv_replacement
[regno
]
1091 && validate_replace_rtx (regno_reg_rtx
[regno
],
1092 reg_equiv_replacement
[regno
], insn
))
1094 rtx equiv_insn
= reg_equiv_init_insn
[regno
];
1096 remove_death (regno
, insn
);
1097 reg_n_refs
[regno
] = 0;
1098 PUT_CODE (equiv_insn
, NOTE
);
1099 NOTE_LINE_NUMBER (equiv_insn
) = NOTE_INSN_DELETED
;
1100 NOTE_SOURCE_FILE (equiv_insn
) = 0;
1106 /* Allocate hard regs to the pseudo regs used only within block number B.
1107 Only the pseudos that die but once can be handled. */
1116 int insn_number
= 0;
1118 int max_uid
= get_max_uid ();
1120 int no_conflict_combined_regno
= -1;
1121 /* Counter to prevent allocating more SCRATCHes than can be stored
1123 int scratches_allocated
= scratch_index
;
1125 /* Count the instructions in the basic block. */
1127 insn
= basic_block_end
[b
];
1130 if (GET_CODE (insn
) != NOTE
)
1131 if (++insn_count
> max_uid
)
1133 if (insn
== basic_block_head
[b
])
1135 insn
= PREV_INSN (insn
);
1138 /* +2 to leave room for a post_mark_life at the last insn and for
1139 the birth of a CLOBBER in the first insn. */
1140 regs_live_at
= (HARD_REG_SET
*) alloca ((2 * insn_count
+ 2)
1141 * sizeof (HARD_REG_SET
));
1142 bzero (regs_live_at
, (2 * insn_count
+ 2) * sizeof (HARD_REG_SET
));
1144 /* Initialize table of hardware registers currently live. */
1147 regs_live
= *basic_block_live_at_start
[b
];
1149 COPY_HARD_REG_SET (regs_live
, basic_block_live_at_start
[b
]);
1152 /* This loop scans the instructions of the basic block
1153 and assigns quantities to registers.
1154 It computes which registers to tie. */
1156 insn
= basic_block_head
[b
];
1159 register rtx body
= PATTERN (insn
);
1161 if (GET_CODE (insn
) != NOTE
)
1164 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
1166 register rtx link
, set
;
1167 register int win
= 0;
1168 register rtx r0
, r1
;
1169 int combined_regno
= -1;
1171 int insn_code_number
= recog_memoized (insn
);
1173 this_insn_number
= insn_number
;
1176 if (insn_code_number
>= 0)
1177 insn_extract (insn
);
1178 which_alternative
= -1;
1180 /* Is this insn suitable for tying two registers?
1181 If so, try doing that.
1182 Suitable insns are those with at least two operands and where
1183 operand 0 is an output that is a register that is not
1186 We can tie operand 0 with some operand that dies in this insn.
1187 First look for operands that are required to be in the same
1188 register as operand 0. If we find such, only try tying that
1189 operand or one that can be put into that operand if the
1190 operation is commutative. If we don't find an operand
1191 that is required to be in the same register as operand 0,
1192 we can tie with any operand.
1194 Subregs in place of regs are also ok.
1196 If tying is done, WIN is set nonzero. */
1198 if (insn_code_number
>= 0
1199 #ifdef REGISTER_CONSTRAINTS
1200 && insn_n_operands
[insn_code_number
] > 1
1201 && insn_operand_constraint
[insn_code_number
][0][0] == '='
1202 && insn_operand_constraint
[insn_code_number
][0][1] != '&'
1204 && GET_CODE (PATTERN (insn
)) == SET
1205 && rtx_equal_p (SET_DEST (PATTERN (insn
)), recog_operand
[0])
1209 #ifdef REGISTER_CONSTRAINTS
1210 /* If non-negative, is an operand that must match operand 0. */
1211 int must_match_0
= -1;
1212 /* Counts number of alternatives that require a match with
1214 int n_matching_alts
= 0;
1216 for (i
= 1; i
< insn_n_operands
[insn_code_number
]; i
++)
1218 char *p
= insn_operand_constraint
[insn_code_number
][i
];
1219 int this_match
= (requires_inout (p
));
1221 n_matching_alts
+= this_match
;
1222 if (this_match
== insn_n_alternatives
[insn_code_number
])
1227 r0
= recog_operand
[0];
1228 for (i
= 1; i
< insn_n_operands
[insn_code_number
]; i
++)
1230 #ifdef REGISTER_CONSTRAINTS
1231 /* Skip this operand if we found an operand that
1232 must match operand 0 and this operand isn't it
1233 and can't be made to be it by commutativity. */
1235 if (must_match_0
>= 0 && i
!= must_match_0
1236 && ! (i
== must_match_0
+ 1
1237 && insn_operand_constraint
[insn_code_number
][i
-1][0] == '%')
1238 && ! (i
== must_match_0
- 1
1239 && insn_operand_constraint
[insn_code_number
][i
][0] == '%'))
1242 /* Likewise if each alternative has some operand that
1243 must match operand zero. In that case, skip any
1244 operand that doesn't list operand 0 since we know that
1245 the operand always conflicts with operand 0. We
1246 ignore commutatity in this case to keep things simple. */
1247 if (n_matching_alts
== insn_n_alternatives
[insn_code_number
]
1248 && (0 == requires_inout
1249 (insn_operand_constraint
[insn_code_number
][i
])))
1253 r1
= recog_operand
[i
];
1255 /* If the operand is an address, find a register in it.
