2001-08-28 Alexandre Petit-Bianco <apbianco@redhat.com>
[official-gcc.git] / boehm-gc / malloc.c
blob0bbb96abec09c77b01e88cb5513ec7e53998869a
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 2000 by Hewlett-Packard Company. All rights reserved.
6 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
7 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
9 * Permission is hereby granted to use or copy this program
10 * for any purpose, provided the above notices are retained on all copies.
11 * Permission to modify the code and to distribute modified code is granted,
12 * provided the above notices are retained, and a notice that the code was
13 * modified is included with the above copyright notice.
15 /* Boehm, February 7, 1996 4:32 pm PST */
17 #include <stdio.h>
18 #include "private/gc_priv.h"
20 extern ptr_t GC_clear_stack(); /* in misc.c, behaves like identity */
21 void GC_extend_size_map(); /* in misc.c. */
23 /* Allocate reclaim list for kind: */
24 /* Return TRUE on success */
25 GC_bool GC_alloc_reclaim_list(kind)
26 register struct obj_kind * kind;
28 struct hblk ** result = (struct hblk **)
29 GC_scratch_alloc((MAXOBJSZ+1) * sizeof(struct hblk *));
30 if (result == 0) return(FALSE);
31 BZERO(result, (MAXOBJSZ+1)*sizeof(struct hblk *));
32 kind -> ok_reclaim_list = result;
33 return(TRUE);
36 /* Allocate a large block of size lw words. */
37 /* The block is not cleared. */
38 /* Flags is 0 or IGNORE_OFF_PAGE. */
39 ptr_t GC_alloc_large(lw, k, flags)
40 word lw;
41 int k;
42 unsigned flags;
44 struct hblk * h;
45 word n_blocks = OBJ_SZ_TO_BLOCKS(lw);
46 ptr_t result;
48 if (!GC_is_initialized) GC_init_inner();
49 /* Do our share of marking work */
50 if(GC_incremental && !GC_dont_gc)
51 GC_collect_a_little_inner((int)n_blocks);
52 h = GC_allochblk(lw, k, flags);
53 # ifdef USE_MUNMAP
54 if (0 == h) {
55 GC_merge_unmapped();
56 h = GC_allochblk(lw, k, flags);
58 # endif
59 while (0 == h && GC_collect_or_expand(n_blocks, (flags != 0))) {
60 h = GC_allochblk(lw, k, flags);
62 if (h == 0) {
63 result = 0;
64 } else {
65 int total_bytes = BYTES_TO_WORDS(n_blocks * HBLKSIZE);
66 if (n_blocks > 1) {
67 GC_large_allocd_bytes += n_blocks * HBLKSIZE;
68 if (GC_large_allocd_bytes > GC_max_large_allocd_bytes)
69 GC_max_large_allocd_bytes = GC_large_allocd_bytes;
71 result = (ptr_t) (h -> hb_body);
72 GC_words_wasted += total_bytes - lw;
74 return result;
78 /* Allocate a large block of size lb bytes. Clear if appropriate. */
79 ptr_t GC_alloc_large_and_clear(lw, k, flags)
80 word lw;
81 int k;
82 unsigned flags;
84 ptr_t result = GC_alloc_large(lw, k, flags);
85 word n_blocks = OBJ_SZ_TO_BLOCKS(lw);
87 if (0 == result) return 0;
88 if (GC_debugging_started || GC_obj_kinds[k].ok_init) {
89 /* Clear the whole block, in case of GC_realloc call. */
90 BZERO(result, n_blocks * HBLKSIZE);
92 return result;
95 /* allocate lb bytes for an object of kind k. */
