2001-08-28 Alexandre Petit-Bianco <apbianco@redhat.com>
[official-gcc.git] / boehm-gc / include / gc_cpp.h
blobceb73f50a65f18d2e59923811645d409241d29f5
1 #ifndef GC_CPP_H
2 #define GC_CPP_H
3 /****************************************************************************
4 Copyright (c) 1994 by Xerox Corporation. All rights reserved.
6 THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
7 OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
9 Permission is hereby granted to use or copy this program for any
10 purpose, provided the above notices are retained on all copies.
11 Permission to modify the code and to distribute modified code is
12 granted, provided the above notices are retained, and a notice that
13 the code was modified is included with the above copyright notice.
14 ****************************************************************************
16 C++ Interface to the Boehm Collector
18 John R. Ellis and Jesse Hull
20 This interface provides access to the Boehm collector. It provides
21 basic facilities similar to those described in "Safe, Efficient
22 Garbage Collection for C++", by John R. Elis and David L. Detlefs
23 (ftp://ftp.parc.xerox.com/pub/ellis/gc).
25 All heap-allocated objects are either "collectable" or
26 "uncollectable". Programs must explicitly delete uncollectable
27 objects, whereas the garbage collector will automatically delete
28 collectable objects when it discovers them to be inaccessible.
29 Collectable objects may freely point at uncollectable objects and vice
30 versa.
32 Objects allocated with the built-in "::operator new" are uncollectable.
34 Objects derived from class "gc" are collectable. For example:
36 class A: public gc {...};
37 A* a = new A; // a is collectable.
39 Collectable instances of non-class types can be allocated using the GC
40 (or UseGC) placement:
42 typedef int A[ 10 ];
43 A* a = new (GC) A;
45 Uncollectable instances of classes derived from "gc" can be allocated
46 using the NoGC placement:
48 class A: public gc {...};
49 A* a = new (NoGC) A; // a is uncollectable.
51 Both uncollectable and collectable objects can be explicitly deleted
52 with "delete", which invokes an object's destructors and frees its
53 storage immediately.
55 A collectable object may have a clean-up function, which will be
56 invoked when the collector discovers the object to be inaccessible.
57 An object derived from "gc_cleanup" or containing a member derived
58 from "gc_cleanup" has a default clean-up function that invokes the
59 object's destructors. Explicit clean-up functions may be specified as
60 an additional placement argument:
62 A* a = ::new (GC, MyCleanup) A;
64 An object is considered "accessible" by the collector if it can be
65 reached by a path of pointers from static variables, automatic
66 variables of active functions, or from some object with clean-up
67 enabled; pointers from an object to itself are ignored.
69 Thus, if objects A and B both have clean-up functions, and A points at
70 B, B is considered accessible. After A's clean-up is invoked and its
71 storage released, B will then become inaccessible and will have its
72 clean-up invoked. If A points at B and B points to A, forming a
73 cycle, then that's considered a storage leak, and neither will be
74 collectable. See the interface gc.h for low-level facilities for
75 handling such cycles of objects with clean-up.
77 The collector cannot guarrantee that it will find all inaccessible
78 objects. In practice, it finds almost all of them.
81 Cautions:
83 1. Be sure the collector has been augmented with "make c++".
85 2. If your compiler supports the new "operator new[]" syntax, then
86 add -DGC_OPERATOR_NEW_ARRAY to the Makefile.
88 If your compiler doesn't support "operator new[]", beware that an
89 array of type T, where T is derived from "gc", may or may not be
90 allocated as a collectable object (it depends on the compiler). Use
91 the explicit GC placement to make the array collectable. For example:
93 class A: public gc {...};
94 A* a1 = new A[ 10 ]; // collectable or uncollectable?
95 A* a2 = new (GC) A[ 10 ]; // collectable
97 3. The destructors of collectable arrays of objects derived from
98 "gc_cleanup" will not be invoked properly. For example:
100 class A: public gc_cleanup {...};
101 A* a = new (GC) A[ 10 ]; // destructors not invoked correctly
103 Typically, only the destructor for the first element of the array will
104 be invoked when the array is garbage-collected. To get all the
105 destructors of any array executed, you must supply an explicit
106 clean-up function:
108 A* a = new (GC, MyCleanUp) A[ 10 ];
110 (Implementing clean-up of arrays correctly, portably, and in a way
111 that preserves the correct exception semantics requires a language
112 extension, e.g. the "gc" keyword.)