1256 There may be more than one register, but we only try one
1259 #ifdef REGISTER_CONSTRAINTS
1260 insn_operand_constraint
[insn_code_number
][i
][0] == 'p'
1262 insn_operand_address_p
[insn_code_number
][i
]
1265 while (GET_CODE (r1
) == PLUS
|| GET_CODE (r1
) == MULT
)
1268 if (GET_CODE (r0
) == REG
|| GET_CODE (r0
) == SUBREG
)
1270 /* We have two priorities for hard register preferences.
1271 If we have a move insn or an insn whose first input
1272 can only be in the same register as the output, give
1273 priority to an equivalence found from that insn. */
1275 = ((SET_DEST (body
) == r0
&& SET_SRC (body
) == r1
)
1276 #ifdef REGISTER_CONSTRAINTS
1277 || (r1
== recog_operand
[i
] && must_match_0
>= 0)
1281 if (GET_CODE (r1
) == REG
|| GET_CODE (r1
) == SUBREG
)
1282 win
= combine_regs (r1
, r0
, may_save_copy
,
1283 insn_number
, insn
, 0);
1288 /* Recognize an insn sequence with an ultimate result
1289 which can safely overlap one of the inputs.
1290 The sequence begins with a CLOBBER of its result,
1291 and ends with an insn that copies the result to itself
1292 and has a REG_EQUAL note for an equivalent formula.
1293 That note indicates what the inputs are.
1294 The result and the input can overlap if each insn in
1295 the sequence either doesn't mention the input
1296 or has a REG_NO_CONFLICT note to inhibit the conflict.
1298 We do the combining test at the CLOBBER so that the
1299 destination register won't have had a quantity number
1300 assigned, since that would prevent combining. */
1302 if (GET_CODE (PATTERN (insn
)) == CLOBBER
1303 && (r0
= XEXP (PATTERN (insn
), 0),
1304 GET_CODE (r0
) == REG
)
1305 && (link
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)) != 0
1306 && XEXP (link
, 0) != 0
1307 && GET_CODE (XEXP (link
, 0)) == INSN
1308 && (set
= single_set (XEXP (link
, 0))) != 0
1309 && SET_DEST (set
) == r0
&& SET_SRC (set
) == r0
1310 && (note
= find_reg_note (XEXP (link
, 0), REG_EQUAL
,
1313 if (r1
= XEXP (note
, 0), GET_CODE (r1
) == REG
1314 /* Check that we have such a sequence. */
1315 && no_conflict_p (insn
, r0
, r1
))
1316 win
= combine_regs (r1
, r0
, 1, insn_number
, insn
, 1);
1317 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note
, 0)))[0] == 'e'
1318 && (r1
= XEXP (XEXP (note
, 0), 0),
1319 GET_CODE (r1
) == REG
|| GET_CODE (r1
) == SUBREG
)
1320 && no_conflict_p (insn
, r0
, r1
))
1321 win
= combine_regs (r1
, r0
, 0, insn_number
, insn
, 1);
1323 /* Here we care if the operation to be computed is
1325 else if ((GET_CODE (XEXP (note
, 0)) == EQ
1326 || GET_CODE (XEXP (note
, 0)) == NE
1327 || GET_RTX_CLASS (GET_CODE (XEXP (note
, 0))) == 'c')
1328 && (r1
= XEXP (XEXP (note
, 0), 1),
1329 (GET_CODE (r1
) == REG
|| GET_CODE (r1
) == SUBREG
))
1330 && no_conflict_p (insn
, r0
, r1
))
1331 win
= combine_regs (r1
, r0
, 0, insn_number
, insn
, 1);
1333 /* If we did combine something, show the register number
1334 in question so that we know to ignore its death. */
1336 no_conflict_combined_regno
= REGNO (r1
);
1339 /* If registers were just tied, set COMBINED_REGNO
1340 to the number of the register used in this insn
1341 that was tied to the register set in this insn.
1342 This register's qty should not be "killed". */
1346 while (GET_CODE (r1
) == SUBREG
)
1347 r1
= SUBREG_REG (r1
);
1348 combined_regno
= REGNO (r1
);
1351 /* Mark the death of everything that dies in this instruction,
1352 except for anything that was just combined. */
1354 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1355 if (REG_NOTE_KIND (link
) == REG_DEAD
1356 && GET_CODE (XEXP (link
, 0)) == REG
1357 && combined_regno
!= REGNO (XEXP (link
, 0))
1358 && (no_conflict_combined_regno
!= REGNO (XEXP (link
, 0))
1359 || ! find_reg_note (insn
, REG_NO_CONFLICT
, XEXP (link
, 0))))
1360 wipe_dead_reg (XEXP (link
, 0), 0);
1362 /* Allocate qty numbers for all registers local to this block
1363 that are born (set) in this instruction.