96 /* Should not be used to directly to allocate */
97 /* objects such as STUBBORN objects that */
98 /* require special handling on allocation. */
99 /* First a version that assumes we already */
100 /* hold lock: */
101 ptr_t GC_generic_malloc_inner(lb, k)
102 register word lb;
103 register int k;
105 register word lw;
106 register ptr_t op;
107 register ptr_t *opp;
109 if( SMALL_OBJ(lb) ) {
110 register struct obj_kind * kind = GC_obj_kinds + k;
111 # ifdef MERGE_SIZES
112 lw = GC_size_map[lb];
113 # else
114 lw = ALIGNED_WORDS(lb);
115 if (lw == 0) lw = MIN_WORDS;
116 # endif
117 opp = &(kind -> ok_freelist[lw]);
118 if( (op = *opp) == 0 ) {
119 # ifdef MERGE_SIZES
120 if (GC_size_map[lb] == 0) {
121 if (!GC_is_initialized) GC_init_inner();
122 if (GC_size_map[lb] == 0) GC_extend_size_map(lb);
123 return(GC_generic_malloc_inner(lb, k));
125 # else
126 if (!GC_is_initialized) {
127 GC_init_inner();
128 return(GC_generic_malloc_inner(lb, k));
130 # endif
131 if (kind -> ok_reclaim_list == 0) {
132 if (!GC_alloc_reclaim_list(kind)) goto out;
134 op = GC_allocobj(lw, k);
135 if (op == 0) goto out;
137 /* Here everything is in a consistent state. */
138 /* We assume the following assignment is */
139 /* atomic. If we get aborted */
140 /* after the assignment, we lose an object, */
141 /* but that's benign. */
142 /* Volatile declarations may need to be added */
143 /* to prevent the compiler from breaking things.*/
144 /* If we only execute the second of the */
145 /* following assignments, we lose the free */
146 /* list, but that should still be OK, at least */
147 /* for garbage collected memory. */
148 *opp = obj_link(op);
149 obj_link(op) = 0;
150 } else {
151 lw = ROUNDED_UP_WORDS(lb);
152 op = (ptr_t)GC_alloc_large_and_clear(lw, k, 0);
154 GC_words_allocd += lw;
156 out:
157 return op;
160 /* Allocate a composite object of size n bytes. The caller guarantees */
161 /* that pointers past the first page are not relevant. Caller holds */
162 /* allocation lock. */
163 ptr_t GC_generic_malloc_inner_ignore_off_page(lb, k)
164 register size_t lb;
165 register int k;
167 register word lw;
168 ptr_t op;
170 if (lb <= HBLKSIZE)
171 return(GC_generic_malloc_inner((word)lb, k));
172 lw = ROUNDED_UP_WORDS(lb);
173 op = (ptr_t)GC_alloc_large_and_clear(lw, k, IGNORE_OFF_PAGE);
174 GC_words_allocd += lw;
175 return op;
178 ptr_t GC_generic_malloc(lb, k)
179 register word lb;
180 register int k;
182 ptr_t result;
183 DCL_LOCK_STATE;
185 GC_INVOKE_FINALIZERS();
186 if (SMALL_OBJ(lb)) {
187 DISABLE_SIGNALS();
188 LOCK();
189 result = GC_generic_malloc_inner((word)lb, k);
190 UNLOCK();
191 ENABLE_SIGNALS();
192 } else {
193 word lw;
194 word n_blocks;
195 GC_bool init;
196 lw = ROUNDED_UP_WORDS(lb);
197 n_blocks = OBJ_SZ_TO_BLOCKS(lw);
198 init = GC_obj_kinds[k].ok_init;
199 DISABLE_SIGNALS();
200 LOCK();
201 result = (ptr_t)GC_alloc_large(lw, k, 0);
202 if (0 != result) {
203 if (GC_debugging_started) {