114 4. Compiler bugs:
116 * Solaris 2's CC (SC3.0) doesn't implement t->~T() correctly, so the
117 destructors of classes derived from gc_cleanup won't be invoked.
118 You'll have to explicitly register a clean-up function with
119 new-placement syntax.
121 * Evidently cfront 3.0 does not allow destructors to be explicitly
122 invoked using the ANSI-conforming syntax t->~T(). If you're using
123 cfront 3.0, you'll have to comment out the class gc_cleanup, which
124 uses explicit invocation.
126 5. GC name conflicts:
128 Many other systems seem to use the identifier "GC" as an abbreviation
129 for "Graphics Context". Since version 5.0, GC placement has been replaced
130 by UseGC. GC is an alias for UseGC, unless GC_NAME_CONFLICT is defined.
132 ****************************************************************************/
134 #include "gc.h"
136 #ifndef THINK_CPLUS
137 #define _cdecl
138 #endif
140 #if ! defined( GC_NO_OPERATOR_NEW_ARRAY ) \
141 && !defined(_ENABLE_ARRAYNEW) /* Digimars */ \
142 && (defined(__BORLANDC__) && (__BORLANDC__ < 0x450) \
143 || (defined(__GNUC__) && \
144 (__GNUC__ < 2 || __GNUC__ == 2 && __GNUC_MINOR__ < 6)) \
145 || (defined(__WATCOMC__) && __WATCOMC__ < 1050))
146 # define GC_NO_OPERATOR_NEW_ARRAY
147 #endif
149 #if !defined(GC_NO_OPERATOR_NEW_ARRAY) && !defined(GC_OPERATOR_NEW_ARRAY)
150 # define GC_OPERATOR_NEW_ARRAY
151 #endif
153 enum GCPlacement {UseGC,
154 #ifndef GC_NAME_CONFLICT
155 GC=UseGC,
156 #endif
157 NoGC, PointerFreeGC};
159 class gc {public:
160 inline void* operator new( size_t size );
161 inline void* operator new( size_t size, GCPlacement gcp );
162 inline void operator delete( void* obj );
164 #ifdef GC_OPERATOR_NEW_ARRAY
165 inline void* operator new[]( size_t size );
166 inline void* operator new[]( size_t size, GCPlacement gcp );
167 inline void operator delete[]( void* obj );
168 #endif /* GC_OPERATOR_NEW_ARRAY */
171 Instances of classes derived from "gc" will be allocated in the
172 collected heap by default, unless an explicit NoGC placement is
173 specified. */
175 class gc_cleanup: virtual public gc {public:
176 inline gc_cleanup();
177 inline virtual ~gc_cleanup();
178 private:
179 inline static void _cdecl cleanup( void* obj, void* clientData );};
181 Instances of classes derived from "gc_cleanup" will be allocated
182 in the collected heap by default. When the collector discovers an
183 inaccessible object derived from "gc_cleanup" or containing a
184 member derived from "gc_cleanup", its destructors will be
185 invoked. */
187 extern "C" {typedef void (*GCCleanUpFunc)( void* obj, void* clientData );}
189 #ifdef _MSC_VER
190 // Disable warning that "no matching operator delete found; memory will
191 // not be freed if initialization throws an exception"
192 # pragma warning(disable:4291)
193 #endif
195 inline void* operator new(
196 size_t size,
197 GCPlacement gcp,
198 GCCleanUpFunc cleanup = 0,
199 void* clientData = 0 );
201 Allocates a collectable or uncollected object, according to the
202 value of "gcp".
204 For collectable objects, if "cleanup" is non-null, then when the
205 allocated object "obj" becomes inaccessible, the collector will
206 invoke the function "cleanup( obj, clientData )" but will not
207 invoke the object's destructors. It is an error to explicitly
208 delete an object allocated with a non-null "cleanup".
210 It is an error to specify a non-null "cleanup" with NoGC or for
211 classes derived from "gc_cleanup" or containing members derived
212 from "gc_cleanup". */
214 #ifdef GC_OPERATOR_NEW_ARRAY
216 #ifdef _MSC_VER
217 /** This ensures that the system default operator new[] doesn't get
218 * undefined, which is what seems to happen on VC++ 6 for some reason
219 * if we define a multi-argument operator new[].