1364 A pseudo that already has a qty is not changed. */
1366 note_stores (PATTERN (insn
), reg_is_set
);
1368 /* If anything is set in this insn and then unused, mark it as dying
1369 after this insn, so it will conflict with our outputs. This
1370 can't match with something that combined, and it doesn't matter
1371 if it did. Do this after the calls to reg_is_set since these
1372 die after, not during, the current insn. */
1374 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1375 if (REG_NOTE_KIND (link
) == REG_UNUSED
1376 && GET_CODE (XEXP (link
, 0)) == REG
)
1377 wipe_dead_reg (XEXP (link
, 0), 1);
1379 /* Allocate quantities for any SCRATCH operands of this insn. */
1381 if (insn_code_number
>= 0)
1382 for (i
= 0; i
< insn_n_operands
[insn_code_number
]; i
++)
1383 if (GET_CODE (recog_operand
[i
]) == SCRATCH
1384 && scratches_allocated
++ < scratch_list_length
)
1385 alloc_qty_for_scratch (recog_operand
[i
], i
, insn
,
1386 insn_code_number
, insn_number
);
1388 /* If this is an insn that has a REG_RETVAL note pointing at a
1389 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1390 block, so clear any register number that combined within it. */
1391 if ((note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
)) != 0
1392 && GET_CODE (XEXP (note
, 0)) == INSN
1393 && GET_CODE (PATTERN (XEXP (note
, 0))) == CLOBBER
)
1394 no_conflict_combined_regno
= -1;
1397 /* Set the registers live after INSN_NUMBER. Note that we never
1398 record the registers live before the block's first insn, since no
1399 pseudos we care about are live before that insn. */
1401 IOR_HARD_REG_SET (regs_live_at
[2 * insn_number
], regs_live
);
1402 IOR_HARD_REG_SET (regs_live_at
[2 * insn_number
+ 1], regs_live
);
1404 if (insn
== basic_block_end
[b
])
1407 insn
= NEXT_INSN (insn
);
1410 /* Now every register that is local to this basic block
1411 should have been given a quantity, or else -1 meaning ignore it.
1412 Every quantity should have a known birth and death.
1414 Order the qtys so we assign them registers in order of the
1415 number of suggested registers they need so we allocate those with
1416 the most restrictive needs first. */
1418 qty_order
= (int *) alloca (next_qty
* sizeof (int));
1419 for (i
= 0; i
< next_qty
; i
++)
1422 #define EXCHANGE(I1, I2) \
1423 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1428 /* Make qty_order[2] be the one to allocate last. */
1429 if (qty_sugg_compare (0, 1) > 0)
1431 if (qty_sugg_compare (1, 2) > 0)
1434 /* ... Fall through ... */
1436 /* Put the best one to allocate in qty_order[0]. */
1437 if (qty_sugg_compare (0, 1) > 0)
1440 /* ... Fall through ... */
1444 /* Nothing to do here. */
1448 qsort (qty_order
, next_qty
, sizeof (int), qty_sugg_compare_1
);
1451 /* Try to put each quantity in a suggested physical register, if it has one.
1452 This may cause registers to be allocated that otherwise wouldn't be, but
1453 this seems acceptable in local allocation (unlike global allocation). */
1454 for (i
= 0; i
< next_qty
; i
++)
1457 if (qty_phys_num_sugg
[q
] != 0 || qty_phys_num_copy_sugg
[q
] != 0)
1458 qty_phys_reg
[q
] = find_free_reg (qty_min_class
[q
], qty_mode
[q
], q
,
1459 0, 1, qty_birth
[q
], qty_death
[q
]);
1461 qty_phys_reg
[q
] = -1;
1464 /* Order the qtys so we assign them registers in order of
1465 decreasing length of life. Normally call qsort, but if we
1466 have only a very small number of quantities, sort them ourselves. */
1468 for (i
= 0; i
< next_qty
; i
++)
1471 #define EXCHANGE(I1, I2) \
1472 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1477 /* Make qty_order[2] be the one to allocate last. */
1478 if (qty_compare (0, 1) > 0)
1480 if (qty_compare (1, 2) > 0)
1483 /* ... Fall through ... */
1485 /* Put the best one to allocate in qty_order[0]. */
1486 if (qty_compare (0, 1) > 0)
1489 /* ... Fall through ... */
1493 /* Nothing to do here. */
1497 qsort (qty_order
, next_qty
, sizeof (int), qty_compare_1
);
1500 /* Now for each qty that is not a hardware register,
1501 look for a hardware register to put it in.
1502 First try the register class that is cheapest for this qty,
1503 if there is more than one class. */
1505 for (i
= 0; i
< next_qty
; i
++)
1508 if (qty_phys_reg
[q
] < 0)
1510 if (N_REG_CLASSES
> 1)
1512 qty_phys_reg
[q
] = find_free_reg (qty_min_class
[q
],
1513 qty_mode
[q
], q
, 0, 0,
1514 qty_birth
[q
], qty_death
[q
]);
1515 if (qty_phys_reg
[q
] >= 0)
1519 if (qty_alternate_class
[q
] != NO_REGS
)
1520 qty_phys_reg
[q
] = find_free_reg (qty_alternate_class
[q
],
1521 qty_mode
[q
], q
, 0, 0,
1522 qty_birth
[q
], qty_death
[q
]);
1526 /* Now propagate the register assignments
1527 to the pseudo regs belonging to the qtys. */
1529 for (q
= 0; q
< next_qty
; q
++)
1530 if (qty_phys_reg
[q
] >= 0)
1532 for (i
= qty_first_reg
[q
]; i
>= 0; i
= reg_next_in_qty
[i
])
1533 reg_renumber
[i
] = qty_phys_reg
[q
] + reg_offset
[i
];
1534 if (qty_scratch_rtx
[q
])
1536 if (GET_CODE (qty_scratch_rtx
[q
]) == REG
)
1538 PUT_CODE (qty_scratch_rtx
[q
], REG
);
1539 REGNO (qty_scratch_rtx
[q
]) = qty_phys_reg
[q
];
1541 scratch_block
[scratch_index
] = b
;
1542 scratch_list
[scratch_index
++] = qty_scratch_rtx
[q
];
1544 /* Must clear the USED field, because it will have been set by
1545 copy_rtx_if_shared, but the leaf_register code expects that
1546 it is zero in all REG rtx. copy_rtx_if_shared does not set the
1547 used bit for REGs, but does for SCRATCHes. */
1548 qty_scratch_rtx
[q
]->used
= 0;
1553 /* Compare two quantities' priority for getting real registers.