204 BZERO(result, n_blocks * HBLKSIZE);
205 } else {
206 # ifdef THREADS
207 /* Clear any memory that might be used for GC descriptors */
208 /* before we release the lock. */
209 ((word *)result)[0] = 0;
210 ((word *)result)[1] = 0;
211 ((word *)result)[lw-1] = 0;
212 ((word *)result)[lw-2] = 0;
213 # endif
216 GC_words_allocd += lw;
217 UNLOCK();
218 ENABLE_SIGNALS();
219 if (init & !GC_debugging_started && 0 != result) {
220 BZERO(result, n_blocks * HBLKSIZE);
223 if (0 == result) {
224 return((*GC_oom_fn)(lb));
225 } else {
226 return(result);
231 #define GENERAL_MALLOC(lb,k) \
232 (GC_PTR)GC_clear_stack(GC_generic_malloc((word)lb, k))
233 /* We make the GC_clear_stack_call a tail call, hoping to get more of */
234 /* the stack. */
236 /* Allocate lb bytes of atomic (pointerfree) data */
237 # ifdef __STDC__
238 GC_PTR GC_malloc_atomic(size_t lb)
239 # else
240 GC_PTR GC_malloc_atomic(lb)
241 size_t lb;
242 # endif
244 register ptr_t op;
245 register ptr_t * opp;
246 register word lw;
247 DCL_LOCK_STATE;
249 if( EXPECT(SMALL_OBJ(lb), 1) ) {
250 # ifdef MERGE_SIZES
251 lw = GC_size_map[lb];
252 # else
253 lw = ALIGNED_WORDS(lb);
254 # endif
255 opp = &(GC_aobjfreelist[lw]);
256 FASTLOCK();
257 if( EXPECT(!FASTLOCK_SUCCEEDED() || (op = *opp) == 0, 0) ) {
258 FASTUNLOCK();
259 return(GENERAL_MALLOC((word)lb, PTRFREE));
261 /* See above comment on signals. */
262 *opp = obj_link(op);
263 GC_words_allocd += lw;
264 FASTUNLOCK();
265 return((GC_PTR) op);
266 } else {
267 return(GENERAL_MALLOC((word)lb, PTRFREE));
271 /* Allocate lb bytes of composite (pointerful) data */
272 # ifdef __STDC__
273 GC_PTR GC_malloc(size_t lb)
274 # else
275 GC_PTR GC_malloc(lb)
276 size_t lb;
277 # endif
279 register ptr_t op;
280 register ptr_t *opp;
281 register word lw;
282 DCL_LOCK_STATE;
284 if( EXPECT(SMALL_OBJ(lb), 1) ) {
285 # ifdef MERGE_SIZES
286 lw = GC_size_map[lb];
287 # else
288 lw = ALIGNED_WORDS(lb);
289 # endif
290 opp = &(GC_objfreelist[lw]);
291 FASTLOCK();
292 if( EXPECT(!FASTLOCK_SUCCEEDED() || (op = *opp) == 0, 0) ) {
293 FASTUNLOCK();
294 return(GENERAL_MALLOC((word)lb, NORMAL));
296 /* See above comment on signals. */
297 *opp = obj_link(op);
298 obj_link(op) = 0;
299 GC_words_allocd += lw;
300 FASTUNLOCK();
301 return((GC_PTR) op);
302 } else {
303 return(GENERAL_MALLOC((word)lb, NORMAL));
307 # ifdef REDIRECT_MALLOC
308 # ifdef __STDC__
309 GC_PTR malloc(size_t lb)
310 # else
311 GC_PTR malloc(lb)
312 size_t lb;
313 # endif
315 /* It might help to manually inline the GC_malloc call here. */
316 /* But any decent compiler should reduce the extra procedure call */
317 /* to at most a jump instruction in this case. */
318 # if defined(I386) && defined(SOLARIS_THREADS)
320 * Thread initialisation can call malloc before
321 * we're ready for it.
322 * It's not clear that this is enough to help matters.
323 * The thread implementation may well call malloc at other
324 * inopportune times.