220 * There seems to be really redirect new in this environment without
221 * including this everywhere.
223 inline void *operator new[]( size_t size )
225 return GC_MALLOC_UNCOLLECTABLE( size );
228 inline void operator delete[](void* obj)
230 GC_FREE(obj);
233 inline void* operator new( size_t size)
235 return GC_MALLOC_UNCOLLECTABLE( size);
238 inline void operator delete(void* obj)
240 GC_FREE(obj);
244 // This new operator is used by VC++ in case of Debug builds !
245 inline void* operator new( size_t size,
246 int ,//nBlockUse,
247 const char * szFileName,
248 int nLine
250 # ifndef GC_DEBUG
251 return GC_malloc_uncollectable( size );
252 # else
253 return GC_debug_malloc_uncollectable(size, szFileName, nLine);
254 # endif
257 #endif /* _MSC_VER */
259 inline void* operator new[](
260 size_t size,
261 GCPlacement gcp,
262 GCCleanUpFunc cleanup = 0,
263 void* clientData = 0 );
265 The operator new for arrays, identical to the above. */
267 #endif /* GC_OPERATOR_NEW_ARRAY */
269 /****************************************************************************
271 Inline implementation
273 ****************************************************************************/
275 inline void* gc::operator new( size_t size ) {
276 return GC_MALLOC( size );}
278 inline void* gc::operator new( size_t size, GCPlacement gcp ) {
279 if (gcp == UseGC)
280 return GC_MALLOC( size );
281 else if (gcp == PointerFreeGC)
282 return GC_MALLOC_ATOMIC( size );
283 else
284 return GC_MALLOC_UNCOLLECTABLE( size );}
286 inline void gc::operator delete( void* obj ) {
287 GC_FREE( obj );}
290 #ifdef GC_OPERATOR_NEW_ARRAY
292 inline void* gc::operator new[]( size_t size ) {
293 return gc::operator new( size );}
295 inline void* gc::operator new[]( size_t size, GCPlacement gcp ) {
296 return gc::operator new( size, gcp );}
298 inline void gc::operator delete[]( void* obj ) {
299 gc::operator delete( obj );}
301 #endif /* GC_OPERATOR_NEW_ARRAY */
304 inline gc_cleanup::~gc_cleanup() {
305 GC_REGISTER_FINALIZER_IGNORE_SELF( GC_base(this), 0, 0, 0, 0 );}
307 inline void gc_cleanup::cleanup( void* obj, void* displ ) {
308 ((gc_cleanup*) ((char*) obj + (ptrdiff_t) displ))->~gc_cleanup();}
310 inline gc_cleanup::gc_cleanup() {
311 GC_finalization_proc oldProc;
312 void* oldData;
313 void* base = GC_base( (void *) this );
314 if (0 != base) {
315 // Don't call the debug version, since this is a real base address.
316 GC_register_finalizer_ignore_self(
317 base, (GC_finalization_proc)cleanup, (void*) ((char*) this - (char*) base),
318 &oldProc, &oldData );
319 if (0 != oldProc) {
320 GC_register_finalizer_ignore_self( base, oldProc, oldData, 0, 0 );}}}
322 inline void* operator new(
323 size_t size,
324 GCPlacement gcp,
325 GCCleanUpFunc cleanup,
326 void* clientData )
328 void* obj;
330 if (gcp == UseGC) {
331 obj = GC_MALLOC( size );
332 if (cleanup != 0)
333 GC_REGISTER_FINALIZER_IGNORE_SELF(
334 obj, cleanup, clientData, 0, 0 );}
335 else if (gcp == PointerFreeGC) {
336 obj = GC_MALLOC_ATOMIC( size );}
337 else {
338 obj = GC_MALLOC_UNCOLLECTABLE( size );};
339 return obj;}
342 #ifdef GC_OPERATOR_NEW_ARRAY
344 inline void* operator new[](
345 size_t size,
346 GCPlacement gcp,
347 GCCleanUpFunc cleanup,
348 void* clientData )
350 return ::operator new( size, gcp, cleanup, clientData );}
352 #endif /* GC_OPERATOR_NEW_ARRAY */
355 #endif /* GC_CPP_H */