1554 We give shorter-lived quantities higher priority.
1555 Quantities with more references are also preferred, as are quantities that
1556 require multiple registers. This is the identical prioritization as
1557 done by global-alloc.
1559 We used to give preference to registers with *longer* lives, but using
1560 the same algorithm in both local- and global-alloc can speed up execution
1561 of some programs by as much as a factor of three! */
1564 qty_compare (q1
, q2
)
1567 /* Note that the quotient will never be bigger than
1568 the value of floor_log2 times the maximum number of
1569 times a register can occur in one insn (surely less than 100).
1570 Multiplying this by 10000 can't overflow. */
1572 = (((double) (floor_log2 (qty_n_refs
[q1
]) * qty_n_refs
[q1
] * qty_size
[q1
])
1573 / (qty_death
[q1
] - qty_birth
[q1
]))
1576 = (((double) (floor_log2 (qty_n_refs
[q2
]) * qty_n_refs
[q2
] * qty_size
[q2
])
1577 / (qty_death
[q2
] - qty_birth
[q2
]))
1583 qty_compare_1 (q1
, q2
)
1588 /* Note that the quotient will never be bigger than
1589 the value of floor_log2 times the maximum number of
1590 times a register can occur in one insn (surely less than 100).
1591 Multiplying this by 10000 can't overflow. */
1593 = (((double) (floor_log2 (qty_n_refs
[*q1
]) * qty_n_refs
[*q1
]
1595 / (qty_death
[*q1
] - qty_birth
[*q1
]))
1598 = (((double) (floor_log2 (qty_n_refs
[*q2
]) * qty_n_refs
[*q2
]
1600 / (qty_death
[*q2
] - qty_birth
[*q2
]))
1604 if (tem
!= 0) return tem
;
1605 /* If qtys are equally good, sort by qty number,
1606 so that the results of qsort leave nothing to chance. */
1610 /* Compare two quantities' priority for getting real registers. This version
1611 is called for quantities that have suggested hard registers. First priority
1612 goes to quantities that have copy preferences, then to those that have
1613 normal preferences. Within those groups, quantities with the lower
1614 number of preferenes have the highest priority. Of those, we use the same
1615 algorithm as above. */
1618 qty_sugg_compare (q1
, q2
)
1621 register int sugg1
= (qty_phys_num_copy_sugg
[q1
]
1622 ? qty_phys_num_copy_sugg
[q1
]
1623 : qty_phys_num_sugg
[q1
] * FIRST_PSEUDO_REGISTER
);
1624 register int sugg2
= (qty_phys_num_copy_sugg
[q2
]
1625 ? qty_phys_num_copy_sugg
[q2
]
1626 : qty_phys_num_sugg
[q2
] * FIRST_PSEUDO_REGISTER
);
1627 /* Note that the quotient will never be bigger than
1628 the value of floor_log2 times the maximum number of
1629 times a register can occur in one insn (surely less than 100).
1630 Multiplying this by 10000 can't overflow. */
1632 = (((double) (floor_log2 (qty_n_refs
[q1
]) * qty_n_refs
[q1
] * qty_size
[q1
])
1633 / (qty_death
[q1
] - qty_birth
[q1
]))
1636 = (((double) (floor_log2 (qty_n_refs
[q2
]) * qty_n_refs
[q2
] * qty_size
[q2
])
1637 / (qty_death
[q2
] - qty_birth
[q2
]))
1641 return sugg1
- sugg2
;
1647 qty_sugg_compare_1 (q1
, q2
)
1650 register int sugg1
= (qty_phys_num_copy_sugg
[*q1
]
1651 ? qty_phys_num_copy_sugg
[*q1
]
1652 : qty_phys_num_sugg
[*q1
] * FIRST_PSEUDO_REGISTER
);
1653 register int sugg2
= (qty_phys_num_copy_sugg
[*q2
]
1654 ? qty_phys_num_copy_sugg
[*q2
]
1655 : qty_phys_num_sugg
[*q2
] * FIRST_PSEUDO_REGISTER
);
1657 /* Note that the quotient will never be bigger than
1658 the value of floor_log2 times the maximum number of
1659 times a register can occur in one insn (surely less than 100).
1660 Multiplying this by 10000 can't overflow. */
1662 = (((double) (floor_log2 (qty_n_refs
[*q1
]) * qty_n_refs
[*q1
]
1664 / (qty_death
[*q1
] - qty_birth
[*q1
]))
1667 = (((double) (floor_log2 (qty_n_refs
[*q2
]) * qty_n_refs
[*q2
]
1669 / (qty_death
[*q2
] - qty_birth
[*q2
]))
1673 return sugg1
- sugg2
;
1678 /* If qtys are equally good, sort by qty number,
1679 so that the results of qsort leave nothing to chance. */
1683 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1684 Returns 1 if have done so, or 0 if cannot.