326 if (!GC_is_initialized) return sbrk(lb);
327 # endif /* I386 && SOLARIS_THREADS */
328 return((GC_PTR)REDIRECT_MALLOC(lb));
331 # ifdef __STDC__
332 GC_PTR calloc(size_t n, size_t lb)
333 # else
334 GC_PTR calloc(n, lb)
335 size_t n, lb;
336 # endif
338 return((GC_PTR)REDIRECT_MALLOC(n*lb));
340 # endif /* REDIRECT_MALLOC */
342 /* Explicitly deallocate an object p. */
343 # ifdef __STDC__
344 void GC_free(GC_PTR p)
345 # else
346 void GC_free(p)
347 GC_PTR p;
348 # endif
350 register struct hblk *h;
351 register hdr *hhdr;
352 register signed_word sz;
353 register ptr_t * flh;
354 register int knd;
355 register struct obj_kind * ok;
356 DCL_LOCK_STATE;
358 if (p == 0) return;
359 /* Required by ANSI. It's not my fault ... */
360 h = HBLKPTR(p);
361 hhdr = HDR(h);
362 # if defined(REDIRECT_MALLOC) && \
363 (defined(SOLARIS_THREADS) || defined(LINUX_THREADS) \
364 || defined(__MINGW32__)) /* Should this be MSWIN32 in general? */
365 /* For Solaris, we have to redirect malloc calls during */
366 /* initialization. For the others, this seems to happen */
367 /* implicitly. */
368 /* Don't try to deallocate that memory. */
369 if (0 == hhdr) return;
370 # endif
371 knd = hhdr -> hb_obj_kind;
372 sz = hhdr -> hb_sz;
373 ok = &GC_obj_kinds[knd];
374 if (EXPECT((sz <= MAXOBJSZ), 1)) {
375 # ifdef THREADS
376 DISABLE_SIGNALS();
377 LOCK();
378 # endif
379 GC_mem_freed += sz;
380 /* A signal here can make GC_mem_freed and GC_non_gc_bytes */
381 /* inconsistent. We claim this is benign. */
382 if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
383 /* Its unnecessary to clear the mark bit. If the */
384 /* object is reallocated, it doesn't matter. O.w. the */
385 /* collector will do it, since it's on a free list. */
386 if (ok -> ok_init) {
387 BZERO((word *)p + 1, WORDS_TO_BYTES(sz-1));
389 flh = &(ok -> ok_freelist[sz]);
390 obj_link(p) = *flh;
391 *flh = (ptr_t)p;
392 # ifdef THREADS
393 UNLOCK();
394 ENABLE_SIGNALS();
395 # endif
396 } else {
397 DISABLE_SIGNALS();
398 LOCK();
399 GC_mem_freed += sz;
400 if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
401 GC_freehblk(h);
402 UNLOCK();
403 ENABLE_SIGNALS();
407 /* Explicitly deallocate an object p when we already hold lock. */
408 /* Only used for internally allocated objects, so we can take some */
409 /* shortcuts. */
410 #ifdef THREADS
411 void GC_free_inner(GC_PTR p)
413 register struct hblk *h;
414 register hdr *hhdr;
415 register signed_word sz;
416 register ptr_t * flh;
417 register int knd;
418 register struct obj_kind * ok;
419 DCL_LOCK_STATE;
421 h = HBLKPTR(p);
422 hhdr = HDR(h);
423 knd = hhdr -> hb_obj_kind;
424 sz = hhdr -> hb_sz;
425 ok = &GC_obj_kinds[knd];
426 if (sz <= MAXOBJSZ) {
427 GC_mem_freed += sz;
428 if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
429 if (ok -> ok_init) {
430 BZERO((word *)p + 1, WORDS_TO_BYTES(sz-1));
432 flh = &(ok -> ok_freelist[sz]);
433 obj_link(p) = *flh;
434 *flh = (ptr_t)p;
435 } else {
436 GC_mem_freed += sz;
437 if (IS_UNCOLLECTABLE(knd)) GC_non_gc_bytes -= WORDS_TO_BYTES(sz);
438 GC_freehblk(h);
441 #endif /* THREADS */
443 # ifdef REDIRECT_MALLOC
444 # ifdef __STDC__
445 void free(GC_PTR p)
446 # else
447 void free(p)
448 GC_PTR p;
449 # endif
451 # ifndef IGNORE_FREE
452 GC_free(p);
453 # endif
455 # endif /* REDIRECT_MALLOC */