1686 Combining registers means marking them as having the same quantity
1687 and adjusting the offsets within the quantity if either of
1690 We don't actually combine a hard reg with a pseudo; instead
1691 we just record the hard reg as the suggestion for the pseudo's quantity.
1692 If we really combined them, we could lose if the pseudo lives
1693 across an insn that clobbers the hard reg (eg, movstr).
1695 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1696 there is no REG_DEAD note on INSN. This occurs during the processing
1697 of REG_NO_CONFLICT blocks.
1699 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1700 SETREG or if the input and output must share a register.
1701 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1703 There are elaborate checks for the validity of combining. */
1707 combine_regs (usedreg
, setreg
, may_save_copy
, insn_number
, insn
, already_dead
)
1708 rtx usedreg
, setreg
;
1714 register int ureg
, sreg
;
1715 register int offset
= 0;
1719 /* Determine the numbers and sizes of registers being used. If a subreg
1720 is present that does not change the entire register, don't consider
1721 this a copy insn. */
1723 while (GET_CODE (usedreg
) == SUBREG
)
1725 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg
))) > UNITS_PER_WORD
)
1727 offset
+= SUBREG_WORD (usedreg
);
1728 usedreg
= SUBREG_REG (usedreg
);
1730 if (GET_CODE (usedreg
) != REG
)
1732 ureg
= REGNO (usedreg
);
1733 usize
= REG_SIZE (usedreg
);
1735 while (GET_CODE (setreg
) == SUBREG
)
1737 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg
))) > UNITS_PER_WORD
)
1739 offset
-= SUBREG_WORD (setreg
);
1740 setreg
= SUBREG_REG (setreg
);
1742 if (GET_CODE (setreg
) != REG
)
1744 sreg
= REGNO (setreg
);
1745 ssize
= REG_SIZE (setreg
);
1747 /* If UREG is a pseudo-register that hasn't already been assigned a
1748 quantity number, it means that it is not local to this block or dies
1749 more than once. In either event, we can't do anything with it. */
1750 if ((ureg
>= FIRST_PSEUDO_REGISTER
&& reg_qty
[ureg
] < 0)
1751 /* Do not combine registers unless one fits within the other. */
1752 || (offset
> 0 && usize
+ offset
> ssize
)
1753 || (offset
< 0 && usize
+ offset
< ssize
)
1754 /* Do not combine with a smaller already-assigned object
1755 if that smaller object is already combined with something bigger. */
1756 || (ssize
> usize
&& ureg
>= FIRST_PSEUDO_REGISTER
1757 && usize
< qty_size
[reg_qty
[ureg
]])
1758 /* Can't combine if SREG is not a register we can allocate. */
1759 || (sreg
>= FIRST_PSEUDO_REGISTER
&& reg_qty
[sreg
] == -1)
1760 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1761 These have already been taken care of. This probably wouldn't
1762 combine anyway, but don't take any chances. */
1763 || (ureg
>= FIRST_PSEUDO_REGISTER
1764 && find_reg_note (insn
, REG_NO_CONFLICT
, usedreg
))
1765 /* Don't tie something to itself. In most cases it would make no
1766 difference, but it would screw up if the reg being tied to itself
1767 also dies in this insn. */
1769 /* Don't try to connect two different hardware registers. */
1770 || (ureg
< FIRST_PSEUDO_REGISTER
&& sreg
< FIRST_PSEUDO_REGISTER
)
1771 /* Don't connect two different machine modes if they have different
1772 implications as to which registers may be used. */
1773 || !MODES_TIEABLE_P (GET_MODE (usedreg
), GET_MODE (setreg
)))
1776 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1777 qty_phys_sugg for the pseudo instead of tying them.
1779 Return "failure" so that the lifespan of UREG is terminated here;
1780 that way the two lifespans will be disjoint and nothing will prevent
1781 the pseudo reg from being given this hard reg. */
1783 if (ureg
< FIRST_PSEUDO_REGISTER
)
1785 /* Allocate a quantity number so we have a place to put our
1787 if (reg_qty
[sreg
] == -2)
1788 reg_is_born (setreg
, 2 * insn_number
);
1790 if (reg_qty
[sreg
] >= 0)
1793 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg
[reg_qty
[sreg
]], ureg
))
1795 SET_HARD_REG_BIT (qty_phys_copy_sugg
[reg_qty
[sreg
]], ureg
);
1796 qty_phys_num_copy_sugg
[reg_qty
[sreg
]]++;
1798 else if (! TEST_HARD_REG_BIT (qty_phys_sugg
[reg_qty
[sreg
]], ureg
))
1800 SET_HARD_REG_BIT (qty_phys_sugg
[reg_qty
[sreg
]], ureg
);
1801 qty_phys_num_sugg
[reg_qty
[sreg
]]++;
1807 /* Similarly for SREG a hard register and UREG a pseudo register. */
1809 if (sreg
< FIRST_PSEUDO_REGISTER
)
1812 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg
[reg_qty
[ureg
]], sreg
))
1814 SET_HARD_REG_BIT (qty_phys_copy_sugg
[reg_qty
[ureg
]], sreg
);
1815 qty_phys_num_copy_sugg
[reg_qty
[ureg
]]++;
1817 else if (! TEST_HARD_REG_BIT (qty_phys_sugg
[reg_qty
[ureg
]], sreg
))
1819 SET_HARD_REG_BIT (qty_phys_sugg
[reg_qty
[ureg
]], sreg
);
1820 qty_phys_num_sugg
[reg_qty
[ureg
]]++;
1825 /* At this point we know that SREG and UREG are both pseudos.
1826 Do nothing if SREG already has a quantity or is a register that we
1828 if (reg_qty
[sreg
] >= -1
1829 /* If we are not going to let any regs live across calls,
1830 don't tie a call-crossing reg to a non-call-crossing reg. */
1831 || (current_function_has_nonlocal_label
1832 && ((reg_n_calls_crossed
[ureg
] > 0)
1833 != (reg_n_calls_crossed
[sreg
] > 0))))
1836 /* We don't already know about SREG, so tie it to UREG
1837 if this is the last use of UREG, provided the classes they want
1840 if ((already_dead
|| find_regno_note (insn
, REG_DEAD
, ureg
))
1841 && reg_meets_class_p (sreg
, qty_min_class
[reg_qty
[ureg
]]))
1843 /* Add SREG to UREG's quantity. */
1844 sqty
= reg_qty
[ureg
];
1845 reg_qty
[sreg
] = sqty
;
1846 reg_offset
[sreg
] = reg_offset
[ureg
] + offset
;
1847 reg_next_in_qty
[sreg
] = qty_first_reg
[sqty
];
1848 qty_first_reg
[sqty
] = sreg
;
1850 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1851 update_qty_class (sqty
, sreg
);
1853 /* Update info about quantity SQTY. */
1854 qty_n_calls_crossed
[sqty
] += reg_n_calls_crossed
[sreg
];
1855 qty_n_refs
[sqty
] += reg_n_refs
[sreg
];
1860 for (i
= qty_first_reg
[sqty
]; i
>= 0; i
= reg_next_in_qty
[i
])
1861 reg_offset
[i
] -= offset
;
1863 qty_size
[sqty
] = ssize
;
1864 qty_mode
[sqty
] = GET_MODE (setreg
);
1873 /* Return 1 if the preferred class of REG allows it to be tied
1874 to a quantity or register whose class is CLASS.
1875 True if REG's reg class either contains or is contained in CLASS. */
1878 reg_meets_class_p (reg
, class)
1880 enum reg_class
class;
1882 register enum reg_class rclass
= reg_preferred_class (reg
);
1883 return (reg_class_subset_p (rclass
, class)
1884 || reg_class_subset_p (class, rclass
));
1887 /* Return 1 if the two specified classes have registers in common.
1888 If CALL_SAVED, then consider only call-saved registers. */
1891 reg_classes_overlap_p (c1
, c2
, call_saved
)
1892 register enum reg_class c1
;
1893 register enum reg_class c2
;
1899 COPY_HARD_REG_SET (c
, reg_class_contents
[(int) c1
]);
1900 AND_HARD_REG_SET (c
, reg_class_contents
[(int) c2
]);
1902 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1903 if (TEST_HARD_REG_BIT (c
, i
)
1904 && (! call_saved
|| ! call_used_regs
[i
]))
1910 /* Update the class of QTY assuming that REG is being tied to it. */
1913 update_qty_class (qty
, reg
)
1917 enum reg_class rclass
= reg_preferred_class (reg
);
1918 if (reg_class_subset_p (rclass
, qty_min_class
[qty
]))
1919 qty_min_class
[qty
] = rclass
;
1921 rclass
= reg_alternate_class (reg
);
1922 if (reg_class_subset_p (rclass
, qty_alternate_class
[qty
]))
1923 qty_alternate_class
[qty
] = rclass
;
1926 /* Handle something which alters the value of an rtx REG.
1928 REG is whatever is set or clobbered. SETTER is the rtx that
1929 is modifying the register.
1931 If it is not really a register, we do nothing.
1932 The file-global variables `this_insn' and `this_insn_number'
1933 carry info from `block_alloc'. */
1936 reg_is_set (reg
, setter
)
1940 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
1941 a hard register. These may actually not exist any more. */
1943 if (GET_CODE (reg
) != SUBREG
1944 && GET_CODE (reg
) != REG
)
1947 /* Mark this register as being born. If it is used in a CLOBBER, mark
1948 it as being born halfway between the previous insn and this insn so that
1949 it conflicts with our inputs but not the outputs of the previous insn. */
1951 reg_is_born (reg
, 2 * this_insn_number
- (GET_CODE (setter
) == CLOBBER
));
1954 /* Handle beginning of the life of register REG.
1955 BIRTH is the index at which this is happening. */
1958 reg_is_born (reg
, birth
)
1964 if (GET_CODE (reg
) == SUBREG
)
1965 regno
= REGNO (SUBREG_REG (reg
)) + SUBREG_WORD (reg
);
1967 regno
= REGNO (reg
);
1969 if (regno
< FIRST_PSEUDO_REGISTER
)
1971 mark_life (regno
, GET_MODE (reg
), 1);
1973 /* If the register was to have been born earlier that the present
1974 insn, mark it as live where it is actually born. */
1975 if (birth
< 2 * this_insn_number
)
1976 post_mark_life (regno
, GET_MODE (reg
), 1, birth
, 2 * this_insn_number
);
1980 if (reg_qty
[regno
] == -2)
1981 alloc_qty (regno
, GET_MODE (reg
), PSEUDO_REGNO_SIZE (regno
), birth
);
1983 /* If this register has a quantity number, show that it isn't dead. */
1984 if (reg_qty
[regno
] >= 0)
1985 qty_death
[reg_qty
[regno
]] = -1;
1989 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
1990 REG is an output that is dying (i.e., it is never used), otherwise it
1991 is an input (the normal case).
1992 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
1995 wipe_dead_reg (reg
, output_p
)
1999 register int regno
= REGNO (reg
);
2001 /* If this insn has multiple results,
2002 and the dead reg is used in one of the results,
2003 extend its life to after this insn,
2004 so it won't get allocated together with any other result of this insn. */
2005 if (GET_CODE (PATTERN (this_insn
)) == PARALLEL
2006 && !single_set (this_insn
))
2009 for (i
= XVECLEN (PATTERN (this_insn
), 0) - 1; i
>= 0; i
--)
2011 rtx set
= XVECEXP (PATTERN (this_insn
), 0, i
);
2012 if (GET_CODE (set
) == SET
2013 && GET_CODE (SET_DEST (set
)) != REG
2014 && !rtx_equal_p (reg
, SET_DEST (set
))
2015 && reg_overlap_mentioned_p (reg
, SET_DEST (set
)))
2020 if (regno
< FIRST_PSEUDO_REGISTER
)
2022 mark_life (regno
, GET_MODE (reg
), 0);
2024 /* If a hard register is dying as an output, mark it as in use at
2025 the beginning of this insn (the above statement would cause this
2028 post_mark_life (regno
, GET_MODE (reg
), 1,
2029 2 * this_insn_number
, 2 * this_insn_number
+ 1);
2032 else if (reg_qty
[regno
] >= 0)
2033 qty_death
[reg_qty
[regno
]] = 2 * this_insn_number
+ output_p
;
2036 /* Find a block of SIZE words of hard regs in reg_class CLASS
2037 that can hold something of machine-mode MODE
2038 (but actually we test only the first of the block for holding MODE)
2039 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2040 and return the number of the first of them.
2041 Return -1 if such a block cannot be found.
2042 If QTY crosses calls, insist on a register preserved by calls,
2043 unless ACCEPT_CALL_CLOBBERED is nonzero.
2045 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2046 register is available. If not, return -1. */
2049 find_free_reg (class, mode
, qty
, accept_call_clobbered
, just_try_suggested
,
2050 born_index
, dead_index
)
2051 enum reg_class
class;
2052 enum machine_mode mode
;
2054 int accept_call_clobbered
;
2055 int just_try_suggested
;
2056 int born_index
, dead_index
;
2058 register int i
, ins
;
2060 register /* Declare it register if it's a scalar. */
2062 HARD_REG_SET used
, first_used
;
2063 #ifdef ELIMINABLE_REGS
2064 static struct {int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
2067 /* Validate our parameters. */
2068 if (born_index
< 0 || born_index
> dead_index
)
2071 /* Don't let a pseudo live in a reg across a function call
2072 if we might get a nonlocal goto. */
2073 if (current_function_has_nonlocal_label
2074 && qty_n_calls_crossed
[qty
] > 0)
2077 if (accept_call_clobbered
)
2078 COPY_HARD_REG_SET (used
, call_fixed_reg_set
);
2079 else if (qty_n_calls_crossed
[qty
] == 0)
2080 COPY_HARD_REG_SET (used
, fixed_reg_set
);
2082 COPY_HARD_REG_SET (used
, call_used_reg_set
);
2084 for (ins
= born_index
; ins
< dead_index
; ins
++)
2085 IOR_HARD_REG_SET (used
, regs_live_at
[ins
]);
2087 IOR_COMPL_HARD_REG_SET (used
, reg_class_contents
[(int) class]);
2089 /* Don't use the frame pointer reg in local-alloc even if
2090 we may omit the frame pointer, because if we do that and then we
2091 need a frame pointer, reload won't know how to move the pseudo
2092 to another hard reg. It can move only regs made by global-alloc.
2094 This is true of any register that can be eliminated. */
2095 #ifdef ELIMINABLE_REGS
2096 for (i
= 0; i
< sizeof eliminables
/ sizeof eliminables
[0]; i
++)
2097 SET_HARD_REG_BIT (used
, eliminables
[i
].from
);
2098 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2099 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2100 that it might be eliminated into. */
2101 SET_HARD_REG_BIT (used
, HARD_FRAME_POINTER_REGNUM
);
2104 SET_HARD_REG_BIT (used
, FRAME_POINTER_REGNUM
);
2107 /* Normally, the registers that can be used for the first register in
2108 a multi-register quantity are the same as those that can be used for
2109 subsequent registers. However, if just trying suggested registers,
2110 restrict our consideration to them. If there are copy-suggested
2111 register, try them. Otherwise, try the arithmetic-suggested
2113 COPY_HARD_REG_SET (first_used
, used
);
2115 if (just_try_suggested
)
2117 if (qty_phys_num_copy_sugg
[qty
] != 0)
2118 IOR_COMPL_HARD_REG_SET (first_used
, qty_phys_copy_sugg
[qty
]);
2120 IOR_COMPL_HARD_REG_SET (first_used
, qty_phys_sugg
[qty
]);
2123 /* If all registers are excluded, we can't do anything. */
2124 GO_IF_HARD_REG_SUBSET (reg_class_contents
[(int) ALL_REGS
], first_used
, fail
);
2126 /* If at least one would be suitable, test each hard reg. */
2128 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2130 #ifdef REG_ALLOC_ORDER
2131 int regno
= reg_alloc_order
[i
];
2135 if (! TEST_HARD_REG_BIT (first_used
, regno
)
2136 && HARD_REGNO_MODE_OK (regno
, mode
))
2139 register int size1
= HARD_REGNO_NREGS (regno
, mode
);
2140 for (j
= 1; j
< size1
&& ! TEST_HARD_REG_BIT (used
, regno
+ j
); j
++);
2143 /* Mark that this register is in use between its birth and death
2145 post_mark_life (regno
, mode
, 1, born_index
, dead_index
);
2148 #ifndef REG_ALLOC_ORDER
2149 i
+= j
; /* Skip starting points we know will lose */
2156 /* If we are just trying suggested register, we have just tried copy-
2157 suggested registers, and there are arithmetic-suggested registers,
2160 /* If it would be profitable to allocate a call-clobbered register
2161 and save and restore it around calls, do that. */
2162 if (just_try_suggested
&& qty_phys_num_copy_sugg
[qty
] != 0
2163 && qty_phys_num_sugg
[qty
] != 0)
2165 /* Don't try the copy-suggested regs again. */
2166 qty_phys_num_copy_sugg
[qty
] = 0;
2167 return find_free_reg (class, mode
, qty
, accept_call_clobbered
, 1,
2168 born_index
, dead_index
);
2171 /* We need not check to see if the current function has nonlocal
2172 labels because we don't put any pseudos that are live over calls in
2173 registers in that case. */
2175 if (! accept_call_clobbered
2176 && flag_caller_saves
2177 && ! just_try_suggested
2178 && qty_n_calls_crossed
[qty
] != 0
2179 && CALLER_SAVE_PROFITABLE (qty_n_refs
[qty
], qty_n_calls_crossed
[qty
]))
2181 i
= find_free_reg (class, mode
, qty
, 1, 0, born_index
, dead_index
);
2183 caller_save_needed
= 1;
2189 /* Mark that REGNO with machine-mode MODE is live starting from the current
2190 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2194 mark_life (regno
, mode
, life
)
2196 enum machine_mode mode
;
2199 register int j
= HARD_REGNO_NREGS (regno
, mode
);
2202 SET_HARD_REG_BIT (regs_live
, regno
+ j
);
2205 CLEAR_HARD_REG_BIT (regs_live
, regno
+ j
);
2208 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2209 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2210 to insn number DEATH (exclusive). */
2213 post_mark_life (regno
, mode
, life
, birth
, death
)
2215 enum machine_mode mode
;
2216 int life
, birth
, death
;
2218 register int j
= HARD_REGNO_NREGS (regno
, mode
);
2220 register /* Declare it register if it's a scalar. */
2222 HARD_REG_SET this_reg
;
2224 CLEAR_HARD_REG_SET (this_reg
);
2226 SET_HARD_REG_BIT (this_reg
, regno
+ j
);
2229 while (birth
< death
)
2231 IOR_HARD_REG_SET (regs_live_at
[birth
], this_reg
);
2235 while (birth
< death
)
2237 AND_COMPL_HARD_REG_SET (regs_live_at
[birth
], this_reg
);
2242 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2243 is the register being clobbered, and R1 is a register being used in
2244 the equivalent expression.
2246 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2247 in which it is used, return 1.
2249 Otherwise, return 0. */
2252 no_conflict_p (insn
, r0
, r1
)
2256 rtx note
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
);
2259 /* If R1 is a hard register, return 0 since we handle this case
2260 when we scan the insns that actually use it. */
2263 || (GET_CODE (r1
) == REG
&& REGNO (r1
) < FIRST_PSEUDO_REGISTER
)
2264 || (GET_CODE (r1
) == SUBREG
&& GET_CODE (SUBREG_REG (r1
)) == REG
2265 && REGNO (SUBREG_REG (r1
)) < FIRST_PSEUDO_REGISTER
))
2268 last
= XEXP (note
, 0);
2270 for (p
= NEXT_INSN (insn
); p
&& p
!= last
; p
= NEXT_INSN (p
))
2271 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i')
2273 if (find_reg_note (p
, REG_DEAD
, r1
))
2276 if (reg_mentioned_p (r1
, PATTERN (p
))
2277 && ! find_reg_note (p
, REG_NO_CONFLICT
, r1
))
2284 #ifdef REGISTER_CONSTRAINTS
2286 /* Return the number of alternatives for which the constraint string P
2287 indicates that the operand must be equal to operand 0 and that no register
2296 int reg_allowed
= 0;
2297 int num_matching_alts
= 0;
2302 case '=': case '+': case '?':
2303 case '#': case '&': case '!':
2305 case '1': case '2': case '3': case '4':
2306 case 'm': case '<': case '>': case 'V': case 'o':
2307 case 'E': case 'F': case 'G': case 'H':
2308 case 's': case 'i': case 'n':
2309 case 'I': case 'J': case 'K': case 'L':
2310 case 'M': case 'N': case 'O': case 'P':
2311 #ifdef EXTRA_CONSTRAINT
2312 case 'Q': case 'R': case 'S': case 'T': case 'U':
2315 /* These don't say anything we care about. */
2319 if (found_zero
&& ! reg_allowed
)
2320 num_matching_alts
++;
2322 found_zero
= reg_allowed
= 0;
2336 if (found_zero
&& ! reg_allowed
)
2337 num_matching_alts
++;
2339 return num_matching_alts
;
2341 #endif /* REGISTER_CONSTRAINTS */
2344 dump_local_alloc (file
)
2348 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
2349 if (reg_renumber
[i
] != -1)
2350 fprintf (file
, ";; Register %d in %d.\n", i
, reg_renumber
[i
]);